Merge remote-tracking branches 'asoc/topic/sunxi', 'asoc/topic/symmetry', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / md / bcache / extents.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/bcache.txt.
22  */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 #include "writeback.h"
29
30 static void sort_key_next(struct btree_iter *iter,
31                           struct btree_iter_set *i)
32 {
33         i->k = bkey_next(i->k);
34
35         if (i->k == i->end)
36                 *i = iter->data[--iter->used];
37 }
38
39 static bool bch_key_sort_cmp(struct btree_iter_set l,
40                              struct btree_iter_set r)
41 {
42         int64_t c = bkey_cmp(l.k, r.k);
43
44         return c ? c > 0 : l.k < r.k;
45 }
46
47 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
48 {
49         unsigned i;
50
51         for (i = 0; i < KEY_PTRS(k); i++)
52                 if (ptr_available(c, k, i)) {
53                         struct cache *ca = PTR_CACHE(c, k, i);
54                         size_t bucket = PTR_BUCKET_NR(c, k, i);
55                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
56
57                         if (KEY_SIZE(k) + r > c->sb.bucket_size ||
58                             bucket <  ca->sb.first_bucket ||
59                             bucket >= ca->sb.nbuckets)
60                                 return true;
61                 }
62
63         return false;
64 }
65
66 /* Common among btree and extent ptrs */
67
68 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
69 {
70         unsigned i;
71
72         for (i = 0; i < KEY_PTRS(k); i++)
73                 if (ptr_available(c, k, i)) {
74                         struct cache *ca = PTR_CACHE(c, k, i);
75                         size_t bucket = PTR_BUCKET_NR(c, k, i);
76                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
77
78                         if (KEY_SIZE(k) + r > c->sb.bucket_size)
79                                 return "bad, length too big";
80                         if (bucket <  ca->sb.first_bucket)
81                                 return "bad, short offset";
82                         if (bucket >= ca->sb.nbuckets)
83                                 return "bad, offset past end of device";
84                         if (ptr_stale(c, k, i))
85                                 return "stale";
86                 }
87
88         if (!bkey_cmp(k, &ZERO_KEY))
89                 return "bad, null key";
90         if (!KEY_PTRS(k))
91                 return "bad, no pointers";
92         if (!KEY_SIZE(k))
93                 return "zeroed key";
94         return "";
95 }
96
97 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
98 {
99         unsigned i = 0;
100         char *out = buf, *end = buf + size;
101
102 #define p(...)  (out += scnprintf(out, end - out, __VA_ARGS__))
103
104         p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
105
106         for (i = 0; i < KEY_PTRS(k); i++) {
107                 if (i)
108                         p(", ");
109
110                 if (PTR_DEV(k, i) == PTR_CHECK_DEV)
111                         p("check dev");
112                 else
113                         p("%llu:%llu gen %llu", PTR_DEV(k, i),
114                           PTR_OFFSET(k, i), PTR_GEN(k, i));
115         }
116
117         p("]");
118
119         if (KEY_DIRTY(k))
120                 p(" dirty");
121         if (KEY_CSUM(k))
122                 p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
123 #undef p
124 }
125
126 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
127 {
128         struct btree *b = container_of(keys, struct btree, keys);
129         unsigned j;
130         char buf[80];
131
132         bch_extent_to_text(buf, sizeof(buf), k);
133         printk(" %s", buf);
134
135         for (j = 0; j < KEY_PTRS(k); j++) {
136                 size_t n = PTR_BUCKET_NR(b->c, k, j);
137                 printk(" bucket %zu", n);
138
139                 if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
140                         printk(" prio %i",
141                                PTR_BUCKET(b->c, k, j)->prio);
142         }
143
144         printk(" %s\n", bch_ptr_status(b->c, k));
145 }
146
147 /* Btree ptrs */
148
149 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
150 {
151         char buf[80];
152
153         if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
154                 goto bad;
155
156         if (__ptr_invalid(c, k))
157                 goto bad;
158
159         return false;
160 bad:
161         bch_extent_to_text(buf, sizeof(buf), k);
162         cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
163         return true;
164 }
165
166 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
167 {
168         struct btree *b = container_of(bk, struct btree, keys);
169         return __bch_btree_ptr_invalid(b->c, k);
170 }
171
172 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
173 {
174         unsigned i;
175         char buf[80];
176         struct bucket *g;
177
178         if (mutex_trylock(&b->c->bucket_lock)) {
179                 for (i = 0; i < KEY_PTRS(k); i++)
180                         if (ptr_available(b->c, k, i)) {
181                                 g = PTR_BUCKET(b->c, k, i);
182
183                                 if (KEY_DIRTY(k) ||
184                                     g->prio != BTREE_PRIO ||
185                                     (b->c->gc_mark_valid &&
186                                      GC_MARK(g) != GC_MARK_METADATA))
187                                         goto err;
188                         }
189
190                 mutex_unlock(&b->c->bucket_lock);
191         }
192
193         return false;
194 err:
195         mutex_unlock(&b->c->bucket_lock);
196         bch_extent_to_text(buf, sizeof(buf), k);
197         btree_bug(b,
198 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
199                   buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
200                   g->prio, g->gen, g->last_gc, GC_MARK(g));
201         return true;
202 }
203
204 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
205 {
206         struct btree *b = container_of(bk, struct btree, keys);
207         unsigned i;
208
209         if (!bkey_cmp(k, &ZERO_KEY) ||
210             !KEY_PTRS(k) ||
211             bch_ptr_invalid(bk, k))
212                 return true;
213
214         for (i = 0; i < KEY_PTRS(k); i++)
215                 if (!ptr_available(b->c, k, i) ||
216                     ptr_stale(b->c, k, i))
217                         return true;
218
219         if (expensive_debug_checks(b->c) &&
220             btree_ptr_bad_expensive(b, k))
221                 return true;
222
223         return false;
224 }
225
226 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
227                                        struct bkey *insert,
228                                        struct btree_iter *iter,
229                                        struct bkey *replace_key)
230 {
231         struct btree *b = container_of(bk, struct btree, keys);
232
233         if (!KEY_OFFSET(insert))
234                 btree_current_write(b)->prio_blocked++;
235
236         return false;
237 }
238
239 const struct btree_keys_ops bch_btree_keys_ops = {
240         .sort_cmp       = bch_key_sort_cmp,
241         .insert_fixup   = bch_btree_ptr_insert_fixup,
242         .key_invalid    = bch_btree_ptr_invalid,
243         .key_bad        = bch_btree_ptr_bad,
244         .key_to_text    = bch_extent_to_text,
245         .key_dump       = bch_bkey_dump,
246 };
247
248 /* Extents */
249
250 /*
251  * Returns true if l > r - unless l == r, in which case returns true if l is
252  * older than r.
253  *
254  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
255  * equal in different sets, we have to process them newest to oldest.
256  */
257 static bool bch_extent_sort_cmp(struct btree_iter_set l,
258                                 struct btree_iter_set r)
259 {
260         int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
261
262         return c ? c > 0 : l.k < r.k;
263 }
264
265 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
266                                           struct bkey *tmp)
267 {
268         while (iter->used > 1) {
269                 struct btree_iter_set *top = iter->data, *i = top + 1;
270
271                 if (iter->used > 2 &&
272                     bch_extent_sort_cmp(i[0], i[1]))
273                         i++;
274
275                 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
276                         break;
277
278                 if (!KEY_SIZE(i->k)) {
279                         sort_key_next(iter, i);
280                         heap_sift(iter, i - top, bch_extent_sort_cmp);
281                         continue;
282                 }
283
284                 if (top->k > i->k) {
285                         if (bkey_cmp(top->k, i->k) >= 0)
286                                 sort_key_next(iter, i);
287                         else
288                                 bch_cut_front(top->k, i->k);
289
290                         heap_sift(iter, i - top, bch_extent_sort_cmp);
291                 } else {
292                         /* can't happen because of comparison func */
293                         BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
294
295                         if (bkey_cmp(i->k, top->k) < 0) {
296                                 bkey_copy(tmp, top->k);
297
298                                 bch_cut_back(&START_KEY(i->k), tmp);
299                                 bch_cut_front(i->k, top->k);
300                                 heap_sift(iter, 0, bch_extent_sort_cmp);
301
302                                 return tmp;
303                         } else {
304                                 bch_cut_back(&START_KEY(i->k), top->k);
305                         }
306                 }
307         }
308
309         return NULL;
310 }
311
312 static void bch_subtract_dirty(struct bkey *k,
313                            struct cache_set *c,
314                            uint64_t offset,
315                            int sectors)
316 {
317         if (KEY_DIRTY(k))
318                 bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
319                                              offset, -sectors);
320 }
321
322 static bool bch_extent_insert_fixup(struct btree_keys *b,
323                                     struct bkey *insert,
324                                     struct btree_iter *iter,
325                                     struct bkey *replace_key)
326 {
327         struct cache_set *c = container_of(b, struct btree, keys)->c;
328
329         uint64_t old_offset;
330         unsigned old_size, sectors_found = 0;
331
332         BUG_ON(!KEY_OFFSET(insert));
333         BUG_ON(!KEY_SIZE(insert));
334
335         while (1) {
336                 struct bkey *k = bch_btree_iter_next(iter);
337                 if (!k)
338                         break;
339
340                 if (bkey_cmp(&START_KEY(k), insert) >= 0) {
341                         if (KEY_SIZE(k))
342                                 break;
343                         else
344                                 continue;
345                 }
346
347                 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
348                         continue;
349
350                 old_offset = KEY_START(k);
351                 old_size = KEY_SIZE(k);
352
353                 /*
354                  * We might overlap with 0 size extents; we can't skip these
355                  * because if they're in the set we're inserting to we have to
356                  * adjust them so they don't overlap with the key we're
357                  * inserting. But we don't want to check them for replace
358                  * operations.
359                  */
360
361                 if (replace_key && KEY_SIZE(k)) {
362                         /*
363                          * k might have been split since we inserted/found the
364                          * key we're replacing
365                          */
366                         unsigned i;
367                         uint64_t offset = KEY_START(k) -
368                                 KEY_START(replace_key);
369
370                         /* But it must be a subset of the replace key */
371                         if (KEY_START(k) < KEY_START(replace_key) ||
372                             KEY_OFFSET(k) > KEY_OFFSET(replace_key))
373                                 goto check_failed;
374
375                         /* We didn't find a key that we were supposed to */
376                         if (KEY_START(k) > KEY_START(insert) + sectors_found)
377                                 goto check_failed;
378
379                         if (!bch_bkey_equal_header(k, replace_key))
380                                 goto check_failed;
381
382                         /* skip past gen */
383                         offset <<= 8;
384
385                         BUG_ON(!KEY_PTRS(replace_key));
386
387                         for (i = 0; i < KEY_PTRS(replace_key); i++)
388                                 if (k->ptr[i] != replace_key->ptr[i] + offset)
389                                         goto check_failed;
390
391                         sectors_found = KEY_OFFSET(k) - KEY_START(insert);
392                 }
393
394                 if (bkey_cmp(insert, k) < 0 &&
395                     bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
396                         /*
397                          * We overlapped in the middle of an existing key: that
398                          * means we have to split the old key. But we have to do
399                          * slightly different things depending on whether the
400                          * old key has been written out yet.
401                          */
402
403                         struct bkey *top;
404
405                         bch_subtract_dirty(k, c, KEY_START(insert),
406                                        KEY_SIZE(insert));
407
408                         if (bkey_written(b, k)) {
409                                 /*
410                                  * We insert a new key to cover the top of the
411                                  * old key, and the old key is modified in place
412                                  * to represent the bottom split.
413                                  *
414                                  * It's completely arbitrary whether the new key
415                                  * is the top or the bottom, but it has to match
416                                  * up with what btree_sort_fixup() does - it
417                                  * doesn't check for this kind of overlap, it
418                                  * depends on us inserting a new key for the top
419                                  * here.
420                                  */
421                                 top = bch_bset_search(b, bset_tree_last(b),
422                                                       insert);
423                                 bch_bset_insert(b, top, k);
424                         } else {
425                                 BKEY_PADDED(key) temp;
426                                 bkey_copy(&temp.key, k);
427                                 bch_bset_insert(b, k, &temp.key);
428                                 top = bkey_next(k);
429                         }
430
431                         bch_cut_front(insert, top);
432                         bch_cut_back(&START_KEY(insert), k);
433                         bch_bset_fix_invalidated_key(b, k);
434                         goto out;
435                 }
436
437                 if (bkey_cmp(insert, k) < 0) {
438                         bch_cut_front(insert, k);
439                 } else {
440                         if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
441                                 old_offset = KEY_START(insert);
442
443                         if (bkey_written(b, k) &&
444                             bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
445                                 /*
446                                  * Completely overwrote, so we don't have to
447                                  * invalidate the binary search tree
448                                  */
449                                 bch_cut_front(k, k);
450                         } else {
451                                 __bch_cut_back(&START_KEY(insert), k);
452                                 bch_bset_fix_invalidated_key(b, k);
453                         }
454                 }
455
456                 bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
457         }
458
459 check_failed:
460         if (replace_key) {
461                 if (!sectors_found) {
462                         return true;
463                 } else if (sectors_found < KEY_SIZE(insert)) {
464                         SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
465                                        (KEY_SIZE(insert) - sectors_found));
466                         SET_KEY_SIZE(insert, sectors_found);
467                 }
468         }
469 out:
470         if (KEY_DIRTY(insert))
471                 bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
472                                              KEY_START(insert),
473                                              KEY_SIZE(insert));
474
475         return false;
476 }
477
478 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
479 {
480         char buf[80];
481
482         if (!KEY_SIZE(k))
483                 return true;
484
485         if (KEY_SIZE(k) > KEY_OFFSET(k))
486                 goto bad;
487
488         if (__ptr_invalid(c, k))
489                 goto bad;
490
491         return false;
492 bad:
493         bch_extent_to_text(buf, sizeof(buf), k);
494         cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
495         return true;
496 }
497
498 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
499 {
500         struct btree *b = container_of(bk, struct btree, keys);
501         return __bch_extent_invalid(b->c, k);
502 }
503
504 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
505                                      unsigned ptr)
506 {
507         struct bucket *g = PTR_BUCKET(b->c, k, ptr);
508         char buf[80];
509
510         if (mutex_trylock(&b->c->bucket_lock)) {
511                 if (b->c->gc_mark_valid &&
512                     (!GC_MARK(g) ||
513                      GC_MARK(g) == GC_MARK_METADATA ||
514                      (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
515                         goto err;
516
517                 if (g->prio == BTREE_PRIO)
518                         goto err;
519
520                 mutex_unlock(&b->c->bucket_lock);
521         }
522
523         return false;
524 err:
525         mutex_unlock(&b->c->bucket_lock);
526         bch_extent_to_text(buf, sizeof(buf), k);
527         btree_bug(b,
528 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
529                   buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
530                   g->prio, g->gen, g->last_gc, GC_MARK(g));
531         return true;
532 }
533
534 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
535 {
536         struct btree *b = container_of(bk, struct btree, keys);
537         struct bucket *g;
538         unsigned i, stale;
539
540         if (!KEY_PTRS(k) ||
541             bch_extent_invalid(bk, k))
542                 return true;
543
544         for (i = 0; i < KEY_PTRS(k); i++)
545                 if (!ptr_available(b->c, k, i))
546                         return true;
547
548         if (!expensive_debug_checks(b->c) && KEY_DIRTY(k))
549                 return false;
550
551         for (i = 0; i < KEY_PTRS(k); i++) {
552                 g = PTR_BUCKET(b->c, k, i);
553                 stale = ptr_stale(b->c, k, i);
554
555                 btree_bug_on(stale > 96, b,
556                              "key too stale: %i, need_gc %u",
557                              stale, b->c->need_gc);
558
559                 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
560                              b, "stale dirty pointer");
561
562                 if (stale)
563                         return true;
564
565                 if (expensive_debug_checks(b->c) &&
566                     bch_extent_bad_expensive(b, k, i))
567                         return true;
568         }
569
570         return false;
571 }
572
573 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
574 {
575         return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
576                 ~((uint64_t)1 << 63);
577 }
578
579 static bool bch_extent_merge(struct btree_keys *bk, struct bkey *l, struct bkey *r)
580 {
581         struct btree *b = container_of(bk, struct btree, keys);
582         unsigned i;
583
584         if (key_merging_disabled(b->c))
585                 return false;
586
587         for (i = 0; i < KEY_PTRS(l); i++)
588                 if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
589                     PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
590                         return false;
591
592         /* Keys with no pointers aren't restricted to one bucket and could
593          * overflow KEY_SIZE
594          */
595         if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
596                 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
597                 SET_KEY_SIZE(l, USHRT_MAX);
598
599                 bch_cut_front(l, r);
600                 return false;
601         }
602
603         if (KEY_CSUM(l)) {
604                 if (KEY_CSUM(r))
605                         l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
606                 else
607                         SET_KEY_CSUM(l, 0);
608         }
609
610         SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
611         SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
612
613         return true;
614 }
615
616 const struct btree_keys_ops bch_extent_keys_ops = {
617         .sort_cmp       = bch_extent_sort_cmp,
618         .sort_fixup     = bch_extent_sort_fixup,
619         .insert_fixup   = bch_extent_insert_fixup,
620         .key_invalid    = bch_extent_invalid,
621         .key_bad        = bch_extent_bad,
622         .key_merge      = bch_extent_merge,
623         .key_to_text    = bch_extent_to_text,
624         .key_dump       = bch_bkey_dump,
625         .is_extents     = true,
626 };