Input: use full RCU API
[sfrench/cifs-2.6.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
31
32 #undef MMU_DEBUG
33
34 #undef AUDIT
35
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
41
42 #ifdef MMU_DEBUG
43
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46
47 #else
48
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
51
52 #endif
53
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
57
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x)                                                       \
62         if (!(x)) {                                                     \
63                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
64                        __FILE__, __LINE__, #x);                         \
65         }
66 #endif
67
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
72
73 #define PT_WRITABLE_SHIFT 1
74
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
86
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
90
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
94
95
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
98
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122
123 #define PT32_INDEX(address, level)\
124         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134
135
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
140
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
144
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
147
148 #define RMAP_EXT 4
149
150 struct kvm_rmap_desc {
151         u64 *shadow_ptes[RMAP_EXT];
152         struct kvm_rmap_desc *more;
153 };
154
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
158
159 static int is_write_protection(struct kvm_vcpu *vcpu)
160 {
161         return vcpu->cr0 & CR0_WP_MASK;
162 }
163
164 static int is_cpuid_PSE36(void)
165 {
166         return 1;
167 }
168
169 static int is_nx(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->shadow_efer & EFER_NX;
172 }
173
174 static int is_present_pte(unsigned long pte)
175 {
176         return pte & PT_PRESENT_MASK;
177 }
178
179 static int is_writeble_pte(unsigned long pte)
180 {
181         return pte & PT_WRITABLE_MASK;
182 }
183
184 static int is_io_pte(unsigned long pte)
185 {
186         return pte & PT_SHADOW_IO_MARK;
187 }
188
189 static int is_rmap_pte(u64 pte)
190 {
191         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
192                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
193 }
194
195 static void set_shadow_pte(u64 *sptep, u64 spte)
196 {
197 #ifdef CONFIG_X86_64
198         set_64bit((unsigned long *)sptep, spte);
199 #else
200         set_64bit((unsigned long long *)sptep, spte);
201 #endif
202 }
203
204 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
205                                   struct kmem_cache *base_cache, int min,
206                                   gfp_t gfp_flags)
207 {
208         void *obj;
209
210         if (cache->nobjs >= min)
211                 return 0;
212         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
213                 obj = kmem_cache_zalloc(base_cache, gfp_flags);
214                 if (!obj)
215                         return -ENOMEM;
216                 cache->objects[cache->nobjs++] = obj;
217         }
218         return 0;
219 }
220
221 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
222 {
223         while (mc->nobjs)
224                 kfree(mc->objects[--mc->nobjs]);
225 }
226
227 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
228                                        int min, gfp_t gfp_flags)
229 {
230         struct page *page;
231
232         if (cache->nobjs >= min)
233                 return 0;
234         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
235                 page = alloc_page(gfp_flags);
236                 if (!page)
237                         return -ENOMEM;
238                 set_page_private(page, 0);
239                 cache->objects[cache->nobjs++] = page_address(page);
240         }
241         return 0;
242 }
243
244 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
245 {
246         while (mc->nobjs)
247                 free_page((unsigned long)mc->objects[--mc->nobjs]);
248 }
249
250 static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
251 {
252         int r;
253
254         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
255                                    pte_chain_cache, 4, gfp_flags);
256         if (r)
257                 goto out;
258         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
259                                    rmap_desc_cache, 1, gfp_flags);
260         if (r)
261                 goto out;
262         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4, gfp_flags);
263         if (r)
264                 goto out;
265         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
266                                    mmu_page_header_cache, 4, gfp_flags);
267 out:
268         return r;
269 }
270
271 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
272 {
273         int r;
274
275         r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
276         kvm_mmu_free_some_pages(vcpu);
277         if (r < 0) {
278                 spin_unlock(&vcpu->kvm->lock);
279                 kvm_arch_ops->vcpu_put(vcpu);
280                 r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
281                 kvm_arch_ops->vcpu_load(vcpu);
282                 spin_lock(&vcpu->kvm->lock);
283                 kvm_mmu_free_some_pages(vcpu);
284         }
285         return r;
286 }
287
288 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
289 {
290         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
291         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
292         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
293         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
294 }
295
296 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
297                                     size_t size)
298 {
299         void *p;
300
301         BUG_ON(!mc->nobjs);
302         p = mc->objects[--mc->nobjs];
303         memset(p, 0, size);
304         return p;
305 }
306
307 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
308 {
309         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
310                                       sizeof(struct kvm_pte_chain));
311 }
312
313 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
314 {
315         kfree(pc);
316 }
317
318 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
319 {
320         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
321                                       sizeof(struct kvm_rmap_desc));
322 }
323
324 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
325 {
326         kfree(rd);
327 }
328
329 /*
330  * Reverse mapping data structures:
331  *
332  * If page->private bit zero is zero, then page->private points to the
333  * shadow page table entry that points to page_address(page).
334  *
335  * If page->private bit zero is one, (then page->private & ~1) points
336  * to a struct kvm_rmap_desc containing more mappings.
337  */
338 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
339 {
340         struct page *page;
341         struct kvm_rmap_desc *desc;
342         int i;
343
344         if (!is_rmap_pte(*spte))
345                 return;
346         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
347         if (!page_private(page)) {
348                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
349                 set_page_private(page,(unsigned long)spte);
350         } else if (!(page_private(page) & 1)) {
351                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
352                 desc = mmu_alloc_rmap_desc(vcpu);
353                 desc->shadow_ptes[0] = (u64 *)page_private(page);
354                 desc->shadow_ptes[1] = spte;
355                 set_page_private(page,(unsigned long)desc | 1);
356         } else {
357                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
358                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
359                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
360                         desc = desc->more;
361                 if (desc->shadow_ptes[RMAP_EXT-1]) {
362                         desc->more = mmu_alloc_rmap_desc(vcpu);
363                         desc = desc->more;
364                 }
365                 for (i = 0; desc->shadow_ptes[i]; ++i)
366                         ;
367                 desc->shadow_ptes[i] = spte;
368         }
369 }
370
371 static void rmap_desc_remove_entry(struct page *page,
372                                    struct kvm_rmap_desc *desc,
373                                    int i,
374                                    struct kvm_rmap_desc *prev_desc)
375 {
376         int j;
377
378         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
379                 ;
380         desc->shadow_ptes[i] = desc->shadow_ptes[j];
381         desc->shadow_ptes[j] = NULL;
382         if (j != 0)
383                 return;
384         if (!prev_desc && !desc->more)
385                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
386         else
387                 if (prev_desc)
388                         prev_desc->more = desc->more;
389                 else
390                         set_page_private(page,(unsigned long)desc->more | 1);
391         mmu_free_rmap_desc(desc);
392 }
393
394 static void rmap_remove(u64 *spte)
395 {
396         struct page *page;
397         struct kvm_rmap_desc *desc;
398         struct kvm_rmap_desc *prev_desc;
399         int i;
400
401         if (!is_rmap_pte(*spte))
402                 return;
403         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
404         if (!page_private(page)) {
405                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
406                 BUG();
407         } else if (!(page_private(page) & 1)) {
408                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
409                 if ((u64 *)page_private(page) != spte) {
410                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
411                                spte, *spte);
412                         BUG();
413                 }
414                 set_page_private(page,0);
415         } else {
416                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
417                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
418                 prev_desc = NULL;
419                 while (desc) {
420                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
421                                 if (desc->shadow_ptes[i] == spte) {
422                                         rmap_desc_remove_entry(page,
423                                                                desc, i,
424                                                                prev_desc);
425                                         return;
426                                 }
427                         prev_desc = desc;
428                         desc = desc->more;
429                 }
430                 BUG();
431         }
432 }
433
434 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
435 {
436         struct kvm *kvm = vcpu->kvm;
437         struct page *page;
438         struct kvm_rmap_desc *desc;
439         u64 *spte;
440
441         page = gfn_to_page(kvm, gfn);
442         BUG_ON(!page);
443
444         while (page_private(page)) {
445                 if (!(page_private(page) & 1))
446                         spte = (u64 *)page_private(page);
447                 else {
448                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
449                         spte = desc->shadow_ptes[0];
450                 }
451                 BUG_ON(!spte);
452                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
453                        != page_to_pfn(page));
454                 BUG_ON(!(*spte & PT_PRESENT_MASK));
455                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
456                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
457                 rmap_remove(spte);
458                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
459                 kvm_flush_remote_tlbs(vcpu->kvm);
460         }
461 }
462
463 #ifdef MMU_DEBUG
464 static int is_empty_shadow_page(u64 *spt)
465 {
466         u64 *pos;
467         u64 *end;
468
469         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
470                 if (*pos != 0) {
471                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
472                                pos, *pos);
473                         return 0;
474                 }
475         return 1;
476 }
477 #endif
478
479 static void kvm_mmu_free_page(struct kvm *kvm,
480                               struct kvm_mmu_page *page_head)
481 {
482         ASSERT(is_empty_shadow_page(page_head->spt));
483         list_del(&page_head->link);
484         __free_page(virt_to_page(page_head->spt));
485         kfree(page_head);
486         ++kvm->n_free_mmu_pages;
487 }
488
489 static unsigned kvm_page_table_hashfn(gfn_t gfn)
490 {
491         return gfn;
492 }
493
494 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
495                                                u64 *parent_pte)
496 {
497         struct kvm_mmu_page *page;
498
499         if (!vcpu->kvm->n_free_mmu_pages)
500                 return NULL;
501
502         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
503                                       sizeof *page);
504         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
505         set_page_private(virt_to_page(page->spt), (unsigned long)page);
506         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
507         ASSERT(is_empty_shadow_page(page->spt));
508         page->slot_bitmap = 0;
509         page->multimapped = 0;
510         page->parent_pte = parent_pte;
511         --vcpu->kvm->n_free_mmu_pages;
512         return page;
513 }
514
515 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
516                                     struct kvm_mmu_page *page, u64 *parent_pte)
517 {
518         struct kvm_pte_chain *pte_chain;
519         struct hlist_node *node;
520         int i;
521
522         if (!parent_pte)
523                 return;
524         if (!page->multimapped) {
525                 u64 *old = page->parent_pte;
526
527                 if (!old) {
528                         page->parent_pte = parent_pte;
529                         return;
530                 }
531                 page->multimapped = 1;
532                 pte_chain = mmu_alloc_pte_chain(vcpu);
533                 INIT_HLIST_HEAD(&page->parent_ptes);
534                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
535                 pte_chain->parent_ptes[0] = old;
536         }
537         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
538                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
539                         continue;
540                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
541                         if (!pte_chain->parent_ptes[i]) {
542                                 pte_chain->parent_ptes[i] = parent_pte;
543                                 return;
544                         }
545         }
546         pte_chain = mmu_alloc_pte_chain(vcpu);
547         BUG_ON(!pte_chain);
548         hlist_add_head(&pte_chain->link, &page->parent_ptes);
549         pte_chain->parent_ptes[0] = parent_pte;
550 }
551
552 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
553                                        u64 *parent_pte)
554 {
555         struct kvm_pte_chain *pte_chain;
556         struct hlist_node *node;
557         int i;
558
559         if (!page->multimapped) {
560                 BUG_ON(page->parent_pte != parent_pte);
561                 page->parent_pte = NULL;
562                 return;
563         }
564         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
565                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
566                         if (!pte_chain->parent_ptes[i])
567                                 break;
568                         if (pte_chain->parent_ptes[i] != parent_pte)
569                                 continue;
570                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
571                                 && pte_chain->parent_ptes[i + 1]) {
572                                 pte_chain->parent_ptes[i]
573                                         = pte_chain->parent_ptes[i + 1];
574                                 ++i;
575                         }
576                         pte_chain->parent_ptes[i] = NULL;
577                         if (i == 0) {
578                                 hlist_del(&pte_chain->link);
579                                 mmu_free_pte_chain(pte_chain);
580                                 if (hlist_empty(&page->parent_ptes)) {
581                                         page->multimapped = 0;
582                                         page->parent_pte = NULL;
583                                 }
584                         }
585                         return;
586                 }
587         BUG();
588 }
589
590 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
591                                                 gfn_t gfn)
592 {
593         unsigned index;
594         struct hlist_head *bucket;
595         struct kvm_mmu_page *page;
596         struct hlist_node *node;
597
598         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
599         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
600         bucket = &vcpu->kvm->mmu_page_hash[index];
601         hlist_for_each_entry(page, node, bucket, hash_link)
602                 if (page->gfn == gfn && !page->role.metaphysical) {
603                         pgprintk("%s: found role %x\n",
604                                  __FUNCTION__, page->role.word);
605                         return page;
606                 }
607         return NULL;
608 }
609
610 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
611                                              gfn_t gfn,
612                                              gva_t gaddr,
613                                              unsigned level,
614                                              int metaphysical,
615                                              unsigned hugepage_access,
616                                              u64 *parent_pte)
617 {
618         union kvm_mmu_page_role role;
619         unsigned index;
620         unsigned quadrant;
621         struct hlist_head *bucket;
622         struct kvm_mmu_page *page;
623         struct hlist_node *node;
624
625         role.word = 0;
626         role.glevels = vcpu->mmu.root_level;
627         role.level = level;
628         role.metaphysical = metaphysical;
629         role.hugepage_access = hugepage_access;
630         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
631                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
632                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
633                 role.quadrant = quadrant;
634         }
635         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
636                  gfn, role.word);
637         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
638         bucket = &vcpu->kvm->mmu_page_hash[index];
639         hlist_for_each_entry(page, node, bucket, hash_link)
640                 if (page->gfn == gfn && page->role.word == role.word) {
641                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
642                         pgprintk("%s: found\n", __FUNCTION__);
643                         return page;
644                 }
645         page = kvm_mmu_alloc_page(vcpu, parent_pte);
646         if (!page)
647                 return page;
648         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
649         page->gfn = gfn;
650         page->role = role;
651         hlist_add_head(&page->hash_link, bucket);
652         if (!metaphysical)
653                 rmap_write_protect(vcpu, gfn);
654         return page;
655 }
656
657 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
658                                          struct kvm_mmu_page *page)
659 {
660         unsigned i;
661         u64 *pt;
662         u64 ent;
663
664         pt = page->spt;
665
666         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
667                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
668                         if (pt[i] & PT_PRESENT_MASK)
669                                 rmap_remove(&pt[i]);
670                         pt[i] = 0;
671                 }
672                 kvm_flush_remote_tlbs(kvm);
673                 return;
674         }
675
676         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
677                 ent = pt[i];
678
679                 pt[i] = 0;
680                 if (!(ent & PT_PRESENT_MASK))
681                         continue;
682                 ent &= PT64_BASE_ADDR_MASK;
683                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
684         }
685         kvm_flush_remote_tlbs(kvm);
686 }
687
688 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
689                              u64 *parent_pte)
690 {
691         mmu_page_remove_parent_pte(page, parent_pte);
692 }
693
694 static void kvm_mmu_zap_page(struct kvm *kvm,
695                              struct kvm_mmu_page *page)
696 {
697         u64 *parent_pte;
698
699         while (page->multimapped || page->parent_pte) {
700                 if (!page->multimapped)
701                         parent_pte = page->parent_pte;
702                 else {
703                         struct kvm_pte_chain *chain;
704
705                         chain = container_of(page->parent_ptes.first,
706                                              struct kvm_pte_chain, link);
707                         parent_pte = chain->parent_ptes[0];
708                 }
709                 BUG_ON(!parent_pte);
710                 kvm_mmu_put_page(page, parent_pte);
711                 set_shadow_pte(parent_pte, 0);
712         }
713         kvm_mmu_page_unlink_children(kvm, page);
714         if (!page->root_count) {
715                 hlist_del(&page->hash_link);
716                 kvm_mmu_free_page(kvm, page);
717         } else
718                 list_move(&page->link, &kvm->active_mmu_pages);
719 }
720
721 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
722 {
723         unsigned index;
724         struct hlist_head *bucket;
725         struct kvm_mmu_page *page;
726         struct hlist_node *node, *n;
727         int r;
728
729         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
730         r = 0;
731         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
732         bucket = &vcpu->kvm->mmu_page_hash[index];
733         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
734                 if (page->gfn == gfn && !page->role.metaphysical) {
735                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
736                                  page->role.word);
737                         kvm_mmu_zap_page(vcpu->kvm, page);
738                         r = 1;
739                 }
740         return r;
741 }
742
743 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
744 {
745         struct kvm_mmu_page *page;
746
747         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
748                 pgprintk("%s: zap %lx %x\n",
749                          __FUNCTION__, gfn, page->role.word);
750                 kvm_mmu_zap_page(vcpu->kvm, page);
751         }
752 }
753
754 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
755 {
756         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
757         struct kvm_mmu_page *page_head = page_header(__pa(pte));
758
759         __set_bit(slot, &page_head->slot_bitmap);
760 }
761
762 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
763 {
764         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
765
766         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
767 }
768
769 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
770 {
771         struct page *page;
772
773         ASSERT((gpa & HPA_ERR_MASK) == 0);
774         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
775         if (!page)
776                 return gpa | HPA_ERR_MASK;
777         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
778                 | (gpa & (PAGE_SIZE-1));
779 }
780
781 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
782 {
783         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
784
785         if (gpa == UNMAPPED_GVA)
786                 return UNMAPPED_GVA;
787         return gpa_to_hpa(vcpu, gpa);
788 }
789
790 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
791 {
792         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
793
794         if (gpa == UNMAPPED_GVA)
795                 return NULL;
796         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
797 }
798
799 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
800 {
801 }
802
803 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
804 {
805         int level = PT32E_ROOT_LEVEL;
806         hpa_t table_addr = vcpu->mmu.root_hpa;
807
808         for (; ; level--) {
809                 u32 index = PT64_INDEX(v, level);
810                 u64 *table;
811                 u64 pte;
812
813                 ASSERT(VALID_PAGE(table_addr));
814                 table = __va(table_addr);
815
816                 if (level == 1) {
817                         pte = table[index];
818                         if (is_present_pte(pte) && is_writeble_pte(pte))
819                                 return 0;
820                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
821                         page_header_update_slot(vcpu->kvm, table, v);
822                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
823                                                                 PT_USER_MASK;
824                         rmap_add(vcpu, &table[index]);
825                         return 0;
826                 }
827
828                 if (table[index] == 0) {
829                         struct kvm_mmu_page *new_table;
830                         gfn_t pseudo_gfn;
831
832                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
833                                 >> PAGE_SHIFT;
834                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
835                                                      v, level - 1,
836                                                      1, 0, &table[index]);
837                         if (!new_table) {
838                                 pgprintk("nonpaging_map: ENOMEM\n");
839                                 return -ENOMEM;
840                         }
841
842                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
843                                 | PT_WRITABLE_MASK | PT_USER_MASK;
844                 }
845                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
846         }
847 }
848
849 static void mmu_free_roots(struct kvm_vcpu *vcpu)
850 {
851         int i;
852         struct kvm_mmu_page *page;
853
854         if (!VALID_PAGE(vcpu->mmu.root_hpa))
855                 return;
856 #ifdef CONFIG_X86_64
857         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
858                 hpa_t root = vcpu->mmu.root_hpa;
859
860                 page = page_header(root);
861                 --page->root_count;
862                 vcpu->mmu.root_hpa = INVALID_PAGE;
863                 return;
864         }
865 #endif
866         for (i = 0; i < 4; ++i) {
867                 hpa_t root = vcpu->mmu.pae_root[i];
868
869                 if (root) {
870                         root &= PT64_BASE_ADDR_MASK;
871                         page = page_header(root);
872                         --page->root_count;
873                 }
874                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
875         }
876         vcpu->mmu.root_hpa = INVALID_PAGE;
877 }
878
879 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
880 {
881         int i;
882         gfn_t root_gfn;
883         struct kvm_mmu_page *page;
884
885         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
886
887 #ifdef CONFIG_X86_64
888         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
889                 hpa_t root = vcpu->mmu.root_hpa;
890
891                 ASSERT(!VALID_PAGE(root));
892                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
893                                         PT64_ROOT_LEVEL, 0, 0, NULL);
894                 root = __pa(page->spt);
895                 ++page->root_count;
896                 vcpu->mmu.root_hpa = root;
897                 return;
898         }
899 #endif
900         for (i = 0; i < 4; ++i) {
901                 hpa_t root = vcpu->mmu.pae_root[i];
902
903                 ASSERT(!VALID_PAGE(root));
904                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
905                         if (!is_present_pte(vcpu->pdptrs[i])) {
906                                 vcpu->mmu.pae_root[i] = 0;
907                                 continue;
908                         }
909                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
910                 } else if (vcpu->mmu.root_level == 0)
911                         root_gfn = 0;
912                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
913                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
914                                         0, NULL);
915                 root = __pa(page->spt);
916                 ++page->root_count;
917                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
918         }
919         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
920 }
921
922 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
923 {
924         return vaddr;
925 }
926
927 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
928                                u32 error_code)
929 {
930         gpa_t addr = gva;
931         hpa_t paddr;
932         int r;
933
934         r = mmu_topup_memory_caches(vcpu);
935         if (r)
936                 return r;
937
938         ASSERT(vcpu);
939         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
940
941
942         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
943
944         if (is_error_hpa(paddr))
945                 return 1;
946
947         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
948 }
949
950 static void nonpaging_free(struct kvm_vcpu *vcpu)
951 {
952         mmu_free_roots(vcpu);
953 }
954
955 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
956 {
957         struct kvm_mmu *context = &vcpu->mmu;
958
959         context->new_cr3 = nonpaging_new_cr3;
960         context->page_fault = nonpaging_page_fault;
961         context->gva_to_gpa = nonpaging_gva_to_gpa;
962         context->free = nonpaging_free;
963         context->root_level = 0;
964         context->shadow_root_level = PT32E_ROOT_LEVEL;
965         context->root_hpa = INVALID_PAGE;
966         return 0;
967 }
968
969 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
970 {
971         ++vcpu->stat.tlb_flush;
972         kvm_arch_ops->tlb_flush(vcpu);
973 }
974
975 static void paging_new_cr3(struct kvm_vcpu *vcpu)
976 {
977         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
978         mmu_free_roots(vcpu);
979 }
980
981 static void inject_page_fault(struct kvm_vcpu *vcpu,
982                               u64 addr,
983                               u32 err_code)
984 {
985         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
986 }
987
988 static void paging_free(struct kvm_vcpu *vcpu)
989 {
990         nonpaging_free(vcpu);
991 }
992
993 #define PTTYPE 64
994 #include "paging_tmpl.h"
995 #undef PTTYPE
996
997 #define PTTYPE 32
998 #include "paging_tmpl.h"
999 #undef PTTYPE
1000
1001 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1002 {
1003         struct kvm_mmu *context = &vcpu->mmu;
1004
1005         ASSERT(is_pae(vcpu));
1006         context->new_cr3 = paging_new_cr3;
1007         context->page_fault = paging64_page_fault;
1008         context->gva_to_gpa = paging64_gva_to_gpa;
1009         context->free = paging_free;
1010         context->root_level = level;
1011         context->shadow_root_level = level;
1012         context->root_hpa = INVALID_PAGE;
1013         return 0;
1014 }
1015
1016 static int paging64_init_context(struct kvm_vcpu *vcpu)
1017 {
1018         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1019 }
1020
1021 static int paging32_init_context(struct kvm_vcpu *vcpu)
1022 {
1023         struct kvm_mmu *context = &vcpu->mmu;
1024
1025         context->new_cr3 = paging_new_cr3;
1026         context->page_fault = paging32_page_fault;
1027         context->gva_to_gpa = paging32_gva_to_gpa;
1028         context->free = paging_free;
1029         context->root_level = PT32_ROOT_LEVEL;
1030         context->shadow_root_level = PT32E_ROOT_LEVEL;
1031         context->root_hpa = INVALID_PAGE;
1032         return 0;
1033 }
1034
1035 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1036 {
1037         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1038 }
1039
1040 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1041 {
1042         ASSERT(vcpu);
1043         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1044
1045         if (!is_paging(vcpu))
1046                 return nonpaging_init_context(vcpu);
1047         else if (is_long_mode(vcpu))
1048                 return paging64_init_context(vcpu);
1049         else if (is_pae(vcpu))
1050                 return paging32E_init_context(vcpu);
1051         else
1052                 return paging32_init_context(vcpu);
1053 }
1054
1055 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1056 {
1057         ASSERT(vcpu);
1058         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1059                 vcpu->mmu.free(vcpu);
1060                 vcpu->mmu.root_hpa = INVALID_PAGE;
1061         }
1062 }
1063
1064 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1065 {
1066         destroy_kvm_mmu(vcpu);
1067         return init_kvm_mmu(vcpu);
1068 }
1069
1070 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1071 {
1072         int r;
1073
1074         spin_lock(&vcpu->kvm->lock);
1075         r = mmu_topup_memory_caches(vcpu);
1076         if (r)
1077                 goto out;
1078         mmu_alloc_roots(vcpu);
1079         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1080         kvm_mmu_flush_tlb(vcpu);
1081 out:
1082         spin_unlock(&vcpu->kvm->lock);
1083         return r;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1086
1087 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1088 {
1089         mmu_free_roots(vcpu);
1090 }
1091
1092 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1093                                   struct kvm_mmu_page *page,
1094                                   u64 *spte)
1095 {
1096         u64 pte;
1097         struct kvm_mmu_page *child;
1098
1099         pte = *spte;
1100         if (is_present_pte(pte)) {
1101                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1102                         rmap_remove(spte);
1103                 else {
1104                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1105                         mmu_page_remove_parent_pte(child, spte);
1106                 }
1107         }
1108         *spte = 0;
1109         kvm_flush_remote_tlbs(vcpu->kvm);
1110 }
1111
1112 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1113                                   struct kvm_mmu_page *page,
1114                                   u64 *spte,
1115                                   const void *new, int bytes)
1116 {
1117         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1118                 return;
1119
1120         if (page->role.glevels == PT32_ROOT_LEVEL)
1121                 paging32_update_pte(vcpu, page, spte, new, bytes);
1122         else
1123                 paging64_update_pte(vcpu, page, spte, new, bytes);
1124 }
1125
1126 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1127                        const u8 *old, const u8 *new, int bytes)
1128 {
1129         gfn_t gfn = gpa >> PAGE_SHIFT;
1130         struct kvm_mmu_page *page;
1131         struct hlist_node *node, *n;
1132         struct hlist_head *bucket;
1133         unsigned index;
1134         u64 *spte;
1135         unsigned offset = offset_in_page(gpa);
1136         unsigned pte_size;
1137         unsigned page_offset;
1138         unsigned misaligned;
1139         unsigned quadrant;
1140         int level;
1141         int flooded = 0;
1142         int npte;
1143
1144         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1145         if (gfn == vcpu->last_pt_write_gfn) {
1146                 ++vcpu->last_pt_write_count;
1147                 if (vcpu->last_pt_write_count >= 3)
1148                         flooded = 1;
1149         } else {
1150                 vcpu->last_pt_write_gfn = gfn;
1151                 vcpu->last_pt_write_count = 1;
1152         }
1153         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1154         bucket = &vcpu->kvm->mmu_page_hash[index];
1155         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1156                 if (page->gfn != gfn || page->role.metaphysical)
1157                         continue;
1158                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1159                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1160                 misaligned |= bytes < 4;
1161                 if (misaligned || flooded) {
1162                         /*
1163                          * Misaligned accesses are too much trouble to fix
1164                          * up; also, they usually indicate a page is not used
1165                          * as a page table.
1166                          *
1167                          * If we're seeing too many writes to a page,
1168                          * it may no longer be a page table, or we may be
1169                          * forking, in which case it is better to unmap the
1170                          * page.
1171                          */
1172                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1173                                  gpa, bytes, page->role.word);
1174                         kvm_mmu_zap_page(vcpu->kvm, page);
1175                         continue;
1176                 }
1177                 page_offset = offset;
1178                 level = page->role.level;
1179                 npte = 1;
1180                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1181                         page_offset <<= 1;      /* 32->64 */
1182                         /*
1183                          * A 32-bit pde maps 4MB while the shadow pdes map
1184                          * only 2MB.  So we need to double the offset again
1185                          * and zap two pdes instead of one.
1186                          */
1187                         if (level == PT32_ROOT_LEVEL) {
1188                                 page_offset &= ~7; /* kill rounding error */
1189                                 page_offset <<= 1;
1190                                 npte = 2;
1191                         }
1192                         quadrant = page_offset >> PAGE_SHIFT;
1193                         page_offset &= ~PAGE_MASK;
1194                         if (quadrant != page->role.quadrant)
1195                                 continue;
1196                 }
1197                 spte = &page->spt[page_offset / sizeof(*spte)];
1198                 while (npte--) {
1199                         mmu_pte_write_zap_pte(vcpu, page, spte);
1200                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
1201                         ++spte;
1202                 }
1203         }
1204 }
1205
1206 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1207 {
1208         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1209
1210         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1211 }
1212
1213 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1214 {
1215         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1216                 struct kvm_mmu_page *page;
1217
1218                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1219                                     struct kvm_mmu_page, link);
1220                 kvm_mmu_zap_page(vcpu->kvm, page);
1221         }
1222 }
1223
1224 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1225 {
1226         struct kvm_mmu_page *page;
1227
1228         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1229                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1230                                     struct kvm_mmu_page, link);
1231                 kvm_mmu_zap_page(vcpu->kvm, page);
1232         }
1233         free_page((unsigned long)vcpu->mmu.pae_root);
1234 }
1235
1236 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1237 {
1238         struct page *page;
1239         int i;
1240
1241         ASSERT(vcpu);
1242
1243         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1244
1245         /*
1246          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1247          * Therefore we need to allocate shadow page tables in the first
1248          * 4GB of memory, which happens to fit the DMA32 zone.
1249          */
1250         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1251         if (!page)
1252                 goto error_1;
1253         vcpu->mmu.pae_root = page_address(page);
1254         for (i = 0; i < 4; ++i)
1255                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1256
1257         return 0;
1258
1259 error_1:
1260         free_mmu_pages(vcpu);
1261         return -ENOMEM;
1262 }
1263
1264 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1265 {
1266         ASSERT(vcpu);
1267         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1268
1269         return alloc_mmu_pages(vcpu);
1270 }
1271
1272 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1273 {
1274         ASSERT(vcpu);
1275         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1276
1277         return init_kvm_mmu(vcpu);
1278 }
1279
1280 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1281 {
1282         ASSERT(vcpu);
1283
1284         destroy_kvm_mmu(vcpu);
1285         free_mmu_pages(vcpu);
1286         mmu_free_memory_caches(vcpu);
1287 }
1288
1289 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1290 {
1291         struct kvm_mmu_page *page;
1292
1293         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1294                 int i;
1295                 u64 *pt;
1296
1297                 if (!test_bit(slot, &page->slot_bitmap))
1298                         continue;
1299
1300                 pt = page->spt;
1301                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1302                         /* avoid RMW */
1303                         if (pt[i] & PT_WRITABLE_MASK) {
1304                                 rmap_remove(&pt[i]);
1305                                 pt[i] &= ~PT_WRITABLE_MASK;
1306                         }
1307         }
1308 }
1309
1310 void kvm_mmu_zap_all(struct kvm *kvm)
1311 {
1312         struct kvm_mmu_page *page, *node;
1313
1314         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1315                 kvm_mmu_zap_page(kvm, page);
1316
1317         kvm_flush_remote_tlbs(kvm);
1318 }
1319
1320 void kvm_mmu_module_exit(void)
1321 {
1322         if (pte_chain_cache)
1323                 kmem_cache_destroy(pte_chain_cache);
1324         if (rmap_desc_cache)
1325                 kmem_cache_destroy(rmap_desc_cache);
1326         if (mmu_page_header_cache)
1327                 kmem_cache_destroy(mmu_page_header_cache);
1328 }
1329
1330 int kvm_mmu_module_init(void)
1331 {
1332         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1333                                             sizeof(struct kvm_pte_chain),
1334                                             0, 0, NULL);
1335         if (!pte_chain_cache)
1336                 goto nomem;
1337         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1338                                             sizeof(struct kvm_rmap_desc),
1339                                             0, 0, NULL);
1340         if (!rmap_desc_cache)
1341                 goto nomem;
1342
1343         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1344                                                   sizeof(struct kvm_mmu_page),
1345                                                   0, 0, NULL);
1346         if (!mmu_page_header_cache)
1347                 goto nomem;
1348
1349         return 0;
1350
1351 nomem:
1352         kvm_mmu_module_exit();
1353         return -ENOMEM;
1354 }
1355
1356 #ifdef AUDIT
1357
1358 static const char *audit_msg;
1359
1360 static gva_t canonicalize(gva_t gva)
1361 {
1362 #ifdef CONFIG_X86_64
1363         gva = (long long)(gva << 16) >> 16;
1364 #endif
1365         return gva;
1366 }
1367
1368 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1369                                 gva_t va, int level)
1370 {
1371         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1372         int i;
1373         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1374
1375         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1376                 u64 ent = pt[i];
1377
1378                 if (!(ent & PT_PRESENT_MASK))
1379                         continue;
1380
1381                 va = canonicalize(va);
1382                 if (level > 1)
1383                         audit_mappings_page(vcpu, ent, va, level - 1);
1384                 else {
1385                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1386                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1387
1388                         if ((ent & PT_PRESENT_MASK)
1389                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1390                                 printk(KERN_ERR "audit error: (%s) levels %d"
1391                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1392                                        audit_msg, vcpu->mmu.root_level,
1393                                        va, gpa, hpa, ent);
1394                 }
1395         }
1396 }
1397
1398 static void audit_mappings(struct kvm_vcpu *vcpu)
1399 {
1400         unsigned i;
1401
1402         if (vcpu->mmu.root_level == 4)
1403                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1404         else
1405                 for (i = 0; i < 4; ++i)
1406                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1407                                 audit_mappings_page(vcpu,
1408                                                     vcpu->mmu.pae_root[i],
1409                                                     i << 30,
1410                                                     2);
1411 }
1412
1413 static int count_rmaps(struct kvm_vcpu *vcpu)
1414 {
1415         int nmaps = 0;
1416         int i, j, k;
1417
1418         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1419                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1420                 struct kvm_rmap_desc *d;
1421
1422                 for (j = 0; j < m->npages; ++j) {
1423                         struct page *page = m->phys_mem[j];
1424
1425                         if (!page->private)
1426                                 continue;
1427                         if (!(page->private & 1)) {
1428                                 ++nmaps;
1429                                 continue;
1430                         }
1431                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1432                         while (d) {
1433                                 for (k = 0; k < RMAP_EXT; ++k)
1434                                         if (d->shadow_ptes[k])
1435                                                 ++nmaps;
1436                                         else
1437                                                 break;
1438                                 d = d->more;
1439                         }
1440                 }
1441         }
1442         return nmaps;
1443 }
1444
1445 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1446 {
1447         int nmaps = 0;
1448         struct kvm_mmu_page *page;
1449         int i;
1450
1451         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1452                 u64 *pt = page->spt;
1453
1454                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1455                         continue;
1456
1457                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1458                         u64 ent = pt[i];
1459
1460                         if (!(ent & PT_PRESENT_MASK))
1461                                 continue;
1462                         if (!(ent & PT_WRITABLE_MASK))
1463                                 continue;
1464                         ++nmaps;
1465                 }
1466         }
1467         return nmaps;
1468 }
1469
1470 static void audit_rmap(struct kvm_vcpu *vcpu)
1471 {
1472         int n_rmap = count_rmaps(vcpu);
1473         int n_actual = count_writable_mappings(vcpu);
1474
1475         if (n_rmap != n_actual)
1476                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1477                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1478 }
1479
1480 static void audit_write_protection(struct kvm_vcpu *vcpu)
1481 {
1482         struct kvm_mmu_page *page;
1483
1484         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1485                 hfn_t hfn;
1486                 struct page *pg;
1487
1488                 if (page->role.metaphysical)
1489                         continue;
1490
1491                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1492                         >> PAGE_SHIFT;
1493                 pg = pfn_to_page(hfn);
1494                 if (pg->private)
1495                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1496                                " mappings: gfn %lx role %x\n",
1497                                __FUNCTION__, audit_msg, page->gfn,
1498                                page->role.word);
1499         }
1500 }
1501
1502 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1503 {
1504         int olddbg = dbg;
1505
1506         dbg = 0;
1507         audit_msg = msg;
1508         audit_rmap(vcpu);
1509         audit_write_protection(vcpu);
1510         audit_mappings(vcpu);
1511         dbg = olddbg;
1512 }
1513
1514 #endif