x86/debug: Drop several unnecessary CFI annotations
[sfrench/cifs-2.6.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bufio.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17
18 #define DM_MSG_PREFIX "bufio"
19
20 /*
21  * Memory management policy:
22  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *      dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS            8
29
30 #define DM_BUFIO_MEMORY_PERCENT         2
31 #define DM_BUFIO_VMALLOC_PERCENT        25
32 #define DM_BUFIO_WRITEBACK_PERCENT      75
33
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS        10
38
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS       60
43
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS            16
49
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS      20
54 #define DM_BUFIO_HASH(block) \
55         ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56          ((1 << DM_BUFIO_HASH_BITS) - 1))
57
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
64
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN      0
69 #define LIST_DIRTY      1
70 #define LIST_SIZE       2
71
72 /*
73  * Linking of buffers:
74  *      All buffers are linked to cache_hash with their hash_list field.
75  *
76  *      Clean buffers that are not being written (B_WRITING not set)
77  *      are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *      Dirty and clean buffers that are being written are linked to
80  *      lru[LIST_DIRTY] with their lru_list field. When the write
81  *      finishes, the buffer cannot be relinked immediately (because we
82  *      are in an interrupt context and relinking requires process
83  *      context), so some clean-not-writing buffers can be held on
84  *      dirty_lru too.  They are later added to lru in the process
85  *      context.
86  */
87 struct dm_bufio_client {
88         struct mutex lock;
89
90         struct list_head lru[LIST_SIZE];
91         unsigned long n_buffers[LIST_SIZE];
92
93         struct block_device *bdev;
94         unsigned block_size;
95         unsigned char sectors_per_block_bits;
96         unsigned char pages_per_block_bits;
97         unsigned char blocks_per_page_bits;
98         unsigned aux_size;
99         void (*alloc_callback)(struct dm_buffer *);
100         void (*write_callback)(struct dm_buffer *);
101
102         struct dm_io_client *dm_io;
103
104         struct list_head reserved_buffers;
105         unsigned need_reserved_buffers;
106
107         unsigned minimum_buffers;
108
109         struct hlist_head *cache_hash;
110         wait_queue_head_t free_buffer_wait;
111
112         int async_write_error;
113
114         struct list_head client_list;
115         struct shrinker shrinker;
116 };
117
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING       0
122 #define B_WRITING       1
123 #define B_DIRTY         2
124
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131         DATA_MODE_SLAB = 0,
132         DATA_MODE_GET_FREE_PAGES = 1,
133         DATA_MODE_VMALLOC = 2,
134         DATA_MODE_LIMIT = 3
135 };
136
137 struct dm_buffer {
138         struct hlist_node hash_list;
139         struct list_head lru_list;
140         sector_t block;
141         void *data;
142         enum data_mode data_mode;
143         unsigned char list_mode;                /* LIST_* */
144         unsigned hold_count;
145         int read_error;
146         int write_error;
147         unsigned long state;
148         unsigned long last_accessed;
149         struct dm_bufio_client *c;
150         struct list_head write_list;
151         struct bio bio;
152         struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 };
154
155 /*----------------------------------------------------------------*/
156
157 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
158 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
159
160 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
161 {
162         unsigned ret = c->blocks_per_page_bits - 1;
163
164         BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
165
166         return ret;
167 }
168
169 #define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
170 #define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
171
172 #define dm_bufio_in_request()   (!!current->bio_list)
173
174 static void dm_bufio_lock(struct dm_bufio_client *c)
175 {
176         mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 }
178
179 static int dm_bufio_trylock(struct dm_bufio_client *c)
180 {
181         return mutex_trylock(&c->lock);
182 }
183
184 static void dm_bufio_unlock(struct dm_bufio_client *c)
185 {
186         mutex_unlock(&c->lock);
187 }
188
189 /*
190  * FIXME Move to sched.h?
191  */
192 #ifdef CONFIG_PREEMPT_VOLUNTARY
193 #  define dm_bufio_cond_resched()               \
194 do {                                            \
195         if (unlikely(need_resched()))           \
196                 _cond_resched();                \
197 } while (0)
198 #else
199 #  define dm_bufio_cond_resched()                do { } while (0)
200 #endif
201
202 /*----------------------------------------------------------------*/
203
204 /*
205  * Default cache size: available memory divided by the ratio.
206  */
207 static unsigned long dm_bufio_default_cache_size;
208
209 /*
210  * Total cache size set by the user.
211  */
212 static unsigned long dm_bufio_cache_size;
213
214 /*
215  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
216  * at any time.  If it disagrees, the user has changed cache size.
217  */
218 static unsigned long dm_bufio_cache_size_latch;
219
220 static DEFINE_SPINLOCK(param_spinlock);
221
222 /*
223  * Buffers are freed after this timeout
224  */
225 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
226
227 static unsigned long dm_bufio_peak_allocated;
228 static unsigned long dm_bufio_allocated_kmem_cache;
229 static unsigned long dm_bufio_allocated_get_free_pages;
230 static unsigned long dm_bufio_allocated_vmalloc;
231 static unsigned long dm_bufio_current_allocated;
232
233 /*----------------------------------------------------------------*/
234
235 /*
236  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237  */
238 static unsigned long dm_bufio_cache_size_per_client;
239
240 /*
241  * The current number of clients.
242  */
243 static int dm_bufio_client_count;
244
245 /*
246  * The list of all clients.
247  */
248 static LIST_HEAD(dm_bufio_all_clients);
249
250 /*
251  * This mutex protects dm_bufio_cache_size_latch,
252  * dm_bufio_cache_size_per_client and dm_bufio_client_count
253  */
254 static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256 /*----------------------------------------------------------------*/
257
258 static void adjust_total_allocated(enum data_mode data_mode, long diff)
259 {
260         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
261                 &dm_bufio_allocated_kmem_cache,
262                 &dm_bufio_allocated_get_free_pages,
263                 &dm_bufio_allocated_vmalloc,
264         };
265
266         spin_lock(&param_spinlock);
267
268         *class_ptr[data_mode] += diff;
269
270         dm_bufio_current_allocated += diff;
271
272         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
273                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
274
275         spin_unlock(&param_spinlock);
276 }
277
278 /*
279  * Change the number of clients and recalculate per-client limit.
280  */
281 static void __cache_size_refresh(void)
282 {
283         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
284         BUG_ON(dm_bufio_client_count < 0);
285
286         dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287
288         /*
289          * Use default if set to 0 and report the actual cache size used.
290          */
291         if (!dm_bufio_cache_size_latch) {
292                 (void)cmpxchg(&dm_bufio_cache_size, 0,
293                               dm_bufio_default_cache_size);
294                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295         }
296
297         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
298                                          (dm_bufio_client_count ? : 1);
299 }
300
301 /*
302  * Allocating buffer data.
303  *
304  * Small buffers are allocated with kmem_cache, to use space optimally.
305  *
306  * For large buffers, we choose between get_free_pages and vmalloc.
307  * Each has advantages and disadvantages.
308  *
309  * __get_free_pages can randomly fail if the memory is fragmented.
310  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
311  * as low as 128M) so using it for caching is not appropriate.
312  *
313  * If the allocation may fail we use __get_free_pages. Memory fragmentation
314  * won't have a fatal effect here, but it just causes flushes of some other
315  * buffers and more I/O will be performed. Don't use __get_free_pages if it
316  * always fails (i.e. order >= MAX_ORDER).
317  *
318  * If the allocation shouldn't fail we use __vmalloc. This is only for the
319  * initial reserve allocation, so there's no risk of wasting all vmalloc
320  * space.
321  */
322 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
323                                enum data_mode *data_mode)
324 {
325         unsigned noio_flag;
326         void *ptr;
327
328         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
329                 *data_mode = DATA_MODE_SLAB;
330                 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331         }
332
333         if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
334             gfp_mask & __GFP_NORETRY) {
335                 *data_mode = DATA_MODE_GET_FREE_PAGES;
336                 return (void *)__get_free_pages(gfp_mask,
337                                                 c->pages_per_block_bits);
338         }
339
340         *data_mode = DATA_MODE_VMALLOC;
341
342         /*
343          * __vmalloc allocates the data pages and auxiliary structures with
344          * gfp_flags that were specified, but pagetables are always allocated
345          * with GFP_KERNEL, no matter what was specified as gfp_mask.
346          *
347          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
348          * all allocations done by this process (including pagetables) are done
349          * as if GFP_NOIO was specified.
350          */
351
352         if (gfp_mask & __GFP_NORETRY)
353                 noio_flag = memalloc_noio_save();
354
355         ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
356
357         if (gfp_mask & __GFP_NORETRY)
358                 memalloc_noio_restore(noio_flag);
359
360         return ptr;
361 }
362
363 /*
364  * Free buffer's data.
365  */
366 static void free_buffer_data(struct dm_bufio_client *c,
367                              void *data, enum data_mode data_mode)
368 {
369         switch (data_mode) {
370         case DATA_MODE_SLAB:
371                 kmem_cache_free(DM_BUFIO_CACHE(c), data);
372                 break;
373
374         case DATA_MODE_GET_FREE_PAGES:
375                 free_pages((unsigned long)data, c->pages_per_block_bits);
376                 break;
377
378         case DATA_MODE_VMALLOC:
379                 vfree(data);
380                 break;
381
382         default:
383                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
384                        data_mode);
385                 BUG();
386         }
387 }
388
389 /*
390  * Allocate buffer and its data.
391  */
392 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
393 {
394         struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
395                                       gfp_mask);
396
397         if (!b)
398                 return NULL;
399
400         b->c = c;
401
402         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
403         if (!b->data) {
404                 kfree(b);
405                 return NULL;
406         }
407
408         adjust_total_allocated(b->data_mode, (long)c->block_size);
409
410         return b;
411 }
412
413 /*
414  * Free buffer and its data.
415  */
416 static void free_buffer(struct dm_buffer *b)
417 {
418         struct dm_bufio_client *c = b->c;
419
420         adjust_total_allocated(b->data_mode, -(long)c->block_size);
421
422         free_buffer_data(c, b->data, b->data_mode);
423         kfree(b);
424 }
425
426 /*
427  * Link buffer to the hash list and clean or dirty queue.
428  */
429 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
430 {
431         struct dm_bufio_client *c = b->c;
432
433         c->n_buffers[dirty]++;
434         b->block = block;
435         b->list_mode = dirty;
436         list_add(&b->lru_list, &c->lru[dirty]);
437         hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
438         b->last_accessed = jiffies;
439 }
440
441 /*
442  * Unlink buffer from the hash list and dirty or clean queue.
443  */
444 static void __unlink_buffer(struct dm_buffer *b)
445 {
446         struct dm_bufio_client *c = b->c;
447
448         BUG_ON(!c->n_buffers[b->list_mode]);
449
450         c->n_buffers[b->list_mode]--;
451         hlist_del(&b->hash_list);
452         list_del(&b->lru_list);
453 }
454
455 /*
456  * Place the buffer to the head of dirty or clean LRU queue.
457  */
458 static void __relink_lru(struct dm_buffer *b, int dirty)
459 {
460         struct dm_bufio_client *c = b->c;
461
462         BUG_ON(!c->n_buffers[b->list_mode]);
463
464         c->n_buffers[b->list_mode]--;
465         c->n_buffers[dirty]++;
466         b->list_mode = dirty;
467         list_move(&b->lru_list, &c->lru[dirty]);
468 }
469
470 /*----------------------------------------------------------------
471  * Submit I/O on the buffer.
472  *
473  * Bio interface is faster but it has some problems:
474  *      the vector list is limited (increasing this limit increases
475  *      memory-consumption per buffer, so it is not viable);
476  *
477  *      the memory must be direct-mapped, not vmalloced;
478  *
479  *      the I/O driver can reject requests spuriously if it thinks that
480  *      the requests are too big for the device or if they cross a
481  *      controller-defined memory boundary.
482  *
483  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
484  * it is not vmalloced, try using the bio interface.
485  *
486  * If the buffer is big, if it is vmalloced or if the underlying device
487  * rejects the bio because it is too large, use dm-io layer to do the I/O.
488  * The dm-io layer splits the I/O into multiple requests, avoiding the above
489  * shortcomings.
490  *--------------------------------------------------------------*/
491
492 /*
493  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
494  * that the request was handled directly with bio interface.
495  */
496 static void dmio_complete(unsigned long error, void *context)
497 {
498         struct dm_buffer *b = context;
499
500         b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
501 }
502
503 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
504                      bio_end_io_t *end_io)
505 {
506         int r;
507         struct dm_io_request io_req = {
508                 .bi_rw = rw,
509                 .notify.fn = dmio_complete,
510                 .notify.context = b,
511                 .client = b->c->dm_io,
512         };
513         struct dm_io_region region = {
514                 .bdev = b->c->bdev,
515                 .sector = block << b->c->sectors_per_block_bits,
516                 .count = b->c->block_size >> SECTOR_SHIFT,
517         };
518
519         if (b->data_mode != DATA_MODE_VMALLOC) {
520                 io_req.mem.type = DM_IO_KMEM;
521                 io_req.mem.ptr.addr = b->data;
522         } else {
523                 io_req.mem.type = DM_IO_VMA;
524                 io_req.mem.ptr.vma = b->data;
525         }
526
527         b->bio.bi_end_io = end_io;
528
529         r = dm_io(&io_req, 1, &region, NULL);
530         if (r)
531                 end_io(&b->bio, r);
532 }
533
534 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
535                            bio_end_io_t *end_io)
536 {
537         char *ptr;
538         int len;
539
540         bio_init(&b->bio);
541         b->bio.bi_io_vec = b->bio_vec;
542         b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
543         b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
544         b->bio.bi_bdev = b->c->bdev;
545         b->bio.bi_end_io = end_io;
546
547         /*
548          * We assume that if len >= PAGE_SIZE ptr is page-aligned.
549          * If len < PAGE_SIZE the buffer doesn't cross page boundary.
550          */
551         ptr = b->data;
552         len = b->c->block_size;
553
554         if (len >= PAGE_SIZE)
555                 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
556         else
557                 BUG_ON((unsigned long)ptr & (len - 1));
558
559         do {
560                 if (!bio_add_page(&b->bio, virt_to_page(ptr),
561                                   len < PAGE_SIZE ? len : PAGE_SIZE,
562                                   virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
563                         BUG_ON(b->c->block_size <= PAGE_SIZE);
564                         use_dmio(b, rw, block, end_io);
565                         return;
566                 }
567
568                 len -= PAGE_SIZE;
569                 ptr += PAGE_SIZE;
570         } while (len > 0);
571
572         submit_bio(rw, &b->bio);
573 }
574
575 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
576                       bio_end_io_t *end_io)
577 {
578         if (rw == WRITE && b->c->write_callback)
579                 b->c->write_callback(b);
580
581         if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
582             b->data_mode != DATA_MODE_VMALLOC)
583                 use_inline_bio(b, rw, block, end_io);
584         else
585                 use_dmio(b, rw, block, end_io);
586 }
587
588 /*----------------------------------------------------------------
589  * Writing dirty buffers
590  *--------------------------------------------------------------*/
591
592 /*
593  * The endio routine for write.
594  *
595  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
596  * it.
597  */
598 static void write_endio(struct bio *bio, int error)
599 {
600         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
601
602         b->write_error = error;
603         if (unlikely(error)) {
604                 struct dm_bufio_client *c = b->c;
605                 (void)cmpxchg(&c->async_write_error, 0, error);
606         }
607
608         BUG_ON(!test_bit(B_WRITING, &b->state));
609
610         smp_mb__before_atomic();
611         clear_bit(B_WRITING, &b->state);
612         smp_mb__after_atomic();
613
614         wake_up_bit(&b->state, B_WRITING);
615 }
616
617 /*
618  * This function is called when wait_on_bit is actually waiting.
619  */
620 static int do_io_schedule(void *word)
621 {
622         io_schedule();
623
624         return 0;
625 }
626
627 /*
628  * Initiate a write on a dirty buffer, but don't wait for it.
629  *
630  * - If the buffer is not dirty, exit.
631  * - If there some previous write going on, wait for it to finish (we can't
632  *   have two writes on the same buffer simultaneously).
633  * - Submit our write and don't wait on it. We set B_WRITING indicating
634  *   that there is a write in progress.
635  */
636 static void __write_dirty_buffer(struct dm_buffer *b,
637                                  struct list_head *write_list)
638 {
639         if (!test_bit(B_DIRTY, &b->state))
640                 return;
641
642         clear_bit(B_DIRTY, &b->state);
643         wait_on_bit_lock(&b->state, B_WRITING,
644                          do_io_schedule, TASK_UNINTERRUPTIBLE);
645
646         if (!write_list)
647                 submit_io(b, WRITE, b->block, write_endio);
648         else
649                 list_add_tail(&b->write_list, write_list);
650 }
651
652 static void __flush_write_list(struct list_head *write_list)
653 {
654         struct blk_plug plug;
655         blk_start_plug(&plug);
656         while (!list_empty(write_list)) {
657                 struct dm_buffer *b =
658                         list_entry(write_list->next, struct dm_buffer, write_list);
659                 list_del(&b->write_list);
660                 submit_io(b, WRITE, b->block, write_endio);
661                 dm_bufio_cond_resched();
662         }
663         blk_finish_plug(&plug);
664 }
665
666 /*
667  * Wait until any activity on the buffer finishes.  Possibly write the
668  * buffer if it is dirty.  When this function finishes, there is no I/O
669  * running on the buffer and the buffer is not dirty.
670  */
671 static void __make_buffer_clean(struct dm_buffer *b)
672 {
673         BUG_ON(b->hold_count);
674
675         if (!b->state)  /* fast case */
676                 return;
677
678         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
679         __write_dirty_buffer(b, NULL);
680         wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
681 }
682
683 /*
684  * Find some buffer that is not held by anybody, clean it, unlink it and
685  * return it.
686  */
687 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
688 {
689         struct dm_buffer *b;
690
691         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
692                 BUG_ON(test_bit(B_WRITING, &b->state));
693                 BUG_ON(test_bit(B_DIRTY, &b->state));
694
695                 if (!b->hold_count) {
696                         __make_buffer_clean(b);
697                         __unlink_buffer(b);
698                         return b;
699                 }
700                 dm_bufio_cond_resched();
701         }
702
703         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
704                 BUG_ON(test_bit(B_READING, &b->state));
705
706                 if (!b->hold_count) {
707                         __make_buffer_clean(b);
708                         __unlink_buffer(b);
709                         return b;
710                 }
711                 dm_bufio_cond_resched();
712         }
713
714         return NULL;
715 }
716
717 /*
718  * Wait until some other threads free some buffer or release hold count on
719  * some buffer.
720  *
721  * This function is entered with c->lock held, drops it and regains it
722  * before exiting.
723  */
724 static void __wait_for_free_buffer(struct dm_bufio_client *c)
725 {
726         DECLARE_WAITQUEUE(wait, current);
727
728         add_wait_queue(&c->free_buffer_wait, &wait);
729         set_task_state(current, TASK_UNINTERRUPTIBLE);
730         dm_bufio_unlock(c);
731
732         io_schedule();
733
734         set_task_state(current, TASK_RUNNING);
735         remove_wait_queue(&c->free_buffer_wait, &wait);
736
737         dm_bufio_lock(c);
738 }
739
740 enum new_flag {
741         NF_FRESH = 0,
742         NF_READ = 1,
743         NF_GET = 2,
744         NF_PREFETCH = 3
745 };
746
747 /*
748  * Allocate a new buffer. If the allocation is not possible, wait until
749  * some other thread frees a buffer.
750  *
751  * May drop the lock and regain it.
752  */
753 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
754 {
755         struct dm_buffer *b;
756
757         /*
758          * dm-bufio is resistant to allocation failures (it just keeps
759          * one buffer reserved in cases all the allocations fail).
760          * So set flags to not try too hard:
761          *      GFP_NOIO: don't recurse into the I/O layer
762          *      __GFP_NORETRY: don't retry and rather return failure
763          *      __GFP_NOMEMALLOC: don't use emergency reserves
764          *      __GFP_NOWARN: don't print a warning in case of failure
765          *
766          * For debugging, if we set the cache size to 1, no new buffers will
767          * be allocated.
768          */
769         while (1) {
770                 if (dm_bufio_cache_size_latch != 1) {
771                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
772                         if (b)
773                                 return b;
774                 }
775
776                 if (nf == NF_PREFETCH)
777                         return NULL;
778
779                 if (!list_empty(&c->reserved_buffers)) {
780                         b = list_entry(c->reserved_buffers.next,
781                                        struct dm_buffer, lru_list);
782                         list_del(&b->lru_list);
783                         c->need_reserved_buffers++;
784
785                         return b;
786                 }
787
788                 b = __get_unclaimed_buffer(c);
789                 if (b)
790                         return b;
791
792                 __wait_for_free_buffer(c);
793         }
794 }
795
796 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
797 {
798         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
799
800         if (!b)
801                 return NULL;
802
803         if (c->alloc_callback)
804                 c->alloc_callback(b);
805
806         return b;
807 }
808
809 /*
810  * Free a buffer and wake other threads waiting for free buffers.
811  */
812 static void __free_buffer_wake(struct dm_buffer *b)
813 {
814         struct dm_bufio_client *c = b->c;
815
816         if (!c->need_reserved_buffers)
817                 free_buffer(b);
818         else {
819                 list_add(&b->lru_list, &c->reserved_buffers);
820                 c->need_reserved_buffers--;
821         }
822
823         wake_up(&c->free_buffer_wait);
824 }
825
826 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
827                                         struct list_head *write_list)
828 {
829         struct dm_buffer *b, *tmp;
830
831         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
832                 BUG_ON(test_bit(B_READING, &b->state));
833
834                 if (!test_bit(B_DIRTY, &b->state) &&
835                     !test_bit(B_WRITING, &b->state)) {
836                         __relink_lru(b, LIST_CLEAN);
837                         continue;
838                 }
839
840                 if (no_wait && test_bit(B_WRITING, &b->state))
841                         return;
842
843                 __write_dirty_buffer(b, write_list);
844                 dm_bufio_cond_resched();
845         }
846 }
847
848 /*
849  * Get writeback threshold and buffer limit for a given client.
850  */
851 static void __get_memory_limit(struct dm_bufio_client *c,
852                                unsigned long *threshold_buffers,
853                                unsigned long *limit_buffers)
854 {
855         unsigned long buffers;
856
857         if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
858                 mutex_lock(&dm_bufio_clients_lock);
859                 __cache_size_refresh();
860                 mutex_unlock(&dm_bufio_clients_lock);
861         }
862
863         buffers = dm_bufio_cache_size_per_client >>
864                   (c->sectors_per_block_bits + SECTOR_SHIFT);
865
866         if (buffers < c->minimum_buffers)
867                 buffers = c->minimum_buffers;
868
869         *limit_buffers = buffers;
870         *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
871 }
872
873 /*
874  * Check if we're over watermark.
875  * If we are over threshold_buffers, start freeing buffers.
876  * If we're over "limit_buffers", block until we get under the limit.
877  */
878 static void __check_watermark(struct dm_bufio_client *c,
879                               struct list_head *write_list)
880 {
881         unsigned long threshold_buffers, limit_buffers;
882
883         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
884
885         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
886                limit_buffers) {
887
888                 struct dm_buffer *b = __get_unclaimed_buffer(c);
889
890                 if (!b)
891                         return;
892
893                 __free_buffer_wake(b);
894                 dm_bufio_cond_resched();
895         }
896
897         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
898                 __write_dirty_buffers_async(c, 1, write_list);
899 }
900
901 /*
902  * Find a buffer in the hash.
903  */
904 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
905 {
906         struct dm_buffer *b;
907
908         hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
909                              hash_list) {
910                 dm_bufio_cond_resched();
911                 if (b->block == block)
912                         return b;
913         }
914
915         return NULL;
916 }
917
918 /*----------------------------------------------------------------
919  * Getting a buffer
920  *--------------------------------------------------------------*/
921
922 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
923                                      enum new_flag nf, int *need_submit,
924                                      struct list_head *write_list)
925 {
926         struct dm_buffer *b, *new_b = NULL;
927
928         *need_submit = 0;
929
930         b = __find(c, block);
931         if (b)
932                 goto found_buffer;
933
934         if (nf == NF_GET)
935                 return NULL;
936
937         new_b = __alloc_buffer_wait(c, nf);
938         if (!new_b)
939                 return NULL;
940
941         /*
942          * We've had a period where the mutex was unlocked, so need to
943          * recheck the hash table.
944          */
945         b = __find(c, block);
946         if (b) {
947                 __free_buffer_wake(new_b);
948                 goto found_buffer;
949         }
950
951         __check_watermark(c, write_list);
952
953         b = new_b;
954         b->hold_count = 1;
955         b->read_error = 0;
956         b->write_error = 0;
957         __link_buffer(b, block, LIST_CLEAN);
958
959         if (nf == NF_FRESH) {
960                 b->state = 0;
961                 return b;
962         }
963
964         b->state = 1 << B_READING;
965         *need_submit = 1;
966
967         return b;
968
969 found_buffer:
970         if (nf == NF_PREFETCH)
971                 return NULL;
972         /*
973          * Note: it is essential that we don't wait for the buffer to be
974          * read if dm_bufio_get function is used. Both dm_bufio_get and
975          * dm_bufio_prefetch can be used in the driver request routine.
976          * If the user called both dm_bufio_prefetch and dm_bufio_get on
977          * the same buffer, it would deadlock if we waited.
978          */
979         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
980                 return NULL;
981
982         b->hold_count++;
983         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
984                      test_bit(B_WRITING, &b->state));
985         return b;
986 }
987
988 /*
989  * The endio routine for reading: set the error, clear the bit and wake up
990  * anyone waiting on the buffer.
991  */
992 static void read_endio(struct bio *bio, int error)
993 {
994         struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
995
996         b->read_error = error;
997
998         BUG_ON(!test_bit(B_READING, &b->state));
999
1000         smp_mb__before_atomic();
1001         clear_bit(B_READING, &b->state);
1002         smp_mb__after_atomic();
1003
1004         wake_up_bit(&b->state, B_READING);
1005 }
1006
1007 /*
1008  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1009  * functions is similar except that dm_bufio_new doesn't read the
1010  * buffer from the disk (assuming that the caller overwrites all the data
1011  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1012  */
1013 static void *new_read(struct dm_bufio_client *c, sector_t block,
1014                       enum new_flag nf, struct dm_buffer **bp)
1015 {
1016         int need_submit;
1017         struct dm_buffer *b;
1018
1019         LIST_HEAD(write_list);
1020
1021         dm_bufio_lock(c);
1022         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1023         dm_bufio_unlock(c);
1024
1025         __flush_write_list(&write_list);
1026
1027         if (!b)
1028                 return b;
1029
1030         if (need_submit)
1031                 submit_io(b, READ, b->block, read_endio);
1032
1033         wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1034
1035         if (b->read_error) {
1036                 int error = b->read_error;
1037
1038                 dm_bufio_release(b);
1039
1040                 return ERR_PTR(error);
1041         }
1042
1043         *bp = b;
1044
1045         return b->data;
1046 }
1047
1048 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1049                    struct dm_buffer **bp)
1050 {
1051         return new_read(c, block, NF_GET, bp);
1052 }
1053 EXPORT_SYMBOL_GPL(dm_bufio_get);
1054
1055 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1056                     struct dm_buffer **bp)
1057 {
1058         BUG_ON(dm_bufio_in_request());
1059
1060         return new_read(c, block, NF_READ, bp);
1061 }
1062 EXPORT_SYMBOL_GPL(dm_bufio_read);
1063
1064 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1065                    struct dm_buffer **bp)
1066 {
1067         BUG_ON(dm_bufio_in_request());
1068
1069         return new_read(c, block, NF_FRESH, bp);
1070 }
1071 EXPORT_SYMBOL_GPL(dm_bufio_new);
1072
1073 void dm_bufio_prefetch(struct dm_bufio_client *c,
1074                        sector_t block, unsigned n_blocks)
1075 {
1076         struct blk_plug plug;
1077
1078         LIST_HEAD(write_list);
1079
1080         BUG_ON(dm_bufio_in_request());
1081
1082         blk_start_plug(&plug);
1083         dm_bufio_lock(c);
1084
1085         for (; n_blocks--; block++) {
1086                 int need_submit;
1087                 struct dm_buffer *b;
1088                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1089                                 &write_list);
1090                 if (unlikely(!list_empty(&write_list))) {
1091                         dm_bufio_unlock(c);
1092                         blk_finish_plug(&plug);
1093                         __flush_write_list(&write_list);
1094                         blk_start_plug(&plug);
1095                         dm_bufio_lock(c);
1096                 }
1097                 if (unlikely(b != NULL)) {
1098                         dm_bufio_unlock(c);
1099
1100                         if (need_submit)
1101                                 submit_io(b, READ, b->block, read_endio);
1102                         dm_bufio_release(b);
1103
1104                         dm_bufio_cond_resched();
1105
1106                         if (!n_blocks)
1107                                 goto flush_plug;
1108                         dm_bufio_lock(c);
1109                 }
1110         }
1111
1112         dm_bufio_unlock(c);
1113
1114 flush_plug:
1115         blk_finish_plug(&plug);
1116 }
1117 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1118
1119 void dm_bufio_release(struct dm_buffer *b)
1120 {
1121         struct dm_bufio_client *c = b->c;
1122
1123         dm_bufio_lock(c);
1124
1125         BUG_ON(!b->hold_count);
1126
1127         b->hold_count--;
1128         if (!b->hold_count) {
1129                 wake_up(&c->free_buffer_wait);
1130
1131                 /*
1132                  * If there were errors on the buffer, and the buffer is not
1133                  * to be written, free the buffer. There is no point in caching
1134                  * invalid buffer.
1135                  */
1136                 if ((b->read_error || b->write_error) &&
1137                     !test_bit(B_READING, &b->state) &&
1138                     !test_bit(B_WRITING, &b->state) &&
1139                     !test_bit(B_DIRTY, &b->state)) {
1140                         __unlink_buffer(b);
1141                         __free_buffer_wake(b);
1142                 }
1143         }
1144
1145         dm_bufio_unlock(c);
1146 }
1147 EXPORT_SYMBOL_GPL(dm_bufio_release);
1148
1149 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1150 {
1151         struct dm_bufio_client *c = b->c;
1152
1153         dm_bufio_lock(c);
1154
1155         BUG_ON(test_bit(B_READING, &b->state));
1156
1157         if (!test_and_set_bit(B_DIRTY, &b->state))
1158                 __relink_lru(b, LIST_DIRTY);
1159
1160         dm_bufio_unlock(c);
1161 }
1162 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1163
1164 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1165 {
1166         LIST_HEAD(write_list);
1167
1168         BUG_ON(dm_bufio_in_request());
1169
1170         dm_bufio_lock(c);
1171         __write_dirty_buffers_async(c, 0, &write_list);
1172         dm_bufio_unlock(c);
1173         __flush_write_list(&write_list);
1174 }
1175 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1176
1177 /*
1178  * For performance, it is essential that the buffers are written asynchronously
1179  * and simultaneously (so that the block layer can merge the writes) and then
1180  * waited upon.
1181  *
1182  * Finally, we flush hardware disk cache.
1183  */
1184 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1185 {
1186         int a, f;
1187         unsigned long buffers_processed = 0;
1188         struct dm_buffer *b, *tmp;
1189
1190         LIST_HEAD(write_list);
1191
1192         dm_bufio_lock(c);
1193         __write_dirty_buffers_async(c, 0, &write_list);
1194         dm_bufio_unlock(c);
1195         __flush_write_list(&write_list);
1196         dm_bufio_lock(c);
1197
1198 again:
1199         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1200                 int dropped_lock = 0;
1201
1202                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1203                         buffers_processed++;
1204
1205                 BUG_ON(test_bit(B_READING, &b->state));
1206
1207                 if (test_bit(B_WRITING, &b->state)) {
1208                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1209                                 dropped_lock = 1;
1210                                 b->hold_count++;
1211                                 dm_bufio_unlock(c);
1212                                 wait_on_bit(&b->state, B_WRITING,
1213                                             do_io_schedule,
1214                                             TASK_UNINTERRUPTIBLE);
1215                                 dm_bufio_lock(c);
1216                                 b->hold_count--;
1217                         } else
1218                                 wait_on_bit(&b->state, B_WRITING,
1219                                             do_io_schedule,
1220                                             TASK_UNINTERRUPTIBLE);
1221                 }
1222
1223                 if (!test_bit(B_DIRTY, &b->state) &&
1224                     !test_bit(B_WRITING, &b->state))
1225                         __relink_lru(b, LIST_CLEAN);
1226
1227                 dm_bufio_cond_resched();
1228
1229                 /*
1230                  * If we dropped the lock, the list is no longer consistent,
1231                  * so we must restart the search.
1232                  *
1233                  * In the most common case, the buffer just processed is
1234                  * relinked to the clean list, so we won't loop scanning the
1235                  * same buffer again and again.
1236                  *
1237                  * This may livelock if there is another thread simultaneously
1238                  * dirtying buffers, so we count the number of buffers walked
1239                  * and if it exceeds the total number of buffers, it means that
1240                  * someone is doing some writes simultaneously with us.  In
1241                  * this case, stop, dropping the lock.
1242                  */
1243                 if (dropped_lock)
1244                         goto again;
1245         }
1246         wake_up(&c->free_buffer_wait);
1247         dm_bufio_unlock(c);
1248
1249         a = xchg(&c->async_write_error, 0);
1250         f = dm_bufio_issue_flush(c);
1251         if (a)
1252                 return a;
1253
1254         return f;
1255 }
1256 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1257
1258 /*
1259  * Use dm-io to send and empty barrier flush the device.
1260  */
1261 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1262 {
1263         struct dm_io_request io_req = {
1264                 .bi_rw = WRITE_FLUSH,
1265                 .mem.type = DM_IO_KMEM,
1266                 .mem.ptr.addr = NULL,
1267                 .client = c->dm_io,
1268         };
1269         struct dm_io_region io_reg = {
1270                 .bdev = c->bdev,
1271                 .sector = 0,
1272                 .count = 0,
1273         };
1274
1275         BUG_ON(dm_bufio_in_request());
1276
1277         return dm_io(&io_req, 1, &io_reg, NULL);
1278 }
1279 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1280
1281 /*
1282  * We first delete any other buffer that may be at that new location.
1283  *
1284  * Then, we write the buffer to the original location if it was dirty.
1285  *
1286  * Then, if we are the only one who is holding the buffer, relink the buffer
1287  * in the hash queue for the new location.
1288  *
1289  * If there was someone else holding the buffer, we write it to the new
1290  * location but not relink it, because that other user needs to have the buffer
1291  * at the same place.
1292  */
1293 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1294 {
1295         struct dm_bufio_client *c = b->c;
1296         struct dm_buffer *new;
1297
1298         BUG_ON(dm_bufio_in_request());
1299
1300         dm_bufio_lock(c);
1301
1302 retry:
1303         new = __find(c, new_block);
1304         if (new) {
1305                 if (new->hold_count) {
1306                         __wait_for_free_buffer(c);
1307                         goto retry;
1308                 }
1309
1310                 /*
1311                  * FIXME: Is there any point waiting for a write that's going
1312                  * to be overwritten in a bit?
1313                  */
1314                 __make_buffer_clean(new);
1315                 __unlink_buffer(new);
1316                 __free_buffer_wake(new);
1317         }
1318
1319         BUG_ON(!b->hold_count);
1320         BUG_ON(test_bit(B_READING, &b->state));
1321
1322         __write_dirty_buffer(b, NULL);
1323         if (b->hold_count == 1) {
1324                 wait_on_bit(&b->state, B_WRITING,
1325                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1326                 set_bit(B_DIRTY, &b->state);
1327                 __unlink_buffer(b);
1328                 __link_buffer(b, new_block, LIST_DIRTY);
1329         } else {
1330                 sector_t old_block;
1331                 wait_on_bit_lock(&b->state, B_WRITING,
1332                                  do_io_schedule, TASK_UNINTERRUPTIBLE);
1333                 /*
1334                  * Relink buffer to "new_block" so that write_callback
1335                  * sees "new_block" as a block number.
1336                  * After the write, link the buffer back to old_block.
1337                  * All this must be done in bufio lock, so that block number
1338                  * change isn't visible to other threads.
1339                  */
1340                 old_block = b->block;
1341                 __unlink_buffer(b);
1342                 __link_buffer(b, new_block, b->list_mode);
1343                 submit_io(b, WRITE, new_block, write_endio);
1344                 wait_on_bit(&b->state, B_WRITING,
1345                             do_io_schedule, TASK_UNINTERRUPTIBLE);
1346                 __unlink_buffer(b);
1347                 __link_buffer(b, old_block, b->list_mode);
1348         }
1349
1350         dm_bufio_unlock(c);
1351         dm_bufio_release(b);
1352 }
1353 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1354
1355 /*
1356  * Free the given buffer.
1357  *
1358  * This is just a hint, if the buffer is in use or dirty, this function
1359  * does nothing.
1360  */
1361 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1362 {
1363         struct dm_buffer *b;
1364
1365         dm_bufio_lock(c);
1366
1367         b = __find(c, block);
1368         if (b && likely(!b->hold_count) && likely(!b->state)) {
1369                 __unlink_buffer(b);
1370                 __free_buffer_wake(b);
1371         }
1372
1373         dm_bufio_unlock(c);
1374 }
1375 EXPORT_SYMBOL(dm_bufio_forget);
1376
1377 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1378 {
1379         c->minimum_buffers = n;
1380 }
1381 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1382
1383 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1384 {
1385         return c->block_size;
1386 }
1387 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1388
1389 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1390 {
1391         return i_size_read(c->bdev->bd_inode) >>
1392                            (SECTOR_SHIFT + c->sectors_per_block_bits);
1393 }
1394 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1395
1396 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1397 {
1398         return b->block;
1399 }
1400 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1401
1402 void *dm_bufio_get_block_data(struct dm_buffer *b)
1403 {
1404         return b->data;
1405 }
1406 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1407
1408 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1409 {
1410         return b + 1;
1411 }
1412 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1413
1414 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1415 {
1416         return b->c;
1417 }
1418 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1419
1420 static void drop_buffers(struct dm_bufio_client *c)
1421 {
1422         struct dm_buffer *b;
1423         int i;
1424
1425         BUG_ON(dm_bufio_in_request());
1426
1427         /*
1428          * An optimization so that the buffers are not written one-by-one.
1429          */
1430         dm_bufio_write_dirty_buffers_async(c);
1431
1432         dm_bufio_lock(c);
1433
1434         while ((b = __get_unclaimed_buffer(c)))
1435                 __free_buffer_wake(b);
1436
1437         for (i = 0; i < LIST_SIZE; i++)
1438                 list_for_each_entry(b, &c->lru[i], lru_list)
1439                         DMERR("leaked buffer %llx, hold count %u, list %d",
1440                               (unsigned long long)b->block, b->hold_count, i);
1441
1442         for (i = 0; i < LIST_SIZE; i++)
1443                 BUG_ON(!list_empty(&c->lru[i]));
1444
1445         dm_bufio_unlock(c);
1446 }
1447
1448 /*
1449  * Test if the buffer is unused and too old, and commit it.
1450  * At if noio is set, we must not do any I/O because we hold
1451  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1452  * different bufio client.
1453  */
1454 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1455                                 unsigned long max_jiffies)
1456 {
1457         if (jiffies - b->last_accessed < max_jiffies)
1458                 return 0;
1459
1460         if (!(gfp & __GFP_IO)) {
1461                 if (test_bit(B_READING, &b->state) ||
1462                     test_bit(B_WRITING, &b->state) ||
1463                     test_bit(B_DIRTY, &b->state))
1464                         return 0;
1465         }
1466
1467         if (b->hold_count)
1468                 return 0;
1469
1470         __make_buffer_clean(b);
1471         __unlink_buffer(b);
1472         __free_buffer_wake(b);
1473
1474         return 1;
1475 }
1476
1477 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1478                    gfp_t gfp_mask)
1479 {
1480         int l;
1481         struct dm_buffer *b, *tmp;
1482         long freed = 0;
1483
1484         for (l = 0; l < LIST_SIZE; l++) {
1485                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1486                         freed += __cleanup_old_buffer(b, gfp_mask, 0);
1487                         if (!--nr_to_scan)
1488                                 break;
1489                 }
1490                 dm_bufio_cond_resched();
1491         }
1492         return freed;
1493 }
1494
1495 static unsigned long
1496 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1497 {
1498         struct dm_bufio_client *c;
1499         unsigned long freed;
1500
1501         c = container_of(shrink, struct dm_bufio_client, shrinker);
1502         if (sc->gfp_mask & __GFP_IO)
1503                 dm_bufio_lock(c);
1504         else if (!dm_bufio_trylock(c))
1505                 return SHRINK_STOP;
1506
1507         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1508         dm_bufio_unlock(c);
1509         return freed;
1510 }
1511
1512 static unsigned long
1513 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1514 {
1515         struct dm_bufio_client *c;
1516         unsigned long count;
1517
1518         c = container_of(shrink, struct dm_bufio_client, shrinker);
1519         if (sc->gfp_mask & __GFP_IO)
1520                 dm_bufio_lock(c);
1521         else if (!dm_bufio_trylock(c))
1522                 return 0;
1523
1524         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1525         dm_bufio_unlock(c);
1526         return count;
1527 }
1528
1529 /*
1530  * Create the buffering interface
1531  */
1532 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1533                                                unsigned reserved_buffers, unsigned aux_size,
1534                                                void (*alloc_callback)(struct dm_buffer *),
1535                                                void (*write_callback)(struct dm_buffer *))
1536 {
1537         int r;
1538         struct dm_bufio_client *c;
1539         unsigned i;
1540
1541         BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1542                (block_size & (block_size - 1)));
1543
1544         c = kmalloc(sizeof(*c), GFP_KERNEL);
1545         if (!c) {
1546                 r = -ENOMEM;
1547                 goto bad_client;
1548         }
1549         c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1550         if (!c->cache_hash) {
1551                 r = -ENOMEM;
1552                 goto bad_hash;
1553         }
1554
1555         c->bdev = bdev;
1556         c->block_size = block_size;
1557         c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1558         c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1559                                   ffs(block_size) - 1 - PAGE_SHIFT : 0;
1560         c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1561                                   PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1562
1563         c->aux_size = aux_size;
1564         c->alloc_callback = alloc_callback;
1565         c->write_callback = write_callback;
1566
1567         for (i = 0; i < LIST_SIZE; i++) {
1568                 INIT_LIST_HEAD(&c->lru[i]);
1569                 c->n_buffers[i] = 0;
1570         }
1571
1572         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1573                 INIT_HLIST_HEAD(&c->cache_hash[i]);
1574
1575         mutex_init(&c->lock);
1576         INIT_LIST_HEAD(&c->reserved_buffers);
1577         c->need_reserved_buffers = reserved_buffers;
1578
1579         c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1580
1581         init_waitqueue_head(&c->free_buffer_wait);
1582         c->async_write_error = 0;
1583
1584         c->dm_io = dm_io_client_create();
1585         if (IS_ERR(c->dm_io)) {
1586                 r = PTR_ERR(c->dm_io);
1587                 goto bad_dm_io;
1588         }
1589
1590         mutex_lock(&dm_bufio_clients_lock);
1591         if (c->blocks_per_page_bits) {
1592                 if (!DM_BUFIO_CACHE_NAME(c)) {
1593                         DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1594                         if (!DM_BUFIO_CACHE_NAME(c)) {
1595                                 r = -ENOMEM;
1596                                 mutex_unlock(&dm_bufio_clients_lock);
1597                                 goto bad_cache;
1598                         }
1599                 }
1600
1601                 if (!DM_BUFIO_CACHE(c)) {
1602                         DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1603                                                               c->block_size,
1604                                                               c->block_size, 0, NULL);
1605                         if (!DM_BUFIO_CACHE(c)) {
1606                                 r = -ENOMEM;
1607                                 mutex_unlock(&dm_bufio_clients_lock);
1608                                 goto bad_cache;
1609                         }
1610                 }
1611         }
1612         mutex_unlock(&dm_bufio_clients_lock);
1613
1614         while (c->need_reserved_buffers) {
1615                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1616
1617                 if (!b) {
1618                         r = -ENOMEM;
1619                         goto bad_buffer;
1620                 }
1621                 __free_buffer_wake(b);
1622         }
1623
1624         mutex_lock(&dm_bufio_clients_lock);
1625         dm_bufio_client_count++;
1626         list_add(&c->client_list, &dm_bufio_all_clients);
1627         __cache_size_refresh();
1628         mutex_unlock(&dm_bufio_clients_lock);
1629
1630         c->shrinker.count_objects = dm_bufio_shrink_count;
1631         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1632         c->shrinker.seeks = 1;
1633         c->shrinker.batch = 0;
1634         register_shrinker(&c->shrinker);
1635
1636         return c;
1637
1638 bad_buffer:
1639 bad_cache:
1640         while (!list_empty(&c->reserved_buffers)) {
1641                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1642                                                  struct dm_buffer, lru_list);
1643                 list_del(&b->lru_list);
1644                 free_buffer(b);
1645         }
1646         dm_io_client_destroy(c->dm_io);
1647 bad_dm_io:
1648         vfree(c->cache_hash);
1649 bad_hash:
1650         kfree(c);
1651 bad_client:
1652         return ERR_PTR(r);
1653 }
1654 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1655
1656 /*
1657  * Free the buffering interface.
1658  * It is required that there are no references on any buffers.
1659  */
1660 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1661 {
1662         unsigned i;
1663
1664         drop_buffers(c);
1665
1666         unregister_shrinker(&c->shrinker);
1667
1668         mutex_lock(&dm_bufio_clients_lock);
1669
1670         list_del(&c->client_list);
1671         dm_bufio_client_count--;
1672         __cache_size_refresh();
1673
1674         mutex_unlock(&dm_bufio_clients_lock);
1675
1676         for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1677                 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1678
1679         BUG_ON(c->need_reserved_buffers);
1680
1681         while (!list_empty(&c->reserved_buffers)) {
1682                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1683                                                  struct dm_buffer, lru_list);
1684                 list_del(&b->lru_list);
1685                 free_buffer(b);
1686         }
1687
1688         for (i = 0; i < LIST_SIZE; i++)
1689                 if (c->n_buffers[i])
1690                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1691
1692         for (i = 0; i < LIST_SIZE; i++)
1693                 BUG_ON(c->n_buffers[i]);
1694
1695         dm_io_client_destroy(c->dm_io);
1696         vfree(c->cache_hash);
1697         kfree(c);
1698 }
1699 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1700
1701 static void cleanup_old_buffers(void)
1702 {
1703         unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1704         struct dm_bufio_client *c;
1705
1706         if (max_age > ULONG_MAX / HZ)
1707                 max_age = ULONG_MAX / HZ;
1708
1709         mutex_lock(&dm_bufio_clients_lock);
1710         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1711                 if (!dm_bufio_trylock(c))
1712                         continue;
1713
1714                 while (!list_empty(&c->lru[LIST_CLEAN])) {
1715                         struct dm_buffer *b;
1716                         b = list_entry(c->lru[LIST_CLEAN].prev,
1717                                        struct dm_buffer, lru_list);
1718                         if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1719                                 break;
1720                         dm_bufio_cond_resched();
1721                 }
1722
1723                 dm_bufio_unlock(c);
1724                 dm_bufio_cond_resched();
1725         }
1726         mutex_unlock(&dm_bufio_clients_lock);
1727 }
1728
1729 static struct workqueue_struct *dm_bufio_wq;
1730 static struct delayed_work dm_bufio_work;
1731
1732 static void work_fn(struct work_struct *w)
1733 {
1734         cleanup_old_buffers();
1735
1736         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1737                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1738 }
1739
1740 /*----------------------------------------------------------------
1741  * Module setup
1742  *--------------------------------------------------------------*/
1743
1744 /*
1745  * This is called only once for the whole dm_bufio module.
1746  * It initializes memory limit.
1747  */
1748 static int __init dm_bufio_init(void)
1749 {
1750         __u64 mem;
1751
1752         dm_bufio_allocated_kmem_cache = 0;
1753         dm_bufio_allocated_get_free_pages = 0;
1754         dm_bufio_allocated_vmalloc = 0;
1755         dm_bufio_current_allocated = 0;
1756
1757         memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1758         memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1759
1760         mem = (__u64)((totalram_pages - totalhigh_pages) *
1761                       DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1762
1763         if (mem > ULONG_MAX)
1764                 mem = ULONG_MAX;
1765
1766 #ifdef CONFIG_MMU
1767         /*
1768          * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1769          * in fs/proc/internal.h
1770          */
1771         if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1772                 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1773 #endif
1774
1775         dm_bufio_default_cache_size = mem;
1776
1777         mutex_lock(&dm_bufio_clients_lock);
1778         __cache_size_refresh();
1779         mutex_unlock(&dm_bufio_clients_lock);
1780
1781         dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1782         if (!dm_bufio_wq)
1783                 return -ENOMEM;
1784
1785         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1786         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1787                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1788
1789         return 0;
1790 }
1791
1792 /*
1793  * This is called once when unloading the dm_bufio module.
1794  */
1795 static void __exit dm_bufio_exit(void)
1796 {
1797         int bug = 0;
1798         int i;
1799
1800         cancel_delayed_work_sync(&dm_bufio_work);
1801         destroy_workqueue(dm_bufio_wq);
1802
1803         for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1804                 struct kmem_cache *kc = dm_bufio_caches[i];
1805
1806                 if (kc)
1807                         kmem_cache_destroy(kc);
1808         }
1809
1810         for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1811                 kfree(dm_bufio_cache_names[i]);
1812
1813         if (dm_bufio_client_count) {
1814                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1815                         __func__, dm_bufio_client_count);
1816                 bug = 1;
1817         }
1818
1819         if (dm_bufio_current_allocated) {
1820                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1821                         __func__, dm_bufio_current_allocated);
1822                 bug = 1;
1823         }
1824
1825         if (dm_bufio_allocated_get_free_pages) {
1826                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1827                        __func__, dm_bufio_allocated_get_free_pages);
1828                 bug = 1;
1829         }
1830
1831         if (dm_bufio_allocated_vmalloc) {
1832                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1833                        __func__, dm_bufio_allocated_vmalloc);
1834                 bug = 1;
1835         }
1836
1837         if (bug)
1838                 BUG();
1839 }
1840
1841 module_init(dm_bufio_init)
1842 module_exit(dm_bufio_exit)
1843
1844 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1845 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1846
1847 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1848 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1849
1850 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1851 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1852
1853 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1854 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1855
1856 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1857 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1858
1859 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1860 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1861
1862 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1863 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1864
1865 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1866 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1867 MODULE_LICENSE("GPL");