Merge remote-tracking branches 'asoc/topic/es7134', 'asoc/topic/es8328', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
33
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define NR_RAID10_BIOS 256
79
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105                                 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109
110 #define raid10_log(md, fmt, args...)                            \
111         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
114 {
115         struct r10conf *conf = data;
116         int size = offsetof(struct r10bio, devs[conf->copies]);
117
118         /* allocate a r10bio with room for raid_disks entries in the
119          * bios array */
120         return kzalloc(size, gfp_flags);
121 }
122
123 static void r10bio_pool_free(void *r10_bio, void *data)
124 {
125         kfree(r10_bio);
126 }
127
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
135
136 /*
137  * When performing a resync, we need to read and compare, so
138  * we need as many pages are there are copies.
139  * When performing a recovery, we need 2 bios, one for read,
140  * one for write (we recover only one drive per r10buf)
141  *
142  */
143 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
144 {
145         struct r10conf *conf = data;
146         struct page *page;
147         struct r10bio *r10_bio;
148         struct bio *bio;
149         int i, j;
150         int nalloc;
151
152         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
153         if (!r10_bio)
154                 return NULL;
155
156         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
157             test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
158                 nalloc = conf->copies; /* resync */
159         else
160                 nalloc = 2; /* recovery */
161
162         /*
163          * Allocate bios.
164          */
165         for (j = nalloc ; j-- ; ) {
166                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167                 if (!bio)
168                         goto out_free_bio;
169                 r10_bio->devs[j].bio = bio;
170                 if (!conf->have_replacement)
171                         continue;
172                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
173                 if (!bio)
174                         goto out_free_bio;
175                 r10_bio->devs[j].repl_bio = bio;
176         }
177         /*
178          * Allocate RESYNC_PAGES data pages and attach them
179          * where needed.
180          */
181         for (j = 0 ; j < nalloc; j++) {
182                 struct bio *rbio = r10_bio->devs[j].repl_bio;
183                 bio = r10_bio->devs[j].bio;
184                 for (i = 0; i < RESYNC_PAGES; i++) {
185                         if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
186                                                &conf->mddev->recovery)) {
187                                 /* we can share bv_page's during recovery
188                                  * and reshape */
189                                 struct bio *rbio = r10_bio->devs[0].bio;
190                                 page = rbio->bi_io_vec[i].bv_page;
191                                 get_page(page);
192                         } else
193                                 page = alloc_page(gfp_flags);
194                         if (unlikely(!page))
195                                 goto out_free_pages;
196
197                         bio->bi_io_vec[i].bv_page = page;
198                         if (rbio)
199                                 rbio->bi_io_vec[i].bv_page = page;
200                 }
201         }
202
203         return r10_bio;
204
205 out_free_pages:
206         for ( ; i > 0 ; i--)
207                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
208         while (j--)
209                 for (i = 0; i < RESYNC_PAGES ; i++)
210                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
211         j = 0;
212 out_free_bio:
213         for ( ; j < nalloc; j++) {
214                 if (r10_bio->devs[j].bio)
215                         bio_put(r10_bio->devs[j].bio);
216                 if (r10_bio->devs[j].repl_bio)
217                         bio_put(r10_bio->devs[j].repl_bio);
218         }
219         r10bio_pool_free(r10_bio, conf);
220         return NULL;
221 }
222
223 static void r10buf_pool_free(void *__r10_bio, void *data)
224 {
225         int i;
226         struct r10conf *conf = data;
227         struct r10bio *r10bio = __r10_bio;
228         int j;
229
230         for (j=0; j < conf->copies; j++) {
231                 struct bio *bio = r10bio->devs[j].bio;
232                 if (bio) {
233                         for (i = 0; i < RESYNC_PAGES; i++) {
234                                 safe_put_page(bio->bi_io_vec[i].bv_page);
235                                 bio->bi_io_vec[i].bv_page = NULL;
236                         }
237                         bio_put(bio);
238                 }
239                 bio = r10bio->devs[j].repl_bio;
240                 if (bio)
241                         bio_put(bio);
242         }
243         r10bio_pool_free(r10bio, conf);
244 }
245
246 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
247 {
248         int i;
249
250         for (i = 0; i < conf->copies; i++) {
251                 struct bio **bio = & r10_bio->devs[i].bio;
252                 if (!BIO_SPECIAL(*bio))
253                         bio_put(*bio);
254                 *bio = NULL;
255                 bio = &r10_bio->devs[i].repl_bio;
256                 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
257                         bio_put(*bio);
258                 *bio = NULL;
259         }
260 }
261
262 static void free_r10bio(struct r10bio *r10_bio)
263 {
264         struct r10conf *conf = r10_bio->mddev->private;
265
266         put_all_bios(conf, r10_bio);
267         mempool_free(r10_bio, conf->r10bio_pool);
268 }
269
270 static void put_buf(struct r10bio *r10_bio)
271 {
272         struct r10conf *conf = r10_bio->mddev->private;
273
274         mempool_free(r10_bio, conf->r10buf_pool);
275
276         lower_barrier(conf);
277 }
278
279 static void reschedule_retry(struct r10bio *r10_bio)
280 {
281         unsigned long flags;
282         struct mddev *mddev = r10_bio->mddev;
283         struct r10conf *conf = mddev->private;
284
285         spin_lock_irqsave(&conf->device_lock, flags);
286         list_add(&r10_bio->retry_list, &conf->retry_list);
287         conf->nr_queued ++;
288         spin_unlock_irqrestore(&conf->device_lock, flags);
289
290         /* wake up frozen array... */
291         wake_up(&conf->wait_barrier);
292
293         md_wakeup_thread(mddev->thread);
294 }
295
296 /*
297  * raid_end_bio_io() is called when we have finished servicing a mirrored
298  * operation and are ready to return a success/failure code to the buffer
299  * cache layer.
300  */
301 static void raid_end_bio_io(struct r10bio *r10_bio)
302 {
303         struct bio *bio = r10_bio->master_bio;
304         int done;
305         struct r10conf *conf = r10_bio->mddev->private;
306
307         if (bio->bi_phys_segments) {
308                 unsigned long flags;
309                 spin_lock_irqsave(&conf->device_lock, flags);
310                 bio->bi_phys_segments--;
311                 done = (bio->bi_phys_segments == 0);
312                 spin_unlock_irqrestore(&conf->device_lock, flags);
313         } else
314                 done = 1;
315         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
316                 bio->bi_error = -EIO;
317         if (done) {
318                 bio_endio(bio);
319                 /*
320                  * Wake up any possible resync thread that waits for the device
321                  * to go idle.
322                  */
323                 allow_barrier(conf);
324         }
325         free_r10bio(r10_bio);
326 }
327
328 /*
329  * Update disk head position estimator based on IRQ completion info.
330  */
331 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
332 {
333         struct r10conf *conf = r10_bio->mddev->private;
334
335         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
336                 r10_bio->devs[slot].addr + (r10_bio->sectors);
337 }
338
339 /*
340  * Find the disk number which triggered given bio
341  */
342 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
343                          struct bio *bio, int *slotp, int *replp)
344 {
345         int slot;
346         int repl = 0;
347
348         for (slot = 0; slot < conf->copies; slot++) {
349                 if (r10_bio->devs[slot].bio == bio)
350                         break;
351                 if (r10_bio->devs[slot].repl_bio == bio) {
352                         repl = 1;
353                         break;
354                 }
355         }
356
357         BUG_ON(slot == conf->copies);
358         update_head_pos(slot, r10_bio);
359
360         if (slotp)
361                 *slotp = slot;
362         if (replp)
363                 *replp = repl;
364         return r10_bio->devs[slot].devnum;
365 }
366
367 static void raid10_end_read_request(struct bio *bio)
368 {
369         int uptodate = !bio->bi_error;
370         struct r10bio *r10_bio = bio->bi_private;
371         int slot, dev;
372         struct md_rdev *rdev;
373         struct r10conf *conf = r10_bio->mddev->private;
374
375         slot = r10_bio->read_slot;
376         dev = r10_bio->devs[slot].devnum;
377         rdev = r10_bio->devs[slot].rdev;
378         /*
379          * this branch is our 'one mirror IO has finished' event handler:
380          */
381         update_head_pos(slot, r10_bio);
382
383         if (uptodate) {
384                 /*
385                  * Set R10BIO_Uptodate in our master bio, so that
386                  * we will return a good error code to the higher
387                  * levels even if IO on some other mirrored buffer fails.
388                  *
389                  * The 'master' represents the composite IO operation to
390                  * user-side. So if something waits for IO, then it will
391                  * wait for the 'master' bio.
392                  */
393                 set_bit(R10BIO_Uptodate, &r10_bio->state);
394         } else {
395                 /* If all other devices that store this block have
396                  * failed, we want to return the error upwards rather
397                  * than fail the last device.  Here we redefine
398                  * "uptodate" to mean "Don't want to retry"
399                  */
400                 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
401                              rdev->raid_disk))
402                         uptodate = 1;
403         }
404         if (uptodate) {
405                 raid_end_bio_io(r10_bio);
406                 rdev_dec_pending(rdev, conf->mddev);
407         } else {
408                 /*
409                  * oops, read error - keep the refcount on the rdev
410                  */
411                 char b[BDEVNAME_SIZE];
412                 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
413                                    mdname(conf->mddev),
414                                    bdevname(rdev->bdev, b),
415                                    (unsigned long long)r10_bio->sector);
416                 set_bit(R10BIO_ReadError, &r10_bio->state);
417                 reschedule_retry(r10_bio);
418         }
419 }
420
421 static void close_write(struct r10bio *r10_bio)
422 {
423         /* clear the bitmap if all writes complete successfully */
424         bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
425                         r10_bio->sectors,
426                         !test_bit(R10BIO_Degraded, &r10_bio->state),
427                         0);
428         md_write_end(r10_bio->mddev);
429 }
430
431 static void one_write_done(struct r10bio *r10_bio)
432 {
433         if (atomic_dec_and_test(&r10_bio->remaining)) {
434                 if (test_bit(R10BIO_WriteError, &r10_bio->state))
435                         reschedule_retry(r10_bio);
436                 else {
437                         close_write(r10_bio);
438                         if (test_bit(R10BIO_MadeGood, &r10_bio->state))
439                                 reschedule_retry(r10_bio);
440                         else
441                                 raid_end_bio_io(r10_bio);
442                 }
443         }
444 }
445
446 static void raid10_end_write_request(struct bio *bio)
447 {
448         struct r10bio *r10_bio = bio->bi_private;
449         int dev;
450         int dec_rdev = 1;
451         struct r10conf *conf = r10_bio->mddev->private;
452         int slot, repl;
453         struct md_rdev *rdev = NULL;
454         struct bio *to_put = NULL;
455         bool discard_error;
456
457         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
458
459         dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
460
461         if (repl)
462                 rdev = conf->mirrors[dev].replacement;
463         if (!rdev) {
464                 smp_rmb();
465                 repl = 0;
466                 rdev = conf->mirrors[dev].rdev;
467         }
468         /*
469          * this branch is our 'one mirror IO has finished' event handler:
470          */
471         if (bio->bi_error && !discard_error) {
472                 if (repl)
473                         /* Never record new bad blocks to replacement,
474                          * just fail it.
475                          */
476                         md_error(rdev->mddev, rdev);
477                 else {
478                         set_bit(WriteErrorSeen, &rdev->flags);
479                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
480                                 set_bit(MD_RECOVERY_NEEDED,
481                                         &rdev->mddev->recovery);
482
483                         dec_rdev = 0;
484                         if (test_bit(FailFast, &rdev->flags) &&
485                             (bio->bi_opf & MD_FAILFAST)) {
486                                 md_error(rdev->mddev, rdev);
487                                 if (!test_bit(Faulty, &rdev->flags))
488                                         /* This is the only remaining device,
489                                          * We need to retry the write without
490                                          * FailFast
491                                          */
492                                         set_bit(R10BIO_WriteError, &r10_bio->state);
493                                 else {
494                                         r10_bio->devs[slot].bio = NULL;
495                                         to_put = bio;
496                                         dec_rdev = 1;
497                                 }
498                         } else
499                                 set_bit(R10BIO_WriteError, &r10_bio->state);
500                 }
501         } else {
502                 /*
503                  * Set R10BIO_Uptodate in our master bio, so that
504                  * we will return a good error code for to the higher
505                  * levels even if IO on some other mirrored buffer fails.
506                  *
507                  * The 'master' represents the composite IO operation to
508                  * user-side. So if something waits for IO, then it will
509                  * wait for the 'master' bio.
510                  */
511                 sector_t first_bad;
512                 int bad_sectors;
513
514                 /*
515                  * Do not set R10BIO_Uptodate if the current device is
516                  * rebuilding or Faulty. This is because we cannot use
517                  * such device for properly reading the data back (we could
518                  * potentially use it, if the current write would have felt
519                  * before rdev->recovery_offset, but for simplicity we don't
520                  * check this here.
521                  */
522                 if (test_bit(In_sync, &rdev->flags) &&
523                     !test_bit(Faulty, &rdev->flags))
524                         set_bit(R10BIO_Uptodate, &r10_bio->state);
525
526                 /* Maybe we can clear some bad blocks. */
527                 if (is_badblock(rdev,
528                                 r10_bio->devs[slot].addr,
529                                 r10_bio->sectors,
530                                 &first_bad, &bad_sectors) && !discard_error) {
531                         bio_put(bio);
532                         if (repl)
533                                 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534                         else
535                                 r10_bio->devs[slot].bio = IO_MADE_GOOD;
536                         dec_rdev = 0;
537                         set_bit(R10BIO_MadeGood, &r10_bio->state);
538                 }
539         }
540
541         /*
542          *
543          * Let's see if all mirrored write operations have finished
544          * already.
545          */
546         one_write_done(r10_bio);
547         if (dec_rdev)
548                 rdev_dec_pending(rdev, conf->mddev);
549         if (to_put)
550                 bio_put(to_put);
551 }
552
553 /*
554  * RAID10 layout manager
555  * As well as the chunksize and raid_disks count, there are two
556  * parameters: near_copies and far_copies.
557  * near_copies * far_copies must be <= raid_disks.
558  * Normally one of these will be 1.
559  * If both are 1, we get raid0.
560  * If near_copies == raid_disks, we get raid1.
561  *
562  * Chunks are laid out in raid0 style with near_copies copies of the
563  * first chunk, followed by near_copies copies of the next chunk and
564  * so on.
565  * If far_copies > 1, then after 1/far_copies of the array has been assigned
566  * as described above, we start again with a device offset of near_copies.
567  * So we effectively have another copy of the whole array further down all
568  * the drives, but with blocks on different drives.
569  * With this layout, and block is never stored twice on the one device.
570  *
571  * raid10_find_phys finds the sector offset of a given virtual sector
572  * on each device that it is on.
573  *
574  * raid10_find_virt does the reverse mapping, from a device and a
575  * sector offset to a virtual address
576  */
577
578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
579 {
580         int n,f;
581         sector_t sector;
582         sector_t chunk;
583         sector_t stripe;
584         int dev;
585         int slot = 0;
586         int last_far_set_start, last_far_set_size;
587
588         last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589         last_far_set_start *= geo->far_set_size;
590
591         last_far_set_size = geo->far_set_size;
592         last_far_set_size += (geo->raid_disks % geo->far_set_size);
593
594         /* now calculate first sector/dev */
595         chunk = r10bio->sector >> geo->chunk_shift;
596         sector = r10bio->sector & geo->chunk_mask;
597
598         chunk *= geo->near_copies;
599         stripe = chunk;
600         dev = sector_div(stripe, geo->raid_disks);
601         if (geo->far_offset)
602                 stripe *= geo->far_copies;
603
604         sector += stripe << geo->chunk_shift;
605
606         /* and calculate all the others */
607         for (n = 0; n < geo->near_copies; n++) {
608                 int d = dev;
609                 int set;
610                 sector_t s = sector;
611                 r10bio->devs[slot].devnum = d;
612                 r10bio->devs[slot].addr = s;
613                 slot++;
614
615                 for (f = 1; f < geo->far_copies; f++) {
616                         set = d / geo->far_set_size;
617                         d += geo->near_copies;
618
619                         if ((geo->raid_disks % geo->far_set_size) &&
620                             (d > last_far_set_start)) {
621                                 d -= last_far_set_start;
622                                 d %= last_far_set_size;
623                                 d += last_far_set_start;
624                         } else {
625                                 d %= geo->far_set_size;
626                                 d += geo->far_set_size * set;
627                         }
628                         s += geo->stride;
629                         r10bio->devs[slot].devnum = d;
630                         r10bio->devs[slot].addr = s;
631                         slot++;
632                 }
633                 dev++;
634                 if (dev >= geo->raid_disks) {
635                         dev = 0;
636                         sector += (geo->chunk_mask + 1);
637                 }
638         }
639 }
640
641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
642 {
643         struct geom *geo = &conf->geo;
644
645         if (conf->reshape_progress != MaxSector &&
646             ((r10bio->sector >= conf->reshape_progress) !=
647              conf->mddev->reshape_backwards)) {
648                 set_bit(R10BIO_Previous, &r10bio->state);
649                 geo = &conf->prev;
650         } else
651                 clear_bit(R10BIO_Previous, &r10bio->state);
652
653         __raid10_find_phys(geo, r10bio);
654 }
655
656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
657 {
658         sector_t offset, chunk, vchunk;
659         /* Never use conf->prev as this is only called during resync
660          * or recovery, so reshape isn't happening
661          */
662         struct geom *geo = &conf->geo;
663         int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664         int far_set_size = geo->far_set_size;
665         int last_far_set_start;
666
667         if (geo->raid_disks % geo->far_set_size) {
668                 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669                 last_far_set_start *= geo->far_set_size;
670
671                 if (dev >= last_far_set_start) {
672                         far_set_size = geo->far_set_size;
673                         far_set_size += (geo->raid_disks % geo->far_set_size);
674                         far_set_start = last_far_set_start;
675                 }
676         }
677
678         offset = sector & geo->chunk_mask;
679         if (geo->far_offset) {
680                 int fc;
681                 chunk = sector >> geo->chunk_shift;
682                 fc = sector_div(chunk, geo->far_copies);
683                 dev -= fc * geo->near_copies;
684                 if (dev < far_set_start)
685                         dev += far_set_size;
686         } else {
687                 while (sector >= geo->stride) {
688                         sector -= geo->stride;
689                         if (dev < (geo->near_copies + far_set_start))
690                                 dev += far_set_size - geo->near_copies;
691                         else
692                                 dev -= geo->near_copies;
693                 }
694                 chunk = sector >> geo->chunk_shift;
695         }
696         vchunk = chunk * geo->raid_disks + dev;
697         sector_div(vchunk, geo->near_copies);
698         return (vchunk << geo->chunk_shift) + offset;
699 }
700
701 /*
702  * This routine returns the disk from which the requested read should
703  * be done. There is a per-array 'next expected sequential IO' sector
704  * number - if this matches on the next IO then we use the last disk.
705  * There is also a per-disk 'last know head position' sector that is
706  * maintained from IRQ contexts, both the normal and the resync IO
707  * completion handlers update this position correctly. If there is no
708  * perfect sequential match then we pick the disk whose head is closest.
709  *
710  * If there are 2 mirrors in the same 2 devices, performance degrades
711  * because position is mirror, not device based.
712  *
713  * The rdev for the device selected will have nr_pending incremented.
714  */
715
716 /*
717  * FIXME: possibly should rethink readbalancing and do it differently
718  * depending on near_copies / far_copies geometry.
719  */
720 static struct md_rdev *read_balance(struct r10conf *conf,
721                                     struct r10bio *r10_bio,
722                                     int *max_sectors)
723 {
724         const sector_t this_sector = r10_bio->sector;
725         int disk, slot;
726         int sectors = r10_bio->sectors;
727         int best_good_sectors;
728         sector_t new_distance, best_dist;
729         struct md_rdev *best_rdev, *rdev = NULL;
730         int do_balance;
731         int best_slot;
732         struct geom *geo = &conf->geo;
733
734         raid10_find_phys(conf, r10_bio);
735         rcu_read_lock();
736         sectors = r10_bio->sectors;
737         best_slot = -1;
738         best_rdev = NULL;
739         best_dist = MaxSector;
740         best_good_sectors = 0;
741         do_balance = 1;
742         clear_bit(R10BIO_FailFast, &r10_bio->state);
743         /*
744          * Check if we can balance. We can balance on the whole
745          * device if no resync is going on (recovery is ok), or below
746          * the resync window. We take the first readable disk when
747          * above the resync window.
748          */
749         if (conf->mddev->recovery_cp < MaxSector
750             && (this_sector + sectors >= conf->next_resync))
751                 do_balance = 0;
752
753         for (slot = 0; slot < conf->copies ; slot++) {
754                 sector_t first_bad;
755                 int bad_sectors;
756                 sector_t dev_sector;
757
758                 if (r10_bio->devs[slot].bio == IO_BLOCKED)
759                         continue;
760                 disk = r10_bio->devs[slot].devnum;
761                 rdev = rcu_dereference(conf->mirrors[disk].replacement);
762                 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
763                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
764                         rdev = rcu_dereference(conf->mirrors[disk].rdev);
765                 if (rdev == NULL ||
766                     test_bit(Faulty, &rdev->flags))
767                         continue;
768                 if (!test_bit(In_sync, &rdev->flags) &&
769                     r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770                         continue;
771
772                 dev_sector = r10_bio->devs[slot].addr;
773                 if (is_badblock(rdev, dev_sector, sectors,
774                                 &first_bad, &bad_sectors)) {
775                         if (best_dist < MaxSector)
776                                 /* Already have a better slot */
777                                 continue;
778                         if (first_bad <= dev_sector) {
779                                 /* Cannot read here.  If this is the
780                                  * 'primary' device, then we must not read
781                                  * beyond 'bad_sectors' from another device.
782                                  */
783                                 bad_sectors -= (dev_sector - first_bad);
784                                 if (!do_balance && sectors > bad_sectors)
785                                         sectors = bad_sectors;
786                                 if (best_good_sectors > sectors)
787                                         best_good_sectors = sectors;
788                         } else {
789                                 sector_t good_sectors =
790                                         first_bad - dev_sector;
791                                 if (good_sectors > best_good_sectors) {
792                                         best_good_sectors = good_sectors;
793                                         best_slot = slot;
794                                         best_rdev = rdev;
795                                 }
796                                 if (!do_balance)
797                                         /* Must read from here */
798                                         break;
799                         }
800                         continue;
801                 } else
802                         best_good_sectors = sectors;
803
804                 if (!do_balance)
805                         break;
806
807                 if (best_slot >= 0)
808                         /* At least 2 disks to choose from so failfast is OK */
809                         set_bit(R10BIO_FailFast, &r10_bio->state);
810                 /* This optimisation is debatable, and completely destroys
811                  * sequential read speed for 'far copies' arrays.  So only
812                  * keep it for 'near' arrays, and review those later.
813                  */
814                 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
815                         new_distance = 0;
816
817                 /* for far > 1 always use the lowest address */
818                 else if (geo->far_copies > 1)
819                         new_distance = r10_bio->devs[slot].addr;
820                 else
821                         new_distance = abs(r10_bio->devs[slot].addr -
822                                            conf->mirrors[disk].head_position);
823                 if (new_distance < best_dist) {
824                         best_dist = new_distance;
825                         best_slot = slot;
826                         best_rdev = rdev;
827                 }
828         }
829         if (slot >= conf->copies) {
830                 slot = best_slot;
831                 rdev = best_rdev;
832         }
833
834         if (slot >= 0) {
835                 atomic_inc(&rdev->nr_pending);
836                 r10_bio->read_slot = slot;
837         } else
838                 rdev = NULL;
839         rcu_read_unlock();
840         *max_sectors = best_good_sectors;
841
842         return rdev;
843 }
844
845 static int raid10_congested(struct mddev *mddev, int bits)
846 {
847         struct r10conf *conf = mddev->private;
848         int i, ret = 0;
849
850         if ((bits & (1 << WB_async_congested)) &&
851             conf->pending_count >= max_queued_requests)
852                 return 1;
853
854         rcu_read_lock();
855         for (i = 0;
856              (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857                      && ret == 0;
858              i++) {
859                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
861                         struct request_queue *q = bdev_get_queue(rdev->bdev);
862
863                         ret |= bdi_congested(q->backing_dev_info, bits);
864                 }
865         }
866         rcu_read_unlock();
867         return ret;
868 }
869
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872         /* Any writes that have been queued but are awaiting
873          * bitmap updates get flushed here.
874          */
875         spin_lock_irq(&conf->device_lock);
876
877         if (conf->pending_bio_list.head) {
878                 struct bio *bio;
879                 bio = bio_list_get(&conf->pending_bio_list);
880                 conf->pending_count = 0;
881                 spin_unlock_irq(&conf->device_lock);
882                 /* flush any pending bitmap writes to disk
883                  * before proceeding w/ I/O */
884                 bitmap_unplug(conf->mddev->bitmap);
885                 wake_up(&conf->wait_barrier);
886
887                 while (bio) { /* submit pending writes */
888                         struct bio *next = bio->bi_next;
889                         struct md_rdev *rdev = (void*)bio->bi_bdev;
890                         bio->bi_next = NULL;
891                         bio->bi_bdev = rdev->bdev;
892                         if (test_bit(Faulty, &rdev->flags)) {
893                                 bio->bi_error = -EIO;
894                                 bio_endio(bio);
895                         } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
896                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
897                                 /* Just ignore it */
898                                 bio_endio(bio);
899                         else
900                                 generic_make_request(bio);
901                         bio = next;
902                 }
903         } else
904                 spin_unlock_irq(&conf->device_lock);
905 }
906
907 /* Barriers....
908  * Sometimes we need to suspend IO while we do something else,
909  * either some resync/recovery, or reconfigure the array.
910  * To do this we raise a 'barrier'.
911  * The 'barrier' is a counter that can be raised multiple times
912  * to count how many activities are happening which preclude
913  * normal IO.
914  * We can only raise the barrier if there is no pending IO.
915  * i.e. if nr_pending == 0.
916  * We choose only to raise the barrier if no-one is waiting for the
917  * barrier to go down.  This means that as soon as an IO request
918  * is ready, no other operations which require a barrier will start
919  * until the IO request has had a chance.
920  *
921  * So: regular IO calls 'wait_barrier'.  When that returns there
922  *    is no backgroup IO happening,  It must arrange to call
923  *    allow_barrier when it has finished its IO.
924  * backgroup IO calls must call raise_barrier.  Once that returns
925  *    there is no normal IO happeing.  It must arrange to call
926  *    lower_barrier when the particular background IO completes.
927  */
928
929 static void raise_barrier(struct r10conf *conf, int force)
930 {
931         BUG_ON(force && !conf->barrier);
932         spin_lock_irq(&conf->resync_lock);
933
934         /* Wait until no block IO is waiting (unless 'force') */
935         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
936                             conf->resync_lock);
937
938         /* block any new IO from starting */
939         conf->barrier++;
940
941         /* Now wait for all pending IO to complete */
942         wait_event_lock_irq(conf->wait_barrier,
943                             !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
944                             conf->resync_lock);
945
946         spin_unlock_irq(&conf->resync_lock);
947 }
948
949 static void lower_barrier(struct r10conf *conf)
950 {
951         unsigned long flags;
952         spin_lock_irqsave(&conf->resync_lock, flags);
953         conf->barrier--;
954         spin_unlock_irqrestore(&conf->resync_lock, flags);
955         wake_up(&conf->wait_barrier);
956 }
957
958 static void wait_barrier(struct r10conf *conf)
959 {
960         spin_lock_irq(&conf->resync_lock);
961         if (conf->barrier) {
962                 conf->nr_waiting++;
963                 /* Wait for the barrier to drop.
964                  * However if there are already pending
965                  * requests (preventing the barrier from
966                  * rising completely), and the
967                  * pre-process bio queue isn't empty,
968                  * then don't wait, as we need to empty
969                  * that queue to get the nr_pending
970                  * count down.
971                  */
972                 raid10_log(conf->mddev, "wait barrier");
973                 wait_event_lock_irq(conf->wait_barrier,
974                                     !conf->barrier ||
975                                     (atomic_read(&conf->nr_pending) &&
976                                      current->bio_list &&
977                                      (!bio_list_empty(&current->bio_list[0]) ||
978                                       !bio_list_empty(&current->bio_list[1]))),
979                                     conf->resync_lock);
980                 conf->nr_waiting--;
981                 if (!conf->nr_waiting)
982                         wake_up(&conf->wait_barrier);
983         }
984         atomic_inc(&conf->nr_pending);
985         spin_unlock_irq(&conf->resync_lock);
986 }
987
988 static void allow_barrier(struct r10conf *conf)
989 {
990         if ((atomic_dec_and_test(&conf->nr_pending)) ||
991                         (conf->array_freeze_pending))
992                 wake_up(&conf->wait_barrier);
993 }
994
995 static void freeze_array(struct r10conf *conf, int extra)
996 {
997         /* stop syncio and normal IO and wait for everything to
998          * go quiet.
999          * We increment barrier and nr_waiting, and then
1000          * wait until nr_pending match nr_queued+extra
1001          * This is called in the context of one normal IO request
1002          * that has failed. Thus any sync request that might be pending
1003          * will be blocked by nr_pending, and we need to wait for
1004          * pending IO requests to complete or be queued for re-try.
1005          * Thus the number queued (nr_queued) plus this request (extra)
1006          * must match the number of pending IOs (nr_pending) before
1007          * we continue.
1008          */
1009         spin_lock_irq(&conf->resync_lock);
1010         conf->array_freeze_pending++;
1011         conf->barrier++;
1012         conf->nr_waiting++;
1013         wait_event_lock_irq_cmd(conf->wait_barrier,
1014                                 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1015                                 conf->resync_lock,
1016                                 flush_pending_writes(conf));
1017
1018         conf->array_freeze_pending--;
1019         spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void unfreeze_array(struct r10conf *conf)
1023 {
1024         /* reverse the effect of the freeze */
1025         spin_lock_irq(&conf->resync_lock);
1026         conf->barrier--;
1027         conf->nr_waiting--;
1028         wake_up(&conf->wait_barrier);
1029         spin_unlock_irq(&conf->resync_lock);
1030 }
1031
1032 static sector_t choose_data_offset(struct r10bio *r10_bio,
1033                                    struct md_rdev *rdev)
1034 {
1035         if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1036             test_bit(R10BIO_Previous, &r10_bio->state))
1037                 return rdev->data_offset;
1038         else
1039                 return rdev->new_data_offset;
1040 }
1041
1042 struct raid10_plug_cb {
1043         struct blk_plug_cb      cb;
1044         struct bio_list         pending;
1045         int                     pending_cnt;
1046 };
1047
1048 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049 {
1050         struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1051                                                    cb);
1052         struct mddev *mddev = plug->cb.data;
1053         struct r10conf *conf = mddev->private;
1054         struct bio *bio;
1055
1056         if (from_schedule || current->bio_list) {
1057                 spin_lock_irq(&conf->device_lock);
1058                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1059                 conf->pending_count += plug->pending_cnt;
1060                 spin_unlock_irq(&conf->device_lock);
1061                 wake_up(&conf->wait_barrier);
1062                 md_wakeup_thread(mddev->thread);
1063                 kfree(plug);
1064                 return;
1065         }
1066
1067         /* we aren't scheduling, so we can do the write-out directly. */
1068         bio = bio_list_get(&plug->pending);
1069         bitmap_unplug(mddev->bitmap);
1070         wake_up(&conf->wait_barrier);
1071
1072         while (bio) { /* submit pending writes */
1073                 struct bio *next = bio->bi_next;
1074                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1075                 bio->bi_next = NULL;
1076                 bio->bi_bdev = rdev->bdev;
1077                 if (test_bit(Faulty, &rdev->flags)) {
1078                         bio->bi_error = -EIO;
1079                         bio_endio(bio);
1080                 } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1081                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1082                         /* Just ignore it */
1083                         bio_endio(bio);
1084                 else
1085                         generic_make_request(bio);
1086                 bio = next;
1087         }
1088         kfree(plug);
1089 }
1090
1091 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1092                                 struct r10bio *r10_bio)
1093 {
1094         struct r10conf *conf = mddev->private;
1095         struct bio *read_bio;
1096         const int op = bio_op(bio);
1097         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1098         int sectors_handled;
1099         int max_sectors;
1100         sector_t sectors;
1101         struct md_rdev *rdev;
1102         int slot;
1103
1104         /*
1105          * Register the new request and wait if the reconstruction
1106          * thread has put up a bar for new requests.
1107          * Continue immediately if no resync is active currently.
1108          */
1109         wait_barrier(conf);
1110
1111         sectors = bio_sectors(bio);
1112         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1113             bio->bi_iter.bi_sector < conf->reshape_progress &&
1114             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1115                 /*
1116                  * IO spans the reshape position.  Need to wait for reshape to
1117                  * pass
1118                  */
1119                 raid10_log(conf->mddev, "wait reshape");
1120                 allow_barrier(conf);
1121                 wait_event(conf->wait_barrier,
1122                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1123                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1124                            sectors);
1125                 wait_barrier(conf);
1126         }
1127
1128 read_again:
1129         rdev = read_balance(conf, r10_bio, &max_sectors);
1130         if (!rdev) {
1131                 raid_end_bio_io(r10_bio);
1132                 return;
1133         }
1134         slot = r10_bio->read_slot;
1135
1136         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1137         bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1138                  max_sectors);
1139
1140         r10_bio->devs[slot].bio = read_bio;
1141         r10_bio->devs[slot].rdev = rdev;
1142
1143         read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1144                 choose_data_offset(r10_bio, rdev);
1145         read_bio->bi_bdev = rdev->bdev;
1146         read_bio->bi_end_io = raid10_end_read_request;
1147         bio_set_op_attrs(read_bio, op, do_sync);
1148         if (test_bit(FailFast, &rdev->flags) &&
1149             test_bit(R10BIO_FailFast, &r10_bio->state))
1150                 read_bio->bi_opf |= MD_FAILFAST;
1151         read_bio->bi_private = r10_bio;
1152
1153         if (mddev->gendisk)
1154                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1155                                       read_bio, disk_devt(mddev->gendisk),
1156                                       r10_bio->sector);
1157         if (max_sectors < r10_bio->sectors) {
1158                 /*
1159                  * Could not read all from this device, so we will need another
1160                  * r10_bio.
1161                  */
1162                 sectors_handled = (r10_bio->sector + max_sectors
1163                                    - bio->bi_iter.bi_sector);
1164                 r10_bio->sectors = max_sectors;
1165                 spin_lock_irq(&conf->device_lock);
1166                 if (bio->bi_phys_segments == 0)
1167                         bio->bi_phys_segments = 2;
1168                 else
1169                         bio->bi_phys_segments++;
1170                 spin_unlock_irq(&conf->device_lock);
1171                 /*
1172                  * Cannot call generic_make_request directly as that will be
1173                  * queued in __generic_make_request and subsequent
1174                  * mempool_alloc might block waiting for it.  so hand bio over
1175                  * to raid10d.
1176                  */
1177                 reschedule_retry(r10_bio);
1178
1179                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1180
1181                 r10_bio->master_bio = bio;
1182                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1183                 r10_bio->state = 0;
1184                 r10_bio->mddev = mddev;
1185                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1186                 goto read_again;
1187         } else
1188                 generic_make_request(read_bio);
1189         return;
1190 }
1191
1192 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1193                                  struct r10bio *r10_bio)
1194 {
1195         struct r10conf *conf = mddev->private;
1196         int i;
1197         const int op = bio_op(bio);
1198         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1199         const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1200         unsigned long flags;
1201         struct md_rdev *blocked_rdev;
1202         struct blk_plug_cb *cb;
1203         struct raid10_plug_cb *plug = NULL;
1204         sector_t sectors;
1205         int sectors_handled;
1206         int max_sectors;
1207
1208         md_write_start(mddev, bio);
1209
1210         /*
1211          * Register the new request and wait if the reconstruction
1212          * thread has put up a bar for new requests.
1213          * Continue immediately if no resync is active currently.
1214          */
1215         wait_barrier(conf);
1216
1217         sectors = bio_sectors(bio);
1218         while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1219             bio->bi_iter.bi_sector < conf->reshape_progress &&
1220             bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1221                 /*
1222                  * IO spans the reshape position.  Need to wait for reshape to
1223                  * pass
1224                  */
1225                 raid10_log(conf->mddev, "wait reshape");
1226                 allow_barrier(conf);
1227                 wait_event(conf->wait_barrier,
1228                            conf->reshape_progress <= bio->bi_iter.bi_sector ||
1229                            conf->reshape_progress >= bio->bi_iter.bi_sector +
1230                            sectors);
1231                 wait_barrier(conf);
1232         }
1233
1234         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1235             (mddev->reshape_backwards
1236              ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1237                 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1238              : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1239                 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1240                 /* Need to update reshape_position in metadata */
1241                 mddev->reshape_position = conf->reshape_progress;
1242                 set_mask_bits(&mddev->sb_flags, 0,
1243                               BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1244                 md_wakeup_thread(mddev->thread);
1245                 raid10_log(conf->mddev, "wait reshape metadata");
1246                 wait_event(mddev->sb_wait,
1247                            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1248
1249                 conf->reshape_safe = mddev->reshape_position;
1250         }
1251
1252         if (conf->pending_count >= max_queued_requests) {
1253                 md_wakeup_thread(mddev->thread);
1254                 raid10_log(mddev, "wait queued");
1255                 wait_event(conf->wait_barrier,
1256                            conf->pending_count < max_queued_requests);
1257         }
1258         /* first select target devices under rcu_lock and
1259          * inc refcount on their rdev.  Record them by setting
1260          * bios[x] to bio
1261          * If there are known/acknowledged bad blocks on any device
1262          * on which we have seen a write error, we want to avoid
1263          * writing to those blocks.  This potentially requires several
1264          * writes to write around the bad blocks.  Each set of writes
1265          * gets its own r10_bio with a set of bios attached.  The number
1266          * of r10_bios is recored in bio->bi_phys_segments just as with
1267          * the read case.
1268          */
1269
1270         r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1271         raid10_find_phys(conf, r10_bio);
1272 retry_write:
1273         blocked_rdev = NULL;
1274         rcu_read_lock();
1275         max_sectors = r10_bio->sectors;
1276
1277         for (i = 0;  i < conf->copies; i++) {
1278                 int d = r10_bio->devs[i].devnum;
1279                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1280                 struct md_rdev *rrdev = rcu_dereference(
1281                         conf->mirrors[d].replacement);
1282                 if (rdev == rrdev)
1283                         rrdev = NULL;
1284                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1285                         atomic_inc(&rdev->nr_pending);
1286                         blocked_rdev = rdev;
1287                         break;
1288                 }
1289                 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1290                         atomic_inc(&rrdev->nr_pending);
1291                         blocked_rdev = rrdev;
1292                         break;
1293                 }
1294                 if (rdev && (test_bit(Faulty, &rdev->flags)))
1295                         rdev = NULL;
1296                 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1297                         rrdev = NULL;
1298
1299                 r10_bio->devs[i].bio = NULL;
1300                 r10_bio->devs[i].repl_bio = NULL;
1301
1302                 if (!rdev && !rrdev) {
1303                         set_bit(R10BIO_Degraded, &r10_bio->state);
1304                         continue;
1305                 }
1306                 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307                         sector_t first_bad;
1308                         sector_t dev_sector = r10_bio->devs[i].addr;
1309                         int bad_sectors;
1310                         int is_bad;
1311
1312                         is_bad = is_badblock(rdev, dev_sector, max_sectors,
1313                                              &first_bad, &bad_sectors);
1314                         if (is_bad < 0) {
1315                                 /* Mustn't write here until the bad block
1316                                  * is acknowledged
1317                                  */
1318                                 atomic_inc(&rdev->nr_pending);
1319                                 set_bit(BlockedBadBlocks, &rdev->flags);
1320                                 blocked_rdev = rdev;
1321                                 break;
1322                         }
1323                         if (is_bad && first_bad <= dev_sector) {
1324                                 /* Cannot write here at all */
1325                                 bad_sectors -= (dev_sector - first_bad);
1326                                 if (bad_sectors < max_sectors)
1327                                         /* Mustn't write more than bad_sectors
1328                                          * to other devices yet
1329                                          */
1330                                         max_sectors = bad_sectors;
1331                                 /* We don't set R10BIO_Degraded as that
1332                                  * only applies if the disk is missing,
1333                                  * so it might be re-added, and we want to
1334                                  * know to recover this chunk.
1335                                  * In this case the device is here, and the
1336                                  * fact that this chunk is not in-sync is
1337                                  * recorded in the bad block log.
1338                                  */
1339                                 continue;
1340                         }
1341                         if (is_bad) {
1342                                 int good_sectors = first_bad - dev_sector;
1343                                 if (good_sectors < max_sectors)
1344                                         max_sectors = good_sectors;
1345                         }
1346                 }
1347                 if (rdev) {
1348                         r10_bio->devs[i].bio = bio;
1349                         atomic_inc(&rdev->nr_pending);
1350                 }
1351                 if (rrdev) {
1352                         r10_bio->devs[i].repl_bio = bio;
1353                         atomic_inc(&rrdev->nr_pending);
1354                 }
1355         }
1356         rcu_read_unlock();
1357
1358         if (unlikely(blocked_rdev)) {
1359                 /* Have to wait for this device to get unblocked, then retry */
1360                 int j;
1361                 int d;
1362
1363                 for (j = 0; j < i; j++) {
1364                         if (r10_bio->devs[j].bio) {
1365                                 d = r10_bio->devs[j].devnum;
1366                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1367                         }
1368                         if (r10_bio->devs[j].repl_bio) {
1369                                 struct md_rdev *rdev;
1370                                 d = r10_bio->devs[j].devnum;
1371                                 rdev = conf->mirrors[d].replacement;
1372                                 if (!rdev) {
1373                                         /* Race with remove_disk */
1374                                         smp_mb();
1375                                         rdev = conf->mirrors[d].rdev;
1376                                 }
1377                                 rdev_dec_pending(rdev, mddev);
1378                         }
1379                 }
1380                 allow_barrier(conf);
1381                 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1382                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1383                 wait_barrier(conf);
1384                 goto retry_write;
1385         }
1386
1387         if (max_sectors < r10_bio->sectors) {
1388                 /* We are splitting this into multiple parts, so
1389                  * we need to prepare for allocating another r10_bio.
1390                  */
1391                 r10_bio->sectors = max_sectors;
1392                 spin_lock_irq(&conf->device_lock);
1393                 if (bio->bi_phys_segments == 0)
1394                         bio->bi_phys_segments = 2;
1395                 else
1396                         bio->bi_phys_segments++;
1397                 spin_unlock_irq(&conf->device_lock);
1398         }
1399         sectors_handled = r10_bio->sector + max_sectors -
1400                 bio->bi_iter.bi_sector;
1401
1402         atomic_set(&r10_bio->remaining, 1);
1403         bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1404
1405         for (i = 0; i < conf->copies; i++) {
1406                 struct bio *mbio;
1407                 int d = r10_bio->devs[i].devnum;
1408                 if (r10_bio->devs[i].bio) {
1409                         struct md_rdev *rdev = conf->mirrors[d].rdev;
1410                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1411                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1412                                  max_sectors);
1413                         r10_bio->devs[i].bio = mbio;
1414
1415                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1416                                            choose_data_offset(r10_bio, rdev));
1417                         mbio->bi_bdev = rdev->bdev;
1418                         mbio->bi_end_io = raid10_end_write_request;
1419                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1420                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1421                             enough(conf, d))
1422                                 mbio->bi_opf |= MD_FAILFAST;
1423                         mbio->bi_private = r10_bio;
1424
1425                         if (conf->mddev->gendisk)
1426                                 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1427                                                       mbio, disk_devt(conf->mddev->gendisk),
1428                                                       r10_bio->sector);
1429                         /* flush_pending_writes() needs access to the rdev so...*/
1430                         mbio->bi_bdev = (void*)rdev;
1431
1432                         atomic_inc(&r10_bio->remaining);
1433
1434                         cb = blk_check_plugged(raid10_unplug, mddev,
1435                                                sizeof(*plug));
1436                         if (cb)
1437                                 plug = container_of(cb, struct raid10_plug_cb,
1438                                                     cb);
1439                         else
1440                                 plug = NULL;
1441                         spin_lock_irqsave(&conf->device_lock, flags);
1442                         if (plug) {
1443                                 bio_list_add(&plug->pending, mbio);
1444                                 plug->pending_cnt++;
1445                         } else {
1446                                 bio_list_add(&conf->pending_bio_list, mbio);
1447                                 conf->pending_count++;
1448                         }
1449                         spin_unlock_irqrestore(&conf->device_lock, flags);
1450                         if (!plug)
1451                                 md_wakeup_thread(mddev->thread);
1452                 }
1453
1454                 if (r10_bio->devs[i].repl_bio) {
1455                         struct md_rdev *rdev = conf->mirrors[d].replacement;
1456                         if (rdev == NULL) {
1457                                 /* Replacement just got moved to main 'rdev' */
1458                                 smp_mb();
1459                                 rdev = conf->mirrors[d].rdev;
1460                         }
1461                         mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1462                         bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1463                                  max_sectors);
1464                         r10_bio->devs[i].repl_bio = mbio;
1465
1466                         mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1467                                            choose_data_offset(r10_bio, rdev));
1468                         mbio->bi_bdev = rdev->bdev;
1469                         mbio->bi_end_io = raid10_end_write_request;
1470                         bio_set_op_attrs(mbio, op, do_sync | do_fua);
1471                         mbio->bi_private = r10_bio;
1472
1473                         if (conf->mddev->gendisk)
1474                                 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1475                                                       mbio, disk_devt(conf->mddev->gendisk),
1476                                                       r10_bio->sector);
1477                         /* flush_pending_writes() needs access to the rdev so...*/
1478                         mbio->bi_bdev = (void*)rdev;
1479
1480                         atomic_inc(&r10_bio->remaining);
1481
1482                         cb = blk_check_plugged(raid10_unplug, mddev,
1483                                                sizeof(*plug));
1484                         if (cb)
1485                                 plug = container_of(cb, struct raid10_plug_cb,
1486                                                     cb);
1487                         else
1488                                 plug = NULL;
1489                         spin_lock_irqsave(&conf->device_lock, flags);
1490                         if (plug) {
1491                                 bio_list_add(&plug->pending, mbio);
1492                                 plug->pending_cnt++;
1493                         } else {
1494                                 bio_list_add(&conf->pending_bio_list, mbio);
1495                                 conf->pending_count++;
1496                         }
1497                         spin_unlock_irqrestore(&conf->device_lock, flags);
1498                         if (!plug)
1499                                 md_wakeup_thread(mddev->thread);
1500                 }
1501         }
1502
1503         /* Don't remove the bias on 'remaining' (one_write_done) until
1504          * after checking if we need to go around again.
1505          */
1506
1507         if (sectors_handled < bio_sectors(bio)) {
1508                 one_write_done(r10_bio);
1509                 /* We need another r10_bio.  It has already been counted
1510                  * in bio->bi_phys_segments.
1511                  */
1512                 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1513
1514                 r10_bio->master_bio = bio;
1515                 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1516
1517                 r10_bio->mddev = mddev;
1518                 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1519                 r10_bio->state = 0;
1520                 goto retry_write;
1521         }
1522         one_write_done(r10_bio);
1523 }
1524
1525 static void __make_request(struct mddev *mddev, struct bio *bio)
1526 {
1527         struct r10conf *conf = mddev->private;
1528         struct r10bio *r10_bio;
1529
1530         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1531
1532         r10_bio->master_bio = bio;
1533         r10_bio->sectors = bio_sectors(bio);
1534
1535         r10_bio->mddev = mddev;
1536         r10_bio->sector = bio->bi_iter.bi_sector;
1537         r10_bio->state = 0;
1538
1539         /*
1540          * We might need to issue multiple reads to different devices if there
1541          * are bad blocks around, so we keep track of the number of reads in
1542          * bio->bi_phys_segments.  If this is 0, there is only one r10_bio and
1543          * no locking will be needed when the request completes.  If it is
1544          * non-zero, then it is the number of not-completed requests.
1545          */
1546         bio->bi_phys_segments = 0;
1547         bio_clear_flag(bio, BIO_SEG_VALID);
1548
1549         if (bio_data_dir(bio) == READ)
1550                 raid10_read_request(mddev, bio, r10_bio);
1551         else
1552                 raid10_write_request(mddev, bio, r10_bio);
1553 }
1554
1555 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1556 {
1557         struct r10conf *conf = mddev->private;
1558         sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1559         int chunk_sects = chunk_mask + 1;
1560
1561         struct bio *split;
1562
1563         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1564                 md_flush_request(mddev, bio);
1565                 return;
1566         }
1567
1568         do {
1569
1570                 /*
1571                  * If this request crosses a chunk boundary, we need to split
1572                  * it.
1573                  */
1574                 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1575                              bio_sectors(bio) > chunk_sects
1576                              && (conf->geo.near_copies < conf->geo.raid_disks
1577                                  || conf->prev.near_copies <
1578                                  conf->prev.raid_disks))) {
1579                         split = bio_split(bio, chunk_sects -
1580                                           (bio->bi_iter.bi_sector &
1581                                            (chunk_sects - 1)),
1582                                           GFP_NOIO, fs_bio_set);
1583                         bio_chain(split, bio);
1584                 } else {
1585                         split = bio;
1586                 }
1587
1588                 /*
1589                  * If a bio is splitted, the first part of bio will pass
1590                  * barrier but the bio is queued in current->bio_list (see
1591                  * generic_make_request). If there is a raise_barrier() called
1592                  * here, the second part of bio can't pass barrier. But since
1593                  * the first part bio isn't dispatched to underlaying disks
1594                  * yet, the barrier is never released, hence raise_barrier will
1595                  * alays wait. We have a deadlock.
1596                  * Note, this only happens in read path. For write path, the
1597                  * first part of bio is dispatched in a schedule() call
1598                  * (because of blk plug) or offloaded to raid10d.
1599                  * Quitting from the function immediately can change the bio
1600                  * order queued in bio_list and avoid the deadlock.
1601                  */
1602                 __make_request(mddev, split);
1603                 if (split != bio && bio_data_dir(bio) == READ) {
1604                         generic_make_request(bio);
1605                         break;
1606                 }
1607         } while (split != bio);
1608
1609         /* In case raid10d snuck in to freeze_array */
1610         wake_up(&conf->wait_barrier);
1611 }
1612
1613 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1614 {
1615         struct r10conf *conf = mddev->private;
1616         int i;
1617
1618         if (conf->geo.near_copies < conf->geo.raid_disks)
1619                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1620         if (conf->geo.near_copies > 1)
1621                 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1622         if (conf->geo.far_copies > 1) {
1623                 if (conf->geo.far_offset)
1624                         seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1625                 else
1626                         seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1627                 if (conf->geo.far_set_size != conf->geo.raid_disks)
1628                         seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1629         }
1630         seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1631                                         conf->geo.raid_disks - mddev->degraded);
1632         rcu_read_lock();
1633         for (i = 0; i < conf->geo.raid_disks; i++) {
1634                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1635                 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1636         }
1637         rcu_read_unlock();
1638         seq_printf(seq, "]");
1639 }
1640
1641 /* check if there are enough drives for
1642  * every block to appear on atleast one.
1643  * Don't consider the device numbered 'ignore'
1644  * as we might be about to remove it.
1645  */
1646 static int _enough(struct r10conf *conf, int previous, int ignore)
1647 {
1648         int first = 0;
1649         int has_enough = 0;
1650         int disks, ncopies;
1651         if (previous) {
1652                 disks = conf->prev.raid_disks;
1653                 ncopies = conf->prev.near_copies;
1654         } else {
1655                 disks = conf->geo.raid_disks;
1656                 ncopies = conf->geo.near_copies;
1657         }
1658
1659         rcu_read_lock();
1660         do {
1661                 int n = conf->copies;
1662                 int cnt = 0;
1663                 int this = first;
1664                 while (n--) {
1665                         struct md_rdev *rdev;
1666                         if (this != ignore &&
1667                             (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1668                             test_bit(In_sync, &rdev->flags))
1669                                 cnt++;
1670                         this = (this+1) % disks;
1671                 }
1672                 if (cnt == 0)
1673                         goto out;
1674                 first = (first + ncopies) % disks;
1675         } while (first != 0);
1676         has_enough = 1;
1677 out:
1678         rcu_read_unlock();
1679         return has_enough;
1680 }
1681
1682 static int enough(struct r10conf *conf, int ignore)
1683 {
1684         /* when calling 'enough', both 'prev' and 'geo' must
1685          * be stable.
1686          * This is ensured if ->reconfig_mutex or ->device_lock
1687          * is held.
1688          */
1689         return _enough(conf, 0, ignore) &&
1690                 _enough(conf, 1, ignore);
1691 }
1692
1693 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         struct r10conf *conf = mddev->private;
1697         unsigned long flags;
1698
1699         /*
1700          * If it is not operational, then we have already marked it as dead
1701          * else if it is the last working disks, ignore the error, let the
1702          * next level up know.
1703          * else mark the drive as failed
1704          */
1705         spin_lock_irqsave(&conf->device_lock, flags);
1706         if (test_bit(In_sync, &rdev->flags)
1707             && !enough(conf, rdev->raid_disk)) {
1708                 /*
1709                  * Don't fail the drive, just return an IO error.
1710                  */
1711                 spin_unlock_irqrestore(&conf->device_lock, flags);
1712                 return;
1713         }
1714         if (test_and_clear_bit(In_sync, &rdev->flags))
1715                 mddev->degraded++;
1716         /*
1717          * If recovery is running, make sure it aborts.
1718          */
1719         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1720         set_bit(Blocked, &rdev->flags);
1721         set_bit(Faulty, &rdev->flags);
1722         set_mask_bits(&mddev->sb_flags, 0,
1723                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1724         spin_unlock_irqrestore(&conf->device_lock, flags);
1725         pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1726                 "md/raid10:%s: Operation continuing on %d devices.\n",
1727                 mdname(mddev), bdevname(rdev->bdev, b),
1728                 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1729 }
1730
1731 static void print_conf(struct r10conf *conf)
1732 {
1733         int i;
1734         struct md_rdev *rdev;
1735
1736         pr_debug("RAID10 conf printout:\n");
1737         if (!conf) {
1738                 pr_debug("(!conf)\n");
1739                 return;
1740         }
1741         pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1742                  conf->geo.raid_disks);
1743
1744         /* This is only called with ->reconfix_mutex held, so
1745          * rcu protection of rdev is not needed */
1746         for (i = 0; i < conf->geo.raid_disks; i++) {
1747                 char b[BDEVNAME_SIZE];
1748                 rdev = conf->mirrors[i].rdev;
1749                 if (rdev)
1750                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1751                                  i, !test_bit(In_sync, &rdev->flags),
1752                                  !test_bit(Faulty, &rdev->flags),
1753                                  bdevname(rdev->bdev,b));
1754         }
1755 }
1756
1757 static void close_sync(struct r10conf *conf)
1758 {
1759         wait_barrier(conf);
1760         allow_barrier(conf);
1761
1762         mempool_destroy(conf->r10buf_pool);
1763         conf->r10buf_pool = NULL;
1764 }
1765
1766 static int raid10_spare_active(struct mddev *mddev)
1767 {
1768         int i;
1769         struct r10conf *conf = mddev->private;
1770         struct raid10_info *tmp;
1771         int count = 0;
1772         unsigned long flags;
1773
1774         /*
1775          * Find all non-in_sync disks within the RAID10 configuration
1776          * and mark them in_sync
1777          */
1778         for (i = 0; i < conf->geo.raid_disks; i++) {
1779                 tmp = conf->mirrors + i;
1780                 if (tmp->replacement
1781                     && tmp->replacement->recovery_offset == MaxSector
1782                     && !test_bit(Faulty, &tmp->replacement->flags)
1783                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1784                         /* Replacement has just become active */
1785                         if (!tmp->rdev
1786                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1787                                 count++;
1788                         if (tmp->rdev) {
1789                                 /* Replaced device not technically faulty,
1790                                  * but we need to be sure it gets removed
1791                                  * and never re-added.
1792                                  */
1793                                 set_bit(Faulty, &tmp->rdev->flags);
1794                                 sysfs_notify_dirent_safe(
1795                                         tmp->rdev->sysfs_state);
1796                         }
1797                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1798                 } else if (tmp->rdev
1799                            && tmp->rdev->recovery_offset == MaxSector
1800                            && !test_bit(Faulty, &tmp->rdev->flags)
1801                            && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1802                         count++;
1803                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1804                 }
1805         }
1806         spin_lock_irqsave(&conf->device_lock, flags);
1807         mddev->degraded -= count;
1808         spin_unlock_irqrestore(&conf->device_lock, flags);
1809
1810         print_conf(conf);
1811         return count;
1812 }
1813
1814 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1815 {
1816         struct r10conf *conf = mddev->private;
1817         int err = -EEXIST;
1818         int mirror;
1819         int first = 0;
1820         int last = conf->geo.raid_disks - 1;
1821
1822         if (mddev->recovery_cp < MaxSector)
1823                 /* only hot-add to in-sync arrays, as recovery is
1824                  * very different from resync
1825                  */
1826                 return -EBUSY;
1827         if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1828                 return -EINVAL;
1829
1830         if (md_integrity_add_rdev(rdev, mddev))
1831                 return -ENXIO;
1832
1833         if (rdev->raid_disk >= 0)
1834                 first = last = rdev->raid_disk;
1835
1836         if (rdev->saved_raid_disk >= first &&
1837             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1838                 mirror = rdev->saved_raid_disk;
1839         else
1840                 mirror = first;
1841         for ( ; mirror <= last ; mirror++) {
1842                 struct raid10_info *p = &conf->mirrors[mirror];
1843                 if (p->recovery_disabled == mddev->recovery_disabled)
1844                         continue;
1845                 if (p->rdev) {
1846                         if (!test_bit(WantReplacement, &p->rdev->flags) ||
1847                             p->replacement != NULL)
1848                                 continue;
1849                         clear_bit(In_sync, &rdev->flags);
1850                         set_bit(Replacement, &rdev->flags);
1851                         rdev->raid_disk = mirror;
1852                         err = 0;
1853                         if (mddev->gendisk)
1854                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1855                                                   rdev->data_offset << 9);
1856                         conf->fullsync = 1;
1857                         rcu_assign_pointer(p->replacement, rdev);
1858                         break;
1859                 }
1860
1861                 if (mddev->gendisk)
1862                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1863                                           rdev->data_offset << 9);
1864
1865                 p->head_position = 0;
1866                 p->recovery_disabled = mddev->recovery_disabled - 1;
1867                 rdev->raid_disk = mirror;
1868                 err = 0;
1869                 if (rdev->saved_raid_disk != mirror)
1870                         conf->fullsync = 1;
1871                 rcu_assign_pointer(p->rdev, rdev);
1872                 break;
1873         }
1874         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1875                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1876
1877         print_conf(conf);
1878         return err;
1879 }
1880
1881 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1882 {
1883         struct r10conf *conf = mddev->private;
1884         int err = 0;
1885         int number = rdev->raid_disk;
1886         struct md_rdev **rdevp;
1887         struct raid10_info *p = conf->mirrors + number;
1888
1889         print_conf(conf);
1890         if (rdev == p->rdev)
1891                 rdevp = &p->rdev;
1892         else if (rdev == p->replacement)
1893                 rdevp = &p->replacement;
1894         else
1895                 return 0;
1896
1897         if (test_bit(In_sync, &rdev->flags) ||
1898             atomic_read(&rdev->nr_pending)) {
1899                 err = -EBUSY;
1900                 goto abort;
1901         }
1902         /* Only remove non-faulty devices if recovery
1903          * is not possible.
1904          */
1905         if (!test_bit(Faulty, &rdev->flags) &&
1906             mddev->recovery_disabled != p->recovery_disabled &&
1907             (!p->replacement || p->replacement == rdev) &&
1908             number < conf->geo.raid_disks &&
1909             enough(conf, -1)) {
1910                 err = -EBUSY;
1911                 goto abort;
1912         }
1913         *rdevp = NULL;
1914         if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1915                 synchronize_rcu();
1916                 if (atomic_read(&rdev->nr_pending)) {
1917                         /* lost the race, try later */
1918                         err = -EBUSY;
1919                         *rdevp = rdev;
1920                         goto abort;
1921                 }
1922         }
1923         if (p->replacement) {
1924                 /* We must have just cleared 'rdev' */
1925                 p->rdev = p->replacement;
1926                 clear_bit(Replacement, &p->replacement->flags);
1927                 smp_mb(); /* Make sure other CPUs may see both as identical
1928                            * but will never see neither -- if they are careful.
1929                            */
1930                 p->replacement = NULL;
1931                 clear_bit(WantReplacement, &rdev->flags);
1932         } else
1933                 /* We might have just remove the Replacement as faulty
1934                  * Clear the flag just in case
1935                  */
1936                 clear_bit(WantReplacement, &rdev->flags);
1937
1938         err = md_integrity_register(mddev);
1939
1940 abort:
1941
1942         print_conf(conf);
1943         return err;
1944 }
1945
1946 static void end_sync_read(struct bio *bio)
1947 {
1948         struct r10bio *r10_bio = bio->bi_private;
1949         struct r10conf *conf = r10_bio->mddev->private;
1950         int d;
1951
1952         if (bio == r10_bio->master_bio) {
1953                 /* this is a reshape read */
1954                 d = r10_bio->read_slot; /* really the read dev */
1955         } else
1956                 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1957
1958         if (!bio->bi_error)
1959                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1960         else
1961                 /* The write handler will notice the lack of
1962                  * R10BIO_Uptodate and record any errors etc
1963                  */
1964                 atomic_add(r10_bio->sectors,
1965                            &conf->mirrors[d].rdev->corrected_errors);
1966
1967         /* for reconstruct, we always reschedule after a read.
1968          * for resync, only after all reads
1969          */
1970         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1971         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1972             atomic_dec_and_test(&r10_bio->remaining)) {
1973                 /* we have read all the blocks,
1974                  * do the comparison in process context in raid10d
1975                  */
1976                 reschedule_retry(r10_bio);
1977         }
1978 }
1979
1980 static void end_sync_request(struct r10bio *r10_bio)
1981 {
1982         struct mddev *mddev = r10_bio->mddev;
1983
1984         while (atomic_dec_and_test(&r10_bio->remaining)) {
1985                 if (r10_bio->master_bio == NULL) {
1986                         /* the primary of several recovery bios */
1987                         sector_t s = r10_bio->sectors;
1988                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1989                             test_bit(R10BIO_WriteError, &r10_bio->state))
1990                                 reschedule_retry(r10_bio);
1991                         else
1992                                 put_buf(r10_bio);
1993                         md_done_sync(mddev, s, 1);
1994                         break;
1995                 } else {
1996                         struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1997                         if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1998                             test_bit(R10BIO_WriteError, &r10_bio->state))
1999                                 reschedule_retry(r10_bio);
2000                         else
2001                                 put_buf(r10_bio);
2002                         r10_bio = r10_bio2;
2003                 }
2004         }
2005 }
2006
2007 static void end_sync_write(struct bio *bio)
2008 {
2009         struct r10bio *r10_bio = bio->bi_private;
2010         struct mddev *mddev = r10_bio->mddev;
2011         struct r10conf *conf = mddev->private;
2012         int d;
2013         sector_t first_bad;
2014         int bad_sectors;
2015         int slot;
2016         int repl;
2017         struct md_rdev *rdev = NULL;
2018
2019         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2020         if (repl)
2021                 rdev = conf->mirrors[d].replacement;
2022         else
2023                 rdev = conf->mirrors[d].rdev;
2024
2025         if (bio->bi_error) {
2026                 if (repl)
2027                         md_error(mddev, rdev);
2028                 else {
2029                         set_bit(WriteErrorSeen, &rdev->flags);
2030                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2031                                 set_bit(MD_RECOVERY_NEEDED,
2032                                         &rdev->mddev->recovery);
2033                         set_bit(R10BIO_WriteError, &r10_bio->state);
2034                 }
2035         } else if (is_badblock(rdev,
2036                              r10_bio->devs[slot].addr,
2037                              r10_bio->sectors,
2038                              &first_bad, &bad_sectors))
2039                 set_bit(R10BIO_MadeGood, &r10_bio->state);
2040
2041         rdev_dec_pending(rdev, mddev);
2042
2043         end_sync_request(r10_bio);
2044 }
2045
2046 /*
2047  * Note: sync and recover and handled very differently for raid10
2048  * This code is for resync.
2049  * For resync, we read through virtual addresses and read all blocks.
2050  * If there is any error, we schedule a write.  The lowest numbered
2051  * drive is authoritative.
2052  * However requests come for physical address, so we need to map.
2053  * For every physical address there are raid_disks/copies virtual addresses,
2054  * which is always are least one, but is not necessarly an integer.
2055  * This means that a physical address can span multiple chunks, so we may
2056  * have to submit multiple io requests for a single sync request.
2057  */
2058 /*
2059  * We check if all blocks are in-sync and only write to blocks that
2060  * aren't in sync
2061  */
2062 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2063 {
2064         struct r10conf *conf = mddev->private;
2065         int i, first;
2066         struct bio *tbio, *fbio;
2067         int vcnt;
2068
2069         atomic_set(&r10_bio->remaining, 1);
2070
2071         /* find the first device with a block */
2072         for (i=0; i<conf->copies; i++)
2073                 if (!r10_bio->devs[i].bio->bi_error)
2074                         break;
2075
2076         if (i == conf->copies)
2077                 goto done;
2078
2079         first = i;
2080         fbio = r10_bio->devs[i].bio;
2081         fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2082         fbio->bi_iter.bi_idx = 0;
2083
2084         vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2085         /* now find blocks with errors */
2086         for (i=0 ; i < conf->copies ; i++) {
2087                 int  j, d;
2088                 struct md_rdev *rdev;
2089
2090                 tbio = r10_bio->devs[i].bio;
2091
2092                 if (tbio->bi_end_io != end_sync_read)
2093                         continue;
2094                 if (i == first)
2095                         continue;
2096                 d = r10_bio->devs[i].devnum;
2097                 rdev = conf->mirrors[d].rdev;
2098                 if (!r10_bio->devs[i].bio->bi_error) {
2099                         /* We know that the bi_io_vec layout is the same for
2100                          * both 'first' and 'i', so we just compare them.
2101                          * All vec entries are PAGE_SIZE;
2102                          */
2103                         int sectors = r10_bio->sectors;
2104                         for (j = 0; j < vcnt; j++) {
2105                                 int len = PAGE_SIZE;
2106                                 if (sectors < (len / 512))
2107                                         len = sectors * 512;
2108                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2109                                            page_address(tbio->bi_io_vec[j].bv_page),
2110                                            len))
2111                                         break;
2112                                 sectors -= len/512;
2113                         }
2114                         if (j == vcnt)
2115                                 continue;
2116                         atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2117                         if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2118                                 /* Don't fix anything. */
2119                                 continue;
2120                 } else if (test_bit(FailFast, &rdev->flags)) {
2121                         /* Just give up on this device */
2122                         md_error(rdev->mddev, rdev);
2123                         continue;
2124                 }
2125                 /* Ok, we need to write this bio, either to correct an
2126                  * inconsistency or to correct an unreadable block.
2127                  * First we need to fixup bv_offset, bv_len and
2128                  * bi_vecs, as the read request might have corrupted these
2129                  */
2130                 bio_reset(tbio);
2131
2132                 tbio->bi_vcnt = vcnt;
2133                 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2134                 tbio->bi_private = r10_bio;
2135                 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2136                 tbio->bi_end_io = end_sync_write;
2137                 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2138
2139                 bio_copy_data(tbio, fbio);
2140
2141                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2142                 atomic_inc(&r10_bio->remaining);
2143                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2144
2145                 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2146                         tbio->bi_opf |= MD_FAILFAST;
2147                 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2148                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149                 generic_make_request(tbio);
2150         }
2151
2152         /* Now write out to any replacement devices
2153          * that are active
2154          */
2155         for (i = 0; i < conf->copies; i++) {
2156                 int d;
2157
2158                 tbio = r10_bio->devs[i].repl_bio;
2159                 if (!tbio || !tbio->bi_end_io)
2160                         continue;
2161                 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162                     && r10_bio->devs[i].bio != fbio)
2163                         bio_copy_data(tbio, fbio);
2164                 d = r10_bio->devs[i].devnum;
2165                 atomic_inc(&r10_bio->remaining);
2166                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2167                              bio_sectors(tbio));
2168                 generic_make_request(tbio);
2169         }
2170
2171 done:
2172         if (atomic_dec_and_test(&r10_bio->remaining)) {
2173                 md_done_sync(mddev, r10_bio->sectors, 1);
2174                 put_buf(r10_bio);
2175         }
2176 }
2177
2178 /*
2179  * Now for the recovery code.
2180  * Recovery happens across physical sectors.
2181  * We recover all non-is_sync drives by finding the virtual address of
2182  * each, and then choose a working drive that also has that virt address.
2183  * There is a separate r10_bio for each non-in_sync drive.
2184  * Only the first two slots are in use. The first for reading,
2185  * The second for writing.
2186  *
2187  */
2188 static void fix_recovery_read_error(struct r10bio *r10_bio)
2189 {
2190         /* We got a read error during recovery.
2191          * We repeat the read in smaller page-sized sections.
2192          * If a read succeeds, write it to the new device or record
2193          * a bad block if we cannot.
2194          * If a read fails, record a bad block on both old and
2195          * new devices.
2196          */
2197         struct mddev *mddev = r10_bio->mddev;
2198         struct r10conf *conf = mddev->private;
2199         struct bio *bio = r10_bio->devs[0].bio;
2200         sector_t sect = 0;
2201         int sectors = r10_bio->sectors;
2202         int idx = 0;
2203         int dr = r10_bio->devs[0].devnum;
2204         int dw = r10_bio->devs[1].devnum;
2205
2206         while (sectors) {
2207                 int s = sectors;
2208                 struct md_rdev *rdev;
2209                 sector_t addr;
2210                 int ok;
2211
2212                 if (s > (PAGE_SIZE>>9))
2213                         s = PAGE_SIZE >> 9;
2214
2215                 rdev = conf->mirrors[dr].rdev;
2216                 addr = r10_bio->devs[0].addr + sect,
2217                 ok = sync_page_io(rdev,
2218                                   addr,
2219                                   s << 9,
2220                                   bio->bi_io_vec[idx].bv_page,
2221                                   REQ_OP_READ, 0, false);
2222                 if (ok) {
2223                         rdev = conf->mirrors[dw].rdev;
2224                         addr = r10_bio->devs[1].addr + sect;
2225                         ok = sync_page_io(rdev,
2226                                           addr,
2227                                           s << 9,
2228                                           bio->bi_io_vec[idx].bv_page,
2229                                           REQ_OP_WRITE, 0, false);
2230                         if (!ok) {
2231                                 set_bit(WriteErrorSeen, &rdev->flags);
2232                                 if (!test_and_set_bit(WantReplacement,
2233                                                       &rdev->flags))
2234                                         set_bit(MD_RECOVERY_NEEDED,
2235                                                 &rdev->mddev->recovery);
2236                         }
2237                 }
2238                 if (!ok) {
2239                         /* We don't worry if we cannot set a bad block -
2240                          * it really is bad so there is no loss in not
2241                          * recording it yet
2242                          */
2243                         rdev_set_badblocks(rdev, addr, s, 0);
2244
2245                         if (rdev != conf->mirrors[dw].rdev) {
2246                                 /* need bad block on destination too */
2247                                 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2248                                 addr = r10_bio->devs[1].addr + sect;
2249                                 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2250                                 if (!ok) {
2251                                         /* just abort the recovery */
2252                                         pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2253                                                   mdname(mddev));
2254
2255                                         conf->mirrors[dw].recovery_disabled
2256                                                 = mddev->recovery_disabled;
2257                                         set_bit(MD_RECOVERY_INTR,
2258                                                 &mddev->recovery);
2259                                         break;
2260                                 }
2261                         }
2262                 }
2263
2264                 sectors -= s;
2265                 sect += s;
2266                 idx++;
2267         }
2268 }
2269
2270 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2271 {
2272         struct r10conf *conf = mddev->private;
2273         int d;
2274         struct bio *wbio, *wbio2;
2275
2276         if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2277                 fix_recovery_read_error(r10_bio);
2278                 end_sync_request(r10_bio);
2279                 return;
2280         }
2281
2282         /*
2283          * share the pages with the first bio
2284          * and submit the write request
2285          */
2286         d = r10_bio->devs[1].devnum;
2287         wbio = r10_bio->devs[1].bio;
2288         wbio2 = r10_bio->devs[1].repl_bio;
2289         /* Need to test wbio2->bi_end_io before we call
2290          * generic_make_request as if the former is NULL,
2291          * the latter is free to free wbio2.
2292          */
2293         if (wbio2 && !wbio2->bi_end_io)
2294                 wbio2 = NULL;
2295         if (wbio->bi_end_io) {
2296                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2297                 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2298                 generic_make_request(wbio);
2299         }
2300         if (wbio2) {
2301                 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2302                 md_sync_acct(conf->mirrors[d].replacement->bdev,
2303                              bio_sectors(wbio2));
2304                 generic_make_request(wbio2);
2305         }
2306 }
2307
2308 /*
2309  * Used by fix_read_error() to decay the per rdev read_errors.
2310  * We halve the read error count for every hour that has elapsed
2311  * since the last recorded read error.
2312  *
2313  */
2314 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2315 {
2316         long cur_time_mon;
2317         unsigned long hours_since_last;
2318         unsigned int read_errors = atomic_read(&rdev->read_errors);
2319
2320         cur_time_mon = ktime_get_seconds();
2321
2322         if (rdev->last_read_error == 0) {
2323                 /* first time we've seen a read error */
2324                 rdev->last_read_error = cur_time_mon;
2325                 return;
2326         }
2327
2328         hours_since_last = (long)(cur_time_mon -
2329                             rdev->last_read_error) / 3600;
2330
2331         rdev->last_read_error = cur_time_mon;
2332
2333         /*
2334          * if hours_since_last is > the number of bits in read_errors
2335          * just set read errors to 0. We do this to avoid
2336          * overflowing the shift of read_errors by hours_since_last.
2337          */
2338         if (hours_since_last >= 8 * sizeof(read_errors))
2339                 atomic_set(&rdev->read_errors, 0);
2340         else
2341                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2342 }
2343
2344 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2345                             int sectors, struct page *page, int rw)
2346 {
2347         sector_t first_bad;
2348         int bad_sectors;
2349
2350         if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2351             && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2352                 return -1;
2353         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2354                 /* success */
2355                 return 1;
2356         if (rw == WRITE) {
2357                 set_bit(WriteErrorSeen, &rdev->flags);
2358                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2359                         set_bit(MD_RECOVERY_NEEDED,
2360                                 &rdev->mddev->recovery);
2361         }
2362         /* need to record an error - either for the block or the device */
2363         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2364                 md_error(rdev->mddev, rdev);
2365         return 0;
2366 }
2367
2368 /*
2369  * This is a kernel thread which:
2370  *
2371  *      1.      Retries failed read operations on working mirrors.
2372  *      2.      Updates the raid superblock when problems encounter.
2373  *      3.      Performs writes following reads for array synchronising.
2374  */
2375
2376 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2377 {
2378         int sect = 0; /* Offset from r10_bio->sector */
2379         int sectors = r10_bio->sectors;
2380         struct md_rdev*rdev;
2381         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2382         int d = r10_bio->devs[r10_bio->read_slot].devnum;
2383
2384         /* still own a reference to this rdev, so it cannot
2385          * have been cleared recently.
2386          */
2387         rdev = conf->mirrors[d].rdev;
2388
2389         if (test_bit(Faulty, &rdev->flags))
2390                 /* drive has already been failed, just ignore any
2391                    more fix_read_error() attempts */
2392                 return;
2393
2394         check_decay_read_errors(mddev, rdev);
2395         atomic_inc(&rdev->read_errors);
2396         if (atomic_read(&rdev->read_errors) > max_read_errors) {
2397                 char b[BDEVNAME_SIZE];
2398                 bdevname(rdev->bdev, b);
2399
2400                 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2401                           mdname(mddev), b,
2402                           atomic_read(&rdev->read_errors), max_read_errors);
2403                 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2404                           mdname(mddev), b);
2405                 md_error(mddev, rdev);
2406                 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2407                 return;
2408         }
2409
2410         while(sectors) {
2411                 int s = sectors;
2412                 int sl = r10_bio->read_slot;
2413                 int success = 0;
2414                 int start;
2415
2416                 if (s > (PAGE_SIZE>>9))
2417                         s = PAGE_SIZE >> 9;
2418
2419                 rcu_read_lock();
2420                 do {
2421                         sector_t first_bad;
2422                         int bad_sectors;
2423
2424                         d = r10_bio->devs[sl].devnum;
2425                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2426                         if (rdev &&
2427                             test_bit(In_sync, &rdev->flags) &&
2428                             !test_bit(Faulty, &rdev->flags) &&
2429                             is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2430                                         &first_bad, &bad_sectors) == 0) {
2431                                 atomic_inc(&rdev->nr_pending);
2432                                 rcu_read_unlock();
2433                                 success = sync_page_io(rdev,
2434                                                        r10_bio->devs[sl].addr +
2435                                                        sect,
2436                                                        s<<9,
2437                                                        conf->tmppage,
2438                                                        REQ_OP_READ, 0, false);
2439                                 rdev_dec_pending(rdev, mddev);
2440                                 rcu_read_lock();
2441                                 if (success)
2442                                         break;
2443                         }
2444                         sl++;
2445                         if (sl == conf->copies)
2446                                 sl = 0;
2447                 } while (!success && sl != r10_bio->read_slot);
2448                 rcu_read_unlock();
2449
2450                 if (!success) {
2451                         /* Cannot read from anywhere, just mark the block
2452                          * as bad on the first device to discourage future
2453                          * reads.
2454                          */
2455                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2456                         rdev = conf->mirrors[dn].rdev;
2457
2458                         if (!rdev_set_badblocks(
2459                                     rdev,
2460                                     r10_bio->devs[r10_bio->read_slot].addr
2461                                     + sect,
2462                                     s, 0)) {
2463                                 md_error(mddev, rdev);
2464                                 r10_bio->devs[r10_bio->read_slot].bio
2465                                         = IO_BLOCKED;
2466                         }
2467                         break;
2468                 }
2469
2470                 start = sl;
2471                 /* write it back and re-read */
2472                 rcu_read_lock();
2473                 while (sl != r10_bio->read_slot) {
2474                         char b[BDEVNAME_SIZE];
2475
2476                         if (sl==0)
2477                                 sl = conf->copies;
2478                         sl--;
2479                         d = r10_bio->devs[sl].devnum;
2480                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2481                         if (!rdev ||
2482                             test_bit(Faulty, &rdev->flags) ||
2483                             !test_bit(In_sync, &rdev->flags))
2484                                 continue;
2485
2486                         atomic_inc(&rdev->nr_pending);
2487                         rcu_read_unlock();
2488                         if (r10_sync_page_io(rdev,
2489                                              r10_bio->devs[sl].addr +
2490                                              sect,
2491                                              s, conf->tmppage, WRITE)
2492                             == 0) {
2493                                 /* Well, this device is dead */
2494                                 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2495                                           mdname(mddev), s,
2496                                           (unsigned long long)(
2497                                                   sect +
2498                                                   choose_data_offset(r10_bio,
2499                                                                      rdev)),
2500                                           bdevname(rdev->bdev, b));
2501                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2502                                           mdname(mddev),
2503                                           bdevname(rdev->bdev, b));
2504                         }
2505                         rdev_dec_pending(rdev, mddev);
2506                         rcu_read_lock();
2507                 }
2508                 sl = start;
2509                 while (sl != r10_bio->read_slot) {
2510                         char b[BDEVNAME_SIZE];
2511
2512                         if (sl==0)
2513                                 sl = conf->copies;
2514                         sl--;
2515                         d = r10_bio->devs[sl].devnum;
2516                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2517                         if (!rdev ||
2518                             test_bit(Faulty, &rdev->flags) ||
2519                             !test_bit(In_sync, &rdev->flags))
2520                                 continue;
2521
2522                         atomic_inc(&rdev->nr_pending);
2523                         rcu_read_unlock();
2524                         switch (r10_sync_page_io(rdev,
2525                                              r10_bio->devs[sl].addr +
2526                                              sect,
2527                                              s, conf->tmppage,
2528                                                  READ)) {
2529                         case 0:
2530                                 /* Well, this device is dead */
2531                                 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2532                                        mdname(mddev), s,
2533                                        (unsigned long long)(
2534                                                sect +
2535                                                choose_data_offset(r10_bio, rdev)),
2536                                        bdevname(rdev->bdev, b));
2537                                 pr_notice("md/raid10:%s: %s: failing drive\n",
2538                                        mdname(mddev),
2539                                        bdevname(rdev->bdev, b));
2540                                 break;
2541                         case 1:
2542                                 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2543                                        mdname(mddev), s,
2544                                        (unsigned long long)(
2545                                                sect +
2546                                                choose_data_offset(r10_bio, rdev)),
2547                                        bdevname(rdev->bdev, b));
2548                                 atomic_add(s, &rdev->corrected_errors);
2549                         }
2550
2551                         rdev_dec_pending(rdev, mddev);
2552                         rcu_read_lock();
2553                 }
2554                 rcu_read_unlock();
2555
2556                 sectors -= s;
2557                 sect += s;
2558         }
2559 }
2560
2561 static int narrow_write_error(struct r10bio *r10_bio, int i)
2562 {
2563         struct bio *bio = r10_bio->master_bio;
2564         struct mddev *mddev = r10_bio->mddev;
2565         struct r10conf *conf = mddev->private;
2566         struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2567         /* bio has the data to be written to slot 'i' where
2568          * we just recently had a write error.
2569          * We repeatedly clone the bio and trim down to one block,
2570          * then try the write.  Where the write fails we record
2571          * a bad block.
2572          * It is conceivable that the bio doesn't exactly align with
2573          * blocks.  We must handle this.
2574          *
2575          * We currently own a reference to the rdev.
2576          */
2577
2578         int block_sectors;
2579         sector_t sector;
2580         int sectors;
2581         int sect_to_write = r10_bio->sectors;
2582         int ok = 1;
2583
2584         if (rdev->badblocks.shift < 0)
2585                 return 0;
2586
2587         block_sectors = roundup(1 << rdev->badblocks.shift,
2588                                 bdev_logical_block_size(rdev->bdev) >> 9);
2589         sector = r10_bio->sector;
2590         sectors = ((r10_bio->sector + block_sectors)
2591                    & ~(sector_t)(block_sectors - 1))
2592                 - sector;
2593
2594         while (sect_to_write) {
2595                 struct bio *wbio;
2596                 sector_t wsector;
2597                 if (sectors > sect_to_write)
2598                         sectors = sect_to_write;
2599                 /* Write at 'sector' for 'sectors' */
2600                 wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
2601                 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2602                 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2603                 wbio->bi_iter.bi_sector = wsector +
2604                                    choose_data_offset(r10_bio, rdev);
2605                 wbio->bi_bdev = rdev->bdev;
2606                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2607
2608                 if (submit_bio_wait(wbio) < 0)
2609                         /* Failure! */
2610                         ok = rdev_set_badblocks(rdev, wsector,
2611                                                 sectors, 0)
2612                                 && ok;
2613
2614                 bio_put(wbio);
2615                 sect_to_write -= sectors;
2616                 sector += sectors;
2617                 sectors = block_sectors;
2618         }
2619         return ok;
2620 }
2621
2622 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623 {
2624         int slot = r10_bio->read_slot;
2625         struct bio *bio;
2626         struct r10conf *conf = mddev->private;
2627         struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628         char b[BDEVNAME_SIZE];
2629         unsigned long do_sync;
2630         int max_sectors;
2631         dev_t bio_dev;
2632         sector_t bio_last_sector;
2633
2634         /* we got a read error. Maybe the drive is bad.  Maybe just
2635          * the block and we can fix it.
2636          * We freeze all other IO, and try reading the block from
2637          * other devices.  When we find one, we re-write
2638          * and check it that fixes the read error.
2639          * This is all done synchronously while the array is
2640          * frozen.
2641          */
2642         bio = r10_bio->devs[slot].bio;
2643         bdevname(bio->bi_bdev, b);
2644         bio_dev = bio->bi_bdev->bd_dev;
2645         bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2646         bio_put(bio);
2647         r10_bio->devs[slot].bio = NULL;
2648
2649         if (mddev->ro)
2650                 r10_bio->devs[slot].bio = IO_BLOCKED;
2651         else if (!test_bit(FailFast, &rdev->flags)) {
2652                 freeze_array(conf, 1);
2653                 fix_read_error(conf, mddev, r10_bio);
2654                 unfreeze_array(conf);
2655         } else
2656                 md_error(mddev, rdev);
2657
2658         rdev_dec_pending(rdev, mddev);
2659
2660 read_more:
2661         rdev = read_balance(conf, r10_bio, &max_sectors);
2662         if (rdev == NULL) {
2663                 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2664                                     mdname(mddev), b,
2665                                     (unsigned long long)r10_bio->sector);
2666                 raid_end_bio_io(r10_bio);
2667                 return;
2668         }
2669
2670         do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2671         slot = r10_bio->read_slot;
2672         pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2673                            mdname(mddev),
2674                            bdevname(rdev->bdev, b),
2675                            (unsigned long long)r10_bio->sector);
2676         bio = bio_clone_fast(r10_bio->master_bio, GFP_NOIO, mddev->bio_set);
2677         bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2678         r10_bio->devs[slot].bio = bio;
2679         r10_bio->devs[slot].rdev = rdev;
2680         bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2681                 + choose_data_offset(r10_bio, rdev);
2682         bio->bi_bdev = rdev->bdev;
2683         bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2684         if (test_bit(FailFast, &rdev->flags) &&
2685             test_bit(R10BIO_FailFast, &r10_bio->state))
2686                 bio->bi_opf |= MD_FAILFAST;
2687         bio->bi_private = r10_bio;
2688         bio->bi_end_io = raid10_end_read_request;
2689         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2690                               bio, bio_dev,
2691                               bio_last_sector - r10_bio->sectors);
2692
2693         if (max_sectors < r10_bio->sectors) {
2694                 /* Drat - have to split this up more */
2695                 struct bio *mbio = r10_bio->master_bio;
2696                 int sectors_handled =
2697                         r10_bio->sector + max_sectors
2698                         - mbio->bi_iter.bi_sector;
2699                 r10_bio->sectors = max_sectors;
2700                 spin_lock_irq(&conf->device_lock);
2701                 if (mbio->bi_phys_segments == 0)
2702                         mbio->bi_phys_segments = 2;
2703                 else
2704                         mbio->bi_phys_segments++;
2705                 spin_unlock_irq(&conf->device_lock);
2706                 generic_make_request(bio);
2707
2708                 r10_bio = mempool_alloc(conf->r10bio_pool,
2709                                         GFP_NOIO);
2710                 r10_bio->master_bio = mbio;
2711                 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2712                 r10_bio->state = 0;
2713                 set_bit(R10BIO_ReadError,
2714                         &r10_bio->state);
2715                 r10_bio->mddev = mddev;
2716                 r10_bio->sector = mbio->bi_iter.bi_sector
2717                         + sectors_handled;
2718
2719                 goto read_more;
2720         } else
2721                 generic_make_request(bio);
2722 }
2723
2724 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2725 {
2726         /* Some sort of write request has finished and it
2727          * succeeded in writing where we thought there was a
2728          * bad block.  So forget the bad block.
2729          * Or possibly if failed and we need to record
2730          * a bad block.
2731          */
2732         int m;
2733         struct md_rdev *rdev;
2734
2735         if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2736             test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2737                 for (m = 0; m < conf->copies; m++) {
2738                         int dev = r10_bio->devs[m].devnum;
2739                         rdev = conf->mirrors[dev].rdev;
2740                         if (r10_bio->devs[m].bio == NULL)
2741                                 continue;
2742                         if (!r10_bio->devs[m].bio->bi_error) {
2743                                 rdev_clear_badblocks(
2744                                         rdev,
2745                                         r10_bio->devs[m].addr,
2746                                         r10_bio->sectors, 0);
2747                         } else {
2748                                 if (!rdev_set_badblocks(
2749                                             rdev,
2750                                             r10_bio->devs[m].addr,
2751                                             r10_bio->sectors, 0))
2752                                         md_error(conf->mddev, rdev);
2753                         }
2754                         rdev = conf->mirrors[dev].replacement;
2755                         if (r10_bio->devs[m].repl_bio == NULL)
2756                                 continue;
2757
2758                         if (!r10_bio->devs[m].repl_bio->bi_error) {
2759                                 rdev_clear_badblocks(
2760                                         rdev,
2761                                         r10_bio->devs[m].addr,
2762                                         r10_bio->sectors, 0);
2763                         } else {
2764                                 if (!rdev_set_badblocks(
2765                                             rdev,
2766                                             r10_bio->devs[m].addr,
2767                                             r10_bio->sectors, 0))
2768                                         md_error(conf->mddev, rdev);
2769                         }
2770                 }
2771                 put_buf(r10_bio);
2772         } else {
2773                 bool fail = false;
2774                 for (m = 0; m < conf->copies; m++) {
2775                         int dev = r10_bio->devs[m].devnum;
2776                         struct bio *bio = r10_bio->devs[m].bio;
2777                         rdev = conf->mirrors[dev].rdev;
2778                         if (bio == IO_MADE_GOOD) {
2779                                 rdev_clear_badblocks(
2780                                         rdev,
2781                                         r10_bio->devs[m].addr,
2782                                         r10_bio->sectors, 0);
2783                                 rdev_dec_pending(rdev, conf->mddev);
2784                         } else if (bio != NULL && bio->bi_error) {
2785                                 fail = true;
2786                                 if (!narrow_write_error(r10_bio, m)) {
2787                                         md_error(conf->mddev, rdev);
2788                                         set_bit(R10BIO_Degraded,
2789                                                 &r10_bio->state);
2790                                 }
2791                                 rdev_dec_pending(rdev, conf->mddev);
2792                         }
2793                         bio = r10_bio->devs[m].repl_bio;
2794                         rdev = conf->mirrors[dev].replacement;
2795                         if (rdev && bio == IO_MADE_GOOD) {
2796                                 rdev_clear_badblocks(
2797                                         rdev,
2798                                         r10_bio->devs[m].addr,
2799                                         r10_bio->sectors, 0);
2800                                 rdev_dec_pending(rdev, conf->mddev);
2801                         }
2802                 }
2803                 if (fail) {
2804                         spin_lock_irq(&conf->device_lock);
2805                         list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2806                         conf->nr_queued++;
2807                         spin_unlock_irq(&conf->device_lock);
2808                         md_wakeup_thread(conf->mddev->thread);
2809                 } else {
2810                         if (test_bit(R10BIO_WriteError,
2811                                      &r10_bio->state))
2812                                 close_write(r10_bio);
2813                         raid_end_bio_io(r10_bio);
2814                 }
2815         }
2816 }
2817
2818 static void raid10d(struct md_thread *thread)
2819 {
2820         struct mddev *mddev = thread->mddev;
2821         struct r10bio *r10_bio;
2822         unsigned long flags;
2823         struct r10conf *conf = mddev->private;
2824         struct list_head *head = &conf->retry_list;
2825         struct blk_plug plug;
2826
2827         md_check_recovery(mddev);
2828
2829         if (!list_empty_careful(&conf->bio_end_io_list) &&
2830             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2831                 LIST_HEAD(tmp);
2832                 spin_lock_irqsave(&conf->device_lock, flags);
2833                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2834                         while (!list_empty(&conf->bio_end_io_list)) {
2835                                 list_move(conf->bio_end_io_list.prev, &tmp);
2836                                 conf->nr_queued--;
2837                         }
2838                 }
2839                 spin_unlock_irqrestore(&conf->device_lock, flags);
2840                 while (!list_empty(&tmp)) {
2841                         r10_bio = list_first_entry(&tmp, struct r10bio,
2842                                                    retry_list);
2843                         list_del(&r10_bio->retry_list);
2844                         if (mddev->degraded)
2845                                 set_bit(R10BIO_Degraded, &r10_bio->state);
2846
2847                         if (test_bit(R10BIO_WriteError,
2848                                      &r10_bio->state))
2849                                 close_write(r10_bio);
2850                         raid_end_bio_io(r10_bio);
2851                 }
2852         }
2853
2854         blk_start_plug(&plug);
2855         for (;;) {
2856
2857                 flush_pending_writes(conf);
2858
2859                 spin_lock_irqsave(&conf->device_lock, flags);
2860                 if (list_empty(head)) {
2861                         spin_unlock_irqrestore(&conf->device_lock, flags);
2862                         break;
2863                 }
2864                 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2865                 list_del(head->prev);
2866                 conf->nr_queued--;
2867                 spin_unlock_irqrestore(&conf->device_lock, flags);
2868
2869                 mddev = r10_bio->mddev;
2870                 conf = mddev->private;
2871                 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2872                     test_bit(R10BIO_WriteError, &r10_bio->state))
2873                         handle_write_completed(conf, r10_bio);
2874                 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2875                         reshape_request_write(mddev, r10_bio);
2876                 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2877                         sync_request_write(mddev, r10_bio);
2878                 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2879                         recovery_request_write(mddev, r10_bio);
2880                 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2881                         handle_read_error(mddev, r10_bio);
2882                 else {
2883                         /* just a partial read to be scheduled from a
2884                          * separate context
2885                          */
2886                         int slot = r10_bio->read_slot;
2887                         generic_make_request(r10_bio->devs[slot].bio);
2888                 }
2889
2890                 cond_resched();
2891                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2892                         md_check_recovery(mddev);
2893         }
2894         blk_finish_plug(&plug);
2895 }
2896
2897 static int init_resync(struct r10conf *conf)
2898 {
2899         int buffs;
2900         int i;
2901
2902         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2903         BUG_ON(conf->r10buf_pool);
2904         conf->have_replacement = 0;
2905         for (i = 0; i < conf->geo.raid_disks; i++)
2906                 if (conf->mirrors[i].replacement)
2907                         conf->have_replacement = 1;
2908         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2909         if (!conf->r10buf_pool)
2910                 return -ENOMEM;
2911         conf->next_resync = 0;
2912         return 0;
2913 }
2914
2915 /*
2916  * perform a "sync" on one "block"
2917  *
2918  * We need to make sure that no normal I/O request - particularly write
2919  * requests - conflict with active sync requests.
2920  *
2921  * This is achieved by tracking pending requests and a 'barrier' concept
2922  * that can be installed to exclude normal IO requests.
2923  *
2924  * Resync and recovery are handled very differently.
2925  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2926  *
2927  * For resync, we iterate over virtual addresses, read all copies,
2928  * and update if there are differences.  If only one copy is live,
2929  * skip it.
2930  * For recovery, we iterate over physical addresses, read a good
2931  * value for each non-in_sync drive, and over-write.
2932  *
2933  * So, for recovery we may have several outstanding complex requests for a
2934  * given address, one for each out-of-sync device.  We model this by allocating
2935  * a number of r10_bio structures, one for each out-of-sync device.
2936  * As we setup these structures, we collect all bio's together into a list
2937  * which we then process collectively to add pages, and then process again
2938  * to pass to generic_make_request.
2939  *
2940  * The r10_bio structures are linked using a borrowed master_bio pointer.
2941  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2942  * has its remaining count decremented to 0, the whole complex operation
2943  * is complete.
2944  *
2945  */
2946
2947 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2948                              int *skipped)
2949 {
2950         struct r10conf *conf = mddev->private;
2951         struct r10bio *r10_bio;
2952         struct bio *biolist = NULL, *bio;
2953         sector_t max_sector, nr_sectors;
2954         int i;
2955         int max_sync;
2956         sector_t sync_blocks;
2957         sector_t sectors_skipped = 0;
2958         int chunks_skipped = 0;
2959         sector_t chunk_mask = conf->geo.chunk_mask;
2960
2961         if (!conf->r10buf_pool)
2962                 if (init_resync(conf))
2963                         return 0;
2964
2965         /*
2966          * Allow skipping a full rebuild for incremental assembly
2967          * of a clean array, like RAID1 does.
2968          */
2969         if (mddev->bitmap == NULL &&
2970             mddev->recovery_cp == MaxSector &&
2971             mddev->reshape_position == MaxSector &&
2972             !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2973             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2974             !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2975             conf->fullsync == 0) {
2976                 *skipped = 1;
2977                 return mddev->dev_sectors - sector_nr;
2978         }
2979
2980  skipped:
2981         max_sector = mddev->dev_sectors;
2982         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2983             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2984                 max_sector = mddev->resync_max_sectors;
2985         if (sector_nr >= max_sector) {
2986                 /* If we aborted, we need to abort the
2987                  * sync on the 'current' bitmap chucks (there can
2988                  * be several when recovering multiple devices).
2989                  * as we may have started syncing it but not finished.
2990                  * We can find the current address in
2991                  * mddev->curr_resync, but for recovery,
2992                  * we need to convert that to several
2993                  * virtual addresses.
2994                  */
2995                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2996                         end_reshape(conf);
2997                         close_sync(conf);
2998                         return 0;
2999                 }
3000
3001                 if (mddev->curr_resync < max_sector) { /* aborted */
3002                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3003                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3004                                                 &sync_blocks, 1);
3005                         else for (i = 0; i < conf->geo.raid_disks; i++) {
3006                                 sector_t sect =
3007                                         raid10_find_virt(conf, mddev->curr_resync, i);
3008                                 bitmap_end_sync(mddev->bitmap, sect,
3009                                                 &sync_blocks, 1);
3010                         }
3011                 } else {
3012                         /* completed sync */
3013                         if ((!mddev->bitmap || conf->fullsync)
3014                             && conf->have_replacement
3015                             && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3016                                 /* Completed a full sync so the replacements
3017                                  * are now fully recovered.
3018                                  */
3019                                 rcu_read_lock();
3020                                 for (i = 0; i < conf->geo.raid_disks; i++) {
3021                                         struct md_rdev *rdev =
3022                                                 rcu_dereference(conf->mirrors[i].replacement);
3023                                         if (rdev)
3024                                                 rdev->recovery_offset = MaxSector;
3025                                 }
3026                                 rcu_read_unlock();
3027                         }
3028                         conf->fullsync = 0;
3029                 }
3030                 bitmap_close_sync(mddev->bitmap);
3031                 close_sync(conf);
3032                 *skipped = 1;
3033                 return sectors_skipped;
3034         }
3035
3036         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3037                 return reshape_request(mddev, sector_nr, skipped);
3038
3039         if (chunks_skipped >= conf->geo.raid_disks) {
3040                 /* if there has been nothing to do on any drive,
3041                  * then there is nothing to do at all..
3042                  */
3043                 *skipped = 1;
3044                 return (max_sector - sector_nr) + sectors_skipped;
3045         }
3046
3047         if (max_sector > mddev->resync_max)
3048                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3049
3050         /* make sure whole request will fit in a chunk - if chunks
3051          * are meaningful
3052          */
3053         if (conf->geo.near_copies < conf->geo.raid_disks &&
3054             max_sector > (sector_nr | chunk_mask))
3055                 max_sector = (sector_nr | chunk_mask) + 1;
3056
3057         /*
3058          * If there is non-resync activity waiting for a turn, then let it
3059          * though before starting on this new sync request.
3060          */
3061         if (conf->nr_waiting)
3062                 schedule_timeout_uninterruptible(1);
3063
3064         /* Again, very different code for resync and recovery.
3065          * Both must result in an r10bio with a list of bios that
3066          * have bi_end_io, bi_sector, bi_bdev set,
3067          * and bi_private set to the r10bio.
3068          * For recovery, we may actually create several r10bios
3069          * with 2 bios in each, that correspond to the bios in the main one.
3070          * In this case, the subordinate r10bios link back through a
3071          * borrowed master_bio pointer, and the counter in the master
3072          * includes a ref from each subordinate.
3073          */
3074         /* First, we decide what to do and set ->bi_end_io
3075          * To end_sync_read if we want to read, and
3076          * end_sync_write if we will want to write.
3077          */
3078
3079         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3080         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3081                 /* recovery... the complicated one */
3082                 int j;
3083                 r10_bio = NULL;
3084
3085                 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3086                         int still_degraded;
3087                         struct r10bio *rb2;
3088                         sector_t sect;
3089                         int must_sync;
3090                         int any_working;
3091                         struct raid10_info *mirror = &conf->mirrors[i];
3092                         struct md_rdev *mrdev, *mreplace;
3093
3094                         rcu_read_lock();
3095                         mrdev = rcu_dereference(mirror->rdev);
3096                         mreplace = rcu_dereference(mirror->replacement);
3097
3098                         if ((mrdev == NULL ||
3099                              test_bit(Faulty, &mrdev->flags) ||
3100                              test_bit(In_sync, &mrdev->flags)) &&
3101                             (mreplace == NULL ||
3102                              test_bit(Faulty, &mreplace->flags))) {
3103                                 rcu_read_unlock();
3104                                 continue;
3105                         }
3106
3107                         still_degraded = 0;
3108                         /* want to reconstruct this device */
3109                         rb2 = r10_bio;
3110                         sect = raid10_find_virt(conf, sector_nr, i);
3111                         if (sect >= mddev->resync_max_sectors) {
3112                                 /* last stripe is not complete - don't
3113                                  * try to recover this sector.
3114                                  */
3115                                 rcu_read_unlock();
3116                                 continue;
3117                         }
3118                         if (mreplace && test_bit(Faulty, &mreplace->flags))
3119                                 mreplace = NULL;
3120                         /* Unless we are doing a full sync, or a replacement
3121                          * we only need to recover the block if it is set in
3122                          * the bitmap
3123                          */
3124                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3125                                                       &sync_blocks, 1);
3126                         if (sync_blocks < max_sync)
3127                                 max_sync = sync_blocks;
3128                         if (!must_sync &&
3129                             mreplace == NULL &&
3130                             !conf->fullsync) {
3131                                 /* yep, skip the sync_blocks here, but don't assume
3132                                  * that there will never be anything to do here
3133                                  */
3134                                 chunks_skipped = -1;
3135                                 rcu_read_unlock();
3136                                 continue;
3137                         }
3138                         atomic_inc(&mrdev->nr_pending);
3139                         if (mreplace)
3140                                 atomic_inc(&mreplace->nr_pending);
3141                         rcu_read_unlock();
3142
3143                         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3144                         r10_bio->state = 0;
3145                         raise_barrier(conf, rb2 != NULL);
3146                         atomic_set(&r10_bio->remaining, 0);
3147
3148                         r10_bio->master_bio = (struct bio*)rb2;
3149                         if (rb2)
3150                                 atomic_inc(&rb2->remaining);
3151                         r10_bio->mddev = mddev;
3152                         set_bit(R10BIO_IsRecover, &r10_bio->state);
3153                         r10_bio->sector = sect;
3154
3155                         raid10_find_phys(conf, r10_bio);
3156
3157                         /* Need to check if the array will still be
3158                          * degraded
3159                          */
3160                         rcu_read_lock();
3161                         for (j = 0; j < conf->geo.raid_disks; j++) {
3162                                 struct md_rdev *rdev = rcu_dereference(
3163                                         conf->mirrors[j].rdev);
3164                                 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3165                                         still_degraded = 1;
3166                                         break;
3167                                 }
3168                         }
3169
3170                         must_sync = bitmap_start_sync(mddev->bitmap, sect,
3171                                                       &sync_blocks, still_degraded);
3172
3173                         any_working = 0;
3174                         for (j=0; j<conf->copies;j++) {
3175                                 int k;
3176                                 int d = r10_bio->devs[j].devnum;
3177                                 sector_t from_addr, to_addr;
3178                                 struct md_rdev *rdev =
3179                                         rcu_dereference(conf->mirrors[d].rdev);
3180                                 sector_t sector, first_bad;
3181                                 int bad_sectors;
3182                                 if (!rdev ||
3183                                     !test_bit(In_sync, &rdev->flags))
3184                                         continue;
3185                                 /* This is where we read from */
3186                                 any_working = 1;
3187                                 sector = r10_bio->devs[j].addr;
3188
3189                                 if (is_badblock(rdev, sector, max_sync,
3190                                                 &first_bad, &bad_sectors)) {
3191                                         if (first_bad > sector)
3192                                                 max_sync = first_bad - sector;
3193                                         else {
3194                                                 bad_sectors -= (sector
3195                                                                 - first_bad);
3196                                                 if (max_sync > bad_sectors)
3197                                                         max_sync = bad_sectors;
3198                                                 continue;
3199                                         }
3200                                 }
3201                                 bio = r10_bio->devs[0].bio;
3202                                 bio_reset(bio);
3203                                 bio->bi_next = biolist;
3204                                 biolist = bio;
3205                                 bio->bi_private = r10_bio;
3206                                 bio->bi_end_io = end_sync_read;
3207                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3208                                 if (test_bit(FailFast, &rdev->flags))
3209                                         bio->bi_opf |= MD_FAILFAST;
3210                                 from_addr = r10_bio->devs[j].addr;
3211                                 bio->bi_iter.bi_sector = from_addr +
3212                                         rdev->data_offset;
3213                                 bio->bi_bdev = rdev->bdev;
3214                                 atomic_inc(&rdev->nr_pending);
3215                                 /* and we write to 'i' (if not in_sync) */
3216
3217                                 for (k=0; k<conf->copies; k++)
3218                                         if (r10_bio->devs[k].devnum == i)
3219                                                 break;
3220                                 BUG_ON(k == conf->copies);
3221                                 to_addr = r10_bio->devs[k].addr;
3222                                 r10_bio->devs[0].devnum = d;
3223                                 r10_bio->devs[0].addr = from_addr;
3224                                 r10_bio->devs[1].devnum = i;
3225                                 r10_bio->devs[1].addr = to_addr;
3226
3227                                 if (!test_bit(In_sync, &mrdev->flags)) {
3228                                         bio = r10_bio->devs[1].bio;
3229                                         bio_reset(bio);
3230                                         bio->bi_next = biolist;
3231                                         biolist = bio;
3232                                         bio->bi_private = r10_bio;
3233                                         bio->bi_end_io = end_sync_write;
3234                                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3235                                         bio->bi_iter.bi_sector = to_addr
3236                                                 + mrdev->data_offset;
3237                                         bio->bi_bdev = mrdev->bdev;
3238                                         atomic_inc(&r10_bio->remaining);
3239                                 } else
3240                                         r10_bio->devs[1].bio->bi_end_io = NULL;
3241
3242                                 /* and maybe write to replacement */
3243                                 bio = r10_bio->devs[1].repl_bio;
3244                                 if (bio)
3245                                         bio->bi_end_io = NULL;
3246                                 /* Note: if mreplace != NULL, then bio
3247                                  * cannot be NULL as r10buf_pool_alloc will
3248                                  * have allocated it.
3249                                  * So the second test here is pointless.
3250                                  * But it keeps semantic-checkers happy, and
3251                                  * this comment keeps human reviewers
3252                                  * happy.
3253                                  */
3254                                 if (mreplace == NULL || bio == NULL ||
3255                                     test_bit(Faulty, &mreplace->flags))
3256                                         break;
3257                                 bio_reset(bio);
3258                                 bio->bi_next = biolist;
3259                                 biolist = bio;
3260                                 bio->bi_private = r10_bio;
3261                                 bio->bi_end_io = end_sync_write;
3262                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3263                                 bio->bi_iter.bi_sector = to_addr +
3264                                         mreplace->data_offset;
3265                                 bio->bi_bdev = mreplace->bdev;
3266                                 atomic_inc(&r10_bio->remaining);
3267                                 break;
3268                         }
3269                         rcu_read_unlock();
3270                         if (j == conf->copies) {
3271                                 /* Cannot recover, so abort the recovery or
3272                                  * record a bad block */
3273                                 if (any_working) {
3274                                         /* problem is that there are bad blocks
3275                                          * on other device(s)
3276                                          */
3277                                         int k;
3278                                         for (k = 0; k < conf->copies; k++)
3279                                                 if (r10_bio->devs[k].devnum == i)
3280                                                         break;
3281                                         if (!test_bit(In_sync,
3282                                                       &mrdev->flags)
3283                                             && !rdev_set_badblocks(
3284                                                     mrdev,
3285                                                     r10_bio->devs[k].addr,
3286                                                     max_sync, 0))
3287                                                 any_working = 0;
3288                                         if (mreplace &&
3289                                             !rdev_set_badblocks(
3290                                                     mreplace,
3291                                                     r10_bio->devs[k].addr,
3292                                                     max_sync, 0))
3293                                                 any_working = 0;
3294                                 }
3295                                 if (!any_working)  {
3296                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
3297                                                               &mddev->recovery))
3298                                                 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3299                                                        mdname(mddev));
3300                                         mirror->recovery_disabled
3301                                                 = mddev->recovery_disabled;
3302                                 }
3303                                 put_buf(r10_bio);
3304                                 if (rb2)
3305                                         atomic_dec(&rb2->remaining);
3306                                 r10_bio = rb2;
3307                                 rdev_dec_pending(mrdev, mddev);
3308                                 if (mreplace)
3309                                         rdev_dec_pending(mreplace, mddev);
3310                                 break;
3311                         }
3312                         rdev_dec_pending(mrdev, mddev);
3313                         if (mreplace)
3314                                 rdev_dec_pending(mreplace, mddev);
3315                         if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3316                                 /* Only want this if there is elsewhere to
3317                                  * read from. 'j' is currently the first
3318                                  * readable copy.
3319                                  */
3320                                 int targets = 1;
3321                                 for (; j < conf->copies; j++) {
3322                                         int d = r10_bio->devs[j].devnum;
3323                                         if (conf->mirrors[d].rdev &&
3324                                             test_bit(In_sync,
3325                                                       &conf->mirrors[d].rdev->flags))
3326                                                 targets++;
3327                                 }
3328                                 if (targets == 1)
3329                                         r10_bio->devs[0].bio->bi_opf
3330                                                 &= ~MD_FAILFAST;
3331                         }
3332                 }
3333                 if (biolist == NULL) {
3334                         while (r10_bio) {
3335                                 struct r10bio *rb2 = r10_bio;
3336                                 r10_bio = (struct r10bio*) rb2->master_bio;
3337                                 rb2->master_bio = NULL;
3338                                 put_buf(rb2);
3339                         }
3340                         goto giveup;
3341                 }
3342         } else {
3343                 /* resync. Schedule a read for every block at this virt offset */
3344                 int count = 0;
3345
3346                 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3347
3348                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3349                                        &sync_blocks, mddev->degraded) &&
3350                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3351                                                  &mddev->recovery)) {
3352                         /* We can skip this block */
3353                         *skipped = 1;
3354                         return sync_blocks + sectors_skipped;
3355                 }
3356                 if (sync_blocks < max_sync)
3357                         max_sync = sync_blocks;
3358                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3359                 r10_bio->state = 0;
3360
3361                 r10_bio->mddev = mddev;
3362                 atomic_set(&r10_bio->remaining, 0);
3363                 raise_barrier(conf, 0);
3364                 conf->next_resync = sector_nr;
3365
3366                 r10_bio->master_bio = NULL;
3367                 r10_bio->sector = sector_nr;
3368                 set_bit(R10BIO_IsSync, &r10_bio->state);
3369                 raid10_find_phys(conf, r10_bio);
3370                 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3371
3372                 for (i = 0; i < conf->copies; i++) {
3373                         int d = r10_bio->devs[i].devnum;
3374                         sector_t first_bad, sector;
3375                         int bad_sectors;
3376                         struct md_rdev *rdev;
3377
3378                         if (r10_bio->devs[i].repl_bio)
3379                                 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3380
3381                         bio = r10_bio->devs[i].bio;
3382                         bio_reset(bio);
3383                         bio->bi_error = -EIO;
3384                         rcu_read_lock();
3385                         rdev = rcu_dereference(conf->mirrors[d].rdev);
3386                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3387                                 rcu_read_unlock();
3388                                 continue;
3389                         }
3390                         sector = r10_bio->devs[i].addr;
3391                         if (is_badblock(rdev, sector, max_sync,
3392                                         &first_bad, &bad_sectors)) {
3393                                 if (first_bad > sector)
3394                                         max_sync = first_bad - sector;
3395                                 else {
3396                                         bad_sectors -= (sector - first_bad);
3397                                         if (max_sync > bad_sectors)
3398                                                 max_sync = bad_sectors;
3399                                         rcu_read_unlock();
3400                                         continue;
3401                                 }
3402                         }
3403                         atomic_inc(&rdev->nr_pending);
3404                         atomic_inc(&r10_bio->remaining);
3405                         bio->bi_next = biolist;
3406                         biolist = bio;
3407                         bio->bi_private = r10_bio;
3408                         bio->bi_end_io = end_sync_read;
3409                         bio_set_op_attrs(bio, REQ_OP_READ, 0);
3410                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3411                                 bio->bi_opf |= MD_FAILFAST;
3412                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3413                         bio->bi_bdev = rdev->bdev;
3414                         count++;
3415
3416                         rdev = rcu_dereference(conf->mirrors[d].replacement);
3417                         if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3418                                 rcu_read_unlock();
3419                                 continue;
3420                         }
3421                         atomic_inc(&rdev->nr_pending);
3422                         rcu_read_unlock();
3423
3424                         /* Need to set up for writing to the replacement */
3425                         bio = r10_bio->devs[i].repl_bio;
3426                         bio_reset(bio);
3427                         bio->bi_error = -EIO;
3428
3429                         sector = r10_bio->devs[i].addr;
3430                         bio->bi_next = biolist;
3431                         biolist = bio;
3432                         bio->bi_private = r10_bio;
3433                         bio->bi_end_io = end_sync_write;
3434                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3435                         if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3436                                 bio->bi_opf |= MD_FAILFAST;
3437                         bio->bi_iter.bi_sector = sector + rdev->data_offset;
3438                         bio->bi_bdev = rdev->bdev;
3439                         count++;
3440                 }
3441
3442                 if (count < 2) {
3443                         for (i=0; i<conf->copies; i++) {
3444                                 int d = r10_bio->devs[i].devnum;
3445                                 if (r10_bio->devs[i].bio->bi_end_io)
3446                                         rdev_dec_pending(conf->mirrors[d].rdev,
3447                                                          mddev);
3448                                 if (r10_bio->devs[i].repl_bio &&
3449                                     r10_bio->devs[i].repl_bio->bi_end_io)
3450                                         rdev_dec_pending(
3451                                                 conf->mirrors[d].replacement,
3452                                                 mddev);
3453                         }
3454                         put_buf(r10_bio);
3455                         biolist = NULL;
3456                         goto giveup;
3457                 }
3458         }
3459
3460         nr_sectors = 0;
3461         if (sector_nr + max_sync < max_sector)
3462                 max_sector = sector_nr + max_sync;
3463         do {
3464                 struct page *page;
3465                 int len = PAGE_SIZE;
3466                 if (sector_nr + (len>>9) > max_sector)
3467                         len = (max_sector - sector_nr) << 9;
3468                 if (len == 0)
3469                         break;
3470                 for (bio= biolist ; bio ; bio=bio->bi_next) {
3471                         struct bio *bio2;
3472                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3473                         if (bio_add_page(bio, page, len, 0))
3474                                 continue;
3475
3476                         /* stop here */
3477                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3478                         for (bio2 = biolist;
3479                              bio2 && bio2 != bio;
3480                              bio2 = bio2->bi_next) {
3481                                 /* remove last page from this bio */
3482                                 bio2->bi_vcnt--;
3483                                 bio2->bi_iter.bi_size -= len;
3484                                 bio_clear_flag(bio2, BIO_SEG_VALID);
3485                         }
3486                         goto bio_full;
3487                 }
3488                 nr_sectors += len>>9;
3489                 sector_nr += len>>9;
3490         } while (biolist->bi_vcnt < RESYNC_PAGES);
3491  bio_full:
3492         r10_bio->sectors = nr_sectors;
3493
3494         while (biolist) {
3495                 bio = biolist;
3496                 biolist = biolist->bi_next;
3497
3498                 bio->bi_next = NULL;
3499                 r10_bio = bio->bi_private;
3500                 r10_bio->sectors = nr_sectors;
3501
3502                 if (bio->bi_end_io == end_sync_read) {
3503                         md_sync_acct(bio->bi_bdev, nr_sectors);
3504                         bio->bi_error = 0;
3505                         generic_make_request(bio);
3506                 }
3507         }
3508
3509         if (sectors_skipped)
3510                 /* pretend they weren't skipped, it makes
3511                  * no important difference in this case
3512                  */
3513                 md_done_sync(mddev, sectors_skipped, 1);
3514
3515         return sectors_skipped + nr_sectors;
3516  giveup:
3517         /* There is nowhere to write, so all non-sync
3518          * drives must be failed or in resync, all drives
3519          * have a bad block, so try the next chunk...
3520          */
3521         if (sector_nr + max_sync < max_sector)
3522                 max_sector = sector_nr + max_sync;
3523
3524         sectors_skipped += (max_sector - sector_nr);
3525         chunks_skipped ++;
3526         sector_nr = max_sector;
3527         goto skipped;
3528 }
3529
3530 static sector_t
3531 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3532 {
3533         sector_t size;
3534         struct r10conf *conf = mddev->private;
3535
3536         if (!raid_disks)
3537                 raid_disks = min(conf->geo.raid_disks,
3538                                  conf->prev.raid_disks);
3539         if (!sectors)
3540                 sectors = conf->dev_sectors;
3541
3542         size = sectors >> conf->geo.chunk_shift;
3543         sector_div(size, conf->geo.far_copies);
3544         size = size * raid_disks;
3545         sector_div(size, conf->geo.near_copies);
3546
3547         return size << conf->geo.chunk_shift;
3548 }
3549
3550 static void calc_sectors(struct r10conf *conf, sector_t size)
3551 {
3552         /* Calculate the number of sectors-per-device that will
3553          * actually be used, and set conf->dev_sectors and
3554          * conf->stride
3555          */
3556
3557         size = size >> conf->geo.chunk_shift;
3558         sector_div(size, conf->geo.far_copies);
3559         size = size * conf->geo.raid_disks;
3560         sector_div(size, conf->geo.near_copies);
3561         /* 'size' is now the number of chunks in the array */
3562         /* calculate "used chunks per device" */
3563         size = size * conf->copies;
3564
3565         /* We need to round up when dividing by raid_disks to
3566          * get the stride size.
3567          */
3568         size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3569
3570         conf->dev_sectors = size << conf->geo.chunk_shift;
3571
3572         if (conf->geo.far_offset)
3573                 conf->geo.stride = 1 << conf->geo.chunk_shift;
3574         else {
3575                 sector_div(size, conf->geo.far_copies);
3576                 conf->geo.stride = size << conf->geo.chunk_shift;
3577         }
3578 }
3579
3580 enum geo_type {geo_new, geo_old, geo_start};
3581 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3582 {
3583         int nc, fc, fo;
3584         int layout, chunk, disks;
3585         switch (new) {
3586         case geo_old:
3587                 layout = mddev->layout;
3588                 chunk = mddev->chunk_sectors;
3589                 disks = mddev->raid_disks - mddev->delta_disks;
3590                 break;
3591         case geo_new:
3592                 layout = mddev->new_layout;
3593                 chunk = mddev->new_chunk_sectors;
3594                 disks = mddev->raid_disks;
3595                 break;
3596         default: /* avoid 'may be unused' warnings */
3597         case geo_start: /* new when starting reshape - raid_disks not
3598                          * updated yet. */
3599                 layout = mddev->new_layout;
3600                 chunk = mddev->new_chunk_sectors;
3601                 disks = mddev->raid_disks + mddev->delta_disks;
3602                 break;
3603         }
3604         if (layout >> 19)
3605                 return -1;
3606         if (chunk < (PAGE_SIZE >> 9) ||
3607             !is_power_of_2(chunk))
3608                 return -2;
3609         nc = layout & 255;
3610         fc = (layout >> 8) & 255;
3611         fo = layout & (1<<16);
3612         geo->raid_disks = disks;
3613         geo->near_copies = nc;
3614         geo->far_copies = fc;
3615         geo->far_offset = fo;
3616         switch (layout >> 17) {
3617         case 0: /* original layout.  simple but not always optimal */
3618                 geo->far_set_size = disks;
3619                 break;
3620         case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3621                  * actually using this, but leave code here just in case.*/
3622                 geo->far_set_size = disks/fc;
3623                 WARN(geo->far_set_size < fc,
3624                      "This RAID10 layout does not provide data safety - please backup and create new array\n");
3625                 break;
3626         case 2: /* "improved" layout fixed to match documentation */
3627                 geo->far_set_size = fc * nc;
3628                 break;
3629         default: /* Not a valid layout */
3630                 return -1;
3631         }
3632         geo->chunk_mask = chunk - 1;
3633         geo->chunk_shift = ffz(~chunk);
3634         return nc*fc;
3635 }
3636
3637 static struct r10conf *setup_conf(struct mddev *mddev)
3638 {
3639         struct r10conf *conf = NULL;
3640         int err = -EINVAL;
3641         struct geom geo;
3642         int copies;
3643
3644         copies = setup_geo(&geo, mddev, geo_new);
3645
3646         if (copies == -2) {
3647                 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3648                         mdname(mddev), PAGE_SIZE);
3649                 goto out;
3650         }
3651
3652         if (copies < 2 || copies > mddev->raid_disks) {
3653                 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3654                         mdname(mddev), mddev->new_layout);
3655                 goto out;
3656         }
3657
3658         err = -ENOMEM;
3659         conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3660         if (!conf)
3661                 goto out;
3662
3663         /* FIXME calc properly */
3664         conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3665                                                             max(0,-mddev->delta_disks)),
3666                                 GFP_KERNEL);
3667         if (!conf->mirrors)
3668                 goto out;
3669
3670         conf->tmppage = alloc_page(GFP_KERNEL);
3671         if (!conf->tmppage)
3672                 goto out;
3673
3674         conf->geo = geo;
3675         conf->copies = copies;
3676         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3677                                            r10bio_pool_free, conf);
3678         if (!conf->r10bio_pool)
3679                 goto out;
3680
3681         calc_sectors(conf, mddev->dev_sectors);
3682         if (mddev->reshape_position == MaxSector) {
3683                 conf->prev = conf->geo;
3684                 conf->reshape_progress = MaxSector;
3685         } else {
3686                 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3687                         err = -EINVAL;
3688                         goto out;
3689                 }
3690                 conf->reshape_progress = mddev->reshape_position;
3691                 if (conf->prev.far_offset)
3692                         conf->prev.stride = 1 << conf->prev.chunk_shift;
3693                 else
3694                         /* far_copies must be 1 */
3695                         conf->prev.stride = conf->dev_sectors;
3696         }
3697         conf->reshape_safe = conf->reshape_progress;
3698         spin_lock_init(&conf->device_lock);
3699         INIT_LIST_HEAD(&conf->retry_list);
3700         INIT_LIST_HEAD(&conf->bio_end_io_list);
3701
3702         spin_lock_init(&conf->resync_lock);
3703         init_waitqueue_head(&conf->wait_barrier);
3704         atomic_set(&conf->nr_pending, 0);
3705
3706         conf->thread = md_register_thread(raid10d, mddev, "raid10");
3707         if (!conf->thread)
3708                 goto out;
3709
3710         conf->mddev = mddev;
3711         return conf;
3712
3713  out:
3714         if (conf) {
3715                 mempool_destroy(conf->r10bio_pool);
3716                 kfree(conf->mirrors);
3717                 safe_put_page(conf->tmppage);
3718                 kfree(conf);
3719         }
3720         return ERR_PTR(err);
3721 }
3722
3723 static int raid10_run(struct mddev *mddev)
3724 {
3725         struct r10conf *conf;
3726         int i, disk_idx, chunk_size;
3727         struct raid10_info *disk;
3728         struct md_rdev *rdev;
3729         sector_t size;
3730         sector_t min_offset_diff = 0;
3731         int first = 1;
3732         bool discard_supported = false;
3733
3734         if (mddev->private == NULL) {
3735                 conf = setup_conf(mddev);
3736                 if (IS_ERR(conf))
3737                         return PTR_ERR(conf);
3738                 mddev->private = conf;
3739         }
3740         conf = mddev->private;
3741         if (!conf)
3742                 goto out;
3743
3744         mddev->thread = conf->thread;
3745         conf->thread = NULL;
3746
3747         chunk_size = mddev->chunk_sectors << 9;
3748         if (mddev->queue) {
3749                 blk_queue_max_discard_sectors(mddev->queue,
3750                                               mddev->chunk_sectors);
3751                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3752                 blk_queue_io_min(mddev->queue, chunk_size);
3753                 if (conf->geo.raid_disks % conf->geo.near_copies)
3754                         blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3755                 else
3756                         blk_queue_io_opt(mddev->queue, chunk_size *
3757                                          (conf->geo.raid_disks / conf->geo.near_copies));
3758         }
3759
3760         rdev_for_each(rdev, mddev) {
3761                 long long diff;
3762                 struct request_queue *q;
3763
3764                 disk_idx = rdev->raid_disk;
3765                 if (disk_idx < 0)
3766                         continue;
3767                 if (disk_idx >= conf->geo.raid_disks &&
3768                     disk_idx >= conf->prev.raid_disks)
3769                         continue;
3770                 disk = conf->mirrors + disk_idx;
3771
3772                 if (test_bit(Replacement, &rdev->flags)) {
3773                         if (disk->replacement)
3774                                 goto out_free_conf;
3775                         disk->replacement = rdev;
3776                 } else {
3777                         if (disk->rdev)
3778                                 goto out_free_conf;
3779                         disk->rdev = rdev;
3780                 }
3781                 q = bdev_get_queue(rdev->bdev);
3782                 diff = (rdev->new_data_offset - rdev->data_offset);
3783                 if (!mddev->reshape_backwards)
3784                         diff = -diff;
3785                 if (diff < 0)
3786                         diff = 0;
3787                 if (first || diff < min_offset_diff)
3788                         min_offset_diff = diff;
3789
3790                 if (mddev->gendisk)
3791                         disk_stack_limits(mddev->gendisk, rdev->bdev,
3792                                           rdev->data_offset << 9);
3793
3794                 disk->head_position = 0;
3795
3796                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3797                         discard_supported = true;
3798         }
3799
3800         if (mddev->queue) {
3801                 if (discard_supported)
3802                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3803                                                 mddev->queue);
3804                 else
3805                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3806                                                   mddev->queue);
3807         }
3808         /* need to check that every block has at least one working mirror */
3809         if (!enough(conf, -1)) {
3810                 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3811                        mdname(mddev));
3812                 goto out_free_conf;
3813         }
3814
3815         if (conf->reshape_progress != MaxSector) {
3816                 /* must ensure that shape change is supported */
3817                 if (conf->geo.far_copies != 1 &&
3818                     conf->geo.far_offset == 0)
3819                         goto out_free_conf;
3820                 if (conf->prev.far_copies != 1 &&
3821                     conf->prev.far_offset == 0)
3822                         goto out_free_conf;
3823         }
3824
3825         mddev->degraded = 0;
3826         for (i = 0;
3827              i < conf->geo.raid_disks
3828                      || i < conf->prev.raid_disks;
3829              i++) {
3830
3831                 disk = conf->mirrors + i;
3832
3833                 if (!disk->rdev && disk->replacement) {
3834                         /* The replacement is all we have - use it */
3835                         disk->rdev = disk->replacement;
3836                         disk->replacement = NULL;
3837                         clear_bit(Replacement, &disk->rdev->flags);
3838                 }
3839
3840                 if (!disk->rdev ||
3841                     !test_bit(In_sync, &disk->rdev->flags)) {
3842                         disk->head_position = 0;
3843                         mddev->degraded++;
3844                         if (disk->rdev &&
3845                             disk->rdev->saved_raid_disk < 0)
3846                                 conf->fullsync = 1;
3847                 }
3848                 disk->recovery_disabled = mddev->recovery_disabled - 1;
3849         }
3850
3851         if (mddev->recovery_cp != MaxSector)
3852                 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3853                           mdname(mddev));
3854         pr_info("md/raid10:%s: active with %d out of %d devices\n",
3855                 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3856                 conf->geo.raid_disks);
3857         /*
3858          * Ok, everything is just fine now
3859          */
3860         mddev->dev_sectors = conf->dev_sectors;
3861         size = raid10_size(mddev, 0, 0);
3862         md_set_array_sectors(mddev, size);
3863         mddev->resync_max_sectors = size;
3864         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3865
3866         if (mddev->queue) {
3867                 int stripe = conf->geo.raid_disks *
3868                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3869
3870                 /* Calculate max read-ahead size.
3871                  * We need to readahead at least twice a whole stripe....
3872                  * maybe...
3873                  */
3874                 stripe /= conf->geo.near_copies;
3875                 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3876                         mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3877         }
3878
3879         if (md_integrity_register(mddev))
3880                 goto out_free_conf;
3881
3882         if (conf->reshape_progress != MaxSector) {
3883                 unsigned long before_length, after_length;
3884
3885                 before_length = ((1 << conf->prev.chunk_shift) *
3886                                  conf->prev.far_copies);
3887                 after_length = ((1 << conf->geo.chunk_shift) *
3888                                 conf->geo.far_copies);
3889
3890                 if (max(before_length, after_length) > min_offset_diff) {
3891                         /* This cannot work */
3892                         pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3893                         goto out_free_conf;
3894                 }
3895                 conf->offset_diff = min_offset_diff;
3896
3897                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3898                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3899                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3900                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3901                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3902                                                         "reshape");
3903         }
3904
3905         return 0;
3906
3907 out_free_conf:
3908         md_unregister_thread(&mddev->thread);
3909         mempool_destroy(conf->r10bio_pool);
3910         safe_put_page(conf->tmppage);
3911         kfree(conf->mirrors);
3912         kfree(conf);
3913         mddev->private = NULL;
3914 out:
3915         return -EIO;
3916 }
3917
3918 static void raid10_free(struct mddev *mddev, void *priv)
3919 {
3920         struct r10conf *conf = priv;
3921
3922         mempool_destroy(conf->r10bio_pool);
3923         safe_put_page(conf->tmppage);
3924         kfree(conf->mirrors);
3925         kfree(conf->mirrors_old);
3926         kfree(conf->mirrors_new);
3927         kfree(conf);
3928 }
3929
3930 static void raid10_quiesce(struct mddev *mddev, int state)
3931 {
3932         struct r10conf *conf = mddev->private;
3933
3934         switch(state) {
3935         case 1:
3936                 raise_barrier(conf, 0);
3937                 break;
3938         case 0:
3939                 lower_barrier(conf);
3940                 break;
3941         }
3942 }
3943
3944 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3945 {
3946         /* Resize of 'far' arrays is not supported.
3947          * For 'near' and 'offset' arrays we can set the
3948          * number of sectors used to be an appropriate multiple
3949          * of the chunk size.
3950          * For 'offset', this is far_copies*chunksize.
3951          * For 'near' the multiplier is the LCM of
3952          * near_copies and raid_disks.
3953          * So if far_copies > 1 && !far_offset, fail.
3954          * Else find LCM(raid_disks, near_copy)*far_copies and
3955          * multiply by chunk_size.  Then round to this number.
3956          * This is mostly done by raid10_size()
3957          */
3958         struct r10conf *conf = mddev->private;
3959         sector_t oldsize, size;
3960
3961         if (mddev->reshape_position != MaxSector)
3962                 return -EBUSY;
3963
3964         if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3965                 return -EINVAL;
3966
3967         oldsize = raid10_size(mddev, 0, 0);
3968         size = raid10_size(mddev, sectors, 0);
3969         if (mddev->external_size &&
3970             mddev->array_sectors > size)
3971                 return -EINVAL;
3972         if (mddev->bitmap) {
3973                 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3974                 if (ret)
3975                         return ret;
3976         }
3977         md_set_array_sectors(mddev, size);
3978         if (sectors > mddev->dev_sectors &&
3979             mddev->recovery_cp > oldsize) {
3980                 mddev->recovery_cp = oldsize;
3981                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3982         }
3983         calc_sectors(conf, sectors);
3984         mddev->dev_sectors = conf->dev_sectors;
3985         mddev->resync_max_sectors = size;
3986         return 0;
3987 }
3988
3989 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3990 {
3991         struct md_rdev *rdev;
3992         struct r10conf *conf;
3993
3994         if (mddev->degraded > 0) {
3995                 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3996                         mdname(mddev));
3997                 return ERR_PTR(-EINVAL);
3998         }
3999         sector_div(size, devs);
4000
4001         /* Set new parameters */
4002         mddev->new_level = 10;
4003         /* new layout: far_copies = 1, near_copies = 2 */
4004         mddev->new_layout = (1<<8) + 2;
4005         mddev->new_chunk_sectors = mddev->chunk_sectors;
4006         mddev->delta_disks = mddev->raid_disks;
4007         mddev->raid_disks *= 2;
4008         /* make sure it will be not marked as dirty */
4009         mddev->recovery_cp = MaxSector;
4010         mddev->dev_sectors = size;
4011
4012         conf = setup_conf(mddev);
4013         if (!IS_ERR(conf)) {
4014                 rdev_for_each(rdev, mddev)
4015                         if (rdev->raid_disk >= 0) {
4016                                 rdev->new_raid_disk = rdev->raid_disk * 2;
4017                                 rdev->sectors = size;
4018                         }
4019                 conf->barrier = 1;
4020         }
4021
4022         return conf;
4023 }
4024
4025 static void *raid10_takeover(struct mddev *mddev)
4026 {
4027         struct r0conf *raid0_conf;
4028
4029         /* raid10 can take over:
4030          *  raid0 - providing it has only two drives
4031          */
4032         if (mddev->level == 0) {
4033                 /* for raid0 takeover only one zone is supported */
4034                 raid0_conf = mddev->private;
4035                 if (raid0_conf->nr_strip_zones > 1) {
4036                         pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4037                                 mdname(mddev));
4038                         return ERR_PTR(-EINVAL);
4039                 }
4040                 return raid10_takeover_raid0(mddev,
4041                         raid0_conf->strip_zone->zone_end,
4042                         raid0_conf->strip_zone->nb_dev);
4043         }
4044         return ERR_PTR(-EINVAL);
4045 }
4046
4047 static int raid10_check_reshape(struct mddev *mddev)
4048 {
4049         /* Called when there is a request to change
4050          * - layout (to ->new_layout)
4051          * - chunk size (to ->new_chunk_sectors)
4052          * - raid_disks (by delta_disks)
4053          * or when trying to restart a reshape that was ongoing.
4054          *
4055          * We need to validate the request and possibly allocate
4056          * space if that might be an issue later.
4057          *
4058          * Currently we reject any reshape of a 'far' mode array,
4059          * allow chunk size to change if new is generally acceptable,
4060          * allow raid_disks to increase, and allow
4061          * a switch between 'near' mode and 'offset' mode.
4062          */
4063         struct r10conf *conf = mddev->private;
4064         struct geom geo;
4065
4066         if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4067                 return -EINVAL;
4068
4069         if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4070                 /* mustn't change number of copies */
4071                 return -EINVAL;
4072         if (geo.far_copies > 1 && !geo.far_offset)
4073                 /* Cannot switch to 'far' mode */
4074                 return -EINVAL;
4075
4076         if (mddev->array_sectors & geo.chunk_mask)
4077                         /* not factor of array size */
4078                         return -EINVAL;
4079
4080         if (!enough(conf, -1))
4081                 return -EINVAL;
4082
4083         kfree(conf->mirrors_new);
4084         conf->mirrors_new = NULL;
4085         if (mddev->delta_disks > 0) {
4086                 /* allocate new 'mirrors' list */
4087                 conf->mirrors_new = kzalloc(
4088                         sizeof(struct raid10_info)
4089                         *(mddev->raid_disks +
4090                           mddev->delta_disks),
4091                         GFP_KERNEL);
4092                 if (!conf->mirrors_new)
4093                         return -ENOMEM;
4094         }
4095         return 0;
4096 }
4097
4098 /*
4099  * Need to check if array has failed when deciding whether to:
4100  *  - start an array
4101  *  - remove non-faulty devices
4102  *  - add a spare
4103  *  - allow a reshape
4104  * This determination is simple when no reshape is happening.
4105  * However if there is a reshape, we need to carefully check
4106  * both the before and after sections.
4107  * This is because some failed devices may only affect one
4108  * of the two sections, and some non-in_sync devices may
4109  * be insync in the section most affected by failed devices.
4110  */
4111 static int calc_degraded(struct r10conf *conf)
4112 {
4113         int degraded, degraded2;
4114         int i;
4115
4116         rcu_read_lock();
4117         degraded = 0;
4118         /* 'prev' section first */
4119         for (i = 0; i < conf->prev.raid_disks; i++) {
4120                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4121                 if (!rdev || test_bit(Faulty, &rdev->flags))
4122                         degraded++;
4123                 else if (!test_bit(In_sync, &rdev->flags))
4124                         /* When we can reduce the number of devices in
4125                          * an array, this might not contribute to
4126                          * 'degraded'.  It does now.
4127                          */
4128                         degraded++;
4129         }
4130         rcu_read_unlock();
4131         if (conf->geo.raid_disks == conf->prev.raid_disks)
4132                 return degraded;
4133         rcu_read_lock();
4134         degraded2 = 0;
4135         for (i = 0; i < conf->geo.raid_disks; i++) {
4136                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4137                 if (!rdev || test_bit(Faulty, &rdev->flags))
4138                         degraded2++;
4139                 else if (!test_bit(In_sync, &rdev->flags)) {
4140                         /* If reshape is increasing the number of devices,
4141                          * this section has already been recovered, so
4142                          * it doesn't contribute to degraded.
4143                          * else it does.
4144                          */
4145                         if (conf->geo.raid_disks <= conf->prev.raid_disks)
4146                                 degraded2++;
4147                 }
4148         }
4149         rcu_read_unlock();
4150         if (degraded2 > degraded)
4151                 return degraded2;
4152         return degraded;
4153 }
4154
4155 static int raid10_start_reshape(struct mddev *mddev)
4156 {
4157         /* A 'reshape' has been requested. This commits
4158          * the various 'new' fields and sets MD_RECOVER_RESHAPE
4159          * This also checks if there are enough spares and adds them
4160          * to the array.
4161          * We currently require enough spares to make the final
4162          * array non-degraded.  We also require that the difference
4163          * between old and new data_offset - on each device - is
4164          * enough that we never risk over-writing.
4165          */
4166
4167         unsigned long before_length, after_length;
4168         sector_t min_offset_diff = 0;
4169         int first = 1;
4170         struct geom new;
4171         struct r10conf *conf = mddev->private;
4172         struct md_rdev *rdev;
4173         int spares = 0;
4174         int ret;
4175
4176         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4177                 return -EBUSY;
4178
4179         if (setup_geo(&new, mddev, geo_start) != conf->copies)
4180                 return -EINVAL;
4181
4182         before_length = ((1 << conf->prev.chunk_shift) *
4183                          conf->prev.far_copies);
4184         after_length = ((1 << conf->geo.chunk_shift) *
4185                         conf->geo.far_copies);
4186
4187         rdev_for_each(rdev, mddev) {
4188                 if (!test_bit(In_sync, &rdev->flags)
4189                     && !test_bit(Faulty, &rdev->flags))
4190                         spares++;
4191                 if (rdev->raid_disk >= 0) {
4192                         long long diff = (rdev->new_data_offset
4193                                           - rdev->data_offset);
4194                         if (!mddev->reshape_backwards)
4195                                 diff = -diff;
4196                         if (diff < 0)
4197                                 diff = 0;
4198                         if (first || diff < min_offset_diff)
4199                                 min_offset_diff = diff;
4200                 }
4201         }
4202
4203         if (max(before_length, after_length) > min_offset_diff)
4204                 return -EINVAL;
4205
4206         if (spares < mddev->delta_disks)
4207                 return -EINVAL;
4208
4209         conf->offset_diff = min_offset_diff;
4210         spin_lock_irq(&conf->device_lock);
4211         if (conf->mirrors_new) {
4212                 memcpy(conf->mirrors_new, conf->mirrors,
4213                        sizeof(struct raid10_info)*conf->prev.raid_disks);
4214                 smp_mb();
4215                 kfree(conf->mirrors_old);
4216                 conf->mirrors_old = conf->mirrors;
4217                 conf->mirrors = conf->mirrors_new;
4218                 conf->mirrors_new = NULL;
4219         }
4220         setup_geo(&conf->geo, mddev, geo_start);
4221         smp_mb();
4222         if (mddev->reshape_backwards) {
4223                 sector_t size = raid10_size(mddev, 0, 0);
4224                 if (size < mddev->array_sectors) {
4225                         spin_unlock_irq(&conf->device_lock);
4226                         pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4227                                 mdname(mddev));
4228                         return -EINVAL;
4229                 }
4230                 mddev->resync_max_sectors = size;
4231                 conf->reshape_progress = size;
4232         } else
4233                 conf->reshape_progress = 0;
4234         conf->reshape_safe = conf->reshape_progress;
4235         spin_unlock_irq(&conf->device_lock);
4236
4237         if (mddev->delta_disks && mddev->bitmap) {
4238                 ret = bitmap_resize(mddev->bitmap,
4239                                     raid10_size(mddev, 0,
4240                                                 conf->geo.raid_disks),
4241                                     0, 0);
4242                 if (ret)
4243                         goto abort;
4244         }
4245         if (mddev->delta_disks > 0) {
4246                 rdev_for_each(rdev, mddev)
4247                         if (rdev->raid_disk < 0 &&
4248                             !test_bit(Faulty, &rdev->flags)) {
4249                                 if (raid10_add_disk(mddev, rdev) == 0) {
4250                                         if (rdev->raid_disk >=
4251                                             conf->prev.raid_disks)
4252                                                 set_bit(In_sync, &rdev->flags);
4253                                         else
4254                                                 rdev->recovery_offset = 0;
4255
4256                                         if (sysfs_link_rdev(mddev, rdev))
4257                                                 /* Failure here  is OK */;
4258                                 }
4259                         } else if (rdev->raid_disk >= conf->prev.raid_disks
4260                                    && !test_bit(Faulty, &rdev->flags)) {
4261                                 /* This is a spare that was manually added */
4262                                 set_bit(In_sync, &rdev->flags);
4263                         }
4264         }
4265         /* When a reshape changes the number of devices,
4266          * ->degraded is measured against the larger of the
4267          * pre and  post numbers.
4268          */
4269         spin_lock_irq(&conf->device_lock);
4270         mddev->degraded = calc_degraded(conf);
4271         spin_unlock_irq(&conf->device_lock);
4272         mddev->raid_disks = conf->geo.raid_disks;
4273         mddev->reshape_position = conf->reshape_progress;
4274         set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4275
4276         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4277         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4278         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4279         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4280         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4281
4282         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4283                                                 "reshape");
4284         if (!mddev->sync_thread) {
4285                 ret = -EAGAIN;
4286                 goto abort;
4287         }
4288         conf->reshape_checkpoint = jiffies;
4289         md_wakeup_thread(mddev->sync_thread);
4290         md_new_event(mddev);
4291         return 0;
4292
4293 abort:
4294         mddev->recovery = 0;
4295         spin_lock_irq(&conf->device_lock);
4296         conf->geo = conf->prev;
4297         mddev->raid_disks = conf->geo.raid_disks;
4298         rdev_for_each(rdev, mddev)
4299                 rdev->new_data_offset = rdev->data_offset;
4300         smp_wmb();
4301         conf->reshape_progress = MaxSector;
4302         conf->reshape_safe = MaxSector;
4303         mddev->reshape_position = MaxSector;
4304         spin_unlock_irq(&conf->device_lock);
4305         return ret;
4306 }
4307
4308 /* Calculate the last device-address that could contain
4309  * any block from the chunk that includes the array-address 's'
4310  * and report the next address.
4311  * i.e. the address returned will be chunk-aligned and after
4312  * any data that is in the chunk containing 's'.
4313  */
4314 static sector_t last_dev_address(sector_t s, struct geom *geo)
4315 {
4316         s = (s | geo->chunk_mask) + 1;
4317         s >>= geo->chunk_shift;
4318         s *= geo->near_copies;
4319         s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4320         s *= geo->far_copies;
4321         s <<= geo->chunk_shift;
4322         return s;
4323 }
4324
4325 /* Calculate the first device-address that could contain
4326  * any block from the chunk that includes the array-address 's'.
4327  * This too will be the start of a chunk
4328  */
4329 static sector_t first_dev_address(sector_t s, struct geom *geo)
4330 {
4331         s >>= geo->chunk_shift;
4332         s *= geo->near_copies;
4333         sector_div(s, geo->raid_disks);
4334         s *= geo->far_copies;
4335         s <<= geo->chunk_shift;
4336         return s;
4337 }
4338
4339 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4340                                 int *skipped)
4341 {
4342         /* We simply copy at most one chunk (smallest of old and new)
4343          * at a time, possibly less if that exceeds RESYNC_PAGES,
4344          * or we hit a bad block or something.
4345          * This might mean we pause for normal IO in the middle of
4346          * a chunk, but that is not a problem as mddev->reshape_position
4347          * can record any location.
4348          *
4349          * If we will want to write to a location that isn't
4350          * yet recorded as 'safe' (i.e. in metadata on disk) then
4351          * we need to flush all reshape requests and update the metadata.
4352          *
4353          * When reshaping forwards (e.g. to more devices), we interpret
4354          * 'safe' as the earliest block which might not have been copied
4355          * down yet.  We divide this by previous stripe size and multiply
4356          * by previous stripe length to get lowest device offset that we
4357          * cannot write to yet.
4358          * We interpret 'sector_nr' as an address that we want to write to.
4359          * From this we use last_device_address() to find where we might
4360          * write to, and first_device_address on the  'safe' position.
4361          * If this 'next' write position is after the 'safe' position,
4362          * we must update the metadata to increase the 'safe' position.
4363          *
4364          * When reshaping backwards, we round in the opposite direction
4365          * and perform the reverse test:  next write position must not be
4366          * less than current safe position.
4367          *
4368          * In all this the minimum difference in data offsets
4369          * (conf->offset_diff - always positive) allows a bit of slack,
4370          * so next can be after 'safe', but not by more than offset_diff
4371          *
4372          * We need to prepare all the bios here before we start any IO
4373          * to ensure the size we choose is acceptable to all devices.
4374          * The means one for each copy for write-out and an extra one for
4375          * read-in.
4376          * We store the read-in bio in ->master_bio and the others in
4377          * ->devs[x].bio and ->devs[x].repl_bio.
4378          */
4379         struct r10conf *conf = mddev->private;
4380         struct r10bio *r10_bio;
4381         sector_t next, safe, last;
4382         int max_sectors;
4383         int nr_sectors;
4384         int s;
4385         struct md_rdev *rdev;
4386         int need_flush = 0;
4387         struct bio *blist;
4388         struct bio *bio, *read_bio;
4389         int sectors_done = 0;
4390
4391         if (sector_nr == 0) {
4392                 /* If restarting in the middle, skip the initial sectors */
4393                 if (mddev->reshape_backwards &&
4394                     conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4395                         sector_nr = (raid10_size(mddev, 0, 0)
4396                                      - conf->reshape_progress);
4397                 } else if (!mddev->reshape_backwards &&
4398                            conf->reshape_progress > 0)
4399                         sector_nr = conf->reshape_progress;
4400                 if (sector_nr) {
4401                         mddev->curr_resync_completed = sector_nr;
4402                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4403                         *skipped = 1;
4404                         return sector_nr;
4405                 }
4406         }
4407
4408         /* We don't use sector_nr to track where we are up to
4409          * as that doesn't work well for ->reshape_backwards.
4410          * So just use ->reshape_progress.
4411          */
4412         if (mddev->reshape_backwards) {
4413                 /* 'next' is the earliest device address that we might
4414                  * write to for this chunk in the new layout
4415                  */
4416                 next = first_dev_address(conf->reshape_progress - 1,
4417                                          &conf->geo);
4418
4419                 /* 'safe' is the last device address that we might read from
4420                  * in the old layout after a restart
4421                  */
4422                 safe = last_dev_address(conf->reshape_safe - 1,
4423                                         &conf->prev);
4424
4425                 if (next + conf->offset_diff < safe)
4426                         need_flush = 1;
4427
4428                 last = conf->reshape_progress - 1;
4429                 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4430                                                & conf->prev.chunk_mask);
4431                 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4432                         sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4433         } else {
4434                 /* 'next' is after the last device address that we
4435                  * might write to for this chunk in the new layout
4436                  */
4437                 next = last_dev_address(conf->reshape_progress, &conf->geo);
4438
4439                 /* 'safe' is the earliest device address that we might
4440                  * read from in the old layout after a restart
4441                  */
4442                 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4443
4444                 /* Need to update metadata if 'next' might be beyond 'safe'
4445                  * as that would possibly corrupt data
4446                  */
4447                 if (next > safe + conf->offset_diff)
4448                         need_flush = 1;
4449
4450                 sector_nr = conf->reshape_progress;
4451                 last  = sector_nr | (conf->geo.chunk_mask
4452                                      & conf->prev.chunk_mask);
4453
4454                 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4455                         last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4456         }
4457
4458         if (need_flush ||
4459             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4460                 /* Need to update reshape_position in metadata */
4461                 wait_barrier(conf);
4462                 mddev->reshape_position = conf->reshape_progress;
4463                 if (mddev->reshape_backwards)
4464                         mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4465                                 - conf->reshape_progress;
4466                 else
4467                         mddev->curr_resync_completed = conf->reshape_progress;
4468                 conf->reshape_checkpoint = jiffies;
4469                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4470                 md_wakeup_thread(mddev->thread);
4471                 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4472                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4473                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4474                         allow_barrier(conf);
4475                         return sectors_done;
4476                 }
4477                 conf->reshape_safe = mddev->reshape_position;
4478                 allow_barrier(conf);
4479         }
4480
4481 read_more:
4482         /* Now schedule reads for blocks from sector_nr to last */
4483         r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4484         r10_bio->state = 0;
4485         raise_barrier(conf, sectors_done != 0);
4486         atomic_set(&r10_bio->remaining, 0);
4487         r10_bio->mddev = mddev;
4488         r10_bio->sector = sector_nr;
4489         set_bit(R10BIO_IsReshape, &r10_bio->state);
4490         r10_bio->sectors = last - sector_nr + 1;
4491         rdev = read_balance(conf, r10_bio, &max_sectors);
4492         BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4493
4494         if (!rdev) {
4495                 /* Cannot read from here, so need to record bad blocks
4496                  * on all the target devices.
4497                  */
4498                 // FIXME
4499                 mempool_free(r10_bio, conf->r10buf_pool);
4500                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4501                 return sectors_done;
4502         }
4503
4504         read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4505
4506         read_bio->bi_bdev = rdev->bdev;
4507         read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4508                                + rdev->data_offset);
4509         read_bio->bi_private = r10_bio;
4510         read_bio->bi_end_io = end_sync_read;
4511         bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4512         read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4513         read_bio->bi_error = 0;
4514         read_bio->bi_vcnt = 0;
4515         read_bio->bi_iter.bi_size = 0;
4516         r10_bio->master_bio = read_bio;
4517         r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4518
4519         /* Now find the locations in the new layout */
4520         __raid10_find_phys(&conf->geo, r10_bio);
4521
4522         blist = read_bio;
4523         read_bio->bi_next = NULL;
4524
4525         rcu_read_lock();
4526         for (s = 0; s < conf->copies*2; s++) {
4527                 struct bio *b;
4528                 int d = r10_bio->devs[s/2].devnum;
4529                 struct md_rdev *rdev2;
4530                 if (s&1) {
4531                         rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4532                         b = r10_bio->devs[s/2].repl_bio;
4533                 } else {
4534                         rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4535                         b = r10_bio->devs[s/2].bio;
4536                 }
4537                 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4538                         continue;
4539
4540                 bio_reset(b);
4541                 b->bi_bdev = rdev2->bdev;
4542                 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4543                         rdev2->new_data_offset;
4544                 b->bi_private = r10_bio;
4545                 b->bi_end_io = end_reshape_write;
4546                 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4547                 b->bi_next = blist;
4548                 blist = b;
4549         }
4550
4551         /* Now add as many pages as possible to all of these bios. */
4552
4553         nr_sectors = 0;
4554         for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4555                 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4556                 int len = (max_sectors - s) << 9;
4557                 if (len > PAGE_SIZE)
4558                         len = PAGE_SIZE;
4559                 for (bio = blist; bio ; bio = bio->bi_next) {
4560                         struct bio *bio2;
4561                         if (bio_add_page(bio, page, len, 0))
4562                                 continue;
4563
4564                         /* Didn't fit, must stop */
4565                         for (bio2 = blist;
4566                              bio2 && bio2 != bio;
4567                              bio2 = bio2->bi_next) {
4568                                 /* Remove last page from this bio */
4569                                 bio2->bi_vcnt--;
4570                                 bio2->bi_iter.bi_size -= len;
4571                                 bio_clear_flag(bio2, BIO_SEG_VALID);
4572                         }
4573                         goto bio_full;
4574                 }
4575                 sector_nr += len >> 9;
4576                 nr_sectors += len >> 9;
4577         }
4578 bio_full:
4579         rcu_read_unlock();
4580         r10_bio->sectors = nr_sectors;
4581
4582         /* Now submit the read */
4583         md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4584         atomic_inc(&r10_bio->remaining);
4585         read_bio->bi_next = NULL;
4586         generic_make_request(read_bio);
4587         sector_nr += nr_sectors;
4588         sectors_done += nr_sectors;
4589         if (sector_nr <= last)
4590                 goto read_more;
4591
4592         /* Now that we have done the whole section we can
4593          * update reshape_progress
4594          */
4595         if (mddev->reshape_backwards)
4596                 conf->reshape_progress -= sectors_done;
4597         else
4598                 conf->reshape_progress += sectors_done;
4599
4600         return sectors_done;
4601 }
4602
4603 static void end_reshape_request(struct r10bio *r10_bio);
4604 static int handle_reshape_read_error(struct mddev *mddev,
4605                                      struct r10bio *r10_bio);
4606 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4607 {
4608         /* Reshape read completed.  Hopefully we have a block
4609          * to write out.
4610          * If we got a read error then we do sync 1-page reads from
4611          * elsewhere until we find the data - or give up.
4612          */
4613         struct r10conf *conf = mddev->private;
4614         int s;
4615
4616         if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4617                 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4618                         /* Reshape has been aborted */
4619                         md_done_sync(mddev, r10_bio->sectors, 0);
4620                         return;
4621                 }
4622
4623         /* We definitely have the data in the pages, schedule the
4624          * writes.
4625          */
4626         atomic_set(&r10_bio->remaining, 1);
4627         for (s = 0; s < conf->copies*2; s++) {
4628                 struct bio *b;
4629                 int d = r10_bio->devs[s/2].devnum;
4630                 struct md_rdev *rdev;
4631                 rcu_read_lock();
4632                 if (s&1) {
4633                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4634                         b = r10_bio->devs[s/2].repl_bio;
4635                 } else {
4636                         rdev = rcu_dereference(conf->mirrors[d].rdev);
4637                         b = r10_bio->devs[s/2].bio;
4638                 }
4639                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4640                         rcu_read_unlock();
4641                         continue;
4642                 }
4643                 atomic_inc(&rdev->nr_pending);
4644                 rcu_read_unlock();
4645                 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4646                 atomic_inc(&r10_bio->remaining);
4647                 b->bi_next = NULL;
4648                 generic_make_request(b);
4649         }
4650         end_reshape_request(r10_bio);
4651 }
4652
4653 static void end_reshape(struct r10conf *conf)
4654 {
4655         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4656                 return;
4657
4658         spin_lock_irq(&conf->device_lock);
4659         conf->prev = conf->geo;
4660         md_finish_reshape(conf->mddev);
4661         smp_wmb();
4662         conf->reshape_progress = MaxSector;
4663         conf->reshape_safe = MaxSector;
4664         spin_unlock_irq(&conf->device_lock);
4665
4666         /* read-ahead size must cover two whole stripes, which is
4667          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4668          */
4669         if (conf->mddev->queue) {
4670                 int stripe = conf->geo.raid_disks *
4671                         ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4672                 stripe /= conf->geo.near_copies;
4673                 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4674                         conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4675         }
4676         conf->fullsync = 0;
4677 }
4678
4679 static int handle_reshape_read_error(struct mddev *mddev,
4680                                      struct r10bio *r10_bio)
4681 {
4682         /* Use sync reads to get the blocks from somewhere else */
4683         int sectors = r10_bio->sectors;
4684         struct r10conf *conf = mddev->private;
4685         struct {
4686                 struct r10bio r10_bio;
4687                 struct r10dev devs[conf->copies];
4688         } on_stack;
4689         struct r10bio *r10b = &on_stack.r10_bio;
4690         int slot = 0;
4691         int idx = 0;
4692         struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4693
4694         r10b->sector = r10_bio->sector;
4695         __raid10_find_phys(&conf->prev, r10b);
4696
4697         while (sectors) {
4698                 int s = sectors;
4699                 int success = 0;
4700                 int first_slot = slot;
4701
4702                 if (s > (PAGE_SIZE >> 9))
4703                         s = PAGE_SIZE >> 9;
4704
4705                 rcu_read_lock();
4706                 while (!success) {
4707                         int d = r10b->devs[slot].devnum;
4708                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4709                         sector_t addr;
4710                         if (rdev == NULL ||
4711                             test_bit(Faulty, &rdev->flags) ||
4712                             !test_bit(In_sync, &rdev->flags))
4713                                 goto failed;
4714
4715                         addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4716                         atomic_inc(&rdev->nr_pending);
4717                         rcu_read_unlock();
4718                         success = sync_page_io(rdev,
4719                                                addr,
4720                                                s << 9,
4721                                                bvec[idx].bv_page,
4722                                                REQ_OP_READ, 0, false);
4723                         rdev_dec_pending(rdev, mddev);
4724                         rcu_read_lock();
4725                         if (success)
4726                                 break;
4727                 failed:
4728                         slot++;
4729                         if (slot >= conf->copies)
4730                                 slot = 0;
4731                         if (slot == first_slot)
4732                                 break;
4733                 }
4734                 rcu_read_unlock();
4735                 if (!success) {
4736                         /* couldn't read this block, must give up */
4737                         set_bit(MD_RECOVERY_INTR,
4738                                 &mddev->recovery);
4739                         return -EIO;
4740                 }
4741                 sectors -= s;
4742                 idx++;
4743         }
4744         return 0;
4745 }
4746
4747 static void end_reshape_write(struct bio *bio)
4748 {
4749         struct r10bio *r10_bio = bio->bi_private;
4750         struct mddev *mddev = r10_bio->mddev;
4751         struct r10conf *conf = mddev->private;
4752         int d;
4753         int slot;
4754         int repl;
4755         struct md_rdev *rdev = NULL;
4756
4757         d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4758         if (repl)
4759                 rdev = conf->mirrors[d].replacement;
4760         if (!rdev) {
4761                 smp_mb();
4762                 rdev = conf->mirrors[d].rdev;
4763         }
4764
4765         if (bio->bi_error) {
4766                 /* FIXME should record badblock */
4767                 md_error(mddev, rdev);
4768         }
4769
4770         rdev_dec_pending(rdev, mddev);
4771         end_reshape_request(r10_bio);
4772 }
4773
4774 static void end_reshape_request(struct r10bio *r10_bio)
4775 {
4776         if (!atomic_dec_and_test(&r10_bio->remaining))
4777                 return;
4778         md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4779         bio_put(r10_bio->master_bio);
4780         put_buf(r10_bio);
4781 }
4782
4783 static void raid10_finish_reshape(struct mddev *mddev)
4784 {
4785         struct r10conf *conf = mddev->private;
4786
4787         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4788                 return;
4789
4790         if (mddev->delta_disks > 0) {
4791                 sector_t size = raid10_size(mddev, 0, 0);
4792                 md_set_array_sectors(mddev, size);
4793                 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4794                         mddev->recovery_cp = mddev->resync_max_sectors;
4795                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4796                 }
4797                 mddev->resync_max_sectors = size;
4798                 if (mddev->queue) {
4799                         set_capacity(mddev->gendisk, mddev->array_sectors);
4800                         revalidate_disk(mddev->gendisk);
4801                 }
4802         } else {
4803                 int d;
4804                 rcu_read_lock();
4805                 for (d = conf->geo.raid_disks ;
4806                      d < conf->geo.raid_disks - mddev->delta_disks;
4807                      d++) {
4808                         struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4809                         if (rdev)
4810                                 clear_bit(In_sync, &rdev->flags);
4811                         rdev = rcu_dereference(conf->mirrors[d].replacement);
4812                         if (rdev)
4813                                 clear_bit(In_sync, &rdev->flags);
4814                 }
4815                 rcu_read_unlock();
4816         }
4817         mddev->layout = mddev->new_layout;
4818         mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4819         mddev->reshape_position = MaxSector;
4820         mddev->delta_disks = 0;
4821         mddev->reshape_backwards = 0;
4822 }
4823
4824 static struct md_personality raid10_personality =
4825 {
4826         .name           = "raid10",
4827         .level          = 10,
4828         .owner          = THIS_MODULE,
4829         .make_request   = raid10_make_request,
4830         .run            = raid10_run,
4831         .free           = raid10_free,
4832         .status         = raid10_status,
4833         .error_handler  = raid10_error,
4834         .hot_add_disk   = raid10_add_disk,
4835         .hot_remove_disk= raid10_remove_disk,
4836         .spare_active   = raid10_spare_active,
4837         .sync_request   = raid10_sync_request,
4838         .quiesce        = raid10_quiesce,
4839         .size           = raid10_size,
4840         .resize         = raid10_resize,
4841         .takeover       = raid10_takeover,
4842         .check_reshape  = raid10_check_reshape,
4843         .start_reshape  = raid10_start_reshape,
4844         .finish_reshape = raid10_finish_reshape,
4845         .congested      = raid10_congested,
4846 };
4847
4848 static int __init raid_init(void)
4849 {
4850         return register_md_personality(&raid10_personality);
4851 }
4852
4853 static void raid_exit(void)
4854 {
4855         unregister_md_personality(&raid10_personality);
4856 }
4857
4858 module_init(raid_init);
4859 module_exit(raid_exit);
4860 MODULE_LICENSE("GPL");
4861 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4862 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4863 MODULE_ALIAS("md-raid10");
4864 MODULE_ALIAS("md-level-10");
4865
4866 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);