Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct work_struct worker;
244         struct workqueue_struct *wq;
245         struct throttle throttle;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263
264         process_bio_fn process_bio;
265         process_bio_fn process_discard;
266
267         process_cell_fn process_cell;
268         process_cell_fn process_discard_cell;
269
270         process_mapping_fn process_prepared_mapping;
271         process_mapping_fn process_prepared_discard;
272         process_mapping_fn process_prepared_discard_pt2;
273
274         struct dm_bio_prison_cell **cell_sort_array;
275
276         mempool_t mapping_pool;
277 };
278
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286         struct dm_target *ti;
287         struct pool *pool;
288         struct dm_dev *data_dev;
289         struct dm_dev *metadata_dev;
290         struct dm_target_callbacks callbacks;
291
292         dm_block_t low_water_blocks;
293         struct pool_features requested_pf; /* Features requested during table load */
294         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301         struct list_head list;
302         struct dm_dev *pool_dev;
303         struct dm_dev *origin_dev;
304         sector_t origin_size;
305         dm_thin_id dev_id;
306
307         struct pool *pool;
308         struct dm_thin_device *td;
309         struct mapped_device *thin_md;
310
311         bool requeue_mode:1;
312         spinlock_t lock;
313         struct list_head deferred_cells;
314         struct bio_list deferred_bio_list;
315         struct bio_list retry_on_resume_list;
316         struct rb_root sort_bio_list; /* sorted list of deferred bios */
317
318         /*
319          * Ensures the thin is not destroyed until the worker has finished
320          * iterating the active_thins list.
321          */
322         atomic_t refcount;
323         struct completion can_destroy;
324 };
325
326 /*----------------------------------------------------------------*/
327
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330         return pool->sectors_per_block_shift >= 0;
331 }
332
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335         return block_size_is_power_of_two(pool) ?
336                 (b << pool->sectors_per_block_shift) :
337                 (b * pool->sectors_per_block);
338 }
339
340 /*----------------------------------------------------------------*/
341
342 struct discard_op {
343         struct thin_c *tc;
344         struct blk_plug plug;
345         struct bio *parent_bio;
346         struct bio *bio;
347 };
348
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351         BUG_ON(!parent);
352
353         op->tc = tc;
354         blk_start_plug(&op->plug);
355         op->parent_bio = parent;
356         op->bio = NULL;
357 }
358
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361         struct thin_c *tc = op->tc;
362         sector_t s = block_to_sectors(tc->pool, data_b);
363         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364
365         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366                                       GFP_NOWAIT, 0, &op->bio);
367 }
368
369 static void end_discard(struct discard_op *op, int r)
370 {
371         if (op->bio) {
372                 /*
373                  * Even if one of the calls to issue_discard failed, we
374                  * need to wait for the chain to complete.
375                  */
376                 bio_chain(op->bio, op->parent_bio);
377                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378                 submit_bio(op->bio);
379         }
380
381         blk_finish_plug(&op->plug);
382
383         /*
384          * Even if r is set, there could be sub discards in flight that we
385          * need to wait for.
386          */
387         if (r && !op->parent_bio->bi_status)
388                 op->parent_bio->bi_status = errno_to_blk_status(r);
389         bio_endio(op->parent_bio);
390 }
391
392 /*----------------------------------------------------------------*/
393
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400         queue_work(pool->wq, &pool->worker);
401 }
402
403 /*----------------------------------------------------------------*/
404
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406                       struct dm_bio_prison_cell **cell_result)
407 {
408         int r;
409         struct dm_bio_prison_cell *cell_prealloc;
410
411         /*
412          * Allocate a cell from the prison's mempool.
413          * This might block but it can't fail.
414          */
415         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416
417         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418         if (r)
419                 /*
420                  * We reused an old cell; we can get rid of
421                  * the new one.
422                  */
423                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424
425         return r;
426 }
427
428 static void cell_release(struct pool *pool,
429                          struct dm_bio_prison_cell *cell,
430                          struct bio_list *bios)
431 {
432         dm_cell_release(pool->prison, cell, bios);
433         dm_bio_prison_free_cell(pool->prison, cell);
434 }
435
436 static void cell_visit_release(struct pool *pool,
437                                void (*fn)(void *, struct dm_bio_prison_cell *),
438                                void *context,
439                                struct dm_bio_prison_cell *cell)
440 {
441         dm_cell_visit_release(pool->prison, fn, context, cell);
442         dm_bio_prison_free_cell(pool->prison, cell);
443 }
444
445 static void cell_release_no_holder(struct pool *pool,
446                                    struct dm_bio_prison_cell *cell,
447                                    struct bio_list *bios)
448 {
449         dm_cell_release_no_holder(pool->prison, cell, bios);
450         dm_bio_prison_free_cell(pool->prison, cell);
451 }
452
453 static void cell_error_with_code(struct pool *pool,
454                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456         dm_cell_error(pool->prison, cell, error_code);
457         dm_bio_prison_free_cell(pool->prison, cell);
458 }
459
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472         cell_error_with_code(pool, cell, 0);
473 }
474
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479
480 /*----------------------------------------------------------------*/
481
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486         struct mutex mutex;
487         struct list_head pools;
488 } dm_thin_pool_table;
489
490 static void pool_table_init(void)
491 {
492         mutex_init(&dm_thin_pool_table.mutex);
493         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495
496 static void pool_table_exit(void)
497 {
498         mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500
501 static void __pool_table_insert(struct pool *pool)
502 {
503         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504         list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506
507 static void __pool_table_remove(struct pool *pool)
508 {
509         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510         list_del(&pool->list);
511 }
512
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515         struct pool *pool = NULL, *tmp;
516
517         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518
519         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520                 if (tmp->pool_md == md) {
521                         pool = tmp;
522                         break;
523                 }
524         }
525
526         return pool;
527 }
528
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531         struct pool *pool = NULL, *tmp;
532
533         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534
535         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536                 if (tmp->md_dev == md_dev) {
537                         pool = tmp;
538                         break;
539                 }
540         }
541
542         return pool;
543 }
544
545 /*----------------------------------------------------------------*/
546
547 struct dm_thin_endio_hook {
548         struct thin_c *tc;
549         struct dm_deferred_entry *shared_read_entry;
550         struct dm_deferred_entry *all_io_entry;
551         struct dm_thin_new_mapping *overwrite_mapping;
552         struct rb_node rb_node;
553         struct dm_bio_prison_cell *cell;
554 };
555
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558         bio_list_merge(bios, master);
559         bio_list_init(master);
560 }
561
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564         struct bio *bio;
565
566         while ((bio = bio_list_pop(bios))) {
567                 bio->bi_status = error;
568                 bio_endio(bio);
569         }
570 }
571
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573                 blk_status_t error)
574 {
575         struct bio_list bios;
576         unsigned long flags;
577
578         bio_list_init(&bios);
579
580         spin_lock_irqsave(&tc->lock, flags);
581         __merge_bio_list(&bios, master);
582         spin_unlock_irqrestore(&tc->lock, flags);
583
584         error_bio_list(&bios, error);
585 }
586
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589         struct pool *pool = tc->pool;
590         unsigned long flags;
591         struct list_head cells;
592         struct dm_bio_prison_cell *cell, *tmp;
593
594         INIT_LIST_HEAD(&cells);
595
596         spin_lock_irqsave(&tc->lock, flags);
597         list_splice_init(&tc->deferred_cells, &cells);
598         spin_unlock_irqrestore(&tc->lock, flags);
599
600         list_for_each_entry_safe(cell, tmp, &cells, user_list)
601                 cell_requeue(pool, cell);
602 }
603
604 static void requeue_io(struct thin_c *tc)
605 {
606         struct bio_list bios;
607         unsigned long flags;
608
609         bio_list_init(&bios);
610
611         spin_lock_irqsave(&tc->lock, flags);
612         __merge_bio_list(&bios, &tc->deferred_bio_list);
613         __merge_bio_list(&bios, &tc->retry_on_resume_list);
614         spin_unlock_irqrestore(&tc->lock, flags);
615
616         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617         requeue_deferred_cells(tc);
618 }
619
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622         struct thin_c *tc;
623
624         rcu_read_lock();
625         list_for_each_entry_rcu(tc, &pool->active_thins, list)
626                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627         rcu_read_unlock();
628 }
629
630 static void error_retry_list(struct pool *pool)
631 {
632         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644         struct pool *pool = tc->pool;
645         sector_t block_nr = bio->bi_iter.bi_sector;
646
647         if (block_size_is_power_of_two(pool))
648                 block_nr >>= pool->sectors_per_block_shift;
649         else
650                 (void) sector_div(block_nr, pool->sectors_per_block);
651
652         return block_nr;
653 }
654
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659                                 dm_block_t *begin, dm_block_t *end)
660 {
661         struct pool *pool = tc->pool;
662         sector_t b = bio->bi_iter.bi_sector;
663         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664
665         b += pool->sectors_per_block - 1ull; /* so we round up */
666
667         if (block_size_is_power_of_two(pool)) {
668                 b >>= pool->sectors_per_block_shift;
669                 e >>= pool->sectors_per_block_shift;
670         } else {
671                 (void) sector_div(b, pool->sectors_per_block);
672                 (void) sector_div(e, pool->sectors_per_block);
673         }
674
675         if (e < b)
676                 /* Can happen if the bio is within a single block. */
677                 e = b;
678
679         *begin = b;
680         *end = e;
681 }
682
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685         struct pool *pool = tc->pool;
686         sector_t bi_sector = bio->bi_iter.bi_sector;
687
688         bio_set_dev(bio, tc->pool_dev->bdev);
689         if (block_size_is_power_of_two(pool))
690                 bio->bi_iter.bi_sector =
691                         (block << pool->sectors_per_block_shift) |
692                         (bi_sector & (pool->sectors_per_block - 1));
693         else
694                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695                                  sector_div(bi_sector, pool->sectors_per_block);
696 }
697
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700         bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705         return op_is_flush(bio->bi_opf) &&
706                 dm_thin_changed_this_transaction(tc->td);
707 }
708
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711         struct dm_thin_endio_hook *h;
712
713         if (bio_op(bio) == REQ_OP_DISCARD)
714                 return;
715
716         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722         struct pool *pool = tc->pool;
723         unsigned long flags;
724
725         if (!bio_triggers_commit(tc, bio)) {
726                 generic_make_request(bio);
727                 return;
728         }
729
730         /*
731          * Complete bio with an error if earlier I/O caused changes to
732          * the metadata that can't be committed e.g, due to I/O errors
733          * on the metadata device.
734          */
735         if (dm_thin_aborted_changes(tc->td)) {
736                 bio_io_error(bio);
737                 return;
738         }
739
740         /*
741          * Batch together any bios that trigger commits and then issue a
742          * single commit for them in process_deferred_bios().
743          */
744         spin_lock_irqsave(&pool->lock, flags);
745         bio_list_add(&pool->deferred_flush_bios, bio);
746         spin_unlock_irqrestore(&pool->lock, flags);
747 }
748
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751         remap_to_origin(tc, bio);
752         issue(tc, bio);
753 }
754
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756                             dm_block_t block)
757 {
758         remap(tc, bio, block);
759         issue(tc, bio);
760 }
761
762 /*----------------------------------------------------------------*/
763
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768         struct list_head list;
769
770         bool pass_discard:1;
771         bool maybe_shared:1;
772
773         /*
774          * Track quiescing, copying and zeroing preparation actions.  When this
775          * counter hits zero the block is prepared and can be inserted into the
776          * btree.
777          */
778         atomic_t prepare_actions;
779
780         blk_status_t status;
781         struct thin_c *tc;
782         dm_block_t virt_begin, virt_end;
783         dm_block_t data_block;
784         struct dm_bio_prison_cell *cell;
785
786         /*
787          * If the bio covers the whole area of a block then we can avoid
788          * zeroing or copying.  Instead this bio is hooked.  The bio will
789          * still be in the cell, so care has to be taken to avoid issuing
790          * the bio twice.
791          */
792         struct bio *bio;
793         bio_end_io_t *saved_bi_end_io;
794 };
795
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798         struct pool *pool = m->tc->pool;
799
800         if (atomic_dec_and_test(&m->prepare_actions)) {
801                 list_add_tail(&m->list, &pool->prepared_mappings);
802                 wake_worker(pool);
803         }
804 }
805
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808         unsigned long flags;
809         struct pool *pool = m->tc->pool;
810
811         spin_lock_irqsave(&pool->lock, flags);
812         __complete_mapping_preparation(m);
813         spin_unlock_irqrestore(&pool->lock, flags);
814 }
815
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818         struct dm_thin_new_mapping *m = context;
819
820         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821         complete_mapping_preparation(m);
822 }
823
824 static void overwrite_endio(struct bio *bio)
825 {
826         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827         struct dm_thin_new_mapping *m = h->overwrite_mapping;
828
829         bio->bi_end_io = m->saved_bi_end_io;
830
831         m->status = bio->bi_status;
832         complete_mapping_preparation(m);
833 }
834
835 /*----------------------------------------------------------------*/
836
837 /*
838  * Workqueue.
839  */
840
841 /*
842  * Prepared mapping jobs.
843  */
844
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851         struct pool *pool = tc->pool;
852         unsigned long flags;
853
854         spin_lock_irqsave(&tc->lock, flags);
855         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856         spin_unlock_irqrestore(&tc->lock, flags);
857
858         wake_worker(pool);
859 }
860
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862
863 struct remap_info {
864         struct thin_c *tc;
865         struct bio_list defer_bios;
866         struct bio_list issue_bios;
867 };
868
869 static void __inc_remap_and_issue_cell(void *context,
870                                        struct dm_bio_prison_cell *cell)
871 {
872         struct remap_info *info = context;
873         struct bio *bio;
874
875         while ((bio = bio_list_pop(&cell->bios))) {
876                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877                         bio_list_add(&info->defer_bios, bio);
878                 else {
879                         inc_all_io_entry(info->tc->pool, bio);
880
881                         /*
882                          * We can't issue the bios with the bio prison lock
883                          * held, so we add them to a list to issue on
884                          * return from this function.
885                          */
886                         bio_list_add(&info->issue_bios, bio);
887                 }
888         }
889 }
890
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892                                      struct dm_bio_prison_cell *cell,
893                                      dm_block_t block)
894 {
895         struct bio *bio;
896         struct remap_info info;
897
898         info.tc = tc;
899         bio_list_init(&info.defer_bios);
900         bio_list_init(&info.issue_bios);
901
902         /*
903          * We have to be careful to inc any bios we're about to issue
904          * before the cell is released, and avoid a race with new bios
905          * being added to the cell.
906          */
907         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908                            &info, cell);
909
910         while ((bio = bio_list_pop(&info.defer_bios)))
911                 thin_defer_bio(tc, bio);
912
913         while ((bio = bio_list_pop(&info.issue_bios)))
914                 remap_and_issue(info.tc, bio, block);
915 }
916
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919         cell_error(m->tc->pool, m->cell);
920         list_del(&m->list);
921         mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926         struct thin_c *tc = m->tc;
927         struct pool *pool = tc->pool;
928         struct bio *bio = m->bio;
929         int r;
930
931         if (m->status) {
932                 cell_error(pool, m->cell);
933                 goto out;
934         }
935
936         /*
937          * Commit the prepared block into the mapping btree.
938          * Any I/O for this block arriving after this point will get
939          * remapped to it directly.
940          */
941         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942         if (r) {
943                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
944                 cell_error(pool, m->cell);
945                 goto out;
946         }
947
948         /*
949          * Release any bios held while the block was being provisioned.
950          * If we are processing a write bio that completely covers the block,
951          * we already processed it so can ignore it now when processing
952          * the bios in the cell.
953          */
954         if (bio) {
955                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956                 bio_endio(bio);
957         } else {
958                 inc_all_io_entry(tc->pool, m->cell->holder);
959                 remap_and_issue(tc, m->cell->holder, m->data_block);
960                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961         }
962
963 out:
964         list_del(&m->list);
965         mempool_free(m, &pool->mapping_pool);
966 }
967
968 /*----------------------------------------------------------------*/
969
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972         struct thin_c *tc = m->tc;
973         if (m->cell)
974                 cell_defer_no_holder(tc, m->cell);
975         mempool_free(m, &tc->pool->mapping_pool);
976 }
977
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980         bio_io_error(m->bio);
981         free_discard_mapping(m);
982 }
983
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986         bio_endio(m->bio);
987         free_discard_mapping(m);
988 }
989
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992         int r;
993         struct thin_c *tc = m->tc;
994
995         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996         if (r) {
997                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998                 bio_io_error(m->bio);
999         } else
1000                 bio_endio(m->bio);
1001
1002         cell_defer_no_holder(tc, m->cell);
1003         mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005
1006 /*----------------------------------------------------------------*/
1007
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009                                                    struct bio *discard_parent)
1010 {
1011         /*
1012          * We've already unmapped this range of blocks, but before we
1013          * passdown we have to check that these blocks are now unused.
1014          */
1015         int r = 0;
1016         bool used = true;
1017         struct thin_c *tc = m->tc;
1018         struct pool *pool = tc->pool;
1019         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020         struct discard_op op;
1021
1022         begin_discard(&op, tc, discard_parent);
1023         while (b != end) {
1024                 /* find start of unmapped run */
1025                 for (; b < end; b++) {
1026                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1027                         if (r)
1028                                 goto out;
1029
1030                         if (!used)
1031                                 break;
1032                 }
1033
1034                 if (b == end)
1035                         break;
1036
1037                 /* find end of run */
1038                 for (e = b + 1; e != end; e++) {
1039                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1040                         if (r)
1041                                 goto out;
1042
1043                         if (used)
1044                                 break;
1045                 }
1046
1047                 r = issue_discard(&op, b, e);
1048                 if (r)
1049                         goto out;
1050
1051                 b = e;
1052         }
1053 out:
1054         end_discard(&op, r);
1055 }
1056
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059         unsigned long flags;
1060         struct pool *pool = m->tc->pool;
1061
1062         spin_lock_irqsave(&pool->lock, flags);
1063         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064         spin_unlock_irqrestore(&pool->lock, flags);
1065         wake_worker(pool);
1066 }
1067
1068 static void passdown_endio(struct bio *bio)
1069 {
1070         /*
1071          * It doesn't matter if the passdown discard failed, we still want
1072          * to unmap (we ignore err).
1073          */
1074         queue_passdown_pt2(bio->bi_private);
1075         bio_put(bio);
1076 }
1077
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080         int r;
1081         struct thin_c *tc = m->tc;
1082         struct pool *pool = tc->pool;
1083         struct bio *discard_parent;
1084         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085
1086         /*
1087          * Only this thread allocates blocks, so we can be sure that the
1088          * newly unmapped blocks will not be allocated before the end of
1089          * the function.
1090          */
1091         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092         if (r) {
1093                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094                 bio_io_error(m->bio);
1095                 cell_defer_no_holder(tc, m->cell);
1096                 mempool_free(m, &pool->mapping_pool);
1097                 return;
1098         }
1099
1100         /*
1101          * Increment the unmapped blocks.  This prevents a race between the
1102          * passdown io and reallocation of freed blocks.
1103          */
1104         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105         if (r) {
1106                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107                 bio_io_error(m->bio);
1108                 cell_defer_no_holder(tc, m->cell);
1109                 mempool_free(m, &pool->mapping_pool);
1110                 return;
1111         }
1112
1113         discard_parent = bio_alloc(GFP_NOIO, 1);
1114         if (!discard_parent) {
1115                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116                        dm_device_name(tc->pool->pool_md));
1117                 queue_passdown_pt2(m);
1118
1119         } else {
1120                 discard_parent->bi_end_io = passdown_endio;
1121                 discard_parent->bi_private = m;
1122
1123                 if (m->maybe_shared)
1124                         passdown_double_checking_shared_status(m, discard_parent);
1125                 else {
1126                         struct discard_op op;
1127
1128                         begin_discard(&op, tc, discard_parent);
1129                         r = issue_discard(&op, m->data_block, data_end);
1130                         end_discard(&op, r);
1131                 }
1132         }
1133 }
1134
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137         int r;
1138         struct thin_c *tc = m->tc;
1139         struct pool *pool = tc->pool;
1140
1141         /*
1142          * The passdown has completed, so now we can decrement all those
1143          * unmapped blocks.
1144          */
1145         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146                                    m->data_block + (m->virt_end - m->virt_begin));
1147         if (r) {
1148                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149                 bio_io_error(m->bio);
1150         } else
1151                 bio_endio(m->bio);
1152
1153         cell_defer_no_holder(tc, m->cell);
1154         mempool_free(m, &pool->mapping_pool);
1155 }
1156
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158                              process_mapping_fn *fn)
1159 {
1160         unsigned long flags;
1161         struct list_head maps;
1162         struct dm_thin_new_mapping *m, *tmp;
1163
1164         INIT_LIST_HEAD(&maps);
1165         spin_lock_irqsave(&pool->lock, flags);
1166         list_splice_init(head, &maps);
1167         spin_unlock_irqrestore(&pool->lock, flags);
1168
1169         list_for_each_entry_safe(m, tmp, &maps, list)
1170                 (*fn)(m);
1171 }
1172
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178         return bio->bi_iter.bi_size ==
1179                 (pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184         return (bio_data_dir(bio) == WRITE) &&
1185                 io_overlaps_block(pool, bio);
1186 }
1187
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189                                bio_end_io_t *fn)
1190 {
1191         *save = bio->bi_end_io;
1192         bio->bi_end_io = fn;
1193 }
1194
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197         if (pool->next_mapping)
1198                 return 0;
1199
1200         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201
1202         return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207         struct dm_thin_new_mapping *m = pool->next_mapping;
1208
1209         BUG_ON(!pool->next_mapping);
1210
1211         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212         INIT_LIST_HEAD(&m->list);
1213         m->bio = NULL;
1214
1215         pool->next_mapping = NULL;
1216
1217         return m;
1218 }
1219
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221                     sector_t begin, sector_t end)
1222 {
1223         int r;
1224         struct dm_io_region to;
1225
1226         to.bdev = tc->pool_dev->bdev;
1227         to.sector = begin;
1228         to.count = end - begin;
1229
1230         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1231         if (r < 0) {
1232                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1233                 copy_complete(1, 1, m);
1234         }
1235 }
1236
1237 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1238                                       dm_block_t data_begin,
1239                                       struct dm_thin_new_mapping *m)
1240 {
1241         struct pool *pool = tc->pool;
1242         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1243
1244         h->overwrite_mapping = m;
1245         m->bio = bio;
1246         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1247         inc_all_io_entry(pool, bio);
1248         remap_and_issue(tc, bio, data_begin);
1249 }
1250
1251 /*
1252  * A partial copy also needs to zero the uncopied region.
1253  */
1254 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1255                           struct dm_dev *origin, dm_block_t data_origin,
1256                           dm_block_t data_dest,
1257                           struct dm_bio_prison_cell *cell, struct bio *bio,
1258                           sector_t len)
1259 {
1260         int r;
1261         struct pool *pool = tc->pool;
1262         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263
1264         m->tc = tc;
1265         m->virt_begin = virt_block;
1266         m->virt_end = virt_block + 1u;
1267         m->data_block = data_dest;
1268         m->cell = cell;
1269
1270         /*
1271          * quiesce action + copy action + an extra reference held for the
1272          * duration of this function (we may need to inc later for a
1273          * partial zero).
1274          */
1275         atomic_set(&m->prepare_actions, 3);
1276
1277         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278                 complete_mapping_preparation(m); /* already quiesced */
1279
1280         /*
1281          * IO to pool_dev remaps to the pool target's data_dev.
1282          *
1283          * If the whole block of data is being overwritten, we can issue the
1284          * bio immediately. Otherwise we use kcopyd to clone the data first.
1285          */
1286         if (io_overwrites_block(pool, bio))
1287                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1288         else {
1289                 struct dm_io_region from, to;
1290
1291                 from.bdev = origin->bdev;
1292                 from.sector = data_origin * pool->sectors_per_block;
1293                 from.count = len;
1294
1295                 to.bdev = tc->pool_dev->bdev;
1296                 to.sector = data_dest * pool->sectors_per_block;
1297                 to.count = len;
1298
1299                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300                                    0, copy_complete, m);
1301                 if (r < 0) {
1302                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1303                         copy_complete(1, 1, m);
1304
1305                         /*
1306                          * We allow the zero to be issued, to simplify the
1307                          * error path.  Otherwise we'd need to start
1308                          * worrying about decrementing the prepare_actions
1309                          * counter.
1310                          */
1311                 }
1312
1313                 /*
1314                  * Do we need to zero a tail region?
1315                  */
1316                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1317                         atomic_inc(&m->prepare_actions);
1318                         ll_zero(tc, m,
1319                                 data_dest * pool->sectors_per_block + len,
1320                                 (data_dest + 1) * pool->sectors_per_block);
1321                 }
1322         }
1323
1324         complete_mapping_preparation(m); /* drop our ref */
1325 }
1326
1327 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1328                                    dm_block_t data_origin, dm_block_t data_dest,
1329                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331         schedule_copy(tc, virt_block, tc->pool_dev,
1332                       data_origin, data_dest, cell, bio,
1333                       tc->pool->sectors_per_block);
1334 }
1335
1336 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1337                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1338                           struct bio *bio)
1339 {
1340         struct pool *pool = tc->pool;
1341         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1342
1343         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1344         m->tc = tc;
1345         m->virt_begin = virt_block;
1346         m->virt_end = virt_block + 1u;
1347         m->data_block = data_block;
1348         m->cell = cell;
1349
1350         /*
1351          * If the whole block of data is being overwritten or we are not
1352          * zeroing pre-existing data, we can issue the bio immediately.
1353          * Otherwise we use kcopyd to zero the data first.
1354          */
1355         if (pool->pf.zero_new_blocks) {
1356                 if (io_overwrites_block(pool, bio))
1357                         remap_and_issue_overwrite(tc, bio, data_block, m);
1358                 else
1359                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1360                                 (data_block + 1) * pool->sectors_per_block);
1361         } else
1362                 process_prepared_mapping(m);
1363 }
1364
1365 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1366                                    dm_block_t data_dest,
1367                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1368 {
1369         struct pool *pool = tc->pool;
1370         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1371         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1372
1373         if (virt_block_end <= tc->origin_size)
1374                 schedule_copy(tc, virt_block, tc->origin_dev,
1375                               virt_block, data_dest, cell, bio,
1376                               pool->sectors_per_block);
1377
1378         else if (virt_block_begin < tc->origin_size)
1379                 schedule_copy(tc, virt_block, tc->origin_dev,
1380                               virt_block, data_dest, cell, bio,
1381                               tc->origin_size - virt_block_begin);
1382
1383         else
1384                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1385 }
1386
1387 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1388
1389 static void requeue_bios(struct pool *pool);
1390
1391 static void check_for_space(struct pool *pool)
1392 {
1393         int r;
1394         dm_block_t nr_free;
1395
1396         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1397                 return;
1398
1399         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1400         if (r)
1401                 return;
1402
1403         if (nr_free) {
1404                 set_pool_mode(pool, PM_WRITE);
1405                 requeue_bios(pool);
1406         }
1407 }
1408
1409 /*
1410  * A non-zero return indicates read_only or fail_io mode.
1411  * Many callers don't care about the return value.
1412  */
1413 static int commit(struct pool *pool)
1414 {
1415         int r;
1416
1417         if (get_pool_mode(pool) >= PM_READ_ONLY)
1418                 return -EINVAL;
1419
1420         r = dm_pool_commit_metadata(pool->pmd);
1421         if (r)
1422                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1423         else
1424                 check_for_space(pool);
1425
1426         return r;
1427 }
1428
1429 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1430 {
1431         unsigned long flags;
1432
1433         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1434                 DMWARN("%s: reached low water mark for data device: sending event.",
1435                        dm_device_name(pool->pool_md));
1436                 spin_lock_irqsave(&pool->lock, flags);
1437                 pool->low_water_triggered = true;
1438                 spin_unlock_irqrestore(&pool->lock, flags);
1439                 dm_table_event(pool->ti->table);
1440         }
1441 }
1442
1443 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1444 {
1445         int r;
1446         dm_block_t free_blocks;
1447         struct pool *pool = tc->pool;
1448
1449         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1450                 return -EINVAL;
1451
1452         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1453         if (r) {
1454                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1455                 return r;
1456         }
1457
1458         check_low_water_mark(pool, free_blocks);
1459
1460         if (!free_blocks) {
1461                 /*
1462                  * Try to commit to see if that will free up some
1463                  * more space.
1464                  */
1465                 r = commit(pool);
1466                 if (r)
1467                         return r;
1468
1469                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1470                 if (r) {
1471                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1472                         return r;
1473                 }
1474
1475                 if (!free_blocks) {
1476                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1477                         return -ENOSPC;
1478                 }
1479         }
1480
1481         r = dm_pool_alloc_data_block(pool->pmd, result);
1482         if (r) {
1483                 if (r == -ENOSPC)
1484                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1485                 else
1486                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1487                 return r;
1488         }
1489
1490         return 0;
1491 }
1492
1493 /*
1494  * If we have run out of space, queue bios until the device is
1495  * resumed, presumably after having been reloaded with more space.
1496  */
1497 static void retry_on_resume(struct bio *bio)
1498 {
1499         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1500         struct thin_c *tc = h->tc;
1501         unsigned long flags;
1502
1503         spin_lock_irqsave(&tc->lock, flags);
1504         bio_list_add(&tc->retry_on_resume_list, bio);
1505         spin_unlock_irqrestore(&tc->lock, flags);
1506 }
1507
1508 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1509 {
1510         enum pool_mode m = get_pool_mode(pool);
1511
1512         switch (m) {
1513         case PM_WRITE:
1514                 /* Shouldn't get here */
1515                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1516                 return BLK_STS_IOERR;
1517
1518         case PM_OUT_OF_DATA_SPACE:
1519                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1520
1521         case PM_READ_ONLY:
1522         case PM_FAIL:
1523                 return BLK_STS_IOERR;
1524         default:
1525                 /* Shouldn't get here */
1526                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1527                 return BLK_STS_IOERR;
1528         }
1529 }
1530
1531 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1532 {
1533         blk_status_t error = should_error_unserviceable_bio(pool);
1534
1535         if (error) {
1536                 bio->bi_status = error;
1537                 bio_endio(bio);
1538         } else
1539                 retry_on_resume(bio);
1540 }
1541
1542 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1543 {
1544         struct bio *bio;
1545         struct bio_list bios;
1546         blk_status_t error;
1547
1548         error = should_error_unserviceable_bio(pool);
1549         if (error) {
1550                 cell_error_with_code(pool, cell, error);
1551                 return;
1552         }
1553
1554         bio_list_init(&bios);
1555         cell_release(pool, cell, &bios);
1556
1557         while ((bio = bio_list_pop(&bios)))
1558                 retry_on_resume(bio);
1559 }
1560
1561 static void process_discard_cell_no_passdown(struct thin_c *tc,
1562                                              struct dm_bio_prison_cell *virt_cell)
1563 {
1564         struct pool *pool = tc->pool;
1565         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1566
1567         /*
1568          * We don't need to lock the data blocks, since there's no
1569          * passdown.  We only lock data blocks for allocation and breaking sharing.
1570          */
1571         m->tc = tc;
1572         m->virt_begin = virt_cell->key.block_begin;
1573         m->virt_end = virt_cell->key.block_end;
1574         m->cell = virt_cell;
1575         m->bio = virt_cell->holder;
1576
1577         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1578                 pool->process_prepared_discard(m);
1579 }
1580
1581 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1582                                  struct bio *bio)
1583 {
1584         struct pool *pool = tc->pool;
1585
1586         int r;
1587         bool maybe_shared;
1588         struct dm_cell_key data_key;
1589         struct dm_bio_prison_cell *data_cell;
1590         struct dm_thin_new_mapping *m;
1591         dm_block_t virt_begin, virt_end, data_begin;
1592
1593         while (begin != end) {
1594                 r = ensure_next_mapping(pool);
1595                 if (r)
1596                         /* we did our best */
1597                         return;
1598
1599                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1600                                               &data_begin, &maybe_shared);
1601                 if (r)
1602                         /*
1603                          * Silently fail, letting any mappings we've
1604                          * created complete.
1605                          */
1606                         break;
1607
1608                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1609                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1610                         /* contention, we'll give up with this range */
1611                         begin = virt_end;
1612                         continue;
1613                 }
1614
1615                 /*
1616                  * IO may still be going to the destination block.  We must
1617                  * quiesce before we can do the removal.
1618                  */
1619                 m = get_next_mapping(pool);
1620                 m->tc = tc;
1621                 m->maybe_shared = maybe_shared;
1622                 m->virt_begin = virt_begin;
1623                 m->virt_end = virt_end;
1624                 m->data_block = data_begin;
1625                 m->cell = data_cell;
1626                 m->bio = bio;
1627
1628                 /*
1629                  * The parent bio must not complete before sub discard bios are
1630                  * chained to it (see end_discard's bio_chain)!
1631                  *
1632                  * This per-mapping bi_remaining increment is paired with
1633                  * the implicit decrement that occurs via bio_endio() in
1634                  * end_discard().
1635                  */
1636                 bio_inc_remaining(bio);
1637                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1638                         pool->process_prepared_discard(m);
1639
1640                 begin = virt_end;
1641         }
1642 }
1643
1644 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1645 {
1646         struct bio *bio = virt_cell->holder;
1647         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1648
1649         /*
1650          * The virt_cell will only get freed once the origin bio completes.
1651          * This means it will remain locked while all the individual
1652          * passdown bios are in flight.
1653          */
1654         h->cell = virt_cell;
1655         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1656
1657         /*
1658          * We complete the bio now, knowing that the bi_remaining field
1659          * will prevent completion until the sub range discards have
1660          * completed.
1661          */
1662         bio_endio(bio);
1663 }
1664
1665 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1666 {
1667         dm_block_t begin, end;
1668         struct dm_cell_key virt_key;
1669         struct dm_bio_prison_cell *virt_cell;
1670
1671         get_bio_block_range(tc, bio, &begin, &end);
1672         if (begin == end) {
1673                 /*
1674                  * The discard covers less than a block.
1675                  */
1676                 bio_endio(bio);
1677                 return;
1678         }
1679
1680         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1681         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1682                 /*
1683                  * Potential starvation issue: We're relying on the
1684                  * fs/application being well behaved, and not trying to
1685                  * send IO to a region at the same time as discarding it.
1686                  * If they do this persistently then it's possible this
1687                  * cell will never be granted.
1688                  */
1689                 return;
1690
1691         tc->pool->process_discard_cell(tc, virt_cell);
1692 }
1693
1694 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1695                           struct dm_cell_key *key,
1696                           struct dm_thin_lookup_result *lookup_result,
1697                           struct dm_bio_prison_cell *cell)
1698 {
1699         int r;
1700         dm_block_t data_block;
1701         struct pool *pool = tc->pool;
1702
1703         r = alloc_data_block(tc, &data_block);
1704         switch (r) {
1705         case 0:
1706                 schedule_internal_copy(tc, block, lookup_result->block,
1707                                        data_block, cell, bio);
1708                 break;
1709
1710         case -ENOSPC:
1711                 retry_bios_on_resume(pool, cell);
1712                 break;
1713
1714         default:
1715                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1716                             __func__, r);
1717                 cell_error(pool, cell);
1718                 break;
1719         }
1720 }
1721
1722 static void __remap_and_issue_shared_cell(void *context,
1723                                           struct dm_bio_prison_cell *cell)
1724 {
1725         struct remap_info *info = context;
1726         struct bio *bio;
1727
1728         while ((bio = bio_list_pop(&cell->bios))) {
1729                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1730                     bio_op(bio) == REQ_OP_DISCARD)
1731                         bio_list_add(&info->defer_bios, bio);
1732                 else {
1733                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1734
1735                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1736                         inc_all_io_entry(info->tc->pool, bio);
1737                         bio_list_add(&info->issue_bios, bio);
1738                 }
1739         }
1740 }
1741
1742 static void remap_and_issue_shared_cell(struct thin_c *tc,
1743                                         struct dm_bio_prison_cell *cell,
1744                                         dm_block_t block)
1745 {
1746         struct bio *bio;
1747         struct remap_info info;
1748
1749         info.tc = tc;
1750         bio_list_init(&info.defer_bios);
1751         bio_list_init(&info.issue_bios);
1752
1753         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1754                            &info, cell);
1755
1756         while ((bio = bio_list_pop(&info.defer_bios)))
1757                 thin_defer_bio(tc, bio);
1758
1759         while ((bio = bio_list_pop(&info.issue_bios)))
1760                 remap_and_issue(tc, bio, block);
1761 }
1762
1763 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1764                                dm_block_t block,
1765                                struct dm_thin_lookup_result *lookup_result,
1766                                struct dm_bio_prison_cell *virt_cell)
1767 {
1768         struct dm_bio_prison_cell *data_cell;
1769         struct pool *pool = tc->pool;
1770         struct dm_cell_key key;
1771
1772         /*
1773          * If cell is already occupied, then sharing is already in the process
1774          * of being broken so we have nothing further to do here.
1775          */
1776         build_data_key(tc->td, lookup_result->block, &key);
1777         if (bio_detain(pool, &key, bio, &data_cell)) {
1778                 cell_defer_no_holder(tc, virt_cell);
1779                 return;
1780         }
1781
1782         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1783                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1784                 cell_defer_no_holder(tc, virt_cell);
1785         } else {
1786                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1787
1788                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1789                 inc_all_io_entry(pool, bio);
1790                 remap_and_issue(tc, bio, lookup_result->block);
1791
1792                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1793                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1794         }
1795 }
1796
1797 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1798                             struct dm_bio_prison_cell *cell)
1799 {
1800         int r;
1801         dm_block_t data_block;
1802         struct pool *pool = tc->pool;
1803
1804         /*
1805          * Remap empty bios (flushes) immediately, without provisioning.
1806          */
1807         if (!bio->bi_iter.bi_size) {
1808                 inc_all_io_entry(pool, bio);
1809                 cell_defer_no_holder(tc, cell);
1810
1811                 remap_and_issue(tc, bio, 0);
1812                 return;
1813         }
1814
1815         /*
1816          * Fill read bios with zeroes and complete them immediately.
1817          */
1818         if (bio_data_dir(bio) == READ) {
1819                 zero_fill_bio(bio);
1820                 cell_defer_no_holder(tc, cell);
1821                 bio_endio(bio);
1822                 return;
1823         }
1824
1825         r = alloc_data_block(tc, &data_block);
1826         switch (r) {
1827         case 0:
1828                 if (tc->origin_dev)
1829                         schedule_external_copy(tc, block, data_block, cell, bio);
1830                 else
1831                         schedule_zero(tc, block, data_block, cell, bio);
1832                 break;
1833
1834         case -ENOSPC:
1835                 retry_bios_on_resume(pool, cell);
1836                 break;
1837
1838         default:
1839                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1840                             __func__, r);
1841                 cell_error(pool, cell);
1842                 break;
1843         }
1844 }
1845
1846 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1847 {
1848         int r;
1849         struct pool *pool = tc->pool;
1850         struct bio *bio = cell->holder;
1851         dm_block_t block = get_bio_block(tc, bio);
1852         struct dm_thin_lookup_result lookup_result;
1853
1854         if (tc->requeue_mode) {
1855                 cell_requeue(pool, cell);
1856                 return;
1857         }
1858
1859         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1860         switch (r) {
1861         case 0:
1862                 if (lookup_result.shared)
1863                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1864                 else {
1865                         inc_all_io_entry(pool, bio);
1866                         remap_and_issue(tc, bio, lookup_result.block);
1867                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1868                 }
1869                 break;
1870
1871         case -ENODATA:
1872                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1873                         inc_all_io_entry(pool, bio);
1874                         cell_defer_no_holder(tc, cell);
1875
1876                         if (bio_end_sector(bio) <= tc->origin_size)
1877                                 remap_to_origin_and_issue(tc, bio);
1878
1879                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1880                                 zero_fill_bio(bio);
1881                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1882                                 remap_to_origin_and_issue(tc, bio);
1883
1884                         } else {
1885                                 zero_fill_bio(bio);
1886                                 bio_endio(bio);
1887                         }
1888                 } else
1889                         provision_block(tc, bio, block, cell);
1890                 break;
1891
1892         default:
1893                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1894                             __func__, r);
1895                 cell_defer_no_holder(tc, cell);
1896                 bio_io_error(bio);
1897                 break;
1898         }
1899 }
1900
1901 static void process_bio(struct thin_c *tc, struct bio *bio)
1902 {
1903         struct pool *pool = tc->pool;
1904         dm_block_t block = get_bio_block(tc, bio);
1905         struct dm_bio_prison_cell *cell;
1906         struct dm_cell_key key;
1907
1908         /*
1909          * If cell is already occupied, then the block is already
1910          * being provisioned so we have nothing further to do here.
1911          */
1912         build_virtual_key(tc->td, block, &key);
1913         if (bio_detain(pool, &key, bio, &cell))
1914                 return;
1915
1916         process_cell(tc, cell);
1917 }
1918
1919 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1920                                     struct dm_bio_prison_cell *cell)
1921 {
1922         int r;
1923         int rw = bio_data_dir(bio);
1924         dm_block_t block = get_bio_block(tc, bio);
1925         struct dm_thin_lookup_result lookup_result;
1926
1927         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1928         switch (r) {
1929         case 0:
1930                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1931                         handle_unserviceable_bio(tc->pool, bio);
1932                         if (cell)
1933                                 cell_defer_no_holder(tc, cell);
1934                 } else {
1935                         inc_all_io_entry(tc->pool, bio);
1936                         remap_and_issue(tc, bio, lookup_result.block);
1937                         if (cell)
1938                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1939                 }
1940                 break;
1941
1942         case -ENODATA:
1943                 if (cell)
1944                         cell_defer_no_holder(tc, cell);
1945                 if (rw != READ) {
1946                         handle_unserviceable_bio(tc->pool, bio);
1947                         break;
1948                 }
1949
1950                 if (tc->origin_dev) {
1951                         inc_all_io_entry(tc->pool, bio);
1952                         remap_to_origin_and_issue(tc, bio);
1953                         break;
1954                 }
1955
1956                 zero_fill_bio(bio);
1957                 bio_endio(bio);
1958                 break;
1959
1960         default:
1961                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1962                             __func__, r);
1963                 if (cell)
1964                         cell_defer_no_holder(tc, cell);
1965                 bio_io_error(bio);
1966                 break;
1967         }
1968 }
1969
1970 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1971 {
1972         __process_bio_read_only(tc, bio, NULL);
1973 }
1974
1975 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1976 {
1977         __process_bio_read_only(tc, cell->holder, cell);
1978 }
1979
1980 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1981 {
1982         bio_endio(bio);
1983 }
1984
1985 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1986 {
1987         bio_io_error(bio);
1988 }
1989
1990 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1991 {
1992         cell_success(tc->pool, cell);
1993 }
1994
1995 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1996 {
1997         cell_error(tc->pool, cell);
1998 }
1999
2000 /*
2001  * FIXME: should we also commit due to size of transaction, measured in
2002  * metadata blocks?
2003  */
2004 static int need_commit_due_to_time(struct pool *pool)
2005 {
2006         return !time_in_range(jiffies, pool->last_commit_jiffies,
2007                               pool->last_commit_jiffies + COMMIT_PERIOD);
2008 }
2009
2010 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2011 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2012
2013 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2014 {
2015         struct rb_node **rbp, *parent;
2016         struct dm_thin_endio_hook *pbd;
2017         sector_t bi_sector = bio->bi_iter.bi_sector;
2018
2019         rbp = &tc->sort_bio_list.rb_node;
2020         parent = NULL;
2021         while (*rbp) {
2022                 parent = *rbp;
2023                 pbd = thin_pbd(parent);
2024
2025                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2026                         rbp = &(*rbp)->rb_left;
2027                 else
2028                         rbp = &(*rbp)->rb_right;
2029         }
2030
2031         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2032         rb_link_node(&pbd->rb_node, parent, rbp);
2033         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2034 }
2035
2036 static void __extract_sorted_bios(struct thin_c *tc)
2037 {
2038         struct rb_node *node;
2039         struct dm_thin_endio_hook *pbd;
2040         struct bio *bio;
2041
2042         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2043                 pbd = thin_pbd(node);
2044                 bio = thin_bio(pbd);
2045
2046                 bio_list_add(&tc->deferred_bio_list, bio);
2047                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2048         }
2049
2050         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2051 }
2052
2053 static void __sort_thin_deferred_bios(struct thin_c *tc)
2054 {
2055         struct bio *bio;
2056         struct bio_list bios;
2057
2058         bio_list_init(&bios);
2059         bio_list_merge(&bios, &tc->deferred_bio_list);
2060         bio_list_init(&tc->deferred_bio_list);
2061
2062         /* Sort deferred_bio_list using rb-tree */
2063         while ((bio = bio_list_pop(&bios)))
2064                 __thin_bio_rb_add(tc, bio);
2065
2066         /*
2067          * Transfer the sorted bios in sort_bio_list back to
2068          * deferred_bio_list to allow lockless submission of
2069          * all bios.
2070          */
2071         __extract_sorted_bios(tc);
2072 }
2073
2074 static void process_thin_deferred_bios(struct thin_c *tc)
2075 {
2076         struct pool *pool = tc->pool;
2077         unsigned long flags;
2078         struct bio *bio;
2079         struct bio_list bios;
2080         struct blk_plug plug;
2081         unsigned count = 0;
2082
2083         if (tc->requeue_mode) {
2084                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2085                                 BLK_STS_DM_REQUEUE);
2086                 return;
2087         }
2088
2089         bio_list_init(&bios);
2090
2091         spin_lock_irqsave(&tc->lock, flags);
2092
2093         if (bio_list_empty(&tc->deferred_bio_list)) {
2094                 spin_unlock_irqrestore(&tc->lock, flags);
2095                 return;
2096         }
2097
2098         __sort_thin_deferred_bios(tc);
2099
2100         bio_list_merge(&bios, &tc->deferred_bio_list);
2101         bio_list_init(&tc->deferred_bio_list);
2102
2103         spin_unlock_irqrestore(&tc->lock, flags);
2104
2105         blk_start_plug(&plug);
2106         while ((bio = bio_list_pop(&bios))) {
2107                 /*
2108                  * If we've got no free new_mapping structs, and processing
2109                  * this bio might require one, we pause until there are some
2110                  * prepared mappings to process.
2111                  */
2112                 if (ensure_next_mapping(pool)) {
2113                         spin_lock_irqsave(&tc->lock, flags);
2114                         bio_list_add(&tc->deferred_bio_list, bio);
2115                         bio_list_merge(&tc->deferred_bio_list, &bios);
2116                         spin_unlock_irqrestore(&tc->lock, flags);
2117                         break;
2118                 }
2119
2120                 if (bio_op(bio) == REQ_OP_DISCARD)
2121                         pool->process_discard(tc, bio);
2122                 else
2123                         pool->process_bio(tc, bio);
2124
2125                 if ((count++ & 127) == 0) {
2126                         throttle_work_update(&pool->throttle);
2127                         dm_pool_issue_prefetches(pool->pmd);
2128                 }
2129         }
2130         blk_finish_plug(&plug);
2131 }
2132
2133 static int cmp_cells(const void *lhs, const void *rhs)
2134 {
2135         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2136         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2137
2138         BUG_ON(!lhs_cell->holder);
2139         BUG_ON(!rhs_cell->holder);
2140
2141         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2142                 return -1;
2143
2144         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2145                 return 1;
2146
2147         return 0;
2148 }
2149
2150 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2151 {
2152         unsigned count = 0;
2153         struct dm_bio_prison_cell *cell, *tmp;
2154
2155         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2156                 if (count >= CELL_SORT_ARRAY_SIZE)
2157                         break;
2158
2159                 pool->cell_sort_array[count++] = cell;
2160                 list_del(&cell->user_list);
2161         }
2162
2163         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2164
2165         return count;
2166 }
2167
2168 static void process_thin_deferred_cells(struct thin_c *tc)
2169 {
2170         struct pool *pool = tc->pool;
2171         unsigned long flags;
2172         struct list_head cells;
2173         struct dm_bio_prison_cell *cell;
2174         unsigned i, j, count;
2175
2176         INIT_LIST_HEAD(&cells);
2177
2178         spin_lock_irqsave(&tc->lock, flags);
2179         list_splice_init(&tc->deferred_cells, &cells);
2180         spin_unlock_irqrestore(&tc->lock, flags);
2181
2182         if (list_empty(&cells))
2183                 return;
2184
2185         do {
2186                 count = sort_cells(tc->pool, &cells);
2187
2188                 for (i = 0; i < count; i++) {
2189                         cell = pool->cell_sort_array[i];
2190                         BUG_ON(!cell->holder);
2191
2192                         /*
2193                          * If we've got no free new_mapping structs, and processing
2194                          * this bio might require one, we pause until there are some
2195                          * prepared mappings to process.
2196                          */
2197                         if (ensure_next_mapping(pool)) {
2198                                 for (j = i; j < count; j++)
2199                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2200
2201                                 spin_lock_irqsave(&tc->lock, flags);
2202                                 list_splice(&cells, &tc->deferred_cells);
2203                                 spin_unlock_irqrestore(&tc->lock, flags);
2204                                 return;
2205                         }
2206
2207                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2208                                 pool->process_discard_cell(tc, cell);
2209                         else
2210                                 pool->process_cell(tc, cell);
2211                 }
2212         } while (!list_empty(&cells));
2213 }
2214
2215 static void thin_get(struct thin_c *tc);
2216 static void thin_put(struct thin_c *tc);
2217
2218 /*
2219  * We can't hold rcu_read_lock() around code that can block.  So we
2220  * find a thin with the rcu lock held; bump a refcount; then drop
2221  * the lock.
2222  */
2223 static struct thin_c *get_first_thin(struct pool *pool)
2224 {
2225         struct thin_c *tc = NULL;
2226
2227         rcu_read_lock();
2228         if (!list_empty(&pool->active_thins)) {
2229                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2230                 thin_get(tc);
2231         }
2232         rcu_read_unlock();
2233
2234         return tc;
2235 }
2236
2237 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2238 {
2239         struct thin_c *old_tc = tc;
2240
2241         rcu_read_lock();
2242         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2243                 thin_get(tc);
2244                 thin_put(old_tc);
2245                 rcu_read_unlock();
2246                 return tc;
2247         }
2248         thin_put(old_tc);
2249         rcu_read_unlock();
2250
2251         return NULL;
2252 }
2253
2254 static void process_deferred_bios(struct pool *pool)
2255 {
2256         unsigned long flags;
2257         struct bio *bio;
2258         struct bio_list bios;
2259         struct thin_c *tc;
2260
2261         tc = get_first_thin(pool);
2262         while (tc) {
2263                 process_thin_deferred_cells(tc);
2264                 process_thin_deferred_bios(tc);
2265                 tc = get_next_thin(pool, tc);
2266         }
2267
2268         /*
2269          * If there are any deferred flush bios, we must commit
2270          * the metadata before issuing them.
2271          */
2272         bio_list_init(&bios);
2273         spin_lock_irqsave(&pool->lock, flags);
2274         bio_list_merge(&bios, &pool->deferred_flush_bios);
2275         bio_list_init(&pool->deferred_flush_bios);
2276         spin_unlock_irqrestore(&pool->lock, flags);
2277
2278         if (bio_list_empty(&bios) &&
2279             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2280                 return;
2281
2282         if (commit(pool)) {
2283                 while ((bio = bio_list_pop(&bios)))
2284                         bio_io_error(bio);
2285                 return;
2286         }
2287         pool->last_commit_jiffies = jiffies;
2288
2289         while ((bio = bio_list_pop(&bios)))
2290                 generic_make_request(bio);
2291 }
2292
2293 static void do_worker(struct work_struct *ws)
2294 {
2295         struct pool *pool = container_of(ws, struct pool, worker);
2296
2297         throttle_work_start(&pool->throttle);
2298         dm_pool_issue_prefetches(pool->pmd);
2299         throttle_work_update(&pool->throttle);
2300         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2301         throttle_work_update(&pool->throttle);
2302         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2303         throttle_work_update(&pool->throttle);
2304         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2305         throttle_work_update(&pool->throttle);
2306         process_deferred_bios(pool);
2307         throttle_work_complete(&pool->throttle);
2308 }
2309
2310 /*
2311  * We want to commit periodically so that not too much
2312  * unwritten data builds up.
2313  */
2314 static void do_waker(struct work_struct *ws)
2315 {
2316         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2317         wake_worker(pool);
2318         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2319 }
2320
2321 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2322
2323 /*
2324  * We're holding onto IO to allow userland time to react.  After the
2325  * timeout either the pool will have been resized (and thus back in
2326  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2327  */
2328 static void do_no_space_timeout(struct work_struct *ws)
2329 {
2330         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2331                                          no_space_timeout);
2332
2333         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2334                 pool->pf.error_if_no_space = true;
2335                 notify_of_pool_mode_change_to_oods(pool);
2336                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2337         }
2338 }
2339
2340 /*----------------------------------------------------------------*/
2341
2342 struct pool_work {
2343         struct work_struct worker;
2344         struct completion complete;
2345 };
2346
2347 static struct pool_work *to_pool_work(struct work_struct *ws)
2348 {
2349         return container_of(ws, struct pool_work, worker);
2350 }
2351
2352 static void pool_work_complete(struct pool_work *pw)
2353 {
2354         complete(&pw->complete);
2355 }
2356
2357 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2358                            void (*fn)(struct work_struct *))
2359 {
2360         INIT_WORK_ONSTACK(&pw->worker, fn);
2361         init_completion(&pw->complete);
2362         queue_work(pool->wq, &pw->worker);
2363         wait_for_completion(&pw->complete);
2364 }
2365
2366 /*----------------------------------------------------------------*/
2367
2368 struct noflush_work {
2369         struct pool_work pw;
2370         struct thin_c *tc;
2371 };
2372
2373 static struct noflush_work *to_noflush(struct work_struct *ws)
2374 {
2375         return container_of(to_pool_work(ws), struct noflush_work, pw);
2376 }
2377
2378 static void do_noflush_start(struct work_struct *ws)
2379 {
2380         struct noflush_work *w = to_noflush(ws);
2381         w->tc->requeue_mode = true;
2382         requeue_io(w->tc);
2383         pool_work_complete(&w->pw);
2384 }
2385
2386 static void do_noflush_stop(struct work_struct *ws)
2387 {
2388         struct noflush_work *w = to_noflush(ws);
2389         w->tc->requeue_mode = false;
2390         pool_work_complete(&w->pw);
2391 }
2392
2393 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2394 {
2395         struct noflush_work w;
2396
2397         w.tc = tc;
2398         pool_work_wait(&w.pw, tc->pool, fn);
2399 }
2400
2401 /*----------------------------------------------------------------*/
2402
2403 static enum pool_mode get_pool_mode(struct pool *pool)
2404 {
2405         return pool->pf.mode;
2406 }
2407
2408 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2409 {
2410         dm_table_event(pool->ti->table);
2411         DMINFO("%s: switching pool to %s mode",
2412                dm_device_name(pool->pool_md), new_mode);
2413 }
2414
2415 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2416 {
2417         if (!pool->pf.error_if_no_space)
2418                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2419         else
2420                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2421 }
2422
2423 static bool passdown_enabled(struct pool_c *pt)
2424 {
2425         return pt->adjusted_pf.discard_passdown;
2426 }
2427
2428 static void set_discard_callbacks(struct pool *pool)
2429 {
2430         struct pool_c *pt = pool->ti->private;
2431
2432         if (passdown_enabled(pt)) {
2433                 pool->process_discard_cell = process_discard_cell_passdown;
2434                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2435                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2436         } else {
2437                 pool->process_discard_cell = process_discard_cell_no_passdown;
2438                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2439         }
2440 }
2441
2442 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2443 {
2444         struct pool_c *pt = pool->ti->private;
2445         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2446         enum pool_mode old_mode = get_pool_mode(pool);
2447         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2448
2449         /*
2450          * Never allow the pool to transition to PM_WRITE mode if user
2451          * intervention is required to verify metadata and data consistency.
2452          */
2453         if (new_mode == PM_WRITE && needs_check) {
2454                 DMERR("%s: unable to switch pool to write mode until repaired.",
2455                       dm_device_name(pool->pool_md));
2456                 if (old_mode != new_mode)
2457                         new_mode = old_mode;
2458                 else
2459                         new_mode = PM_READ_ONLY;
2460         }
2461         /*
2462          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2463          * not going to recover without a thin_repair.  So we never let the
2464          * pool move out of the old mode.
2465          */
2466         if (old_mode == PM_FAIL)
2467                 new_mode = old_mode;
2468
2469         switch (new_mode) {
2470         case PM_FAIL:
2471                 if (old_mode != new_mode)
2472                         notify_of_pool_mode_change(pool, "failure");
2473                 dm_pool_metadata_read_only(pool->pmd);
2474                 pool->process_bio = process_bio_fail;
2475                 pool->process_discard = process_bio_fail;
2476                 pool->process_cell = process_cell_fail;
2477                 pool->process_discard_cell = process_cell_fail;
2478                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2479                 pool->process_prepared_discard = process_prepared_discard_fail;
2480
2481                 error_retry_list(pool);
2482                 break;
2483
2484         case PM_READ_ONLY:
2485                 if (old_mode != new_mode)
2486                         notify_of_pool_mode_change(pool, "read-only");
2487                 dm_pool_metadata_read_only(pool->pmd);
2488                 pool->process_bio = process_bio_read_only;
2489                 pool->process_discard = process_bio_success;
2490                 pool->process_cell = process_cell_read_only;
2491                 pool->process_discard_cell = process_cell_success;
2492                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2493                 pool->process_prepared_discard = process_prepared_discard_success;
2494
2495                 error_retry_list(pool);
2496                 break;
2497
2498         case PM_OUT_OF_DATA_SPACE:
2499                 /*
2500                  * Ideally we'd never hit this state; the low water mark
2501                  * would trigger userland to extend the pool before we
2502                  * completely run out of data space.  However, many small
2503                  * IOs to unprovisioned space can consume data space at an
2504                  * alarming rate.  Adjust your low water mark if you're
2505                  * frequently seeing this mode.
2506                  */
2507                 if (old_mode != new_mode)
2508                         notify_of_pool_mode_change_to_oods(pool);
2509                 pool->out_of_data_space = true;
2510                 pool->process_bio = process_bio_read_only;
2511                 pool->process_discard = process_discard_bio;
2512                 pool->process_cell = process_cell_read_only;
2513                 pool->process_prepared_mapping = process_prepared_mapping;
2514                 set_discard_callbacks(pool);
2515
2516                 if (!pool->pf.error_if_no_space && no_space_timeout)
2517                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2518                 break;
2519
2520         case PM_WRITE:
2521                 if (old_mode != new_mode)
2522                         notify_of_pool_mode_change(pool, "write");
2523                 pool->out_of_data_space = false;
2524                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2525                 dm_pool_metadata_read_write(pool->pmd);
2526                 pool->process_bio = process_bio;
2527                 pool->process_discard = process_discard_bio;
2528                 pool->process_cell = process_cell;
2529                 pool->process_prepared_mapping = process_prepared_mapping;
2530                 set_discard_callbacks(pool);
2531                 break;
2532         }
2533
2534         pool->pf.mode = new_mode;
2535         /*
2536          * The pool mode may have changed, sync it so bind_control_target()
2537          * doesn't cause an unexpected mode transition on resume.
2538          */
2539         pt->adjusted_pf.mode = new_mode;
2540 }
2541
2542 static void abort_transaction(struct pool *pool)
2543 {
2544         const char *dev_name = dm_device_name(pool->pool_md);
2545
2546         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2547         if (dm_pool_abort_metadata(pool->pmd)) {
2548                 DMERR("%s: failed to abort metadata transaction", dev_name);
2549                 set_pool_mode(pool, PM_FAIL);
2550         }
2551
2552         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2553                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2554                 set_pool_mode(pool, PM_FAIL);
2555         }
2556 }
2557
2558 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2559 {
2560         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2561                     dm_device_name(pool->pool_md), op, r);
2562
2563         abort_transaction(pool);
2564         set_pool_mode(pool, PM_READ_ONLY);
2565 }
2566
2567 /*----------------------------------------------------------------*/
2568
2569 /*
2570  * Mapping functions.
2571  */
2572
2573 /*
2574  * Called only while mapping a thin bio to hand it over to the workqueue.
2575  */
2576 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2577 {
2578         unsigned long flags;
2579         struct pool *pool = tc->pool;
2580
2581         spin_lock_irqsave(&tc->lock, flags);
2582         bio_list_add(&tc->deferred_bio_list, bio);
2583         spin_unlock_irqrestore(&tc->lock, flags);
2584
2585         wake_worker(pool);
2586 }
2587
2588 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2589 {
2590         struct pool *pool = tc->pool;
2591
2592         throttle_lock(&pool->throttle);
2593         thin_defer_bio(tc, bio);
2594         throttle_unlock(&pool->throttle);
2595 }
2596
2597 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2598 {
2599         unsigned long flags;
2600         struct pool *pool = tc->pool;
2601
2602         throttle_lock(&pool->throttle);
2603         spin_lock_irqsave(&tc->lock, flags);
2604         list_add_tail(&cell->user_list, &tc->deferred_cells);
2605         spin_unlock_irqrestore(&tc->lock, flags);
2606         throttle_unlock(&pool->throttle);
2607
2608         wake_worker(pool);
2609 }
2610
2611 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2612 {
2613         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2614
2615         h->tc = tc;
2616         h->shared_read_entry = NULL;
2617         h->all_io_entry = NULL;
2618         h->overwrite_mapping = NULL;
2619         h->cell = NULL;
2620 }
2621
2622 /*
2623  * Non-blocking function called from the thin target's map function.
2624  */
2625 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2626 {
2627         int r;
2628         struct thin_c *tc = ti->private;
2629         dm_block_t block = get_bio_block(tc, bio);
2630         struct dm_thin_device *td = tc->td;
2631         struct dm_thin_lookup_result result;
2632         struct dm_bio_prison_cell *virt_cell, *data_cell;
2633         struct dm_cell_key key;
2634
2635         thin_hook_bio(tc, bio);
2636
2637         if (tc->requeue_mode) {
2638                 bio->bi_status = BLK_STS_DM_REQUEUE;
2639                 bio_endio(bio);
2640                 return DM_MAPIO_SUBMITTED;
2641         }
2642
2643         if (get_pool_mode(tc->pool) == PM_FAIL) {
2644                 bio_io_error(bio);
2645                 return DM_MAPIO_SUBMITTED;
2646         }
2647
2648         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2649                 thin_defer_bio_with_throttle(tc, bio);
2650                 return DM_MAPIO_SUBMITTED;
2651         }
2652
2653         /*
2654          * We must hold the virtual cell before doing the lookup, otherwise
2655          * there's a race with discard.
2656          */
2657         build_virtual_key(tc->td, block, &key);
2658         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2659                 return DM_MAPIO_SUBMITTED;
2660
2661         r = dm_thin_find_block(td, block, 0, &result);
2662
2663         /*
2664          * Note that we defer readahead too.
2665          */
2666         switch (r) {
2667         case 0:
2668                 if (unlikely(result.shared)) {
2669                         /*
2670                          * We have a race condition here between the
2671                          * result.shared value returned by the lookup and
2672                          * snapshot creation, which may cause new
2673                          * sharing.
2674                          *
2675                          * To avoid this always quiesce the origin before
2676                          * taking the snap.  You want to do this anyway to
2677                          * ensure a consistent application view
2678                          * (i.e. lockfs).
2679                          *
2680                          * More distant ancestors are irrelevant. The
2681                          * shared flag will be set in their case.
2682                          */
2683                         thin_defer_cell(tc, virt_cell);
2684                         return DM_MAPIO_SUBMITTED;
2685                 }
2686
2687                 build_data_key(tc->td, result.block, &key);
2688                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2689                         cell_defer_no_holder(tc, virt_cell);
2690                         return DM_MAPIO_SUBMITTED;
2691                 }
2692
2693                 inc_all_io_entry(tc->pool, bio);
2694                 cell_defer_no_holder(tc, data_cell);
2695                 cell_defer_no_holder(tc, virt_cell);
2696
2697                 remap(tc, bio, result.block);
2698                 return DM_MAPIO_REMAPPED;
2699
2700         case -ENODATA:
2701         case -EWOULDBLOCK:
2702                 thin_defer_cell(tc, virt_cell);
2703                 return DM_MAPIO_SUBMITTED;
2704
2705         default:
2706                 /*
2707                  * Must always call bio_io_error on failure.
2708                  * dm_thin_find_block can fail with -EINVAL if the
2709                  * pool is switched to fail-io mode.
2710                  */
2711                 bio_io_error(bio);
2712                 cell_defer_no_holder(tc, virt_cell);
2713                 return DM_MAPIO_SUBMITTED;
2714         }
2715 }
2716
2717 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2718 {
2719         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2720         struct request_queue *q;
2721
2722         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2723                 return 1;
2724
2725         q = bdev_get_queue(pt->data_dev->bdev);
2726         return bdi_congested(q->backing_dev_info, bdi_bits);
2727 }
2728
2729 static void requeue_bios(struct pool *pool)
2730 {
2731         unsigned long flags;
2732         struct thin_c *tc;
2733
2734         rcu_read_lock();
2735         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2736                 spin_lock_irqsave(&tc->lock, flags);
2737                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2738                 bio_list_init(&tc->retry_on_resume_list);
2739                 spin_unlock_irqrestore(&tc->lock, flags);
2740         }
2741         rcu_read_unlock();
2742 }
2743
2744 /*----------------------------------------------------------------
2745  * Binding of control targets to a pool object
2746  *--------------------------------------------------------------*/
2747 static bool data_dev_supports_discard(struct pool_c *pt)
2748 {
2749         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2750
2751         return q && blk_queue_discard(q);
2752 }
2753
2754 static bool is_factor(sector_t block_size, uint32_t n)
2755 {
2756         return !sector_div(block_size, n);
2757 }
2758
2759 /*
2760  * If discard_passdown was enabled verify that the data device
2761  * supports discards.  Disable discard_passdown if not.
2762  */
2763 static void disable_passdown_if_not_supported(struct pool_c *pt)
2764 {
2765         struct pool *pool = pt->pool;
2766         struct block_device *data_bdev = pt->data_dev->bdev;
2767         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2768         const char *reason = NULL;
2769         char buf[BDEVNAME_SIZE];
2770
2771         if (!pt->adjusted_pf.discard_passdown)
2772                 return;
2773
2774         if (!data_dev_supports_discard(pt))
2775                 reason = "discard unsupported";
2776
2777         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2778                 reason = "max discard sectors smaller than a block";
2779
2780         if (reason) {
2781                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2782                 pt->adjusted_pf.discard_passdown = false;
2783         }
2784 }
2785
2786 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2787 {
2788         struct pool_c *pt = ti->private;
2789
2790         /*
2791          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2792          */
2793         enum pool_mode old_mode = get_pool_mode(pool);
2794         enum pool_mode new_mode = pt->adjusted_pf.mode;
2795
2796         /*
2797          * Don't change the pool's mode until set_pool_mode() below.
2798          * Otherwise the pool's process_* function pointers may
2799          * not match the desired pool mode.
2800          */
2801         pt->adjusted_pf.mode = old_mode;
2802
2803         pool->ti = ti;
2804         pool->pf = pt->adjusted_pf;
2805         pool->low_water_blocks = pt->low_water_blocks;
2806
2807         set_pool_mode(pool, new_mode);
2808
2809         return 0;
2810 }
2811
2812 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2813 {
2814         if (pool->ti == ti)
2815                 pool->ti = NULL;
2816 }
2817
2818 /*----------------------------------------------------------------
2819  * Pool creation
2820  *--------------------------------------------------------------*/
2821 /* Initialize pool features. */
2822 static void pool_features_init(struct pool_features *pf)
2823 {
2824         pf->mode = PM_WRITE;
2825         pf->zero_new_blocks = true;
2826         pf->discard_enabled = true;
2827         pf->discard_passdown = true;
2828         pf->error_if_no_space = false;
2829 }
2830
2831 static void __pool_destroy(struct pool *pool)
2832 {
2833         __pool_table_remove(pool);
2834
2835         vfree(pool->cell_sort_array);
2836         if (dm_pool_metadata_close(pool->pmd) < 0)
2837                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2838
2839         dm_bio_prison_destroy(pool->prison);
2840         dm_kcopyd_client_destroy(pool->copier);
2841
2842         if (pool->wq)
2843                 destroy_workqueue(pool->wq);
2844
2845         if (pool->next_mapping)
2846                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2847         mempool_exit(&pool->mapping_pool);
2848         dm_deferred_set_destroy(pool->shared_read_ds);
2849         dm_deferred_set_destroy(pool->all_io_ds);
2850         kfree(pool);
2851 }
2852
2853 static struct kmem_cache *_new_mapping_cache;
2854
2855 static struct pool *pool_create(struct mapped_device *pool_md,
2856                                 struct block_device *metadata_dev,
2857                                 unsigned long block_size,
2858                                 int read_only, char **error)
2859 {
2860         int r;
2861         void *err_p;
2862         struct pool *pool;
2863         struct dm_pool_metadata *pmd;
2864         bool format_device = read_only ? false : true;
2865
2866         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2867         if (IS_ERR(pmd)) {
2868                 *error = "Error creating metadata object";
2869                 return (struct pool *)pmd;
2870         }
2871
2872         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2873         if (!pool) {
2874                 *error = "Error allocating memory for pool";
2875                 err_p = ERR_PTR(-ENOMEM);
2876                 goto bad_pool;
2877         }
2878
2879         pool->pmd = pmd;
2880         pool->sectors_per_block = block_size;
2881         if (block_size & (block_size - 1))
2882                 pool->sectors_per_block_shift = -1;
2883         else
2884                 pool->sectors_per_block_shift = __ffs(block_size);
2885         pool->low_water_blocks = 0;
2886         pool_features_init(&pool->pf);
2887         pool->prison = dm_bio_prison_create();
2888         if (!pool->prison) {
2889                 *error = "Error creating pool's bio prison";
2890                 err_p = ERR_PTR(-ENOMEM);
2891                 goto bad_prison;
2892         }
2893
2894         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895         if (IS_ERR(pool->copier)) {
2896                 r = PTR_ERR(pool->copier);
2897                 *error = "Error creating pool's kcopyd client";
2898                 err_p = ERR_PTR(r);
2899                 goto bad_kcopyd_client;
2900         }
2901
2902         /*
2903          * Create singlethreaded workqueue that will service all devices
2904          * that use this metadata.
2905          */
2906         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2907         if (!pool->wq) {
2908                 *error = "Error creating pool's workqueue";
2909                 err_p = ERR_PTR(-ENOMEM);
2910                 goto bad_wq;
2911         }
2912
2913         throttle_init(&pool->throttle);
2914         INIT_WORK(&pool->worker, do_worker);
2915         INIT_DELAYED_WORK(&pool->waker, do_waker);
2916         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2917         spin_lock_init(&pool->lock);
2918         bio_list_init(&pool->deferred_flush_bios);
2919         INIT_LIST_HEAD(&pool->prepared_mappings);
2920         INIT_LIST_HEAD(&pool->prepared_discards);
2921         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2922         INIT_LIST_HEAD(&pool->active_thins);
2923         pool->low_water_triggered = false;
2924         pool->suspended = true;
2925         pool->out_of_data_space = false;
2926
2927         pool->shared_read_ds = dm_deferred_set_create();
2928         if (!pool->shared_read_ds) {
2929                 *error = "Error creating pool's shared read deferred set";
2930                 err_p = ERR_PTR(-ENOMEM);
2931                 goto bad_shared_read_ds;
2932         }
2933
2934         pool->all_io_ds = dm_deferred_set_create();
2935         if (!pool->all_io_ds) {
2936                 *error = "Error creating pool's all io deferred set";
2937                 err_p = ERR_PTR(-ENOMEM);
2938                 goto bad_all_io_ds;
2939         }
2940
2941         pool->next_mapping = NULL;
2942         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2943                                    _new_mapping_cache);
2944         if (r) {
2945                 *error = "Error creating pool's mapping mempool";
2946                 err_p = ERR_PTR(r);
2947                 goto bad_mapping_pool;
2948         }
2949
2950         pool->cell_sort_array =
2951                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2952                                    sizeof(*pool->cell_sort_array)));
2953         if (!pool->cell_sort_array) {
2954                 *error = "Error allocating cell sort array";
2955                 err_p = ERR_PTR(-ENOMEM);
2956                 goto bad_sort_array;
2957         }
2958
2959         pool->ref_count = 1;
2960         pool->last_commit_jiffies = jiffies;
2961         pool->pool_md = pool_md;
2962         pool->md_dev = metadata_dev;
2963         __pool_table_insert(pool);
2964
2965         return pool;
2966
2967 bad_sort_array:
2968         mempool_exit(&pool->mapping_pool);
2969 bad_mapping_pool:
2970         dm_deferred_set_destroy(pool->all_io_ds);
2971 bad_all_io_ds:
2972         dm_deferred_set_destroy(pool->shared_read_ds);
2973 bad_shared_read_ds:
2974         destroy_workqueue(pool->wq);
2975 bad_wq:
2976         dm_kcopyd_client_destroy(pool->copier);
2977 bad_kcopyd_client:
2978         dm_bio_prison_destroy(pool->prison);
2979 bad_prison:
2980         kfree(pool);
2981 bad_pool:
2982         if (dm_pool_metadata_close(pmd))
2983                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2984
2985         return err_p;
2986 }
2987
2988 static void __pool_inc(struct pool *pool)
2989 {
2990         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2991         pool->ref_count++;
2992 }
2993
2994 static void __pool_dec(struct pool *pool)
2995 {
2996         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2997         BUG_ON(!pool->ref_count);
2998         if (!--pool->ref_count)
2999                 __pool_destroy(pool);
3000 }
3001
3002 static struct pool *__pool_find(struct mapped_device *pool_md,
3003                                 struct block_device *metadata_dev,
3004                                 unsigned long block_size, int read_only,
3005                                 char **error, int *created)
3006 {
3007         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3008
3009         if (pool) {
3010                 if (pool->pool_md != pool_md) {
3011                         *error = "metadata device already in use by a pool";
3012                         return ERR_PTR(-EBUSY);
3013                 }
3014                 __pool_inc(pool);
3015
3016         } else {
3017                 pool = __pool_table_lookup(pool_md);
3018                 if (pool) {
3019                         if (pool->md_dev != metadata_dev) {
3020                                 *error = "different pool cannot replace a pool";
3021                                 return ERR_PTR(-EINVAL);
3022                         }
3023                         __pool_inc(pool);
3024
3025                 } else {
3026                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3027                         *created = 1;
3028                 }
3029         }
3030
3031         return pool;
3032 }
3033
3034 /*----------------------------------------------------------------
3035  * Pool target methods
3036  *--------------------------------------------------------------*/
3037 static void pool_dtr(struct dm_target *ti)
3038 {
3039         struct pool_c *pt = ti->private;
3040
3041         mutex_lock(&dm_thin_pool_table.mutex);
3042
3043         unbind_control_target(pt->pool, ti);
3044         __pool_dec(pt->pool);
3045         dm_put_device(ti, pt->metadata_dev);
3046         dm_put_device(ti, pt->data_dev);
3047         kfree(pt);
3048
3049         mutex_unlock(&dm_thin_pool_table.mutex);
3050 }
3051
3052 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3053                                struct dm_target *ti)
3054 {
3055         int r;
3056         unsigned argc;
3057         const char *arg_name;
3058
3059         static const struct dm_arg _args[] = {
3060                 {0, 4, "Invalid number of pool feature arguments"},
3061         };
3062
3063         /*
3064          * No feature arguments supplied.
3065          */
3066         if (!as->argc)
3067                 return 0;
3068
3069         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3070         if (r)
3071                 return -EINVAL;
3072
3073         while (argc && !r) {
3074                 arg_name = dm_shift_arg(as);
3075                 argc--;
3076
3077                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3078                         pf->zero_new_blocks = false;
3079
3080                 else if (!strcasecmp(arg_name, "ignore_discard"))
3081                         pf->discard_enabled = false;
3082
3083                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3084                         pf->discard_passdown = false;
3085
3086                 else if (!strcasecmp(arg_name, "read_only"))
3087                         pf->mode = PM_READ_ONLY;
3088
3089                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3090                         pf->error_if_no_space = true;
3091
3092                 else {
3093                         ti->error = "Unrecognised pool feature requested";
3094                         r = -EINVAL;
3095                         break;
3096                 }
3097         }
3098
3099         return r;
3100 }
3101
3102 static void metadata_low_callback(void *context)
3103 {
3104         struct pool *pool = context;
3105
3106         DMWARN("%s: reached low water mark for metadata device: sending event.",
3107                dm_device_name(pool->pool_md));
3108
3109         dm_table_event(pool->ti->table);
3110 }
3111
3112 static sector_t get_dev_size(struct block_device *bdev)
3113 {
3114         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3115 }
3116
3117 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3118 {
3119         sector_t metadata_dev_size = get_dev_size(bdev);
3120         char buffer[BDEVNAME_SIZE];
3121
3122         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3123                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3124                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3125 }
3126
3127 static sector_t get_metadata_dev_size(struct block_device *bdev)
3128 {
3129         sector_t metadata_dev_size = get_dev_size(bdev);
3130
3131         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3132                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3133
3134         return metadata_dev_size;
3135 }
3136
3137 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3138 {
3139         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3140
3141         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3142
3143         return metadata_dev_size;
3144 }
3145
3146 /*
3147  * When a metadata threshold is crossed a dm event is triggered, and
3148  * userland should respond by growing the metadata device.  We could let
3149  * userland set the threshold, like we do with the data threshold, but I'm
3150  * not sure they know enough to do this well.
3151  */
3152 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3153 {
3154         /*
3155          * 4M is ample for all ops with the possible exception of thin
3156          * device deletion which is harmless if it fails (just retry the
3157          * delete after you've grown the device).
3158          */
3159         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3160         return min((dm_block_t)1024ULL /* 4M */, quarter);
3161 }
3162
3163 /*
3164  * thin-pool <metadata dev> <data dev>
3165  *           <data block size (sectors)>
3166  *           <low water mark (blocks)>
3167  *           [<#feature args> [<arg>]*]
3168  *
3169  * Optional feature arguments are:
3170  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3171  *           ignore_discard: disable discard
3172  *           no_discard_passdown: don't pass discards down to the data device
3173  *           read_only: Don't allow any changes to be made to the pool metadata.
3174  *           error_if_no_space: error IOs, instead of queueing, if no space.
3175  */
3176 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3177 {
3178         int r, pool_created = 0;
3179         struct pool_c *pt;
3180         struct pool *pool;
3181         struct pool_features pf;
3182         struct dm_arg_set as;
3183         struct dm_dev *data_dev;
3184         unsigned long block_size;
3185         dm_block_t low_water_blocks;
3186         struct dm_dev *metadata_dev;
3187         fmode_t metadata_mode;
3188
3189         /*
3190          * FIXME Remove validation from scope of lock.
3191          */
3192         mutex_lock(&dm_thin_pool_table.mutex);
3193
3194         if (argc < 4) {
3195                 ti->error = "Invalid argument count";
3196                 r = -EINVAL;
3197                 goto out_unlock;
3198         }
3199
3200         as.argc = argc;
3201         as.argv = argv;
3202
3203         /*
3204          * Set default pool features.
3205          */
3206         pool_features_init(&pf);
3207
3208         dm_consume_args(&as, 4);
3209         r = parse_pool_features(&as, &pf, ti);
3210         if (r)
3211                 goto out_unlock;
3212
3213         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3214         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3215         if (r) {
3216                 ti->error = "Error opening metadata block device";
3217                 goto out_unlock;
3218         }
3219         warn_if_metadata_device_too_big(metadata_dev->bdev);
3220
3221         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3222         if (r) {
3223                 ti->error = "Error getting data device";
3224                 goto out_metadata;
3225         }
3226
3227         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3228             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3229             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3230             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3231                 ti->error = "Invalid block size";
3232                 r = -EINVAL;
3233                 goto out;
3234         }
3235
3236         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3237                 ti->error = "Invalid low water mark";
3238                 r = -EINVAL;
3239                 goto out;
3240         }
3241
3242         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3243         if (!pt) {
3244                 r = -ENOMEM;
3245                 goto out;
3246         }
3247
3248         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3249                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3250         if (IS_ERR(pool)) {
3251                 r = PTR_ERR(pool);
3252                 goto out_free_pt;
3253         }
3254
3255         /*
3256          * 'pool_created' reflects whether this is the first table load.
3257          * Top level discard support is not allowed to be changed after
3258          * initial load.  This would require a pool reload to trigger thin
3259          * device changes.
3260          */
3261         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3262                 ti->error = "Discard support cannot be disabled once enabled";
3263                 r = -EINVAL;
3264                 goto out_flags_changed;
3265         }
3266
3267         pt->pool = pool;
3268         pt->ti = ti;
3269         pt->metadata_dev = metadata_dev;
3270         pt->data_dev = data_dev;
3271         pt->low_water_blocks = low_water_blocks;
3272         pt->adjusted_pf = pt->requested_pf = pf;
3273         ti->num_flush_bios = 1;
3274
3275         /*
3276          * Only need to enable discards if the pool should pass
3277          * them down to the data device.  The thin device's discard
3278          * processing will cause mappings to be removed from the btree.
3279          */
3280         if (pf.discard_enabled && pf.discard_passdown) {
3281                 ti->num_discard_bios = 1;
3282
3283                 /*
3284                  * Setting 'discards_supported' circumvents the normal
3285                  * stacking of discard limits (this keeps the pool and
3286                  * thin devices' discard limits consistent).
3287                  */
3288                 ti->discards_supported = true;
3289         }
3290         ti->private = pt;
3291
3292         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3293                                                 calc_metadata_threshold(pt),
3294                                                 metadata_low_callback,
3295                                                 pool);
3296         if (r)
3297                 goto out_flags_changed;
3298
3299         pt->callbacks.congested_fn = pool_is_congested;
3300         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3301
3302         mutex_unlock(&dm_thin_pool_table.mutex);
3303
3304         return 0;
3305
3306 out_flags_changed:
3307         __pool_dec(pool);
3308 out_free_pt:
3309         kfree(pt);
3310 out:
3311         dm_put_device(ti, data_dev);
3312 out_metadata:
3313         dm_put_device(ti, metadata_dev);
3314 out_unlock:
3315         mutex_unlock(&dm_thin_pool_table.mutex);
3316
3317         return r;
3318 }
3319
3320 static int pool_map(struct dm_target *ti, struct bio *bio)
3321 {
3322         int r;
3323         struct pool_c *pt = ti->private;
3324         struct pool *pool = pt->pool;
3325         unsigned long flags;
3326
3327         /*
3328          * As this is a singleton target, ti->begin is always zero.
3329          */
3330         spin_lock_irqsave(&pool->lock, flags);
3331         bio_set_dev(bio, pt->data_dev->bdev);
3332         r = DM_MAPIO_REMAPPED;
3333         spin_unlock_irqrestore(&pool->lock, flags);
3334
3335         return r;
3336 }
3337
3338 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3339 {
3340         int r;
3341         struct pool_c *pt = ti->private;
3342         struct pool *pool = pt->pool;
3343         sector_t data_size = ti->len;
3344         dm_block_t sb_data_size;
3345
3346         *need_commit = false;
3347
3348         (void) sector_div(data_size, pool->sectors_per_block);
3349
3350         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3351         if (r) {
3352                 DMERR("%s: failed to retrieve data device size",
3353                       dm_device_name(pool->pool_md));
3354                 return r;
3355         }
3356
3357         if (data_size < sb_data_size) {
3358                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3359                       dm_device_name(pool->pool_md),
3360                       (unsigned long long)data_size, sb_data_size);
3361                 return -EINVAL;
3362
3363         } else if (data_size > sb_data_size) {
3364                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3365                         DMERR("%s: unable to grow the data device until repaired.",
3366                               dm_device_name(pool->pool_md));
3367                         return 0;
3368                 }
3369
3370                 if (sb_data_size)
3371                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3372                                dm_device_name(pool->pool_md),
3373                                sb_data_size, (unsigned long long)data_size);
3374                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3375                 if (r) {
3376                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3377                         return r;
3378                 }
3379
3380                 *need_commit = true;
3381         }
3382
3383         return 0;
3384 }
3385
3386 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3387 {
3388         int r;
3389         struct pool_c *pt = ti->private;
3390         struct pool *pool = pt->pool;
3391         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3392
3393         *need_commit = false;
3394
3395         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3396
3397         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3398         if (r) {
3399                 DMERR("%s: failed to retrieve metadata device size",
3400                       dm_device_name(pool->pool_md));
3401                 return r;
3402         }
3403
3404         if (metadata_dev_size < sb_metadata_dev_size) {
3405                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3406                       dm_device_name(pool->pool_md),
3407                       metadata_dev_size, sb_metadata_dev_size);
3408                 return -EINVAL;
3409
3410         } else if (metadata_dev_size > sb_metadata_dev_size) {
3411                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3412                         DMERR("%s: unable to grow the metadata device until repaired.",
3413                               dm_device_name(pool->pool_md));
3414                         return 0;
3415                 }
3416
3417                 warn_if_metadata_device_too_big(pool->md_dev);
3418                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3419                        dm_device_name(pool->pool_md),
3420                        sb_metadata_dev_size, metadata_dev_size);
3421                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3422                 if (r) {
3423                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3424                         return r;
3425                 }
3426
3427                 *need_commit = true;
3428         }
3429
3430         return 0;
3431 }
3432
3433 /*
3434  * Retrieves the number of blocks of the data device from
3435  * the superblock and compares it to the actual device size,
3436  * thus resizing the data device in case it has grown.
3437  *
3438  * This both copes with opening preallocated data devices in the ctr
3439  * being followed by a resume
3440  * -and-
3441  * calling the resume method individually after userspace has
3442  * grown the data device in reaction to a table event.
3443  */
3444 static int pool_preresume(struct dm_target *ti)
3445 {
3446         int r;
3447         bool need_commit1, need_commit2;
3448         struct pool_c *pt = ti->private;
3449         struct pool *pool = pt->pool;
3450
3451         /*
3452          * Take control of the pool object.
3453          */
3454         r = bind_control_target(pool, ti);
3455         if (r)
3456                 return r;
3457
3458         r = maybe_resize_data_dev(ti, &need_commit1);
3459         if (r)
3460                 return r;
3461
3462         r = maybe_resize_metadata_dev(ti, &need_commit2);
3463         if (r)
3464                 return r;
3465
3466         if (need_commit1 || need_commit2)
3467                 (void) commit(pool);
3468
3469         return 0;
3470 }
3471
3472 static void pool_suspend_active_thins(struct pool *pool)
3473 {
3474         struct thin_c *tc;
3475
3476         /* Suspend all active thin devices */
3477         tc = get_first_thin(pool);
3478         while (tc) {
3479                 dm_internal_suspend_noflush(tc->thin_md);
3480                 tc = get_next_thin(pool, tc);
3481         }
3482 }
3483
3484 static void pool_resume_active_thins(struct pool *pool)
3485 {
3486         struct thin_c *tc;
3487
3488         /* Resume all active thin devices */
3489         tc = get_first_thin(pool);
3490         while (tc) {
3491                 dm_internal_resume(tc->thin_md);
3492                 tc = get_next_thin(pool, tc);
3493         }
3494 }
3495
3496 static void pool_resume(struct dm_target *ti)
3497 {
3498         struct pool_c *pt = ti->private;
3499         struct pool *pool = pt->pool;
3500         unsigned long flags;
3501
3502         /*
3503          * Must requeue active_thins' bios and then resume
3504          * active_thins _before_ clearing 'suspend' flag.
3505          */
3506         requeue_bios(pool);
3507         pool_resume_active_thins(pool);
3508
3509         spin_lock_irqsave(&pool->lock, flags);
3510         pool->low_water_triggered = false;
3511         pool->suspended = false;
3512         spin_unlock_irqrestore(&pool->lock, flags);
3513
3514         do_waker(&pool->waker.work);
3515 }
3516
3517 static void pool_presuspend(struct dm_target *ti)
3518 {
3519         struct pool_c *pt = ti->private;
3520         struct pool *pool = pt->pool;
3521         unsigned long flags;
3522
3523         spin_lock_irqsave(&pool->lock, flags);
3524         pool->suspended = true;
3525         spin_unlock_irqrestore(&pool->lock, flags);
3526
3527         pool_suspend_active_thins(pool);
3528 }
3529
3530 static void pool_presuspend_undo(struct dm_target *ti)
3531 {
3532         struct pool_c *pt = ti->private;
3533         struct pool *pool = pt->pool;
3534         unsigned long flags;
3535
3536         pool_resume_active_thins(pool);
3537
3538         spin_lock_irqsave(&pool->lock, flags);
3539         pool->suspended = false;
3540         spin_unlock_irqrestore(&pool->lock, flags);
3541 }
3542
3543 static void pool_postsuspend(struct dm_target *ti)
3544 {
3545         struct pool_c *pt = ti->private;
3546         struct pool *pool = pt->pool;
3547
3548         cancel_delayed_work_sync(&pool->waker);
3549         cancel_delayed_work_sync(&pool->no_space_timeout);
3550         flush_workqueue(pool->wq);
3551         (void) commit(pool);
3552 }
3553
3554 static int check_arg_count(unsigned argc, unsigned args_required)
3555 {
3556         if (argc != args_required) {
3557                 DMWARN("Message received with %u arguments instead of %u.",
3558                        argc, args_required);
3559                 return -EINVAL;
3560         }
3561
3562         return 0;
3563 }
3564
3565 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3566 {
3567         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3568             *dev_id <= MAX_DEV_ID)
3569                 return 0;
3570
3571         if (warning)
3572                 DMWARN("Message received with invalid device id: %s", arg);
3573
3574         return -EINVAL;
3575 }
3576
3577 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3578 {
3579         dm_thin_id dev_id;
3580         int r;
3581
3582         r = check_arg_count(argc, 2);
3583         if (r)
3584                 return r;
3585
3586         r = read_dev_id(argv[1], &dev_id, 1);
3587         if (r)
3588                 return r;
3589
3590         r = dm_pool_create_thin(pool->pmd, dev_id);
3591         if (r) {
3592                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3593                        argv[1]);
3594                 return r;
3595         }
3596
3597         return 0;
3598 }
3599
3600 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3601 {
3602         dm_thin_id dev_id;
3603         dm_thin_id origin_dev_id;
3604         int r;
3605
3606         r = check_arg_count(argc, 3);
3607         if (r)
3608                 return r;
3609
3610         r = read_dev_id(argv[1], &dev_id, 1);
3611         if (r)
3612                 return r;
3613
3614         r = read_dev_id(argv[2], &origin_dev_id, 1);
3615         if (r)
3616                 return r;
3617
3618         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3619         if (r) {
3620                 DMWARN("Creation of new snapshot %s of device %s failed.",
3621                        argv[1], argv[2]);
3622                 return r;
3623         }
3624
3625         return 0;
3626 }
3627
3628 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3629 {
3630         dm_thin_id dev_id;
3631         int r;
3632
3633         r = check_arg_count(argc, 2);
3634         if (r)
3635                 return r;
3636
3637         r = read_dev_id(argv[1], &dev_id, 1);
3638         if (r)
3639                 return r;
3640
3641         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3642         if (r)
3643                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3644
3645         return r;
3646 }
3647
3648 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3649 {
3650         dm_thin_id old_id, new_id;
3651         int r;
3652
3653         r = check_arg_count(argc, 3);
3654         if (r)
3655                 return r;
3656
3657         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3658                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3659                 return -EINVAL;
3660         }
3661
3662         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3663                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3664                 return -EINVAL;
3665         }
3666
3667         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3668         if (r) {
3669                 DMWARN("Failed to change transaction id from %s to %s.",
3670                        argv[1], argv[2]);
3671                 return r;
3672         }
3673
3674         return 0;
3675 }
3676
3677 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3678 {
3679         int r;
3680
3681         r = check_arg_count(argc, 1);
3682         if (r)
3683                 return r;
3684
3685         (void) commit(pool);
3686
3687         r = dm_pool_reserve_metadata_snap(pool->pmd);
3688         if (r)
3689                 DMWARN("reserve_metadata_snap message failed.");
3690
3691         return r;
3692 }
3693
3694 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695 {
3696         int r;
3697
3698         r = check_arg_count(argc, 1);
3699         if (r)
3700                 return r;
3701
3702         r = dm_pool_release_metadata_snap(pool->pmd);
3703         if (r)
3704                 DMWARN("release_metadata_snap message failed.");
3705
3706         return r;
3707 }
3708
3709 /*
3710  * Messages supported:
3711  *   create_thin        <dev_id>
3712  *   create_snap        <dev_id> <origin_id>
3713  *   delete             <dev_id>
3714  *   set_transaction_id <current_trans_id> <new_trans_id>
3715  *   reserve_metadata_snap
3716  *   release_metadata_snap
3717  */
3718 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3719                         char *result, unsigned maxlen)
3720 {
3721         int r = -EINVAL;
3722         struct pool_c *pt = ti->private;
3723         struct pool *pool = pt->pool;
3724
3725         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3726                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3727                       dm_device_name(pool->pool_md));
3728                 return -EOPNOTSUPP;
3729         }
3730
3731         if (!strcasecmp(argv[0], "create_thin"))
3732                 r = process_create_thin_mesg(argc, argv, pool);
3733
3734         else if (!strcasecmp(argv[0], "create_snap"))
3735                 r = process_create_snap_mesg(argc, argv, pool);
3736
3737         else if (!strcasecmp(argv[0], "delete"))
3738                 r = process_delete_mesg(argc, argv, pool);
3739
3740         else if (!strcasecmp(argv[0], "set_transaction_id"))
3741                 r = process_set_transaction_id_mesg(argc, argv, pool);
3742
3743         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3744                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3745
3746         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3747                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3748
3749         else
3750                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3751
3752         if (!r)
3753                 (void) commit(pool);
3754
3755         return r;
3756 }
3757
3758 static void emit_flags(struct pool_features *pf, char *result,
3759                        unsigned sz, unsigned maxlen)
3760 {
3761         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3762                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3763                 pf->error_if_no_space;
3764         DMEMIT("%u ", count);
3765
3766         if (!pf->zero_new_blocks)
3767                 DMEMIT("skip_block_zeroing ");
3768
3769         if (!pf->discard_enabled)
3770                 DMEMIT("ignore_discard ");
3771
3772         if (!pf->discard_passdown)
3773                 DMEMIT("no_discard_passdown ");
3774
3775         if (pf->mode == PM_READ_ONLY)
3776                 DMEMIT("read_only ");
3777
3778         if (pf->error_if_no_space)
3779                 DMEMIT("error_if_no_space ");
3780 }
3781
3782 /*
3783  * Status line is:
3784  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3785  *    <used data sectors>/<total data sectors> <held metadata root>
3786  *    <pool mode> <discard config> <no space config> <needs_check>
3787  */
3788 static void pool_status(struct dm_target *ti, status_type_t type,
3789                         unsigned status_flags, char *result, unsigned maxlen)
3790 {
3791         int r;
3792         unsigned sz = 0;
3793         uint64_t transaction_id;
3794         dm_block_t nr_free_blocks_data;
3795         dm_block_t nr_free_blocks_metadata;
3796         dm_block_t nr_blocks_data;
3797         dm_block_t nr_blocks_metadata;
3798         dm_block_t held_root;
3799         char buf[BDEVNAME_SIZE];
3800         char buf2[BDEVNAME_SIZE];
3801         struct pool_c *pt = ti->private;
3802         struct pool *pool = pt->pool;
3803
3804         switch (type) {
3805         case STATUSTYPE_INFO:
3806                 if (get_pool_mode(pool) == PM_FAIL) {
3807                         DMEMIT("Fail");
3808                         break;
3809                 }
3810
3811                 /* Commit to ensure statistics aren't out-of-date */
3812                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3813                         (void) commit(pool);
3814
3815                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3816                 if (r) {
3817                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3818                               dm_device_name(pool->pool_md), r);
3819                         goto err;
3820                 }
3821
3822                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3823                 if (r) {
3824                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3825                               dm_device_name(pool->pool_md), r);
3826                         goto err;
3827                 }
3828
3829                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3830                 if (r) {
3831                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3832                               dm_device_name(pool->pool_md), r);
3833                         goto err;
3834                 }
3835
3836                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3837                 if (r) {
3838                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3839                               dm_device_name(pool->pool_md), r);
3840                         goto err;
3841                 }
3842
3843                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3844                 if (r) {
3845                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3846                               dm_device_name(pool->pool_md), r);
3847                         goto err;
3848                 }
3849
3850                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3851                 if (r) {
3852                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3853                               dm_device_name(pool->pool_md), r);
3854                         goto err;
3855                 }
3856
3857                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3858                        (unsigned long long)transaction_id,
3859                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3860                        (unsigned long long)nr_blocks_metadata,
3861                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3862                        (unsigned long long)nr_blocks_data);
3863
3864                 if (held_root)
3865                         DMEMIT("%llu ", held_root);
3866                 else
3867                         DMEMIT("- ");
3868
3869                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3870                         DMEMIT("out_of_data_space ");
3871                 else if (pool->pf.mode == PM_READ_ONLY)
3872                         DMEMIT("ro ");
3873                 else
3874                         DMEMIT("rw ");
3875
3876                 if (!pool->pf.discard_enabled)
3877                         DMEMIT("ignore_discard ");
3878                 else if (pool->pf.discard_passdown)
3879                         DMEMIT("discard_passdown ");
3880                 else
3881                         DMEMIT("no_discard_passdown ");
3882
3883                 if (pool->pf.error_if_no_space)
3884                         DMEMIT("error_if_no_space ");
3885                 else
3886                         DMEMIT("queue_if_no_space ");
3887
3888                 if (dm_pool_metadata_needs_check(pool->pmd))
3889                         DMEMIT("needs_check ");
3890                 else
3891                         DMEMIT("- ");
3892
3893                 break;
3894
3895         case STATUSTYPE_TABLE:
3896                 DMEMIT("%s %s %lu %llu ",
3897                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3898                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3899                        (unsigned long)pool->sectors_per_block,
3900                        (unsigned long long)pt->low_water_blocks);
3901                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3902                 break;
3903         }
3904         return;
3905
3906 err:
3907         DMEMIT("Error");
3908 }
3909
3910 static int pool_iterate_devices(struct dm_target *ti,
3911                                 iterate_devices_callout_fn fn, void *data)
3912 {
3913         struct pool_c *pt = ti->private;
3914
3915         return fn(ti, pt->data_dev, 0, ti->len, data);
3916 }
3917
3918 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3919 {
3920         struct pool_c *pt = ti->private;
3921         struct pool *pool = pt->pool;
3922         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3923
3924         /*
3925          * If max_sectors is smaller than pool->sectors_per_block adjust it
3926          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3927          * This is especially beneficial when the pool's data device is a RAID
3928          * device that has a full stripe width that matches pool->sectors_per_block
3929          * -- because even though partial RAID stripe-sized IOs will be issued to a
3930          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3931          *    boundary.. which avoids additional partial RAID stripe writes cascading
3932          */
3933         if (limits->max_sectors < pool->sectors_per_block) {
3934                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3935                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3936                                 limits->max_sectors--;
3937                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3938                 }
3939         }
3940
3941         /*
3942          * If the system-determined stacked limits are compatible with the
3943          * pool's blocksize (io_opt is a factor) do not override them.
3944          */
3945         if (io_opt_sectors < pool->sectors_per_block ||
3946             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3947                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3948                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3949                 else
3950                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3951                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3952         }
3953
3954         /*
3955          * pt->adjusted_pf is a staging area for the actual features to use.
3956          * They get transferred to the live pool in bind_control_target()
3957          * called from pool_preresume().
3958          */
3959         if (!pt->adjusted_pf.discard_enabled) {
3960                 /*
3961                  * Must explicitly disallow stacking discard limits otherwise the
3962                  * block layer will stack them if pool's data device has support.
3963                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3964                  * user to see that, so make sure to set all discard limits to 0.
3965                  */
3966                 limits->discard_granularity = 0;
3967                 return;
3968         }
3969
3970         disable_passdown_if_not_supported(pt);
3971
3972         /*
3973          * The pool uses the same discard limits as the underlying data
3974          * device.  DM core has already set this up.
3975          */
3976 }
3977
3978 static struct target_type pool_target = {
3979         .name = "thin-pool",
3980         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3981                     DM_TARGET_IMMUTABLE,
3982         .version = {1, 19, 0},
3983         .module = THIS_MODULE,
3984         .ctr = pool_ctr,
3985         .dtr = pool_dtr,
3986         .map = pool_map,
3987         .presuspend = pool_presuspend,
3988         .presuspend_undo = pool_presuspend_undo,
3989         .postsuspend = pool_postsuspend,
3990         .preresume = pool_preresume,
3991         .resume = pool_resume,
3992         .message = pool_message,
3993         .status = pool_status,
3994         .iterate_devices = pool_iterate_devices,
3995         .io_hints = pool_io_hints,
3996 };
3997
3998 /*----------------------------------------------------------------
3999  * Thin target methods
4000  *--------------------------------------------------------------*/
4001 static void thin_get(struct thin_c *tc)
4002 {
4003         atomic_inc(&tc->refcount);
4004 }
4005
4006 static void thin_put(struct thin_c *tc)
4007 {
4008         if (atomic_dec_and_test(&tc->refcount))
4009                 complete(&tc->can_destroy);
4010 }
4011
4012 static void thin_dtr(struct dm_target *ti)
4013 {
4014         struct thin_c *tc = ti->private;
4015         unsigned long flags;
4016
4017         spin_lock_irqsave(&tc->pool->lock, flags);
4018         list_del_rcu(&tc->list);
4019         spin_unlock_irqrestore(&tc->pool->lock, flags);
4020         synchronize_rcu();
4021
4022         thin_put(tc);
4023         wait_for_completion(&tc->can_destroy);
4024
4025         mutex_lock(&dm_thin_pool_table.mutex);
4026
4027         __pool_dec(tc->pool);
4028         dm_pool_close_thin_device(tc->td);
4029         dm_put_device(ti, tc->pool_dev);
4030         if (tc->origin_dev)
4031                 dm_put_device(ti, tc->origin_dev);
4032         kfree(tc);
4033
4034         mutex_unlock(&dm_thin_pool_table.mutex);
4035 }
4036
4037 /*
4038  * Thin target parameters:
4039  *
4040  * <pool_dev> <dev_id> [origin_dev]
4041  *
4042  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4043  * dev_id: the internal device identifier
4044  * origin_dev: a device external to the pool that should act as the origin
4045  *
4046  * If the pool device has discards disabled, they get disabled for the thin
4047  * device as well.
4048  */
4049 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4050 {
4051         int r;
4052         struct thin_c *tc;
4053         struct dm_dev *pool_dev, *origin_dev;
4054         struct mapped_device *pool_md;
4055         unsigned long flags;
4056
4057         mutex_lock(&dm_thin_pool_table.mutex);
4058
4059         if (argc != 2 && argc != 3) {
4060                 ti->error = "Invalid argument count";
4061                 r = -EINVAL;
4062                 goto out_unlock;
4063         }
4064
4065         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4066         if (!tc) {
4067                 ti->error = "Out of memory";
4068                 r = -ENOMEM;
4069                 goto out_unlock;
4070         }
4071         tc->thin_md = dm_table_get_md(ti->table);
4072         spin_lock_init(&tc->lock);
4073         INIT_LIST_HEAD(&tc->deferred_cells);
4074         bio_list_init(&tc->deferred_bio_list);
4075         bio_list_init(&tc->retry_on_resume_list);
4076         tc->sort_bio_list = RB_ROOT;
4077
4078         if (argc == 3) {
4079                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4080                 if (r) {
4081                         ti->error = "Error opening origin device";
4082                         goto bad_origin_dev;
4083                 }
4084                 tc->origin_dev = origin_dev;
4085         }
4086
4087         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4088         if (r) {
4089                 ti->error = "Error opening pool device";
4090                 goto bad_pool_dev;
4091         }
4092         tc->pool_dev = pool_dev;
4093
4094         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4095                 ti->error = "Invalid device id";
4096                 r = -EINVAL;
4097                 goto bad_common;
4098         }
4099
4100         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4101         if (!pool_md) {
4102                 ti->error = "Couldn't get pool mapped device";
4103                 r = -EINVAL;
4104                 goto bad_common;
4105         }
4106
4107         tc->pool = __pool_table_lookup(pool_md);
4108         if (!tc->pool) {
4109                 ti->error = "Couldn't find pool object";
4110                 r = -EINVAL;
4111                 goto bad_pool_lookup;
4112         }
4113         __pool_inc(tc->pool);
4114
4115         if (get_pool_mode(tc->pool) == PM_FAIL) {
4116                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4117                 r = -EINVAL;
4118                 goto bad_pool;
4119         }
4120
4121         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4122         if (r) {
4123                 ti->error = "Couldn't open thin internal device";
4124                 goto bad_pool;
4125         }
4126
4127         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4128         if (r)
4129                 goto bad;
4130
4131         ti->num_flush_bios = 1;
4132         ti->flush_supported = true;
4133         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4134
4135         /* In case the pool supports discards, pass them on. */
4136         if (tc->pool->pf.discard_enabled) {
4137                 ti->discards_supported = true;
4138                 ti->num_discard_bios = 1;
4139                 ti->split_discard_bios = false;
4140         }
4141
4142         mutex_unlock(&dm_thin_pool_table.mutex);
4143
4144         spin_lock_irqsave(&tc->pool->lock, flags);
4145         if (tc->pool->suspended) {
4146                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4147                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4148                 ti->error = "Unable to activate thin device while pool is suspended";
4149                 r = -EINVAL;
4150                 goto bad;
4151         }
4152         atomic_set(&tc->refcount, 1);
4153         init_completion(&tc->can_destroy);
4154         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4155         spin_unlock_irqrestore(&tc->pool->lock, flags);
4156         /*
4157          * This synchronize_rcu() call is needed here otherwise we risk a
4158          * wake_worker() call finding no bios to process (because the newly
4159          * added tc isn't yet visible).  So this reduces latency since we
4160          * aren't then dependent on the periodic commit to wake_worker().
4161          */
4162         synchronize_rcu();
4163
4164         dm_put(pool_md);
4165
4166         return 0;
4167
4168 bad:
4169         dm_pool_close_thin_device(tc->td);
4170 bad_pool:
4171         __pool_dec(tc->pool);
4172 bad_pool_lookup:
4173         dm_put(pool_md);
4174 bad_common:
4175         dm_put_device(ti, tc->pool_dev);
4176 bad_pool_dev:
4177         if (tc->origin_dev)
4178                 dm_put_device(ti, tc->origin_dev);
4179 bad_origin_dev:
4180         kfree(tc);
4181 out_unlock:
4182         mutex_unlock(&dm_thin_pool_table.mutex);
4183
4184         return r;
4185 }
4186
4187 static int thin_map(struct dm_target *ti, struct bio *bio)
4188 {
4189         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4190
4191         return thin_bio_map(ti, bio);
4192 }
4193
4194 static int thin_endio(struct dm_target *ti, struct bio *bio,
4195                 blk_status_t *err)
4196 {
4197         unsigned long flags;
4198         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4199         struct list_head work;
4200         struct dm_thin_new_mapping *m, *tmp;
4201         struct pool *pool = h->tc->pool;
4202
4203         if (h->shared_read_entry) {
4204                 INIT_LIST_HEAD(&work);
4205                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4206
4207                 spin_lock_irqsave(&pool->lock, flags);
4208                 list_for_each_entry_safe(m, tmp, &work, list) {
4209                         list_del(&m->list);
4210                         __complete_mapping_preparation(m);
4211                 }
4212                 spin_unlock_irqrestore(&pool->lock, flags);
4213         }
4214
4215         if (h->all_io_entry) {
4216                 INIT_LIST_HEAD(&work);
4217                 dm_deferred_entry_dec(h->all_io_entry, &work);
4218                 if (!list_empty(&work)) {
4219                         spin_lock_irqsave(&pool->lock, flags);
4220                         list_for_each_entry_safe(m, tmp, &work, list)
4221                                 list_add_tail(&m->list, &pool->prepared_discards);
4222                         spin_unlock_irqrestore(&pool->lock, flags);
4223                         wake_worker(pool);
4224                 }
4225         }
4226
4227         if (h->cell)
4228                 cell_defer_no_holder(h->tc, h->cell);
4229
4230         return DM_ENDIO_DONE;
4231 }
4232
4233 static void thin_presuspend(struct dm_target *ti)
4234 {
4235         struct thin_c *tc = ti->private;
4236
4237         if (dm_noflush_suspending(ti))
4238                 noflush_work(tc, do_noflush_start);
4239 }
4240
4241 static void thin_postsuspend(struct dm_target *ti)
4242 {
4243         struct thin_c *tc = ti->private;
4244
4245         /*
4246          * The dm_noflush_suspending flag has been cleared by now, so
4247          * unfortunately we must always run this.
4248          */
4249         noflush_work(tc, do_noflush_stop);
4250 }
4251
4252 static int thin_preresume(struct dm_target *ti)
4253 {
4254         struct thin_c *tc = ti->private;
4255
4256         if (tc->origin_dev)
4257                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4258
4259         return 0;
4260 }
4261
4262 /*
4263  * <nr mapped sectors> <highest mapped sector>
4264  */
4265 static void thin_status(struct dm_target *ti, status_type_t type,
4266                         unsigned status_flags, char *result, unsigned maxlen)
4267 {
4268         int r;
4269         ssize_t sz = 0;
4270         dm_block_t mapped, highest;
4271         char buf[BDEVNAME_SIZE];
4272         struct thin_c *tc = ti->private;
4273
4274         if (get_pool_mode(tc->pool) == PM_FAIL) {
4275                 DMEMIT("Fail");
4276                 return;
4277         }
4278
4279         if (!tc->td)
4280                 DMEMIT("-");
4281         else {
4282                 switch (type) {
4283                 case STATUSTYPE_INFO:
4284                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4285                         if (r) {
4286                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4287                                 goto err;
4288                         }
4289
4290                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4291                         if (r < 0) {
4292                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4293                                 goto err;
4294                         }
4295
4296                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4297                         if (r)
4298                                 DMEMIT("%llu", ((highest + 1) *
4299                                                 tc->pool->sectors_per_block) - 1);
4300                         else
4301                                 DMEMIT("-");
4302                         break;
4303
4304                 case STATUSTYPE_TABLE:
4305                         DMEMIT("%s %lu",
4306                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4307                                (unsigned long) tc->dev_id);
4308                         if (tc->origin_dev)
4309                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4310                         break;
4311                 }
4312         }
4313
4314         return;
4315
4316 err:
4317         DMEMIT("Error");
4318 }
4319
4320 static int thin_iterate_devices(struct dm_target *ti,
4321                                 iterate_devices_callout_fn fn, void *data)
4322 {
4323         sector_t blocks;
4324         struct thin_c *tc = ti->private;
4325         struct pool *pool = tc->pool;
4326
4327         /*
4328          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4329          * we follow a more convoluted path through to the pool's target.
4330          */
4331         if (!pool->ti)
4332                 return 0;       /* nothing is bound */
4333
4334         blocks = pool->ti->len;
4335         (void) sector_div(blocks, pool->sectors_per_block);
4336         if (blocks)
4337                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4338
4339         return 0;
4340 }
4341
4342 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4343 {
4344         struct thin_c *tc = ti->private;
4345         struct pool *pool = tc->pool;
4346
4347         if (!pool->pf.discard_enabled)
4348                 return;
4349
4350         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4351         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4352 }
4353
4354 static struct target_type thin_target = {
4355         .name = "thin",
4356         .version = {1, 19, 0},
4357         .module = THIS_MODULE,
4358         .ctr = thin_ctr,
4359         .dtr = thin_dtr,
4360         .map = thin_map,
4361         .end_io = thin_endio,
4362         .preresume = thin_preresume,
4363         .presuspend = thin_presuspend,
4364         .postsuspend = thin_postsuspend,
4365         .status = thin_status,
4366         .iterate_devices = thin_iterate_devices,
4367         .io_hints = thin_io_hints,
4368 };
4369
4370 /*----------------------------------------------------------------*/
4371
4372 static int __init dm_thin_init(void)
4373 {
4374         int r = -ENOMEM;
4375
4376         pool_table_init();
4377
4378         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4379         if (!_new_mapping_cache)
4380                 return r;
4381
4382         r = dm_register_target(&thin_target);
4383         if (r)
4384                 goto bad_new_mapping_cache;
4385
4386         r = dm_register_target(&pool_target);
4387         if (r)
4388                 goto bad_thin_target;
4389
4390         return 0;
4391
4392 bad_thin_target:
4393         dm_unregister_target(&thin_target);
4394 bad_new_mapping_cache:
4395         kmem_cache_destroy(_new_mapping_cache);
4396
4397         return r;
4398 }
4399
4400 static void dm_thin_exit(void)
4401 {
4402         dm_unregister_target(&thin_target);
4403         dm_unregister_target(&pool_target);
4404
4405         kmem_cache_destroy(_new_mapping_cache);
4406
4407         pool_table_exit();
4408 }
4409
4410 module_init(dm_thin_init);
4411 module_exit(dm_thin_exit);
4412
4413 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4414 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4415
4416 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4417 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4418 MODULE_LICENSE("GPL");