Merge branch 'nvme-5.0' of git://git.infradead.org/nvme into for-linus
[sfrench/cifs-2.6.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40
41 #include <trace/events/block.h>
42
43 #include "md.h"
44 #include "raid1.h"
45 #include "md-bitmap.h"
46
47 #define UNSUPPORTED_MDDEV_FLAGS         \
48         ((1L << MD_HAS_JOURNAL) |       \
49          (1L << MD_JOURNAL_CLEAN) |     \
50          (1L << MD_HAS_PPL) |           \
51          (1L << MD_HAS_MULTIPLE_PPLS))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 #include "raid1-10.c"
85
86 /*
87  * for resync bio, r1bio pointer can be retrieved from the per-bio
88  * 'struct resync_pages'.
89  */
90 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
91 {
92         return get_resync_pages(bio)->raid_bio;
93 }
94
95 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
99
100         /* allocate a r1bio with room for raid_disks entries in the bios array */
101         return kzalloc(size, gfp_flags);
102 }
103
104 static void r1bio_pool_free(void *r1_bio, void *data)
105 {
106         kfree(r1_bio);
107 }
108
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
115
116 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
117 {
118         struct pool_info *pi = data;
119         struct r1bio *r1_bio;
120         struct bio *bio;
121         int need_pages;
122         int j;
123         struct resync_pages *rps;
124
125         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
126         if (!r1_bio)
127                 return NULL;
128
129         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
130                             gfp_flags);
131         if (!rps)
132                 goto out_free_r1bio;
133
134         /*
135          * Allocate bios : 1 for reading, n-1 for writing
136          */
137         for (j = pi->raid_disks ; j-- ; ) {
138                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
139                 if (!bio)
140                         goto out_free_bio;
141                 r1_bio->bios[j] = bio;
142         }
143         /*
144          * Allocate RESYNC_PAGES data pages and attach them to
145          * the first bio.
146          * If this is a user-requested check/repair, allocate
147          * RESYNC_PAGES for each bio.
148          */
149         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
150                 need_pages = pi->raid_disks;
151         else
152                 need_pages = 1;
153         for (j = 0; j < pi->raid_disks; j++) {
154                 struct resync_pages *rp = &rps[j];
155
156                 bio = r1_bio->bios[j];
157
158                 if (j < need_pages) {
159                         if (resync_alloc_pages(rp, gfp_flags))
160                                 goto out_free_pages;
161                 } else {
162                         memcpy(rp, &rps[0], sizeof(*rp));
163                         resync_get_all_pages(rp);
164                 }
165
166                 rp->raid_bio = r1_bio;
167                 bio->bi_private = rp;
168         }
169
170         r1_bio->master_bio = NULL;
171
172         return r1_bio;
173
174 out_free_pages:
175         while (--j >= 0)
176                 resync_free_pages(&rps[j]);
177
178 out_free_bio:
179         while (++j < pi->raid_disks)
180                 bio_put(r1_bio->bios[j]);
181         kfree(rps);
182
183 out_free_r1bio:
184         r1bio_pool_free(r1_bio, data);
185         return NULL;
186 }
187
188 static void r1buf_pool_free(void *__r1_bio, void *data)
189 {
190         struct pool_info *pi = data;
191         int i;
192         struct r1bio *r1bio = __r1_bio;
193         struct resync_pages *rp = NULL;
194
195         for (i = pi->raid_disks; i--; ) {
196                 rp = get_resync_pages(r1bio->bios[i]);
197                 resync_free_pages(rp);
198                 bio_put(r1bio->bios[i]);
199         }
200
201         /* resync pages array stored in the 1st bio's .bi_private */
202         kfree(rp);
203
204         r1bio_pool_free(r1bio, data);
205 }
206
207 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
208 {
209         int i;
210
211         for (i = 0; i < conf->raid_disks * 2; i++) {
212                 struct bio **bio = r1_bio->bios + i;
213                 if (!BIO_SPECIAL(*bio))
214                         bio_put(*bio);
215                 *bio = NULL;
216         }
217 }
218
219 static void free_r1bio(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222
223         put_all_bios(conf, r1_bio);
224         mempool_free(r1_bio, &conf->r1bio_pool);
225 }
226
227 static void put_buf(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230         sector_t sect = r1_bio->sector;
231         int i;
232
233         for (i = 0; i < conf->raid_disks * 2; i++) {
234                 struct bio *bio = r1_bio->bios[i];
235                 if (bio->bi_end_io)
236                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
237         }
238
239         mempool_free(r1_bio, &conf->r1buf_pool);
240
241         lower_barrier(conf, sect);
242 }
243
244 static void reschedule_retry(struct r1bio *r1_bio)
245 {
246         unsigned long flags;
247         struct mddev *mddev = r1_bio->mddev;
248         struct r1conf *conf = mddev->private;
249         int idx;
250
251         idx = sector_to_idx(r1_bio->sector);
252         spin_lock_irqsave(&conf->device_lock, flags);
253         list_add(&r1_bio->retry_list, &conf->retry_list);
254         atomic_inc(&conf->nr_queued[idx]);
255         spin_unlock_irqrestore(&conf->device_lock, flags);
256
257         wake_up(&conf->wait_barrier);
258         md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262  * raid_end_bio_io() is called when we have finished servicing a mirrored
263  * operation and are ready to return a success/failure code to the buffer
264  * cache layer.
265  */
266 static void call_bio_endio(struct r1bio *r1_bio)
267 {
268         struct bio *bio = r1_bio->master_bio;
269         struct r1conf *conf = r1_bio->mddev->private;
270
271         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
272                 bio->bi_status = BLK_STS_IOERR;
273
274         bio_endio(bio);
275         /*
276          * Wake up any possible resync thread that waits for the device
277          * to go idle.
278          */
279         allow_barrier(conf, r1_bio->sector);
280 }
281
282 static void raid_end_bio_io(struct r1bio *r1_bio)
283 {
284         struct bio *bio = r1_bio->master_bio;
285
286         /* if nobody has done the final endio yet, do it now */
287         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
288                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
290                          (unsigned long long) bio->bi_iter.bi_sector,
291                          (unsigned long long) bio_end_sector(bio) - 1);
292
293                 call_bio_endio(r1_bio);
294         }
295         free_r1bio(r1_bio);
296 }
297
298 /*
299  * Update disk head position estimator based on IRQ completion info.
300  */
301 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
302 {
303         struct r1conf *conf = r1_bio->mddev->private;
304
305         conf->mirrors[disk].head_position =
306                 r1_bio->sector + (r1_bio->sectors);
307 }
308
309 /*
310  * Find the disk number which triggered given bio
311  */
312 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
313 {
314         int mirror;
315         struct r1conf *conf = r1_bio->mddev->private;
316         int raid_disks = conf->raid_disks;
317
318         for (mirror = 0; mirror < raid_disks * 2; mirror++)
319                 if (r1_bio->bios[mirror] == bio)
320                         break;
321
322         BUG_ON(mirror == raid_disks * 2);
323         update_head_pos(mirror, r1_bio);
324
325         return mirror;
326 }
327
328 static void raid1_end_read_request(struct bio *bio)
329 {
330         int uptodate = !bio->bi_status;
331         struct r1bio *r1_bio = bio->bi_private;
332         struct r1conf *conf = r1_bio->mddev->private;
333         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
334
335         /*
336          * this branch is our 'one mirror IO has finished' event handler:
337          */
338         update_head_pos(r1_bio->read_disk, r1_bio);
339
340         if (uptodate)
341                 set_bit(R1BIO_Uptodate, &r1_bio->state);
342         else if (test_bit(FailFast, &rdev->flags) &&
343                  test_bit(R1BIO_FailFast, &r1_bio->state))
344                 /* This was a fail-fast read so we definitely
345                  * want to retry */
346                 ;
347         else {
348                 /* If all other devices have failed, we want to return
349                  * the error upwards rather than fail the last device.
350                  * Here we redefine "uptodate" to mean "Don't want to retry"
351                  */
352                 unsigned long flags;
353                 spin_lock_irqsave(&conf->device_lock, flags);
354                 if (r1_bio->mddev->degraded == conf->raid_disks ||
355                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
356                      test_bit(In_sync, &rdev->flags)))
357                         uptodate = 1;
358                 spin_unlock_irqrestore(&conf->device_lock, flags);
359         }
360
361         if (uptodate) {
362                 raid_end_bio_io(r1_bio);
363                 rdev_dec_pending(rdev, conf->mddev);
364         } else {
365                 /*
366                  * oops, read error:
367                  */
368                 char b[BDEVNAME_SIZE];
369                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
370                                    mdname(conf->mddev),
371                                    bdevname(rdev->bdev, b),
372                                    (unsigned long long)r1_bio->sector);
373                 set_bit(R1BIO_ReadError, &r1_bio->state);
374                 reschedule_retry(r1_bio);
375                 /* don't drop the reference on read_disk yet */
376         }
377 }
378
379 static void close_write(struct r1bio *r1_bio)
380 {
381         /* it really is the end of this request */
382         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                 bio_free_pages(r1_bio->behind_master_bio);
384                 bio_put(r1_bio->behind_master_bio);
385                 r1_bio->behind_master_bio = NULL;
386         }
387         /* clear the bitmap if all writes complete successfully */
388         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
389                            r1_bio->sectors,
390                            !test_bit(R1BIO_Degraded, &r1_bio->state),
391                            test_bit(R1BIO_BehindIO, &r1_bio->state));
392         md_write_end(r1_bio->mddev);
393 }
394
395 static void r1_bio_write_done(struct r1bio *r1_bio)
396 {
397         if (!atomic_dec_and_test(&r1_bio->remaining))
398                 return;
399
400         if (test_bit(R1BIO_WriteError, &r1_bio->state))
401                 reschedule_retry(r1_bio);
402         else {
403                 close_write(r1_bio);
404                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
405                         reschedule_retry(r1_bio);
406                 else
407                         raid_end_bio_io(r1_bio);
408         }
409 }
410
411 static void raid1_end_write_request(struct bio *bio)
412 {
413         struct r1bio *r1_bio = bio->bi_private;
414         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
415         struct r1conf *conf = r1_bio->mddev->private;
416         struct bio *to_put = NULL;
417         int mirror = find_bio_disk(r1_bio, bio);
418         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
419         bool discard_error;
420
421         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
422
423         /*
424          * 'one mirror IO has finished' event handler:
425          */
426         if (bio->bi_status && !discard_error) {
427                 set_bit(WriteErrorSeen, &rdev->flags);
428                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
429                         set_bit(MD_RECOVERY_NEEDED, &
430                                 conf->mddev->recovery);
431
432                 if (test_bit(FailFast, &rdev->flags) &&
433                     (bio->bi_opf & MD_FAILFAST) &&
434                     /* We never try FailFast to WriteMostly devices */
435                     !test_bit(WriteMostly, &rdev->flags)) {
436                         md_error(r1_bio->mddev, rdev);
437                         if (!test_bit(Faulty, &rdev->flags))
438                                 /* This is the only remaining device,
439                                  * We need to retry the write without
440                                  * FailFast
441                                  */
442                                 set_bit(R1BIO_WriteError, &r1_bio->state);
443                         else {
444                                 /* Finished with this branch */
445                                 r1_bio->bios[mirror] = NULL;
446                                 to_put = bio;
447                         }
448                 } else
449                         set_bit(R1BIO_WriteError, &r1_bio->state);
450         } else {
451                 /*
452                  * Set R1BIO_Uptodate in our master bio, so that we
453                  * will return a good error code for to the higher
454                  * levels even if IO on some other mirrored buffer
455                  * fails.
456                  *
457                  * The 'master' represents the composite IO operation
458                  * to user-side. So if something waits for IO, then it
459                  * will wait for the 'master' bio.
460                  */
461                 sector_t first_bad;
462                 int bad_sectors;
463
464                 r1_bio->bios[mirror] = NULL;
465                 to_put = bio;
466                 /*
467                  * Do not set R1BIO_Uptodate if the current device is
468                  * rebuilding or Faulty. This is because we cannot use
469                  * such device for properly reading the data back (we could
470                  * potentially use it, if the current write would have felt
471                  * before rdev->recovery_offset, but for simplicity we don't
472                  * check this here.
473                  */
474                 if (test_bit(In_sync, &rdev->flags) &&
475                     !test_bit(Faulty, &rdev->flags))
476                         set_bit(R1BIO_Uptodate, &r1_bio->state);
477
478                 /* Maybe we can clear some bad blocks. */
479                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
480                                 &first_bad, &bad_sectors) && !discard_error) {
481                         r1_bio->bios[mirror] = IO_MADE_GOOD;
482                         set_bit(R1BIO_MadeGood, &r1_bio->state);
483                 }
484         }
485
486         if (behind) {
487                 if (test_bit(WriteMostly, &rdev->flags))
488                         atomic_dec(&r1_bio->behind_remaining);
489
490                 /*
491                  * In behind mode, we ACK the master bio once the I/O
492                  * has safely reached all non-writemostly
493                  * disks. Setting the Returned bit ensures that this
494                  * gets done only once -- we don't ever want to return
495                  * -EIO here, instead we'll wait
496                  */
497                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
498                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
499                         /* Maybe we can return now */
500                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
501                                 struct bio *mbio = r1_bio->master_bio;
502                                 pr_debug("raid1: behind end write sectors"
503                                          " %llu-%llu\n",
504                                          (unsigned long long) mbio->bi_iter.bi_sector,
505                                          (unsigned long long) bio_end_sector(mbio) - 1);
506                                 call_bio_endio(r1_bio);
507                         }
508                 }
509         }
510         if (r1_bio->bios[mirror] == NULL)
511                 rdev_dec_pending(rdev, conf->mddev);
512
513         /*
514          * Let's see if all mirrored write operations have finished
515          * already.
516          */
517         r1_bio_write_done(r1_bio);
518
519         if (to_put)
520                 bio_put(to_put);
521 }
522
523 static sector_t align_to_barrier_unit_end(sector_t start_sector,
524                                           sector_t sectors)
525 {
526         sector_t len;
527
528         WARN_ON(sectors == 0);
529         /*
530          * len is the number of sectors from start_sector to end of the
531          * barrier unit which start_sector belongs to.
532          */
533         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
534               start_sector;
535
536         if (len > sectors)
537                 len = sectors;
538
539         return len;
540 }
541
542 /*
543  * This routine returns the disk from which the requested read should
544  * be done. There is a per-array 'next expected sequential IO' sector
545  * number - if this matches on the next IO then we use the last disk.
546  * There is also a per-disk 'last know head position' sector that is
547  * maintained from IRQ contexts, both the normal and the resync IO
548  * completion handlers update this position correctly. If there is no
549  * perfect sequential match then we pick the disk whose head is closest.
550  *
551  * If there are 2 mirrors in the same 2 devices, performance degrades
552  * because position is mirror, not device based.
553  *
554  * The rdev for the device selected will have nr_pending incremented.
555  */
556 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
557 {
558         const sector_t this_sector = r1_bio->sector;
559         int sectors;
560         int best_good_sectors;
561         int best_disk, best_dist_disk, best_pending_disk;
562         int has_nonrot_disk;
563         int disk;
564         sector_t best_dist;
565         unsigned int min_pending;
566         struct md_rdev *rdev;
567         int choose_first;
568         int choose_next_idle;
569
570         rcu_read_lock();
571         /*
572          * Check if we can balance. We can balance on the whole
573          * device if no resync is going on, or below the resync window.
574          * We take the first readable disk when above the resync window.
575          */
576  retry:
577         sectors = r1_bio->sectors;
578         best_disk = -1;
579         best_dist_disk = -1;
580         best_dist = MaxSector;
581         best_pending_disk = -1;
582         min_pending = UINT_MAX;
583         best_good_sectors = 0;
584         has_nonrot_disk = 0;
585         choose_next_idle = 0;
586         clear_bit(R1BIO_FailFast, &r1_bio->state);
587
588         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
589             (mddev_is_clustered(conf->mddev) &&
590             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
591                     this_sector + sectors)))
592                 choose_first = 1;
593         else
594                 choose_first = 0;
595
596         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
597                 sector_t dist;
598                 sector_t first_bad;
599                 int bad_sectors;
600                 unsigned int pending;
601                 bool nonrot;
602
603                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
604                 if (r1_bio->bios[disk] == IO_BLOCKED
605                     || rdev == NULL
606                     || test_bit(Faulty, &rdev->flags))
607                         continue;
608                 if (!test_bit(In_sync, &rdev->flags) &&
609                     rdev->recovery_offset < this_sector + sectors)
610                         continue;
611                 if (test_bit(WriteMostly, &rdev->flags)) {
612                         /* Don't balance among write-mostly, just
613                          * use the first as a last resort */
614                         if (best_dist_disk < 0) {
615                                 if (is_badblock(rdev, this_sector, sectors,
616                                                 &first_bad, &bad_sectors)) {
617                                         if (first_bad <= this_sector)
618                                                 /* Cannot use this */
619                                                 continue;
620                                         best_good_sectors = first_bad - this_sector;
621                                 } else
622                                         best_good_sectors = sectors;
623                                 best_dist_disk = disk;
624                                 best_pending_disk = disk;
625                         }
626                         continue;
627                 }
628                 /* This is a reasonable device to use.  It might
629                  * even be best.
630                  */
631                 if (is_badblock(rdev, this_sector, sectors,
632                                 &first_bad, &bad_sectors)) {
633                         if (best_dist < MaxSector)
634                                 /* already have a better device */
635                                 continue;
636                         if (first_bad <= this_sector) {
637                                 /* cannot read here. If this is the 'primary'
638                                  * device, then we must not read beyond
639                                  * bad_sectors from another device..
640                                  */
641                                 bad_sectors -= (this_sector - first_bad);
642                                 if (choose_first && sectors > bad_sectors)
643                                         sectors = bad_sectors;
644                                 if (best_good_sectors > sectors)
645                                         best_good_sectors = sectors;
646
647                         } else {
648                                 sector_t good_sectors = first_bad - this_sector;
649                                 if (good_sectors > best_good_sectors) {
650                                         best_good_sectors = good_sectors;
651                                         best_disk = disk;
652                                 }
653                                 if (choose_first)
654                                         break;
655                         }
656                         continue;
657                 } else {
658                         if ((sectors > best_good_sectors) && (best_disk >= 0))
659                                 best_disk = -1;
660                         best_good_sectors = sectors;
661                 }
662
663                 if (best_disk >= 0)
664                         /* At least two disks to choose from so failfast is OK */
665                         set_bit(R1BIO_FailFast, &r1_bio->state);
666
667                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
668                 has_nonrot_disk |= nonrot;
669                 pending = atomic_read(&rdev->nr_pending);
670                 dist = abs(this_sector - conf->mirrors[disk].head_position);
671                 if (choose_first) {
672                         best_disk = disk;
673                         break;
674                 }
675                 /* Don't change to another disk for sequential reads */
676                 if (conf->mirrors[disk].next_seq_sect == this_sector
677                     || dist == 0) {
678                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
679                         struct raid1_info *mirror = &conf->mirrors[disk];
680
681                         best_disk = disk;
682                         /*
683                          * If buffered sequential IO size exceeds optimal
684                          * iosize, check if there is idle disk. If yes, choose
685                          * the idle disk. read_balance could already choose an
686                          * idle disk before noticing it's a sequential IO in
687                          * this disk. This doesn't matter because this disk
688                          * will idle, next time it will be utilized after the
689                          * first disk has IO size exceeds optimal iosize. In
690                          * this way, iosize of the first disk will be optimal
691                          * iosize at least. iosize of the second disk might be
692                          * small, but not a big deal since when the second disk
693                          * starts IO, the first disk is likely still busy.
694                          */
695                         if (nonrot && opt_iosize > 0 &&
696                             mirror->seq_start != MaxSector &&
697                             mirror->next_seq_sect > opt_iosize &&
698                             mirror->next_seq_sect - opt_iosize >=
699                             mirror->seq_start) {
700                                 choose_next_idle = 1;
701                                 continue;
702                         }
703                         break;
704                 }
705
706                 if (choose_next_idle)
707                         continue;
708
709                 if (min_pending > pending) {
710                         min_pending = pending;
711                         best_pending_disk = disk;
712                 }
713
714                 if (dist < best_dist) {
715                         best_dist = dist;
716                         best_dist_disk = disk;
717                 }
718         }
719
720         /*
721          * If all disks are rotational, choose the closest disk. If any disk is
722          * non-rotational, choose the disk with less pending request even the
723          * disk is rotational, which might/might not be optimal for raids with
724          * mixed ratation/non-rotational disks depending on workload.
725          */
726         if (best_disk == -1) {
727                 if (has_nonrot_disk || min_pending == 0)
728                         best_disk = best_pending_disk;
729                 else
730                         best_disk = best_dist_disk;
731         }
732
733         if (best_disk >= 0) {
734                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
735                 if (!rdev)
736                         goto retry;
737                 atomic_inc(&rdev->nr_pending);
738                 sectors = best_good_sectors;
739
740                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
741                         conf->mirrors[best_disk].seq_start = this_sector;
742
743                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
744         }
745         rcu_read_unlock();
746         *max_sectors = sectors;
747
748         return best_disk;
749 }
750
751 static int raid1_congested(struct mddev *mddev, int bits)
752 {
753         struct r1conf *conf = mddev->private;
754         int i, ret = 0;
755
756         if ((bits & (1 << WB_async_congested)) &&
757             conf->pending_count >= max_queued_requests)
758                 return 1;
759
760         rcu_read_lock();
761         for (i = 0; i < conf->raid_disks * 2; i++) {
762                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
763                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
764                         struct request_queue *q = bdev_get_queue(rdev->bdev);
765
766                         BUG_ON(!q);
767
768                         /* Note the '|| 1' - when read_balance prefers
769                          * non-congested targets, it can be removed
770                          */
771                         if ((bits & (1 << WB_async_congested)) || 1)
772                                 ret |= bdi_congested(q->backing_dev_info, bits);
773                         else
774                                 ret &= bdi_congested(q->backing_dev_info, bits);
775                 }
776         }
777         rcu_read_unlock();
778         return ret;
779 }
780
781 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
782 {
783         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784         md_bitmap_unplug(conf->mddev->bitmap);
785         wake_up(&conf->wait_barrier);
786
787         while (bio) { /* submit pending writes */
788                 struct bio *next = bio->bi_next;
789                 struct md_rdev *rdev = (void *)bio->bi_disk;
790                 bio->bi_next = NULL;
791                 bio_set_dev(bio, rdev->bdev);
792                 if (test_bit(Faulty, &rdev->flags)) {
793                         bio_io_error(bio);
794                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
795                                     !blk_queue_discard(bio->bi_disk->queue)))
796                         /* Just ignore it */
797                         bio_endio(bio);
798                 else
799                         generic_make_request(bio);
800                 bio = next;
801         }
802 }
803
804 static void flush_pending_writes(struct r1conf *conf)
805 {
806         /* Any writes that have been queued but are awaiting
807          * bitmap updates get flushed here.
808          */
809         spin_lock_irq(&conf->device_lock);
810
811         if (conf->pending_bio_list.head) {
812                 struct blk_plug plug;
813                 struct bio *bio;
814
815                 bio = bio_list_get(&conf->pending_bio_list);
816                 conf->pending_count = 0;
817                 spin_unlock_irq(&conf->device_lock);
818
819                 /*
820                  * As this is called in a wait_event() loop (see freeze_array),
821                  * current->state might be TASK_UNINTERRUPTIBLE which will
822                  * cause a warning when we prepare to wait again.  As it is
823                  * rare that this path is taken, it is perfectly safe to force
824                  * us to go around the wait_event() loop again, so the warning
825                  * is a false-positive.  Silence the warning by resetting
826                  * thread state
827                  */
828                 __set_current_state(TASK_RUNNING);
829                 blk_start_plug(&plug);
830                 flush_bio_list(conf, bio);
831                 blk_finish_plug(&plug);
832         } else
833                 spin_unlock_irq(&conf->device_lock);
834 }
835
836 /* Barriers....
837  * Sometimes we need to suspend IO while we do something else,
838  * either some resync/recovery, or reconfigure the array.
839  * To do this we raise a 'barrier'.
840  * The 'barrier' is a counter that can be raised multiple times
841  * to count how many activities are happening which preclude
842  * normal IO.
843  * We can only raise the barrier if there is no pending IO.
844  * i.e. if nr_pending == 0.
845  * We choose only to raise the barrier if no-one is waiting for the
846  * barrier to go down.  This means that as soon as an IO request
847  * is ready, no other operations which require a barrier will start
848  * until the IO request has had a chance.
849  *
850  * So: regular IO calls 'wait_barrier'.  When that returns there
851  *    is no backgroup IO happening,  It must arrange to call
852  *    allow_barrier when it has finished its IO.
853  * backgroup IO calls must call raise_barrier.  Once that returns
854  *    there is no normal IO happeing.  It must arrange to call
855  *    lower_barrier when the particular background IO completes.
856  */
857 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
858 {
859         int idx = sector_to_idx(sector_nr);
860
861         spin_lock_irq(&conf->resync_lock);
862
863         /* Wait until no block IO is waiting */
864         wait_event_lock_irq(conf->wait_barrier,
865                             !atomic_read(&conf->nr_waiting[idx]),
866                             conf->resync_lock);
867
868         /* block any new IO from starting */
869         atomic_inc(&conf->barrier[idx]);
870         /*
871          * In raise_barrier() we firstly increase conf->barrier[idx] then
872          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873          * increase conf->nr_pending[idx] then check conf->barrier[idx].
874          * A memory barrier here to make sure conf->nr_pending[idx] won't
875          * be fetched before conf->barrier[idx] is increased. Otherwise
876          * there will be a race between raise_barrier() and _wait_barrier().
877          */
878         smp_mb__after_atomic();
879
880         /* For these conditions we must wait:
881          * A: while the array is in frozen state
882          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883          *    existing in corresponding I/O barrier bucket.
884          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885          *    max resync count which allowed on current I/O barrier bucket.
886          */
887         wait_event_lock_irq(conf->wait_barrier,
888                             (!conf->array_frozen &&
889                              !atomic_read(&conf->nr_pending[idx]) &&
890                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
891                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
892                             conf->resync_lock);
893
894         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
895                 atomic_dec(&conf->barrier[idx]);
896                 spin_unlock_irq(&conf->resync_lock);
897                 wake_up(&conf->wait_barrier);
898                 return -EINTR;
899         }
900
901         atomic_inc(&conf->nr_sync_pending);
902         spin_unlock_irq(&conf->resync_lock);
903
904         return 0;
905 }
906
907 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
908 {
909         int idx = sector_to_idx(sector_nr);
910
911         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
912
913         atomic_dec(&conf->barrier[idx]);
914         atomic_dec(&conf->nr_sync_pending);
915         wake_up(&conf->wait_barrier);
916 }
917
918 static void _wait_barrier(struct r1conf *conf, int idx)
919 {
920         /*
921          * We need to increase conf->nr_pending[idx] very early here,
922          * then raise_barrier() can be blocked when it waits for
923          * conf->nr_pending[idx] to be 0. Then we can avoid holding
924          * conf->resync_lock when there is no barrier raised in same
925          * barrier unit bucket. Also if the array is frozen, I/O
926          * should be blocked until array is unfrozen.
927          */
928         atomic_inc(&conf->nr_pending[idx]);
929         /*
930          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
931          * check conf->barrier[idx]. In raise_barrier() we firstly increase
932          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
933          * barrier is necessary here to make sure conf->barrier[idx] won't be
934          * fetched before conf->nr_pending[idx] is increased. Otherwise there
935          * will be a race between _wait_barrier() and raise_barrier().
936          */
937         smp_mb__after_atomic();
938
939         /*
940          * Don't worry about checking two atomic_t variables at same time
941          * here. If during we check conf->barrier[idx], the array is
942          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
943          * 0, it is safe to return and make the I/O continue. Because the
944          * array is frozen, all I/O returned here will eventually complete
945          * or be queued, no race will happen. See code comment in
946          * frozen_array().
947          */
948         if (!READ_ONCE(conf->array_frozen) &&
949             !atomic_read(&conf->barrier[idx]))
950                 return;
951
952         /*
953          * After holding conf->resync_lock, conf->nr_pending[idx]
954          * should be decreased before waiting for barrier to drop.
955          * Otherwise, we may encounter a race condition because
956          * raise_barrer() might be waiting for conf->nr_pending[idx]
957          * to be 0 at same time.
958          */
959         spin_lock_irq(&conf->resync_lock);
960         atomic_inc(&conf->nr_waiting[idx]);
961         atomic_dec(&conf->nr_pending[idx]);
962         /*
963          * In case freeze_array() is waiting for
964          * get_unqueued_pending() == extra
965          */
966         wake_up(&conf->wait_barrier);
967         /* Wait for the barrier in same barrier unit bucket to drop. */
968         wait_event_lock_irq(conf->wait_barrier,
969                             !conf->array_frozen &&
970                              !atomic_read(&conf->barrier[idx]),
971                             conf->resync_lock);
972         atomic_inc(&conf->nr_pending[idx]);
973         atomic_dec(&conf->nr_waiting[idx]);
974         spin_unlock_irq(&conf->resync_lock);
975 }
976
977 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
978 {
979         int idx = sector_to_idx(sector_nr);
980
981         /*
982          * Very similar to _wait_barrier(). The difference is, for read
983          * I/O we don't need wait for sync I/O, but if the whole array
984          * is frozen, the read I/O still has to wait until the array is
985          * unfrozen. Since there is no ordering requirement with
986          * conf->barrier[idx] here, memory barrier is unnecessary as well.
987          */
988         atomic_inc(&conf->nr_pending[idx]);
989
990         if (!READ_ONCE(conf->array_frozen))
991                 return;
992
993         spin_lock_irq(&conf->resync_lock);
994         atomic_inc(&conf->nr_waiting[idx]);
995         atomic_dec(&conf->nr_pending[idx]);
996         /*
997          * In case freeze_array() is waiting for
998          * get_unqueued_pending() == extra
999          */
1000         wake_up(&conf->wait_barrier);
1001         /* Wait for array to be unfrozen */
1002         wait_event_lock_irq(conf->wait_barrier,
1003                             !conf->array_frozen,
1004                             conf->resync_lock);
1005         atomic_inc(&conf->nr_pending[idx]);
1006         atomic_dec(&conf->nr_waiting[idx]);
1007         spin_unlock_irq(&conf->resync_lock);
1008 }
1009
1010 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011 {
1012         int idx = sector_to_idx(sector_nr);
1013
1014         _wait_barrier(conf, idx);
1015 }
1016
1017 static void _allow_barrier(struct r1conf *conf, int idx)
1018 {
1019         atomic_dec(&conf->nr_pending[idx]);
1020         wake_up(&conf->wait_barrier);
1021 }
1022
1023 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024 {
1025         int idx = sector_to_idx(sector_nr);
1026
1027         _allow_barrier(conf, idx);
1028 }
1029
1030 /* conf->resync_lock should be held */
1031 static int get_unqueued_pending(struct r1conf *conf)
1032 {
1033         int idx, ret;
1034
1035         ret = atomic_read(&conf->nr_sync_pending);
1036         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037                 ret += atomic_read(&conf->nr_pending[idx]) -
1038                         atomic_read(&conf->nr_queued[idx]);
1039
1040         return ret;
1041 }
1042
1043 static void freeze_array(struct r1conf *conf, int extra)
1044 {
1045         /* Stop sync I/O and normal I/O and wait for everything to
1046          * go quiet.
1047          * This is called in two situations:
1048          * 1) management command handlers (reshape, remove disk, quiesce).
1049          * 2) one normal I/O request failed.
1050
1051          * After array_frozen is set to 1, new sync IO will be blocked at
1052          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053          * or wait_read_barrier(). The flying I/Os will either complete or be
1054          * queued. When everything goes quite, there are only queued I/Os left.
1055
1056          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057          * barrier bucket index which this I/O request hits. When all sync and
1058          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060          * in handle_read_error(), we may call freeze_array() before trying to
1061          * fix the read error. In this case, the error read I/O is not queued,
1062          * so get_unqueued_pending() == 1.
1063          *
1064          * Therefore before this function returns, we need to wait until
1065          * get_unqueued_pendings(conf) gets equal to extra. For
1066          * normal I/O context, extra is 1, in rested situations extra is 0.
1067          */
1068         spin_lock_irq(&conf->resync_lock);
1069         conf->array_frozen = 1;
1070         raid1_log(conf->mddev, "wait freeze");
1071         wait_event_lock_irq_cmd(
1072                 conf->wait_barrier,
1073                 get_unqueued_pending(conf) == extra,
1074                 conf->resync_lock,
1075                 flush_pending_writes(conf));
1076         spin_unlock_irq(&conf->resync_lock);
1077 }
1078 static void unfreeze_array(struct r1conf *conf)
1079 {
1080         /* reverse the effect of the freeze */
1081         spin_lock_irq(&conf->resync_lock);
1082         conf->array_frozen = 0;
1083         spin_unlock_irq(&conf->resync_lock);
1084         wake_up(&conf->wait_barrier);
1085 }
1086
1087 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088                                            struct bio *bio)
1089 {
1090         int size = bio->bi_iter.bi_size;
1091         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092         int i = 0;
1093         struct bio *behind_bio = NULL;
1094
1095         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096         if (!behind_bio)
1097                 return;
1098
1099         /* discard op, we don't support writezero/writesame yet */
1100         if (!bio_has_data(bio)) {
1101                 behind_bio->bi_iter.bi_size = size;
1102                 goto skip_copy;
1103         }
1104
1105         behind_bio->bi_write_hint = bio->bi_write_hint;
1106
1107         while (i < vcnt && size) {
1108                 struct page *page;
1109                 int len = min_t(int, PAGE_SIZE, size);
1110
1111                 page = alloc_page(GFP_NOIO);
1112                 if (unlikely(!page))
1113                         goto free_pages;
1114
1115                 bio_add_page(behind_bio, page, len, 0);
1116
1117                 size -= len;
1118                 i++;
1119         }
1120
1121         bio_copy_data(behind_bio, bio);
1122 skip_copy:
1123         r1_bio->behind_master_bio = behind_bio;
1124         set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126         return;
1127
1128 free_pages:
1129         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130                  bio->bi_iter.bi_size);
1131         bio_free_pages(behind_bio);
1132         bio_put(behind_bio);
1133 }
1134
1135 struct raid1_plug_cb {
1136         struct blk_plug_cb      cb;
1137         struct bio_list         pending;
1138         int                     pending_cnt;
1139 };
1140
1141 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142 {
1143         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144                                                   cb);
1145         struct mddev *mddev = plug->cb.data;
1146         struct r1conf *conf = mddev->private;
1147         struct bio *bio;
1148
1149         if (from_schedule || current->bio_list) {
1150                 spin_lock_irq(&conf->device_lock);
1151                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152                 conf->pending_count += plug->pending_cnt;
1153                 spin_unlock_irq(&conf->device_lock);
1154                 wake_up(&conf->wait_barrier);
1155                 md_wakeup_thread(mddev->thread);
1156                 kfree(plug);
1157                 return;
1158         }
1159
1160         /* we aren't scheduling, so we can do the write-out directly. */
1161         bio = bio_list_get(&plug->pending);
1162         flush_bio_list(conf, bio);
1163         kfree(plug);
1164 }
1165
1166 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167 {
1168         r1_bio->master_bio = bio;
1169         r1_bio->sectors = bio_sectors(bio);
1170         r1_bio->state = 0;
1171         r1_bio->mddev = mddev;
1172         r1_bio->sector = bio->bi_iter.bi_sector;
1173 }
1174
1175 static inline struct r1bio *
1176 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177 {
1178         struct r1conf *conf = mddev->private;
1179         struct r1bio *r1_bio;
1180
1181         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1182         /* Ensure no bio records IO_BLOCKED */
1183         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184         init_r1bio(r1_bio, mddev, bio);
1185         return r1_bio;
1186 }
1187
1188 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189                                int max_read_sectors, struct r1bio *r1_bio)
1190 {
1191         struct r1conf *conf = mddev->private;
1192         struct raid1_info *mirror;
1193         struct bio *read_bio;
1194         struct bitmap *bitmap = mddev->bitmap;
1195         const int op = bio_op(bio);
1196         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1197         int max_sectors;
1198         int rdisk;
1199         bool print_msg = !!r1_bio;
1200         char b[BDEVNAME_SIZE];
1201
1202         /*
1203          * If r1_bio is set, we are blocking the raid1d thread
1204          * so there is a tiny risk of deadlock.  So ask for
1205          * emergency memory if needed.
1206          */
1207         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209         if (print_msg) {
1210                 /* Need to get the block device name carefully */
1211                 struct md_rdev *rdev;
1212                 rcu_read_lock();
1213                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214                 if (rdev)
1215                         bdevname(rdev->bdev, b);
1216                 else
1217                         strcpy(b, "???");
1218                 rcu_read_unlock();
1219         }
1220
1221         /*
1222          * Still need barrier for READ in case that whole
1223          * array is frozen.
1224          */
1225         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226
1227         if (!r1_bio)
1228                 r1_bio = alloc_r1bio(mddev, bio);
1229         else
1230                 init_r1bio(r1_bio, mddev, bio);
1231         r1_bio->sectors = max_read_sectors;
1232
1233         /*
1234          * make_request() can abort the operation when read-ahead is being
1235          * used and no empty request is available.
1236          */
1237         rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239         if (rdisk < 0) {
1240                 /* couldn't find anywhere to read from */
1241                 if (print_msg) {
1242                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243                                             mdname(mddev),
1244                                             b,
1245                                             (unsigned long long)r1_bio->sector);
1246                 }
1247                 raid_end_bio_io(r1_bio);
1248                 return;
1249         }
1250         mirror = conf->mirrors + rdisk;
1251
1252         if (print_msg)
1253                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254                                     mdname(mddev),
1255                                     (unsigned long long)r1_bio->sector,
1256                                     bdevname(mirror->rdev->bdev, b));
1257
1258         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259             bitmap) {
1260                 /*
1261                  * Reading from a write-mostly device must take care not to
1262                  * over-take any writes that are 'behind'
1263                  */
1264                 raid1_log(mddev, "wait behind writes");
1265                 wait_event(bitmap->behind_wait,
1266                            atomic_read(&bitmap->behind_writes) == 0);
1267         }
1268
1269         if (max_sectors < bio_sectors(bio)) {
1270                 struct bio *split = bio_split(bio, max_sectors,
1271                                               gfp, &conf->bio_split);
1272                 bio_chain(split, bio);
1273                 generic_make_request(bio);
1274                 bio = split;
1275                 r1_bio->master_bio = bio;
1276                 r1_bio->sectors = max_sectors;
1277         }
1278
1279         r1_bio->read_disk = rdisk;
1280
1281         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1282
1283         r1_bio->bios[rdisk] = read_bio;
1284
1285         read_bio->bi_iter.bi_sector = r1_bio->sector +
1286                 mirror->rdev->data_offset;
1287         bio_set_dev(read_bio, mirror->rdev->bdev);
1288         read_bio->bi_end_io = raid1_end_read_request;
1289         bio_set_op_attrs(read_bio, op, do_sync);
1290         if (test_bit(FailFast, &mirror->rdev->flags) &&
1291             test_bit(R1BIO_FailFast, &r1_bio->state))
1292                 read_bio->bi_opf |= MD_FAILFAST;
1293         read_bio->bi_private = r1_bio;
1294
1295         if (mddev->gendisk)
1296                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297                                 disk_devt(mddev->gendisk), r1_bio->sector);
1298
1299         generic_make_request(read_bio);
1300 }
1301
1302 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303                                 int max_write_sectors)
1304 {
1305         struct r1conf *conf = mddev->private;
1306         struct r1bio *r1_bio;
1307         int i, disks;
1308         struct bitmap *bitmap = mddev->bitmap;
1309         unsigned long flags;
1310         struct md_rdev *blocked_rdev;
1311         struct blk_plug_cb *cb;
1312         struct raid1_plug_cb *plug = NULL;
1313         int first_clone;
1314         int max_sectors;
1315
1316         if (mddev_is_clustered(mddev) &&
1317              md_cluster_ops->area_resyncing(mddev, WRITE,
1318                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319
1320                 DEFINE_WAIT(w);
1321                 for (;;) {
1322                         prepare_to_wait(&conf->wait_barrier,
1323                                         &w, TASK_IDLE);
1324                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325                                                         bio->bi_iter.bi_sector,
1326                                                         bio_end_sector(bio)))
1327                                 break;
1328                         schedule();
1329                 }
1330                 finish_wait(&conf->wait_barrier, &w);
1331         }
1332
1333         /*
1334          * Register the new request and wait if the reconstruction
1335          * thread has put up a bar for new requests.
1336          * Continue immediately if no resync is active currently.
1337          */
1338         wait_barrier(conf, bio->bi_iter.bi_sector);
1339
1340         r1_bio = alloc_r1bio(mddev, bio);
1341         r1_bio->sectors = max_write_sectors;
1342
1343         if (conf->pending_count >= max_queued_requests) {
1344                 md_wakeup_thread(mddev->thread);
1345                 raid1_log(mddev, "wait queued");
1346                 wait_event(conf->wait_barrier,
1347                            conf->pending_count < max_queued_requests);
1348         }
1349         /* first select target devices under rcu_lock and
1350          * inc refcount on their rdev.  Record them by setting
1351          * bios[x] to bio
1352          * If there are known/acknowledged bad blocks on any device on
1353          * which we have seen a write error, we want to avoid writing those
1354          * blocks.
1355          * This potentially requires several writes to write around
1356          * the bad blocks.  Each set of writes gets it's own r1bio
1357          * with a set of bios attached.
1358          */
1359
1360         disks = conf->raid_disks * 2;
1361  retry_write:
1362         blocked_rdev = NULL;
1363         rcu_read_lock();
1364         max_sectors = r1_bio->sectors;
1365         for (i = 0;  i < disks; i++) {
1366                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368                         atomic_inc(&rdev->nr_pending);
1369                         blocked_rdev = rdev;
1370                         break;
1371                 }
1372                 r1_bio->bios[i] = NULL;
1373                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374                         if (i < conf->raid_disks)
1375                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1376                         continue;
1377                 }
1378
1379                 atomic_inc(&rdev->nr_pending);
1380                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381                         sector_t first_bad;
1382                         int bad_sectors;
1383                         int is_bad;
1384
1385                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1386                                              &first_bad, &bad_sectors);
1387                         if (is_bad < 0) {
1388                                 /* mustn't write here until the bad block is
1389                                  * acknowledged*/
1390                                 set_bit(BlockedBadBlocks, &rdev->flags);
1391                                 blocked_rdev = rdev;
1392                                 break;
1393                         }
1394                         if (is_bad && first_bad <= r1_bio->sector) {
1395                                 /* Cannot write here at all */
1396                                 bad_sectors -= (r1_bio->sector - first_bad);
1397                                 if (bad_sectors < max_sectors)
1398                                         /* mustn't write more than bad_sectors
1399                                          * to other devices yet
1400                                          */
1401                                         max_sectors = bad_sectors;
1402                                 rdev_dec_pending(rdev, mddev);
1403                                 /* We don't set R1BIO_Degraded as that
1404                                  * only applies if the disk is
1405                                  * missing, so it might be re-added,
1406                                  * and we want to know to recover this
1407                                  * chunk.
1408                                  * In this case the device is here,
1409                                  * and the fact that this chunk is not
1410                                  * in-sync is recorded in the bad
1411                                  * block log
1412                                  */
1413                                 continue;
1414                         }
1415                         if (is_bad) {
1416                                 int good_sectors = first_bad - r1_bio->sector;
1417                                 if (good_sectors < max_sectors)
1418                                         max_sectors = good_sectors;
1419                         }
1420                 }
1421                 r1_bio->bios[i] = bio;
1422         }
1423         rcu_read_unlock();
1424
1425         if (unlikely(blocked_rdev)) {
1426                 /* Wait for this device to become unblocked */
1427                 int j;
1428
1429                 for (j = 0; j < i; j++)
1430                         if (r1_bio->bios[j])
1431                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432                 r1_bio->state = 0;
1433                 allow_barrier(conf, bio->bi_iter.bi_sector);
1434                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436                 wait_barrier(conf, bio->bi_iter.bi_sector);
1437                 goto retry_write;
1438         }
1439
1440         if (max_sectors < bio_sectors(bio)) {
1441                 struct bio *split = bio_split(bio, max_sectors,
1442                                               GFP_NOIO, &conf->bio_split);
1443                 bio_chain(split, bio);
1444                 generic_make_request(bio);
1445                 bio = split;
1446                 r1_bio->master_bio = bio;
1447                 r1_bio->sectors = max_sectors;
1448         }
1449
1450         atomic_set(&r1_bio->remaining, 1);
1451         atomic_set(&r1_bio->behind_remaining, 0);
1452
1453         first_clone = 1;
1454
1455         for (i = 0; i < disks; i++) {
1456                 struct bio *mbio = NULL;
1457                 if (!r1_bio->bios[i])
1458                         continue;
1459
1460
1461                 if (first_clone) {
1462                         /* do behind I/O ?
1463                          * Not if there are too many, or cannot
1464                          * allocate memory, or a reader on WriteMostly
1465                          * is waiting for behind writes to flush */
1466                         if (bitmap &&
1467                             (atomic_read(&bitmap->behind_writes)
1468                              < mddev->bitmap_info.max_write_behind) &&
1469                             !waitqueue_active(&bitmap->behind_wait)) {
1470                                 alloc_behind_master_bio(r1_bio, bio);
1471                         }
1472
1473                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1474                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1475                         first_clone = 0;
1476                 }
1477
1478                 if (r1_bio->behind_master_bio)
1479                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1480                                               GFP_NOIO, &mddev->bio_set);
1481                 else
1482                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1483
1484                 if (r1_bio->behind_master_bio) {
1485                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1486                                 atomic_inc(&r1_bio->behind_remaining);
1487                 }
1488
1489                 r1_bio->bios[i] = mbio;
1490
1491                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1492                                    conf->mirrors[i].rdev->data_offset);
1493                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1494                 mbio->bi_end_io = raid1_end_write_request;
1495                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1496                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1497                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1498                     conf->raid_disks - mddev->degraded > 1)
1499                         mbio->bi_opf |= MD_FAILFAST;
1500                 mbio->bi_private = r1_bio;
1501
1502                 atomic_inc(&r1_bio->remaining);
1503
1504                 if (mddev->gendisk)
1505                         trace_block_bio_remap(mbio->bi_disk->queue,
1506                                               mbio, disk_devt(mddev->gendisk),
1507                                               r1_bio->sector);
1508                 /* flush_pending_writes() needs access to the rdev so...*/
1509                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1510
1511                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1512                 if (cb)
1513                         plug = container_of(cb, struct raid1_plug_cb, cb);
1514                 else
1515                         plug = NULL;
1516                 if (plug) {
1517                         bio_list_add(&plug->pending, mbio);
1518                         plug->pending_cnt++;
1519                 } else {
1520                         spin_lock_irqsave(&conf->device_lock, flags);
1521                         bio_list_add(&conf->pending_bio_list, mbio);
1522                         conf->pending_count++;
1523                         spin_unlock_irqrestore(&conf->device_lock, flags);
1524                         md_wakeup_thread(mddev->thread);
1525                 }
1526         }
1527
1528         r1_bio_write_done(r1_bio);
1529
1530         /* In case raid1d snuck in to freeze_array */
1531         wake_up(&conf->wait_barrier);
1532 }
1533
1534 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1535 {
1536         sector_t sectors;
1537
1538         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1539                 md_flush_request(mddev, bio);
1540                 return true;
1541         }
1542
1543         /*
1544          * There is a limit to the maximum size, but
1545          * the read/write handler might find a lower limit
1546          * due to bad blocks.  To avoid multiple splits,
1547          * we pass the maximum number of sectors down
1548          * and let the lower level perform the split.
1549          */
1550         sectors = align_to_barrier_unit_end(
1551                 bio->bi_iter.bi_sector, bio_sectors(bio));
1552
1553         if (bio_data_dir(bio) == READ)
1554                 raid1_read_request(mddev, bio, sectors, NULL);
1555         else {
1556                 if (!md_write_start(mddev,bio))
1557                         return false;
1558                 raid1_write_request(mddev, bio, sectors);
1559         }
1560         return true;
1561 }
1562
1563 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1564 {
1565         struct r1conf *conf = mddev->private;
1566         int i;
1567
1568         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1569                    conf->raid_disks - mddev->degraded);
1570         rcu_read_lock();
1571         for (i = 0; i < conf->raid_disks; i++) {
1572                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1573                 seq_printf(seq, "%s",
1574                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1575         }
1576         rcu_read_unlock();
1577         seq_printf(seq, "]");
1578 }
1579
1580 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1581 {
1582         char b[BDEVNAME_SIZE];
1583         struct r1conf *conf = mddev->private;
1584         unsigned long flags;
1585
1586         /*
1587          * If it is not operational, then we have already marked it as dead
1588          * else if it is the last working disks, ignore the error, let the
1589          * next level up know.
1590          * else mark the drive as failed
1591          */
1592         spin_lock_irqsave(&conf->device_lock, flags);
1593         if (test_bit(In_sync, &rdev->flags)
1594             && (conf->raid_disks - mddev->degraded) == 1) {
1595                 /*
1596                  * Don't fail the drive, act as though we were just a
1597                  * normal single drive.
1598                  * However don't try a recovery from this drive as
1599                  * it is very likely to fail.
1600                  */
1601                 conf->recovery_disabled = mddev->recovery_disabled;
1602                 spin_unlock_irqrestore(&conf->device_lock, flags);
1603                 return;
1604         }
1605         set_bit(Blocked, &rdev->flags);
1606         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1607                 mddev->degraded++;
1608                 set_bit(Faulty, &rdev->flags);
1609         } else
1610                 set_bit(Faulty, &rdev->flags);
1611         spin_unlock_irqrestore(&conf->device_lock, flags);
1612         /*
1613          * if recovery is running, make sure it aborts.
1614          */
1615         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1616         set_mask_bits(&mddev->sb_flags, 0,
1617                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1618         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1619                 "md/raid1:%s: Operation continuing on %d devices.\n",
1620                 mdname(mddev), bdevname(rdev->bdev, b),
1621                 mdname(mddev), conf->raid_disks - mddev->degraded);
1622 }
1623
1624 static void print_conf(struct r1conf *conf)
1625 {
1626         int i;
1627
1628         pr_debug("RAID1 conf printout:\n");
1629         if (!conf) {
1630                 pr_debug("(!conf)\n");
1631                 return;
1632         }
1633         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1634                  conf->raid_disks);
1635
1636         rcu_read_lock();
1637         for (i = 0; i < conf->raid_disks; i++) {
1638                 char b[BDEVNAME_SIZE];
1639                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1640                 if (rdev)
1641                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1642                                  i, !test_bit(In_sync, &rdev->flags),
1643                                  !test_bit(Faulty, &rdev->flags),
1644                                  bdevname(rdev->bdev,b));
1645         }
1646         rcu_read_unlock();
1647 }
1648
1649 static void close_sync(struct r1conf *conf)
1650 {
1651         int idx;
1652
1653         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1654                 _wait_barrier(conf, idx);
1655                 _allow_barrier(conf, idx);
1656         }
1657
1658         mempool_exit(&conf->r1buf_pool);
1659 }
1660
1661 static int raid1_spare_active(struct mddev *mddev)
1662 {
1663         int i;
1664         struct r1conf *conf = mddev->private;
1665         int count = 0;
1666         unsigned long flags;
1667
1668         /*
1669          * Find all failed disks within the RAID1 configuration
1670          * and mark them readable.
1671          * Called under mddev lock, so rcu protection not needed.
1672          * device_lock used to avoid races with raid1_end_read_request
1673          * which expects 'In_sync' flags and ->degraded to be consistent.
1674          */
1675         spin_lock_irqsave(&conf->device_lock, flags);
1676         for (i = 0; i < conf->raid_disks; i++) {
1677                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1678                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1679                 if (repl
1680                     && !test_bit(Candidate, &repl->flags)
1681                     && repl->recovery_offset == MaxSector
1682                     && !test_bit(Faulty, &repl->flags)
1683                     && !test_and_set_bit(In_sync, &repl->flags)) {
1684                         /* replacement has just become active */
1685                         if (!rdev ||
1686                             !test_and_clear_bit(In_sync, &rdev->flags))
1687                                 count++;
1688                         if (rdev) {
1689                                 /* Replaced device not technically
1690                                  * faulty, but we need to be sure
1691                                  * it gets removed and never re-added
1692                                  */
1693                                 set_bit(Faulty, &rdev->flags);
1694                                 sysfs_notify_dirent_safe(
1695                                         rdev->sysfs_state);
1696                         }
1697                 }
1698                 if (rdev
1699                     && rdev->recovery_offset == MaxSector
1700                     && !test_bit(Faulty, &rdev->flags)
1701                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1702                         count++;
1703                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1704                 }
1705         }
1706         mddev->degraded -= count;
1707         spin_unlock_irqrestore(&conf->device_lock, flags);
1708
1709         print_conf(conf);
1710         return count;
1711 }
1712
1713 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1714 {
1715         struct r1conf *conf = mddev->private;
1716         int err = -EEXIST;
1717         int mirror = 0;
1718         struct raid1_info *p;
1719         int first = 0;
1720         int last = conf->raid_disks - 1;
1721
1722         if (mddev->recovery_disabled == conf->recovery_disabled)
1723                 return -EBUSY;
1724
1725         if (md_integrity_add_rdev(rdev, mddev))
1726                 return -ENXIO;
1727
1728         if (rdev->raid_disk >= 0)
1729                 first = last = rdev->raid_disk;
1730
1731         /*
1732          * find the disk ... but prefer rdev->saved_raid_disk
1733          * if possible.
1734          */
1735         if (rdev->saved_raid_disk >= 0 &&
1736             rdev->saved_raid_disk >= first &&
1737             rdev->saved_raid_disk < conf->raid_disks &&
1738             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1739                 first = last = rdev->saved_raid_disk;
1740
1741         for (mirror = first; mirror <= last; mirror++) {
1742                 p = conf->mirrors+mirror;
1743                 if (!p->rdev) {
1744
1745                         if (mddev->gendisk)
1746                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1747                                                   rdev->data_offset << 9);
1748
1749                         p->head_position = 0;
1750                         rdev->raid_disk = mirror;
1751                         err = 0;
1752                         /* As all devices are equivalent, we don't need a full recovery
1753                          * if this was recently any drive of the array
1754                          */
1755                         if (rdev->saved_raid_disk < 0)
1756                                 conf->fullsync = 1;
1757                         rcu_assign_pointer(p->rdev, rdev);
1758                         break;
1759                 }
1760                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1761                     p[conf->raid_disks].rdev == NULL) {
1762                         /* Add this device as a replacement */
1763                         clear_bit(In_sync, &rdev->flags);
1764                         set_bit(Replacement, &rdev->flags);
1765                         rdev->raid_disk = mirror;
1766                         err = 0;
1767                         conf->fullsync = 1;
1768                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1769                         break;
1770                 }
1771         }
1772         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1773                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1774         print_conf(conf);
1775         return err;
1776 }
1777
1778 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1779 {
1780         struct r1conf *conf = mddev->private;
1781         int err = 0;
1782         int number = rdev->raid_disk;
1783         struct raid1_info *p = conf->mirrors + number;
1784
1785         if (rdev != p->rdev)
1786                 p = conf->mirrors + conf->raid_disks + number;
1787
1788         print_conf(conf);
1789         if (rdev == p->rdev) {
1790                 if (test_bit(In_sync, &rdev->flags) ||
1791                     atomic_read(&rdev->nr_pending)) {
1792                         err = -EBUSY;
1793                         goto abort;
1794                 }
1795                 /* Only remove non-faulty devices if recovery
1796                  * is not possible.
1797                  */
1798                 if (!test_bit(Faulty, &rdev->flags) &&
1799                     mddev->recovery_disabled != conf->recovery_disabled &&
1800                     mddev->degraded < conf->raid_disks) {
1801                         err = -EBUSY;
1802                         goto abort;
1803                 }
1804                 p->rdev = NULL;
1805                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1806                         synchronize_rcu();
1807                         if (atomic_read(&rdev->nr_pending)) {
1808                                 /* lost the race, try later */
1809                                 err = -EBUSY;
1810                                 p->rdev = rdev;
1811                                 goto abort;
1812                         }
1813                 }
1814                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1815                         /* We just removed a device that is being replaced.
1816                          * Move down the replacement.  We drain all IO before
1817                          * doing this to avoid confusion.
1818                          */
1819                         struct md_rdev *repl =
1820                                 conf->mirrors[conf->raid_disks + number].rdev;
1821                         freeze_array(conf, 0);
1822                         if (atomic_read(&repl->nr_pending)) {
1823                                 /* It means that some queued IO of retry_list
1824                                  * hold repl. Thus, we cannot set replacement
1825                                  * as NULL, avoiding rdev NULL pointer
1826                                  * dereference in sync_request_write and
1827                                  * handle_write_finished.
1828                                  */
1829                                 err = -EBUSY;
1830                                 unfreeze_array(conf);
1831                                 goto abort;
1832                         }
1833                         clear_bit(Replacement, &repl->flags);
1834                         p->rdev = repl;
1835                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1836                         unfreeze_array(conf);
1837                 }
1838
1839                 clear_bit(WantReplacement, &rdev->flags);
1840                 err = md_integrity_register(mddev);
1841         }
1842 abort:
1843
1844         print_conf(conf);
1845         return err;
1846 }
1847
1848 static void end_sync_read(struct bio *bio)
1849 {
1850         struct r1bio *r1_bio = get_resync_r1bio(bio);
1851
1852         update_head_pos(r1_bio->read_disk, r1_bio);
1853
1854         /*
1855          * we have read a block, now it needs to be re-written,
1856          * or re-read if the read failed.
1857          * We don't do much here, just schedule handling by raid1d
1858          */
1859         if (!bio->bi_status)
1860                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1861
1862         if (atomic_dec_and_test(&r1_bio->remaining))
1863                 reschedule_retry(r1_bio);
1864 }
1865
1866 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1867 {
1868         sector_t sync_blocks = 0;
1869         sector_t s = r1_bio->sector;
1870         long sectors_to_go = r1_bio->sectors;
1871
1872         /* make sure these bits don't get cleared. */
1873         do {
1874                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1875                 s += sync_blocks;
1876                 sectors_to_go -= sync_blocks;
1877         } while (sectors_to_go > 0);
1878 }
1879
1880 static void end_sync_write(struct bio *bio)
1881 {
1882         int uptodate = !bio->bi_status;
1883         struct r1bio *r1_bio = get_resync_r1bio(bio);
1884         struct mddev *mddev = r1_bio->mddev;
1885         struct r1conf *conf = mddev->private;
1886         sector_t first_bad;
1887         int bad_sectors;
1888         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1889
1890         if (!uptodate) {
1891                 abort_sync_write(mddev, r1_bio);
1892                 set_bit(WriteErrorSeen, &rdev->flags);
1893                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1894                         set_bit(MD_RECOVERY_NEEDED, &
1895                                 mddev->recovery);
1896                 set_bit(R1BIO_WriteError, &r1_bio->state);
1897         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1898                                &first_bad, &bad_sectors) &&
1899                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1900                                 r1_bio->sector,
1901                                 r1_bio->sectors,
1902                                 &first_bad, &bad_sectors)
1903                 )
1904                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1905
1906         if (atomic_dec_and_test(&r1_bio->remaining)) {
1907                 int s = r1_bio->sectors;
1908                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1909                     test_bit(R1BIO_WriteError, &r1_bio->state))
1910                         reschedule_retry(r1_bio);
1911                 else {
1912                         put_buf(r1_bio);
1913                         md_done_sync(mddev, s, uptodate);
1914                 }
1915         }
1916 }
1917
1918 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1919                             int sectors, struct page *page, int rw)
1920 {
1921         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1922                 /* success */
1923                 return 1;
1924         if (rw == WRITE) {
1925                 set_bit(WriteErrorSeen, &rdev->flags);
1926                 if (!test_and_set_bit(WantReplacement,
1927                                       &rdev->flags))
1928                         set_bit(MD_RECOVERY_NEEDED, &
1929                                 rdev->mddev->recovery);
1930         }
1931         /* need to record an error - either for the block or the device */
1932         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1933                 md_error(rdev->mddev, rdev);
1934         return 0;
1935 }
1936
1937 static int fix_sync_read_error(struct r1bio *r1_bio)
1938 {
1939         /* Try some synchronous reads of other devices to get
1940          * good data, much like with normal read errors.  Only
1941          * read into the pages we already have so we don't
1942          * need to re-issue the read request.
1943          * We don't need to freeze the array, because being in an
1944          * active sync request, there is no normal IO, and
1945          * no overlapping syncs.
1946          * We don't need to check is_badblock() again as we
1947          * made sure that anything with a bad block in range
1948          * will have bi_end_io clear.
1949          */
1950         struct mddev *mddev = r1_bio->mddev;
1951         struct r1conf *conf = mddev->private;
1952         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1953         struct page **pages = get_resync_pages(bio)->pages;
1954         sector_t sect = r1_bio->sector;
1955         int sectors = r1_bio->sectors;
1956         int idx = 0;
1957         struct md_rdev *rdev;
1958
1959         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1960         if (test_bit(FailFast, &rdev->flags)) {
1961                 /* Don't try recovering from here - just fail it
1962                  * ... unless it is the last working device of course */
1963                 md_error(mddev, rdev);
1964                 if (test_bit(Faulty, &rdev->flags))
1965                         /* Don't try to read from here, but make sure
1966                          * put_buf does it's thing
1967                          */
1968                         bio->bi_end_io = end_sync_write;
1969         }
1970
1971         while(sectors) {
1972                 int s = sectors;
1973                 int d = r1_bio->read_disk;
1974                 int success = 0;
1975                 int start;
1976
1977                 if (s > (PAGE_SIZE>>9))
1978                         s = PAGE_SIZE >> 9;
1979                 do {
1980                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1981                                 /* No rcu protection needed here devices
1982                                  * can only be removed when no resync is
1983                                  * active, and resync is currently active
1984                                  */
1985                                 rdev = conf->mirrors[d].rdev;
1986                                 if (sync_page_io(rdev, sect, s<<9,
1987                                                  pages[idx],
1988                                                  REQ_OP_READ, 0, false)) {
1989                                         success = 1;
1990                                         break;
1991                                 }
1992                         }
1993                         d++;
1994                         if (d == conf->raid_disks * 2)
1995                                 d = 0;
1996                 } while (!success && d != r1_bio->read_disk);
1997
1998                 if (!success) {
1999                         char b[BDEVNAME_SIZE];
2000                         int abort = 0;
2001                         /* Cannot read from anywhere, this block is lost.
2002                          * Record a bad block on each device.  If that doesn't
2003                          * work just disable and interrupt the recovery.
2004                          * Don't fail devices as that won't really help.
2005                          */
2006                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2007                                             mdname(mddev), bio_devname(bio, b),
2008                                             (unsigned long long)r1_bio->sector);
2009                         for (d = 0; d < conf->raid_disks * 2; d++) {
2010                                 rdev = conf->mirrors[d].rdev;
2011                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2012                                         continue;
2013                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2014                                         abort = 1;
2015                         }
2016                         if (abort) {
2017                                 conf->recovery_disabled =
2018                                         mddev->recovery_disabled;
2019                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2020                                 md_done_sync(mddev, r1_bio->sectors, 0);
2021                                 put_buf(r1_bio);
2022                                 return 0;
2023                         }
2024                         /* Try next page */
2025                         sectors -= s;
2026                         sect += s;
2027                         idx++;
2028                         continue;
2029                 }
2030
2031                 start = d;
2032                 /* write it back and re-read */
2033                 while (d != r1_bio->read_disk) {
2034                         if (d == 0)
2035                                 d = conf->raid_disks * 2;
2036                         d--;
2037                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2038                                 continue;
2039                         rdev = conf->mirrors[d].rdev;
2040                         if (r1_sync_page_io(rdev, sect, s,
2041                                             pages[idx],
2042                                             WRITE) == 0) {
2043                                 r1_bio->bios[d]->bi_end_io = NULL;
2044                                 rdev_dec_pending(rdev, mddev);
2045                         }
2046                 }
2047                 d = start;
2048                 while (d != r1_bio->read_disk) {
2049                         if (d == 0)
2050                                 d = conf->raid_disks * 2;
2051                         d--;
2052                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2053                                 continue;
2054                         rdev = conf->mirrors[d].rdev;
2055                         if (r1_sync_page_io(rdev, sect, s,
2056                                             pages[idx],
2057                                             READ) != 0)
2058                                 atomic_add(s, &rdev->corrected_errors);
2059                 }
2060                 sectors -= s;
2061                 sect += s;
2062                 idx ++;
2063         }
2064         set_bit(R1BIO_Uptodate, &r1_bio->state);
2065         bio->bi_status = 0;
2066         return 1;
2067 }
2068
2069 static void process_checks(struct r1bio *r1_bio)
2070 {
2071         /* We have read all readable devices.  If we haven't
2072          * got the block, then there is no hope left.
2073          * If we have, then we want to do a comparison
2074          * and skip the write if everything is the same.
2075          * If any blocks failed to read, then we need to
2076          * attempt an over-write
2077          */
2078         struct mddev *mddev = r1_bio->mddev;
2079         struct r1conf *conf = mddev->private;
2080         int primary;
2081         int i;
2082         int vcnt;
2083
2084         /* Fix variable parts of all bios */
2085         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2086         for (i = 0; i < conf->raid_disks * 2; i++) {
2087                 blk_status_t status;
2088                 struct bio *b = r1_bio->bios[i];
2089                 struct resync_pages *rp = get_resync_pages(b);
2090                 if (b->bi_end_io != end_sync_read)
2091                         continue;
2092                 /* fixup the bio for reuse, but preserve errno */
2093                 status = b->bi_status;
2094                 bio_reset(b);
2095                 b->bi_status = status;
2096                 b->bi_iter.bi_sector = r1_bio->sector +
2097                         conf->mirrors[i].rdev->data_offset;
2098                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2099                 b->bi_end_io = end_sync_read;
2100                 rp->raid_bio = r1_bio;
2101                 b->bi_private = rp;
2102
2103                 /* initialize bvec table again */
2104                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2105         }
2106         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2107                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2108                     !r1_bio->bios[primary]->bi_status) {
2109                         r1_bio->bios[primary]->bi_end_io = NULL;
2110                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2111                         break;
2112                 }
2113         r1_bio->read_disk = primary;
2114         for (i = 0; i < conf->raid_disks * 2; i++) {
2115                 int j;
2116                 struct bio *pbio = r1_bio->bios[primary];
2117                 struct bio *sbio = r1_bio->bios[i];
2118                 blk_status_t status = sbio->bi_status;
2119                 struct page **ppages = get_resync_pages(pbio)->pages;
2120                 struct page **spages = get_resync_pages(sbio)->pages;
2121                 struct bio_vec *bi;
2122                 int page_len[RESYNC_PAGES] = { 0 };
2123
2124                 if (sbio->bi_end_io != end_sync_read)
2125                         continue;
2126                 /* Now we can 'fixup' the error value */
2127                 sbio->bi_status = 0;
2128
2129                 bio_for_each_segment_all(bi, sbio, j)
2130                         page_len[j] = bi->bv_len;
2131
2132                 if (!status) {
2133                         for (j = vcnt; j-- ; ) {
2134                                 if (memcmp(page_address(ppages[j]),
2135                                            page_address(spages[j]),
2136                                            page_len[j]))
2137                                         break;
2138                         }
2139                 } else
2140                         j = 0;
2141                 if (j >= 0)
2142                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2143                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2144                               && !status)) {
2145                         /* No need to write to this device. */
2146                         sbio->bi_end_io = NULL;
2147                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2148                         continue;
2149                 }
2150
2151                 bio_copy_data(sbio, pbio);
2152         }
2153 }
2154
2155 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2156 {
2157         struct r1conf *conf = mddev->private;
2158         int i;
2159         int disks = conf->raid_disks * 2;
2160         struct bio *wbio;
2161
2162         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2163                 /* ouch - failed to read all of that. */
2164                 if (!fix_sync_read_error(r1_bio))
2165                         return;
2166
2167         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2168                 process_checks(r1_bio);
2169
2170         /*
2171          * schedule writes
2172          */
2173         atomic_set(&r1_bio->remaining, 1);
2174         for (i = 0; i < disks ; i++) {
2175                 wbio = r1_bio->bios[i];
2176                 if (wbio->bi_end_io == NULL ||
2177                     (wbio->bi_end_io == end_sync_read &&
2178                      (i == r1_bio->read_disk ||
2179                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2180                         continue;
2181                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2182                         abort_sync_write(mddev, r1_bio);
2183                         continue;
2184                 }
2185
2186                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2187                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2188                         wbio->bi_opf |= MD_FAILFAST;
2189
2190                 wbio->bi_end_io = end_sync_write;
2191                 atomic_inc(&r1_bio->remaining);
2192                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2193
2194                 generic_make_request(wbio);
2195         }
2196
2197         if (atomic_dec_and_test(&r1_bio->remaining)) {
2198                 /* if we're here, all write(s) have completed, so clean up */
2199                 int s = r1_bio->sectors;
2200                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2201                     test_bit(R1BIO_WriteError, &r1_bio->state))
2202                         reschedule_retry(r1_bio);
2203                 else {
2204                         put_buf(r1_bio);
2205                         md_done_sync(mddev, s, 1);
2206                 }
2207         }
2208 }
2209
2210 /*
2211  * This is a kernel thread which:
2212  *
2213  *      1.      Retries failed read operations on working mirrors.
2214  *      2.      Updates the raid superblock when problems encounter.
2215  *      3.      Performs writes following reads for array synchronising.
2216  */
2217
2218 static void fix_read_error(struct r1conf *conf, int read_disk,
2219                            sector_t sect, int sectors)
2220 {
2221         struct mddev *mddev = conf->mddev;
2222         while(sectors) {
2223                 int s = sectors;
2224                 int d = read_disk;
2225                 int success = 0;
2226                 int start;
2227                 struct md_rdev *rdev;
2228
2229                 if (s > (PAGE_SIZE>>9))
2230                         s = PAGE_SIZE >> 9;
2231
2232                 do {
2233                         sector_t first_bad;
2234                         int bad_sectors;
2235
2236                         rcu_read_lock();
2237                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2238                         if (rdev &&
2239                             (test_bit(In_sync, &rdev->flags) ||
2240                              (!test_bit(Faulty, &rdev->flags) &&
2241                               rdev->recovery_offset >= sect + s)) &&
2242                             is_badblock(rdev, sect, s,
2243                                         &first_bad, &bad_sectors) == 0) {
2244                                 atomic_inc(&rdev->nr_pending);
2245                                 rcu_read_unlock();
2246                                 if (sync_page_io(rdev, sect, s<<9,
2247                                          conf->tmppage, REQ_OP_READ, 0, false))
2248                                         success = 1;
2249                                 rdev_dec_pending(rdev, mddev);
2250                                 if (success)
2251                                         break;
2252                         } else
2253                                 rcu_read_unlock();
2254                         d++;
2255                         if (d == conf->raid_disks * 2)
2256                                 d = 0;
2257                 } while (!success && d != read_disk);
2258
2259                 if (!success) {
2260                         /* Cannot read from anywhere - mark it bad */
2261                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2262                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2263                                 md_error(mddev, rdev);
2264                         break;
2265                 }
2266                 /* write it back and re-read */
2267                 start = d;
2268                 while (d != read_disk) {
2269                         if (d==0)
2270                                 d = conf->raid_disks * 2;
2271                         d--;
2272                         rcu_read_lock();
2273                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2274                         if (rdev &&
2275                             !test_bit(Faulty, &rdev->flags)) {
2276                                 atomic_inc(&rdev->nr_pending);
2277                                 rcu_read_unlock();
2278                                 r1_sync_page_io(rdev, sect, s,
2279                                                 conf->tmppage, WRITE);
2280                                 rdev_dec_pending(rdev, mddev);
2281                         } else
2282                                 rcu_read_unlock();
2283                 }
2284                 d = start;
2285                 while (d != read_disk) {
2286                         char b[BDEVNAME_SIZE];
2287                         if (d==0)
2288                                 d = conf->raid_disks * 2;
2289                         d--;
2290                         rcu_read_lock();
2291                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2292                         if (rdev &&
2293                             !test_bit(Faulty, &rdev->flags)) {
2294                                 atomic_inc(&rdev->nr_pending);
2295                                 rcu_read_unlock();
2296                                 if (r1_sync_page_io(rdev, sect, s,
2297                                                     conf->tmppage, READ)) {
2298                                         atomic_add(s, &rdev->corrected_errors);
2299                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2300                                                 mdname(mddev), s,
2301                                                 (unsigned long long)(sect +
2302                                                                      rdev->data_offset),
2303                                                 bdevname(rdev->bdev, b));
2304                                 }
2305                                 rdev_dec_pending(rdev, mddev);
2306                         } else
2307                                 rcu_read_unlock();
2308                 }
2309                 sectors -= s;
2310                 sect += s;
2311         }
2312 }
2313
2314 static int narrow_write_error(struct r1bio *r1_bio, int i)
2315 {
2316         struct mddev *mddev = r1_bio->mddev;
2317         struct r1conf *conf = mddev->private;
2318         struct md_rdev *rdev = conf->mirrors[i].rdev;
2319
2320         /* bio has the data to be written to device 'i' where
2321          * we just recently had a write error.
2322          * We repeatedly clone the bio and trim down to one block,
2323          * then try the write.  Where the write fails we record
2324          * a bad block.
2325          * It is conceivable that the bio doesn't exactly align with
2326          * blocks.  We must handle this somehow.
2327          *
2328          * We currently own a reference on the rdev.
2329          */
2330
2331         int block_sectors;
2332         sector_t sector;
2333         int sectors;
2334         int sect_to_write = r1_bio->sectors;
2335         int ok = 1;
2336
2337         if (rdev->badblocks.shift < 0)
2338                 return 0;
2339
2340         block_sectors = roundup(1 << rdev->badblocks.shift,
2341                                 bdev_logical_block_size(rdev->bdev) >> 9);
2342         sector = r1_bio->sector;
2343         sectors = ((sector + block_sectors)
2344                    & ~(sector_t)(block_sectors - 1))
2345                 - sector;
2346
2347         while (sect_to_write) {
2348                 struct bio *wbio;
2349                 if (sectors > sect_to_write)
2350                         sectors = sect_to_write;
2351                 /* Write at 'sector' for 'sectors'*/
2352
2353                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2354                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2355                                               GFP_NOIO,
2356                                               &mddev->bio_set);
2357                 } else {
2358                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2359                                               &mddev->bio_set);
2360                 }
2361
2362                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2363                 wbio->bi_iter.bi_sector = r1_bio->sector;
2364                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2365
2366                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2367                 wbio->bi_iter.bi_sector += rdev->data_offset;
2368                 bio_set_dev(wbio, rdev->bdev);
2369
2370                 if (submit_bio_wait(wbio) < 0)
2371                         /* failure! */
2372                         ok = rdev_set_badblocks(rdev, sector,
2373                                                 sectors, 0)
2374                                 && ok;
2375
2376                 bio_put(wbio);
2377                 sect_to_write -= sectors;
2378                 sector += sectors;
2379                 sectors = block_sectors;
2380         }
2381         return ok;
2382 }
2383
2384 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2385 {
2386         int m;
2387         int s = r1_bio->sectors;
2388         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2389                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2390                 struct bio *bio = r1_bio->bios[m];
2391                 if (bio->bi_end_io == NULL)
2392                         continue;
2393                 if (!bio->bi_status &&
2394                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2395                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2396                 }
2397                 if (bio->bi_status &&
2398                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2399                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2400                                 md_error(conf->mddev, rdev);
2401                 }
2402         }
2403         put_buf(r1_bio);
2404         md_done_sync(conf->mddev, s, 1);
2405 }
2406
2407 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2408 {
2409         int m, idx;
2410         bool fail = false;
2411
2412         for (m = 0; m < conf->raid_disks * 2 ; m++)
2413                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2414                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2415                         rdev_clear_badblocks(rdev,
2416                                              r1_bio->sector,
2417                                              r1_bio->sectors, 0);
2418                         rdev_dec_pending(rdev, conf->mddev);
2419                 } else if (r1_bio->bios[m] != NULL) {
2420                         /* This drive got a write error.  We need to
2421                          * narrow down and record precise write
2422                          * errors.
2423                          */
2424                         fail = true;
2425                         if (!narrow_write_error(r1_bio, m)) {
2426                                 md_error(conf->mddev,
2427                                          conf->mirrors[m].rdev);
2428                                 /* an I/O failed, we can't clear the bitmap */
2429                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2430                         }
2431                         rdev_dec_pending(conf->mirrors[m].rdev,
2432                                          conf->mddev);
2433                 }
2434         if (fail) {
2435                 spin_lock_irq(&conf->device_lock);
2436                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2437                 idx = sector_to_idx(r1_bio->sector);
2438                 atomic_inc(&conf->nr_queued[idx]);
2439                 spin_unlock_irq(&conf->device_lock);
2440                 /*
2441                  * In case freeze_array() is waiting for condition
2442                  * get_unqueued_pending() == extra to be true.
2443                  */
2444                 wake_up(&conf->wait_barrier);
2445                 md_wakeup_thread(conf->mddev->thread);
2446         } else {
2447                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2448                         close_write(r1_bio);
2449                 raid_end_bio_io(r1_bio);
2450         }
2451 }
2452
2453 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2454 {
2455         struct mddev *mddev = conf->mddev;
2456         struct bio *bio;
2457         struct md_rdev *rdev;
2458
2459         clear_bit(R1BIO_ReadError, &r1_bio->state);
2460         /* we got a read error. Maybe the drive is bad.  Maybe just
2461          * the block and we can fix it.
2462          * We freeze all other IO, and try reading the block from
2463          * other devices.  When we find one, we re-write
2464          * and check it that fixes the read error.
2465          * This is all done synchronously while the array is
2466          * frozen
2467          */
2468
2469         bio = r1_bio->bios[r1_bio->read_disk];
2470         bio_put(bio);
2471         r1_bio->bios[r1_bio->read_disk] = NULL;
2472
2473         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2474         if (mddev->ro == 0
2475             && !test_bit(FailFast, &rdev->flags)) {
2476                 freeze_array(conf, 1);
2477                 fix_read_error(conf, r1_bio->read_disk,
2478                                r1_bio->sector, r1_bio->sectors);
2479                 unfreeze_array(conf);
2480         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2481                 md_error(mddev, rdev);
2482         } else {
2483                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2484         }
2485
2486         rdev_dec_pending(rdev, conf->mddev);
2487         allow_barrier(conf, r1_bio->sector);
2488         bio = r1_bio->master_bio;
2489
2490         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2491         r1_bio->state = 0;
2492         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2493 }
2494
2495 static void raid1d(struct md_thread *thread)
2496 {
2497         struct mddev *mddev = thread->mddev;
2498         struct r1bio *r1_bio;
2499         unsigned long flags;
2500         struct r1conf *conf = mddev->private;
2501         struct list_head *head = &conf->retry_list;
2502         struct blk_plug plug;
2503         int idx;
2504
2505         md_check_recovery(mddev);
2506
2507         if (!list_empty_careful(&conf->bio_end_io_list) &&
2508             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2509                 LIST_HEAD(tmp);
2510                 spin_lock_irqsave(&conf->device_lock, flags);
2511                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2512                         list_splice_init(&conf->bio_end_io_list, &tmp);
2513                 spin_unlock_irqrestore(&conf->device_lock, flags);
2514                 while (!list_empty(&tmp)) {
2515                         r1_bio = list_first_entry(&tmp, struct r1bio,
2516                                                   retry_list);
2517                         list_del(&r1_bio->retry_list);
2518                         idx = sector_to_idx(r1_bio->sector);
2519                         atomic_dec(&conf->nr_queued[idx]);
2520                         if (mddev->degraded)
2521                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2522                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2523                                 close_write(r1_bio);
2524                         raid_end_bio_io(r1_bio);
2525                 }
2526         }
2527
2528         blk_start_plug(&plug);
2529         for (;;) {
2530
2531                 flush_pending_writes(conf);
2532
2533                 spin_lock_irqsave(&conf->device_lock, flags);
2534                 if (list_empty(head)) {
2535                         spin_unlock_irqrestore(&conf->device_lock, flags);
2536                         break;
2537                 }
2538                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2539                 list_del(head->prev);
2540                 idx = sector_to_idx(r1_bio->sector);
2541                 atomic_dec(&conf->nr_queued[idx]);
2542                 spin_unlock_irqrestore(&conf->device_lock, flags);
2543
2544                 mddev = r1_bio->mddev;
2545                 conf = mddev->private;
2546                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2547                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2548                             test_bit(R1BIO_WriteError, &r1_bio->state))
2549                                 handle_sync_write_finished(conf, r1_bio);
2550                         else
2551                                 sync_request_write(mddev, r1_bio);
2552                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2553                            test_bit(R1BIO_WriteError, &r1_bio->state))
2554                         handle_write_finished(conf, r1_bio);
2555                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2556                         handle_read_error(conf, r1_bio);
2557                 else
2558                         WARN_ON_ONCE(1);
2559
2560                 cond_resched();
2561                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2562                         md_check_recovery(mddev);
2563         }
2564         blk_finish_plug(&plug);
2565 }
2566
2567 static int init_resync(struct r1conf *conf)
2568 {
2569         int buffs;
2570
2571         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2572         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2573
2574         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2575                             r1buf_pool_free, conf->poolinfo);
2576 }
2577
2578 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2579 {
2580         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2581         struct resync_pages *rps;
2582         struct bio *bio;
2583         int i;
2584
2585         for (i = conf->poolinfo->raid_disks; i--; ) {
2586                 bio = r1bio->bios[i];
2587                 rps = bio->bi_private;
2588                 bio_reset(bio);
2589                 bio->bi_private = rps;
2590         }
2591         r1bio->master_bio = NULL;
2592         return r1bio;
2593 }
2594
2595 /*
2596  * perform a "sync" on one "block"
2597  *
2598  * We need to make sure that no normal I/O request - particularly write
2599  * requests - conflict with active sync requests.
2600  *
2601  * This is achieved by tracking pending requests and a 'barrier' concept
2602  * that can be installed to exclude normal IO requests.
2603  */
2604
2605 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2606                                    int *skipped)
2607 {
2608         struct r1conf *conf = mddev->private;
2609         struct r1bio *r1_bio;
2610         struct bio *bio;
2611         sector_t max_sector, nr_sectors;
2612         int disk = -1;
2613         int i;
2614         int wonly = -1;
2615         int write_targets = 0, read_targets = 0;
2616         sector_t sync_blocks;
2617         int still_degraded = 0;
2618         int good_sectors = RESYNC_SECTORS;
2619         int min_bad = 0; /* number of sectors that are bad in all devices */
2620         int idx = sector_to_idx(sector_nr);
2621         int page_idx = 0;
2622
2623         if (!mempool_initialized(&conf->r1buf_pool))
2624                 if (init_resync(conf))
2625                         return 0;
2626
2627         max_sector = mddev->dev_sectors;
2628         if (sector_nr >= max_sector) {
2629                 /* If we aborted, we need to abort the
2630                  * sync on the 'current' bitmap chunk (there will
2631                  * only be one in raid1 resync.
2632                  * We can find the current addess in mddev->curr_resync
2633                  */
2634                 if (mddev->curr_resync < max_sector) /* aborted */
2635                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2636                                            &sync_blocks, 1);
2637                 else /* completed sync */
2638                         conf->fullsync = 0;
2639
2640                 md_bitmap_close_sync(mddev->bitmap);
2641                 close_sync(conf);
2642
2643                 if (mddev_is_clustered(mddev)) {
2644                         conf->cluster_sync_low = 0;
2645                         conf->cluster_sync_high = 0;
2646                 }
2647                 return 0;
2648         }
2649
2650         if (mddev->bitmap == NULL &&
2651             mddev->recovery_cp == MaxSector &&
2652             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2653             conf->fullsync == 0) {
2654                 *skipped = 1;
2655                 return max_sector - sector_nr;
2656         }
2657         /* before building a request, check if we can skip these blocks..
2658          * This call the bitmap_start_sync doesn't actually record anything
2659          */
2660         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2661             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2662                 /* We can skip this block, and probably several more */
2663                 *skipped = 1;
2664                 return sync_blocks;
2665         }
2666
2667         /*
2668          * If there is non-resync activity waiting for a turn, then let it
2669          * though before starting on this new sync request.
2670          */
2671         if (atomic_read(&conf->nr_waiting[idx]))
2672                 schedule_timeout_uninterruptible(1);
2673
2674         /* we are incrementing sector_nr below. To be safe, we check against
2675          * sector_nr + two times RESYNC_SECTORS
2676          */
2677
2678         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2679                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2680
2681
2682         if (raise_barrier(conf, sector_nr))
2683                 return 0;
2684
2685         r1_bio = raid1_alloc_init_r1buf(conf);
2686
2687         rcu_read_lock();
2688         /*
2689          * If we get a correctably read error during resync or recovery,
2690          * we might want to read from a different device.  So we
2691          * flag all drives that could conceivably be read from for READ,
2692          * and any others (which will be non-In_sync devices) for WRITE.
2693          * If a read fails, we try reading from something else for which READ
2694          * is OK.
2695          */
2696
2697         r1_bio->mddev = mddev;
2698         r1_bio->sector = sector_nr;
2699         r1_bio->state = 0;
2700         set_bit(R1BIO_IsSync, &r1_bio->state);
2701         /* make sure good_sectors won't go across barrier unit boundary */
2702         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2703
2704         for (i = 0; i < conf->raid_disks * 2; i++) {
2705                 struct md_rdev *rdev;
2706                 bio = r1_bio->bios[i];
2707
2708                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2709                 if (rdev == NULL ||
2710                     test_bit(Faulty, &rdev->flags)) {
2711                         if (i < conf->raid_disks)
2712                                 still_degraded = 1;
2713                 } else if (!test_bit(In_sync, &rdev->flags)) {
2714                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2715                         bio->bi_end_io = end_sync_write;
2716                         write_targets ++;
2717                 } else {
2718                         /* may need to read from here */
2719                         sector_t first_bad = MaxSector;
2720                         int bad_sectors;
2721
2722                         if (is_badblock(rdev, sector_nr, good_sectors,
2723                                         &first_bad, &bad_sectors)) {
2724                                 if (first_bad > sector_nr)
2725                                         good_sectors = first_bad - sector_nr;
2726                                 else {
2727                                         bad_sectors -= (sector_nr - first_bad);
2728                                         if (min_bad == 0 ||
2729                                             min_bad > bad_sectors)
2730                                                 min_bad = bad_sectors;
2731                                 }
2732                         }
2733                         if (sector_nr < first_bad) {
2734                                 if (test_bit(WriteMostly, &rdev->flags)) {
2735                                         if (wonly < 0)
2736                                                 wonly = i;
2737                                 } else {
2738                                         if (disk < 0)
2739                                                 disk = i;
2740                                 }
2741                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2742                                 bio->bi_end_io = end_sync_read;
2743                                 read_targets++;
2744                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2745                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2746                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2747                                 /*
2748                                  * The device is suitable for reading (InSync),
2749                                  * but has bad block(s) here. Let's try to correct them,
2750                                  * if we are doing resync or repair. Otherwise, leave
2751                                  * this device alone for this sync request.
2752                                  */
2753                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2754                                 bio->bi_end_io = end_sync_write;
2755                                 write_targets++;
2756                         }
2757                 }
2758                 if (bio->bi_end_io) {
2759                         atomic_inc(&rdev->nr_pending);
2760                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2761                         bio_set_dev(bio, rdev->bdev);
2762                         if (test_bit(FailFast, &rdev->flags))
2763                                 bio->bi_opf |= MD_FAILFAST;
2764                 }
2765         }
2766         rcu_read_unlock();
2767         if (disk < 0)
2768                 disk = wonly;
2769         r1_bio->read_disk = disk;
2770
2771         if (read_targets == 0 && min_bad > 0) {
2772                 /* These sectors are bad on all InSync devices, so we
2773                  * need to mark them bad on all write targets
2774                  */
2775                 int ok = 1;
2776                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2777                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2778                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2779                                 ok = rdev_set_badblocks(rdev, sector_nr,
2780                                                         min_bad, 0
2781                                         ) && ok;
2782                         }
2783                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2784                 *skipped = 1;
2785                 put_buf(r1_bio);
2786
2787                 if (!ok) {
2788                         /* Cannot record the badblocks, so need to
2789                          * abort the resync.
2790                          * If there are multiple read targets, could just
2791                          * fail the really bad ones ???
2792                          */
2793                         conf->recovery_disabled = mddev->recovery_disabled;
2794                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2795                         return 0;
2796                 } else
2797                         return min_bad;
2798
2799         }
2800         if (min_bad > 0 && min_bad < good_sectors) {
2801                 /* only resync enough to reach the next bad->good
2802                  * transition */
2803                 good_sectors = min_bad;
2804         }
2805
2806         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2807                 /* extra read targets are also write targets */
2808                 write_targets += read_targets-1;
2809
2810         if (write_targets == 0 || read_targets == 0) {
2811                 /* There is nowhere to write, so all non-sync
2812                  * drives must be failed - so we are finished
2813                  */
2814                 sector_t rv;
2815                 if (min_bad > 0)
2816                         max_sector = sector_nr + min_bad;
2817                 rv = max_sector - sector_nr;
2818                 *skipped = 1;
2819                 put_buf(r1_bio);
2820                 return rv;
2821         }
2822
2823         if (max_sector > mddev->resync_max)
2824                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2825         if (max_sector > sector_nr + good_sectors)
2826                 max_sector = sector_nr + good_sectors;
2827         nr_sectors = 0;
2828         sync_blocks = 0;
2829         do {
2830                 struct page *page;
2831                 int len = PAGE_SIZE;
2832                 if (sector_nr + (len>>9) > max_sector)
2833                         len = (max_sector - sector_nr) << 9;
2834                 if (len == 0)
2835                         break;
2836                 if (sync_blocks == 0) {
2837                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2838                                                   &sync_blocks, still_degraded) &&
2839                             !conf->fullsync &&
2840                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2841                                 break;
2842                         if ((len >> 9) > sync_blocks)
2843                                 len = sync_blocks<<9;
2844                 }
2845
2846                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2847                         struct resync_pages *rp;
2848
2849                         bio = r1_bio->bios[i];
2850                         rp = get_resync_pages(bio);
2851                         if (bio->bi_end_io) {
2852                                 page = resync_fetch_page(rp, page_idx);
2853
2854                                 /*
2855                                  * won't fail because the vec table is big
2856                                  * enough to hold all these pages
2857                                  */
2858                                 bio_add_page(bio, page, len, 0);
2859                         }
2860                 }
2861                 nr_sectors += len>>9;
2862                 sector_nr += len>>9;
2863                 sync_blocks -= (len>>9);
2864         } while (++page_idx < RESYNC_PAGES);
2865
2866         r1_bio->sectors = nr_sectors;
2867
2868         if (mddev_is_clustered(mddev) &&
2869                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2870                 conf->cluster_sync_low = mddev->curr_resync_completed;
2871                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2872                 /* Send resync message */
2873                 md_cluster_ops->resync_info_update(mddev,
2874                                 conf->cluster_sync_low,
2875                                 conf->cluster_sync_high);
2876         }
2877
2878         /* For a user-requested sync, we read all readable devices and do a
2879          * compare
2880          */
2881         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2882                 atomic_set(&r1_bio->remaining, read_targets);
2883                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2884                         bio = r1_bio->bios[i];
2885                         if (bio->bi_end_io == end_sync_read) {
2886                                 read_targets--;
2887                                 md_sync_acct_bio(bio, nr_sectors);
2888                                 if (read_targets == 1)
2889                                         bio->bi_opf &= ~MD_FAILFAST;
2890                                 generic_make_request(bio);
2891                         }
2892                 }
2893         } else {
2894                 atomic_set(&r1_bio->remaining, 1);
2895                 bio = r1_bio->bios[r1_bio->read_disk];
2896                 md_sync_acct_bio(bio, nr_sectors);
2897                 if (read_targets == 1)
2898                         bio->bi_opf &= ~MD_FAILFAST;
2899                 generic_make_request(bio);
2900
2901         }
2902         return nr_sectors;
2903 }
2904
2905 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2906 {
2907         if (sectors)
2908                 return sectors;
2909
2910         return mddev->dev_sectors;
2911 }
2912
2913 static struct r1conf *setup_conf(struct mddev *mddev)
2914 {
2915         struct r1conf *conf;
2916         int i;
2917         struct raid1_info *disk;
2918         struct md_rdev *rdev;
2919         int err = -ENOMEM;
2920
2921         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2922         if (!conf)
2923                 goto abort;
2924
2925         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2926                                    sizeof(atomic_t), GFP_KERNEL);
2927         if (!conf->nr_pending)
2928                 goto abort;
2929
2930         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2931                                    sizeof(atomic_t), GFP_KERNEL);
2932         if (!conf->nr_waiting)
2933                 goto abort;
2934
2935         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2936                                   sizeof(atomic_t), GFP_KERNEL);
2937         if (!conf->nr_queued)
2938                 goto abort;
2939
2940         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2941                                 sizeof(atomic_t), GFP_KERNEL);
2942         if (!conf->barrier)
2943                 goto abort;
2944
2945         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2946                                             mddev->raid_disks, 2),
2947                                 GFP_KERNEL);
2948         if (!conf->mirrors)
2949                 goto abort;
2950
2951         conf->tmppage = alloc_page(GFP_KERNEL);
2952         if (!conf->tmppage)
2953                 goto abort;
2954
2955         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2956         if (!conf->poolinfo)
2957                 goto abort;
2958         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2959         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2960                            r1bio_pool_free, conf->poolinfo);
2961         if (err)
2962                 goto abort;
2963
2964         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2965         if (err)
2966                 goto abort;
2967
2968         conf->poolinfo->mddev = mddev;
2969
2970         err = -EINVAL;
2971         spin_lock_init(&conf->device_lock);
2972         rdev_for_each(rdev, mddev) {
2973                 int disk_idx = rdev->raid_disk;
2974                 if (disk_idx >= mddev->raid_disks
2975                     || disk_idx < 0)
2976                         continue;
2977                 if (test_bit(Replacement, &rdev->flags))
2978                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2979                 else
2980                         disk = conf->mirrors + disk_idx;
2981
2982                 if (disk->rdev)
2983                         goto abort;
2984                 disk->rdev = rdev;
2985                 disk->head_position = 0;
2986                 disk->seq_start = MaxSector;
2987         }
2988         conf->raid_disks = mddev->raid_disks;
2989         conf->mddev = mddev;
2990         INIT_LIST_HEAD(&conf->retry_list);
2991         INIT_LIST_HEAD(&conf->bio_end_io_list);
2992
2993         spin_lock_init(&conf->resync_lock);
2994         init_waitqueue_head(&conf->wait_barrier);
2995
2996         bio_list_init(&conf->pending_bio_list);
2997         conf->pending_count = 0;
2998         conf->recovery_disabled = mddev->recovery_disabled - 1;
2999
3000         err = -EIO;
3001         for (i = 0; i < conf->raid_disks * 2; i++) {
3002
3003                 disk = conf->mirrors + i;
3004
3005                 if (i < conf->raid_disks &&
3006                     disk[conf->raid_disks].rdev) {
3007                         /* This slot has a replacement. */
3008                         if (!disk->rdev) {
3009                                 /* No original, just make the replacement
3010                                  * a recovering spare
3011                                  */
3012                                 disk->rdev =
3013                                         disk[conf->raid_disks].rdev;
3014                                 disk[conf->raid_disks].rdev = NULL;
3015                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3016                                 /* Original is not in_sync - bad */
3017                                 goto abort;
3018                 }
3019
3020                 if (!disk->rdev ||
3021                     !test_bit(In_sync, &disk->rdev->flags)) {
3022                         disk->head_position = 0;
3023                         if (disk->rdev &&
3024                             (disk->rdev->saved_raid_disk < 0))
3025                                 conf->fullsync = 1;
3026                 }
3027         }
3028
3029         err = -ENOMEM;
3030         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3031         if (!conf->thread)
3032                 goto abort;
3033
3034         return conf;
3035
3036  abort:
3037         if (conf) {
3038                 mempool_exit(&conf->r1bio_pool);
3039                 kfree(conf->mirrors);
3040                 safe_put_page(conf->tmppage);
3041                 kfree(conf->poolinfo);
3042                 kfree(conf->nr_pending);
3043                 kfree(conf->nr_waiting);
3044                 kfree(conf->nr_queued);
3045                 kfree(conf->barrier);
3046                 bioset_exit(&conf->bio_split);
3047                 kfree(conf);
3048         }
3049         return ERR_PTR(err);
3050 }
3051
3052 static void raid1_free(struct mddev *mddev, void *priv);
3053 static int raid1_run(struct mddev *mddev)
3054 {
3055         struct r1conf *conf;
3056         int i;
3057         struct md_rdev *rdev;
3058         int ret;
3059         bool discard_supported = false;
3060
3061         if (mddev->level != 1) {
3062                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3063                         mdname(mddev), mddev->level);
3064                 return -EIO;
3065         }
3066         if (mddev->reshape_position != MaxSector) {
3067                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3068                         mdname(mddev));
3069                 return -EIO;
3070         }
3071         if (mddev_init_writes_pending(mddev) < 0)
3072                 return -ENOMEM;
3073         /*
3074          * copy the already verified devices into our private RAID1
3075          * bookkeeping area. [whatever we allocate in run(),
3076          * should be freed in raid1_free()]
3077          */
3078         if (mddev->private == NULL)
3079                 conf = setup_conf(mddev);
3080         else
3081                 conf = mddev->private;
3082
3083         if (IS_ERR(conf))
3084                 return PTR_ERR(conf);
3085
3086         if (mddev->queue) {
3087                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3088                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3089         }
3090
3091         rdev_for_each(rdev, mddev) {
3092                 if (!mddev->gendisk)
3093                         continue;
3094                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3095                                   rdev->data_offset << 9);
3096                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3097                         discard_supported = true;
3098         }
3099
3100         mddev->degraded = 0;
3101         for (i=0; i < conf->raid_disks; i++)
3102                 if (conf->mirrors[i].rdev == NULL ||
3103                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3104                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3105                         mddev->degraded++;
3106
3107         if (conf->raid_disks - mddev->degraded == 1)
3108                 mddev->recovery_cp = MaxSector;
3109
3110         if (mddev->recovery_cp != MaxSector)
3111                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3112                         mdname(mddev));
3113         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3114                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3115                 mddev->raid_disks);
3116
3117         /*
3118          * Ok, everything is just fine now
3119          */
3120         mddev->thread = conf->thread;
3121         conf->thread = NULL;
3122         mddev->private = conf;
3123         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3124
3125         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3126
3127         if (mddev->queue) {
3128                 if (discard_supported)
3129                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3130                                                 mddev->queue);
3131                 else
3132                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3133                                                   mddev->queue);
3134         }
3135
3136         ret =  md_integrity_register(mddev);
3137         if (ret) {
3138                 md_unregister_thread(&mddev->thread);
3139                 raid1_free(mddev, conf);
3140         }
3141         return ret;
3142 }
3143
3144 static void raid1_free(struct mddev *mddev, void *priv)
3145 {
3146         struct r1conf *conf = priv;
3147
3148         mempool_exit(&conf->r1bio_pool);
3149         kfree(conf->mirrors);
3150         safe_put_page(conf->tmppage);
3151         kfree(conf->poolinfo);
3152         kfree(conf->nr_pending);
3153         kfree(conf->nr_waiting);
3154         kfree(conf->nr_queued);
3155         kfree(conf->barrier);
3156         bioset_exit(&conf->bio_split);
3157         kfree(conf);
3158 }
3159
3160 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161 {
3162         /* no resync is happening, and there is enough space
3163          * on all devices, so we can resize.
3164          * We need to make sure resync covers any new space.
3165          * If the array is shrinking we should possibly wait until
3166          * any io in the removed space completes, but it hardly seems
3167          * worth it.
3168          */
3169         sector_t newsize = raid1_size(mddev, sectors, 0);
3170         if (mddev->external_size &&
3171             mddev->array_sectors > newsize)
3172                 return -EINVAL;
3173         if (mddev->bitmap) {
3174                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175                 if (ret)
3176                         return ret;
3177         }
3178         md_set_array_sectors(mddev, newsize);
3179         if (sectors > mddev->dev_sectors &&
3180             mddev->recovery_cp > mddev->dev_sectors) {
3181                 mddev->recovery_cp = mddev->dev_sectors;
3182                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183         }
3184         mddev->dev_sectors = sectors;
3185         mddev->resync_max_sectors = sectors;
3186         return 0;
3187 }
3188
3189 static int raid1_reshape(struct mddev *mddev)
3190 {
3191         /* We need to:
3192          * 1/ resize the r1bio_pool
3193          * 2/ resize conf->mirrors
3194          *
3195          * We allocate a new r1bio_pool if we can.
3196          * Then raise a device barrier and wait until all IO stops.
3197          * Then resize conf->mirrors and swap in the new r1bio pool.
3198          *
3199          * At the same time, we "pack" the devices so that all the missing
3200          * devices have the higher raid_disk numbers.
3201          */
3202         mempool_t newpool, oldpool;
3203         struct pool_info *newpoolinfo;
3204         struct raid1_info *newmirrors;
3205         struct r1conf *conf = mddev->private;
3206         int cnt, raid_disks;
3207         unsigned long flags;
3208         int d, d2;
3209         int ret;
3210
3211         memset(&newpool, 0, sizeof(newpool));
3212         memset(&oldpool, 0, sizeof(oldpool));
3213
3214         /* Cannot change chunk_size, layout, or level */
3215         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3216             mddev->layout != mddev->new_layout ||
3217             mddev->level != mddev->new_level) {
3218                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3219                 mddev->new_layout = mddev->layout;
3220                 mddev->new_level = mddev->level;
3221                 return -EINVAL;
3222         }
3223
3224         if (!mddev_is_clustered(mddev))
3225                 md_allow_write(mddev);
3226
3227         raid_disks = mddev->raid_disks + mddev->delta_disks;
3228
3229         if (raid_disks < conf->raid_disks) {
3230                 cnt=0;
3231                 for (d= 0; d < conf->raid_disks; d++)
3232                         if (conf->mirrors[d].rdev)
3233                                 cnt++;
3234                 if (cnt > raid_disks)
3235                         return -EBUSY;
3236         }
3237
3238         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3239         if (!newpoolinfo)
3240                 return -ENOMEM;
3241         newpoolinfo->mddev = mddev;
3242         newpoolinfo->raid_disks = raid_disks * 2;
3243
3244         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3245                            r1bio_pool_free, newpoolinfo);
3246         if (ret) {
3247                 kfree(newpoolinfo);
3248                 return ret;
3249         }
3250         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3251                                          raid_disks, 2),
3252                              GFP_KERNEL);
3253         if (!newmirrors) {
3254                 kfree(newpoolinfo);
3255                 mempool_exit(&newpool);
3256                 return -ENOMEM;
3257         }
3258
3259         freeze_array(conf, 0);
3260
3261         /* ok, everything is stopped */
3262         oldpool = conf->r1bio_pool;
3263         conf->r1bio_pool = newpool;
3264
3265         for (d = d2 = 0; d < conf->raid_disks; d++) {
3266                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3267                 if (rdev && rdev->raid_disk != d2) {
3268                         sysfs_unlink_rdev(mddev, rdev);
3269                         rdev->raid_disk = d2;
3270                         sysfs_unlink_rdev(mddev, rdev);
3271                         if (sysfs_link_rdev(mddev, rdev))
3272                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3273                                         mdname(mddev), rdev->raid_disk);
3274                 }
3275                 if (rdev)
3276                         newmirrors[d2++].rdev = rdev;
3277         }
3278         kfree(conf->mirrors);
3279         conf->mirrors = newmirrors;
3280         kfree(conf->poolinfo);
3281         conf->poolinfo = newpoolinfo;
3282
3283         spin_lock_irqsave(&conf->device_lock, flags);
3284         mddev->degraded += (raid_disks - conf->raid_disks);
3285         spin_unlock_irqrestore(&conf->device_lock, flags);
3286         conf->raid_disks = mddev->raid_disks = raid_disks;
3287         mddev->delta_disks = 0;
3288
3289         unfreeze_array(conf);
3290
3291         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3292         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3293         md_wakeup_thread(mddev->thread);
3294
3295         mempool_exit(&oldpool);
3296         return 0;
3297 }
3298
3299 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3300 {
3301         struct r1conf *conf = mddev->private;
3302
3303         if (quiesce)
3304                 freeze_array(conf, 0);
3305         else
3306                 unfreeze_array(conf);
3307 }
3308
3309 static void *raid1_takeover(struct mddev *mddev)
3310 {
3311         /* raid1 can take over:
3312          *  raid5 with 2 devices, any layout or chunk size
3313          */
3314         if (mddev->level == 5 && mddev->raid_disks == 2) {
3315                 struct r1conf *conf;
3316                 mddev->new_level = 1;
3317                 mddev->new_layout = 0;
3318                 mddev->new_chunk_sectors = 0;
3319                 conf = setup_conf(mddev);
3320                 if (!IS_ERR(conf)) {
3321                         /* Array must appear to be quiesced */
3322                         conf->array_frozen = 1;
3323                         mddev_clear_unsupported_flags(mddev,
3324                                 UNSUPPORTED_MDDEV_FLAGS);
3325                 }
3326                 return conf;
3327         }
3328         return ERR_PTR(-EINVAL);
3329 }
3330
3331 static struct md_personality raid1_personality =
3332 {
3333         .name           = "raid1",
3334         .level          = 1,
3335         .owner          = THIS_MODULE,
3336         .make_request   = raid1_make_request,
3337         .run            = raid1_run,
3338         .free           = raid1_free,
3339         .status         = raid1_status,
3340         .error_handler  = raid1_error,
3341         .hot_add_disk   = raid1_add_disk,
3342         .hot_remove_disk= raid1_remove_disk,
3343         .spare_active   = raid1_spare_active,
3344         .sync_request   = raid1_sync_request,
3345         .resize         = raid1_resize,
3346         .size           = raid1_size,
3347         .check_reshape  = raid1_reshape,
3348         .quiesce        = raid1_quiesce,
3349         .takeover       = raid1_takeover,
3350         .congested      = raid1_congested,
3351 };
3352
3353 static int __init raid_init(void)
3354 {
3355         return register_md_personality(&raid1_personality);
3356 }
3357
3358 static void raid_exit(void)
3359 {
3360         unregister_md_personality(&raid1_personality);
3361 }
3362
3363 module_init(raid_init);
3364 module_exit(raid_exit);
3365 MODULE_LICENSE("GPL");
3366 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3367 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3368 MODULE_ALIAS("md-raid1");
3369 MODULE_ALIAS("md-level-1");
3370
3371 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);