Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/avi/kvm
[sfrench/cifs-2.6.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #ifndef MMU_DEBUG
56 #define ASSERT(x) do { } while (0)
57 #else
58 #define ASSERT(x)                                                       \
59         if (!(x)) {                                                     \
60                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
61                        __FILE__, __LINE__, #x);                         \
62         }
63 #endif
64
65 #define PT64_PT_BITS 9
66 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
67 #define PT32_PT_BITS 10
68 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
69
70 #define PT_WRITABLE_SHIFT 1
71
72 #define PT_PRESENT_MASK (1ULL << 0)
73 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
74 #define PT_USER_MASK (1ULL << 2)
75 #define PT_PWT_MASK (1ULL << 3)
76 #define PT_PCD_MASK (1ULL << 4)
77 #define PT_ACCESSED_MASK (1ULL << 5)
78 #define PT_DIRTY_MASK (1ULL << 6)
79 #define PT_PAGE_SIZE_MASK (1ULL << 7)
80 #define PT_PAT_MASK (1ULL << 7)
81 #define PT_GLOBAL_MASK (1ULL << 8)
82 #define PT64_NX_MASK (1ULL << 63)
83
84 #define PT_PAT_SHIFT 7
85 #define PT_DIR_PAT_SHIFT 12
86 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
87
88 #define PT32_DIR_PSE36_SIZE 4
89 #define PT32_DIR_PSE36_SHIFT 13
90 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
91
92
93 #define PT32_PTE_COPY_MASK \
94         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
95
96 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
97
98 #define PT_FIRST_AVAIL_BITS_SHIFT 9
99 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
100
101 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
102 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
103
104 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
105 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
106
107 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
108 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
109
110 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
111
112 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
113
114 #define PT64_LEVEL_BITS 9
115
116 #define PT64_LEVEL_SHIFT(level) \
117                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
118
119 #define PT64_LEVEL_MASK(level) \
120                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
121
122 #define PT64_INDEX(address, level)\
123         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
124
125
126 #define PT32_LEVEL_BITS 10
127
128 #define PT32_LEVEL_SHIFT(level) \
129                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
130
131 #define PT32_LEVEL_MASK(level) \
132                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
133
134 #define PT32_INDEX(address, level)\
135         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136
137
138 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
139 #define PT64_DIR_BASE_ADDR_MASK \
140         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
141
142 #define PT32_BASE_ADDR_MASK PAGE_MASK
143 #define PT32_DIR_BASE_ADDR_MASK \
144         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
145
146
147 #define PFERR_PRESENT_MASK (1U << 0)
148 #define PFERR_WRITE_MASK (1U << 1)
149 #define PFERR_USER_MASK (1U << 2)
150 #define PFERR_FETCH_MASK (1U << 4)
151
152 #define PT64_ROOT_LEVEL 4
153 #define PT32_ROOT_LEVEL 2
154 #define PT32E_ROOT_LEVEL 3
155
156 #define PT_DIRECTORY_LEVEL 2
157 #define PT_PAGE_TABLE_LEVEL 1
158
159 #define RMAP_EXT 4
160
161 struct kvm_rmap_desc {
162         u64 *shadow_ptes[RMAP_EXT];
163         struct kvm_rmap_desc *more;
164 };
165
166 static struct kmem_cache *pte_chain_cache;
167 static struct kmem_cache *rmap_desc_cache;
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->cr0 & CR0_WP_MASK;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176         return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181         return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186         return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_writeble_pte(unsigned long pte)
190 {
191         return pte & PT_WRITABLE_MASK;
192 }
193
194 static int is_io_pte(unsigned long pte)
195 {
196         return pte & PT_SHADOW_IO_MARK;
197 }
198
199 static int is_rmap_pte(u64 pte)
200 {
201         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
202                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
203 }
204
205 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
206                                   struct kmem_cache *base_cache, int min,
207                                   gfp_t gfp_flags)
208 {
209         void *obj;
210
211         if (cache->nobjs >= min)
212                 return 0;
213         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
214                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
215                 if (!obj)
216                         return -ENOMEM;
217                 cache->objects[cache->nobjs++] = obj;
218         }
219         return 0;
220 }
221
222 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
223 {
224         while (mc->nobjs)
225                 kfree(mc->objects[--mc->nobjs]);
226 }
227
228 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
229 {
230         int r;
231
232         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
233                                    pte_chain_cache, 4, gfp_flags);
234         if (r)
235                 goto out;
236         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
237                                    rmap_desc_cache, 1, gfp_flags);
238 out:
239         return r;
240 }
241
242 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
243 {
244         int r;
245
246         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
247         if (r < 0) {
248                 spin_unlock(&vcpu->kvm->lock);
249                 kvm_arch_ops->vcpu_put(vcpu);
250                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
251                 kvm_arch_ops->vcpu_load(vcpu);
252                 spin_lock(&vcpu->kvm->lock);
253         }
254         return r;
255 }
256
257 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
258 {
259         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
260         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
261 }
262
263 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
264                                     size_t size)
265 {
266         void *p;
267
268         BUG_ON(!mc->nobjs);
269         p = mc->objects[--mc->nobjs];
270         memset(p, 0, size);
271         return p;
272 }
273
274 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
275 {
276         if (mc->nobjs < KVM_NR_MEM_OBJS)
277                 mc->objects[mc->nobjs++] = obj;
278         else
279                 kfree(obj);
280 }
281
282 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
283 {
284         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
285                                       sizeof(struct kvm_pte_chain));
286 }
287
288 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
289                                struct kvm_pte_chain *pc)
290 {
291         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
292 }
293
294 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
295 {
296         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
297                                       sizeof(struct kvm_rmap_desc));
298 }
299
300 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
301                                struct kvm_rmap_desc *rd)
302 {
303         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
304 }
305
306 /*
307  * Reverse mapping data structures:
308  *
309  * If page->private bit zero is zero, then page->private points to the
310  * shadow page table entry that points to page_address(page).
311  *
312  * If page->private bit zero is one, (then page->private & ~1) points
313  * to a struct kvm_rmap_desc containing more mappings.
314  */
315 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
316 {
317         struct page *page;
318         struct kvm_rmap_desc *desc;
319         int i;
320
321         if (!is_rmap_pte(*spte))
322                 return;
323         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
324         if (!page_private(page)) {
325                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
326                 set_page_private(page,(unsigned long)spte);
327         } else if (!(page_private(page) & 1)) {
328                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
329                 desc = mmu_alloc_rmap_desc(vcpu);
330                 desc->shadow_ptes[0] = (u64 *)page_private(page);
331                 desc->shadow_ptes[1] = spte;
332                 set_page_private(page,(unsigned long)desc | 1);
333         } else {
334                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
335                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
336                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
337                         desc = desc->more;
338                 if (desc->shadow_ptes[RMAP_EXT-1]) {
339                         desc->more = mmu_alloc_rmap_desc(vcpu);
340                         desc = desc->more;
341                 }
342                 for (i = 0; desc->shadow_ptes[i]; ++i)
343                         ;
344                 desc->shadow_ptes[i] = spte;
345         }
346 }
347
348 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
349                                    struct page *page,
350                                    struct kvm_rmap_desc *desc,
351                                    int i,
352                                    struct kvm_rmap_desc *prev_desc)
353 {
354         int j;
355
356         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
357                 ;
358         desc->shadow_ptes[i] = desc->shadow_ptes[j];
359         desc->shadow_ptes[j] = NULL;
360         if (j != 0)
361                 return;
362         if (!prev_desc && !desc->more)
363                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
364         else
365                 if (prev_desc)
366                         prev_desc->more = desc->more;
367                 else
368                         set_page_private(page,(unsigned long)desc->more | 1);
369         mmu_free_rmap_desc(vcpu, desc);
370 }
371
372 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
373 {
374         struct page *page;
375         struct kvm_rmap_desc *desc;
376         struct kvm_rmap_desc *prev_desc;
377         int i;
378
379         if (!is_rmap_pte(*spte))
380                 return;
381         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
382         if (!page_private(page)) {
383                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
384                 BUG();
385         } else if (!(page_private(page) & 1)) {
386                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
387                 if ((u64 *)page_private(page) != spte) {
388                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
389                                spte, *spte);
390                         BUG();
391                 }
392                 set_page_private(page,0);
393         } else {
394                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
395                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
396                 prev_desc = NULL;
397                 while (desc) {
398                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
399                                 if (desc->shadow_ptes[i] == spte) {
400                                         rmap_desc_remove_entry(vcpu, page,
401                                                                desc, i,
402                                                                prev_desc);
403                                         return;
404                                 }
405                         prev_desc = desc;
406                         desc = desc->more;
407                 }
408                 BUG();
409         }
410 }
411
412 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
413 {
414         struct kvm *kvm = vcpu->kvm;
415         struct page *page;
416         struct kvm_rmap_desc *desc;
417         u64 *spte;
418
419         page = gfn_to_page(kvm, gfn);
420         BUG_ON(!page);
421
422         while (page_private(page)) {
423                 if (!(page_private(page) & 1))
424                         spte = (u64 *)page_private(page);
425                 else {
426                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
427                         spte = desc->shadow_ptes[0];
428                 }
429                 BUG_ON(!spte);
430                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
431                        != page_to_pfn(page));
432                 BUG_ON(!(*spte & PT_PRESENT_MASK));
433                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
434                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
435                 rmap_remove(vcpu, spte);
436                 kvm_arch_ops->tlb_flush(vcpu);
437                 *spte &= ~(u64)PT_WRITABLE_MASK;
438         }
439 }
440
441 #ifdef MMU_DEBUG
442 static int is_empty_shadow_page(hpa_t page_hpa)
443 {
444         u64 *pos;
445         u64 *end;
446
447         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
448                       pos != end; pos++)
449                 if (*pos != 0) {
450                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
451                                pos, *pos);
452                         return 0;
453                 }
454         return 1;
455 }
456 #endif
457
458 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
459 {
460         struct kvm_mmu_page *page_head = page_header(page_hpa);
461
462         ASSERT(is_empty_shadow_page(page_hpa));
463         page_head->page_hpa = page_hpa;
464         list_move(&page_head->link, &vcpu->free_pages);
465         ++vcpu->kvm->n_free_mmu_pages;
466 }
467
468 static unsigned kvm_page_table_hashfn(gfn_t gfn)
469 {
470         return gfn;
471 }
472
473 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
474                                                u64 *parent_pte)
475 {
476         struct kvm_mmu_page *page;
477
478         if (list_empty(&vcpu->free_pages))
479                 return NULL;
480
481         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
482         list_move(&page->link, &vcpu->kvm->active_mmu_pages);
483         ASSERT(is_empty_shadow_page(page->page_hpa));
484         page->slot_bitmap = 0;
485         page->multimapped = 0;
486         page->parent_pte = parent_pte;
487         --vcpu->kvm->n_free_mmu_pages;
488         return page;
489 }
490
491 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
492                                     struct kvm_mmu_page *page, u64 *parent_pte)
493 {
494         struct kvm_pte_chain *pte_chain;
495         struct hlist_node *node;
496         int i;
497
498         if (!parent_pte)
499                 return;
500         if (!page->multimapped) {
501                 u64 *old = page->parent_pte;
502
503                 if (!old) {
504                         page->parent_pte = parent_pte;
505                         return;
506                 }
507                 page->multimapped = 1;
508                 pte_chain = mmu_alloc_pte_chain(vcpu);
509                 INIT_HLIST_HEAD(&page->parent_ptes);
510                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
511                 pte_chain->parent_ptes[0] = old;
512         }
513         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
514                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
515                         continue;
516                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
517                         if (!pte_chain->parent_ptes[i]) {
518                                 pte_chain->parent_ptes[i] = parent_pte;
519                                 return;
520                         }
521         }
522         pte_chain = mmu_alloc_pte_chain(vcpu);
523         BUG_ON(!pte_chain);
524         hlist_add_head(&pte_chain->link, &page->parent_ptes);
525         pte_chain->parent_ptes[0] = parent_pte;
526 }
527
528 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
529                                        struct kvm_mmu_page *page,
530                                        u64 *parent_pte)
531 {
532         struct kvm_pte_chain *pte_chain;
533         struct hlist_node *node;
534         int i;
535
536         if (!page->multimapped) {
537                 BUG_ON(page->parent_pte != parent_pte);
538                 page->parent_pte = NULL;
539                 return;
540         }
541         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
542                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
543                         if (!pte_chain->parent_ptes[i])
544                                 break;
545                         if (pte_chain->parent_ptes[i] != parent_pte)
546                                 continue;
547                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
548                                 && pte_chain->parent_ptes[i + 1]) {
549                                 pte_chain->parent_ptes[i]
550                                         = pte_chain->parent_ptes[i + 1];
551                                 ++i;
552                         }
553                         pte_chain->parent_ptes[i] = NULL;
554                         if (i == 0) {
555                                 hlist_del(&pte_chain->link);
556                                 mmu_free_pte_chain(vcpu, pte_chain);
557                                 if (hlist_empty(&page->parent_ptes)) {
558                                         page->multimapped = 0;
559                                         page->parent_pte = NULL;
560                                 }
561                         }
562                         return;
563                 }
564         BUG();
565 }
566
567 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
568                                                 gfn_t gfn)
569 {
570         unsigned index;
571         struct hlist_head *bucket;
572         struct kvm_mmu_page *page;
573         struct hlist_node *node;
574
575         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
576         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
577         bucket = &vcpu->kvm->mmu_page_hash[index];
578         hlist_for_each_entry(page, node, bucket, hash_link)
579                 if (page->gfn == gfn && !page->role.metaphysical) {
580                         pgprintk("%s: found role %x\n",
581                                  __FUNCTION__, page->role.word);
582                         return page;
583                 }
584         return NULL;
585 }
586
587 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
588                                              gfn_t gfn,
589                                              gva_t gaddr,
590                                              unsigned level,
591                                              int metaphysical,
592                                              unsigned hugepage_access,
593                                              u64 *parent_pte)
594 {
595         union kvm_mmu_page_role role;
596         unsigned index;
597         unsigned quadrant;
598         struct hlist_head *bucket;
599         struct kvm_mmu_page *page;
600         struct hlist_node *node;
601
602         role.word = 0;
603         role.glevels = vcpu->mmu.root_level;
604         role.level = level;
605         role.metaphysical = metaphysical;
606         role.hugepage_access = hugepage_access;
607         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
608                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
609                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
610                 role.quadrant = quadrant;
611         }
612         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
613                  gfn, role.word);
614         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
615         bucket = &vcpu->kvm->mmu_page_hash[index];
616         hlist_for_each_entry(page, node, bucket, hash_link)
617                 if (page->gfn == gfn && page->role.word == role.word) {
618                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
619                         pgprintk("%s: found\n", __FUNCTION__);
620                         return page;
621                 }
622         page = kvm_mmu_alloc_page(vcpu, parent_pte);
623         if (!page)
624                 return page;
625         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
626         page->gfn = gfn;
627         page->role = role;
628         hlist_add_head(&page->hash_link, bucket);
629         if (!metaphysical)
630                 rmap_write_protect(vcpu, gfn);
631         return page;
632 }
633
634 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
635                                          struct kvm_mmu_page *page)
636 {
637         unsigned i;
638         u64 *pt;
639         u64 ent;
640
641         pt = __va(page->page_hpa);
642
643         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
644                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
645                         if (pt[i] & PT_PRESENT_MASK)
646                                 rmap_remove(vcpu, &pt[i]);
647                         pt[i] = 0;
648                 }
649                 kvm_arch_ops->tlb_flush(vcpu);
650                 return;
651         }
652
653         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
654                 ent = pt[i];
655
656                 pt[i] = 0;
657                 if (!(ent & PT_PRESENT_MASK))
658                         continue;
659                 ent &= PT64_BASE_ADDR_MASK;
660                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
661         }
662 }
663
664 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
665                              struct kvm_mmu_page *page,
666                              u64 *parent_pte)
667 {
668         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
669 }
670
671 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
672                              struct kvm_mmu_page *page)
673 {
674         u64 *parent_pte;
675
676         while (page->multimapped || page->parent_pte) {
677                 if (!page->multimapped)
678                         parent_pte = page->parent_pte;
679                 else {
680                         struct kvm_pte_chain *chain;
681
682                         chain = container_of(page->parent_ptes.first,
683                                              struct kvm_pte_chain, link);
684                         parent_pte = chain->parent_ptes[0];
685                 }
686                 BUG_ON(!parent_pte);
687                 kvm_mmu_put_page(vcpu, page, parent_pte);
688                 *parent_pte = 0;
689         }
690         kvm_mmu_page_unlink_children(vcpu, page);
691         if (!page->root_count) {
692                 hlist_del(&page->hash_link);
693                 kvm_mmu_free_page(vcpu, page->page_hpa);
694         } else
695                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
696 }
697
698 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
699 {
700         unsigned index;
701         struct hlist_head *bucket;
702         struct kvm_mmu_page *page;
703         struct hlist_node *node, *n;
704         int r;
705
706         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
707         r = 0;
708         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
709         bucket = &vcpu->kvm->mmu_page_hash[index];
710         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
711                 if (page->gfn == gfn && !page->role.metaphysical) {
712                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
713                                  page->role.word);
714                         kvm_mmu_zap_page(vcpu, page);
715                         r = 1;
716                 }
717         return r;
718 }
719
720 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
721 {
722         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
723         struct kvm_mmu_page *page_head = page_header(__pa(pte));
724
725         __set_bit(slot, &page_head->slot_bitmap);
726 }
727
728 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
729 {
730         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
731
732         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
733 }
734
735 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
736 {
737         struct page *page;
738
739         ASSERT((gpa & HPA_ERR_MASK) == 0);
740         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
741         if (!page)
742                 return gpa | HPA_ERR_MASK;
743         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
744                 | (gpa & (PAGE_SIZE-1));
745 }
746
747 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
748 {
749         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
750
751         if (gpa == UNMAPPED_GVA)
752                 return UNMAPPED_GVA;
753         return gpa_to_hpa(vcpu, gpa);
754 }
755
756 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
757 {
758         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
759
760         if (gpa == UNMAPPED_GVA)
761                 return NULL;
762         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
763 }
764
765 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
766 {
767 }
768
769 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
770 {
771         int level = PT32E_ROOT_LEVEL;
772         hpa_t table_addr = vcpu->mmu.root_hpa;
773
774         for (; ; level--) {
775                 u32 index = PT64_INDEX(v, level);
776                 u64 *table;
777                 u64 pte;
778
779                 ASSERT(VALID_PAGE(table_addr));
780                 table = __va(table_addr);
781
782                 if (level == 1) {
783                         pte = table[index];
784                         if (is_present_pte(pte) && is_writeble_pte(pte))
785                                 return 0;
786                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
787                         page_header_update_slot(vcpu->kvm, table, v);
788                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
789                                                                 PT_USER_MASK;
790                         rmap_add(vcpu, &table[index]);
791                         return 0;
792                 }
793
794                 if (table[index] == 0) {
795                         struct kvm_mmu_page *new_table;
796                         gfn_t pseudo_gfn;
797
798                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
799                                 >> PAGE_SHIFT;
800                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
801                                                      v, level - 1,
802                                                      1, 0, &table[index]);
803                         if (!new_table) {
804                                 pgprintk("nonpaging_map: ENOMEM\n");
805                                 return -ENOMEM;
806                         }
807
808                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
809                                 | PT_WRITABLE_MASK | PT_USER_MASK;
810                 }
811                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
812         }
813 }
814
815 static void mmu_free_roots(struct kvm_vcpu *vcpu)
816 {
817         int i;
818         struct kvm_mmu_page *page;
819
820 #ifdef CONFIG_X86_64
821         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
822                 hpa_t root = vcpu->mmu.root_hpa;
823
824                 ASSERT(VALID_PAGE(root));
825                 page = page_header(root);
826                 --page->root_count;
827                 vcpu->mmu.root_hpa = INVALID_PAGE;
828                 return;
829         }
830 #endif
831         for (i = 0; i < 4; ++i) {
832                 hpa_t root = vcpu->mmu.pae_root[i];
833
834                 if (root) {
835                         ASSERT(VALID_PAGE(root));
836                         root &= PT64_BASE_ADDR_MASK;
837                         page = page_header(root);
838                         --page->root_count;
839                 }
840                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
841         }
842         vcpu->mmu.root_hpa = INVALID_PAGE;
843 }
844
845 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
846 {
847         int i;
848         gfn_t root_gfn;
849         struct kvm_mmu_page *page;
850
851         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
852
853 #ifdef CONFIG_X86_64
854         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
855                 hpa_t root = vcpu->mmu.root_hpa;
856
857                 ASSERT(!VALID_PAGE(root));
858                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
859                                         PT64_ROOT_LEVEL, 0, 0, NULL);
860                 root = page->page_hpa;
861                 ++page->root_count;
862                 vcpu->mmu.root_hpa = root;
863                 return;
864         }
865 #endif
866         for (i = 0; i < 4; ++i) {
867                 hpa_t root = vcpu->mmu.pae_root[i];
868
869                 ASSERT(!VALID_PAGE(root));
870                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
871                         if (!is_present_pte(vcpu->pdptrs[i])) {
872                                 vcpu->mmu.pae_root[i] = 0;
873                                 continue;
874                         }
875                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
876                 } else if (vcpu->mmu.root_level == 0)
877                         root_gfn = 0;
878                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
879                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
880                                         0, NULL);
881                 root = page->page_hpa;
882                 ++page->root_count;
883                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
884         }
885         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
886 }
887
888 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
889 {
890         return vaddr;
891 }
892
893 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
894                                u32 error_code)
895 {
896         gpa_t addr = gva;
897         hpa_t paddr;
898         int r;
899
900         r = mmu_topup_memory_caches(vcpu);
901         if (r)
902                 return r;
903
904         ASSERT(vcpu);
905         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
906
907
908         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
909
910         if (is_error_hpa(paddr))
911                 return 1;
912
913         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
914 }
915
916 static void nonpaging_free(struct kvm_vcpu *vcpu)
917 {
918         mmu_free_roots(vcpu);
919 }
920
921 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
922 {
923         struct kvm_mmu *context = &vcpu->mmu;
924
925         context->new_cr3 = nonpaging_new_cr3;
926         context->page_fault = nonpaging_page_fault;
927         context->gva_to_gpa = nonpaging_gva_to_gpa;
928         context->free = nonpaging_free;
929         context->root_level = 0;
930         context->shadow_root_level = PT32E_ROOT_LEVEL;
931         mmu_alloc_roots(vcpu);
932         ASSERT(VALID_PAGE(context->root_hpa));
933         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
934         return 0;
935 }
936
937 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
938 {
939         ++vcpu->stat.tlb_flush;
940         kvm_arch_ops->tlb_flush(vcpu);
941 }
942
943 static void paging_new_cr3(struct kvm_vcpu *vcpu)
944 {
945         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
946         mmu_free_roots(vcpu);
947         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
948                 kvm_mmu_free_some_pages(vcpu);
949         mmu_alloc_roots(vcpu);
950         kvm_mmu_flush_tlb(vcpu);
951         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
952 }
953
954 static inline void set_pte_common(struct kvm_vcpu *vcpu,
955                              u64 *shadow_pte,
956                              gpa_t gaddr,
957                              int dirty,
958                              u64 access_bits,
959                              gfn_t gfn)
960 {
961         hpa_t paddr;
962
963         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
964         if (!dirty)
965                 access_bits &= ~PT_WRITABLE_MASK;
966
967         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
968
969         *shadow_pte |= access_bits;
970
971         if (is_error_hpa(paddr)) {
972                 *shadow_pte |= gaddr;
973                 *shadow_pte |= PT_SHADOW_IO_MARK;
974                 *shadow_pte &= ~PT_PRESENT_MASK;
975                 return;
976         }
977
978         *shadow_pte |= paddr;
979
980         if (access_bits & PT_WRITABLE_MASK) {
981                 struct kvm_mmu_page *shadow;
982
983                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
984                 if (shadow) {
985                         pgprintk("%s: found shadow page for %lx, marking ro\n",
986                                  __FUNCTION__, gfn);
987                         access_bits &= ~PT_WRITABLE_MASK;
988                         if (is_writeble_pte(*shadow_pte)) {
989                                     *shadow_pte &= ~PT_WRITABLE_MASK;
990                                     kvm_arch_ops->tlb_flush(vcpu);
991                         }
992                 }
993         }
994
995         if (access_bits & PT_WRITABLE_MASK)
996                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
997
998         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
999         rmap_add(vcpu, shadow_pte);
1000 }
1001
1002 static void inject_page_fault(struct kvm_vcpu *vcpu,
1003                               u64 addr,
1004                               u32 err_code)
1005 {
1006         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
1007 }
1008
1009 static inline int fix_read_pf(u64 *shadow_ent)
1010 {
1011         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
1012             !(*shadow_ent & PT_USER_MASK)) {
1013                 /*
1014                  * If supervisor write protect is disabled, we shadow kernel
1015                  * pages as user pages so we can trap the write access.
1016                  */
1017                 *shadow_ent |= PT_USER_MASK;
1018                 *shadow_ent &= ~PT_WRITABLE_MASK;
1019
1020                 return 1;
1021
1022         }
1023         return 0;
1024 }
1025
1026 static void paging_free(struct kvm_vcpu *vcpu)
1027 {
1028         nonpaging_free(vcpu);
1029 }
1030
1031 #define PTTYPE 64
1032 #include "paging_tmpl.h"
1033 #undef PTTYPE
1034
1035 #define PTTYPE 32
1036 #include "paging_tmpl.h"
1037 #undef PTTYPE
1038
1039 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1040 {
1041         struct kvm_mmu *context = &vcpu->mmu;
1042
1043         ASSERT(is_pae(vcpu));
1044         context->new_cr3 = paging_new_cr3;
1045         context->page_fault = paging64_page_fault;
1046         context->gva_to_gpa = paging64_gva_to_gpa;
1047         context->free = paging_free;
1048         context->root_level = level;
1049         context->shadow_root_level = level;
1050         mmu_alloc_roots(vcpu);
1051         ASSERT(VALID_PAGE(context->root_hpa));
1052         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1053                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1054         return 0;
1055 }
1056
1057 static int paging64_init_context(struct kvm_vcpu *vcpu)
1058 {
1059         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1060 }
1061
1062 static int paging32_init_context(struct kvm_vcpu *vcpu)
1063 {
1064         struct kvm_mmu *context = &vcpu->mmu;
1065
1066         context->new_cr3 = paging_new_cr3;
1067         context->page_fault = paging32_page_fault;
1068         context->gva_to_gpa = paging32_gva_to_gpa;
1069         context->free = paging_free;
1070         context->root_level = PT32_ROOT_LEVEL;
1071         context->shadow_root_level = PT32E_ROOT_LEVEL;
1072         mmu_alloc_roots(vcpu);
1073         ASSERT(VALID_PAGE(context->root_hpa));
1074         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1075                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1076         return 0;
1077 }
1078
1079 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1080 {
1081         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1082 }
1083
1084 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1085 {
1086         ASSERT(vcpu);
1087         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1088
1089         if (!is_paging(vcpu))
1090                 return nonpaging_init_context(vcpu);
1091         else if (is_long_mode(vcpu))
1092                 return paging64_init_context(vcpu);
1093         else if (is_pae(vcpu))
1094                 return paging32E_init_context(vcpu);
1095         else
1096                 return paging32_init_context(vcpu);
1097 }
1098
1099 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1100 {
1101         ASSERT(vcpu);
1102         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1103                 vcpu->mmu.free(vcpu);
1104                 vcpu->mmu.root_hpa = INVALID_PAGE;
1105         }
1106 }
1107
1108 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1109 {
1110         int r;
1111
1112         destroy_kvm_mmu(vcpu);
1113         r = init_kvm_mmu(vcpu);
1114         if (r < 0)
1115                 goto out;
1116         r = mmu_topup_memory_caches(vcpu);
1117 out:
1118         return r;
1119 }
1120
1121 static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
1122                                   struct kvm_mmu_page *page,
1123                                   u64 *spte)
1124 {
1125         u64 pte;
1126         struct kvm_mmu_page *child;
1127
1128         pte = *spte;
1129         if (is_present_pte(pte)) {
1130                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1131                         rmap_remove(vcpu, spte);
1132                 else {
1133                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1134                         mmu_page_remove_parent_pte(vcpu, child, spte);
1135                 }
1136         }
1137         *spte = 0;
1138 }
1139
1140 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1141 {
1142         gfn_t gfn = gpa >> PAGE_SHIFT;
1143         struct kvm_mmu_page *page;
1144         struct hlist_node *node, *n;
1145         struct hlist_head *bucket;
1146         unsigned index;
1147         u64 *spte;
1148         unsigned offset = offset_in_page(gpa);
1149         unsigned pte_size;
1150         unsigned page_offset;
1151         unsigned misaligned;
1152         int level;
1153         int flooded = 0;
1154         int npte;
1155
1156         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1157         if (gfn == vcpu->last_pt_write_gfn) {
1158                 ++vcpu->last_pt_write_count;
1159                 if (vcpu->last_pt_write_count >= 3)
1160                         flooded = 1;
1161         } else {
1162                 vcpu->last_pt_write_gfn = gfn;
1163                 vcpu->last_pt_write_count = 1;
1164         }
1165         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1166         bucket = &vcpu->kvm->mmu_page_hash[index];
1167         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1168                 if (page->gfn != gfn || page->role.metaphysical)
1169                         continue;
1170                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1171                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1172                 if (misaligned || flooded) {
1173                         /*
1174                          * Misaligned accesses are too much trouble to fix
1175                          * up; also, they usually indicate a page is not used
1176                          * as a page table.
1177                          *
1178                          * If we're seeing too many writes to a page,
1179                          * it may no longer be a page table, or we may be
1180                          * forking, in which case it is better to unmap the
1181                          * page.
1182                          */
1183                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1184                                  gpa, bytes, page->role.word);
1185                         kvm_mmu_zap_page(vcpu, page);
1186                         continue;
1187                 }
1188                 page_offset = offset;
1189                 level = page->role.level;
1190                 npte = 1;
1191                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1192                         page_offset <<= 1;      /* 32->64 */
1193                         /*
1194                          * A 32-bit pde maps 4MB while the shadow pdes map
1195                          * only 2MB.  So we need to double the offset again
1196                          * and zap two pdes instead of one.
1197                          */
1198                         if (level == PT32_ROOT_LEVEL) {
1199                                 page_offset &= ~7; /* kill rounding error */
1200                                 page_offset <<= 1;
1201                                 npte = 2;
1202                         }
1203                         page_offset &= ~PAGE_MASK;
1204                 }
1205                 spte = __va(page->page_hpa);
1206                 spte += page_offset / sizeof(*spte);
1207                 while (npte--) {
1208                         mmu_pre_write_zap_pte(vcpu, page, spte);
1209                         ++spte;
1210                 }
1211         }
1212 }
1213
1214 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1215 {
1216 }
1217
1218 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1219 {
1220         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1221
1222         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1223 }
1224
1225 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1226 {
1227         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1228                 struct kvm_mmu_page *page;
1229
1230                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1231                                     struct kvm_mmu_page, link);
1232                 kvm_mmu_zap_page(vcpu, page);
1233         }
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1236
1237 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1238 {
1239         struct kvm_mmu_page *page;
1240
1241         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1242                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1243                                     struct kvm_mmu_page, link);
1244                 kvm_mmu_zap_page(vcpu, page);
1245         }
1246         while (!list_empty(&vcpu->free_pages)) {
1247                 page = list_entry(vcpu->free_pages.next,
1248                                   struct kvm_mmu_page, link);
1249                 list_del(&page->link);
1250                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1251                 page->page_hpa = INVALID_PAGE;
1252         }
1253         free_page((unsigned long)vcpu->mmu.pae_root);
1254 }
1255
1256 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1257 {
1258         struct page *page;
1259         int i;
1260
1261         ASSERT(vcpu);
1262
1263         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1264                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1265
1266                 INIT_LIST_HEAD(&page_header->link);
1267                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1268                         goto error_1;
1269                 set_page_private(page, (unsigned long)page_header);
1270                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1271                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1272                 list_add(&page_header->link, &vcpu->free_pages);
1273                 ++vcpu->kvm->n_free_mmu_pages;
1274         }
1275
1276         /*
1277          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1278          * Therefore we need to allocate shadow page tables in the first
1279          * 4GB of memory, which happens to fit the DMA32 zone.
1280          */
1281         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1282         if (!page)
1283                 goto error_1;
1284         vcpu->mmu.pae_root = page_address(page);
1285         for (i = 0; i < 4; ++i)
1286                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1287
1288         return 0;
1289
1290 error_1:
1291         free_mmu_pages(vcpu);
1292         return -ENOMEM;
1293 }
1294
1295 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1296 {
1297         ASSERT(vcpu);
1298         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1299         ASSERT(list_empty(&vcpu->free_pages));
1300
1301         return alloc_mmu_pages(vcpu);
1302 }
1303
1304 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1305 {
1306         ASSERT(vcpu);
1307         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1308         ASSERT(!list_empty(&vcpu->free_pages));
1309
1310         return init_kvm_mmu(vcpu);
1311 }
1312
1313 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1314 {
1315         ASSERT(vcpu);
1316
1317         destroy_kvm_mmu(vcpu);
1318         free_mmu_pages(vcpu);
1319         mmu_free_memory_caches(vcpu);
1320 }
1321
1322 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1323 {
1324         struct kvm *kvm = vcpu->kvm;
1325         struct kvm_mmu_page *page;
1326
1327         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1328                 int i;
1329                 u64 *pt;
1330
1331                 if (!test_bit(slot, &page->slot_bitmap))
1332                         continue;
1333
1334                 pt = __va(page->page_hpa);
1335                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1336                         /* avoid RMW */
1337                         if (pt[i] & PT_WRITABLE_MASK) {
1338                                 rmap_remove(vcpu, &pt[i]);
1339                                 pt[i] &= ~PT_WRITABLE_MASK;
1340                         }
1341         }
1342 }
1343
1344 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1345 {
1346         destroy_kvm_mmu(vcpu);
1347
1348         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1349                 struct kvm_mmu_page *page;
1350
1351                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1352                                     struct kvm_mmu_page, link);
1353                 kvm_mmu_zap_page(vcpu, page);
1354         }
1355
1356         mmu_free_memory_caches(vcpu);
1357         kvm_arch_ops->tlb_flush(vcpu);
1358         init_kvm_mmu(vcpu);
1359 }
1360
1361 void kvm_mmu_module_exit(void)
1362 {
1363         if (pte_chain_cache)
1364                 kmem_cache_destroy(pte_chain_cache);
1365         if (rmap_desc_cache)
1366                 kmem_cache_destroy(rmap_desc_cache);
1367 }
1368
1369 int kvm_mmu_module_init(void)
1370 {
1371         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1372                                             sizeof(struct kvm_pte_chain),
1373                                             0, 0, NULL, NULL);
1374         if (!pte_chain_cache)
1375                 goto nomem;
1376         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1377                                             sizeof(struct kvm_rmap_desc),
1378                                             0, 0, NULL, NULL);
1379         if (!rmap_desc_cache)
1380                 goto nomem;
1381
1382         return 0;
1383
1384 nomem:
1385         kvm_mmu_module_exit();
1386         return -ENOMEM;
1387 }
1388
1389 #ifdef AUDIT
1390
1391 static const char *audit_msg;
1392
1393 static gva_t canonicalize(gva_t gva)
1394 {
1395 #ifdef CONFIG_X86_64
1396         gva = (long long)(gva << 16) >> 16;
1397 #endif
1398         return gva;
1399 }
1400
1401 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1402                                 gva_t va, int level)
1403 {
1404         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1405         int i;
1406         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1407
1408         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1409                 u64 ent = pt[i];
1410
1411                 if (!(ent & PT_PRESENT_MASK))
1412                         continue;
1413
1414                 va = canonicalize(va);
1415                 if (level > 1)
1416                         audit_mappings_page(vcpu, ent, va, level - 1);
1417                 else {
1418                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1419                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1420
1421                         if ((ent & PT_PRESENT_MASK)
1422                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1423                                 printk(KERN_ERR "audit error: (%s) levels %d"
1424                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1425                                        audit_msg, vcpu->mmu.root_level,
1426                                        va, gpa, hpa, ent);
1427                 }
1428         }
1429 }
1430
1431 static void audit_mappings(struct kvm_vcpu *vcpu)
1432 {
1433         unsigned i;
1434
1435         if (vcpu->mmu.root_level == 4)
1436                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1437         else
1438                 for (i = 0; i < 4; ++i)
1439                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1440                                 audit_mappings_page(vcpu,
1441                                                     vcpu->mmu.pae_root[i],
1442                                                     i << 30,
1443                                                     2);
1444 }
1445
1446 static int count_rmaps(struct kvm_vcpu *vcpu)
1447 {
1448         int nmaps = 0;
1449         int i, j, k;
1450
1451         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1452                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1453                 struct kvm_rmap_desc *d;
1454
1455                 for (j = 0; j < m->npages; ++j) {
1456                         struct page *page = m->phys_mem[j];
1457
1458                         if (!page->private)
1459                                 continue;
1460                         if (!(page->private & 1)) {
1461                                 ++nmaps;
1462                                 continue;
1463                         }
1464                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1465                         while (d) {
1466                                 for (k = 0; k < RMAP_EXT; ++k)
1467                                         if (d->shadow_ptes[k])
1468                                                 ++nmaps;
1469                                         else
1470                                                 break;
1471                                 d = d->more;
1472                         }
1473                 }
1474         }
1475         return nmaps;
1476 }
1477
1478 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1479 {
1480         int nmaps = 0;
1481         struct kvm_mmu_page *page;
1482         int i;
1483
1484         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1485                 u64 *pt = __va(page->page_hpa);
1486
1487                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1488                         continue;
1489
1490                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1491                         u64 ent = pt[i];
1492
1493                         if (!(ent & PT_PRESENT_MASK))
1494                                 continue;
1495                         if (!(ent & PT_WRITABLE_MASK))
1496                                 continue;
1497                         ++nmaps;
1498                 }
1499         }
1500         return nmaps;
1501 }
1502
1503 static void audit_rmap(struct kvm_vcpu *vcpu)
1504 {
1505         int n_rmap = count_rmaps(vcpu);
1506         int n_actual = count_writable_mappings(vcpu);
1507
1508         if (n_rmap != n_actual)
1509                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1510                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1511 }
1512
1513 static void audit_write_protection(struct kvm_vcpu *vcpu)
1514 {
1515         struct kvm_mmu_page *page;
1516
1517         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1518                 hfn_t hfn;
1519                 struct page *pg;
1520
1521                 if (page->role.metaphysical)
1522                         continue;
1523
1524                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1525                         >> PAGE_SHIFT;
1526                 pg = pfn_to_page(hfn);
1527                 if (pg->private)
1528                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1529                                " mappings: gfn %lx role %x\n",
1530                                __FUNCTION__, audit_msg, page->gfn,
1531                                page->role.word);
1532         }
1533 }
1534
1535 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1536 {
1537         int olddbg = dbg;
1538
1539         dbg = 0;
1540         audit_msg = msg;
1541         audit_rmap(vcpu);
1542         audit_write_protection(vcpu);
1543         audit_mappings(vcpu);
1544         dbg = olddbg;
1545 }
1546
1547 #endif