Merge tag 'rust-fixes-6.9' of https://github.com/Rust-for-Linux/linux
[sfrench/cifs-2.6.git] / drivers / md / dm-thin.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25
26 #define DM_MSG_PREFIX   "thin"
27
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39                 "A percentage of time allocated for copy on write");
40
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110
111 /*----------------------------------------------------------------*/
112
113 /*
114  * Key building.
115  */
116 enum lock_space {
117         VIRTUAL,
118         PHYSICAL
119 };
120
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124         key->virtual = (ls == VIRTUAL);
125         key->dev = dm_thin_dev_id(td);
126         key->block_begin = b;
127         key->block_end = e;
128
129         return dm_cell_key_has_valid_range(key);
130 }
131
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133                            struct dm_cell_key *key)
134 {
135         (void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139                               struct dm_cell_key *key)
140 {
141         (void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143
144 /*----------------------------------------------------------------*/
145
146 #define THROTTLE_THRESHOLD (1 * HZ)
147
148 struct throttle {
149         struct rw_semaphore lock;
150         unsigned long threshold;
151         bool throttle_applied;
152 };
153
154 static void throttle_init(struct throttle *t)
155 {
156         init_rwsem(&t->lock);
157         t->throttle_applied = false;
158 }
159
160 static void throttle_work_start(struct throttle *t)
161 {
162         t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164
165 static void throttle_work_update(struct throttle *t)
166 {
167         if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168                 down_write(&t->lock);
169                 t->throttle_applied = true;
170         }
171 }
172
173 static void throttle_work_complete(struct throttle *t)
174 {
175         if (t->throttle_applied) {
176                 t->throttle_applied = false;
177                 up_write(&t->lock);
178         }
179 }
180
181 static void throttle_lock(struct throttle *t)
182 {
183         down_read(&t->lock);
184 }
185
186 static void throttle_unlock(struct throttle *t)
187 {
188         up_read(&t->lock);
189 }
190
191 /*----------------------------------------------------------------*/
192
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204         PM_WRITE,               /* metadata may be changed */
205         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
206
207         /*
208          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209          */
210         PM_OUT_OF_METADATA_SPACE,
211         PM_READ_ONLY,           /* metadata may not be changed */
212
213         PM_FAIL,                /* all I/O fails */
214 };
215
216 struct pool_features {
217         enum pool_mode mode;
218
219         bool zero_new_blocks:1;
220         bool discard_enabled:1;
221         bool discard_passdown:1;
222         bool error_if_no_space:1;
223 };
224
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229
230 #define CELL_SORT_ARRAY_SIZE 8192
231
232 struct pool {
233         struct list_head list;
234         struct dm_target *ti;   /* Only set if a pool target is bound */
235
236         struct mapped_device *pool_md;
237         struct block_device *data_dev;
238         struct block_device *md_dev;
239         struct dm_pool_metadata *pmd;
240
241         dm_block_t low_water_blocks;
242         uint32_t sectors_per_block;
243         int sectors_per_block_shift;
244
245         struct pool_features pf;
246         bool low_water_triggered:1;     /* A dm event has been sent */
247         bool suspended:1;
248         bool out_of_data_space:1;
249
250         struct dm_bio_prison *prison;
251         struct dm_kcopyd_client *copier;
252
253         struct work_struct worker;
254         struct workqueue_struct *wq;
255         struct throttle throttle;
256         struct delayed_work waker;
257         struct delayed_work no_space_timeout;
258
259         unsigned long last_commit_jiffies;
260         unsigned int ref_count;
261
262         spinlock_t lock;
263         struct bio_list deferred_flush_bios;
264         struct bio_list deferred_flush_completions;
265         struct list_head prepared_mappings;
266         struct list_head prepared_discards;
267         struct list_head prepared_discards_pt2;
268         struct list_head active_thins;
269
270         struct dm_deferred_set *shared_read_ds;
271         struct dm_deferred_set *all_io_ds;
272
273         struct dm_thin_new_mapping *next_mapping;
274
275         process_bio_fn process_bio;
276         process_bio_fn process_discard;
277
278         process_cell_fn process_cell;
279         process_cell_fn process_discard_cell;
280
281         process_mapping_fn process_prepared_mapping;
282         process_mapping_fn process_prepared_discard;
283         process_mapping_fn process_prepared_discard_pt2;
284
285         struct dm_bio_prison_cell **cell_sort_array;
286
287         mempool_t mapping_pool;
288 };
289
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294         return pool->pf.mode;
295 }
296
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299         static const char *descs[] = {
300                 "write",
301                 "out-of-data-space",
302                 "read-only",
303                 "read-only",
304                 "fail"
305         };
306         const char *extra_desc = NULL;
307         enum pool_mode mode = get_pool_mode(pool);
308
309         if (mode == PM_OUT_OF_DATA_SPACE) {
310                 if (!pool->pf.error_if_no_space)
311                         extra_desc = " (queue IO)";
312                 else
313                         extra_desc = " (error IO)";
314         }
315
316         dm_table_event(pool->ti->table);
317         DMINFO("%s: switching pool to %s%s mode",
318                dm_device_name(pool->pool_md),
319                descs[(int)mode], extra_desc ? : "");
320 }
321
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326         struct dm_target *ti;
327         struct pool *pool;
328         struct dm_dev *data_dev;
329         struct dm_dev *metadata_dev;
330
331         dm_block_t low_water_blocks;
332         struct pool_features requested_pf; /* Features requested during table load */
333         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340         struct list_head list;
341         struct dm_dev *pool_dev;
342         struct dm_dev *origin_dev;
343         sector_t origin_size;
344         dm_thin_id dev_id;
345
346         struct pool *pool;
347         struct dm_thin_device *td;
348         struct mapped_device *thin_md;
349
350         bool requeue_mode:1;
351         spinlock_t lock;
352         struct list_head deferred_cells;
353         struct bio_list deferred_bio_list;
354         struct bio_list retry_on_resume_list;
355         struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357         /*
358          * Ensures the thin is not destroyed until the worker has finished
359          * iterating the active_thins list.
360          */
361         refcount_t refcount;
362         struct completion can_destroy;
363 };
364
365 /*----------------------------------------------------------------*/
366
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369         return pool->sectors_per_block_shift >= 0;
370 }
371
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374         return block_size_is_power_of_two(pool) ?
375                 (b << pool->sectors_per_block_shift) :
376                 (b * pool->sectors_per_block);
377 }
378
379 /*----------------------------------------------------------------*/
380
381 struct discard_op {
382         struct thin_c *tc;
383         struct blk_plug plug;
384         struct bio *parent_bio;
385         struct bio *bio;
386 };
387
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390         BUG_ON(!parent);
391
392         op->tc = tc;
393         blk_start_plug(&op->plug);
394         op->parent_bio = parent;
395         op->bio = NULL;
396 }
397
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400         struct thin_c *tc = op->tc;
401         sector_t s = block_to_sectors(tc->pool, data_b);
402         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403
404         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406
407 static void end_discard(struct discard_op *op, int r)
408 {
409         if (op->bio) {
410                 /*
411                  * Even if one of the calls to issue_discard failed, we
412                  * need to wait for the chain to complete.
413                  */
414                 bio_chain(op->bio, op->parent_bio);
415                 op->bio->bi_opf = REQ_OP_DISCARD;
416                 submit_bio(op->bio);
417         }
418
419         blk_finish_plug(&op->plug);
420
421         /*
422          * Even if r is set, there could be sub discards in flight that we
423          * need to wait for.
424          */
425         if (r && !op->parent_bio->bi_status)
426                 op->parent_bio->bi_status = errno_to_blk_status(r);
427         bio_endio(op->parent_bio);
428 }
429
430 /*----------------------------------------------------------------*/
431
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438         queue_work(pool->wq, &pool->worker);
439 }
440
441 /*----------------------------------------------------------------*/
442
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444                       struct dm_bio_prison_cell **cell_result)
445 {
446         int r;
447         struct dm_bio_prison_cell *cell_prealloc;
448
449         /*
450          * Allocate a cell from the prison's mempool.
451          * This might block but it can't fail.
452          */
453         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456         if (r) {
457                 /*
458                  * We reused an old cell; we can get rid of
459                  * the new one.
460                  */
461                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462         }
463
464         return r;
465 }
466
467 static void cell_release(struct pool *pool,
468                          struct dm_bio_prison_cell *cell,
469                          struct bio_list *bios)
470 {
471         dm_cell_release(pool->prison, cell, bios);
472         dm_bio_prison_free_cell(pool->prison, cell);
473 }
474
475 static void cell_visit_release(struct pool *pool,
476                                void (*fn)(void *, struct dm_bio_prison_cell *),
477                                void *context,
478                                struct dm_bio_prison_cell *cell)
479 {
480         dm_cell_visit_release(pool->prison, fn, context, cell);
481         dm_bio_prison_free_cell(pool->prison, cell);
482 }
483
484 static void cell_release_no_holder(struct pool *pool,
485                                    struct dm_bio_prison_cell *cell,
486                                    struct bio_list *bios)
487 {
488         dm_cell_release_no_holder(pool->prison, cell, bios);
489         dm_bio_prison_free_cell(pool->prison, cell);
490 }
491
492 static void cell_error_with_code(struct pool *pool,
493                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495         dm_cell_error(pool->prison, cell, error_code);
496         dm_bio_prison_free_cell(pool->prison, cell);
497 }
498
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511         cell_error_with_code(pool, cell, 0);
512 }
513
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518
519 /*----------------------------------------------------------------*/
520
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525         struct mutex mutex;
526         struct list_head pools;
527 } dm_thin_pool_table;
528
529 static void pool_table_init(void)
530 {
531         mutex_init(&dm_thin_pool_table.mutex);
532         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534
535 static void pool_table_exit(void)
536 {
537         mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539
540 static void __pool_table_insert(struct pool *pool)
541 {
542         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543         list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545
546 static void __pool_table_remove(struct pool *pool)
547 {
548         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549         list_del(&pool->list);
550 }
551
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554         struct pool *pool = NULL, *tmp;
555
556         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559                 if (tmp->pool_md == md) {
560                         pool = tmp;
561                         break;
562                 }
563         }
564
565         return pool;
566 }
567
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570         struct pool *pool = NULL, *tmp;
571
572         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575                 if (tmp->md_dev == md_dev) {
576                         pool = tmp;
577                         break;
578                 }
579         }
580
581         return pool;
582 }
583
584 /*----------------------------------------------------------------*/
585
586 struct dm_thin_endio_hook {
587         struct thin_c *tc;
588         struct dm_deferred_entry *shared_read_entry;
589         struct dm_deferred_entry *all_io_entry;
590         struct dm_thin_new_mapping *overwrite_mapping;
591         struct rb_node rb_node;
592         struct dm_bio_prison_cell *cell;
593 };
594
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597         bio_list_merge(bios, master);
598         bio_list_init(master);
599 }
600
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603         struct bio *bio;
604
605         while ((bio = bio_list_pop(bios))) {
606                 bio->bi_status = error;
607                 bio_endio(bio);
608         }
609 }
610
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612                 blk_status_t error)
613 {
614         struct bio_list bios;
615
616         bio_list_init(&bios);
617
618         spin_lock_irq(&tc->lock);
619         __merge_bio_list(&bios, master);
620         spin_unlock_irq(&tc->lock);
621
622         error_bio_list(&bios, error);
623 }
624
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627         struct pool *pool = tc->pool;
628         struct list_head cells;
629         struct dm_bio_prison_cell *cell, *tmp;
630
631         INIT_LIST_HEAD(&cells);
632
633         spin_lock_irq(&tc->lock);
634         list_splice_init(&tc->deferred_cells, &cells);
635         spin_unlock_irq(&tc->lock);
636
637         list_for_each_entry_safe(cell, tmp, &cells, user_list)
638                 cell_requeue(pool, cell);
639 }
640
641 static void requeue_io(struct thin_c *tc)
642 {
643         struct bio_list bios;
644
645         bio_list_init(&bios);
646
647         spin_lock_irq(&tc->lock);
648         __merge_bio_list(&bios, &tc->deferred_bio_list);
649         __merge_bio_list(&bios, &tc->retry_on_resume_list);
650         spin_unlock_irq(&tc->lock);
651
652         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653         requeue_deferred_cells(tc);
654 }
655
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658         struct thin_c *tc;
659
660         rcu_read_lock();
661         list_for_each_entry_rcu(tc, &pool->active_thins, list)
662                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663         rcu_read_unlock();
664 }
665
666 static void error_retry_list(struct pool *pool)
667 {
668         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680         struct pool *pool = tc->pool;
681         sector_t block_nr = bio->bi_iter.bi_sector;
682
683         if (block_size_is_power_of_two(pool))
684                 block_nr >>= pool->sectors_per_block_shift;
685         else
686                 (void) sector_div(block_nr, pool->sectors_per_block);
687
688         return block_nr;
689 }
690
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695                                 dm_block_t *begin, dm_block_t *end)
696 {
697         struct pool *pool = tc->pool;
698         sector_t b = bio->bi_iter.bi_sector;
699         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701         b += pool->sectors_per_block - 1ull; /* so we round up */
702
703         if (block_size_is_power_of_two(pool)) {
704                 b >>= pool->sectors_per_block_shift;
705                 e >>= pool->sectors_per_block_shift;
706         } else {
707                 (void) sector_div(b, pool->sectors_per_block);
708                 (void) sector_div(e, pool->sectors_per_block);
709         }
710
711         if (e < b) {
712                 /* Can happen if the bio is within a single block. */
713                 e = b;
714         }
715
716         *begin = b;
717         *end = e;
718 }
719
720 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
721 {
722         struct pool *pool = tc->pool;
723         sector_t bi_sector = bio->bi_iter.bi_sector;
724
725         bio_set_dev(bio, tc->pool_dev->bdev);
726         if (block_size_is_power_of_two(pool)) {
727                 bio->bi_iter.bi_sector =
728                         (block << pool->sectors_per_block_shift) |
729                         (bi_sector & (pool->sectors_per_block - 1));
730         } else {
731                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
732                                  sector_div(bi_sector, pool->sectors_per_block);
733         }
734 }
735
736 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
737 {
738         bio_set_dev(bio, tc->origin_dev->bdev);
739 }
740
741 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
742 {
743         return op_is_flush(bio->bi_opf) &&
744                 dm_thin_changed_this_transaction(tc->td);
745 }
746
747 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
748 {
749         struct dm_thin_endio_hook *h;
750
751         if (bio_op(bio) == REQ_OP_DISCARD)
752                 return;
753
754         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
755         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
756 }
757
758 static void issue(struct thin_c *tc, struct bio *bio)
759 {
760         struct pool *pool = tc->pool;
761
762         if (!bio_triggers_commit(tc, bio)) {
763                 dm_submit_bio_remap(bio, NULL);
764                 return;
765         }
766
767         /*
768          * Complete bio with an error if earlier I/O caused changes to
769          * the metadata that can't be committed e.g, due to I/O errors
770          * on the metadata device.
771          */
772         if (dm_thin_aborted_changes(tc->td)) {
773                 bio_io_error(bio);
774                 return;
775         }
776
777         /*
778          * Batch together any bios that trigger commits and then issue a
779          * single commit for them in process_deferred_bios().
780          */
781         spin_lock_irq(&pool->lock);
782         bio_list_add(&pool->deferred_flush_bios, bio);
783         spin_unlock_irq(&pool->lock);
784 }
785
786 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
787 {
788         remap_to_origin(tc, bio);
789         issue(tc, bio);
790 }
791
792 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
793                             dm_block_t block)
794 {
795         remap(tc, bio, block);
796         issue(tc, bio);
797 }
798
799 /*----------------------------------------------------------------*/
800
801 /*
802  * Bio endio functions.
803  */
804 struct dm_thin_new_mapping {
805         struct list_head list;
806
807         bool pass_discard:1;
808         bool maybe_shared:1;
809
810         /*
811          * Track quiescing, copying and zeroing preparation actions.  When this
812          * counter hits zero the block is prepared and can be inserted into the
813          * btree.
814          */
815         atomic_t prepare_actions;
816
817         blk_status_t status;
818         struct thin_c *tc;
819         dm_block_t virt_begin, virt_end;
820         dm_block_t data_block;
821         struct dm_bio_prison_cell *cell;
822
823         /*
824          * If the bio covers the whole area of a block then we can avoid
825          * zeroing or copying.  Instead this bio is hooked.  The bio will
826          * still be in the cell, so care has to be taken to avoid issuing
827          * the bio twice.
828          */
829         struct bio *bio;
830         bio_end_io_t *saved_bi_end_io;
831 };
832
833 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
834 {
835         struct pool *pool = m->tc->pool;
836
837         if (atomic_dec_and_test(&m->prepare_actions)) {
838                 list_add_tail(&m->list, &pool->prepared_mappings);
839                 wake_worker(pool);
840         }
841 }
842
843 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
844 {
845         unsigned long flags;
846         struct pool *pool = m->tc->pool;
847
848         spin_lock_irqsave(&pool->lock, flags);
849         __complete_mapping_preparation(m);
850         spin_unlock_irqrestore(&pool->lock, flags);
851 }
852
853 static void copy_complete(int read_err, unsigned long write_err, void *context)
854 {
855         struct dm_thin_new_mapping *m = context;
856
857         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
858         complete_mapping_preparation(m);
859 }
860
861 static void overwrite_endio(struct bio *bio)
862 {
863         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
864         struct dm_thin_new_mapping *m = h->overwrite_mapping;
865
866         bio->bi_end_io = m->saved_bi_end_io;
867
868         m->status = bio->bi_status;
869         complete_mapping_preparation(m);
870 }
871
872 /*----------------------------------------------------------------*/
873
874 /*
875  * Workqueue.
876  */
877
878 /*
879  * Prepared mapping jobs.
880  */
881
882 /*
883  * This sends the bios in the cell, except the original holder, back
884  * to the deferred_bios list.
885  */
886 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
887 {
888         struct pool *pool = tc->pool;
889         unsigned long flags;
890         struct bio_list bios;
891
892         bio_list_init(&bios);
893         cell_release_no_holder(pool, cell, &bios);
894
895         if (!bio_list_empty(&bios)) {
896                 spin_lock_irqsave(&tc->lock, flags);
897                 bio_list_merge(&tc->deferred_bio_list, &bios);
898                 spin_unlock_irqrestore(&tc->lock, flags);
899                 wake_worker(pool);
900         }
901 }
902
903 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
904
905 struct remap_info {
906         struct thin_c *tc;
907         struct bio_list defer_bios;
908         struct bio_list issue_bios;
909 };
910
911 static void __inc_remap_and_issue_cell(void *context,
912                                        struct dm_bio_prison_cell *cell)
913 {
914         struct remap_info *info = context;
915         struct bio *bio;
916
917         while ((bio = bio_list_pop(&cell->bios))) {
918                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
919                         bio_list_add(&info->defer_bios, bio);
920                 else {
921                         inc_all_io_entry(info->tc->pool, bio);
922
923                         /*
924                          * We can't issue the bios with the bio prison lock
925                          * held, so we add them to a list to issue on
926                          * return from this function.
927                          */
928                         bio_list_add(&info->issue_bios, bio);
929                 }
930         }
931 }
932
933 static void inc_remap_and_issue_cell(struct thin_c *tc,
934                                      struct dm_bio_prison_cell *cell,
935                                      dm_block_t block)
936 {
937         struct bio *bio;
938         struct remap_info info;
939
940         info.tc = tc;
941         bio_list_init(&info.defer_bios);
942         bio_list_init(&info.issue_bios);
943
944         /*
945          * We have to be careful to inc any bios we're about to issue
946          * before the cell is released, and avoid a race with new bios
947          * being added to the cell.
948          */
949         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
950                            &info, cell);
951
952         while ((bio = bio_list_pop(&info.defer_bios)))
953                 thin_defer_bio(tc, bio);
954
955         while ((bio = bio_list_pop(&info.issue_bios)))
956                 remap_and_issue(info.tc, bio, block);
957 }
958
959 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
960 {
961         cell_error(m->tc->pool, m->cell);
962         list_del(&m->list);
963         mempool_free(m, &m->tc->pool->mapping_pool);
964 }
965
966 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
967 {
968         struct pool *pool = tc->pool;
969
970         /*
971          * If the bio has the REQ_FUA flag set we must commit the metadata
972          * before signaling its completion.
973          */
974         if (!bio_triggers_commit(tc, bio)) {
975                 bio_endio(bio);
976                 return;
977         }
978
979         /*
980          * Complete bio with an error if earlier I/O caused changes to the
981          * metadata that can't be committed, e.g, due to I/O errors on the
982          * metadata device.
983          */
984         if (dm_thin_aborted_changes(tc->td)) {
985                 bio_io_error(bio);
986                 return;
987         }
988
989         /*
990          * Batch together any bios that trigger commits and then issue a
991          * single commit for them in process_deferred_bios().
992          */
993         spin_lock_irq(&pool->lock);
994         bio_list_add(&pool->deferred_flush_completions, bio);
995         spin_unlock_irq(&pool->lock);
996 }
997
998 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
999 {
1000         struct thin_c *tc = m->tc;
1001         struct pool *pool = tc->pool;
1002         struct bio *bio = m->bio;
1003         int r;
1004
1005         if (m->status) {
1006                 cell_error(pool, m->cell);
1007                 goto out;
1008         }
1009
1010         /*
1011          * Commit the prepared block into the mapping btree.
1012          * Any I/O for this block arriving after this point will get
1013          * remapped to it directly.
1014          */
1015         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1016         if (r) {
1017                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1018                 cell_error(pool, m->cell);
1019                 goto out;
1020         }
1021
1022         /*
1023          * Release any bios held while the block was being provisioned.
1024          * If we are processing a write bio that completely covers the block,
1025          * we already processed it so can ignore it now when processing
1026          * the bios in the cell.
1027          */
1028         if (bio) {
1029                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030                 complete_overwrite_bio(tc, bio);
1031         } else {
1032                 inc_all_io_entry(tc->pool, m->cell->holder);
1033                 remap_and_issue(tc, m->cell->holder, m->data_block);
1034                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1035         }
1036
1037 out:
1038         list_del(&m->list);
1039         mempool_free(m, &pool->mapping_pool);
1040 }
1041
1042 /*----------------------------------------------------------------*/
1043
1044 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1045 {
1046         struct thin_c *tc = m->tc;
1047
1048         if (m->cell)
1049                 cell_defer_no_holder(tc, m->cell);
1050         mempool_free(m, &tc->pool->mapping_pool);
1051 }
1052
1053 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1054 {
1055         bio_io_error(m->bio);
1056         free_discard_mapping(m);
1057 }
1058
1059 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1060 {
1061         bio_endio(m->bio);
1062         free_discard_mapping(m);
1063 }
1064
1065 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1066 {
1067         int r;
1068         struct thin_c *tc = m->tc;
1069
1070         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1071         if (r) {
1072                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1073                 bio_io_error(m->bio);
1074         } else
1075                 bio_endio(m->bio);
1076
1077         cell_defer_no_holder(tc, m->cell);
1078         mempool_free(m, &tc->pool->mapping_pool);
1079 }
1080
1081 /*----------------------------------------------------------------*/
1082
1083 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1084                                                    struct bio *discard_parent)
1085 {
1086         /*
1087          * We've already unmapped this range of blocks, but before we
1088          * passdown we have to check that these blocks are now unused.
1089          */
1090         int r = 0;
1091         bool shared = true;
1092         struct thin_c *tc = m->tc;
1093         struct pool *pool = tc->pool;
1094         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1095         struct discard_op op;
1096
1097         begin_discard(&op, tc, discard_parent);
1098         while (b != end) {
1099                 /* find start of unmapped run */
1100                 for (; b < end; b++) {
1101                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1102                         if (r)
1103                                 goto out;
1104
1105                         if (!shared)
1106                                 break;
1107                 }
1108
1109                 if (b == end)
1110                         break;
1111
1112                 /* find end of run */
1113                 for (e = b + 1; e != end; e++) {
1114                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1115                         if (r)
1116                                 goto out;
1117
1118                         if (shared)
1119                                 break;
1120                 }
1121
1122                 r = issue_discard(&op, b, e);
1123                 if (r)
1124                         goto out;
1125
1126                 b = e;
1127         }
1128 out:
1129         end_discard(&op, r);
1130 }
1131
1132 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1133 {
1134         unsigned long flags;
1135         struct pool *pool = m->tc->pool;
1136
1137         spin_lock_irqsave(&pool->lock, flags);
1138         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1139         spin_unlock_irqrestore(&pool->lock, flags);
1140         wake_worker(pool);
1141 }
1142
1143 static void passdown_endio(struct bio *bio)
1144 {
1145         /*
1146          * It doesn't matter if the passdown discard failed, we still want
1147          * to unmap (we ignore err).
1148          */
1149         queue_passdown_pt2(bio->bi_private);
1150         bio_put(bio);
1151 }
1152
1153 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1154 {
1155         int r;
1156         struct thin_c *tc = m->tc;
1157         struct pool *pool = tc->pool;
1158         struct bio *discard_parent;
1159         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1160
1161         /*
1162          * Only this thread allocates blocks, so we can be sure that the
1163          * newly unmapped blocks will not be allocated before the end of
1164          * the function.
1165          */
1166         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1167         if (r) {
1168                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1169                 bio_io_error(m->bio);
1170                 cell_defer_no_holder(tc, m->cell);
1171                 mempool_free(m, &pool->mapping_pool);
1172                 return;
1173         }
1174
1175         /*
1176          * Increment the unmapped blocks.  This prevents a race between the
1177          * passdown io and reallocation of freed blocks.
1178          */
1179         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1180         if (r) {
1181                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1182                 bio_io_error(m->bio);
1183                 cell_defer_no_holder(tc, m->cell);
1184                 mempool_free(m, &pool->mapping_pool);
1185                 return;
1186         }
1187
1188         discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1189         discard_parent->bi_end_io = passdown_endio;
1190         discard_parent->bi_private = m;
1191         if (m->maybe_shared)
1192                 passdown_double_checking_shared_status(m, discard_parent);
1193         else {
1194                 struct discard_op op;
1195
1196                 begin_discard(&op, tc, discard_parent);
1197                 r = issue_discard(&op, m->data_block, data_end);
1198                 end_discard(&op, r);
1199         }
1200 }
1201
1202 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1203 {
1204         int r;
1205         struct thin_c *tc = m->tc;
1206         struct pool *pool = tc->pool;
1207
1208         /*
1209          * The passdown has completed, so now we can decrement all those
1210          * unmapped blocks.
1211          */
1212         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1213                                    m->data_block + (m->virt_end - m->virt_begin));
1214         if (r) {
1215                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1216                 bio_io_error(m->bio);
1217         } else
1218                 bio_endio(m->bio);
1219
1220         cell_defer_no_holder(tc, m->cell);
1221         mempool_free(m, &pool->mapping_pool);
1222 }
1223
1224 static void process_prepared(struct pool *pool, struct list_head *head,
1225                              process_mapping_fn *fn)
1226 {
1227         struct list_head maps;
1228         struct dm_thin_new_mapping *m, *tmp;
1229
1230         INIT_LIST_HEAD(&maps);
1231         spin_lock_irq(&pool->lock);
1232         list_splice_init(head, &maps);
1233         spin_unlock_irq(&pool->lock);
1234
1235         list_for_each_entry_safe(m, tmp, &maps, list)
1236                 (*fn)(m);
1237 }
1238
1239 /*
1240  * Deferred bio jobs.
1241  */
1242 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1243 {
1244         return bio->bi_iter.bi_size ==
1245                 (pool->sectors_per_block << SECTOR_SHIFT);
1246 }
1247
1248 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1249 {
1250         return (bio_data_dir(bio) == WRITE) &&
1251                 io_overlaps_block(pool, bio);
1252 }
1253
1254 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1255                                bio_end_io_t *fn)
1256 {
1257         *save = bio->bi_end_io;
1258         bio->bi_end_io = fn;
1259 }
1260
1261 static int ensure_next_mapping(struct pool *pool)
1262 {
1263         if (pool->next_mapping)
1264                 return 0;
1265
1266         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1267
1268         return pool->next_mapping ? 0 : -ENOMEM;
1269 }
1270
1271 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1272 {
1273         struct dm_thin_new_mapping *m = pool->next_mapping;
1274
1275         BUG_ON(!pool->next_mapping);
1276
1277         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1278         INIT_LIST_HEAD(&m->list);
1279         m->bio = NULL;
1280
1281         pool->next_mapping = NULL;
1282
1283         return m;
1284 }
1285
1286 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1287                     sector_t begin, sector_t end)
1288 {
1289         struct dm_io_region to;
1290
1291         to.bdev = tc->pool_dev->bdev;
1292         to.sector = begin;
1293         to.count = end - begin;
1294
1295         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1296 }
1297
1298 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1299                                       dm_block_t data_begin,
1300                                       struct dm_thin_new_mapping *m)
1301 {
1302         struct pool *pool = tc->pool;
1303         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1304
1305         h->overwrite_mapping = m;
1306         m->bio = bio;
1307         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1308         inc_all_io_entry(pool, bio);
1309         remap_and_issue(tc, bio, data_begin);
1310 }
1311
1312 /*
1313  * A partial copy also needs to zero the uncopied region.
1314  */
1315 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1316                           struct dm_dev *origin, dm_block_t data_origin,
1317                           dm_block_t data_dest,
1318                           struct dm_bio_prison_cell *cell, struct bio *bio,
1319                           sector_t len)
1320 {
1321         struct pool *pool = tc->pool;
1322         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1323
1324         m->tc = tc;
1325         m->virt_begin = virt_block;
1326         m->virt_end = virt_block + 1u;
1327         m->data_block = data_dest;
1328         m->cell = cell;
1329
1330         /*
1331          * quiesce action + copy action + an extra reference held for the
1332          * duration of this function (we may need to inc later for a
1333          * partial zero).
1334          */
1335         atomic_set(&m->prepare_actions, 3);
1336
1337         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1338                 complete_mapping_preparation(m); /* already quiesced */
1339
1340         /*
1341          * IO to pool_dev remaps to the pool target's data_dev.
1342          *
1343          * If the whole block of data is being overwritten, we can issue the
1344          * bio immediately. Otherwise we use kcopyd to clone the data first.
1345          */
1346         if (io_overwrites_block(pool, bio))
1347                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1348         else {
1349                 struct dm_io_region from, to;
1350
1351                 from.bdev = origin->bdev;
1352                 from.sector = data_origin * pool->sectors_per_block;
1353                 from.count = len;
1354
1355                 to.bdev = tc->pool_dev->bdev;
1356                 to.sector = data_dest * pool->sectors_per_block;
1357                 to.count = len;
1358
1359                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1360                                0, copy_complete, m);
1361
1362                 /*
1363                  * Do we need to zero a tail region?
1364                  */
1365                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1366                         atomic_inc(&m->prepare_actions);
1367                         ll_zero(tc, m,
1368                                 data_dest * pool->sectors_per_block + len,
1369                                 (data_dest + 1) * pool->sectors_per_block);
1370                 }
1371         }
1372
1373         complete_mapping_preparation(m); /* drop our ref */
1374 }
1375
1376 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1377                                    dm_block_t data_origin, dm_block_t data_dest,
1378                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1379 {
1380         schedule_copy(tc, virt_block, tc->pool_dev,
1381                       data_origin, data_dest, cell, bio,
1382                       tc->pool->sectors_per_block);
1383 }
1384
1385 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1386                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1387                           struct bio *bio)
1388 {
1389         struct pool *pool = tc->pool;
1390         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1391
1392         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1393         m->tc = tc;
1394         m->virt_begin = virt_block;
1395         m->virt_end = virt_block + 1u;
1396         m->data_block = data_block;
1397         m->cell = cell;
1398
1399         /*
1400          * If the whole block of data is being overwritten or we are not
1401          * zeroing pre-existing data, we can issue the bio immediately.
1402          * Otherwise we use kcopyd to zero the data first.
1403          */
1404         if (pool->pf.zero_new_blocks) {
1405                 if (io_overwrites_block(pool, bio))
1406                         remap_and_issue_overwrite(tc, bio, data_block, m);
1407                 else {
1408                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1409                                 (data_block + 1) * pool->sectors_per_block);
1410                 }
1411         } else
1412                 process_prepared_mapping(m);
1413 }
1414
1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1416                                    dm_block_t data_dest,
1417                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1418 {
1419         struct pool *pool = tc->pool;
1420         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1421         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1422
1423         if (virt_block_end <= tc->origin_size) {
1424                 schedule_copy(tc, virt_block, tc->origin_dev,
1425                               virt_block, data_dest, cell, bio,
1426                               pool->sectors_per_block);
1427
1428         } else if (virt_block_begin < tc->origin_size) {
1429                 schedule_copy(tc, virt_block, tc->origin_dev,
1430                               virt_block, data_dest, cell, bio,
1431                               tc->origin_size - virt_block_begin);
1432
1433         } else
1434                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1435 }
1436
1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1438
1439 static void requeue_bios(struct pool *pool);
1440
1441 static bool is_read_only_pool_mode(enum pool_mode mode)
1442 {
1443         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1444 }
1445
1446 static bool is_read_only(struct pool *pool)
1447 {
1448         return is_read_only_pool_mode(get_pool_mode(pool));
1449 }
1450
1451 static void check_for_metadata_space(struct pool *pool)
1452 {
1453         int r;
1454         const char *ooms_reason = NULL;
1455         dm_block_t nr_free;
1456
1457         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1458         if (r)
1459                 ooms_reason = "Could not get free metadata blocks";
1460         else if (!nr_free)
1461                 ooms_reason = "No free metadata blocks";
1462
1463         if (ooms_reason && !is_read_only(pool)) {
1464                 DMERR("%s", ooms_reason);
1465                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1466         }
1467 }
1468
1469 static void check_for_data_space(struct pool *pool)
1470 {
1471         int r;
1472         dm_block_t nr_free;
1473
1474         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1475                 return;
1476
1477         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1478         if (r)
1479                 return;
1480
1481         if (nr_free) {
1482                 set_pool_mode(pool, PM_WRITE);
1483                 requeue_bios(pool);
1484         }
1485 }
1486
1487 /*
1488  * A non-zero return indicates read_only or fail_io mode.
1489  * Many callers don't care about the return value.
1490  */
1491 static int commit(struct pool *pool)
1492 {
1493         int r;
1494
1495         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1496                 return -EINVAL;
1497
1498         r = dm_pool_commit_metadata(pool->pmd);
1499         if (r)
1500                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1501         else {
1502                 check_for_metadata_space(pool);
1503                 check_for_data_space(pool);
1504         }
1505
1506         return r;
1507 }
1508
1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1510 {
1511         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1512                 DMWARN("%s: reached low water mark for data device: sending event.",
1513                        dm_device_name(pool->pool_md));
1514                 spin_lock_irq(&pool->lock);
1515                 pool->low_water_triggered = true;
1516                 spin_unlock_irq(&pool->lock);
1517                 dm_table_event(pool->ti->table);
1518         }
1519 }
1520
1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1522 {
1523         int r;
1524         dm_block_t free_blocks;
1525         struct pool *pool = tc->pool;
1526
1527         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1528                 return -EINVAL;
1529
1530         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1531         if (r) {
1532                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1533                 return r;
1534         }
1535
1536         check_low_water_mark(pool, free_blocks);
1537
1538         if (!free_blocks) {
1539                 /*
1540                  * Try to commit to see if that will free up some
1541                  * more space.
1542                  */
1543                 r = commit(pool);
1544                 if (r)
1545                         return r;
1546
1547                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1548                 if (r) {
1549                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1550                         return r;
1551                 }
1552
1553                 if (!free_blocks) {
1554                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555                         return -ENOSPC;
1556                 }
1557         }
1558
1559         r = dm_pool_alloc_data_block(pool->pmd, result);
1560         if (r) {
1561                 if (r == -ENOSPC)
1562                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1563                 else
1564                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1565                 return r;
1566         }
1567
1568         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1569         if (r) {
1570                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1571                 return r;
1572         }
1573
1574         if (!free_blocks) {
1575                 /* Let's commit before we use up the metadata reserve. */
1576                 r = commit(pool);
1577                 if (r)
1578                         return r;
1579         }
1580
1581         return 0;
1582 }
1583
1584 /*
1585  * If we have run out of space, queue bios until the device is
1586  * resumed, presumably after having been reloaded with more space.
1587  */
1588 static void retry_on_resume(struct bio *bio)
1589 {
1590         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1591         struct thin_c *tc = h->tc;
1592
1593         spin_lock_irq(&tc->lock);
1594         bio_list_add(&tc->retry_on_resume_list, bio);
1595         spin_unlock_irq(&tc->lock);
1596 }
1597
1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1599 {
1600         enum pool_mode m = get_pool_mode(pool);
1601
1602         switch (m) {
1603         case PM_WRITE:
1604                 /* Shouldn't get here */
1605                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606                 return BLK_STS_IOERR;
1607
1608         case PM_OUT_OF_DATA_SPACE:
1609                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1610
1611         case PM_OUT_OF_METADATA_SPACE:
1612         case PM_READ_ONLY:
1613         case PM_FAIL:
1614                 return BLK_STS_IOERR;
1615         default:
1616                 /* Shouldn't get here */
1617                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618                 return BLK_STS_IOERR;
1619         }
1620 }
1621
1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1623 {
1624         blk_status_t error = should_error_unserviceable_bio(pool);
1625
1626         if (error) {
1627                 bio->bi_status = error;
1628                 bio_endio(bio);
1629         } else
1630                 retry_on_resume(bio);
1631 }
1632
1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1634 {
1635         struct bio *bio;
1636         struct bio_list bios;
1637         blk_status_t error;
1638
1639         error = should_error_unserviceable_bio(pool);
1640         if (error) {
1641                 cell_error_with_code(pool, cell, error);
1642                 return;
1643         }
1644
1645         bio_list_init(&bios);
1646         cell_release(pool, cell, &bios);
1647
1648         while ((bio = bio_list_pop(&bios)))
1649                 retry_on_resume(bio);
1650 }
1651
1652 static void process_discard_cell_no_passdown(struct thin_c *tc,
1653                                              struct dm_bio_prison_cell *virt_cell)
1654 {
1655         struct pool *pool = tc->pool;
1656         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1657
1658         /*
1659          * We don't need to lock the data blocks, since there's no
1660          * passdown.  We only lock data blocks for allocation and breaking sharing.
1661          */
1662         m->tc = tc;
1663         m->virt_begin = virt_cell->key.block_begin;
1664         m->virt_end = virt_cell->key.block_end;
1665         m->cell = virt_cell;
1666         m->bio = virt_cell->holder;
1667
1668         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1669                 pool->process_prepared_discard(m);
1670 }
1671
1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1673                                  struct bio *bio)
1674 {
1675         struct pool *pool = tc->pool;
1676
1677         int r;
1678         bool maybe_shared;
1679         struct dm_cell_key data_key;
1680         struct dm_bio_prison_cell *data_cell;
1681         struct dm_thin_new_mapping *m;
1682         dm_block_t virt_begin, virt_end, data_begin, data_end;
1683         dm_block_t len, next_boundary;
1684
1685         while (begin != end) {
1686                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1687                                               &data_begin, &maybe_shared);
1688                 if (r) {
1689                         /*
1690                          * Silently fail, letting any mappings we've
1691                          * created complete.
1692                          */
1693                         break;
1694                 }
1695
1696                 data_end = data_begin + (virt_end - virt_begin);
1697
1698                 /*
1699                  * Make sure the data region obeys the bio prison restrictions.
1700                  */
1701                 while (data_begin < data_end) {
1702                         r = ensure_next_mapping(pool);
1703                         if (r)
1704                                 return; /* we did our best */
1705
1706                         next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1707                                 << BIO_PRISON_MAX_RANGE_SHIFT;
1708                         len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1709
1710                         /* This key is certainly within range given the above splitting */
1711                         (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1712                         if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1713                                 /* contention, we'll give up with this range */
1714                                 data_begin += len;
1715                                 continue;
1716                         }
1717
1718                         /*
1719                          * IO may still be going to the destination block.  We must
1720                          * quiesce before we can do the removal.
1721                          */
1722                         m = get_next_mapping(pool);
1723                         m->tc = tc;
1724                         m->maybe_shared = maybe_shared;
1725                         m->virt_begin = virt_begin;
1726                         m->virt_end = virt_begin + len;
1727                         m->data_block = data_begin;
1728                         m->cell = data_cell;
1729                         m->bio = bio;
1730
1731                         /*
1732                          * The parent bio must not complete before sub discard bios are
1733                          * chained to it (see end_discard's bio_chain)!
1734                          *
1735                          * This per-mapping bi_remaining increment is paired with
1736                          * the implicit decrement that occurs via bio_endio() in
1737                          * end_discard().
1738                          */
1739                         bio_inc_remaining(bio);
1740                         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1741                                 pool->process_prepared_discard(m);
1742
1743                         virt_begin += len;
1744                         data_begin += len;
1745                 }
1746
1747                 begin = virt_end;
1748         }
1749 }
1750
1751 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1752 {
1753         struct bio *bio = virt_cell->holder;
1754         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1755
1756         /*
1757          * The virt_cell will only get freed once the origin bio completes.
1758          * This means it will remain locked while all the individual
1759          * passdown bios are in flight.
1760          */
1761         h->cell = virt_cell;
1762         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1763
1764         /*
1765          * We complete the bio now, knowing that the bi_remaining field
1766          * will prevent completion until the sub range discards have
1767          * completed.
1768          */
1769         bio_endio(bio);
1770 }
1771
1772 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1773 {
1774         dm_block_t begin, end;
1775         struct dm_cell_key virt_key;
1776         struct dm_bio_prison_cell *virt_cell;
1777
1778         get_bio_block_range(tc, bio, &begin, &end);
1779         if (begin == end) {
1780                 /*
1781                  * The discard covers less than a block.
1782                  */
1783                 bio_endio(bio);
1784                 return;
1785         }
1786
1787         if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1788                 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1789                 bio_endio(bio);
1790                 return;
1791         }
1792
1793         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1794                 /*
1795                  * Potential starvation issue: We're relying on the
1796                  * fs/application being well behaved, and not trying to
1797                  * send IO to a region at the same time as discarding it.
1798                  * If they do this persistently then it's possible this
1799                  * cell will never be granted.
1800                  */
1801                 return;
1802         }
1803
1804         tc->pool->process_discard_cell(tc, virt_cell);
1805 }
1806
1807 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1808                           struct dm_cell_key *key,
1809                           struct dm_thin_lookup_result *lookup_result,
1810                           struct dm_bio_prison_cell *cell)
1811 {
1812         int r;
1813         dm_block_t data_block;
1814         struct pool *pool = tc->pool;
1815
1816         r = alloc_data_block(tc, &data_block);
1817         switch (r) {
1818         case 0:
1819                 schedule_internal_copy(tc, block, lookup_result->block,
1820                                        data_block, cell, bio);
1821                 break;
1822
1823         case -ENOSPC:
1824                 retry_bios_on_resume(pool, cell);
1825                 break;
1826
1827         default:
1828                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829                             __func__, r);
1830                 cell_error(pool, cell);
1831                 break;
1832         }
1833 }
1834
1835 static void __remap_and_issue_shared_cell(void *context,
1836                                           struct dm_bio_prison_cell *cell)
1837 {
1838         struct remap_info *info = context;
1839         struct bio *bio;
1840
1841         while ((bio = bio_list_pop(&cell->bios))) {
1842                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1843                     bio_op(bio) == REQ_OP_DISCARD)
1844                         bio_list_add(&info->defer_bios, bio);
1845                 else {
1846                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1847
1848                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1849                         inc_all_io_entry(info->tc->pool, bio);
1850                         bio_list_add(&info->issue_bios, bio);
1851                 }
1852         }
1853 }
1854
1855 static void remap_and_issue_shared_cell(struct thin_c *tc,
1856                                         struct dm_bio_prison_cell *cell,
1857                                         dm_block_t block)
1858 {
1859         struct bio *bio;
1860         struct remap_info info;
1861
1862         info.tc = tc;
1863         bio_list_init(&info.defer_bios);
1864         bio_list_init(&info.issue_bios);
1865
1866         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1867                            &info, cell);
1868
1869         while ((bio = bio_list_pop(&info.defer_bios)))
1870                 thin_defer_bio(tc, bio);
1871
1872         while ((bio = bio_list_pop(&info.issue_bios)))
1873                 remap_and_issue(tc, bio, block);
1874 }
1875
1876 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1877                                dm_block_t block,
1878                                struct dm_thin_lookup_result *lookup_result,
1879                                struct dm_bio_prison_cell *virt_cell)
1880 {
1881         struct dm_bio_prison_cell *data_cell;
1882         struct pool *pool = tc->pool;
1883         struct dm_cell_key key;
1884
1885         /*
1886          * If cell is already occupied, then sharing is already in the process
1887          * of being broken so we have nothing further to do here.
1888          */
1889         build_data_key(tc->td, lookup_result->block, &key);
1890         if (bio_detain(pool, &key, bio, &data_cell)) {
1891                 cell_defer_no_holder(tc, virt_cell);
1892                 return;
1893         }
1894
1895         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1896                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1897                 cell_defer_no_holder(tc, virt_cell);
1898         } else {
1899                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1900
1901                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1902                 inc_all_io_entry(pool, bio);
1903                 remap_and_issue(tc, bio, lookup_result->block);
1904
1905                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1906                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1907         }
1908 }
1909
1910 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1911                             struct dm_bio_prison_cell *cell)
1912 {
1913         int r;
1914         dm_block_t data_block;
1915         struct pool *pool = tc->pool;
1916
1917         /*
1918          * Remap empty bios (flushes) immediately, without provisioning.
1919          */
1920         if (!bio->bi_iter.bi_size) {
1921                 inc_all_io_entry(pool, bio);
1922                 cell_defer_no_holder(tc, cell);
1923
1924                 remap_and_issue(tc, bio, 0);
1925                 return;
1926         }
1927
1928         /*
1929          * Fill read bios with zeroes and complete them immediately.
1930          */
1931         if (bio_data_dir(bio) == READ) {
1932                 zero_fill_bio(bio);
1933                 cell_defer_no_holder(tc, cell);
1934                 bio_endio(bio);
1935                 return;
1936         }
1937
1938         r = alloc_data_block(tc, &data_block);
1939         switch (r) {
1940         case 0:
1941                 if (tc->origin_dev)
1942                         schedule_external_copy(tc, block, data_block, cell, bio);
1943                 else
1944                         schedule_zero(tc, block, data_block, cell, bio);
1945                 break;
1946
1947         case -ENOSPC:
1948                 retry_bios_on_resume(pool, cell);
1949                 break;
1950
1951         default:
1952                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1953                             __func__, r);
1954                 cell_error(pool, cell);
1955                 break;
1956         }
1957 }
1958
1959 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1960 {
1961         int r;
1962         struct pool *pool = tc->pool;
1963         struct bio *bio = cell->holder;
1964         dm_block_t block = get_bio_block(tc, bio);
1965         struct dm_thin_lookup_result lookup_result;
1966
1967         if (tc->requeue_mode) {
1968                 cell_requeue(pool, cell);
1969                 return;
1970         }
1971
1972         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1973         switch (r) {
1974         case 0:
1975                 if (lookup_result.shared)
1976                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1977                 else {
1978                         inc_all_io_entry(pool, bio);
1979                         remap_and_issue(tc, bio, lookup_result.block);
1980                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1981                 }
1982                 break;
1983
1984         case -ENODATA:
1985                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1986                         inc_all_io_entry(pool, bio);
1987                         cell_defer_no_holder(tc, cell);
1988
1989                         if (bio_end_sector(bio) <= tc->origin_size)
1990                                 remap_to_origin_and_issue(tc, bio);
1991
1992                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1993                                 zero_fill_bio(bio);
1994                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1995                                 remap_to_origin_and_issue(tc, bio);
1996
1997                         } else {
1998                                 zero_fill_bio(bio);
1999                                 bio_endio(bio);
2000                         }
2001                 } else
2002                         provision_block(tc, bio, block, cell);
2003                 break;
2004
2005         default:
2006                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2007                             __func__, r);
2008                 cell_defer_no_holder(tc, cell);
2009                 bio_io_error(bio);
2010                 break;
2011         }
2012 }
2013
2014 static void process_bio(struct thin_c *tc, struct bio *bio)
2015 {
2016         struct pool *pool = tc->pool;
2017         dm_block_t block = get_bio_block(tc, bio);
2018         struct dm_bio_prison_cell *cell;
2019         struct dm_cell_key key;
2020
2021         /*
2022          * If cell is already occupied, then the block is already
2023          * being provisioned so we have nothing further to do here.
2024          */
2025         build_virtual_key(tc->td, block, &key);
2026         if (bio_detain(pool, &key, bio, &cell))
2027                 return;
2028
2029         process_cell(tc, cell);
2030 }
2031
2032 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2033                                     struct dm_bio_prison_cell *cell)
2034 {
2035         int r;
2036         int rw = bio_data_dir(bio);
2037         dm_block_t block = get_bio_block(tc, bio);
2038         struct dm_thin_lookup_result lookup_result;
2039
2040         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2041         switch (r) {
2042         case 0:
2043                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2044                         handle_unserviceable_bio(tc->pool, bio);
2045                         if (cell)
2046                                 cell_defer_no_holder(tc, cell);
2047                 } else {
2048                         inc_all_io_entry(tc->pool, bio);
2049                         remap_and_issue(tc, bio, lookup_result.block);
2050                         if (cell)
2051                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2052                 }
2053                 break;
2054
2055         case -ENODATA:
2056                 if (cell)
2057                         cell_defer_no_holder(tc, cell);
2058                 if (rw != READ) {
2059                         handle_unserviceable_bio(tc->pool, bio);
2060                         break;
2061                 }
2062
2063                 if (tc->origin_dev) {
2064                         inc_all_io_entry(tc->pool, bio);
2065                         remap_to_origin_and_issue(tc, bio);
2066                         break;
2067                 }
2068
2069                 zero_fill_bio(bio);
2070                 bio_endio(bio);
2071                 break;
2072
2073         default:
2074                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2075                             __func__, r);
2076                 if (cell)
2077                         cell_defer_no_holder(tc, cell);
2078                 bio_io_error(bio);
2079                 break;
2080         }
2081 }
2082
2083 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2084 {
2085         __process_bio_read_only(tc, bio, NULL);
2086 }
2087
2088 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089 {
2090         __process_bio_read_only(tc, cell->holder, cell);
2091 }
2092
2093 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2094 {
2095         bio_endio(bio);
2096 }
2097
2098 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2099 {
2100         bio_io_error(bio);
2101 }
2102
2103 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2104 {
2105         cell_success(tc->pool, cell);
2106 }
2107
2108 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2109 {
2110         cell_error(tc->pool, cell);
2111 }
2112
2113 /*
2114  * FIXME: should we also commit due to size of transaction, measured in
2115  * metadata blocks?
2116  */
2117 static int need_commit_due_to_time(struct pool *pool)
2118 {
2119         return !time_in_range(jiffies, pool->last_commit_jiffies,
2120                               pool->last_commit_jiffies + COMMIT_PERIOD);
2121 }
2122
2123 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2124 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2125
2126 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2127 {
2128         struct rb_node **rbp, *parent;
2129         struct dm_thin_endio_hook *pbd;
2130         sector_t bi_sector = bio->bi_iter.bi_sector;
2131
2132         rbp = &tc->sort_bio_list.rb_node;
2133         parent = NULL;
2134         while (*rbp) {
2135                 parent = *rbp;
2136                 pbd = thin_pbd(parent);
2137
2138                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2139                         rbp = &(*rbp)->rb_left;
2140                 else
2141                         rbp = &(*rbp)->rb_right;
2142         }
2143
2144         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2145         rb_link_node(&pbd->rb_node, parent, rbp);
2146         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2147 }
2148
2149 static void __extract_sorted_bios(struct thin_c *tc)
2150 {
2151         struct rb_node *node;
2152         struct dm_thin_endio_hook *pbd;
2153         struct bio *bio;
2154
2155         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2156                 pbd = thin_pbd(node);
2157                 bio = thin_bio(pbd);
2158
2159                 bio_list_add(&tc->deferred_bio_list, bio);
2160                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2161         }
2162
2163         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2164 }
2165
2166 static void __sort_thin_deferred_bios(struct thin_c *tc)
2167 {
2168         struct bio *bio;
2169         struct bio_list bios;
2170
2171         bio_list_init(&bios);
2172         bio_list_merge(&bios, &tc->deferred_bio_list);
2173         bio_list_init(&tc->deferred_bio_list);
2174
2175         /* Sort deferred_bio_list using rb-tree */
2176         while ((bio = bio_list_pop(&bios)))
2177                 __thin_bio_rb_add(tc, bio);
2178
2179         /*
2180          * Transfer the sorted bios in sort_bio_list back to
2181          * deferred_bio_list to allow lockless submission of
2182          * all bios.
2183          */
2184         __extract_sorted_bios(tc);
2185 }
2186
2187 static void process_thin_deferred_bios(struct thin_c *tc)
2188 {
2189         struct pool *pool = tc->pool;
2190         struct bio *bio;
2191         struct bio_list bios;
2192         struct blk_plug plug;
2193         unsigned int count = 0;
2194
2195         if (tc->requeue_mode) {
2196                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2197                                 BLK_STS_DM_REQUEUE);
2198                 return;
2199         }
2200
2201         bio_list_init(&bios);
2202
2203         spin_lock_irq(&tc->lock);
2204
2205         if (bio_list_empty(&tc->deferred_bio_list)) {
2206                 spin_unlock_irq(&tc->lock);
2207                 return;
2208         }
2209
2210         __sort_thin_deferred_bios(tc);
2211
2212         bio_list_merge(&bios, &tc->deferred_bio_list);
2213         bio_list_init(&tc->deferred_bio_list);
2214
2215         spin_unlock_irq(&tc->lock);
2216
2217         blk_start_plug(&plug);
2218         while ((bio = bio_list_pop(&bios))) {
2219                 /*
2220                  * If we've got no free new_mapping structs, and processing
2221                  * this bio might require one, we pause until there are some
2222                  * prepared mappings to process.
2223                  */
2224                 if (ensure_next_mapping(pool)) {
2225                         spin_lock_irq(&tc->lock);
2226                         bio_list_add(&tc->deferred_bio_list, bio);
2227                         bio_list_merge(&tc->deferred_bio_list, &bios);
2228                         spin_unlock_irq(&tc->lock);
2229                         break;
2230                 }
2231
2232                 if (bio_op(bio) == REQ_OP_DISCARD)
2233                         pool->process_discard(tc, bio);
2234                 else
2235                         pool->process_bio(tc, bio);
2236
2237                 if ((count++ & 127) == 0) {
2238                         throttle_work_update(&pool->throttle);
2239                         dm_pool_issue_prefetches(pool->pmd);
2240                 }
2241                 cond_resched();
2242         }
2243         blk_finish_plug(&plug);
2244 }
2245
2246 static int cmp_cells(const void *lhs, const void *rhs)
2247 {
2248         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2249         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2250
2251         BUG_ON(!lhs_cell->holder);
2252         BUG_ON(!rhs_cell->holder);
2253
2254         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2255                 return -1;
2256
2257         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2258                 return 1;
2259
2260         return 0;
2261 }
2262
2263 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2264 {
2265         unsigned int count = 0;
2266         struct dm_bio_prison_cell *cell, *tmp;
2267
2268         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2269                 if (count >= CELL_SORT_ARRAY_SIZE)
2270                         break;
2271
2272                 pool->cell_sort_array[count++] = cell;
2273                 list_del(&cell->user_list);
2274         }
2275
2276         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2277
2278         return count;
2279 }
2280
2281 static void process_thin_deferred_cells(struct thin_c *tc)
2282 {
2283         struct pool *pool = tc->pool;
2284         struct list_head cells;
2285         struct dm_bio_prison_cell *cell;
2286         unsigned int i, j, count;
2287
2288         INIT_LIST_HEAD(&cells);
2289
2290         spin_lock_irq(&tc->lock);
2291         list_splice_init(&tc->deferred_cells, &cells);
2292         spin_unlock_irq(&tc->lock);
2293
2294         if (list_empty(&cells))
2295                 return;
2296
2297         do {
2298                 count = sort_cells(tc->pool, &cells);
2299
2300                 for (i = 0; i < count; i++) {
2301                         cell = pool->cell_sort_array[i];
2302                         BUG_ON(!cell->holder);
2303
2304                         /*
2305                          * If we've got no free new_mapping structs, and processing
2306                          * this bio might require one, we pause until there are some
2307                          * prepared mappings to process.
2308                          */
2309                         if (ensure_next_mapping(pool)) {
2310                                 for (j = i; j < count; j++)
2311                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2312
2313                                 spin_lock_irq(&tc->lock);
2314                                 list_splice(&cells, &tc->deferred_cells);
2315                                 spin_unlock_irq(&tc->lock);
2316                                 return;
2317                         }
2318
2319                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2320                                 pool->process_discard_cell(tc, cell);
2321                         else
2322                                 pool->process_cell(tc, cell);
2323                 }
2324                 cond_resched();
2325         } while (!list_empty(&cells));
2326 }
2327
2328 static void thin_get(struct thin_c *tc);
2329 static void thin_put(struct thin_c *tc);
2330
2331 /*
2332  * We can't hold rcu_read_lock() around code that can block.  So we
2333  * find a thin with the rcu lock held; bump a refcount; then drop
2334  * the lock.
2335  */
2336 static struct thin_c *get_first_thin(struct pool *pool)
2337 {
2338         struct thin_c *tc = NULL;
2339
2340         rcu_read_lock();
2341         if (!list_empty(&pool->active_thins)) {
2342                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2343                 thin_get(tc);
2344         }
2345         rcu_read_unlock();
2346
2347         return tc;
2348 }
2349
2350 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2351 {
2352         struct thin_c *old_tc = tc;
2353
2354         rcu_read_lock();
2355         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2356                 thin_get(tc);
2357                 thin_put(old_tc);
2358                 rcu_read_unlock();
2359                 return tc;
2360         }
2361         thin_put(old_tc);
2362         rcu_read_unlock();
2363
2364         return NULL;
2365 }
2366
2367 static void process_deferred_bios(struct pool *pool)
2368 {
2369         struct bio *bio;
2370         struct bio_list bios, bio_completions;
2371         struct thin_c *tc;
2372
2373         tc = get_first_thin(pool);
2374         while (tc) {
2375                 process_thin_deferred_cells(tc);
2376                 process_thin_deferred_bios(tc);
2377                 tc = get_next_thin(pool, tc);
2378         }
2379
2380         /*
2381          * If there are any deferred flush bios, we must commit the metadata
2382          * before issuing them or signaling their completion.
2383          */
2384         bio_list_init(&bios);
2385         bio_list_init(&bio_completions);
2386
2387         spin_lock_irq(&pool->lock);
2388         bio_list_merge(&bios, &pool->deferred_flush_bios);
2389         bio_list_init(&pool->deferred_flush_bios);
2390
2391         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2392         bio_list_init(&pool->deferred_flush_completions);
2393         spin_unlock_irq(&pool->lock);
2394
2395         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2396             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2397                 return;
2398
2399         if (commit(pool)) {
2400                 bio_list_merge(&bios, &bio_completions);
2401
2402                 while ((bio = bio_list_pop(&bios)))
2403                         bio_io_error(bio);
2404                 return;
2405         }
2406         pool->last_commit_jiffies = jiffies;
2407
2408         while ((bio = bio_list_pop(&bio_completions)))
2409                 bio_endio(bio);
2410
2411         while ((bio = bio_list_pop(&bios))) {
2412                 /*
2413                  * The data device was flushed as part of metadata commit,
2414                  * so complete redundant flushes immediately.
2415                  */
2416                 if (bio->bi_opf & REQ_PREFLUSH)
2417                         bio_endio(bio);
2418                 else
2419                         dm_submit_bio_remap(bio, NULL);
2420         }
2421 }
2422
2423 static void do_worker(struct work_struct *ws)
2424 {
2425         struct pool *pool = container_of(ws, struct pool, worker);
2426
2427         throttle_work_start(&pool->throttle);
2428         dm_pool_issue_prefetches(pool->pmd);
2429         throttle_work_update(&pool->throttle);
2430         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2431         throttle_work_update(&pool->throttle);
2432         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2433         throttle_work_update(&pool->throttle);
2434         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2435         throttle_work_update(&pool->throttle);
2436         process_deferred_bios(pool);
2437         throttle_work_complete(&pool->throttle);
2438 }
2439
2440 /*
2441  * We want to commit periodically so that not too much
2442  * unwritten data builds up.
2443  */
2444 static void do_waker(struct work_struct *ws)
2445 {
2446         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2447
2448         wake_worker(pool);
2449         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2450 }
2451
2452 /*
2453  * We're holding onto IO to allow userland time to react.  After the
2454  * timeout either the pool will have been resized (and thus back in
2455  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2456  */
2457 static void do_no_space_timeout(struct work_struct *ws)
2458 {
2459         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2460                                          no_space_timeout);
2461
2462         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2463                 pool->pf.error_if_no_space = true;
2464                 notify_of_pool_mode_change(pool);
2465                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2466         }
2467 }
2468
2469 /*----------------------------------------------------------------*/
2470
2471 struct pool_work {
2472         struct work_struct worker;
2473         struct completion complete;
2474 };
2475
2476 static struct pool_work *to_pool_work(struct work_struct *ws)
2477 {
2478         return container_of(ws, struct pool_work, worker);
2479 }
2480
2481 static void pool_work_complete(struct pool_work *pw)
2482 {
2483         complete(&pw->complete);
2484 }
2485
2486 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2487                            void (*fn)(struct work_struct *))
2488 {
2489         INIT_WORK_ONSTACK(&pw->worker, fn);
2490         init_completion(&pw->complete);
2491         queue_work(pool->wq, &pw->worker);
2492         wait_for_completion(&pw->complete);
2493 }
2494
2495 /*----------------------------------------------------------------*/
2496
2497 struct noflush_work {
2498         struct pool_work pw;
2499         struct thin_c *tc;
2500 };
2501
2502 static struct noflush_work *to_noflush(struct work_struct *ws)
2503 {
2504         return container_of(to_pool_work(ws), struct noflush_work, pw);
2505 }
2506
2507 static void do_noflush_start(struct work_struct *ws)
2508 {
2509         struct noflush_work *w = to_noflush(ws);
2510
2511         w->tc->requeue_mode = true;
2512         requeue_io(w->tc);
2513         pool_work_complete(&w->pw);
2514 }
2515
2516 static void do_noflush_stop(struct work_struct *ws)
2517 {
2518         struct noflush_work *w = to_noflush(ws);
2519
2520         w->tc->requeue_mode = false;
2521         pool_work_complete(&w->pw);
2522 }
2523
2524 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2525 {
2526         struct noflush_work w;
2527
2528         w.tc = tc;
2529         pool_work_wait(&w.pw, tc->pool, fn);
2530 }
2531
2532 /*----------------------------------------------------------------*/
2533
2534 static void set_discard_callbacks(struct pool *pool)
2535 {
2536         struct pool_c *pt = pool->ti->private;
2537
2538         if (pt->adjusted_pf.discard_passdown) {
2539                 pool->process_discard_cell = process_discard_cell_passdown;
2540                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2541                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2542         } else {
2543                 pool->process_discard_cell = process_discard_cell_no_passdown;
2544                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2545         }
2546 }
2547
2548 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2549 {
2550         struct pool_c *pt = pool->ti->private;
2551         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2552         enum pool_mode old_mode = get_pool_mode(pool);
2553         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2554
2555         /*
2556          * Never allow the pool to transition to PM_WRITE mode if user
2557          * intervention is required to verify metadata and data consistency.
2558          */
2559         if (new_mode == PM_WRITE && needs_check) {
2560                 DMERR("%s: unable to switch pool to write mode until repaired.",
2561                       dm_device_name(pool->pool_md));
2562                 if (old_mode != new_mode)
2563                         new_mode = old_mode;
2564                 else
2565                         new_mode = PM_READ_ONLY;
2566         }
2567         /*
2568          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2569          * not going to recover without a thin_repair.  So we never let the
2570          * pool move out of the old mode.
2571          */
2572         if (old_mode == PM_FAIL)
2573                 new_mode = old_mode;
2574
2575         switch (new_mode) {
2576         case PM_FAIL:
2577                 dm_pool_metadata_read_only(pool->pmd);
2578                 pool->process_bio = process_bio_fail;
2579                 pool->process_discard = process_bio_fail;
2580                 pool->process_cell = process_cell_fail;
2581                 pool->process_discard_cell = process_cell_fail;
2582                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2583                 pool->process_prepared_discard = process_prepared_discard_fail;
2584
2585                 error_retry_list(pool);
2586                 break;
2587
2588         case PM_OUT_OF_METADATA_SPACE:
2589         case PM_READ_ONLY:
2590                 dm_pool_metadata_read_only(pool->pmd);
2591                 pool->process_bio = process_bio_read_only;
2592                 pool->process_discard = process_bio_success;
2593                 pool->process_cell = process_cell_read_only;
2594                 pool->process_discard_cell = process_cell_success;
2595                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2596                 pool->process_prepared_discard = process_prepared_discard_success;
2597
2598                 error_retry_list(pool);
2599                 break;
2600
2601         case PM_OUT_OF_DATA_SPACE:
2602                 /*
2603                  * Ideally we'd never hit this state; the low water mark
2604                  * would trigger userland to extend the pool before we
2605                  * completely run out of data space.  However, many small
2606                  * IOs to unprovisioned space can consume data space at an
2607                  * alarming rate.  Adjust your low water mark if you're
2608                  * frequently seeing this mode.
2609                  */
2610                 pool->out_of_data_space = true;
2611                 pool->process_bio = process_bio_read_only;
2612                 pool->process_discard = process_discard_bio;
2613                 pool->process_cell = process_cell_read_only;
2614                 pool->process_prepared_mapping = process_prepared_mapping;
2615                 set_discard_callbacks(pool);
2616
2617                 if (!pool->pf.error_if_no_space && no_space_timeout)
2618                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2619                 break;
2620
2621         case PM_WRITE:
2622                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2623                         cancel_delayed_work_sync(&pool->no_space_timeout);
2624                 pool->out_of_data_space = false;
2625                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2626                 dm_pool_metadata_read_write(pool->pmd);
2627                 pool->process_bio = process_bio;
2628                 pool->process_discard = process_discard_bio;
2629                 pool->process_cell = process_cell;
2630                 pool->process_prepared_mapping = process_prepared_mapping;
2631                 set_discard_callbacks(pool);
2632                 break;
2633         }
2634
2635         pool->pf.mode = new_mode;
2636         /*
2637          * The pool mode may have changed, sync it so bind_control_target()
2638          * doesn't cause an unexpected mode transition on resume.
2639          */
2640         pt->adjusted_pf.mode = new_mode;
2641
2642         if (old_mode != new_mode)
2643                 notify_of_pool_mode_change(pool);
2644 }
2645
2646 static void abort_transaction(struct pool *pool)
2647 {
2648         const char *dev_name = dm_device_name(pool->pool_md);
2649
2650         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2651         if (dm_pool_abort_metadata(pool->pmd)) {
2652                 DMERR("%s: failed to abort metadata transaction", dev_name);
2653                 set_pool_mode(pool, PM_FAIL);
2654         }
2655
2656         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2657                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2658                 set_pool_mode(pool, PM_FAIL);
2659         }
2660 }
2661
2662 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2663 {
2664         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2665                     dm_device_name(pool->pool_md), op, r);
2666
2667         abort_transaction(pool);
2668         set_pool_mode(pool, PM_READ_ONLY);
2669 }
2670
2671 /*----------------------------------------------------------------*/
2672
2673 /*
2674  * Mapping functions.
2675  */
2676
2677 /*
2678  * Called only while mapping a thin bio to hand it over to the workqueue.
2679  */
2680 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2681 {
2682         struct pool *pool = tc->pool;
2683
2684         spin_lock_irq(&tc->lock);
2685         bio_list_add(&tc->deferred_bio_list, bio);
2686         spin_unlock_irq(&tc->lock);
2687
2688         wake_worker(pool);
2689 }
2690
2691 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2692 {
2693         struct pool *pool = tc->pool;
2694
2695         throttle_lock(&pool->throttle);
2696         thin_defer_bio(tc, bio);
2697         throttle_unlock(&pool->throttle);
2698 }
2699
2700 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2701 {
2702         struct pool *pool = tc->pool;
2703
2704         throttle_lock(&pool->throttle);
2705         spin_lock_irq(&tc->lock);
2706         list_add_tail(&cell->user_list, &tc->deferred_cells);
2707         spin_unlock_irq(&tc->lock);
2708         throttle_unlock(&pool->throttle);
2709
2710         wake_worker(pool);
2711 }
2712
2713 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2714 {
2715         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2716
2717         h->tc = tc;
2718         h->shared_read_entry = NULL;
2719         h->all_io_entry = NULL;
2720         h->overwrite_mapping = NULL;
2721         h->cell = NULL;
2722 }
2723
2724 /*
2725  * Non-blocking function called from the thin target's map function.
2726  */
2727 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2728 {
2729         int r;
2730         struct thin_c *tc = ti->private;
2731         dm_block_t block = get_bio_block(tc, bio);
2732         struct dm_thin_device *td = tc->td;
2733         struct dm_thin_lookup_result result;
2734         struct dm_bio_prison_cell *virt_cell, *data_cell;
2735         struct dm_cell_key key;
2736
2737         thin_hook_bio(tc, bio);
2738
2739         if (tc->requeue_mode) {
2740                 bio->bi_status = BLK_STS_DM_REQUEUE;
2741                 bio_endio(bio);
2742                 return DM_MAPIO_SUBMITTED;
2743         }
2744
2745         if (get_pool_mode(tc->pool) == PM_FAIL) {
2746                 bio_io_error(bio);
2747                 return DM_MAPIO_SUBMITTED;
2748         }
2749
2750         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2751                 thin_defer_bio_with_throttle(tc, bio);
2752                 return DM_MAPIO_SUBMITTED;
2753         }
2754
2755         /*
2756          * We must hold the virtual cell before doing the lookup, otherwise
2757          * there's a race with discard.
2758          */
2759         build_virtual_key(tc->td, block, &key);
2760         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2761                 return DM_MAPIO_SUBMITTED;
2762
2763         r = dm_thin_find_block(td, block, 0, &result);
2764
2765         /*
2766          * Note that we defer readahead too.
2767          */
2768         switch (r) {
2769         case 0:
2770                 if (unlikely(result.shared)) {
2771                         /*
2772                          * We have a race condition here between the
2773                          * result.shared value returned by the lookup and
2774                          * snapshot creation, which may cause new
2775                          * sharing.
2776                          *
2777                          * To avoid this always quiesce the origin before
2778                          * taking the snap.  You want to do this anyway to
2779                          * ensure a consistent application view
2780                          * (i.e. lockfs).
2781                          *
2782                          * More distant ancestors are irrelevant. The
2783                          * shared flag will be set in their case.
2784                          */
2785                         thin_defer_cell(tc, virt_cell);
2786                         return DM_MAPIO_SUBMITTED;
2787                 }
2788
2789                 build_data_key(tc->td, result.block, &key);
2790                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2791                         cell_defer_no_holder(tc, virt_cell);
2792                         return DM_MAPIO_SUBMITTED;
2793                 }
2794
2795                 inc_all_io_entry(tc->pool, bio);
2796                 cell_defer_no_holder(tc, data_cell);
2797                 cell_defer_no_holder(tc, virt_cell);
2798
2799                 remap(tc, bio, result.block);
2800                 return DM_MAPIO_REMAPPED;
2801
2802         case -ENODATA:
2803         case -EWOULDBLOCK:
2804                 thin_defer_cell(tc, virt_cell);
2805                 return DM_MAPIO_SUBMITTED;
2806
2807         default:
2808                 /*
2809                  * Must always call bio_io_error on failure.
2810                  * dm_thin_find_block can fail with -EINVAL if the
2811                  * pool is switched to fail-io mode.
2812                  */
2813                 bio_io_error(bio);
2814                 cell_defer_no_holder(tc, virt_cell);
2815                 return DM_MAPIO_SUBMITTED;
2816         }
2817 }
2818
2819 static void requeue_bios(struct pool *pool)
2820 {
2821         struct thin_c *tc;
2822
2823         rcu_read_lock();
2824         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2825                 spin_lock_irq(&tc->lock);
2826                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2827                 bio_list_init(&tc->retry_on_resume_list);
2828                 spin_unlock_irq(&tc->lock);
2829         }
2830         rcu_read_unlock();
2831 }
2832
2833 /*
2834  *--------------------------------------------------------------
2835  * Binding of control targets to a pool object
2836  *--------------------------------------------------------------
2837  */
2838 static bool is_factor(sector_t block_size, uint32_t n)
2839 {
2840         return !sector_div(block_size, n);
2841 }
2842
2843 /*
2844  * If discard_passdown was enabled verify that the data device
2845  * supports discards.  Disable discard_passdown if not.
2846  */
2847 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2848 {
2849         struct pool *pool = pt->pool;
2850         struct block_device *data_bdev = pt->data_dev->bdev;
2851         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2852         const char *reason = NULL;
2853
2854         if (!pt->adjusted_pf.discard_passdown)
2855                 return;
2856
2857         if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2858                 reason = "discard unsupported";
2859
2860         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2861                 reason = "max discard sectors smaller than a block";
2862
2863         if (reason) {
2864                 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2865                 pt->adjusted_pf.discard_passdown = false;
2866         }
2867 }
2868
2869 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2870 {
2871         struct pool_c *pt = ti->private;
2872
2873         /*
2874          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2875          */
2876         enum pool_mode old_mode = get_pool_mode(pool);
2877         enum pool_mode new_mode = pt->adjusted_pf.mode;
2878
2879         /*
2880          * Don't change the pool's mode until set_pool_mode() below.
2881          * Otherwise the pool's process_* function pointers may
2882          * not match the desired pool mode.
2883          */
2884         pt->adjusted_pf.mode = old_mode;
2885
2886         pool->ti = ti;
2887         pool->pf = pt->adjusted_pf;
2888         pool->low_water_blocks = pt->low_water_blocks;
2889
2890         set_pool_mode(pool, new_mode);
2891
2892         return 0;
2893 }
2894
2895 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2896 {
2897         if (pool->ti == ti)
2898                 pool->ti = NULL;
2899 }
2900
2901 /*
2902  *--------------------------------------------------------------
2903  * Pool creation
2904  *--------------------------------------------------------------
2905  */
2906 /* Initialize pool features. */
2907 static void pool_features_init(struct pool_features *pf)
2908 {
2909         pf->mode = PM_WRITE;
2910         pf->zero_new_blocks = true;
2911         pf->discard_enabled = true;
2912         pf->discard_passdown = true;
2913         pf->error_if_no_space = false;
2914 }
2915
2916 static void __pool_destroy(struct pool *pool)
2917 {
2918         __pool_table_remove(pool);
2919
2920         vfree(pool->cell_sort_array);
2921         if (dm_pool_metadata_close(pool->pmd) < 0)
2922                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2923
2924         dm_bio_prison_destroy(pool->prison);
2925         dm_kcopyd_client_destroy(pool->copier);
2926
2927         cancel_delayed_work_sync(&pool->waker);
2928         cancel_delayed_work_sync(&pool->no_space_timeout);
2929         if (pool->wq)
2930                 destroy_workqueue(pool->wq);
2931
2932         if (pool->next_mapping)
2933                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2934         mempool_exit(&pool->mapping_pool);
2935         dm_deferred_set_destroy(pool->shared_read_ds);
2936         dm_deferred_set_destroy(pool->all_io_ds);
2937         kfree(pool);
2938 }
2939
2940 static struct kmem_cache *_new_mapping_cache;
2941
2942 static struct pool *pool_create(struct mapped_device *pool_md,
2943                                 struct block_device *metadata_dev,
2944                                 struct block_device *data_dev,
2945                                 unsigned long block_size,
2946                                 int read_only, char **error)
2947 {
2948         int r;
2949         void *err_p;
2950         struct pool *pool;
2951         struct dm_pool_metadata *pmd;
2952         bool format_device = read_only ? false : true;
2953
2954         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2955         if (IS_ERR(pmd)) {
2956                 *error = "Error creating metadata object";
2957                 return (struct pool *)pmd;
2958         }
2959
2960         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2961         if (!pool) {
2962                 *error = "Error allocating memory for pool";
2963                 err_p = ERR_PTR(-ENOMEM);
2964                 goto bad_pool;
2965         }
2966
2967         pool->pmd = pmd;
2968         pool->sectors_per_block = block_size;
2969         if (block_size & (block_size - 1))
2970                 pool->sectors_per_block_shift = -1;
2971         else
2972                 pool->sectors_per_block_shift = __ffs(block_size);
2973         pool->low_water_blocks = 0;
2974         pool_features_init(&pool->pf);
2975         pool->prison = dm_bio_prison_create();
2976         if (!pool->prison) {
2977                 *error = "Error creating pool's bio prison";
2978                 err_p = ERR_PTR(-ENOMEM);
2979                 goto bad_prison;
2980         }
2981
2982         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2983         if (IS_ERR(pool->copier)) {
2984                 r = PTR_ERR(pool->copier);
2985                 *error = "Error creating pool's kcopyd client";
2986                 err_p = ERR_PTR(r);
2987                 goto bad_kcopyd_client;
2988         }
2989
2990         /*
2991          * Create singlethreaded workqueue that will service all devices
2992          * that use this metadata.
2993          */
2994         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2995         if (!pool->wq) {
2996                 *error = "Error creating pool's workqueue";
2997                 err_p = ERR_PTR(-ENOMEM);
2998                 goto bad_wq;
2999         }
3000
3001         throttle_init(&pool->throttle);
3002         INIT_WORK(&pool->worker, do_worker);
3003         INIT_DELAYED_WORK(&pool->waker, do_waker);
3004         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3005         spin_lock_init(&pool->lock);
3006         bio_list_init(&pool->deferred_flush_bios);
3007         bio_list_init(&pool->deferred_flush_completions);
3008         INIT_LIST_HEAD(&pool->prepared_mappings);
3009         INIT_LIST_HEAD(&pool->prepared_discards);
3010         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3011         INIT_LIST_HEAD(&pool->active_thins);
3012         pool->low_water_triggered = false;
3013         pool->suspended = true;
3014         pool->out_of_data_space = false;
3015
3016         pool->shared_read_ds = dm_deferred_set_create();
3017         if (!pool->shared_read_ds) {
3018                 *error = "Error creating pool's shared read deferred set";
3019                 err_p = ERR_PTR(-ENOMEM);
3020                 goto bad_shared_read_ds;
3021         }
3022
3023         pool->all_io_ds = dm_deferred_set_create();
3024         if (!pool->all_io_ds) {
3025                 *error = "Error creating pool's all io deferred set";
3026                 err_p = ERR_PTR(-ENOMEM);
3027                 goto bad_all_io_ds;
3028         }
3029
3030         pool->next_mapping = NULL;
3031         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3032                                    _new_mapping_cache);
3033         if (r) {
3034                 *error = "Error creating pool's mapping mempool";
3035                 err_p = ERR_PTR(r);
3036                 goto bad_mapping_pool;
3037         }
3038
3039         pool->cell_sort_array =
3040                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3041                                    sizeof(*pool->cell_sort_array)));
3042         if (!pool->cell_sort_array) {
3043                 *error = "Error allocating cell sort array";
3044                 err_p = ERR_PTR(-ENOMEM);
3045                 goto bad_sort_array;
3046         }
3047
3048         pool->ref_count = 1;
3049         pool->last_commit_jiffies = jiffies;
3050         pool->pool_md = pool_md;
3051         pool->md_dev = metadata_dev;
3052         pool->data_dev = data_dev;
3053         __pool_table_insert(pool);
3054
3055         return pool;
3056
3057 bad_sort_array:
3058         mempool_exit(&pool->mapping_pool);
3059 bad_mapping_pool:
3060         dm_deferred_set_destroy(pool->all_io_ds);
3061 bad_all_io_ds:
3062         dm_deferred_set_destroy(pool->shared_read_ds);
3063 bad_shared_read_ds:
3064         destroy_workqueue(pool->wq);
3065 bad_wq:
3066         dm_kcopyd_client_destroy(pool->copier);
3067 bad_kcopyd_client:
3068         dm_bio_prison_destroy(pool->prison);
3069 bad_prison:
3070         kfree(pool);
3071 bad_pool:
3072         if (dm_pool_metadata_close(pmd))
3073                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3074
3075         return err_p;
3076 }
3077
3078 static void __pool_inc(struct pool *pool)
3079 {
3080         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081         pool->ref_count++;
3082 }
3083
3084 static void __pool_dec(struct pool *pool)
3085 {
3086         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3087         BUG_ON(!pool->ref_count);
3088         if (!--pool->ref_count)
3089                 __pool_destroy(pool);
3090 }
3091
3092 static struct pool *__pool_find(struct mapped_device *pool_md,
3093                                 struct block_device *metadata_dev,
3094                                 struct block_device *data_dev,
3095                                 unsigned long block_size, int read_only,
3096                                 char **error, int *created)
3097 {
3098         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3099
3100         if (pool) {
3101                 if (pool->pool_md != pool_md) {
3102                         *error = "metadata device already in use by a pool";
3103                         return ERR_PTR(-EBUSY);
3104                 }
3105                 if (pool->data_dev != data_dev) {
3106                         *error = "data device already in use by a pool";
3107                         return ERR_PTR(-EBUSY);
3108                 }
3109                 __pool_inc(pool);
3110
3111         } else {
3112                 pool = __pool_table_lookup(pool_md);
3113                 if (pool) {
3114                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3115                                 *error = "different pool cannot replace a pool";
3116                                 return ERR_PTR(-EINVAL);
3117                         }
3118                         __pool_inc(pool);
3119
3120                 } else {
3121                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3122                         *created = 1;
3123                 }
3124         }
3125
3126         return pool;
3127 }
3128
3129 /*
3130  *--------------------------------------------------------------
3131  * Pool target methods
3132  *--------------------------------------------------------------
3133  */
3134 static void pool_dtr(struct dm_target *ti)
3135 {
3136         struct pool_c *pt = ti->private;
3137
3138         mutex_lock(&dm_thin_pool_table.mutex);
3139
3140         unbind_control_target(pt->pool, ti);
3141         __pool_dec(pt->pool);
3142         dm_put_device(ti, pt->metadata_dev);
3143         dm_put_device(ti, pt->data_dev);
3144         kfree(pt);
3145
3146         mutex_unlock(&dm_thin_pool_table.mutex);
3147 }
3148
3149 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3150                                struct dm_target *ti)
3151 {
3152         int r;
3153         unsigned int argc;
3154         const char *arg_name;
3155
3156         static const struct dm_arg _args[] = {
3157                 {0, 4, "Invalid number of pool feature arguments"},
3158         };
3159
3160         /*
3161          * No feature arguments supplied.
3162          */
3163         if (!as->argc)
3164                 return 0;
3165
3166         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3167         if (r)
3168                 return -EINVAL;
3169
3170         while (argc && !r) {
3171                 arg_name = dm_shift_arg(as);
3172                 argc--;
3173
3174                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3175                         pf->zero_new_blocks = false;
3176
3177                 else if (!strcasecmp(arg_name, "ignore_discard"))
3178                         pf->discard_enabled = false;
3179
3180                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3181                         pf->discard_passdown = false;
3182
3183                 else if (!strcasecmp(arg_name, "read_only"))
3184                         pf->mode = PM_READ_ONLY;
3185
3186                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3187                         pf->error_if_no_space = true;
3188
3189                 else {
3190                         ti->error = "Unrecognised pool feature requested";
3191                         r = -EINVAL;
3192                         break;
3193                 }
3194         }
3195
3196         return r;
3197 }
3198
3199 static void metadata_low_callback(void *context)
3200 {
3201         struct pool *pool = context;
3202
3203         DMWARN("%s: reached low water mark for metadata device: sending event.",
3204                dm_device_name(pool->pool_md));
3205
3206         dm_table_event(pool->ti->table);
3207 }
3208
3209 /*
3210  * We need to flush the data device **before** committing the metadata.
3211  *
3212  * This ensures that the data blocks of any newly inserted mappings are
3213  * properly written to non-volatile storage and won't be lost in case of a
3214  * crash.
3215  *
3216  * Failure to do so can result in data corruption in the case of internal or
3217  * external snapshots and in the case of newly provisioned blocks, when block
3218  * zeroing is enabled.
3219  */
3220 static int metadata_pre_commit_callback(void *context)
3221 {
3222         struct pool *pool = context;
3223
3224         return blkdev_issue_flush(pool->data_dev);
3225 }
3226
3227 static sector_t get_dev_size(struct block_device *bdev)
3228 {
3229         return bdev_nr_sectors(bdev);
3230 }
3231
3232 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3233 {
3234         sector_t metadata_dev_size = get_dev_size(bdev);
3235
3236         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237                 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3238                        bdev, THIN_METADATA_MAX_SECTORS);
3239 }
3240
3241 static sector_t get_metadata_dev_size(struct block_device *bdev)
3242 {
3243         sector_t metadata_dev_size = get_dev_size(bdev);
3244
3245         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3247
3248         return metadata_dev_size;
3249 }
3250
3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3252 {
3253         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3254
3255         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3256
3257         return metadata_dev_size;
3258 }
3259
3260 /*
3261  * When a metadata threshold is crossed a dm event is triggered, and
3262  * userland should respond by growing the metadata device.  We could let
3263  * userland set the threshold, like we do with the data threshold, but I'm
3264  * not sure they know enough to do this well.
3265  */
3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3267 {
3268         /*
3269          * 4M is ample for all ops with the possible exception of thin
3270          * device deletion which is harmless if it fails (just retry the
3271          * delete after you've grown the device).
3272          */
3273         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3274
3275         return min((dm_block_t)1024ULL /* 4M */, quarter);
3276 }
3277
3278 /*
3279  * thin-pool <metadata dev> <data dev>
3280  *           <data block size (sectors)>
3281  *           <low water mark (blocks)>
3282  *           [<#feature args> [<arg>]*]
3283  *
3284  * Optional feature arguments are:
3285  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3286  *           ignore_discard: disable discard
3287  *           no_discard_passdown: don't pass discards down to the data device
3288  *           read_only: Don't allow any changes to be made to the pool metadata.
3289  *           error_if_no_space: error IOs, instead of queueing, if no space.
3290  */
3291 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3292 {
3293         int r, pool_created = 0;
3294         struct pool_c *pt;
3295         struct pool *pool;
3296         struct pool_features pf;
3297         struct dm_arg_set as;
3298         struct dm_dev *data_dev;
3299         unsigned long block_size;
3300         dm_block_t low_water_blocks;
3301         struct dm_dev *metadata_dev;
3302         blk_mode_t metadata_mode;
3303
3304         /*
3305          * FIXME Remove validation from scope of lock.
3306          */
3307         mutex_lock(&dm_thin_pool_table.mutex);
3308
3309         if (argc < 4) {
3310                 ti->error = "Invalid argument count";
3311                 r = -EINVAL;
3312                 goto out_unlock;
3313         }
3314
3315         as.argc = argc;
3316         as.argv = argv;
3317
3318         /* make sure metadata and data are different devices */
3319         if (!strcmp(argv[0], argv[1])) {
3320                 ti->error = "Error setting metadata or data device";
3321                 r = -EINVAL;
3322                 goto out_unlock;
3323         }
3324
3325         /*
3326          * Set default pool features.
3327          */
3328         pool_features_init(&pf);
3329
3330         dm_consume_args(&as, 4);
3331         r = parse_pool_features(&as, &pf, ti);
3332         if (r)
3333                 goto out_unlock;
3334
3335         metadata_mode = BLK_OPEN_READ |
3336                 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3337         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3338         if (r) {
3339                 ti->error = "Error opening metadata block device";
3340                 goto out_unlock;
3341         }
3342         warn_if_metadata_device_too_big(metadata_dev->bdev);
3343
3344         r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3345         if (r) {
3346                 ti->error = "Error getting data device";
3347                 goto out_metadata;
3348         }
3349
3350         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3351             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3352             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3353             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3354                 ti->error = "Invalid block size";
3355                 r = -EINVAL;
3356                 goto out;
3357         }
3358
3359         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3360                 ti->error = "Invalid low water mark";
3361                 r = -EINVAL;
3362                 goto out;
3363         }
3364
3365         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3366         if (!pt) {
3367                 r = -ENOMEM;
3368                 goto out;
3369         }
3370
3371         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3372                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3373         if (IS_ERR(pool)) {
3374                 r = PTR_ERR(pool);
3375                 goto out_free_pt;
3376         }
3377
3378         /*
3379          * 'pool_created' reflects whether this is the first table load.
3380          * Top level discard support is not allowed to be changed after
3381          * initial load.  This would require a pool reload to trigger thin
3382          * device changes.
3383          */
3384         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3385                 ti->error = "Discard support cannot be disabled once enabled";
3386                 r = -EINVAL;
3387                 goto out_flags_changed;
3388         }
3389
3390         pt->pool = pool;
3391         pt->ti = ti;
3392         pt->metadata_dev = metadata_dev;
3393         pt->data_dev = data_dev;
3394         pt->low_water_blocks = low_water_blocks;
3395         pt->adjusted_pf = pt->requested_pf = pf;
3396         ti->num_flush_bios = 1;
3397         ti->limit_swap_bios = true;
3398
3399         /*
3400          * Only need to enable discards if the pool should pass
3401          * them down to the data device.  The thin device's discard
3402          * processing will cause mappings to be removed from the btree.
3403          */
3404         if (pf.discard_enabled && pf.discard_passdown) {
3405                 ti->num_discard_bios = 1;
3406                 /*
3407                  * Setting 'discards_supported' circumvents the normal
3408                  * stacking of discard limits (this keeps the pool and
3409                  * thin devices' discard limits consistent).
3410                  */
3411                 ti->discards_supported = true;
3412                 ti->max_discard_granularity = true;
3413         }
3414         ti->private = pt;
3415
3416         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3417                                                 calc_metadata_threshold(pt),
3418                                                 metadata_low_callback,
3419                                                 pool);
3420         if (r) {
3421                 ti->error = "Error registering metadata threshold";
3422                 goto out_flags_changed;
3423         }
3424
3425         dm_pool_register_pre_commit_callback(pool->pmd,
3426                                              metadata_pre_commit_callback, pool);
3427
3428         mutex_unlock(&dm_thin_pool_table.mutex);
3429
3430         return 0;
3431
3432 out_flags_changed:
3433         __pool_dec(pool);
3434 out_free_pt:
3435         kfree(pt);
3436 out:
3437         dm_put_device(ti, data_dev);
3438 out_metadata:
3439         dm_put_device(ti, metadata_dev);
3440 out_unlock:
3441         mutex_unlock(&dm_thin_pool_table.mutex);
3442
3443         return r;
3444 }
3445
3446 static int pool_map(struct dm_target *ti, struct bio *bio)
3447 {
3448         struct pool_c *pt = ti->private;
3449         struct pool *pool = pt->pool;
3450
3451         /*
3452          * As this is a singleton target, ti->begin is always zero.
3453          */
3454         spin_lock_irq(&pool->lock);
3455         bio_set_dev(bio, pt->data_dev->bdev);
3456         spin_unlock_irq(&pool->lock);
3457
3458         return DM_MAPIO_REMAPPED;
3459 }
3460
3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3462 {
3463         int r;
3464         struct pool_c *pt = ti->private;
3465         struct pool *pool = pt->pool;
3466         sector_t data_size = ti->len;
3467         dm_block_t sb_data_size;
3468
3469         *need_commit = false;
3470
3471         (void) sector_div(data_size, pool->sectors_per_block);
3472
3473         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3474         if (r) {
3475                 DMERR("%s: failed to retrieve data device size",
3476                       dm_device_name(pool->pool_md));
3477                 return r;
3478         }
3479
3480         if (data_size < sb_data_size) {
3481                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482                       dm_device_name(pool->pool_md),
3483                       (unsigned long long)data_size, sb_data_size);
3484                 return -EINVAL;
3485
3486         } else if (data_size > sb_data_size) {
3487                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3488                         DMERR("%s: unable to grow the data device until repaired.",
3489                               dm_device_name(pool->pool_md));
3490                         return 0;
3491                 }
3492
3493                 if (sb_data_size)
3494                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3495                                dm_device_name(pool->pool_md),
3496                                sb_data_size, (unsigned long long)data_size);
3497                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3498                 if (r) {
3499                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3500                         return r;
3501                 }
3502
3503                 *need_commit = true;
3504         }
3505
3506         return 0;
3507 }
3508
3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3510 {
3511         int r;
3512         struct pool_c *pt = ti->private;
3513         struct pool *pool = pt->pool;
3514         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3515
3516         *need_commit = false;
3517
3518         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3519
3520         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3521         if (r) {
3522                 DMERR("%s: failed to retrieve metadata device size",
3523                       dm_device_name(pool->pool_md));
3524                 return r;
3525         }
3526
3527         if (metadata_dev_size < sb_metadata_dev_size) {
3528                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529                       dm_device_name(pool->pool_md),
3530                       metadata_dev_size, sb_metadata_dev_size);
3531                 return -EINVAL;
3532
3533         } else if (metadata_dev_size > sb_metadata_dev_size) {
3534                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3535                         DMERR("%s: unable to grow the metadata device until repaired.",
3536                               dm_device_name(pool->pool_md));
3537                         return 0;
3538                 }
3539
3540                 warn_if_metadata_device_too_big(pool->md_dev);
3541                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542                        dm_device_name(pool->pool_md),
3543                        sb_metadata_dev_size, metadata_dev_size);
3544
3545                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546                         set_pool_mode(pool, PM_WRITE);
3547
3548                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3549                 if (r) {
3550                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3551                         return r;
3552                 }
3553
3554                 *need_commit = true;
3555         }
3556
3557         return 0;
3558 }
3559
3560 /*
3561  * Retrieves the number of blocks of the data device from
3562  * the superblock and compares it to the actual device size,
3563  * thus resizing the data device in case it has grown.
3564  *
3565  * This both copes with opening preallocated data devices in the ctr
3566  * being followed by a resume
3567  * -and-
3568  * calling the resume method individually after userspace has
3569  * grown the data device in reaction to a table event.
3570  */
3571 static int pool_preresume(struct dm_target *ti)
3572 {
3573         int r;
3574         bool need_commit1, need_commit2;
3575         struct pool_c *pt = ti->private;
3576         struct pool *pool = pt->pool;
3577
3578         /*
3579          * Take control of the pool object.
3580          */
3581         r = bind_control_target(pool, ti);
3582         if (r)
3583                 goto out;
3584
3585         r = maybe_resize_data_dev(ti, &need_commit1);
3586         if (r)
3587                 goto out;
3588
3589         r = maybe_resize_metadata_dev(ti, &need_commit2);
3590         if (r)
3591                 goto out;
3592
3593         if (need_commit1 || need_commit2)
3594                 (void) commit(pool);
3595 out:
3596         /*
3597          * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3598          * bio is in deferred list. Therefore need to return 0
3599          * to allow pool_resume() to flush IO.
3600          */
3601         if (r && get_pool_mode(pool) == PM_FAIL)
3602                 r = 0;
3603
3604         return r;
3605 }
3606
3607 static void pool_suspend_active_thins(struct pool *pool)
3608 {
3609         struct thin_c *tc;
3610
3611         /* Suspend all active thin devices */
3612         tc = get_first_thin(pool);
3613         while (tc) {
3614                 dm_internal_suspend_noflush(tc->thin_md);
3615                 tc = get_next_thin(pool, tc);
3616         }
3617 }
3618
3619 static void pool_resume_active_thins(struct pool *pool)
3620 {
3621         struct thin_c *tc;
3622
3623         /* Resume all active thin devices */
3624         tc = get_first_thin(pool);
3625         while (tc) {
3626                 dm_internal_resume(tc->thin_md);
3627                 tc = get_next_thin(pool, tc);
3628         }
3629 }
3630
3631 static void pool_resume(struct dm_target *ti)
3632 {
3633         struct pool_c *pt = ti->private;
3634         struct pool *pool = pt->pool;
3635
3636         /*
3637          * Must requeue active_thins' bios and then resume
3638          * active_thins _before_ clearing 'suspend' flag.
3639          */
3640         requeue_bios(pool);
3641         pool_resume_active_thins(pool);
3642
3643         spin_lock_irq(&pool->lock);
3644         pool->low_water_triggered = false;
3645         pool->suspended = false;
3646         spin_unlock_irq(&pool->lock);
3647
3648         do_waker(&pool->waker.work);
3649 }
3650
3651 static void pool_presuspend(struct dm_target *ti)
3652 {
3653         struct pool_c *pt = ti->private;
3654         struct pool *pool = pt->pool;
3655
3656         spin_lock_irq(&pool->lock);
3657         pool->suspended = true;
3658         spin_unlock_irq(&pool->lock);
3659
3660         pool_suspend_active_thins(pool);
3661 }
3662
3663 static void pool_presuspend_undo(struct dm_target *ti)
3664 {
3665         struct pool_c *pt = ti->private;
3666         struct pool *pool = pt->pool;
3667
3668         pool_resume_active_thins(pool);
3669
3670         spin_lock_irq(&pool->lock);
3671         pool->suspended = false;
3672         spin_unlock_irq(&pool->lock);
3673 }
3674
3675 static void pool_postsuspend(struct dm_target *ti)
3676 {
3677         struct pool_c *pt = ti->private;
3678         struct pool *pool = pt->pool;
3679
3680         cancel_delayed_work_sync(&pool->waker);
3681         cancel_delayed_work_sync(&pool->no_space_timeout);
3682         flush_workqueue(pool->wq);
3683         (void) commit(pool);
3684 }
3685
3686 static int check_arg_count(unsigned int argc, unsigned int args_required)
3687 {
3688         if (argc != args_required) {
3689                 DMWARN("Message received with %u arguments instead of %u.",
3690                        argc, args_required);
3691                 return -EINVAL;
3692         }
3693
3694         return 0;
3695 }
3696
3697 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3698 {
3699         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3700             *dev_id <= MAX_DEV_ID)
3701                 return 0;
3702
3703         if (warning)
3704                 DMWARN("Message received with invalid device id: %s", arg);
3705
3706         return -EINVAL;
3707 }
3708
3709 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3710 {
3711         dm_thin_id dev_id;
3712         int r;
3713
3714         r = check_arg_count(argc, 2);
3715         if (r)
3716                 return r;
3717
3718         r = read_dev_id(argv[1], &dev_id, 1);
3719         if (r)
3720                 return r;
3721
3722         r = dm_pool_create_thin(pool->pmd, dev_id);
3723         if (r) {
3724                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3725                        argv[1]);
3726                 return r;
3727         }
3728
3729         return 0;
3730 }
3731
3732 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3733 {
3734         dm_thin_id dev_id;
3735         dm_thin_id origin_dev_id;
3736         int r;
3737
3738         r = check_arg_count(argc, 3);
3739         if (r)
3740                 return r;
3741
3742         r = read_dev_id(argv[1], &dev_id, 1);
3743         if (r)
3744                 return r;
3745
3746         r = read_dev_id(argv[2], &origin_dev_id, 1);
3747         if (r)
3748                 return r;
3749
3750         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3751         if (r) {
3752                 DMWARN("Creation of new snapshot %s of device %s failed.",
3753                        argv[1], argv[2]);
3754                 return r;
3755         }
3756
3757         return 0;
3758 }
3759
3760 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3761 {
3762         dm_thin_id dev_id;
3763         int r;
3764
3765         r = check_arg_count(argc, 2);
3766         if (r)
3767                 return r;
3768
3769         r = read_dev_id(argv[1], &dev_id, 1);
3770         if (r)
3771                 return r;
3772
3773         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3774         if (r)
3775                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3776
3777         return r;
3778 }
3779
3780 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3781 {
3782         dm_thin_id old_id, new_id;
3783         int r;
3784
3785         r = check_arg_count(argc, 3);
3786         if (r)
3787                 return r;
3788
3789         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3790                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3791                 return -EINVAL;
3792         }
3793
3794         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3795                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3796                 return -EINVAL;
3797         }
3798
3799         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3800         if (r) {
3801                 DMWARN("Failed to change transaction id from %s to %s.",
3802                        argv[1], argv[2]);
3803                 return r;
3804         }
3805
3806         return 0;
3807 }
3808
3809 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3810 {
3811         int r;
3812
3813         r = check_arg_count(argc, 1);
3814         if (r)
3815                 return r;
3816
3817         (void) commit(pool);
3818
3819         r = dm_pool_reserve_metadata_snap(pool->pmd);
3820         if (r)
3821                 DMWARN("reserve_metadata_snap message failed.");
3822
3823         return r;
3824 }
3825
3826 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3827 {
3828         int r;
3829
3830         r = check_arg_count(argc, 1);
3831         if (r)
3832                 return r;
3833
3834         r = dm_pool_release_metadata_snap(pool->pmd);
3835         if (r)
3836                 DMWARN("release_metadata_snap message failed.");
3837
3838         return r;
3839 }
3840
3841 /*
3842  * Messages supported:
3843  *   create_thin        <dev_id>
3844  *   create_snap        <dev_id> <origin_id>
3845  *   delete             <dev_id>
3846  *   set_transaction_id <current_trans_id> <new_trans_id>
3847  *   reserve_metadata_snap
3848  *   release_metadata_snap
3849  */
3850 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3851                         char *result, unsigned int maxlen)
3852 {
3853         int r = -EINVAL;
3854         struct pool_c *pt = ti->private;
3855         struct pool *pool = pt->pool;
3856
3857         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3858                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3859                       dm_device_name(pool->pool_md));
3860                 return -EOPNOTSUPP;
3861         }
3862
3863         if (!strcasecmp(argv[0], "create_thin"))
3864                 r = process_create_thin_mesg(argc, argv, pool);
3865
3866         else if (!strcasecmp(argv[0], "create_snap"))
3867                 r = process_create_snap_mesg(argc, argv, pool);
3868
3869         else if (!strcasecmp(argv[0], "delete"))
3870                 r = process_delete_mesg(argc, argv, pool);
3871
3872         else if (!strcasecmp(argv[0], "set_transaction_id"))
3873                 r = process_set_transaction_id_mesg(argc, argv, pool);
3874
3875         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3876                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3877
3878         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3879                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3880
3881         else
3882                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3883
3884         if (!r)
3885                 (void) commit(pool);
3886
3887         return r;
3888 }
3889
3890 static void emit_flags(struct pool_features *pf, char *result,
3891                        unsigned int sz, unsigned int maxlen)
3892 {
3893         unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3894                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3895                 pf->error_if_no_space;
3896         DMEMIT("%u ", count);
3897
3898         if (!pf->zero_new_blocks)
3899                 DMEMIT("skip_block_zeroing ");
3900
3901         if (!pf->discard_enabled)
3902                 DMEMIT("ignore_discard ");
3903
3904         if (!pf->discard_passdown)
3905                 DMEMIT("no_discard_passdown ");
3906
3907         if (pf->mode == PM_READ_ONLY)
3908                 DMEMIT("read_only ");
3909
3910         if (pf->error_if_no_space)
3911                 DMEMIT("error_if_no_space ");
3912 }
3913
3914 /*
3915  * Status line is:
3916  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3917  *    <used data sectors>/<total data sectors> <held metadata root>
3918  *    <pool mode> <discard config> <no space config> <needs_check>
3919  */
3920 static void pool_status(struct dm_target *ti, status_type_t type,
3921                         unsigned int status_flags, char *result, unsigned int maxlen)
3922 {
3923         int r;
3924         unsigned int sz = 0;
3925         uint64_t transaction_id;
3926         dm_block_t nr_free_blocks_data;
3927         dm_block_t nr_free_blocks_metadata;
3928         dm_block_t nr_blocks_data;
3929         dm_block_t nr_blocks_metadata;
3930         dm_block_t held_root;
3931         enum pool_mode mode;
3932         char buf[BDEVNAME_SIZE];
3933         char buf2[BDEVNAME_SIZE];
3934         struct pool_c *pt = ti->private;
3935         struct pool *pool = pt->pool;
3936
3937         switch (type) {
3938         case STATUSTYPE_INFO:
3939                 if (get_pool_mode(pool) == PM_FAIL) {
3940                         DMEMIT("Fail");
3941                         break;
3942                 }
3943
3944                 /* Commit to ensure statistics aren't out-of-date */
3945                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3946                         (void) commit(pool);
3947
3948                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3949                 if (r) {
3950                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3951                               dm_device_name(pool->pool_md), r);
3952                         goto err;
3953                 }
3954
3955                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3956                 if (r) {
3957                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3958                               dm_device_name(pool->pool_md), r);
3959                         goto err;
3960                 }
3961
3962                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3963                 if (r) {
3964                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3965                               dm_device_name(pool->pool_md), r);
3966                         goto err;
3967                 }
3968
3969                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3970                 if (r) {
3971                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3972                               dm_device_name(pool->pool_md), r);
3973                         goto err;
3974                 }
3975
3976                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3977                 if (r) {
3978                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3979                               dm_device_name(pool->pool_md), r);
3980                         goto err;
3981                 }
3982
3983                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3984                 if (r) {
3985                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3986                               dm_device_name(pool->pool_md), r);
3987                         goto err;
3988                 }
3989
3990                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3991                        (unsigned long long)transaction_id,
3992                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3993                        (unsigned long long)nr_blocks_metadata,
3994                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3995                        (unsigned long long)nr_blocks_data);
3996
3997                 if (held_root)
3998                         DMEMIT("%llu ", held_root);
3999                 else
4000                         DMEMIT("- ");
4001
4002                 mode = get_pool_mode(pool);
4003                 if (mode == PM_OUT_OF_DATA_SPACE)
4004                         DMEMIT("out_of_data_space ");
4005                 else if (is_read_only_pool_mode(mode))
4006                         DMEMIT("ro ");
4007                 else
4008                         DMEMIT("rw ");
4009
4010                 if (!pool->pf.discard_enabled)
4011                         DMEMIT("ignore_discard ");
4012                 else if (pool->pf.discard_passdown)
4013                         DMEMIT("discard_passdown ");
4014                 else
4015                         DMEMIT("no_discard_passdown ");
4016
4017                 if (pool->pf.error_if_no_space)
4018                         DMEMIT("error_if_no_space ");
4019                 else
4020                         DMEMIT("queue_if_no_space ");
4021
4022                 if (dm_pool_metadata_needs_check(pool->pmd))
4023                         DMEMIT("needs_check ");
4024                 else
4025                         DMEMIT("- ");
4026
4027                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4028
4029                 break;
4030
4031         case STATUSTYPE_TABLE:
4032                 DMEMIT("%s %s %lu %llu ",
4033                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4034                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4035                        (unsigned long)pool->sectors_per_block,
4036                        (unsigned long long)pt->low_water_blocks);
4037                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4038                 break;
4039
4040         case STATUSTYPE_IMA:
4041                 *result = '\0';
4042                 break;
4043         }
4044         return;
4045
4046 err:
4047         DMEMIT("Error");
4048 }
4049
4050 static int pool_iterate_devices(struct dm_target *ti,
4051                                 iterate_devices_callout_fn fn, void *data)
4052 {
4053         struct pool_c *pt = ti->private;
4054
4055         return fn(ti, pt->data_dev, 0, ti->len, data);
4056 }
4057
4058 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4059 {
4060         struct pool_c *pt = ti->private;
4061         struct pool *pool = pt->pool;
4062         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4063
4064         /*
4065          * If max_sectors is smaller than pool->sectors_per_block adjust it
4066          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4067          * This is especially beneficial when the pool's data device is a RAID
4068          * device that has a full stripe width that matches pool->sectors_per_block
4069          * -- because even though partial RAID stripe-sized IOs will be issued to a
4070          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4071          *    boundary.. which avoids additional partial RAID stripe writes cascading
4072          */
4073         if (limits->max_sectors < pool->sectors_per_block) {
4074                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4075                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4076                                 limits->max_sectors--;
4077                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4078                 }
4079         }
4080
4081         /*
4082          * If the system-determined stacked limits are compatible with the
4083          * pool's blocksize (io_opt is a factor) do not override them.
4084          */
4085         if (io_opt_sectors < pool->sectors_per_block ||
4086             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4087                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4088                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4089                 else
4090                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4091                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4092         }
4093
4094         /*
4095          * pt->adjusted_pf is a staging area for the actual features to use.
4096          * They get transferred to the live pool in bind_control_target()
4097          * called from pool_preresume().
4098          */
4099
4100         if (pt->adjusted_pf.discard_enabled) {
4101                 disable_discard_passdown_if_not_supported(pt);
4102                 if (!pt->adjusted_pf.discard_passdown)
4103                         limits->max_discard_sectors = 0;
4104                 /*
4105                  * The pool uses the same discard limits as the underlying data
4106                  * device.  DM core has already set this up.
4107                  */
4108         } else {
4109                 /*
4110                  * Must explicitly disallow stacking discard limits otherwise the
4111                  * block layer will stack them if pool's data device has support.
4112                  */
4113                 limits->discard_granularity = 0;
4114         }
4115 }
4116
4117 static struct target_type pool_target = {
4118         .name = "thin-pool",
4119         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4120                     DM_TARGET_IMMUTABLE,
4121         .version = {1, 23, 0},
4122         .module = THIS_MODULE,
4123         .ctr = pool_ctr,
4124         .dtr = pool_dtr,
4125         .map = pool_map,
4126         .presuspend = pool_presuspend,
4127         .presuspend_undo = pool_presuspend_undo,
4128         .postsuspend = pool_postsuspend,
4129         .preresume = pool_preresume,
4130         .resume = pool_resume,
4131         .message = pool_message,
4132         .status = pool_status,
4133         .iterate_devices = pool_iterate_devices,
4134         .io_hints = pool_io_hints,
4135 };
4136
4137 /*
4138  *--------------------------------------------------------------
4139  * Thin target methods
4140  *--------------------------------------------------------------
4141  */
4142 static void thin_get(struct thin_c *tc)
4143 {
4144         refcount_inc(&tc->refcount);
4145 }
4146
4147 static void thin_put(struct thin_c *tc)
4148 {
4149         if (refcount_dec_and_test(&tc->refcount))
4150                 complete(&tc->can_destroy);
4151 }
4152
4153 static void thin_dtr(struct dm_target *ti)
4154 {
4155         struct thin_c *tc = ti->private;
4156
4157         spin_lock_irq(&tc->pool->lock);
4158         list_del_rcu(&tc->list);
4159         spin_unlock_irq(&tc->pool->lock);
4160         synchronize_rcu();
4161
4162         thin_put(tc);
4163         wait_for_completion(&tc->can_destroy);
4164
4165         mutex_lock(&dm_thin_pool_table.mutex);
4166
4167         __pool_dec(tc->pool);
4168         dm_pool_close_thin_device(tc->td);
4169         dm_put_device(ti, tc->pool_dev);
4170         if (tc->origin_dev)
4171                 dm_put_device(ti, tc->origin_dev);
4172         kfree(tc);
4173
4174         mutex_unlock(&dm_thin_pool_table.mutex);
4175 }
4176
4177 /*
4178  * Thin target parameters:
4179  *
4180  * <pool_dev> <dev_id> [origin_dev]
4181  *
4182  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4183  * dev_id: the internal device identifier
4184  * origin_dev: a device external to the pool that should act as the origin
4185  *
4186  * If the pool device has discards disabled, they get disabled for the thin
4187  * device as well.
4188  */
4189 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4190 {
4191         int r;
4192         struct thin_c *tc;
4193         struct dm_dev *pool_dev, *origin_dev;
4194         struct mapped_device *pool_md;
4195
4196         mutex_lock(&dm_thin_pool_table.mutex);
4197
4198         if (argc != 2 && argc != 3) {
4199                 ti->error = "Invalid argument count";
4200                 r = -EINVAL;
4201                 goto out_unlock;
4202         }
4203
4204         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4205         if (!tc) {
4206                 ti->error = "Out of memory";
4207                 r = -ENOMEM;
4208                 goto out_unlock;
4209         }
4210         tc->thin_md = dm_table_get_md(ti->table);
4211         spin_lock_init(&tc->lock);
4212         INIT_LIST_HEAD(&tc->deferred_cells);
4213         bio_list_init(&tc->deferred_bio_list);
4214         bio_list_init(&tc->retry_on_resume_list);
4215         tc->sort_bio_list = RB_ROOT;
4216
4217         if (argc == 3) {
4218                 if (!strcmp(argv[0], argv[2])) {
4219                         ti->error = "Error setting origin device";
4220                         r = -EINVAL;
4221                         goto bad_origin_dev;
4222                 }
4223
4224                 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4225                 if (r) {
4226                         ti->error = "Error opening origin device";
4227                         goto bad_origin_dev;
4228                 }
4229                 tc->origin_dev = origin_dev;
4230         }
4231
4232         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4233         if (r) {
4234                 ti->error = "Error opening pool device";
4235                 goto bad_pool_dev;
4236         }
4237         tc->pool_dev = pool_dev;
4238
4239         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4240                 ti->error = "Invalid device id";
4241                 r = -EINVAL;
4242                 goto bad_common;
4243         }
4244
4245         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4246         if (!pool_md) {
4247                 ti->error = "Couldn't get pool mapped device";
4248                 r = -EINVAL;
4249                 goto bad_common;
4250         }
4251
4252         tc->pool = __pool_table_lookup(pool_md);
4253         if (!tc->pool) {
4254                 ti->error = "Couldn't find pool object";
4255                 r = -EINVAL;
4256                 goto bad_pool_lookup;
4257         }
4258         __pool_inc(tc->pool);
4259
4260         if (get_pool_mode(tc->pool) == PM_FAIL) {
4261                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4262                 r = -EINVAL;
4263                 goto bad_pool;
4264         }
4265
4266         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4267         if (r) {
4268                 ti->error = "Couldn't open thin internal device";
4269                 goto bad_pool;
4270         }
4271
4272         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4273         if (r)
4274                 goto bad;
4275
4276         ti->num_flush_bios = 1;
4277         ti->limit_swap_bios = true;
4278         ti->flush_supported = true;
4279         ti->accounts_remapped_io = true;
4280         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4281
4282         /* In case the pool supports discards, pass them on. */
4283         if (tc->pool->pf.discard_enabled) {
4284                 ti->discards_supported = true;
4285                 ti->num_discard_bios = 1;
4286                 ti->max_discard_granularity = true;
4287         }
4288
4289         mutex_unlock(&dm_thin_pool_table.mutex);
4290
4291         spin_lock_irq(&tc->pool->lock);
4292         if (tc->pool->suspended) {
4293                 spin_unlock_irq(&tc->pool->lock);
4294                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4295                 ti->error = "Unable to activate thin device while pool is suspended";
4296                 r = -EINVAL;
4297                 goto bad;
4298         }
4299         refcount_set(&tc->refcount, 1);
4300         init_completion(&tc->can_destroy);
4301         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4302         spin_unlock_irq(&tc->pool->lock);
4303         /*
4304          * This synchronize_rcu() call is needed here otherwise we risk a
4305          * wake_worker() call finding no bios to process (because the newly
4306          * added tc isn't yet visible).  So this reduces latency since we
4307          * aren't then dependent on the periodic commit to wake_worker().
4308          */
4309         synchronize_rcu();
4310
4311         dm_put(pool_md);
4312
4313         return 0;
4314
4315 bad:
4316         dm_pool_close_thin_device(tc->td);
4317 bad_pool:
4318         __pool_dec(tc->pool);
4319 bad_pool_lookup:
4320         dm_put(pool_md);
4321 bad_common:
4322         dm_put_device(ti, tc->pool_dev);
4323 bad_pool_dev:
4324         if (tc->origin_dev)
4325                 dm_put_device(ti, tc->origin_dev);
4326 bad_origin_dev:
4327         kfree(tc);
4328 out_unlock:
4329         mutex_unlock(&dm_thin_pool_table.mutex);
4330
4331         return r;
4332 }
4333
4334 static int thin_map(struct dm_target *ti, struct bio *bio)
4335 {
4336         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4337
4338         return thin_bio_map(ti, bio);
4339 }
4340
4341 static int thin_endio(struct dm_target *ti, struct bio *bio,
4342                 blk_status_t *err)
4343 {
4344         unsigned long flags;
4345         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4346         struct list_head work;
4347         struct dm_thin_new_mapping *m, *tmp;
4348         struct pool *pool = h->tc->pool;
4349
4350         if (h->shared_read_entry) {
4351                 INIT_LIST_HEAD(&work);
4352                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4353
4354                 spin_lock_irqsave(&pool->lock, flags);
4355                 list_for_each_entry_safe(m, tmp, &work, list) {
4356                         list_del(&m->list);
4357                         __complete_mapping_preparation(m);
4358                 }
4359                 spin_unlock_irqrestore(&pool->lock, flags);
4360         }
4361
4362         if (h->all_io_entry) {
4363                 INIT_LIST_HEAD(&work);
4364                 dm_deferred_entry_dec(h->all_io_entry, &work);
4365                 if (!list_empty(&work)) {
4366                         spin_lock_irqsave(&pool->lock, flags);
4367                         list_for_each_entry_safe(m, tmp, &work, list)
4368                                 list_add_tail(&m->list, &pool->prepared_discards);
4369                         spin_unlock_irqrestore(&pool->lock, flags);
4370                         wake_worker(pool);
4371                 }
4372         }
4373
4374         if (h->cell)
4375                 cell_defer_no_holder(h->tc, h->cell);
4376
4377         return DM_ENDIO_DONE;
4378 }
4379
4380 static void thin_presuspend(struct dm_target *ti)
4381 {
4382         struct thin_c *tc = ti->private;
4383
4384         if (dm_noflush_suspending(ti))
4385                 noflush_work(tc, do_noflush_start);
4386 }
4387
4388 static void thin_postsuspend(struct dm_target *ti)
4389 {
4390         struct thin_c *tc = ti->private;
4391
4392         /*
4393          * The dm_noflush_suspending flag has been cleared by now, so
4394          * unfortunately we must always run this.
4395          */
4396         noflush_work(tc, do_noflush_stop);
4397 }
4398
4399 static int thin_preresume(struct dm_target *ti)
4400 {
4401         struct thin_c *tc = ti->private;
4402
4403         if (tc->origin_dev)
4404                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4405
4406         return 0;
4407 }
4408
4409 /*
4410  * <nr mapped sectors> <highest mapped sector>
4411  */
4412 static void thin_status(struct dm_target *ti, status_type_t type,
4413                         unsigned int status_flags, char *result, unsigned int maxlen)
4414 {
4415         int r;
4416         ssize_t sz = 0;
4417         dm_block_t mapped, highest;
4418         char buf[BDEVNAME_SIZE];
4419         struct thin_c *tc = ti->private;
4420
4421         if (get_pool_mode(tc->pool) == PM_FAIL) {
4422                 DMEMIT("Fail");
4423                 return;
4424         }
4425
4426         if (!tc->td)
4427                 DMEMIT("-");
4428         else {
4429                 switch (type) {
4430                 case STATUSTYPE_INFO:
4431                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4432                         if (r) {
4433                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4434                                 goto err;
4435                         }
4436
4437                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4438                         if (r < 0) {
4439                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4440                                 goto err;
4441                         }
4442
4443                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4444                         if (r)
4445                                 DMEMIT("%llu", ((highest + 1) *
4446                                                 tc->pool->sectors_per_block) - 1);
4447                         else
4448                                 DMEMIT("-");
4449                         break;
4450
4451                 case STATUSTYPE_TABLE:
4452                         DMEMIT("%s %lu",
4453                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4454                                (unsigned long) tc->dev_id);
4455                         if (tc->origin_dev)
4456                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4457                         break;
4458
4459                 case STATUSTYPE_IMA:
4460                         *result = '\0';
4461                         break;
4462                 }
4463         }
4464
4465         return;
4466
4467 err:
4468         DMEMIT("Error");
4469 }
4470
4471 static int thin_iterate_devices(struct dm_target *ti,
4472                                 iterate_devices_callout_fn fn, void *data)
4473 {
4474         sector_t blocks;
4475         struct thin_c *tc = ti->private;
4476         struct pool *pool = tc->pool;
4477
4478         /*
4479          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4480          * we follow a more convoluted path through to the pool's target.
4481          */
4482         if (!pool->ti)
4483                 return 0;       /* nothing is bound */
4484
4485         blocks = pool->ti->len;
4486         (void) sector_div(blocks, pool->sectors_per_block);
4487         if (blocks)
4488                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4489
4490         return 0;
4491 }
4492
4493 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4494 {
4495         struct thin_c *tc = ti->private;
4496         struct pool *pool = tc->pool;
4497
4498         if (pool->pf.discard_enabled) {
4499                 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4500                 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4501         }
4502 }
4503
4504 static struct target_type thin_target = {
4505         .name = "thin",
4506         .version = {1, 23, 0},
4507         .module = THIS_MODULE,
4508         .ctr = thin_ctr,
4509         .dtr = thin_dtr,
4510         .map = thin_map,
4511         .end_io = thin_endio,
4512         .preresume = thin_preresume,
4513         .presuspend = thin_presuspend,
4514         .postsuspend = thin_postsuspend,
4515         .status = thin_status,
4516         .iterate_devices = thin_iterate_devices,
4517         .io_hints = thin_io_hints,
4518 };
4519
4520 /*----------------------------------------------------------------*/
4521
4522 static int __init dm_thin_init(void)
4523 {
4524         int r = -ENOMEM;
4525
4526         pool_table_init();
4527
4528         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4529         if (!_new_mapping_cache)
4530                 return r;
4531
4532         r = dm_register_target(&thin_target);
4533         if (r)
4534                 goto bad_new_mapping_cache;
4535
4536         r = dm_register_target(&pool_target);
4537         if (r)
4538                 goto bad_thin_target;
4539
4540         return 0;
4541
4542 bad_thin_target:
4543         dm_unregister_target(&thin_target);
4544 bad_new_mapping_cache:
4545         kmem_cache_destroy(_new_mapping_cache);
4546
4547         return r;
4548 }
4549
4550 static void dm_thin_exit(void)
4551 {
4552         dm_unregister_target(&thin_target);
4553         dm_unregister_target(&pool_target);
4554
4555         kmem_cache_destroy(_new_mapping_cache);
4556
4557         pool_table_exit();
4558 }
4559
4560 module_init(dm_thin_init);
4561 module_exit(dm_thin_exit);
4562
4563 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4564 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4565
4566 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4567 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4568 MODULE_LICENSE("GPL");