Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21  * Memory management policy:
22  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *      dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS            8
29
30 #define DM_BUFIO_MEMORY_PERCENT         2
31 #define DM_BUFIO_VMALLOC_PERCENT        25
32 #define DM_BUFIO_WRITEBACK_PERCENT      75
33
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS        10
38
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS       60
43
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS            16
49
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS      20
54 #define DM_BUFIO_HASH(block) \
55         ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56          ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         unsigned minimum_buffers;
108
109         struct hlist_head *cache_hash;
110         wait_queue_head_t free_buffer_wait;
111
112         int async_write_error;
113
114         struct list_head client_list;
115         struct shrinker shrinker;
116 };
117
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING       0
122 #define B_WRITING       1
123 #define B_DIRTY         2
124
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131         DATA_MODE_SLAB = 0,
132         DATA_MODE_GET_FREE_PAGES = 1,
133         DATA_MODE_VMALLOC = 2,
134         DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138         struct hlist_node hash_list;
139         struct list_head lru_list;
140         sector_t block;
141         void *data;
142         enum data_mode data_mode;
143         unsigned char list_mode;                /* LIST_* */
144         unsigned hold_count;
145         int read_error;
146         int write_error;
147         unsigned long state;
148         unsigned long last_accessed;
149         struct dm_bufio_client *c;
150         struct list_head write_list;
151         struct bio bio;
152         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 };
154
155 /*----------------------------------------------------------------*/
156
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 {
162         unsigned ret = c->blocks_per_page_bits - 1;
163
164         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165
166         return ret;
167 }
168
169 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
171
172 #define dm_bufio_in_request()   (!!current->bio_list)
173
174 static void dm_bufio_lock(struct dm_bufio_client *c)
175 {
176         mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 }
178
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 {
181         return mutex_trylock(&c->lock);
182 }
183
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 {
186         mutex_unlock(&c->lock);
187 }
188
189 /*
190  * FIXME Move to sched.h?
191  */
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 #  define dm_bufio_cond_resched()               \
194 do {                                            \
195         if (unlikely(need_resched()))           \
196                 _cond_resched();                \
197 } while (0)
198 #else
199 #  define dm_bufio_cond_resched()                do { } while (0)
200 #endif
201
202 /*----------------------------------------------------------------*/
203
204 /*
205  * Default cache size: available memory divided by the ratio.
206  */
207 static unsigned long dm_bufio_default_cache_size;
208
209 /*
210  * Total cache size set by the user.
211  */
212 static unsigned long dm_bufio_cache_size;
213
214 /*
215  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216  * at any time.  If it disagrees, the user has changed cache size.
217  */
218 static unsigned long dm_bufio_cache_size_latch;
219
220 static DEFINE_SPINLOCK(param_spinlock);
221
222 /*
223  * Buffers are freed after this timeout
224  */
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------*/
257
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
259 {
260         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261                 &dm_bufio_allocated_kmem_cache,
262                 &dm_bufio_allocated_get_free_pages,
263                 &dm_bufio_allocated_vmalloc,
264         };
265
266         spin_lock(&param_spinlock);
267
268         *class_ptr[data_mode] += diff;
269
270         dm_bufio_current_allocated += diff;
271
272         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
274
275         spin_unlock(&param_spinlock);
276 }
277
278 /*
279  * Change the number of clients and recalculate per-client limit.
280  */
281 static void __cache_size_refresh(void)
282 {
283         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284         BUG_ON(dm_bufio_client_count < 0);
285
286         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287
288         /*
289          * Use default if set to 0 and report the actual cache size used.
290          */
291         if (!dm_bufio_cache_size_latch) {
292                 (void)cmpxchg(&dm_bufio_cache_size, 0,
293                               dm_bufio_default_cache_size);
294                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295         }
296
297         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298                                          (dm_bufio_client_count ? : 1);
299 }
300
301 /*
302  * Allocating buffer data.
303  *
304  * Small buffers are allocated with kmem_cache, to use space optimally.
305  *
306  * For large buffers, we choose between get_free_pages and vmalloc.
307  * Each has advantages and disadvantages.
308  *
309  * __get_free_pages can randomly fail if the memory is fragmented.
310  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311  * as low as 128M) so using it for caching is not appropriate.
312  *
313  * If the allocation may fail we use __get_free_pages. Memory fragmentation
314  * won't have a fatal effect here, but it just causes flushes of some other
315  * buffers and more I/O will be performed. Don't use __get_free_pages if it
316  * always fails (i.e. order >= MAX_ORDER).
317  *
318  * If the allocation shouldn't fail we use __vmalloc. This is only for the
319  * initial reserve allocation, so there's no risk of wasting all vmalloc
320  * space.
321  */
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323                                enum data_mode *data_mode)
324 {
325         unsigned noio_flag;
326         void *ptr;
327
328         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329                 *data_mode = DATA_MODE_SLAB;
330                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331         }
332
333         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334             gfp_mask & __GFP_NORETRY) {
335                 *data_mode = DATA_MODE_GET_FREE_PAGES;
336                 return (void *)__get_free_pages(gfp_mask,
337                                                 c->pages_per_block_bits);
338         }
339
340         *data_mode = DATA_MODE_VMALLOC;
341
342         /*
343          * __vmalloc allocates the data pages and auxiliary structures with
344          * gfp_flags that were specified, but pagetables are always allocated
345          * with GFP_KERNEL, no matter what was specified as gfp_mask.
346          *
347          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348          * all allocations done by this process (including pagetables) are done
349          * as if GFP_NOIO was specified.
350          */
351
352         if (gfp_mask & __GFP_NORETRY)
353                 noio_flag = memalloc_noio_save();
354
355         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
356
357         if (gfp_mask & __GFP_NORETRY)
358                 memalloc_noio_restore(noio_flag);
359
360         return ptr;
361 }
362
363 /*
364  * Free buffer's data.
365  */
366 static void free_buffer_data(struct dm_bufio_client *c,
367                              void *data, enum data_mode data_mode)
368 {
369         switch (data_mode) {
370         case DATA_MODE_SLAB:
371                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
372                 break;
373
374         case DATA_MODE_GET_FREE_PAGES:
375                 free_pages((unsigned long)data, c->pages_per_block_bits);
376                 break;
377
378         case DATA_MODE_VMALLOC:
379                 vfree(data);
380                 break;
381
382         default:
383                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384                        data_mode);
385                 BUG();
386         }
387 }
388
389 /*
390  * Allocate buffer and its data.
391  */
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
393 {
394         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395                                       gfp_mask);
396
397         if (!b)
398                 return NULL;
399
400         b->c = c;
401
402         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403         if (!b->data) {
404                 kfree(b);
405                 return NULL;
406         }
407
408         adjust_total_allocated(b->data_mode, (long)c->block_size);
409
410         return b;
411 }
412
413 /*
414  * Free buffer and its data.
415  */
416 static void free_buffer(struct dm_buffer *b)
417 {
418         struct dm_bufio_client *c = b->c;
419
420         adjust_total_allocated(b->data_mode, -(long)c->block_size);
421
422         free_buffer_data(c, b->data, b->data_mode);
423         kfree(b);
424 }
425
426 /*
427  * Link buffer to the hash list and clean or dirty queue.
428  */
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
430 {
431         struct dm_bufio_client *c = b->c;
432
433         c->n_buffers[dirty]++;
434         b->block = block;
435         b->list_mode = dirty;
436         list_add(&b->lru_list, &c->lru[dirty]);
437         hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438         b->last_accessed = jiffies;
439 }
440
441 /*
442  * Unlink buffer from the hash list and dirty or clean queue.
443  */
444 static void __unlink_buffer(struct dm_buffer *b)
445 {
446         struct dm_bufio_client *c = b->c;
447
448         BUG_ON(!c->n_buffers[b->list_mode]);
449
450         c->n_buffers[b->list_mode]--;
451         hlist_del(&b->hash_list);
452         list_del(&b->lru_list);
453 }
454
455 /*
456  * Place the buffer to the head of dirty or clean LRU queue.
457  */
458 static void __relink_lru(struct dm_buffer *b, int dirty)
459 {
460         struct dm_bufio_client *c = b->c;
461
462         BUG_ON(!c->n_buffers[b->list_mode]);
463
464         c->n_buffers[b->list_mode]--;
465         c->n_buffers[dirty]++;
466         b->list_mode = dirty;
467         list_move(&b->lru_list, &c->lru[dirty]);
468 }
469
470 /*----------------------------------------------------------------
471  * Submit I/O on the buffer.
472  *
473  * Bio interface is faster but it has some problems:
474  *      the vector list is limited (increasing this limit increases
475  *      memory-consumption per buffer, so it is not viable);
476  *
477  *      the memory must be direct-mapped, not vmalloced;
478  *
479  *      the I/O driver can reject requests spuriously if it thinks that
480  *      the requests are too big for the device or if they cross a
481  *      controller-defined memory boundary.
482  *
483  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
484  * it is not vmalloced, try using the bio interface.
485  *
486  * If the buffer is big, if it is vmalloced or if the underlying device
487  * rejects the bio because it is too large, use dm-io layer to do the I/O.
488  * The dm-io layer splits the I/O into multiple requests, avoiding the above
489  * shortcomings.
490  *--------------------------------------------------------------*/
491
492 /*
493  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
494  * that the request was handled directly with bio interface.
495  */
496 static void dmio_complete(unsigned long error, void *context)
497 {
498         struct dm_buffer *b = context;
499
500         b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
501 }
502
503 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
504                      bio_end_io_t *end_io)
505 {
506         int r;
507         struct dm_io_request io_req = {
508                 .bi_rw = rw,
509                 .notify.fn = dmio_complete,
510                 .notify.context = b,
511                 .client = b->c->dm_io,
512         };
513         struct dm_io_region region = {
514                 .bdev = b->c->bdev,
515                 .sector = block << b->c->sectors_per_block_bits,
516                 .count = b->c->block_size >> SECTOR_SHIFT,
517         };
518
519         if (b->data_mode != DATA_MODE_VMALLOC) {
520                 io_req.mem.type = DM_IO_KMEM;
521                 io_req.mem.ptr.addr = b->data;
522         } else {
523                 io_req.mem.type = DM_IO_VMA;
524                 io_req.mem.ptr.vma = b->data;
525         }
526
527         b->bio.bi_end_io = end_io;
528
529         r = dm_io(&io_req, 1, &region, NULL);
530         if (r)
531                 end_io(&b->bio, r);
532 }
533
534 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
535                            bio_end_io_t *end_io)
536 {
537         char *ptr;
538         int len;
539
540         bio_init(&b->bio);
541         b->bio.bi_io_vec = b->bio_vec;
542         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
543         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
544         b->bio.bi_bdev = b->c->bdev;
545         b->bio.bi_end_io = end_io;
546
547         /*
548          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
549          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
550          */
551         ptr = b->data;
552         len = b->c->block_size;
553
554         if (len >= PAGE_SIZE)
555                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
556         else
557                 BUG_ON((unsigned long)ptr & (len - 1));
558
559         do {
560                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
561                                   len < PAGE_SIZE ? len : PAGE_SIZE,
562                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
563                         BUG_ON(b->c->block_size <= PAGE_SIZE);
564                         use_dmio(b, rw, block, end_io);
565                         return;
566                 }
567
568                 len -= PAGE_SIZE;
569                 ptr += PAGE_SIZE;
570         } while (len > 0);
571
572         submit_bio(rw, &b->bio);
573 }
574
575 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
576                       bio_end_io_t *end_io)
577 {
578         if (rw == WRITE && b->c->write_callback)
579                 b->c->write_callback(b);
580
581         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
582             b->data_mode != DATA_MODE_VMALLOC)
583                 use_inline_bio(b, rw, block, end_io);
584         else
585                 use_dmio(b, rw, block, end_io);
586 }
587
588 /*----------------------------------------------------------------
589  * Writing dirty buffers
590  *--------------------------------------------------------------*/
591
592 /*
593  * The endio routine for write.
594  *
595  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
596  * it.
597  */
598 static void write_endio(struct bio *bio, int error)
599 {
600         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
601
602         b->write_error = error;
603         if (unlikely(error)) {
604                 struct dm_bufio_client *c = b->c;
605                 (void)cmpxchg(&c->async_write_error, 0, error);
606         }
607
608         BUG_ON(!test_bit(B_WRITING, &b->state));
609
610         smp_mb__before_atomic();
611         clear_bit(B_WRITING, &b->state);
612         smp_mb__after_atomic();
613
614         wake_up_bit(&b->state, B_WRITING);
615 }
616
617 /*
618  * Initiate a write on a dirty buffer, but don't wait for it.
619  *
620  * - If the buffer is not dirty, exit.
621  * - If there some previous write going on, wait for it to finish (we can't
622  *   have two writes on the same buffer simultaneously).
623  * - Submit our write and don't wait on it. We set B_WRITING indicating
624  *   that there is a write in progress.
625  */
626 static void __write_dirty_buffer(struct dm_buffer *b,
627                                  struct list_head *write_list)
628 {
629         if (!test_bit(B_DIRTY, &b->state))
630                 return;
631
632         clear_bit(B_DIRTY, &b->state);
633         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
634
635         if (!write_list)
636                 submit_io(b, WRITE, b->block, write_endio);
637         else
638                 list_add_tail(&b->write_list, write_list);
639 }
640
641 static void __flush_write_list(struct list_head *write_list)
642 {
643         struct blk_plug plug;
644         blk_start_plug(&plug);
645         while (!list_empty(write_list)) {
646                 struct dm_buffer *b =
647                         list_entry(write_list->next, struct dm_buffer, write_list);
648                 list_del(&b->write_list);
649                 submit_io(b, WRITE, b->block, write_endio);
650                 dm_bufio_cond_resched();
651         }
652         blk_finish_plug(&plug);
653 }
654
655 /*
656  * Wait until any activity on the buffer finishes.  Possibly write the
657  * buffer if it is dirty.  When this function finishes, there is no I/O
658  * running on the buffer and the buffer is not dirty.
659  */
660 static void __make_buffer_clean(struct dm_buffer *b)
661 {
662         BUG_ON(b->hold_count);
663
664         if (!b->state)  /* fast case */
665                 return;
666
667         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
668         __write_dirty_buffer(b, NULL);
669         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
670 }
671
672 /*
673  * Find some buffer that is not held by anybody, clean it, unlink it and
674  * return it.
675  */
676 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
677 {
678         struct dm_buffer *b;
679
680         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
681                 BUG_ON(test_bit(B_WRITING, &b->state));
682                 BUG_ON(test_bit(B_DIRTY, &b->state));
683
684                 if (!b->hold_count) {
685                         __make_buffer_clean(b);
686                         __unlink_buffer(b);
687                         return b;
688                 }
689                 dm_bufio_cond_resched();
690         }
691
692         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
693                 BUG_ON(test_bit(B_READING, &b->state));
694
695                 if (!b->hold_count) {
696                         __make_buffer_clean(b);
697                         __unlink_buffer(b);
698                         return b;
699                 }
700                 dm_bufio_cond_resched();
701         }
702
703         return NULL;
704 }
705
706 /*
707  * Wait until some other threads free some buffer or release hold count on
708  * some buffer.
709  *
710  * This function is entered with c->lock held, drops it and regains it
711  * before exiting.
712  */
713 static void __wait_for_free_buffer(struct dm_bufio_client *c)
714 {
715         DECLARE_WAITQUEUE(wait, current);
716
717         add_wait_queue(&c->free_buffer_wait, &wait);
718         set_task_state(current, TASK_UNINTERRUPTIBLE);
719         dm_bufio_unlock(c);
720
721         io_schedule();
722
723         remove_wait_queue(&c->free_buffer_wait, &wait);
724
725         dm_bufio_lock(c);
726 }
727
728 enum new_flag {
729         NF_FRESH = 0,
730         NF_READ = 1,
731         NF_GET = 2,
732         NF_PREFETCH = 3
733 };
734
735 /*
736  * Allocate a new buffer. If the allocation is not possible, wait until
737  * some other thread frees a buffer.
738  *
739  * May drop the lock and regain it.
740  */
741 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
742 {
743         struct dm_buffer *b;
744
745         /*
746          * dm-bufio is resistant to allocation failures (it just keeps
747          * one buffer reserved in cases all the allocations fail).
748          * So set flags to not try too hard:
749          *      GFP_NOIO: don't recurse into the I/O layer
750          *      __GFP_NORETRY: don't retry and rather return failure
751          *      __GFP_NOMEMALLOC: don't use emergency reserves
752          *      __GFP_NOWARN: don't print a warning in case of failure
753          *
754          * For debugging, if we set the cache size to 1, no new buffers will
755          * be allocated.
756          */
757         while (1) {
758                 if (dm_bufio_cache_size_latch != 1) {
759                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
760                         if (b)
761                                 return b;
762                 }
763
764                 if (nf == NF_PREFETCH)
765                         return NULL;
766
767                 if (!list_empty(&c->reserved_buffers)) {
768                         b = list_entry(c->reserved_buffers.next,
769                                        struct dm_buffer, lru_list);
770                         list_del(&b->lru_list);
771                         c->need_reserved_buffers++;
772
773                         return b;
774                 }
775
776                 b = __get_unclaimed_buffer(c);
777                 if (b)
778                         return b;
779
780                 __wait_for_free_buffer(c);
781         }
782 }
783
784 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
785 {
786         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
787
788         if (!b)
789                 return NULL;
790
791         if (c->alloc_callback)
792                 c->alloc_callback(b);
793
794         return b;
795 }
796
797 /*
798  * Free a buffer and wake other threads waiting for free buffers.
799  */
800 static void __free_buffer_wake(struct dm_buffer *b)
801 {
802         struct dm_bufio_client *c = b->c;
803
804         if (!c->need_reserved_buffers)
805                 free_buffer(b);
806         else {
807                 list_add(&b->lru_list, &c->reserved_buffers);
808                 c->need_reserved_buffers--;
809         }
810
811         wake_up(&c->free_buffer_wait);
812 }
813
814 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
815                                         struct list_head *write_list)
816 {
817         struct dm_buffer *b, *tmp;
818
819         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
820                 BUG_ON(test_bit(B_READING, &b->state));
821
822                 if (!test_bit(B_DIRTY, &b->state) &&
823                     !test_bit(B_WRITING, &b->state)) {
824                         __relink_lru(b, LIST_CLEAN);
825                         continue;
826                 }
827
828                 if (no_wait && test_bit(B_WRITING, &b->state))
829                         return;
830
831                 __write_dirty_buffer(b, write_list);
832                 dm_bufio_cond_resched();
833         }
834 }
835
836 /*
837  * Get writeback threshold and buffer limit for a given client.
838  */
839 static void __get_memory_limit(struct dm_bufio_client *c,
840                                unsigned long *threshold_buffers,
841                                unsigned long *limit_buffers)
842 {
843         unsigned long buffers;
844
845         if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
846                 mutex_lock(&dm_bufio_clients_lock);
847                 __cache_size_refresh();
848                 mutex_unlock(&dm_bufio_clients_lock);
849         }
850
851         buffers = dm_bufio_cache_size_per_client >>
852                   (c->sectors_per_block_bits + SECTOR_SHIFT);
853
854         if (buffers < c->minimum_buffers)
855                 buffers = c->minimum_buffers;
856
857         *limit_buffers = buffers;
858         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
859 }
860
861 /*
862  * Check if we're over watermark.
863  * If we are over threshold_buffers, start freeing buffers.
864  * If we're over "limit_buffers", block until we get under the limit.
865  */
866 static void __check_watermark(struct dm_bufio_client *c,
867                               struct list_head *write_list)
868 {
869         unsigned long threshold_buffers, limit_buffers;
870
871         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
872
873         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
874                limit_buffers) {
875
876                 struct dm_buffer *b = __get_unclaimed_buffer(c);
877
878                 if (!b)
879                         return;
880
881                 __free_buffer_wake(b);
882                 dm_bufio_cond_resched();
883         }
884
885         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
886                 __write_dirty_buffers_async(c, 1, write_list);
887 }
888
889 /*
890  * Find a buffer in the hash.
891  */
892 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
893 {
894         struct dm_buffer *b;
895
896         hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
897                              hash_list) {
898                 dm_bufio_cond_resched();
899                 if (b->block == block)
900                         return b;
901         }
902
903         return NULL;
904 }
905
906 /*----------------------------------------------------------------
907  * Getting a buffer
908  *--------------------------------------------------------------*/
909
910 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
911                                      enum new_flag nf, int *need_submit,
912                                      struct list_head *write_list)
913 {
914         struct dm_buffer *b, *new_b = NULL;
915
916         *need_submit = 0;
917
918         b = __find(c, block);
919         if (b)
920                 goto found_buffer;
921
922         if (nf == NF_GET)
923                 return NULL;
924
925         new_b = __alloc_buffer_wait(c, nf);
926         if (!new_b)
927                 return NULL;
928
929         /*
930          * We've had a period where the mutex was unlocked, so need to
931          * recheck the hash table.
932          */
933         b = __find(c, block);
934         if (b) {
935                 __free_buffer_wake(new_b);
936                 goto found_buffer;
937         }
938
939         __check_watermark(c, write_list);
940
941         b = new_b;
942         b->hold_count = 1;
943         b->read_error = 0;
944         b->write_error = 0;
945         __link_buffer(b, block, LIST_CLEAN);
946
947         if (nf == NF_FRESH) {
948                 b->state = 0;
949                 return b;
950         }
951
952         b->state = 1 << B_READING;
953         *need_submit = 1;
954
955         return b;
956
957 found_buffer:
958         if (nf == NF_PREFETCH)
959                 return NULL;
960         /*
961          * Note: it is essential that we don't wait for the buffer to be
962          * read if dm_bufio_get function is used. Both dm_bufio_get and
963          * dm_bufio_prefetch can be used in the driver request routine.
964          * If the user called both dm_bufio_prefetch and dm_bufio_get on
965          * the same buffer, it would deadlock if we waited.
966          */
967         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
968                 return NULL;
969
970         b->hold_count++;
971         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
972                      test_bit(B_WRITING, &b->state));
973         return b;
974 }
975
976 /*
977  * The endio routine for reading: set the error, clear the bit and wake up
978  * anyone waiting on the buffer.
979  */
980 static void read_endio(struct bio *bio, int error)
981 {
982         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
983
984         b->read_error = error;
985
986         BUG_ON(!test_bit(B_READING, &b->state));
987
988         smp_mb__before_atomic();
989         clear_bit(B_READING, &b->state);
990         smp_mb__after_atomic();
991
992         wake_up_bit(&b->state, B_READING);
993 }
994
995 /*
996  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
997  * functions is similar except that dm_bufio_new doesn't read the
998  * buffer from the disk (assuming that the caller overwrites all the data
999  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1000  */
1001 static void *new_read(struct dm_bufio_client *c, sector_t block,
1002                       enum new_flag nf, struct dm_buffer **bp)
1003 {
1004         int need_submit;
1005         struct dm_buffer *b;
1006
1007         LIST_HEAD(write_list);
1008
1009         dm_bufio_lock(c);
1010         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1011         dm_bufio_unlock(c);
1012
1013         __flush_write_list(&write_list);
1014
1015         if (!b)
1016                 return b;
1017
1018         if (need_submit)
1019                 submit_io(b, READ, b->block, read_endio);
1020
1021         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1022
1023         if (b->read_error) {
1024                 int error = b->read_error;
1025
1026                 dm_bufio_release(b);
1027
1028                 return ERR_PTR(error);
1029         }
1030
1031         *bp = b;
1032
1033         return b->data;
1034 }
1035
1036 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1037                    struct dm_buffer **bp)
1038 {
1039         return new_read(c, block, NF_GET, bp);
1040 }
1041 EXPORT_SYMBOL_GPL(dm_bufio_get);
1042
1043 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1044                     struct dm_buffer **bp)
1045 {
1046         BUG_ON(dm_bufio_in_request());
1047
1048         return new_read(c, block, NF_READ, bp);
1049 }
1050 EXPORT_SYMBOL_GPL(dm_bufio_read);
1051
1052 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1053                    struct dm_buffer **bp)
1054 {
1055         BUG_ON(dm_bufio_in_request());
1056
1057         return new_read(c, block, NF_FRESH, bp);
1058 }
1059 EXPORT_SYMBOL_GPL(dm_bufio_new);
1060
1061 void dm_bufio_prefetch(struct dm_bufio_client *c,
1062                        sector_t block, unsigned n_blocks)
1063 {
1064         struct blk_plug plug;
1065
1066         LIST_HEAD(write_list);
1067
1068         BUG_ON(dm_bufio_in_request());
1069
1070         blk_start_plug(&plug);
1071         dm_bufio_lock(c);
1072
1073         for (; n_blocks--; block++) {
1074                 int need_submit;
1075                 struct dm_buffer *b;
1076                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1077                                 &write_list);
1078                 if (unlikely(!list_empty(&write_list))) {
1079                         dm_bufio_unlock(c);
1080                         blk_finish_plug(&plug);
1081                         __flush_write_list(&write_list);
1082                         blk_start_plug(&plug);
1083                         dm_bufio_lock(c);
1084                 }
1085                 if (unlikely(b != NULL)) {
1086                         dm_bufio_unlock(c);
1087
1088                         if (need_submit)
1089                                 submit_io(b, READ, b->block, read_endio);
1090                         dm_bufio_release(b);
1091
1092                         dm_bufio_cond_resched();
1093
1094                         if (!n_blocks)
1095                                 goto flush_plug;
1096                         dm_bufio_lock(c);
1097                 }
1098         }
1099
1100         dm_bufio_unlock(c);
1101
1102 flush_plug:
1103         blk_finish_plug(&plug);
1104 }
1105 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1106
1107 void dm_bufio_release(struct dm_buffer *b)
1108 {
1109         struct dm_bufio_client *c = b->c;
1110
1111         dm_bufio_lock(c);
1112
1113         BUG_ON(!b->hold_count);
1114
1115         b->hold_count--;
1116         if (!b->hold_count) {
1117                 wake_up(&c->free_buffer_wait);
1118
1119                 /*
1120                  * If there were errors on the buffer, and the buffer is not
1121                  * to be written, free the buffer. There is no point in caching
1122                  * invalid buffer.
1123                  */
1124                 if ((b->read_error || b->write_error) &&
1125                     !test_bit(B_READING, &b->state) &&
1126                     !test_bit(B_WRITING, &b->state) &&
1127                     !test_bit(B_DIRTY, &b->state)) {
1128                         __unlink_buffer(b);
1129                         __free_buffer_wake(b);
1130                 }
1131         }
1132
1133         dm_bufio_unlock(c);
1134 }
1135 EXPORT_SYMBOL_GPL(dm_bufio_release);
1136
1137 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1138 {
1139         struct dm_bufio_client *c = b->c;
1140
1141         dm_bufio_lock(c);
1142
1143         BUG_ON(test_bit(B_READING, &b->state));
1144
1145         if (!test_and_set_bit(B_DIRTY, &b->state))
1146                 __relink_lru(b, LIST_DIRTY);
1147
1148         dm_bufio_unlock(c);
1149 }
1150 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1151
1152 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1153 {
1154         LIST_HEAD(write_list);
1155
1156         BUG_ON(dm_bufio_in_request());
1157
1158         dm_bufio_lock(c);
1159         __write_dirty_buffers_async(c, 0, &write_list);
1160         dm_bufio_unlock(c);
1161         __flush_write_list(&write_list);
1162 }
1163 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1164
1165 /*
1166  * For performance, it is essential that the buffers are written asynchronously
1167  * and simultaneously (so that the block layer can merge the writes) and then
1168  * waited upon.
1169  *
1170  * Finally, we flush hardware disk cache.
1171  */
1172 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1173 {
1174         int a, f;
1175         unsigned long buffers_processed = 0;
1176         struct dm_buffer *b, *tmp;
1177
1178         LIST_HEAD(write_list);
1179
1180         dm_bufio_lock(c);
1181         __write_dirty_buffers_async(c, 0, &write_list);
1182         dm_bufio_unlock(c);
1183         __flush_write_list(&write_list);
1184         dm_bufio_lock(c);
1185
1186 again:
1187         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1188                 int dropped_lock = 0;
1189
1190                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1191                         buffers_processed++;
1192
1193                 BUG_ON(test_bit(B_READING, &b->state));
1194
1195                 if (test_bit(B_WRITING, &b->state)) {
1196                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1197                                 dropped_lock = 1;
1198                                 b->hold_count++;
1199                                 dm_bufio_unlock(c);
1200                                 wait_on_bit_io(&b->state, B_WRITING,
1201                                                TASK_UNINTERRUPTIBLE);
1202                                 dm_bufio_lock(c);
1203                                 b->hold_count--;
1204                         } else
1205                                 wait_on_bit_io(&b->state, B_WRITING,
1206                                                TASK_UNINTERRUPTIBLE);
1207                 }
1208
1209                 if (!test_bit(B_DIRTY, &b->state) &&
1210                     !test_bit(B_WRITING, &b->state))
1211                         __relink_lru(b, LIST_CLEAN);
1212
1213                 dm_bufio_cond_resched();
1214
1215                 /*
1216                  * If we dropped the lock, the list is no longer consistent,
1217                  * so we must restart the search.
1218                  *
1219                  * In the most common case, the buffer just processed is
1220                  * relinked to the clean list, so we won't loop scanning the
1221                  * same buffer again and again.
1222                  *
1223                  * This may livelock if there is another thread simultaneously
1224                  * dirtying buffers, so we count the number of buffers walked
1225                  * and if it exceeds the total number of buffers, it means that
1226                  * someone is doing some writes simultaneously with us.  In
1227                  * this case, stop, dropping the lock.
1228                  */
1229                 if (dropped_lock)
1230                         goto again;
1231         }
1232         wake_up(&c->free_buffer_wait);
1233         dm_bufio_unlock(c);
1234
1235         a = xchg(&c->async_write_error, 0);
1236         f = dm_bufio_issue_flush(c);
1237         if (a)
1238                 return a;
1239
1240         return f;
1241 }
1242 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1243
1244 /*
1245  * Use dm-io to send and empty barrier flush the device.
1246  */
1247 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1248 {
1249         struct dm_io_request io_req = {
1250                 .bi_rw = WRITE_FLUSH,
1251                 .mem.type = DM_IO_KMEM,
1252                 .mem.ptr.addr = NULL,
1253                 .client = c->dm_io,
1254         };
1255         struct dm_io_region io_reg = {
1256                 .bdev = c->bdev,
1257                 .sector = 0,
1258                 .count = 0,
1259         };
1260
1261         BUG_ON(dm_bufio_in_request());
1262
1263         return dm_io(&io_req, 1, &io_reg, NULL);
1264 }
1265 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1266
1267 /*
1268  * We first delete any other buffer that may be at that new location.
1269  *
1270  * Then, we write the buffer to the original location if it was dirty.
1271  *
1272  * Then, if we are the only one who is holding the buffer, relink the buffer
1273  * in the hash queue for the new location.
1274  *
1275  * If there was someone else holding the buffer, we write it to the new
1276  * location but not relink it, because that other user needs to have the buffer
1277  * at the same place.
1278  */
1279 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1280 {
1281         struct dm_bufio_client *c = b->c;
1282         struct dm_buffer *new;
1283
1284         BUG_ON(dm_bufio_in_request());
1285
1286         dm_bufio_lock(c);
1287
1288 retry:
1289         new = __find(c, new_block);
1290         if (new) {
1291                 if (new->hold_count) {
1292                         __wait_for_free_buffer(c);
1293                         goto retry;
1294                 }
1295
1296                 /*
1297                  * FIXME: Is there any point waiting for a write that's going
1298                  * to be overwritten in a bit?
1299                  */
1300                 __make_buffer_clean(new);
1301                 __unlink_buffer(new);
1302                 __free_buffer_wake(new);
1303         }
1304
1305         BUG_ON(!b->hold_count);
1306         BUG_ON(test_bit(B_READING, &b->state));
1307
1308         __write_dirty_buffer(b, NULL);
1309         if (b->hold_count == 1) {
1310                 wait_on_bit_io(&b->state, B_WRITING,
1311                                TASK_UNINTERRUPTIBLE);
1312                 set_bit(B_DIRTY, &b->state);
1313                 __unlink_buffer(b);
1314                 __link_buffer(b, new_block, LIST_DIRTY);
1315         } else {
1316                 sector_t old_block;
1317                 wait_on_bit_lock_io(&b->state, B_WRITING,
1318                                     TASK_UNINTERRUPTIBLE);
1319                 /*
1320                  * Relink buffer to "new_block" so that write_callback
1321                  * sees "new_block" as a block number.
1322                  * After the write, link the buffer back to old_block.
1323                  * All this must be done in bufio lock, so that block number
1324                  * change isn't visible to other threads.
1325                  */
1326                 old_block = b->block;
1327                 __unlink_buffer(b);
1328                 __link_buffer(b, new_block, b->list_mode);
1329                 submit_io(b, WRITE, new_block, write_endio);
1330                 wait_on_bit_io(&b->state, B_WRITING,
1331                                TASK_UNINTERRUPTIBLE);
1332                 __unlink_buffer(b);
1333                 __link_buffer(b, old_block, b->list_mode);
1334         }
1335
1336         dm_bufio_unlock(c);
1337         dm_bufio_release(b);
1338 }
1339 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1340
1341 /*
1342  * Free the given buffer.
1343  *
1344  * This is just a hint, if the buffer is in use or dirty, this function
1345  * does nothing.
1346  */
1347 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1348 {
1349         struct dm_buffer *b;
1350
1351         dm_bufio_lock(c);
1352
1353         b = __find(c, block);
1354         if (b && likely(!b->hold_count) && likely(!b->state)) {
1355                 __unlink_buffer(b);
1356                 __free_buffer_wake(b);
1357         }
1358
1359         dm_bufio_unlock(c);
1360 }
1361 EXPORT_SYMBOL(dm_bufio_forget);
1362
1363 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1364 {
1365         c->minimum_buffers = n;
1366 }
1367 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1368
1369 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1370 {
1371         return c->block_size;
1372 }
1373 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1374
1375 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1376 {
1377         return i_size_read(c->bdev->bd_inode) >>
1378                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1379 }
1380 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1381
1382 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1383 {
1384         return b->block;
1385 }
1386 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1387
1388 void *dm_bufio_get_block_data(struct dm_buffer *b)
1389 {
1390         return b->data;
1391 }
1392 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1393
1394 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1395 {
1396         return b + 1;
1397 }
1398 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1399
1400 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1401 {
1402         return b->c;
1403 }
1404 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1405
1406 static void drop_buffers(struct dm_bufio_client *c)
1407 {
1408         struct dm_buffer *b;
1409         int i;
1410
1411         BUG_ON(dm_bufio_in_request());
1412
1413         /*
1414          * An optimization so that the buffers are not written one-by-one.
1415          */
1416         dm_bufio_write_dirty_buffers_async(c);
1417
1418         dm_bufio_lock(c);
1419
1420         while ((b = __get_unclaimed_buffer(c)))
1421                 __free_buffer_wake(b);
1422
1423         for (i = 0; i < LIST_SIZE; i++)
1424                 list_for_each_entry(b, &c->lru[i], lru_list)
1425                         DMERR("leaked buffer %llx, hold count %u, list %d",
1426                               (unsigned long long)b->block, b->hold_count, i);
1427
1428         for (i = 0; i < LIST_SIZE; i++)
1429                 BUG_ON(!list_empty(&c->lru[i]));
1430
1431         dm_bufio_unlock(c);
1432 }
1433
1434 /*
1435  * Test if the buffer is unused and too old, and commit it.
1436  * At if noio is set, we must not do any I/O because we hold
1437  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1438  * different bufio client.
1439  */
1440 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1441                                 unsigned long max_jiffies)
1442 {
1443         if (jiffies - b->last_accessed < max_jiffies)
1444                 return 0;
1445
1446         if (!(gfp & __GFP_IO)) {
1447                 if (test_bit(B_READING, &b->state) ||
1448                     test_bit(B_WRITING, &b->state) ||
1449                     test_bit(B_DIRTY, &b->state))
1450                         return 0;
1451         }
1452
1453         if (b->hold_count)
1454                 return 0;
1455
1456         __make_buffer_clean(b);
1457         __unlink_buffer(b);
1458         __free_buffer_wake(b);
1459
1460         return 1;
1461 }
1462
1463 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1464                    gfp_t gfp_mask)
1465 {
1466         int l;
1467         struct dm_buffer *b, *tmp;
1468         long freed = 0;
1469
1470         for (l = 0; l < LIST_SIZE; l++) {
1471                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1472                         freed += __cleanup_old_buffer(b, gfp_mask, 0);
1473                         if (!--nr_to_scan)
1474                                 break;
1475                 }
1476                 dm_bufio_cond_resched();
1477         }
1478         return freed;
1479 }
1480
1481 static unsigned long
1482 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1483 {
1484         struct dm_bufio_client *c;
1485         unsigned long freed;
1486
1487         c = container_of(shrink, struct dm_bufio_client, shrinker);
1488         if (sc->gfp_mask & __GFP_IO)
1489                 dm_bufio_lock(c);
1490         else if (!dm_bufio_trylock(c))
1491                 return SHRINK_STOP;
1492
1493         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1494         dm_bufio_unlock(c);
1495         return freed;
1496 }
1497
1498 static unsigned long
1499 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1500 {
1501         struct dm_bufio_client *c;
1502         unsigned long count;
1503
1504         c = container_of(shrink, struct dm_bufio_client, shrinker);
1505         if (sc->gfp_mask & __GFP_IO)
1506                 dm_bufio_lock(c);
1507         else if (!dm_bufio_trylock(c))
1508                 return 0;
1509
1510         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1511         dm_bufio_unlock(c);
1512         return count;
1513 }
1514
1515 /*
1516  * Create the buffering interface
1517  */
1518 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1519                                                unsigned reserved_buffers, unsigned aux_size,
1520                                                void (*alloc_callback)(struct dm_buffer *),
1521                                                void (*write_callback)(struct dm_buffer *))
1522 {
1523         int r;
1524         struct dm_bufio_client *c;
1525         unsigned i;
1526
1527         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1528                (block_size & (block_size - 1)));
1529
1530         c = kzalloc(sizeof(*c), GFP_KERNEL);
1531         if (!c) {
1532                 r = -ENOMEM;
1533                 goto bad_client;
1534         }
1535         c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1536         if (!c->cache_hash) {
1537                 r = -ENOMEM;
1538                 goto bad_hash;
1539         }
1540
1541         c->bdev = bdev;
1542         c->block_size = block_size;
1543         c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1544         c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1545                                   ffs(block_size) - 1 - PAGE_SHIFT : 0;
1546         c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1547                                   PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1548
1549         c->aux_size = aux_size;
1550         c->alloc_callback = alloc_callback;
1551         c->write_callback = write_callback;
1552
1553         for (i = 0; i < LIST_SIZE; i++) {
1554                 INIT_LIST_HEAD(&c->lru[i]);
1555                 c->n_buffers[i] = 0;
1556         }
1557
1558         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1559                 INIT_HLIST_HEAD(&c->cache_hash[i]);
1560
1561         mutex_init(&c->lock);
1562         INIT_LIST_HEAD(&c->reserved_buffers);
1563         c->need_reserved_buffers = reserved_buffers;
1564
1565         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1566
1567         init_waitqueue_head(&c->free_buffer_wait);
1568         c->async_write_error = 0;
1569
1570         c->dm_io = dm_io_client_create();
1571         if (IS_ERR(c->dm_io)) {
1572                 r = PTR_ERR(c->dm_io);
1573                 goto bad_dm_io;
1574         }
1575
1576         mutex_lock(&dm_bufio_clients_lock);
1577         if (c->blocks_per_page_bits) {
1578                 if (!DM_BUFIO_CACHE_NAME(c)) {
1579                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1580                         if (!DM_BUFIO_CACHE_NAME(c)) {
1581                                 r = -ENOMEM;
1582                                 mutex_unlock(&dm_bufio_clients_lock);
1583                                 goto bad_cache;
1584                         }
1585                 }
1586
1587                 if (!DM_BUFIO_CACHE(c)) {
1588                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1589                                                               c->block_size,
1590                                                               c->block_size, 0, NULL);
1591                         if (!DM_BUFIO_CACHE(c)) {
1592                                 r = -ENOMEM;
1593                                 mutex_unlock(&dm_bufio_clients_lock);
1594                                 goto bad_cache;
1595                         }
1596                 }
1597         }
1598         mutex_unlock(&dm_bufio_clients_lock);
1599
1600         while (c->need_reserved_buffers) {
1601                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1602
1603                 if (!b) {
1604                         r = -ENOMEM;
1605                         goto bad_buffer;
1606                 }
1607                 __free_buffer_wake(b);
1608         }
1609
1610         mutex_lock(&dm_bufio_clients_lock);
1611         dm_bufio_client_count++;
1612         list_add(&c->client_list, &dm_bufio_all_clients);
1613         __cache_size_refresh();
1614         mutex_unlock(&dm_bufio_clients_lock);
1615
1616         c->shrinker.count_objects = dm_bufio_shrink_count;
1617         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1618         c->shrinker.seeks = 1;
1619         c->shrinker.batch = 0;
1620         register_shrinker(&c->shrinker);
1621
1622         return c;
1623
1624 bad_buffer:
1625 bad_cache:
1626         while (!list_empty(&c->reserved_buffers)) {
1627                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1628                                                  struct dm_buffer, lru_list);
1629                 list_del(&b->lru_list);
1630                 free_buffer(b);
1631         }
1632         dm_io_client_destroy(c->dm_io);
1633 bad_dm_io:
1634         vfree(c->cache_hash);
1635 bad_hash:
1636         kfree(c);
1637 bad_client:
1638         return ERR_PTR(r);
1639 }
1640 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1641
1642 /*
1643  * Free the buffering interface.
1644  * It is required that there are no references on any buffers.
1645  */
1646 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1647 {
1648         unsigned i;
1649
1650         drop_buffers(c);
1651
1652         unregister_shrinker(&c->shrinker);
1653
1654         mutex_lock(&dm_bufio_clients_lock);
1655
1656         list_del(&c->client_list);
1657         dm_bufio_client_count--;
1658         __cache_size_refresh();
1659
1660         mutex_unlock(&dm_bufio_clients_lock);
1661
1662         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1663                 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1664
1665         BUG_ON(c->need_reserved_buffers);
1666
1667         while (!list_empty(&c->reserved_buffers)) {
1668                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1669                                                  struct dm_buffer, lru_list);
1670                 list_del(&b->lru_list);
1671                 free_buffer(b);
1672         }
1673
1674         for (i = 0; i < LIST_SIZE; i++)
1675                 if (c->n_buffers[i])
1676                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1677
1678         for (i = 0; i < LIST_SIZE; i++)
1679                 BUG_ON(c->n_buffers[i]);
1680
1681         dm_io_client_destroy(c->dm_io);
1682         vfree(c->cache_hash);
1683         kfree(c);
1684 }
1685 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1686
1687 static void cleanup_old_buffers(void)
1688 {
1689         unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1690         struct dm_bufio_client *c;
1691
1692         if (max_age > ULONG_MAX / HZ)
1693                 max_age = ULONG_MAX / HZ;
1694
1695         mutex_lock(&dm_bufio_clients_lock);
1696         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1697                 if (!dm_bufio_trylock(c))
1698                         continue;
1699
1700                 while (!list_empty(&c->lru[LIST_CLEAN])) {
1701                         struct dm_buffer *b;
1702                         b = list_entry(c->lru[LIST_CLEAN].prev,
1703                                        struct dm_buffer, lru_list);
1704                         if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1705                                 break;
1706                         dm_bufio_cond_resched();
1707                 }
1708
1709                 dm_bufio_unlock(c);
1710                 dm_bufio_cond_resched();
1711         }
1712         mutex_unlock(&dm_bufio_clients_lock);
1713 }
1714
1715 static struct workqueue_struct *dm_bufio_wq;
1716 static struct delayed_work dm_bufio_work;
1717
1718 static void work_fn(struct work_struct *w)
1719 {
1720         cleanup_old_buffers();
1721
1722         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1723                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1724 }
1725
1726 /*----------------------------------------------------------------
1727  * Module setup
1728  *--------------------------------------------------------------*/
1729
1730 /*
1731  * This is called only once for the whole dm_bufio module.
1732  * It initializes memory limit.
1733  */
1734 static int __init dm_bufio_init(void)
1735 {
1736         __u64 mem;
1737
1738         dm_bufio_allocated_kmem_cache = 0;
1739         dm_bufio_allocated_get_free_pages = 0;
1740         dm_bufio_allocated_vmalloc = 0;
1741         dm_bufio_current_allocated = 0;
1742
1743         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1744         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1745
1746         mem = (__u64)((totalram_pages - totalhigh_pages) *
1747                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1748
1749         if (mem > ULONG_MAX)
1750                 mem = ULONG_MAX;
1751
1752 #ifdef CONFIG_MMU
1753         /*
1754          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1755          * in fs/proc/internal.h
1756          */
1757         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1758                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1759 #endif
1760
1761         dm_bufio_default_cache_size = mem;
1762
1763         mutex_lock(&dm_bufio_clients_lock);
1764         __cache_size_refresh();
1765         mutex_unlock(&dm_bufio_clients_lock);
1766
1767         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1768         if (!dm_bufio_wq)
1769                 return -ENOMEM;
1770
1771         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1772         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1773                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1774
1775         return 0;
1776 }
1777
1778 /*
1779  * This is called once when unloading the dm_bufio module.
1780  */
1781 static void __exit dm_bufio_exit(void)
1782 {
1783         int bug = 0;
1784         int i;
1785
1786         cancel_delayed_work_sync(&dm_bufio_work);
1787         destroy_workqueue(dm_bufio_wq);
1788
1789         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1790                 struct kmem_cache *kc = dm_bufio_caches[i];
1791
1792                 if (kc)
1793                         kmem_cache_destroy(kc);
1794         }
1795
1796         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1797                 kfree(dm_bufio_cache_names[i]);
1798
1799         if (dm_bufio_client_count) {
1800                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1801                         __func__, dm_bufio_client_count);
1802                 bug = 1;
1803         }
1804
1805         if (dm_bufio_current_allocated) {
1806                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1807                         __func__, dm_bufio_current_allocated);
1808                 bug = 1;
1809         }
1810
1811         if (dm_bufio_allocated_get_free_pages) {
1812                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1813                        __func__, dm_bufio_allocated_get_free_pages);
1814                 bug = 1;
1815         }
1816
1817         if (dm_bufio_allocated_vmalloc) {
1818                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1819                        __func__, dm_bufio_allocated_vmalloc);
1820                 bug = 1;
1821         }
1822
1823         if (bug)
1824                 BUG();
1825 }
1826
1827 module_init(dm_bufio_init)
1828 module_exit(dm_bufio_exit)
1829
1830 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1831 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1832
1833 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1834 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1835
1836 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1837 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1838
1839 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1840 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1841
1842 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1843 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1844
1845 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1846 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1847
1848 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1849 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1850
1851 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1852 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1853 MODULE_LICENSE("GPL");