Merge tag 'leds-for-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anasz...
[sfrench/cifs-2.6.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25  * Memory management policy:
26  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *      dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS            8
33
34 #define DM_BUFIO_MEMORY_PERCENT         2
35 #define DM_BUFIO_VMALLOC_PERCENT        25
36 #define DM_BUFIO_WRITEBACK_PERCENT      75
37
38 /*
39  * Check buffer ages in this interval (seconds)
40  */
41 #define DM_BUFIO_WORK_TIMER_SECS        30
42
43 /*
44  * Free buffers when they are older than this (seconds)
45  */
46 #define DM_BUFIO_DEFAULT_AGE_SECS       300
47
48 /*
49  * The nr of bytes of cached data to keep around.
50  */
51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
52
53 /*
54  * Align buffer writes to this boundary.
55  * Tests show that SSDs have the highest IOPS when using 4k writes.
56  */
57 #define DM_BUFIO_WRITE_ALIGN            4096
58
59 /*
60  * dm_buffer->list_mode
61  */
62 #define LIST_CLEAN      0
63 #define LIST_DIRTY      1
64 #define LIST_SIZE       2
65
66 /*
67  * Linking of buffers:
68  *      All buffers are linked to buffer_tree with their node field.
69  *
70  *      Clean buffers that are not being written (B_WRITING not set)
71  *      are linked to lru[LIST_CLEAN] with their lru_list field.
72  *
73  *      Dirty and clean buffers that are being written are linked to
74  *      lru[LIST_DIRTY] with their lru_list field. When the write
75  *      finishes, the buffer cannot be relinked immediately (because we
76  *      are in an interrupt context and relinking requires process
77  *      context), so some clean-not-writing buffers can be held on
78  *      dirty_lru too.  They are later added to lru in the process
79  *      context.
80  */
81 struct dm_bufio_client {
82         struct mutex lock;
83
84         struct list_head lru[LIST_SIZE];
85         unsigned long n_buffers[LIST_SIZE];
86
87         struct block_device *bdev;
88         unsigned block_size;
89         s8 sectors_per_block_bits;
90         void (*alloc_callback)(struct dm_buffer *);
91         void (*write_callback)(struct dm_buffer *);
92
93         struct kmem_cache *slab_buffer;
94         struct kmem_cache *slab_cache;
95         struct dm_io_client *dm_io;
96
97         struct list_head reserved_buffers;
98         unsigned need_reserved_buffers;
99
100         unsigned minimum_buffers;
101
102         struct rb_root buffer_tree;
103         wait_queue_head_t free_buffer_wait;
104
105         sector_t start;
106
107         int async_write_error;
108
109         struct list_head client_list;
110         struct shrinker shrinker;
111 };
112
113 /*
114  * Buffer state bits.
115  */
116 #define B_READING       0
117 #define B_WRITING       1
118 #define B_DIRTY         2
119
120 /*
121  * Describes how the block was allocated:
122  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
123  * See the comment at alloc_buffer_data.
124  */
125 enum data_mode {
126         DATA_MODE_SLAB = 0,
127         DATA_MODE_GET_FREE_PAGES = 1,
128         DATA_MODE_VMALLOC = 2,
129         DATA_MODE_LIMIT = 3
130 };
131
132 struct dm_buffer {
133         struct rb_node node;
134         struct list_head lru_list;
135         sector_t block;
136         void *data;
137         unsigned char data_mode;                /* DATA_MODE_* */
138         unsigned char list_mode;                /* LIST_* */
139         blk_status_t read_error;
140         blk_status_t write_error;
141         unsigned hold_count;
142         unsigned long state;
143         unsigned long last_accessed;
144         unsigned dirty_start;
145         unsigned dirty_end;
146         unsigned write_start;
147         unsigned write_end;
148         struct dm_bufio_client *c;
149         struct list_head write_list;
150         void (*end_io)(struct dm_buffer *, blk_status_t);
151 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
152 #define MAX_STACK 10
153         unsigned int stack_len;
154         unsigned long stack_entries[MAX_STACK];
155 #endif
156 };
157
158 /*----------------------------------------------------------------*/
159
160 #define dm_bufio_in_request()   (!!current->bio_list)
161
162 static void dm_bufio_lock(struct dm_bufio_client *c)
163 {
164         mutex_lock_nested(&c->lock, dm_bufio_in_request());
165 }
166
167 static int dm_bufio_trylock(struct dm_bufio_client *c)
168 {
169         return mutex_trylock(&c->lock);
170 }
171
172 static void dm_bufio_unlock(struct dm_bufio_client *c)
173 {
174         mutex_unlock(&c->lock);
175 }
176
177 /*----------------------------------------------------------------*/
178
179 /*
180  * Default cache size: available memory divided by the ratio.
181  */
182 static unsigned long dm_bufio_default_cache_size;
183
184 /*
185  * Total cache size set by the user.
186  */
187 static unsigned long dm_bufio_cache_size;
188
189 /*
190  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
191  * at any time.  If it disagrees, the user has changed cache size.
192  */
193 static unsigned long dm_bufio_cache_size_latch;
194
195 static DEFINE_SPINLOCK(param_spinlock);
196
197 /*
198  * Buffers are freed after this timeout
199  */
200 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
201 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
202
203 static unsigned long dm_bufio_peak_allocated;
204 static unsigned long dm_bufio_allocated_kmem_cache;
205 static unsigned long dm_bufio_allocated_get_free_pages;
206 static unsigned long dm_bufio_allocated_vmalloc;
207 static unsigned long dm_bufio_current_allocated;
208
209 /*----------------------------------------------------------------*/
210
211 /*
212  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
213  */
214 static unsigned long dm_bufio_cache_size_per_client;
215
216 /*
217  * The current number of clients.
218  */
219 static int dm_bufio_client_count;
220
221 /*
222  * The list of all clients.
223  */
224 static LIST_HEAD(dm_bufio_all_clients);
225
226 /*
227  * This mutex protects dm_bufio_cache_size_latch,
228  * dm_bufio_cache_size_per_client and dm_bufio_client_count
229  */
230 static DEFINE_MUTEX(dm_bufio_clients_lock);
231
232 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
233 static void buffer_record_stack(struct dm_buffer *b)
234 {
235         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
236 }
237 #endif
238
239 /*----------------------------------------------------------------
240  * A red/black tree acts as an index for all the buffers.
241  *--------------------------------------------------------------*/
242 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
243 {
244         struct rb_node *n = c->buffer_tree.rb_node;
245         struct dm_buffer *b;
246
247         while (n) {
248                 b = container_of(n, struct dm_buffer, node);
249
250                 if (b->block == block)
251                         return b;
252
253                 n = (b->block < block) ? n->rb_left : n->rb_right;
254         }
255
256         return NULL;
257 }
258
259 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
260 {
261         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
262         struct dm_buffer *found;
263
264         while (*new) {
265                 found = container_of(*new, struct dm_buffer, node);
266
267                 if (found->block == b->block) {
268                         BUG_ON(found != b);
269                         return;
270                 }
271
272                 parent = *new;
273                 new = (found->block < b->block) ?
274                         &((*new)->rb_left) : &((*new)->rb_right);
275         }
276
277         rb_link_node(&b->node, parent, new);
278         rb_insert_color(&b->node, &c->buffer_tree);
279 }
280
281 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
282 {
283         rb_erase(&b->node, &c->buffer_tree);
284 }
285
286 /*----------------------------------------------------------------*/
287
288 static void adjust_total_allocated(unsigned char data_mode, long diff)
289 {
290         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
291                 &dm_bufio_allocated_kmem_cache,
292                 &dm_bufio_allocated_get_free_pages,
293                 &dm_bufio_allocated_vmalloc,
294         };
295
296         spin_lock(&param_spinlock);
297
298         *class_ptr[data_mode] += diff;
299
300         dm_bufio_current_allocated += diff;
301
302         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
303                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
304
305         spin_unlock(&param_spinlock);
306 }
307
308 /*
309  * Change the number of clients and recalculate per-client limit.
310  */
311 static void __cache_size_refresh(void)
312 {
313         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
314         BUG_ON(dm_bufio_client_count < 0);
315
316         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
317
318         /*
319          * Use default if set to 0 and report the actual cache size used.
320          */
321         if (!dm_bufio_cache_size_latch) {
322                 (void)cmpxchg(&dm_bufio_cache_size, 0,
323                               dm_bufio_default_cache_size);
324                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
325         }
326
327         dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
328                                          (dm_bufio_client_count ? : 1);
329 }
330
331 /*
332  * Allocating buffer data.
333  *
334  * Small buffers are allocated with kmem_cache, to use space optimally.
335  *
336  * For large buffers, we choose between get_free_pages and vmalloc.
337  * Each has advantages and disadvantages.
338  *
339  * __get_free_pages can randomly fail if the memory is fragmented.
340  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
341  * as low as 128M) so using it for caching is not appropriate.
342  *
343  * If the allocation may fail we use __get_free_pages. Memory fragmentation
344  * won't have a fatal effect here, but it just causes flushes of some other
345  * buffers and more I/O will be performed. Don't use __get_free_pages if it
346  * always fails (i.e. order >= MAX_ORDER).
347  *
348  * If the allocation shouldn't fail we use __vmalloc. This is only for the
349  * initial reserve allocation, so there's no risk of wasting all vmalloc
350  * space.
351  */
352 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
353                                unsigned char *data_mode)
354 {
355         if (unlikely(c->slab_cache != NULL)) {
356                 *data_mode = DATA_MODE_SLAB;
357                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
358         }
359
360         if (c->block_size <= KMALLOC_MAX_SIZE &&
361             gfp_mask & __GFP_NORETRY) {
362                 *data_mode = DATA_MODE_GET_FREE_PAGES;
363                 return (void *)__get_free_pages(gfp_mask,
364                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
365         }
366
367         *data_mode = DATA_MODE_VMALLOC;
368
369         /*
370          * __vmalloc allocates the data pages and auxiliary structures with
371          * gfp_flags that were specified, but pagetables are always allocated
372          * with GFP_KERNEL, no matter what was specified as gfp_mask.
373          *
374          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
375          * all allocations done by this process (including pagetables) are done
376          * as if GFP_NOIO was specified.
377          */
378         if (gfp_mask & __GFP_NORETRY) {
379                 unsigned noio_flag = memalloc_noio_save();
380                 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
381
382                 memalloc_noio_restore(noio_flag);
383                 return ptr;
384         }
385
386         return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
387 }
388
389 /*
390  * Free buffer's data.
391  */
392 static void free_buffer_data(struct dm_bufio_client *c,
393                              void *data, unsigned char data_mode)
394 {
395         switch (data_mode) {
396         case DATA_MODE_SLAB:
397                 kmem_cache_free(c->slab_cache, data);
398                 break;
399
400         case DATA_MODE_GET_FREE_PAGES:
401                 free_pages((unsigned long)data,
402                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
403                 break;
404
405         case DATA_MODE_VMALLOC:
406                 vfree(data);
407                 break;
408
409         default:
410                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
411                        data_mode);
412                 BUG();
413         }
414 }
415
416 /*
417  * Allocate buffer and its data.
418  */
419 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
420 {
421         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
422
423         if (!b)
424                 return NULL;
425
426         b->c = c;
427
428         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
429         if (!b->data) {
430                 kmem_cache_free(c->slab_buffer, b);
431                 return NULL;
432         }
433
434         adjust_total_allocated(b->data_mode, (long)c->block_size);
435
436 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
437         b->stack_len = 0;
438 #endif
439         return b;
440 }
441
442 /*
443  * Free buffer and its data.
444  */
445 static void free_buffer(struct dm_buffer *b)
446 {
447         struct dm_bufio_client *c = b->c;
448
449         adjust_total_allocated(b->data_mode, -(long)c->block_size);
450
451         free_buffer_data(c, b->data, b->data_mode);
452         kmem_cache_free(c->slab_buffer, b);
453 }
454
455 /*
456  * Link buffer to the buffer tree and clean or dirty queue.
457  */
458 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
459 {
460         struct dm_bufio_client *c = b->c;
461
462         c->n_buffers[dirty]++;
463         b->block = block;
464         b->list_mode = dirty;
465         list_add(&b->lru_list, &c->lru[dirty]);
466         __insert(b->c, b);
467         b->last_accessed = jiffies;
468 }
469
470 /*
471  * Unlink buffer from the buffer tree and dirty or clean queue.
472  */
473 static void __unlink_buffer(struct dm_buffer *b)
474 {
475         struct dm_bufio_client *c = b->c;
476
477         BUG_ON(!c->n_buffers[b->list_mode]);
478
479         c->n_buffers[b->list_mode]--;
480         __remove(b->c, b);
481         list_del(&b->lru_list);
482 }
483
484 /*
485  * Place the buffer to the head of dirty or clean LRU queue.
486  */
487 static void __relink_lru(struct dm_buffer *b, int dirty)
488 {
489         struct dm_bufio_client *c = b->c;
490
491         BUG_ON(!c->n_buffers[b->list_mode]);
492
493         c->n_buffers[b->list_mode]--;
494         c->n_buffers[dirty]++;
495         b->list_mode = dirty;
496         list_move(&b->lru_list, &c->lru[dirty]);
497         b->last_accessed = jiffies;
498 }
499
500 /*----------------------------------------------------------------
501  * Submit I/O on the buffer.
502  *
503  * Bio interface is faster but it has some problems:
504  *      the vector list is limited (increasing this limit increases
505  *      memory-consumption per buffer, so it is not viable);
506  *
507  *      the memory must be direct-mapped, not vmalloced;
508  *
509  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
510  * it is not vmalloced, try using the bio interface.
511  *
512  * If the buffer is big, if it is vmalloced or if the underlying device
513  * rejects the bio because it is too large, use dm-io layer to do the I/O.
514  * The dm-io layer splits the I/O into multiple requests, avoiding the above
515  * shortcomings.
516  *--------------------------------------------------------------*/
517
518 /*
519  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
520  * that the request was handled directly with bio interface.
521  */
522 static void dmio_complete(unsigned long error, void *context)
523 {
524         struct dm_buffer *b = context;
525
526         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
527 }
528
529 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
530                      unsigned n_sectors, unsigned offset)
531 {
532         int r;
533         struct dm_io_request io_req = {
534                 .bi_op = rw,
535                 .bi_op_flags = 0,
536                 .notify.fn = dmio_complete,
537                 .notify.context = b,
538                 .client = b->c->dm_io,
539         };
540         struct dm_io_region region = {
541                 .bdev = b->c->bdev,
542                 .sector = sector,
543                 .count = n_sectors,
544         };
545
546         if (b->data_mode != DATA_MODE_VMALLOC) {
547                 io_req.mem.type = DM_IO_KMEM;
548                 io_req.mem.ptr.addr = (char *)b->data + offset;
549         } else {
550                 io_req.mem.type = DM_IO_VMA;
551                 io_req.mem.ptr.vma = (char *)b->data + offset;
552         }
553
554         r = dm_io(&io_req, 1, &region, NULL);
555         if (unlikely(r))
556                 b->end_io(b, errno_to_blk_status(r));
557 }
558
559 static void bio_complete(struct bio *bio)
560 {
561         struct dm_buffer *b = bio->bi_private;
562         blk_status_t status = bio->bi_status;
563         bio_put(bio);
564         b->end_io(b, status);
565 }
566
567 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
568                     unsigned n_sectors, unsigned offset)
569 {
570         struct bio *bio;
571         char *ptr;
572         unsigned vec_size, len;
573
574         vec_size = b->c->block_size >> PAGE_SHIFT;
575         if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
576                 vec_size += 2;
577
578         bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
579         if (!bio) {
580 dmio:
581                 use_dmio(b, rw, sector, n_sectors, offset);
582                 return;
583         }
584
585         bio->bi_iter.bi_sector = sector;
586         bio_set_dev(bio, b->c->bdev);
587         bio_set_op_attrs(bio, rw, 0);
588         bio->bi_end_io = bio_complete;
589         bio->bi_private = b;
590
591         ptr = (char *)b->data + offset;
592         len = n_sectors << SECTOR_SHIFT;
593
594         do {
595                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
596                 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
597                                   offset_in_page(ptr))) {
598                         bio_put(bio);
599                         goto dmio;
600                 }
601
602                 len -= this_step;
603                 ptr += this_step;
604         } while (len > 0);
605
606         submit_bio(bio);
607 }
608
609 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
610 {
611         unsigned n_sectors;
612         sector_t sector;
613         unsigned offset, end;
614
615         b->end_io = end_io;
616
617         if (likely(b->c->sectors_per_block_bits >= 0))
618                 sector = b->block << b->c->sectors_per_block_bits;
619         else
620                 sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
621         sector += b->c->start;
622
623         if (rw != REQ_OP_WRITE) {
624                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
625                 offset = 0;
626         } else {
627                 if (b->c->write_callback)
628                         b->c->write_callback(b);
629                 offset = b->write_start;
630                 end = b->write_end;
631                 offset &= -DM_BUFIO_WRITE_ALIGN;
632                 end += DM_BUFIO_WRITE_ALIGN - 1;
633                 end &= -DM_BUFIO_WRITE_ALIGN;
634                 if (unlikely(end > b->c->block_size))
635                         end = b->c->block_size;
636
637                 sector += offset >> SECTOR_SHIFT;
638                 n_sectors = (end - offset) >> SECTOR_SHIFT;
639         }
640
641         if (b->data_mode != DATA_MODE_VMALLOC)
642                 use_bio(b, rw, sector, n_sectors, offset);
643         else
644                 use_dmio(b, rw, sector, n_sectors, offset);
645 }
646
647 /*----------------------------------------------------------------
648  * Writing dirty buffers
649  *--------------------------------------------------------------*/
650
651 /*
652  * The endio routine for write.
653  *
654  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
655  * it.
656  */
657 static void write_endio(struct dm_buffer *b, blk_status_t status)
658 {
659         b->write_error = status;
660         if (unlikely(status)) {
661                 struct dm_bufio_client *c = b->c;
662
663                 (void)cmpxchg(&c->async_write_error, 0,
664                                 blk_status_to_errno(status));
665         }
666
667         BUG_ON(!test_bit(B_WRITING, &b->state));
668
669         smp_mb__before_atomic();
670         clear_bit(B_WRITING, &b->state);
671         smp_mb__after_atomic();
672
673         wake_up_bit(&b->state, B_WRITING);
674 }
675
676 /*
677  * Initiate a write on a dirty buffer, but don't wait for it.
678  *
679  * - If the buffer is not dirty, exit.
680  * - If there some previous write going on, wait for it to finish (we can't
681  *   have two writes on the same buffer simultaneously).
682  * - Submit our write and don't wait on it. We set B_WRITING indicating
683  *   that there is a write in progress.
684  */
685 static void __write_dirty_buffer(struct dm_buffer *b,
686                                  struct list_head *write_list)
687 {
688         if (!test_bit(B_DIRTY, &b->state))
689                 return;
690
691         clear_bit(B_DIRTY, &b->state);
692         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
693
694         b->write_start = b->dirty_start;
695         b->write_end = b->dirty_end;
696
697         if (!write_list)
698                 submit_io(b, REQ_OP_WRITE, write_endio);
699         else
700                 list_add_tail(&b->write_list, write_list);
701 }
702
703 static void __flush_write_list(struct list_head *write_list)
704 {
705         struct blk_plug plug;
706         blk_start_plug(&plug);
707         while (!list_empty(write_list)) {
708                 struct dm_buffer *b =
709                         list_entry(write_list->next, struct dm_buffer, write_list);
710                 list_del(&b->write_list);
711                 submit_io(b, REQ_OP_WRITE, write_endio);
712                 cond_resched();
713         }
714         blk_finish_plug(&plug);
715 }
716
717 /*
718  * Wait until any activity on the buffer finishes.  Possibly write the
719  * buffer if it is dirty.  When this function finishes, there is no I/O
720  * running on the buffer and the buffer is not dirty.
721  */
722 static void __make_buffer_clean(struct dm_buffer *b)
723 {
724         BUG_ON(b->hold_count);
725
726         if (!b->state)  /* fast case */
727                 return;
728
729         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
730         __write_dirty_buffer(b, NULL);
731         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
732 }
733
734 /*
735  * Find some buffer that is not held by anybody, clean it, unlink it and
736  * return it.
737  */
738 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
739 {
740         struct dm_buffer *b;
741
742         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
743                 BUG_ON(test_bit(B_WRITING, &b->state));
744                 BUG_ON(test_bit(B_DIRTY, &b->state));
745
746                 if (!b->hold_count) {
747                         __make_buffer_clean(b);
748                         __unlink_buffer(b);
749                         return b;
750                 }
751                 cond_resched();
752         }
753
754         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
755                 BUG_ON(test_bit(B_READING, &b->state));
756
757                 if (!b->hold_count) {
758                         __make_buffer_clean(b);
759                         __unlink_buffer(b);
760                         return b;
761                 }
762                 cond_resched();
763         }
764
765         return NULL;
766 }
767
768 /*
769  * Wait until some other threads free some buffer or release hold count on
770  * some buffer.
771  *
772  * This function is entered with c->lock held, drops it and regains it
773  * before exiting.
774  */
775 static void __wait_for_free_buffer(struct dm_bufio_client *c)
776 {
777         DECLARE_WAITQUEUE(wait, current);
778
779         add_wait_queue(&c->free_buffer_wait, &wait);
780         set_current_state(TASK_UNINTERRUPTIBLE);
781         dm_bufio_unlock(c);
782
783         io_schedule();
784
785         remove_wait_queue(&c->free_buffer_wait, &wait);
786
787         dm_bufio_lock(c);
788 }
789
790 enum new_flag {
791         NF_FRESH = 0,
792         NF_READ = 1,
793         NF_GET = 2,
794         NF_PREFETCH = 3
795 };
796
797 /*
798  * Allocate a new buffer. If the allocation is not possible, wait until
799  * some other thread frees a buffer.
800  *
801  * May drop the lock and regain it.
802  */
803 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
804 {
805         struct dm_buffer *b;
806         bool tried_noio_alloc = false;
807
808         /*
809          * dm-bufio is resistant to allocation failures (it just keeps
810          * one buffer reserved in cases all the allocations fail).
811          * So set flags to not try too hard:
812          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
813          *                  mutex and wait ourselves.
814          *      __GFP_NORETRY: don't retry and rather return failure
815          *      __GFP_NOMEMALLOC: don't use emergency reserves
816          *      __GFP_NOWARN: don't print a warning in case of failure
817          *
818          * For debugging, if we set the cache size to 1, no new buffers will
819          * be allocated.
820          */
821         while (1) {
822                 if (dm_bufio_cache_size_latch != 1) {
823                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
824                         if (b)
825                                 return b;
826                 }
827
828                 if (nf == NF_PREFETCH)
829                         return NULL;
830
831                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
832                         dm_bufio_unlock(c);
833                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
834                         dm_bufio_lock(c);
835                         if (b)
836                                 return b;
837                         tried_noio_alloc = true;
838                 }
839
840                 if (!list_empty(&c->reserved_buffers)) {
841                         b = list_entry(c->reserved_buffers.next,
842                                        struct dm_buffer, lru_list);
843                         list_del(&b->lru_list);
844                         c->need_reserved_buffers++;
845
846                         return b;
847                 }
848
849                 b = __get_unclaimed_buffer(c);
850                 if (b)
851                         return b;
852
853                 __wait_for_free_buffer(c);
854         }
855 }
856
857 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
858 {
859         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
860
861         if (!b)
862                 return NULL;
863
864         if (c->alloc_callback)
865                 c->alloc_callback(b);
866
867         return b;
868 }
869
870 /*
871  * Free a buffer and wake other threads waiting for free buffers.
872  */
873 static void __free_buffer_wake(struct dm_buffer *b)
874 {
875         struct dm_bufio_client *c = b->c;
876
877         if (!c->need_reserved_buffers)
878                 free_buffer(b);
879         else {
880                 list_add(&b->lru_list, &c->reserved_buffers);
881                 c->need_reserved_buffers--;
882         }
883
884         wake_up(&c->free_buffer_wait);
885 }
886
887 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
888                                         struct list_head *write_list)
889 {
890         struct dm_buffer *b, *tmp;
891
892         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
893                 BUG_ON(test_bit(B_READING, &b->state));
894
895                 if (!test_bit(B_DIRTY, &b->state) &&
896                     !test_bit(B_WRITING, &b->state)) {
897                         __relink_lru(b, LIST_CLEAN);
898                         continue;
899                 }
900
901                 if (no_wait && test_bit(B_WRITING, &b->state))
902                         return;
903
904                 __write_dirty_buffer(b, write_list);
905                 cond_resched();
906         }
907 }
908
909 /*
910  * Get writeback threshold and buffer limit for a given client.
911  */
912 static void __get_memory_limit(struct dm_bufio_client *c,
913                                unsigned long *threshold_buffers,
914                                unsigned long *limit_buffers)
915 {
916         unsigned long buffers;
917
918         if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
919                 if (mutex_trylock(&dm_bufio_clients_lock)) {
920                         __cache_size_refresh();
921                         mutex_unlock(&dm_bufio_clients_lock);
922                 }
923         }
924
925         buffers = dm_bufio_cache_size_per_client;
926         if (likely(c->sectors_per_block_bits >= 0))
927                 buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
928         else
929                 buffers /= c->block_size;
930
931         if (buffers < c->minimum_buffers)
932                 buffers = c->minimum_buffers;
933
934         *limit_buffers = buffers;
935         *threshold_buffers = mult_frac(buffers,
936                                        DM_BUFIO_WRITEBACK_PERCENT, 100);
937 }
938
939 /*
940  * Check if we're over watermark.
941  * If we are over threshold_buffers, start freeing buffers.
942  * If we're over "limit_buffers", block until we get under the limit.
943  */
944 static void __check_watermark(struct dm_bufio_client *c,
945                               struct list_head *write_list)
946 {
947         unsigned long threshold_buffers, limit_buffers;
948
949         __get_memory_limit(c, &threshold_buffers, &limit_buffers);
950
951         while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
952                limit_buffers) {
953
954                 struct dm_buffer *b = __get_unclaimed_buffer(c);
955
956                 if (!b)
957                         return;
958
959                 __free_buffer_wake(b);
960                 cond_resched();
961         }
962
963         if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
964                 __write_dirty_buffers_async(c, 1, write_list);
965 }
966
967 /*----------------------------------------------------------------
968  * Getting a buffer
969  *--------------------------------------------------------------*/
970
971 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
972                                      enum new_flag nf, int *need_submit,
973                                      struct list_head *write_list)
974 {
975         struct dm_buffer *b, *new_b = NULL;
976
977         *need_submit = 0;
978
979         b = __find(c, block);
980         if (b)
981                 goto found_buffer;
982
983         if (nf == NF_GET)
984                 return NULL;
985
986         new_b = __alloc_buffer_wait(c, nf);
987         if (!new_b)
988                 return NULL;
989
990         /*
991          * We've had a period where the mutex was unlocked, so need to
992          * recheck the buffer tree.
993          */
994         b = __find(c, block);
995         if (b) {
996                 __free_buffer_wake(new_b);
997                 goto found_buffer;
998         }
999
1000         __check_watermark(c, write_list);
1001
1002         b = new_b;
1003         b->hold_count = 1;
1004         b->read_error = 0;
1005         b->write_error = 0;
1006         __link_buffer(b, block, LIST_CLEAN);
1007
1008         if (nf == NF_FRESH) {
1009                 b->state = 0;
1010                 return b;
1011         }
1012
1013         b->state = 1 << B_READING;
1014         *need_submit = 1;
1015
1016         return b;
1017
1018 found_buffer:
1019         if (nf == NF_PREFETCH)
1020                 return NULL;
1021         /*
1022          * Note: it is essential that we don't wait for the buffer to be
1023          * read if dm_bufio_get function is used. Both dm_bufio_get and
1024          * dm_bufio_prefetch can be used in the driver request routine.
1025          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1026          * the same buffer, it would deadlock if we waited.
1027          */
1028         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1029                 return NULL;
1030
1031         b->hold_count++;
1032         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1033                      test_bit(B_WRITING, &b->state));
1034         return b;
1035 }
1036
1037 /*
1038  * The endio routine for reading: set the error, clear the bit and wake up
1039  * anyone waiting on the buffer.
1040  */
1041 static void read_endio(struct dm_buffer *b, blk_status_t status)
1042 {
1043         b->read_error = status;
1044
1045         BUG_ON(!test_bit(B_READING, &b->state));
1046
1047         smp_mb__before_atomic();
1048         clear_bit(B_READING, &b->state);
1049         smp_mb__after_atomic();
1050
1051         wake_up_bit(&b->state, B_READING);
1052 }
1053
1054 /*
1055  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1056  * functions is similar except that dm_bufio_new doesn't read the
1057  * buffer from the disk (assuming that the caller overwrites all the data
1058  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1059  */
1060 static void *new_read(struct dm_bufio_client *c, sector_t block,
1061                       enum new_flag nf, struct dm_buffer **bp)
1062 {
1063         int need_submit;
1064         struct dm_buffer *b;
1065
1066         LIST_HEAD(write_list);
1067
1068         dm_bufio_lock(c);
1069         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1070 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1071         if (b && b->hold_count == 1)
1072                 buffer_record_stack(b);
1073 #endif
1074         dm_bufio_unlock(c);
1075
1076         __flush_write_list(&write_list);
1077
1078         if (!b)
1079                 return NULL;
1080
1081         if (need_submit)
1082                 submit_io(b, REQ_OP_READ, read_endio);
1083
1084         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1085
1086         if (b->read_error) {
1087                 int error = blk_status_to_errno(b->read_error);
1088
1089                 dm_bufio_release(b);
1090
1091                 return ERR_PTR(error);
1092         }
1093
1094         *bp = b;
1095
1096         return b->data;
1097 }
1098
1099 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1100                    struct dm_buffer **bp)
1101 {
1102         return new_read(c, block, NF_GET, bp);
1103 }
1104 EXPORT_SYMBOL_GPL(dm_bufio_get);
1105
1106 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1107                     struct dm_buffer **bp)
1108 {
1109         BUG_ON(dm_bufio_in_request());
1110
1111         return new_read(c, block, NF_READ, bp);
1112 }
1113 EXPORT_SYMBOL_GPL(dm_bufio_read);
1114
1115 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1116                    struct dm_buffer **bp)
1117 {
1118         BUG_ON(dm_bufio_in_request());
1119
1120         return new_read(c, block, NF_FRESH, bp);
1121 }
1122 EXPORT_SYMBOL_GPL(dm_bufio_new);
1123
1124 void dm_bufio_prefetch(struct dm_bufio_client *c,
1125                        sector_t block, unsigned n_blocks)
1126 {
1127         struct blk_plug plug;
1128
1129         LIST_HEAD(write_list);
1130
1131         BUG_ON(dm_bufio_in_request());
1132
1133         blk_start_plug(&plug);
1134         dm_bufio_lock(c);
1135
1136         for (; n_blocks--; block++) {
1137                 int need_submit;
1138                 struct dm_buffer *b;
1139                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1140                                 &write_list);
1141                 if (unlikely(!list_empty(&write_list))) {
1142                         dm_bufio_unlock(c);
1143                         blk_finish_plug(&plug);
1144                         __flush_write_list(&write_list);
1145                         blk_start_plug(&plug);
1146                         dm_bufio_lock(c);
1147                 }
1148                 if (unlikely(b != NULL)) {
1149                         dm_bufio_unlock(c);
1150
1151                         if (need_submit)
1152                                 submit_io(b, REQ_OP_READ, read_endio);
1153                         dm_bufio_release(b);
1154
1155                         cond_resched();
1156
1157                         if (!n_blocks)
1158                                 goto flush_plug;
1159                         dm_bufio_lock(c);
1160                 }
1161         }
1162
1163         dm_bufio_unlock(c);
1164
1165 flush_plug:
1166         blk_finish_plug(&plug);
1167 }
1168 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1169
1170 void dm_bufio_release(struct dm_buffer *b)
1171 {
1172         struct dm_bufio_client *c = b->c;
1173
1174         dm_bufio_lock(c);
1175
1176         BUG_ON(!b->hold_count);
1177
1178         b->hold_count--;
1179         if (!b->hold_count) {
1180                 wake_up(&c->free_buffer_wait);
1181
1182                 /*
1183                  * If there were errors on the buffer, and the buffer is not
1184                  * to be written, free the buffer. There is no point in caching
1185                  * invalid buffer.
1186                  */
1187                 if ((b->read_error || b->write_error) &&
1188                     !test_bit(B_READING, &b->state) &&
1189                     !test_bit(B_WRITING, &b->state) &&
1190                     !test_bit(B_DIRTY, &b->state)) {
1191                         __unlink_buffer(b);
1192                         __free_buffer_wake(b);
1193                 }
1194         }
1195
1196         dm_bufio_unlock(c);
1197 }
1198 EXPORT_SYMBOL_GPL(dm_bufio_release);
1199
1200 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1201                                         unsigned start, unsigned end)
1202 {
1203         struct dm_bufio_client *c = b->c;
1204
1205         BUG_ON(start >= end);
1206         BUG_ON(end > b->c->block_size);
1207
1208         dm_bufio_lock(c);
1209
1210         BUG_ON(test_bit(B_READING, &b->state));
1211
1212         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1213                 b->dirty_start = start;
1214                 b->dirty_end = end;
1215                 __relink_lru(b, LIST_DIRTY);
1216         } else {
1217                 if (start < b->dirty_start)
1218                         b->dirty_start = start;
1219                 if (end > b->dirty_end)
1220                         b->dirty_end = end;
1221         }
1222
1223         dm_bufio_unlock(c);
1224 }
1225 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1226
1227 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1228 {
1229         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1232
1233 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1234 {
1235         LIST_HEAD(write_list);
1236
1237         BUG_ON(dm_bufio_in_request());
1238
1239         dm_bufio_lock(c);
1240         __write_dirty_buffers_async(c, 0, &write_list);
1241         dm_bufio_unlock(c);
1242         __flush_write_list(&write_list);
1243 }
1244 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245
1246 /*
1247  * For performance, it is essential that the buffers are written asynchronously
1248  * and simultaneously (so that the block layer can merge the writes) and then
1249  * waited upon.
1250  *
1251  * Finally, we flush hardware disk cache.
1252  */
1253 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1254 {
1255         int a, f;
1256         unsigned long buffers_processed = 0;
1257         struct dm_buffer *b, *tmp;
1258
1259         LIST_HEAD(write_list);
1260
1261         dm_bufio_lock(c);
1262         __write_dirty_buffers_async(c, 0, &write_list);
1263         dm_bufio_unlock(c);
1264         __flush_write_list(&write_list);
1265         dm_bufio_lock(c);
1266
1267 again:
1268         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1269                 int dropped_lock = 0;
1270
1271                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1272                         buffers_processed++;
1273
1274                 BUG_ON(test_bit(B_READING, &b->state));
1275
1276                 if (test_bit(B_WRITING, &b->state)) {
1277                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1278                                 dropped_lock = 1;
1279                                 b->hold_count++;
1280                                 dm_bufio_unlock(c);
1281                                 wait_on_bit_io(&b->state, B_WRITING,
1282                                                TASK_UNINTERRUPTIBLE);
1283                                 dm_bufio_lock(c);
1284                                 b->hold_count--;
1285                         } else
1286                                 wait_on_bit_io(&b->state, B_WRITING,
1287                                                TASK_UNINTERRUPTIBLE);
1288                 }
1289
1290                 if (!test_bit(B_DIRTY, &b->state) &&
1291                     !test_bit(B_WRITING, &b->state))
1292                         __relink_lru(b, LIST_CLEAN);
1293
1294                 cond_resched();
1295
1296                 /*
1297                  * If we dropped the lock, the list is no longer consistent,
1298                  * so we must restart the search.
1299                  *
1300                  * In the most common case, the buffer just processed is
1301                  * relinked to the clean list, so we won't loop scanning the
1302                  * same buffer again and again.
1303                  *
1304                  * This may livelock if there is another thread simultaneously
1305                  * dirtying buffers, so we count the number of buffers walked
1306                  * and if it exceeds the total number of buffers, it means that
1307                  * someone is doing some writes simultaneously with us.  In
1308                  * this case, stop, dropping the lock.
1309                  */
1310                 if (dropped_lock)
1311                         goto again;
1312         }
1313         wake_up(&c->free_buffer_wait);
1314         dm_bufio_unlock(c);
1315
1316         a = xchg(&c->async_write_error, 0);
1317         f = dm_bufio_issue_flush(c);
1318         if (a)
1319                 return a;
1320
1321         return f;
1322 }
1323 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324
1325 /*
1326  * Use dm-io to send an empty barrier to flush the device.
1327  */
1328 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1329 {
1330         struct dm_io_request io_req = {
1331                 .bi_op = REQ_OP_WRITE,
1332                 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1333                 .mem.type = DM_IO_KMEM,
1334                 .mem.ptr.addr = NULL,
1335                 .client = c->dm_io,
1336         };
1337         struct dm_io_region io_reg = {
1338                 .bdev = c->bdev,
1339                 .sector = 0,
1340                 .count = 0,
1341         };
1342
1343         BUG_ON(dm_bufio_in_request());
1344
1345         return dm_io(&io_req, 1, &io_reg, NULL);
1346 }
1347 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1348
1349 /*
1350  * We first delete any other buffer that may be at that new location.
1351  *
1352  * Then, we write the buffer to the original location if it was dirty.
1353  *
1354  * Then, if we are the only one who is holding the buffer, relink the buffer
1355  * in the buffer tree for the new location.
1356  *
1357  * If there was someone else holding the buffer, we write it to the new
1358  * location but not relink it, because that other user needs to have the buffer
1359  * at the same place.
1360  */
1361 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1362 {
1363         struct dm_bufio_client *c = b->c;
1364         struct dm_buffer *new;
1365
1366         BUG_ON(dm_bufio_in_request());
1367
1368         dm_bufio_lock(c);
1369
1370 retry:
1371         new = __find(c, new_block);
1372         if (new) {
1373                 if (new->hold_count) {
1374                         __wait_for_free_buffer(c);
1375                         goto retry;
1376                 }
1377
1378                 /*
1379                  * FIXME: Is there any point waiting for a write that's going
1380                  * to be overwritten in a bit?
1381                  */
1382                 __make_buffer_clean(new);
1383                 __unlink_buffer(new);
1384                 __free_buffer_wake(new);
1385         }
1386
1387         BUG_ON(!b->hold_count);
1388         BUG_ON(test_bit(B_READING, &b->state));
1389
1390         __write_dirty_buffer(b, NULL);
1391         if (b->hold_count == 1) {
1392                 wait_on_bit_io(&b->state, B_WRITING,
1393                                TASK_UNINTERRUPTIBLE);
1394                 set_bit(B_DIRTY, &b->state);
1395                 b->dirty_start = 0;
1396                 b->dirty_end = c->block_size;
1397                 __unlink_buffer(b);
1398                 __link_buffer(b, new_block, LIST_DIRTY);
1399         } else {
1400                 sector_t old_block;
1401                 wait_on_bit_lock_io(&b->state, B_WRITING,
1402                                     TASK_UNINTERRUPTIBLE);
1403                 /*
1404                  * Relink buffer to "new_block" so that write_callback
1405                  * sees "new_block" as a block number.
1406                  * After the write, link the buffer back to old_block.
1407                  * All this must be done in bufio lock, so that block number
1408                  * change isn't visible to other threads.
1409                  */
1410                 old_block = b->block;
1411                 __unlink_buffer(b);
1412                 __link_buffer(b, new_block, b->list_mode);
1413                 submit_io(b, REQ_OP_WRITE, write_endio);
1414                 wait_on_bit_io(&b->state, B_WRITING,
1415                                TASK_UNINTERRUPTIBLE);
1416                 __unlink_buffer(b);
1417                 __link_buffer(b, old_block, b->list_mode);
1418         }
1419
1420         dm_bufio_unlock(c);
1421         dm_bufio_release(b);
1422 }
1423 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1424
1425 /*
1426  * Free the given buffer.
1427  *
1428  * This is just a hint, if the buffer is in use or dirty, this function
1429  * does nothing.
1430  */
1431 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1432 {
1433         struct dm_buffer *b;
1434
1435         dm_bufio_lock(c);
1436
1437         b = __find(c, block);
1438         if (b && likely(!b->hold_count) && likely(!b->state)) {
1439                 __unlink_buffer(b);
1440                 __free_buffer_wake(b);
1441         }
1442
1443         dm_bufio_unlock(c);
1444 }
1445 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1446
1447 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1448 {
1449         c->minimum_buffers = n;
1450 }
1451 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1452
1453 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1454 {
1455         return c->block_size;
1456 }
1457 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1458
1459 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1460 {
1461         sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1462         if (likely(c->sectors_per_block_bits >= 0))
1463                 s >>= c->sectors_per_block_bits;
1464         else
1465                 sector_div(s, c->block_size >> SECTOR_SHIFT);
1466         return s;
1467 }
1468 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1469
1470 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1471 {
1472         return b->block;
1473 }
1474 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1475
1476 void *dm_bufio_get_block_data(struct dm_buffer *b)
1477 {
1478         return b->data;
1479 }
1480 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1481
1482 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1483 {
1484         return b + 1;
1485 }
1486 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1487
1488 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1489 {
1490         return b->c;
1491 }
1492 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1493
1494 static void drop_buffers(struct dm_bufio_client *c)
1495 {
1496         struct dm_buffer *b;
1497         int i;
1498         bool warned = false;
1499
1500         BUG_ON(dm_bufio_in_request());
1501
1502         /*
1503          * An optimization so that the buffers are not written one-by-one.
1504          */
1505         dm_bufio_write_dirty_buffers_async(c);
1506
1507         dm_bufio_lock(c);
1508
1509         while ((b = __get_unclaimed_buffer(c)))
1510                 __free_buffer_wake(b);
1511
1512         for (i = 0; i < LIST_SIZE; i++)
1513                 list_for_each_entry(b, &c->lru[i], lru_list) {
1514                         WARN_ON(!warned);
1515                         warned = true;
1516                         DMERR("leaked buffer %llx, hold count %u, list %d",
1517                               (unsigned long long)b->block, b->hold_count, i);
1518 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1519                         stack_trace_print(b->stack_entries, b->stack_len, 1);
1520                         /* mark unclaimed to avoid BUG_ON below */
1521                         b->hold_count = 0;
1522 #endif
1523                 }
1524
1525 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1526         while ((b = __get_unclaimed_buffer(c)))
1527                 __free_buffer_wake(b);
1528 #endif
1529
1530         for (i = 0; i < LIST_SIZE; i++)
1531                 BUG_ON(!list_empty(&c->lru[i]));
1532
1533         dm_bufio_unlock(c);
1534 }
1535
1536 /*
1537  * We may not be able to evict this buffer if IO pending or the client
1538  * is still using it.  Caller is expected to know buffer is too old.
1539  *
1540  * And if GFP_NOFS is used, we must not do any I/O because we hold
1541  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1542  * rerouted to different bufio client.
1543  */
1544 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1545 {
1546         if (!(gfp & __GFP_FS)) {
1547                 if (test_bit(B_READING, &b->state) ||
1548                     test_bit(B_WRITING, &b->state) ||
1549                     test_bit(B_DIRTY, &b->state))
1550                         return false;
1551         }
1552
1553         if (b->hold_count)
1554                 return false;
1555
1556         __make_buffer_clean(b);
1557         __unlink_buffer(b);
1558         __free_buffer_wake(b);
1559
1560         return true;
1561 }
1562
1563 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1564 {
1565         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1566         if (likely(c->sectors_per_block_bits >= 0))
1567                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1568         else
1569                 retain_bytes /= c->block_size;
1570         return retain_bytes;
1571 }
1572
1573 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1574                             gfp_t gfp_mask)
1575 {
1576         int l;
1577         struct dm_buffer *b, *tmp;
1578         unsigned long freed = 0;
1579         unsigned long count = c->n_buffers[LIST_CLEAN] +
1580                               c->n_buffers[LIST_DIRTY];
1581         unsigned long retain_target = get_retain_buffers(c);
1582
1583         for (l = 0; l < LIST_SIZE; l++) {
1584                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1585                         if (__try_evict_buffer(b, gfp_mask))
1586                                 freed++;
1587                         if (!--nr_to_scan || ((count - freed) <= retain_target))
1588                                 return freed;
1589                         cond_resched();
1590                 }
1591         }
1592         return freed;
1593 }
1594
1595 static unsigned long
1596 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1597 {
1598         struct dm_bufio_client *c;
1599         unsigned long freed;
1600
1601         c = container_of(shrink, struct dm_bufio_client, shrinker);
1602         if (sc->gfp_mask & __GFP_FS)
1603                 dm_bufio_lock(c);
1604         else if (!dm_bufio_trylock(c))
1605                 return SHRINK_STOP;
1606
1607         freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1608         dm_bufio_unlock(c);
1609         return freed;
1610 }
1611
1612 static unsigned long
1613 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1614 {
1615         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1616         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1617                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1618         unsigned long retain_target = get_retain_buffers(c);
1619
1620         return (count < retain_target) ? 0 : (count - retain_target);
1621 }
1622
1623 /*
1624  * Create the buffering interface
1625  */
1626 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1627                                                unsigned reserved_buffers, unsigned aux_size,
1628                                                void (*alloc_callback)(struct dm_buffer *),
1629                                                void (*write_callback)(struct dm_buffer *))
1630 {
1631         int r;
1632         struct dm_bufio_client *c;
1633         unsigned i;
1634         char slab_name[27];
1635
1636         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1637                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1638                 r = -EINVAL;
1639                 goto bad_client;
1640         }
1641
1642         c = kzalloc(sizeof(*c), GFP_KERNEL);
1643         if (!c) {
1644                 r = -ENOMEM;
1645                 goto bad_client;
1646         }
1647         c->buffer_tree = RB_ROOT;
1648
1649         c->bdev = bdev;
1650         c->block_size = block_size;
1651         if (is_power_of_2(block_size))
1652                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1653         else
1654                 c->sectors_per_block_bits = -1;
1655
1656         c->alloc_callback = alloc_callback;
1657         c->write_callback = write_callback;
1658
1659         for (i = 0; i < LIST_SIZE; i++) {
1660                 INIT_LIST_HEAD(&c->lru[i]);
1661                 c->n_buffers[i] = 0;
1662         }
1663
1664         mutex_init(&c->lock);
1665         INIT_LIST_HEAD(&c->reserved_buffers);
1666         c->need_reserved_buffers = reserved_buffers;
1667
1668         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1669
1670         init_waitqueue_head(&c->free_buffer_wait);
1671         c->async_write_error = 0;
1672
1673         c->dm_io = dm_io_client_create();
1674         if (IS_ERR(c->dm_io)) {
1675                 r = PTR_ERR(c->dm_io);
1676                 goto bad_dm_io;
1677         }
1678
1679         if (block_size <= KMALLOC_MAX_SIZE &&
1680             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1681                 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1682                 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1683                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1684                                                   SLAB_RECLAIM_ACCOUNT, NULL);
1685                 if (!c->slab_cache) {
1686                         r = -ENOMEM;
1687                         goto bad;
1688                 }
1689         }
1690         if (aux_size)
1691                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1692         else
1693                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1694         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1695                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
1696         if (!c->slab_buffer) {
1697                 r = -ENOMEM;
1698                 goto bad;
1699         }
1700
1701         while (c->need_reserved_buffers) {
1702                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1703
1704                 if (!b) {
1705                         r = -ENOMEM;
1706                         goto bad;
1707                 }
1708                 __free_buffer_wake(b);
1709         }
1710
1711         c->shrinker.count_objects = dm_bufio_shrink_count;
1712         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1713         c->shrinker.seeks = 1;
1714         c->shrinker.batch = 0;
1715         r = register_shrinker(&c->shrinker);
1716         if (r)
1717                 goto bad;
1718
1719         mutex_lock(&dm_bufio_clients_lock);
1720         dm_bufio_client_count++;
1721         list_add(&c->client_list, &dm_bufio_all_clients);
1722         __cache_size_refresh();
1723         mutex_unlock(&dm_bufio_clients_lock);
1724
1725         return c;
1726
1727 bad:
1728         while (!list_empty(&c->reserved_buffers)) {
1729                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1730                                                  struct dm_buffer, lru_list);
1731                 list_del(&b->lru_list);
1732                 free_buffer(b);
1733         }
1734         kmem_cache_destroy(c->slab_cache);
1735         kmem_cache_destroy(c->slab_buffer);
1736         dm_io_client_destroy(c->dm_io);
1737 bad_dm_io:
1738         mutex_destroy(&c->lock);
1739         kfree(c);
1740 bad_client:
1741         return ERR_PTR(r);
1742 }
1743 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1744
1745 /*
1746  * Free the buffering interface.
1747  * It is required that there are no references on any buffers.
1748  */
1749 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1750 {
1751         unsigned i;
1752
1753         drop_buffers(c);
1754
1755         unregister_shrinker(&c->shrinker);
1756
1757         mutex_lock(&dm_bufio_clients_lock);
1758
1759         list_del(&c->client_list);
1760         dm_bufio_client_count--;
1761         __cache_size_refresh();
1762
1763         mutex_unlock(&dm_bufio_clients_lock);
1764
1765         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1766         BUG_ON(c->need_reserved_buffers);
1767
1768         while (!list_empty(&c->reserved_buffers)) {
1769                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1770                                                  struct dm_buffer, lru_list);
1771                 list_del(&b->lru_list);
1772                 free_buffer(b);
1773         }
1774
1775         for (i = 0; i < LIST_SIZE; i++)
1776                 if (c->n_buffers[i])
1777                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1778
1779         for (i = 0; i < LIST_SIZE; i++)
1780                 BUG_ON(c->n_buffers[i]);
1781
1782         kmem_cache_destroy(c->slab_cache);
1783         kmem_cache_destroy(c->slab_buffer);
1784         dm_io_client_destroy(c->dm_io);
1785         mutex_destroy(&c->lock);
1786         kfree(c);
1787 }
1788 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1789
1790 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1791 {
1792         c->start = start;
1793 }
1794 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1795
1796 static unsigned get_max_age_hz(void)
1797 {
1798         unsigned max_age = READ_ONCE(dm_bufio_max_age);
1799
1800         if (max_age > UINT_MAX / HZ)
1801                 max_age = UINT_MAX / HZ;
1802
1803         return max_age * HZ;
1804 }
1805
1806 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1807 {
1808         return time_after_eq(jiffies, b->last_accessed + age_hz);
1809 }
1810
1811 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1812 {
1813         struct dm_buffer *b, *tmp;
1814         unsigned long retain_target = get_retain_buffers(c);
1815         unsigned long count;
1816         LIST_HEAD(write_list);
1817
1818         dm_bufio_lock(c);
1819
1820         __check_watermark(c, &write_list);
1821         if (unlikely(!list_empty(&write_list))) {
1822                 dm_bufio_unlock(c);
1823                 __flush_write_list(&write_list);
1824                 dm_bufio_lock(c);
1825         }
1826
1827         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1828         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1829                 if (count <= retain_target)
1830                         break;
1831
1832                 if (!older_than(b, age_hz))
1833                         break;
1834
1835                 if (__try_evict_buffer(b, 0))
1836                         count--;
1837
1838                 cond_resched();
1839         }
1840
1841         dm_bufio_unlock(c);
1842 }
1843
1844 static void cleanup_old_buffers(void)
1845 {
1846         unsigned long max_age_hz = get_max_age_hz();
1847         struct dm_bufio_client *c;
1848
1849         mutex_lock(&dm_bufio_clients_lock);
1850
1851         __cache_size_refresh();
1852
1853         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1854                 __evict_old_buffers(c, max_age_hz);
1855
1856         mutex_unlock(&dm_bufio_clients_lock);
1857 }
1858
1859 static struct workqueue_struct *dm_bufio_wq;
1860 static struct delayed_work dm_bufio_work;
1861
1862 static void work_fn(struct work_struct *w)
1863 {
1864         cleanup_old_buffers();
1865
1866         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1867                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1868 }
1869
1870 /*----------------------------------------------------------------
1871  * Module setup
1872  *--------------------------------------------------------------*/
1873
1874 /*
1875  * This is called only once for the whole dm_bufio module.
1876  * It initializes memory limit.
1877  */
1878 static int __init dm_bufio_init(void)
1879 {
1880         __u64 mem;
1881
1882         dm_bufio_allocated_kmem_cache = 0;
1883         dm_bufio_allocated_get_free_pages = 0;
1884         dm_bufio_allocated_vmalloc = 0;
1885         dm_bufio_current_allocated = 0;
1886
1887         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
1888                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1889
1890         if (mem > ULONG_MAX)
1891                 mem = ULONG_MAX;
1892
1893 #ifdef CONFIG_MMU
1894         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1895                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1896 #endif
1897
1898         dm_bufio_default_cache_size = mem;
1899
1900         mutex_lock(&dm_bufio_clients_lock);
1901         __cache_size_refresh();
1902         mutex_unlock(&dm_bufio_clients_lock);
1903
1904         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1905         if (!dm_bufio_wq)
1906                 return -ENOMEM;
1907
1908         INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1909         queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1910                            DM_BUFIO_WORK_TIMER_SECS * HZ);
1911
1912         return 0;
1913 }
1914
1915 /*
1916  * This is called once when unloading the dm_bufio module.
1917  */
1918 static void __exit dm_bufio_exit(void)
1919 {
1920         int bug = 0;
1921
1922         cancel_delayed_work_sync(&dm_bufio_work);
1923         destroy_workqueue(dm_bufio_wq);
1924
1925         if (dm_bufio_client_count) {
1926                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1927                         __func__, dm_bufio_client_count);
1928                 bug = 1;
1929         }
1930
1931         if (dm_bufio_current_allocated) {
1932                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1933                         __func__, dm_bufio_current_allocated);
1934                 bug = 1;
1935         }
1936
1937         if (dm_bufio_allocated_get_free_pages) {
1938                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1939                        __func__, dm_bufio_allocated_get_free_pages);
1940                 bug = 1;
1941         }
1942
1943         if (dm_bufio_allocated_vmalloc) {
1944                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1945                        __func__, dm_bufio_allocated_vmalloc);
1946                 bug = 1;
1947         }
1948
1949         BUG_ON(bug);
1950 }
1951
1952 module_init(dm_bufio_init)
1953 module_exit(dm_bufio_exit)
1954
1955 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1956 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1957
1958 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1959 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1960
1961 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1962 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1963
1964 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1965 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1966
1967 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1968 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1969
1970 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1971 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1972
1973 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1974 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1975
1976 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1977 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1978
1979 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1980 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1981 MODULE_LICENSE("GPL");