mutex: Fix up mutex_waiter usage
[sfrench/cifs-2.6.git] / drivers / iommu / dmar.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16
17 #define pr_fmt(fmt)     "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <asm/irq_remapping.h>
32 #include <asm/iommu_table.h>
33
34 #include "irq_remapping.h"
35
36 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
37 struct dmar_res_callback {
38         dmar_res_handler_t      cb[ACPI_DMAR_TYPE_RESERVED];
39         void                    *arg[ACPI_DMAR_TYPE_RESERVED];
40         bool                    ignore_unhandled;
41         bool                    print_entry;
42 };
43
44 /*
45  * Assumptions:
46  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
47  *    before IO devices managed by that unit.
48  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
49  *    after IO devices managed by that unit.
50  * 3) Hotplug events are rare.
51  *
52  * Locking rules for DMA and interrupt remapping related global data structures:
53  * 1) Use dmar_global_lock in process context
54  * 2) Use RCU in interrupt context
55  */
56 DECLARE_RWSEM(dmar_global_lock);
57 LIST_HEAD(dmar_drhd_units);
58
59 struct acpi_table_header * __initdata dmar_tbl;
60 static int dmar_dev_scope_status = 1;
61 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
62
63 static int alloc_iommu(struct dmar_drhd_unit *drhd);
64 static void free_iommu(struct intel_iommu *iommu);
65
66 extern const struct iommu_ops intel_iommu_ops;
67
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70         /*
71          * add INCLUDE_ALL at the tail, so scan the list will find it at
72          * the very end.
73          */
74         if (drhd->include_all)
75                 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76         else
77                 list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82         struct acpi_dmar_device_scope *scope;
83
84         *cnt = 0;
85         while (start < end) {
86                 scope = start;
87                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90                         (*cnt)++;
91                 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92                         scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93                         pr_warn("Unsupported device scope\n");
94                 }
95                 start += scope->length;
96         }
97         if (*cnt == 0)
98                 return NULL;
99
100         return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105         int i;
106         struct device *tmp_dev;
107
108         if (*devices && *cnt) {
109                 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110                         put_device(tmp_dev);
111                 kfree(*devices);
112         }
113
114         *devices = NULL;
115         *cnt = 0;
116 }
117
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124         int level = 0;
125         size_t size;
126         struct pci_dev *tmp;
127         struct dmar_pci_notify_info *info;
128
129         BUG_ON(dev->is_virtfn);
130
131         /* Only generate path[] for device addition event */
132         if (event == BUS_NOTIFY_ADD_DEVICE)
133                 for (tmp = dev; tmp; tmp = tmp->bus->self)
134                         level++;
135
136         size = struct_size(info, path, level);
137         if (size <= sizeof(dmar_pci_notify_info_buf)) {
138                 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
139         } else {
140                 info = kzalloc(size, GFP_KERNEL);
141                 if (!info) {
142                         pr_warn("Out of memory when allocating notify_info "
143                                 "for %s.\n", pci_name(dev));
144                         if (dmar_dev_scope_status == 0)
145                                 dmar_dev_scope_status = -ENOMEM;
146                         return NULL;
147                 }
148         }
149
150         info->event = event;
151         info->dev = dev;
152         info->seg = pci_domain_nr(dev->bus);
153         info->level = level;
154         if (event == BUS_NOTIFY_ADD_DEVICE) {
155                 for (tmp = dev; tmp; tmp = tmp->bus->self) {
156                         level--;
157                         info->path[level].bus = tmp->bus->number;
158                         info->path[level].device = PCI_SLOT(tmp->devfn);
159                         info->path[level].function = PCI_FUNC(tmp->devfn);
160                         if (pci_is_root_bus(tmp->bus))
161                                 info->bus = tmp->bus->number;
162                 }
163         }
164
165         return info;
166 }
167
168 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
169 {
170         if ((void *)info != dmar_pci_notify_info_buf)
171                 kfree(info);
172 }
173
174 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
175                                 struct acpi_dmar_pci_path *path, int count)
176 {
177         int i;
178
179         if (info->bus != bus)
180                 goto fallback;
181         if (info->level != count)
182                 goto fallback;
183
184         for (i = 0; i < count; i++) {
185                 if (path[i].device != info->path[i].device ||
186                     path[i].function != info->path[i].function)
187                         goto fallback;
188         }
189
190         return true;
191
192 fallback:
193
194         if (count != 1)
195                 return false;
196
197         i = info->level - 1;
198         if (bus              == info->path[i].bus &&
199             path[0].device   == info->path[i].device &&
200             path[0].function == info->path[i].function) {
201                 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
202                         bus, path[0].device, path[0].function);
203                 return true;
204         }
205
206         return false;
207 }
208
209 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
210 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
211                           void *start, void*end, u16 segment,
212                           struct dmar_dev_scope *devices,
213                           int devices_cnt)
214 {
215         int i, level;
216         struct device *tmp, *dev = &info->dev->dev;
217         struct acpi_dmar_device_scope *scope;
218         struct acpi_dmar_pci_path *path;
219
220         if (segment != info->seg)
221                 return 0;
222
223         for (; start < end; start += scope->length) {
224                 scope = start;
225                 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
226                     scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
227                         continue;
228
229                 path = (struct acpi_dmar_pci_path *)(scope + 1);
230                 level = (scope->length - sizeof(*scope)) / sizeof(*path);
231                 if (!dmar_match_pci_path(info, scope->bus, path, level))
232                         continue;
233
234                 /*
235                  * We expect devices with endpoint scope to have normal PCI
236                  * headers, and devices with bridge scope to have bridge PCI
237                  * headers.  However PCI NTB devices may be listed in the
238                  * DMAR table with bridge scope, even though they have a
239                  * normal PCI header.  NTB devices are identified by class
240                  * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
241                  * for this special case.
242                  */
243                 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
244                      info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
245                     (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
246                      (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
247                       info->dev->class >> 8 != PCI_CLASS_BRIDGE_OTHER))) {
248                         pr_warn("Device scope type does not match for %s\n",
249                                 pci_name(info->dev));
250                         return -EINVAL;
251                 }
252
253                 for_each_dev_scope(devices, devices_cnt, i, tmp)
254                         if (tmp == NULL) {
255                                 devices[i].bus = info->dev->bus->number;
256                                 devices[i].devfn = info->dev->devfn;
257                                 rcu_assign_pointer(devices[i].dev,
258                                                    get_device(dev));
259                                 return 1;
260                         }
261                 BUG_ON(i >= devices_cnt);
262         }
263
264         return 0;
265 }
266
267 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
268                           struct dmar_dev_scope *devices, int count)
269 {
270         int index;
271         struct device *tmp;
272
273         if (info->seg != segment)
274                 return 0;
275
276         for_each_active_dev_scope(devices, count, index, tmp)
277                 if (tmp == &info->dev->dev) {
278                         RCU_INIT_POINTER(devices[index].dev, NULL);
279                         synchronize_rcu();
280                         put_device(tmp);
281                         return 1;
282                 }
283
284         return 0;
285 }
286
287 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
288 {
289         int ret = 0;
290         struct dmar_drhd_unit *dmaru;
291         struct acpi_dmar_hardware_unit *drhd;
292
293         for_each_drhd_unit(dmaru) {
294                 if (dmaru->include_all)
295                         continue;
296
297                 drhd = container_of(dmaru->hdr,
298                                     struct acpi_dmar_hardware_unit, header);
299                 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
300                                 ((void *)drhd) + drhd->header.length,
301                                 dmaru->segment,
302                                 dmaru->devices, dmaru->devices_cnt);
303                 if (ret)
304                         break;
305         }
306         if (ret >= 0)
307                 ret = dmar_iommu_notify_scope_dev(info);
308         if (ret < 0 && dmar_dev_scope_status == 0)
309                 dmar_dev_scope_status = ret;
310
311         return ret;
312 }
313
314 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
315 {
316         struct dmar_drhd_unit *dmaru;
317
318         for_each_drhd_unit(dmaru)
319                 if (dmar_remove_dev_scope(info, dmaru->segment,
320                         dmaru->devices, dmaru->devices_cnt))
321                         break;
322         dmar_iommu_notify_scope_dev(info);
323 }
324
325 static int dmar_pci_bus_notifier(struct notifier_block *nb,
326                                  unsigned long action, void *data)
327 {
328         struct pci_dev *pdev = to_pci_dev(data);
329         struct dmar_pci_notify_info *info;
330
331         /* Only care about add/remove events for physical functions.
332          * For VFs we actually do the lookup based on the corresponding
333          * PF in device_to_iommu() anyway. */
334         if (pdev->is_virtfn)
335                 return NOTIFY_DONE;
336         if (action != BUS_NOTIFY_ADD_DEVICE &&
337             action != BUS_NOTIFY_REMOVED_DEVICE)
338                 return NOTIFY_DONE;
339
340         info = dmar_alloc_pci_notify_info(pdev, action);
341         if (!info)
342                 return NOTIFY_DONE;
343
344         down_write(&dmar_global_lock);
345         if (action == BUS_NOTIFY_ADD_DEVICE)
346                 dmar_pci_bus_add_dev(info);
347         else if (action == BUS_NOTIFY_REMOVED_DEVICE)
348                 dmar_pci_bus_del_dev(info);
349         up_write(&dmar_global_lock);
350
351         dmar_free_pci_notify_info(info);
352
353         return NOTIFY_OK;
354 }
355
356 static struct notifier_block dmar_pci_bus_nb = {
357         .notifier_call = dmar_pci_bus_notifier,
358         .priority = INT_MIN,
359 };
360
361 static struct dmar_drhd_unit *
362 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
363 {
364         struct dmar_drhd_unit *dmaru;
365
366         list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list)
367                 if (dmaru->segment == drhd->segment &&
368                     dmaru->reg_base_addr == drhd->address)
369                         return dmaru;
370
371         return NULL;
372 }
373
374 /**
375  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
376  * structure which uniquely represent one DMA remapping hardware unit
377  * present in the platform
378  */
379 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
380 {
381         struct acpi_dmar_hardware_unit *drhd;
382         struct dmar_drhd_unit *dmaru;
383         int ret;
384
385         drhd = (struct acpi_dmar_hardware_unit *)header;
386         dmaru = dmar_find_dmaru(drhd);
387         if (dmaru)
388                 goto out;
389
390         dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
391         if (!dmaru)
392                 return -ENOMEM;
393
394         /*
395          * If header is allocated from slab by ACPI _DSM method, we need to
396          * copy the content because the memory buffer will be freed on return.
397          */
398         dmaru->hdr = (void *)(dmaru + 1);
399         memcpy(dmaru->hdr, header, header->length);
400         dmaru->reg_base_addr = drhd->address;
401         dmaru->segment = drhd->segment;
402         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
403         dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
404                                               ((void *)drhd) + drhd->header.length,
405                                               &dmaru->devices_cnt);
406         if (dmaru->devices_cnt && dmaru->devices == NULL) {
407                 kfree(dmaru);
408                 return -ENOMEM;
409         }
410
411         ret = alloc_iommu(dmaru);
412         if (ret) {
413                 dmar_free_dev_scope(&dmaru->devices,
414                                     &dmaru->devices_cnt);
415                 kfree(dmaru);
416                 return ret;
417         }
418         dmar_register_drhd_unit(dmaru);
419
420 out:
421         if (arg)
422                 (*(int *)arg)++;
423
424         return 0;
425 }
426
427 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
428 {
429         if (dmaru->devices && dmaru->devices_cnt)
430                 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
431         if (dmaru->iommu)
432                 free_iommu(dmaru->iommu);
433         kfree(dmaru);
434 }
435
436 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
437                                       void *arg)
438 {
439         struct acpi_dmar_andd *andd = (void *)header;
440
441         /* Check for NUL termination within the designated length */
442         if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
443                 WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
444                            "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
445                            "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
446                            dmi_get_system_info(DMI_BIOS_VENDOR),
447                            dmi_get_system_info(DMI_BIOS_VERSION),
448                            dmi_get_system_info(DMI_PRODUCT_VERSION));
449                 return -EINVAL;
450         }
451         pr_info("ANDD device: %x name: %s\n", andd->device_number,
452                 andd->device_name);
453
454         return 0;
455 }
456
457 #ifdef CONFIG_ACPI_NUMA
458 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
459 {
460         struct acpi_dmar_rhsa *rhsa;
461         struct dmar_drhd_unit *drhd;
462
463         rhsa = (struct acpi_dmar_rhsa *)header;
464         for_each_drhd_unit(drhd) {
465                 if (drhd->reg_base_addr == rhsa->base_address) {
466                         int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
467
468                         if (!node_online(node))
469                                 node = NUMA_NO_NODE;
470                         drhd->iommu->node = node;
471                         return 0;
472                 }
473         }
474         WARN_TAINT(
475                 1, TAINT_FIRMWARE_WORKAROUND,
476                 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
477                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478                 drhd->reg_base_addr,
479                 dmi_get_system_info(DMI_BIOS_VENDOR),
480                 dmi_get_system_info(DMI_BIOS_VERSION),
481                 dmi_get_system_info(DMI_PRODUCT_VERSION));
482
483         return 0;
484 }
485 #else
486 #define dmar_parse_one_rhsa             dmar_res_noop
487 #endif
488
489 static void
490 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
491 {
492         struct acpi_dmar_hardware_unit *drhd;
493         struct acpi_dmar_reserved_memory *rmrr;
494         struct acpi_dmar_atsr *atsr;
495         struct acpi_dmar_rhsa *rhsa;
496
497         switch (header->type) {
498         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
499                 drhd = container_of(header, struct acpi_dmar_hardware_unit,
500                                     header);
501                 pr_info("DRHD base: %#016Lx flags: %#x\n",
502                         (unsigned long long)drhd->address, drhd->flags);
503                 break;
504         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
505                 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
506                                     header);
507                 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
508                         (unsigned long long)rmrr->base_address,
509                         (unsigned long long)rmrr->end_address);
510                 break;
511         case ACPI_DMAR_TYPE_ROOT_ATS:
512                 atsr = container_of(header, struct acpi_dmar_atsr, header);
513                 pr_info("ATSR flags: %#x\n", atsr->flags);
514                 break;
515         case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
516                 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
517                 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
518                        (unsigned long long)rhsa->base_address,
519                        rhsa->proximity_domain);
520                 break;
521         case ACPI_DMAR_TYPE_NAMESPACE:
522                 /* We don't print this here because we need to sanity-check
523                    it first. So print it in dmar_parse_one_andd() instead. */
524                 break;
525         }
526 }
527
528 /**
529  * dmar_table_detect - checks to see if the platform supports DMAR devices
530  */
531 static int __init dmar_table_detect(void)
532 {
533         acpi_status status = AE_OK;
534
535         /* if we could find DMAR table, then there are DMAR devices */
536         status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
537
538         if (ACPI_SUCCESS(status) && !dmar_tbl) {
539                 pr_warn("Unable to map DMAR\n");
540                 status = AE_NOT_FOUND;
541         }
542
543         return ACPI_SUCCESS(status) ? 0 : -ENOENT;
544 }
545
546 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
547                                        size_t len, struct dmar_res_callback *cb)
548 {
549         struct acpi_dmar_header *iter, *next;
550         struct acpi_dmar_header *end = ((void *)start) + len;
551
552         for (iter = start; iter < end; iter = next) {
553                 next = (void *)iter + iter->length;
554                 if (iter->length == 0) {
555                         /* Avoid looping forever on bad ACPI tables */
556                         pr_debug(FW_BUG "Invalid 0-length structure\n");
557                         break;
558                 } else if (next > end) {
559                         /* Avoid passing table end */
560                         pr_warn(FW_BUG "Record passes table end\n");
561                         return -EINVAL;
562                 }
563
564                 if (cb->print_entry)
565                         dmar_table_print_dmar_entry(iter);
566
567                 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
568                         /* continue for forward compatibility */
569                         pr_debug("Unknown DMAR structure type %d\n",
570                                  iter->type);
571                 } else if (cb->cb[iter->type]) {
572                         int ret;
573
574                         ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
575                         if (ret)
576                                 return ret;
577                 } else if (!cb->ignore_unhandled) {
578                         pr_warn("No handler for DMAR structure type %d\n",
579                                 iter->type);
580                         return -EINVAL;
581                 }
582         }
583
584         return 0;
585 }
586
587 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
588                                        struct dmar_res_callback *cb)
589 {
590         return dmar_walk_remapping_entries((void *)(dmar + 1),
591                         dmar->header.length - sizeof(*dmar), cb);
592 }
593
594 /**
595  * parse_dmar_table - parses the DMA reporting table
596  */
597 static int __init
598 parse_dmar_table(void)
599 {
600         struct acpi_table_dmar *dmar;
601         int drhd_count = 0;
602         int ret;
603         struct dmar_res_callback cb = {
604                 .print_entry = true,
605                 .ignore_unhandled = true,
606                 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
607                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
608                 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
609                 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
610                 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
611                 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
612         };
613
614         /*
615          * Do it again, earlier dmar_tbl mapping could be mapped with
616          * fixed map.
617          */
618         dmar_table_detect();
619
620         /*
621          * ACPI tables may not be DMA protected by tboot, so use DMAR copy
622          * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
623          */
624         dmar_tbl = tboot_get_dmar_table(dmar_tbl);
625
626         dmar = (struct acpi_table_dmar *)dmar_tbl;
627         if (!dmar)
628                 return -ENODEV;
629
630         if (dmar->width < PAGE_SHIFT - 1) {
631                 pr_warn("Invalid DMAR haw\n");
632                 return -EINVAL;
633         }
634
635         pr_info("Host address width %d\n", dmar->width + 1);
636         ret = dmar_walk_dmar_table(dmar, &cb);
637         if (ret == 0 && drhd_count == 0)
638                 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
639
640         return ret;
641 }
642
643 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
644                                  int cnt, struct pci_dev *dev)
645 {
646         int index;
647         struct device *tmp;
648
649         while (dev) {
650                 for_each_active_dev_scope(devices, cnt, index, tmp)
651                         if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
652                                 return 1;
653
654                 /* Check our parent */
655                 dev = dev->bus->self;
656         }
657
658         return 0;
659 }
660
661 struct dmar_drhd_unit *
662 dmar_find_matched_drhd_unit(struct pci_dev *dev)
663 {
664         struct dmar_drhd_unit *dmaru;
665         struct acpi_dmar_hardware_unit *drhd;
666
667         dev = pci_physfn(dev);
668
669         rcu_read_lock();
670         for_each_drhd_unit(dmaru) {
671                 drhd = container_of(dmaru->hdr,
672                                     struct acpi_dmar_hardware_unit,
673                                     header);
674
675                 if (dmaru->include_all &&
676                     drhd->segment == pci_domain_nr(dev->bus))
677                         goto out;
678
679                 if (dmar_pci_device_match(dmaru->devices,
680                                           dmaru->devices_cnt, dev))
681                         goto out;
682         }
683         dmaru = NULL;
684 out:
685         rcu_read_unlock();
686
687         return dmaru;
688 }
689
690 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
691                                               struct acpi_device *adev)
692 {
693         struct dmar_drhd_unit *dmaru;
694         struct acpi_dmar_hardware_unit *drhd;
695         struct acpi_dmar_device_scope *scope;
696         struct device *tmp;
697         int i;
698         struct acpi_dmar_pci_path *path;
699
700         for_each_drhd_unit(dmaru) {
701                 drhd = container_of(dmaru->hdr,
702                                     struct acpi_dmar_hardware_unit,
703                                     header);
704
705                 for (scope = (void *)(drhd + 1);
706                      (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
707                      scope = ((void *)scope) + scope->length) {
708                         if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
709                                 continue;
710                         if (scope->enumeration_id != device_number)
711                                 continue;
712
713                         path = (void *)(scope + 1);
714                         pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
715                                 dev_name(&adev->dev), dmaru->reg_base_addr,
716                                 scope->bus, path->device, path->function);
717                         for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
718                                 if (tmp == NULL) {
719                                         dmaru->devices[i].bus = scope->bus;
720                                         dmaru->devices[i].devfn = PCI_DEVFN(path->device,
721                                                                             path->function);
722                                         rcu_assign_pointer(dmaru->devices[i].dev,
723                                                            get_device(&adev->dev));
724                                         return;
725                                 }
726                         BUG_ON(i >= dmaru->devices_cnt);
727                 }
728         }
729         pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
730                 device_number, dev_name(&adev->dev));
731 }
732
733 static int __init dmar_acpi_dev_scope_init(void)
734 {
735         struct acpi_dmar_andd *andd;
736
737         if (dmar_tbl == NULL)
738                 return -ENODEV;
739
740         for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
741              ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
742              andd = ((void *)andd) + andd->header.length) {
743                 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
744                         acpi_handle h;
745                         struct acpi_device *adev;
746
747                         if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
748                                                           andd->device_name,
749                                                           &h))) {
750                                 pr_err("Failed to find handle for ACPI object %s\n",
751                                        andd->device_name);
752                                 continue;
753                         }
754                         if (acpi_bus_get_device(h, &adev)) {
755                                 pr_err("Failed to get device for ACPI object %s\n",
756                                        andd->device_name);
757                                 continue;
758                         }
759                         dmar_acpi_insert_dev_scope(andd->device_number, adev);
760                 }
761         }
762         return 0;
763 }
764
765 int __init dmar_dev_scope_init(void)
766 {
767         struct pci_dev *dev = NULL;
768         struct dmar_pci_notify_info *info;
769
770         if (dmar_dev_scope_status != 1)
771                 return dmar_dev_scope_status;
772
773         if (list_empty(&dmar_drhd_units)) {
774                 dmar_dev_scope_status = -ENODEV;
775         } else {
776                 dmar_dev_scope_status = 0;
777
778                 dmar_acpi_dev_scope_init();
779
780                 for_each_pci_dev(dev) {
781                         if (dev->is_virtfn)
782                                 continue;
783
784                         info = dmar_alloc_pci_notify_info(dev,
785                                         BUS_NOTIFY_ADD_DEVICE);
786                         if (!info) {
787                                 return dmar_dev_scope_status;
788                         } else {
789                                 dmar_pci_bus_add_dev(info);
790                                 dmar_free_pci_notify_info(info);
791                         }
792                 }
793         }
794
795         return dmar_dev_scope_status;
796 }
797
798 void __init dmar_register_bus_notifier(void)
799 {
800         bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
801 }
802
803
804 int __init dmar_table_init(void)
805 {
806         static int dmar_table_initialized;
807         int ret;
808
809         if (dmar_table_initialized == 0) {
810                 ret = parse_dmar_table();
811                 if (ret < 0) {
812                         if (ret != -ENODEV)
813                                 pr_info("Parse DMAR table failure.\n");
814                 } else  if (list_empty(&dmar_drhd_units)) {
815                         pr_info("No DMAR devices found\n");
816                         ret = -ENODEV;
817                 }
818
819                 if (ret < 0)
820                         dmar_table_initialized = ret;
821                 else
822                         dmar_table_initialized = 1;
823         }
824
825         return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
826 }
827
828 static void warn_invalid_dmar(u64 addr, const char *message)
829 {
830         WARN_TAINT_ONCE(
831                 1, TAINT_FIRMWARE_WORKAROUND,
832                 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
833                 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
834                 addr, message,
835                 dmi_get_system_info(DMI_BIOS_VENDOR),
836                 dmi_get_system_info(DMI_BIOS_VERSION),
837                 dmi_get_system_info(DMI_PRODUCT_VERSION));
838 }
839
840 static int __ref
841 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
842 {
843         struct acpi_dmar_hardware_unit *drhd;
844         void __iomem *addr;
845         u64 cap, ecap;
846
847         drhd = (void *)entry;
848         if (!drhd->address) {
849                 warn_invalid_dmar(0, "");
850                 return -EINVAL;
851         }
852
853         if (arg)
854                 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
855         else
856                 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
857         if (!addr) {
858                 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
859                 return -EINVAL;
860         }
861
862         cap = dmar_readq(addr + DMAR_CAP_REG);
863         ecap = dmar_readq(addr + DMAR_ECAP_REG);
864
865         if (arg)
866                 iounmap(addr);
867         else
868                 early_iounmap(addr, VTD_PAGE_SIZE);
869
870         if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
871                 warn_invalid_dmar(drhd->address, " returns all ones");
872                 return -EINVAL;
873         }
874
875         return 0;
876 }
877
878 int __init detect_intel_iommu(void)
879 {
880         int ret;
881         struct dmar_res_callback validate_drhd_cb = {
882                 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
883                 .ignore_unhandled = true,
884         };
885
886         down_write(&dmar_global_lock);
887         ret = dmar_table_detect();
888         if (!ret)
889                 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
890                                            &validate_drhd_cb);
891         if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
892                 iommu_detected = 1;
893                 /* Make sure ACS will be enabled */
894                 pci_request_acs();
895         }
896
897 #ifdef CONFIG_X86
898         if (!ret)
899                 x86_init.iommu.iommu_init = intel_iommu_init;
900 #endif
901
902         if (dmar_tbl) {
903                 acpi_put_table(dmar_tbl);
904                 dmar_tbl = NULL;
905         }
906         up_write(&dmar_global_lock);
907
908         return ret ? ret : 1;
909 }
910
911 static void unmap_iommu(struct intel_iommu *iommu)
912 {
913         iounmap(iommu->reg);
914         release_mem_region(iommu->reg_phys, iommu->reg_size);
915 }
916
917 /**
918  * map_iommu: map the iommu's registers
919  * @iommu: the iommu to map
920  * @phys_addr: the physical address of the base resgister
921  *
922  * Memory map the iommu's registers.  Start w/ a single page, and
923  * possibly expand if that turns out to be insufficent.
924  */
925 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
926 {
927         int map_size, err=0;
928
929         iommu->reg_phys = phys_addr;
930         iommu->reg_size = VTD_PAGE_SIZE;
931
932         if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
933                 pr_err("Can't reserve memory\n");
934                 err = -EBUSY;
935                 goto out;
936         }
937
938         iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
939         if (!iommu->reg) {
940                 pr_err("Can't map the region\n");
941                 err = -ENOMEM;
942                 goto release;
943         }
944
945         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
946         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
947
948         if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
949                 err = -EINVAL;
950                 warn_invalid_dmar(phys_addr, " returns all ones");
951                 goto unmap;
952         }
953
954         /* the registers might be more than one page */
955         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
956                          cap_max_fault_reg_offset(iommu->cap));
957         map_size = VTD_PAGE_ALIGN(map_size);
958         if (map_size > iommu->reg_size) {
959                 iounmap(iommu->reg);
960                 release_mem_region(iommu->reg_phys, iommu->reg_size);
961                 iommu->reg_size = map_size;
962                 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
963                                         iommu->name)) {
964                         pr_err("Can't reserve memory\n");
965                         err = -EBUSY;
966                         goto out;
967                 }
968                 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
969                 if (!iommu->reg) {
970                         pr_err("Can't map the region\n");
971                         err = -ENOMEM;
972                         goto release;
973                 }
974         }
975         err = 0;
976         goto out;
977
978 unmap:
979         iounmap(iommu->reg);
980 release:
981         release_mem_region(iommu->reg_phys, iommu->reg_size);
982 out:
983         return err;
984 }
985
986 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
987 {
988         iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
989                                             DMAR_UNITS_SUPPORTED);
990         if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
991                 iommu->seq_id = -1;
992         } else {
993                 set_bit(iommu->seq_id, dmar_seq_ids);
994                 sprintf(iommu->name, "dmar%d", iommu->seq_id);
995         }
996
997         return iommu->seq_id;
998 }
999
1000 static void dmar_free_seq_id(struct intel_iommu *iommu)
1001 {
1002         if (iommu->seq_id >= 0) {
1003                 clear_bit(iommu->seq_id, dmar_seq_ids);
1004                 iommu->seq_id = -1;
1005         }
1006 }
1007
1008 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1009 {
1010         struct intel_iommu *iommu;
1011         u32 ver, sts;
1012         int agaw = 0;
1013         int msagaw = 0;
1014         int err;
1015
1016         if (!drhd->reg_base_addr) {
1017                 warn_invalid_dmar(0, "");
1018                 return -EINVAL;
1019         }
1020
1021         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1022         if (!iommu)
1023                 return -ENOMEM;
1024
1025         if (dmar_alloc_seq_id(iommu) < 0) {
1026                 pr_err("Failed to allocate seq_id\n");
1027                 err = -ENOSPC;
1028                 goto error;
1029         }
1030
1031         err = map_iommu(iommu, drhd->reg_base_addr);
1032         if (err) {
1033                 pr_err("Failed to map %s\n", iommu->name);
1034                 goto error_free_seq_id;
1035         }
1036
1037         err = -EINVAL;
1038         agaw = iommu_calculate_agaw(iommu);
1039         if (agaw < 0) {
1040                 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1041                         iommu->seq_id);
1042                 goto err_unmap;
1043         }
1044         msagaw = iommu_calculate_max_sagaw(iommu);
1045         if (msagaw < 0) {
1046                 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1047                         iommu->seq_id);
1048                 goto err_unmap;
1049         }
1050         iommu->agaw = agaw;
1051         iommu->msagaw = msagaw;
1052         iommu->segment = drhd->segment;
1053
1054         iommu->node = NUMA_NO_NODE;
1055
1056         ver = readl(iommu->reg + DMAR_VER_REG);
1057         pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1058                 iommu->name,
1059                 (unsigned long long)drhd->reg_base_addr,
1060                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1061                 (unsigned long long)iommu->cap,
1062                 (unsigned long long)iommu->ecap);
1063
1064         /* Reflect status in gcmd */
1065         sts = readl(iommu->reg + DMAR_GSTS_REG);
1066         if (sts & DMA_GSTS_IRES)
1067                 iommu->gcmd |= DMA_GCMD_IRE;
1068         if (sts & DMA_GSTS_TES)
1069                 iommu->gcmd |= DMA_GCMD_TE;
1070         if (sts & DMA_GSTS_QIES)
1071                 iommu->gcmd |= DMA_GCMD_QIE;
1072
1073         raw_spin_lock_init(&iommu->register_lock);
1074
1075         if (intel_iommu_enabled) {
1076                 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1077                                              intel_iommu_groups,
1078                                              "%s", iommu->name);
1079                 if (err)
1080                         goto err_unmap;
1081
1082                 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1083
1084                 err = iommu_device_register(&iommu->iommu);
1085                 if (err)
1086                         goto err_unmap;
1087         }
1088
1089         drhd->iommu = iommu;
1090
1091         return 0;
1092
1093 err_unmap:
1094         unmap_iommu(iommu);
1095 error_free_seq_id:
1096         dmar_free_seq_id(iommu);
1097 error:
1098         kfree(iommu);
1099         return err;
1100 }
1101
1102 static void free_iommu(struct intel_iommu *iommu)
1103 {
1104         if (intel_iommu_enabled) {
1105                 iommu_device_unregister(&iommu->iommu);
1106                 iommu_device_sysfs_remove(&iommu->iommu);
1107         }
1108
1109         if (iommu->irq) {
1110                 if (iommu->pr_irq) {
1111                         free_irq(iommu->pr_irq, iommu);
1112                         dmar_free_hwirq(iommu->pr_irq);
1113                         iommu->pr_irq = 0;
1114                 }
1115                 free_irq(iommu->irq, iommu);
1116                 dmar_free_hwirq(iommu->irq);
1117                 iommu->irq = 0;
1118         }
1119
1120         if (iommu->qi) {
1121                 free_page((unsigned long)iommu->qi->desc);
1122                 kfree(iommu->qi->desc_status);
1123                 kfree(iommu->qi);
1124         }
1125
1126         if (iommu->reg)
1127                 unmap_iommu(iommu);
1128
1129         dmar_free_seq_id(iommu);
1130         kfree(iommu);
1131 }
1132
1133 /*
1134  * Reclaim all the submitted descriptors which have completed its work.
1135  */
1136 static inline void reclaim_free_desc(struct q_inval *qi)
1137 {
1138         while (qi->desc_status[qi->free_tail] == QI_DONE ||
1139                qi->desc_status[qi->free_tail] == QI_ABORT) {
1140                 qi->desc_status[qi->free_tail] = QI_FREE;
1141                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1142                 qi->free_cnt++;
1143         }
1144 }
1145
1146 static int qi_check_fault(struct intel_iommu *iommu, int index)
1147 {
1148         u32 fault;
1149         int head, tail;
1150         struct q_inval *qi = iommu->qi;
1151         int wait_index = (index + 1) % QI_LENGTH;
1152         int shift = qi_shift(iommu);
1153
1154         if (qi->desc_status[wait_index] == QI_ABORT)
1155                 return -EAGAIN;
1156
1157         fault = readl(iommu->reg + DMAR_FSTS_REG);
1158
1159         /*
1160          * If IQE happens, the head points to the descriptor associated
1161          * with the error. No new descriptors are fetched until the IQE
1162          * is cleared.
1163          */
1164         if (fault & DMA_FSTS_IQE) {
1165                 head = readl(iommu->reg + DMAR_IQH_REG);
1166                 if ((head >> shift) == index) {
1167                         struct qi_desc *desc = qi->desc + head;
1168
1169                         /*
1170                          * desc->qw2 and desc->qw3 are either reserved or
1171                          * used by software as private data. We won't print
1172                          * out these two qw's for security consideration.
1173                          */
1174                         pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1175                                (unsigned long long)desc->qw0,
1176                                (unsigned long long)desc->qw1);
1177                         memcpy(desc, qi->desc + (wait_index << shift),
1178                                1 << shift);
1179                         writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1180                         return -EINVAL;
1181                 }
1182         }
1183
1184         /*
1185          * If ITE happens, all pending wait_desc commands are aborted.
1186          * No new descriptors are fetched until the ITE is cleared.
1187          */
1188         if (fault & DMA_FSTS_ITE) {
1189                 head = readl(iommu->reg + DMAR_IQH_REG);
1190                 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1191                 head |= 1;
1192                 tail = readl(iommu->reg + DMAR_IQT_REG);
1193                 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1194
1195                 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1196
1197                 do {
1198                         if (qi->desc_status[head] == QI_IN_USE)
1199                                 qi->desc_status[head] = QI_ABORT;
1200                         head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1201                 } while (head != tail);
1202
1203                 if (qi->desc_status[wait_index] == QI_ABORT)
1204                         return -EAGAIN;
1205         }
1206
1207         if (fault & DMA_FSTS_ICE)
1208                 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1209
1210         return 0;
1211 }
1212
1213 /*
1214  * Submit the queued invalidation descriptor to the remapping
1215  * hardware unit and wait for its completion.
1216  */
1217 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1218 {
1219         int rc;
1220         struct q_inval *qi = iommu->qi;
1221         int offset, shift, length;
1222         struct qi_desc wait_desc;
1223         int wait_index, index;
1224         unsigned long flags;
1225
1226         if (!qi)
1227                 return 0;
1228
1229 restart:
1230         rc = 0;
1231
1232         raw_spin_lock_irqsave(&qi->q_lock, flags);
1233         while (qi->free_cnt < 3) {
1234                 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1235                 cpu_relax();
1236                 raw_spin_lock_irqsave(&qi->q_lock, flags);
1237         }
1238
1239         index = qi->free_head;
1240         wait_index = (index + 1) % QI_LENGTH;
1241         shift = qi_shift(iommu);
1242         length = 1 << shift;
1243
1244         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
1245
1246         offset = index << shift;
1247         memcpy(qi->desc + offset, desc, length);
1248         wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1249                         QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1250         wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1251         wait_desc.qw2 = 0;
1252         wait_desc.qw3 = 0;
1253
1254         offset = wait_index << shift;
1255         memcpy(qi->desc + offset, &wait_desc, length);
1256
1257         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
1258         qi->free_cnt -= 2;
1259
1260         /*
1261          * update the HW tail register indicating the presence of
1262          * new descriptors.
1263          */
1264         writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1265
1266         while (qi->desc_status[wait_index] != QI_DONE) {
1267                 /*
1268                  * We will leave the interrupts disabled, to prevent interrupt
1269                  * context to queue another cmd while a cmd is already submitted
1270                  * and waiting for completion on this cpu. This is to avoid
1271                  * a deadlock where the interrupt context can wait indefinitely
1272                  * for free slots in the queue.
1273                  */
1274                 rc = qi_check_fault(iommu, index);
1275                 if (rc)
1276                         break;
1277
1278                 raw_spin_unlock(&qi->q_lock);
1279                 cpu_relax();
1280                 raw_spin_lock(&qi->q_lock);
1281         }
1282
1283         qi->desc_status[index] = QI_DONE;
1284
1285         reclaim_free_desc(qi);
1286         raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1287
1288         if (rc == -EAGAIN)
1289                 goto restart;
1290
1291         return rc;
1292 }
1293
1294 /*
1295  * Flush the global interrupt entry cache.
1296  */
1297 void qi_global_iec(struct intel_iommu *iommu)
1298 {
1299         struct qi_desc desc;
1300
1301         desc.qw0 = QI_IEC_TYPE;
1302         desc.qw1 = 0;
1303         desc.qw2 = 0;
1304         desc.qw3 = 0;
1305
1306         /* should never fail */
1307         qi_submit_sync(&desc, iommu);
1308 }
1309
1310 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1311                       u64 type)
1312 {
1313         struct qi_desc desc;
1314
1315         desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1316                         | QI_CC_GRAN(type) | QI_CC_TYPE;
1317         desc.qw1 = 0;
1318         desc.qw2 = 0;
1319         desc.qw3 = 0;
1320
1321         qi_submit_sync(&desc, iommu);
1322 }
1323
1324 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1325                     unsigned int size_order, u64 type)
1326 {
1327         u8 dw = 0, dr = 0;
1328
1329         struct qi_desc desc;
1330         int ih = 0;
1331
1332         if (cap_write_drain(iommu->cap))
1333                 dw = 1;
1334
1335         if (cap_read_drain(iommu->cap))
1336                 dr = 1;
1337
1338         desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1339                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1340         desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1341                 | QI_IOTLB_AM(size_order);
1342         desc.qw2 = 0;
1343         desc.qw3 = 0;
1344
1345         qi_submit_sync(&desc, iommu);
1346 }
1347
1348 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1349                         u16 qdep, u64 addr, unsigned mask)
1350 {
1351         struct qi_desc desc;
1352
1353         if (mask) {
1354                 WARN_ON_ONCE(addr & ((1ULL << (VTD_PAGE_SHIFT + mask)) - 1));
1355                 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1356                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1357         } else
1358                 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1359
1360         if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1361                 qdep = 0;
1362
1363         desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1364                    QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1365         desc.qw2 = 0;
1366         desc.qw3 = 0;
1367
1368         qi_submit_sync(&desc, iommu);
1369 }
1370
1371 /*
1372  * Disable Queued Invalidation interface.
1373  */
1374 void dmar_disable_qi(struct intel_iommu *iommu)
1375 {
1376         unsigned long flags;
1377         u32 sts;
1378         cycles_t start_time = get_cycles();
1379
1380         if (!ecap_qis(iommu->ecap))
1381                 return;
1382
1383         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1384
1385         sts =  readl(iommu->reg + DMAR_GSTS_REG);
1386         if (!(sts & DMA_GSTS_QIES))
1387                 goto end;
1388
1389         /*
1390          * Give a chance to HW to complete the pending invalidation requests.
1391          */
1392         while ((readl(iommu->reg + DMAR_IQT_REG) !=
1393                 readl(iommu->reg + DMAR_IQH_REG)) &&
1394                 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1395                 cpu_relax();
1396
1397         iommu->gcmd &= ~DMA_GCMD_QIE;
1398         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1399
1400         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1401                       !(sts & DMA_GSTS_QIES), sts);
1402 end:
1403         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1404 }
1405
1406 /*
1407  * Enable queued invalidation.
1408  */
1409 static void __dmar_enable_qi(struct intel_iommu *iommu)
1410 {
1411         u32 sts;
1412         unsigned long flags;
1413         struct q_inval *qi = iommu->qi;
1414         u64 val = virt_to_phys(qi->desc);
1415
1416         qi->free_head = qi->free_tail = 0;
1417         qi->free_cnt = QI_LENGTH;
1418
1419         /*
1420          * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1421          * is present.
1422          */
1423         if (ecap_smts(iommu->ecap))
1424                 val |= (1 << 11) | 1;
1425
1426         raw_spin_lock_irqsave(&iommu->register_lock, flags);
1427
1428         /* write zero to the tail reg */
1429         writel(0, iommu->reg + DMAR_IQT_REG);
1430
1431         dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1432
1433         iommu->gcmd |= DMA_GCMD_QIE;
1434         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1435
1436         /* Make sure hardware complete it */
1437         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1438
1439         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1440 }
1441
1442 /*
1443  * Enable Queued Invalidation interface. This is a must to support
1444  * interrupt-remapping. Also used by DMA-remapping, which replaces
1445  * register based IOTLB invalidation.
1446  */
1447 int dmar_enable_qi(struct intel_iommu *iommu)
1448 {
1449         struct q_inval *qi;
1450         struct page *desc_page;
1451
1452         if (!ecap_qis(iommu->ecap))
1453                 return -ENOENT;
1454
1455         /*
1456          * queued invalidation is already setup and enabled.
1457          */
1458         if (iommu->qi)
1459                 return 0;
1460
1461         iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1462         if (!iommu->qi)
1463                 return -ENOMEM;
1464
1465         qi = iommu->qi;
1466
1467         /*
1468          * Need two pages to accommodate 256 descriptors of 256 bits each
1469          * if the remapping hardware supports scalable mode translation.
1470          */
1471         desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1472                                      !!ecap_smts(iommu->ecap));
1473         if (!desc_page) {
1474                 kfree(qi);
1475                 iommu->qi = NULL;
1476                 return -ENOMEM;
1477         }
1478
1479         qi->desc = page_address(desc_page);
1480
1481         qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1482         if (!qi->desc_status) {
1483                 free_page((unsigned long) qi->desc);
1484                 kfree(qi);
1485                 iommu->qi = NULL;
1486                 return -ENOMEM;
1487         }
1488
1489         raw_spin_lock_init(&qi->q_lock);
1490
1491         __dmar_enable_qi(iommu);
1492
1493         return 0;
1494 }
1495
1496 /* iommu interrupt handling. Most stuff are MSI-like. */
1497
1498 enum faulttype {
1499         DMA_REMAP,
1500         INTR_REMAP,
1501         UNKNOWN,
1502 };
1503
1504 static const char *dma_remap_fault_reasons[] =
1505 {
1506         "Software",
1507         "Present bit in root entry is clear",
1508         "Present bit in context entry is clear",
1509         "Invalid context entry",
1510         "Access beyond MGAW",
1511         "PTE Write access is not set",
1512         "PTE Read access is not set",
1513         "Next page table ptr is invalid",
1514         "Root table address invalid",
1515         "Context table ptr is invalid",
1516         "non-zero reserved fields in RTP",
1517         "non-zero reserved fields in CTP",
1518         "non-zero reserved fields in PTE",
1519         "PCE for translation request specifies blocking",
1520 };
1521
1522 static const char *irq_remap_fault_reasons[] =
1523 {
1524         "Detected reserved fields in the decoded interrupt-remapped request",
1525         "Interrupt index exceeded the interrupt-remapping table size",
1526         "Present field in the IRTE entry is clear",
1527         "Error accessing interrupt-remapping table pointed by IRTA_REG",
1528         "Detected reserved fields in the IRTE entry",
1529         "Blocked a compatibility format interrupt request",
1530         "Blocked an interrupt request due to source-id verification failure",
1531 };
1532
1533 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1534 {
1535         if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1536                                         ARRAY_SIZE(irq_remap_fault_reasons))) {
1537                 *fault_type = INTR_REMAP;
1538                 return irq_remap_fault_reasons[fault_reason - 0x20];
1539         } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1540                 *fault_type = DMA_REMAP;
1541                 return dma_remap_fault_reasons[fault_reason];
1542         } else {
1543                 *fault_type = UNKNOWN;
1544                 return "Unknown";
1545         }
1546 }
1547
1548
1549 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1550 {
1551         if (iommu->irq == irq)
1552                 return DMAR_FECTL_REG;
1553         else if (iommu->pr_irq == irq)
1554                 return DMAR_PECTL_REG;
1555         else
1556                 BUG();
1557 }
1558
1559 void dmar_msi_unmask(struct irq_data *data)
1560 {
1561         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1562         int reg = dmar_msi_reg(iommu, data->irq);
1563         unsigned long flag;
1564
1565         /* unmask it */
1566         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1567         writel(0, iommu->reg + reg);
1568         /* Read a reg to force flush the post write */
1569         readl(iommu->reg + reg);
1570         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1571 }
1572
1573 void dmar_msi_mask(struct irq_data *data)
1574 {
1575         struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1576         int reg = dmar_msi_reg(iommu, data->irq);
1577         unsigned long flag;
1578
1579         /* mask it */
1580         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1581         writel(DMA_FECTL_IM, iommu->reg + reg);
1582         /* Read a reg to force flush the post write */
1583         readl(iommu->reg + reg);
1584         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1585 }
1586
1587 void dmar_msi_write(int irq, struct msi_msg *msg)
1588 {
1589         struct intel_iommu *iommu = irq_get_handler_data(irq);
1590         int reg = dmar_msi_reg(iommu, irq);
1591         unsigned long flag;
1592
1593         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1594         writel(msg->data, iommu->reg + reg + 4);
1595         writel(msg->address_lo, iommu->reg + reg + 8);
1596         writel(msg->address_hi, iommu->reg + reg + 12);
1597         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1598 }
1599
1600 void dmar_msi_read(int irq, struct msi_msg *msg)
1601 {
1602         struct intel_iommu *iommu = irq_get_handler_data(irq);
1603         int reg = dmar_msi_reg(iommu, irq);
1604         unsigned long flag;
1605
1606         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1607         msg->data = readl(iommu->reg + reg + 4);
1608         msg->address_lo = readl(iommu->reg + reg + 8);
1609         msg->address_hi = readl(iommu->reg + reg + 12);
1610         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1611 }
1612
1613 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1614                 u8 fault_reason, u16 source_id, unsigned long long addr)
1615 {
1616         const char *reason;
1617         int fault_type;
1618
1619         reason = dmar_get_fault_reason(fault_reason, &fault_type);
1620
1621         if (fault_type == INTR_REMAP)
1622                 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1623                         source_id >> 8, PCI_SLOT(source_id & 0xFF),
1624                         PCI_FUNC(source_id & 0xFF), addr >> 48,
1625                         fault_reason, reason);
1626         else
1627                 pr_err("[%s] Request device [%02x:%02x.%d] fault addr %llx [fault reason %02d] %s\n",
1628                        type ? "DMA Read" : "DMA Write",
1629                        source_id >> 8, PCI_SLOT(source_id & 0xFF),
1630                        PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1631         return 0;
1632 }
1633
1634 #define PRIMARY_FAULT_REG_LEN (16)
1635 irqreturn_t dmar_fault(int irq, void *dev_id)
1636 {
1637         struct intel_iommu *iommu = dev_id;
1638         int reg, fault_index;
1639         u32 fault_status;
1640         unsigned long flag;
1641         static DEFINE_RATELIMIT_STATE(rs,
1642                                       DEFAULT_RATELIMIT_INTERVAL,
1643                                       DEFAULT_RATELIMIT_BURST);
1644
1645         raw_spin_lock_irqsave(&iommu->register_lock, flag);
1646         fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1647         if (fault_status && __ratelimit(&rs))
1648                 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1649
1650         /* TBD: ignore advanced fault log currently */
1651         if (!(fault_status & DMA_FSTS_PPF))
1652                 goto unlock_exit;
1653
1654         fault_index = dma_fsts_fault_record_index(fault_status);
1655         reg = cap_fault_reg_offset(iommu->cap);
1656         while (1) {
1657                 /* Disable printing, simply clear the fault when ratelimited */
1658                 bool ratelimited = !__ratelimit(&rs);
1659                 u8 fault_reason;
1660                 u16 source_id;
1661                 u64 guest_addr;
1662                 int type;
1663                 u32 data;
1664
1665                 /* highest 32 bits */
1666                 data = readl(iommu->reg + reg +
1667                                 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1668                 if (!(data & DMA_FRCD_F))
1669                         break;
1670
1671                 if (!ratelimited) {
1672                         fault_reason = dma_frcd_fault_reason(data);
1673                         type = dma_frcd_type(data);
1674
1675                         data = readl(iommu->reg + reg +
1676                                      fault_index * PRIMARY_FAULT_REG_LEN + 8);
1677                         source_id = dma_frcd_source_id(data);
1678
1679                         guest_addr = dmar_readq(iommu->reg + reg +
1680                                         fault_index * PRIMARY_FAULT_REG_LEN);
1681                         guest_addr = dma_frcd_page_addr(guest_addr);
1682                 }
1683
1684                 /* clear the fault */
1685                 writel(DMA_FRCD_F, iommu->reg + reg +
1686                         fault_index * PRIMARY_FAULT_REG_LEN + 12);
1687
1688                 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1689
1690                 if (!ratelimited)
1691                         dmar_fault_do_one(iommu, type, fault_reason,
1692                                           source_id, guest_addr);
1693
1694                 fault_index++;
1695                 if (fault_index >= cap_num_fault_regs(iommu->cap))
1696                         fault_index = 0;
1697                 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1698         }
1699
1700         writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1701                iommu->reg + DMAR_FSTS_REG);
1702
1703 unlock_exit:
1704         raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1705         return IRQ_HANDLED;
1706 }
1707
1708 int dmar_set_interrupt(struct intel_iommu *iommu)
1709 {
1710         int irq, ret;
1711
1712         /*
1713          * Check if the fault interrupt is already initialized.
1714          */
1715         if (iommu->irq)
1716                 return 0;
1717
1718         irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1719         if (irq > 0) {
1720                 iommu->irq = irq;
1721         } else {
1722                 pr_err("No free IRQ vectors\n");
1723                 return -EINVAL;
1724         }
1725
1726         ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1727         if (ret)
1728                 pr_err("Can't request irq\n");
1729         return ret;
1730 }
1731
1732 int __init enable_drhd_fault_handling(void)
1733 {
1734         struct dmar_drhd_unit *drhd;
1735         struct intel_iommu *iommu;
1736
1737         /*
1738          * Enable fault control interrupt.
1739          */
1740         for_each_iommu(iommu, drhd) {
1741                 u32 fault_status;
1742                 int ret = dmar_set_interrupt(iommu);
1743
1744                 if (ret) {
1745                         pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1746                                (unsigned long long)drhd->reg_base_addr, ret);
1747                         return -1;
1748                 }
1749
1750                 /*
1751                  * Clear any previous faults.
1752                  */
1753                 dmar_fault(iommu->irq, iommu);
1754                 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1755                 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1756         }
1757
1758         return 0;
1759 }
1760
1761 /*
1762  * Re-enable Queued Invalidation interface.
1763  */
1764 int dmar_reenable_qi(struct intel_iommu *iommu)
1765 {
1766         if (!ecap_qis(iommu->ecap))
1767                 return -ENOENT;
1768
1769         if (!iommu->qi)
1770                 return -ENOENT;
1771
1772         /*
1773          * First disable queued invalidation.
1774          */
1775         dmar_disable_qi(iommu);
1776         /*
1777          * Then enable queued invalidation again. Since there is no pending
1778          * invalidation requests now, it's safe to re-enable queued
1779          * invalidation.
1780          */
1781         __dmar_enable_qi(iommu);
1782
1783         return 0;
1784 }
1785
1786 /*
1787  * Check interrupt remapping support in DMAR table description.
1788  */
1789 int __init dmar_ir_support(void)
1790 {
1791         struct acpi_table_dmar *dmar;
1792         dmar = (struct acpi_table_dmar *)dmar_tbl;
1793         if (!dmar)
1794                 return 0;
1795         return dmar->flags & 0x1;
1796 }
1797
1798 /* Check whether DMAR units are in use */
1799 static inline bool dmar_in_use(void)
1800 {
1801         return irq_remapping_enabled || intel_iommu_enabled;
1802 }
1803
1804 static int __init dmar_free_unused_resources(void)
1805 {
1806         struct dmar_drhd_unit *dmaru, *dmaru_n;
1807
1808         if (dmar_in_use())
1809                 return 0;
1810
1811         if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
1812                 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1813
1814         down_write(&dmar_global_lock);
1815         list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
1816                 list_del(&dmaru->list);
1817                 dmar_free_drhd(dmaru);
1818         }
1819         up_write(&dmar_global_lock);
1820
1821         return 0;
1822 }
1823
1824 late_initcall(dmar_free_unused_resources);
1825 IOMMU_INIT_POST(detect_intel_iommu);
1826
1827 /*
1828  * DMAR Hotplug Support
1829  * For more details, please refer to Intel(R) Virtualization Technology
1830  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
1831  * "Remapping Hardware Unit Hot Plug".
1832  */
1833 static guid_t dmar_hp_guid =
1834         GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
1835                   0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
1836
1837 /*
1838  * Currently there's only one revision and BIOS will not check the revision id,
1839  * so use 0 for safety.
1840  */
1841 #define DMAR_DSM_REV_ID                 0
1842 #define DMAR_DSM_FUNC_DRHD              1
1843 #define DMAR_DSM_FUNC_ATSR              2
1844 #define DMAR_DSM_FUNC_RHSA              3
1845
1846 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
1847 {
1848         return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
1849 }
1850
1851 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
1852                                   dmar_res_handler_t handler, void *arg)
1853 {
1854         int ret = -ENODEV;
1855         union acpi_object *obj;
1856         struct acpi_dmar_header *start;
1857         struct dmar_res_callback callback;
1858         static int res_type[] = {
1859                 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
1860                 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
1861                 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
1862         };
1863
1864         if (!dmar_detect_dsm(handle, func))
1865                 return 0;
1866
1867         obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
1868                                       func, NULL, ACPI_TYPE_BUFFER);
1869         if (!obj)
1870                 return -ENODEV;
1871
1872         memset(&callback, 0, sizeof(callback));
1873         callback.cb[res_type[func]] = handler;
1874         callback.arg[res_type[func]] = arg;
1875         start = (struct acpi_dmar_header *)obj->buffer.pointer;
1876         ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
1877
1878         ACPI_FREE(obj);
1879
1880         return ret;
1881 }
1882
1883 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
1884 {
1885         int ret;
1886         struct dmar_drhd_unit *dmaru;
1887
1888         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1889         if (!dmaru)
1890                 return -ENODEV;
1891
1892         ret = dmar_ir_hotplug(dmaru, true);
1893         if (ret == 0)
1894                 ret = dmar_iommu_hotplug(dmaru, true);
1895
1896         return ret;
1897 }
1898
1899 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
1900 {
1901         int i, ret;
1902         struct device *dev;
1903         struct dmar_drhd_unit *dmaru;
1904
1905         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1906         if (!dmaru)
1907                 return 0;
1908
1909         /*
1910          * All PCI devices managed by this unit should have been destroyed.
1911          */
1912         if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
1913                 for_each_active_dev_scope(dmaru->devices,
1914                                           dmaru->devices_cnt, i, dev)
1915                         return -EBUSY;
1916         }
1917
1918         ret = dmar_ir_hotplug(dmaru, false);
1919         if (ret == 0)
1920                 ret = dmar_iommu_hotplug(dmaru, false);
1921
1922         return ret;
1923 }
1924
1925 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
1926 {
1927         struct dmar_drhd_unit *dmaru;
1928
1929         dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
1930         if (dmaru) {
1931                 list_del_rcu(&dmaru->list);
1932                 synchronize_rcu();
1933                 dmar_free_drhd(dmaru);
1934         }
1935
1936         return 0;
1937 }
1938
1939 static int dmar_hotplug_insert(acpi_handle handle)
1940 {
1941         int ret;
1942         int drhd_count = 0;
1943
1944         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1945                                      &dmar_validate_one_drhd, (void *)1);
1946         if (ret)
1947                 goto out;
1948
1949         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1950                                      &dmar_parse_one_drhd, (void *)&drhd_count);
1951         if (ret == 0 && drhd_count == 0) {
1952                 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
1953                 goto out;
1954         } else if (ret) {
1955                 goto release_drhd;
1956         }
1957
1958         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
1959                                      &dmar_parse_one_rhsa, NULL);
1960         if (ret)
1961                 goto release_drhd;
1962
1963         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1964                                      &dmar_parse_one_atsr, NULL);
1965         if (ret)
1966                 goto release_atsr;
1967
1968         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1969                                      &dmar_hp_add_drhd, NULL);
1970         if (!ret)
1971                 return 0;
1972
1973         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1974                                &dmar_hp_remove_drhd, NULL);
1975 release_atsr:
1976         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1977                                &dmar_release_one_atsr, NULL);
1978 release_drhd:
1979         dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1980                                &dmar_hp_release_drhd, NULL);
1981 out:
1982         return ret;
1983 }
1984
1985 static int dmar_hotplug_remove(acpi_handle handle)
1986 {
1987         int ret;
1988
1989         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1990                                      &dmar_check_one_atsr, NULL);
1991         if (ret)
1992                 return ret;
1993
1994         ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
1995                                      &dmar_hp_remove_drhd, NULL);
1996         if (ret == 0) {
1997                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
1998                                                &dmar_release_one_atsr, NULL));
1999                 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2000                                                &dmar_hp_release_drhd, NULL));
2001         } else {
2002                 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2003                                        &dmar_hp_add_drhd, NULL);
2004         }
2005
2006         return ret;
2007 }
2008
2009 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2010                                        void *context, void **retval)
2011 {
2012         acpi_handle *phdl = retval;
2013
2014         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2015                 *phdl = handle;
2016                 return AE_CTRL_TERMINATE;
2017         }
2018
2019         return AE_OK;
2020 }
2021
2022 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2023 {
2024         int ret;
2025         acpi_handle tmp = NULL;
2026         acpi_status status;
2027
2028         if (!dmar_in_use())
2029                 return 0;
2030
2031         if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2032                 tmp = handle;
2033         } else {
2034                 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2035                                              ACPI_UINT32_MAX,
2036                                              dmar_get_dsm_handle,
2037                                              NULL, NULL, &tmp);
2038                 if (ACPI_FAILURE(status)) {
2039                         pr_warn("Failed to locate _DSM method.\n");
2040                         return -ENXIO;
2041                 }
2042         }
2043         if (tmp == NULL)
2044                 return 0;
2045
2046         down_write(&dmar_global_lock);
2047         if (insert)
2048                 ret = dmar_hotplug_insert(tmp);
2049         else
2050                 ret = dmar_hotplug_remove(tmp);
2051         up_write(&dmar_global_lock);
2052
2053         return ret;
2054 }
2055
2056 int dmar_device_add(acpi_handle handle)
2057 {
2058         return dmar_device_hotplug(handle, true);
2059 }
2060
2061 int dmar_device_remove(acpi_handle handle)
2062 {
2063         return dmar_device_hotplug(handle, false);
2064 }
2065
2066 /*
2067  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2068  *
2069  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2070  * the ACPI DMAR table. This means that the platform boot firmware has made
2071  * sure no device can issue DMA outside of RMRR regions.
2072  */
2073 bool dmar_platform_optin(void)
2074 {
2075         struct acpi_table_dmar *dmar;
2076         acpi_status status;
2077         bool ret;
2078
2079         status = acpi_get_table(ACPI_SIG_DMAR, 0,
2080                                 (struct acpi_table_header **)&dmar);
2081         if (ACPI_FAILURE(status))
2082                 return false;
2083
2084         ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2085         acpi_put_table((struct acpi_table_header *)dmar);
2086
2087         return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(dmar_platform_optin);