Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending
[sfrench/cifs-2.6.git] / drivers / iommu / arm-smmu-v3.c
1 /*
2  * IOMMU API for ARM architected SMMUv3 implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  *
16  * Copyright (C) 2015 ARM Limited
17  *
18  * Author: Will Deacon <will.deacon@arm.com>
19  *
20  * This driver is powered by bad coffee and bombay mix.
21  */
22
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/delay.h>
26 #include <linux/dma-iommu.h>
27 #include <linux/err.h>
28 #include <linux/interrupt.h>
29 #include <linux/iommu.h>
30 #include <linux/iopoll.h>
31 #include <linux/module.h>
32 #include <linux/msi.h>
33 #include <linux/of.h>
34 #include <linux/of_address.h>
35 #include <linux/of_iommu.h>
36 #include <linux/of_platform.h>
37 #include <linux/pci.h>
38 #include <linux/platform_device.h>
39
40 #include <linux/amba/bus.h>
41
42 #include "io-pgtable.h"
43
44 /* MMIO registers */
45 #define ARM_SMMU_IDR0                   0x0
46 #define IDR0_ST_LVL_SHIFT               27
47 #define IDR0_ST_LVL_MASK                0x3
48 #define IDR0_ST_LVL_2LVL                (1 << IDR0_ST_LVL_SHIFT)
49 #define IDR0_STALL_MODEL_SHIFT          24
50 #define IDR0_STALL_MODEL_MASK           0x3
51 #define IDR0_STALL_MODEL_STALL          (0 << IDR0_STALL_MODEL_SHIFT)
52 #define IDR0_STALL_MODEL_FORCE          (2 << IDR0_STALL_MODEL_SHIFT)
53 #define IDR0_TTENDIAN_SHIFT             21
54 #define IDR0_TTENDIAN_MASK              0x3
55 #define IDR0_TTENDIAN_LE                (2 << IDR0_TTENDIAN_SHIFT)
56 #define IDR0_TTENDIAN_BE                (3 << IDR0_TTENDIAN_SHIFT)
57 #define IDR0_TTENDIAN_MIXED             (0 << IDR0_TTENDIAN_SHIFT)
58 #define IDR0_CD2L                       (1 << 19)
59 #define IDR0_VMID16                     (1 << 18)
60 #define IDR0_PRI                        (1 << 16)
61 #define IDR0_SEV                        (1 << 14)
62 #define IDR0_MSI                        (1 << 13)
63 #define IDR0_ASID16                     (1 << 12)
64 #define IDR0_ATS                        (1 << 10)
65 #define IDR0_HYP                        (1 << 9)
66 #define IDR0_COHACC                     (1 << 4)
67 #define IDR0_TTF_SHIFT                  2
68 #define IDR0_TTF_MASK                   0x3
69 #define IDR0_TTF_AARCH64                (2 << IDR0_TTF_SHIFT)
70 #define IDR0_TTF_AARCH32_64             (3 << IDR0_TTF_SHIFT)
71 #define IDR0_S1P                        (1 << 1)
72 #define IDR0_S2P                        (1 << 0)
73
74 #define ARM_SMMU_IDR1                   0x4
75 #define IDR1_TABLES_PRESET              (1 << 30)
76 #define IDR1_QUEUES_PRESET              (1 << 29)
77 #define IDR1_REL                        (1 << 28)
78 #define IDR1_CMDQ_SHIFT                 21
79 #define IDR1_CMDQ_MASK                  0x1f
80 #define IDR1_EVTQ_SHIFT                 16
81 #define IDR1_EVTQ_MASK                  0x1f
82 #define IDR1_PRIQ_SHIFT                 11
83 #define IDR1_PRIQ_MASK                  0x1f
84 #define IDR1_SSID_SHIFT                 6
85 #define IDR1_SSID_MASK                  0x1f
86 #define IDR1_SID_SHIFT                  0
87 #define IDR1_SID_MASK                   0x3f
88
89 #define ARM_SMMU_IDR5                   0x14
90 #define IDR5_STALL_MAX_SHIFT            16
91 #define IDR5_STALL_MAX_MASK             0xffff
92 #define IDR5_GRAN64K                    (1 << 6)
93 #define IDR5_GRAN16K                    (1 << 5)
94 #define IDR5_GRAN4K                     (1 << 4)
95 #define IDR5_OAS_SHIFT                  0
96 #define IDR5_OAS_MASK                   0x7
97 #define IDR5_OAS_32_BIT                 (0 << IDR5_OAS_SHIFT)
98 #define IDR5_OAS_36_BIT                 (1 << IDR5_OAS_SHIFT)
99 #define IDR5_OAS_40_BIT                 (2 << IDR5_OAS_SHIFT)
100 #define IDR5_OAS_42_BIT                 (3 << IDR5_OAS_SHIFT)
101 #define IDR5_OAS_44_BIT                 (4 << IDR5_OAS_SHIFT)
102 #define IDR5_OAS_48_BIT                 (5 << IDR5_OAS_SHIFT)
103
104 #define ARM_SMMU_CR0                    0x20
105 #define CR0_CMDQEN                      (1 << 3)
106 #define CR0_EVTQEN                      (1 << 2)
107 #define CR0_PRIQEN                      (1 << 1)
108 #define CR0_SMMUEN                      (1 << 0)
109
110 #define ARM_SMMU_CR0ACK                 0x24
111
112 #define ARM_SMMU_CR1                    0x28
113 #define CR1_SH_NSH                      0
114 #define CR1_SH_OSH                      2
115 #define CR1_SH_ISH                      3
116 #define CR1_CACHE_NC                    0
117 #define CR1_CACHE_WB                    1
118 #define CR1_CACHE_WT                    2
119 #define CR1_TABLE_SH_SHIFT              10
120 #define CR1_TABLE_OC_SHIFT              8
121 #define CR1_TABLE_IC_SHIFT              6
122 #define CR1_QUEUE_SH_SHIFT              4
123 #define CR1_QUEUE_OC_SHIFT              2
124 #define CR1_QUEUE_IC_SHIFT              0
125
126 #define ARM_SMMU_CR2                    0x2c
127 #define CR2_PTM                         (1 << 2)
128 #define CR2_RECINVSID                   (1 << 1)
129 #define CR2_E2H                         (1 << 0)
130
131 #define ARM_SMMU_GBPA                   0x44
132 #define GBPA_ABORT                      (1 << 20)
133 #define GBPA_UPDATE                     (1 << 31)
134
135 #define ARM_SMMU_IRQ_CTRL               0x50
136 #define IRQ_CTRL_EVTQ_IRQEN             (1 << 2)
137 #define IRQ_CTRL_PRIQ_IRQEN             (1 << 1)
138 #define IRQ_CTRL_GERROR_IRQEN           (1 << 0)
139
140 #define ARM_SMMU_IRQ_CTRLACK            0x54
141
142 #define ARM_SMMU_GERROR                 0x60
143 #define GERROR_SFM_ERR                  (1 << 8)
144 #define GERROR_MSI_GERROR_ABT_ERR       (1 << 7)
145 #define GERROR_MSI_PRIQ_ABT_ERR         (1 << 6)
146 #define GERROR_MSI_EVTQ_ABT_ERR         (1 << 5)
147 #define GERROR_MSI_CMDQ_ABT_ERR         (1 << 4)
148 #define GERROR_PRIQ_ABT_ERR             (1 << 3)
149 #define GERROR_EVTQ_ABT_ERR             (1 << 2)
150 #define GERROR_CMDQ_ERR                 (1 << 0)
151 #define GERROR_ERR_MASK                 0xfd
152
153 #define ARM_SMMU_GERRORN                0x64
154
155 #define ARM_SMMU_GERROR_IRQ_CFG0        0x68
156 #define ARM_SMMU_GERROR_IRQ_CFG1        0x70
157 #define ARM_SMMU_GERROR_IRQ_CFG2        0x74
158
159 #define ARM_SMMU_STRTAB_BASE            0x80
160 #define STRTAB_BASE_RA                  (1UL << 62)
161 #define STRTAB_BASE_ADDR_SHIFT          6
162 #define STRTAB_BASE_ADDR_MASK           0x3ffffffffffUL
163
164 #define ARM_SMMU_STRTAB_BASE_CFG        0x88
165 #define STRTAB_BASE_CFG_LOG2SIZE_SHIFT  0
166 #define STRTAB_BASE_CFG_LOG2SIZE_MASK   0x3f
167 #define STRTAB_BASE_CFG_SPLIT_SHIFT     6
168 #define STRTAB_BASE_CFG_SPLIT_MASK      0x1f
169 #define STRTAB_BASE_CFG_FMT_SHIFT       16
170 #define STRTAB_BASE_CFG_FMT_MASK        0x3
171 #define STRTAB_BASE_CFG_FMT_LINEAR      (0 << STRTAB_BASE_CFG_FMT_SHIFT)
172 #define STRTAB_BASE_CFG_FMT_2LVL        (1 << STRTAB_BASE_CFG_FMT_SHIFT)
173
174 #define ARM_SMMU_CMDQ_BASE              0x90
175 #define ARM_SMMU_CMDQ_PROD              0x98
176 #define ARM_SMMU_CMDQ_CONS              0x9c
177
178 #define ARM_SMMU_EVTQ_BASE              0xa0
179 #define ARM_SMMU_EVTQ_PROD              0x100a8
180 #define ARM_SMMU_EVTQ_CONS              0x100ac
181 #define ARM_SMMU_EVTQ_IRQ_CFG0          0xb0
182 #define ARM_SMMU_EVTQ_IRQ_CFG1          0xb8
183 #define ARM_SMMU_EVTQ_IRQ_CFG2          0xbc
184
185 #define ARM_SMMU_PRIQ_BASE              0xc0
186 #define ARM_SMMU_PRIQ_PROD              0x100c8
187 #define ARM_SMMU_PRIQ_CONS              0x100cc
188 #define ARM_SMMU_PRIQ_IRQ_CFG0          0xd0
189 #define ARM_SMMU_PRIQ_IRQ_CFG1          0xd8
190 #define ARM_SMMU_PRIQ_IRQ_CFG2          0xdc
191
192 /* Common MSI config fields */
193 #define MSI_CFG0_ADDR_SHIFT             2
194 #define MSI_CFG0_ADDR_MASK              0x3fffffffffffUL
195 #define MSI_CFG2_SH_SHIFT               4
196 #define MSI_CFG2_SH_NSH                 (0UL << MSI_CFG2_SH_SHIFT)
197 #define MSI_CFG2_SH_OSH                 (2UL << MSI_CFG2_SH_SHIFT)
198 #define MSI_CFG2_SH_ISH                 (3UL << MSI_CFG2_SH_SHIFT)
199 #define MSI_CFG2_MEMATTR_SHIFT          0
200 #define MSI_CFG2_MEMATTR_DEVICE_nGnRE   (0x1 << MSI_CFG2_MEMATTR_SHIFT)
201
202 #define Q_IDX(q, p)                     ((p) & ((1 << (q)->max_n_shift) - 1))
203 #define Q_WRP(q, p)                     ((p) & (1 << (q)->max_n_shift))
204 #define Q_OVERFLOW_FLAG                 (1 << 31)
205 #define Q_OVF(q, p)                     ((p) & Q_OVERFLOW_FLAG)
206 #define Q_ENT(q, p)                     ((q)->base +                    \
207                                          Q_IDX(q, p) * (q)->ent_dwords)
208
209 #define Q_BASE_RWA                      (1UL << 62)
210 #define Q_BASE_ADDR_SHIFT               5
211 #define Q_BASE_ADDR_MASK                0xfffffffffffUL
212 #define Q_BASE_LOG2SIZE_SHIFT           0
213 #define Q_BASE_LOG2SIZE_MASK            0x1fUL
214
215 /*
216  * Stream table.
217  *
218  * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
219  * 2lvl: 128k L1 entries,
220  *       256 lazy entries per table (each table covers a PCI bus)
221  */
222 #define STRTAB_L1_SZ_SHIFT              20
223 #define STRTAB_SPLIT                    8
224
225 #define STRTAB_L1_DESC_DWORDS           1
226 #define STRTAB_L1_DESC_SPAN_SHIFT       0
227 #define STRTAB_L1_DESC_SPAN_MASK        0x1fUL
228 #define STRTAB_L1_DESC_L2PTR_SHIFT      6
229 #define STRTAB_L1_DESC_L2PTR_MASK       0x3ffffffffffUL
230
231 #define STRTAB_STE_DWORDS               8
232 #define STRTAB_STE_0_V                  (1UL << 0)
233 #define STRTAB_STE_0_CFG_SHIFT          1
234 #define STRTAB_STE_0_CFG_MASK           0x7UL
235 #define STRTAB_STE_0_CFG_ABORT          (0UL << STRTAB_STE_0_CFG_SHIFT)
236 #define STRTAB_STE_0_CFG_BYPASS         (4UL << STRTAB_STE_0_CFG_SHIFT)
237 #define STRTAB_STE_0_CFG_S1_TRANS       (5UL << STRTAB_STE_0_CFG_SHIFT)
238 #define STRTAB_STE_0_CFG_S2_TRANS       (6UL << STRTAB_STE_0_CFG_SHIFT)
239
240 #define STRTAB_STE_0_S1FMT_SHIFT        4
241 #define STRTAB_STE_0_S1FMT_LINEAR       (0UL << STRTAB_STE_0_S1FMT_SHIFT)
242 #define STRTAB_STE_0_S1CTXPTR_SHIFT     6
243 #define STRTAB_STE_0_S1CTXPTR_MASK      0x3ffffffffffUL
244 #define STRTAB_STE_0_S1CDMAX_SHIFT      59
245 #define STRTAB_STE_0_S1CDMAX_MASK       0x1fUL
246
247 #define STRTAB_STE_1_S1C_CACHE_NC       0UL
248 #define STRTAB_STE_1_S1C_CACHE_WBRA     1UL
249 #define STRTAB_STE_1_S1C_CACHE_WT       2UL
250 #define STRTAB_STE_1_S1C_CACHE_WB       3UL
251 #define STRTAB_STE_1_S1C_SH_NSH         0UL
252 #define STRTAB_STE_1_S1C_SH_OSH         2UL
253 #define STRTAB_STE_1_S1C_SH_ISH         3UL
254 #define STRTAB_STE_1_S1CIR_SHIFT        2
255 #define STRTAB_STE_1_S1COR_SHIFT        4
256 #define STRTAB_STE_1_S1CSH_SHIFT        6
257
258 #define STRTAB_STE_1_S1STALLD           (1UL << 27)
259
260 #define STRTAB_STE_1_EATS_ABT           0UL
261 #define STRTAB_STE_1_EATS_TRANS         1UL
262 #define STRTAB_STE_1_EATS_S1CHK         2UL
263 #define STRTAB_STE_1_EATS_SHIFT         28
264
265 #define STRTAB_STE_1_STRW_NSEL1         0UL
266 #define STRTAB_STE_1_STRW_EL2           2UL
267 #define STRTAB_STE_1_STRW_SHIFT         30
268
269 #define STRTAB_STE_1_SHCFG_INCOMING     1UL
270 #define STRTAB_STE_1_SHCFG_SHIFT        44
271
272 #define STRTAB_STE_2_S2VMID_SHIFT       0
273 #define STRTAB_STE_2_S2VMID_MASK        0xffffUL
274 #define STRTAB_STE_2_VTCR_SHIFT         32
275 #define STRTAB_STE_2_VTCR_MASK          0x7ffffUL
276 #define STRTAB_STE_2_S2AA64             (1UL << 51)
277 #define STRTAB_STE_2_S2ENDI             (1UL << 52)
278 #define STRTAB_STE_2_S2PTW              (1UL << 54)
279 #define STRTAB_STE_2_S2R                (1UL << 58)
280
281 #define STRTAB_STE_3_S2TTB_SHIFT        4
282 #define STRTAB_STE_3_S2TTB_MASK         0xfffffffffffUL
283
284 /* Context descriptor (stage-1 only) */
285 #define CTXDESC_CD_DWORDS               8
286 #define CTXDESC_CD_0_TCR_T0SZ_SHIFT     0
287 #define ARM64_TCR_T0SZ_SHIFT            0
288 #define ARM64_TCR_T0SZ_MASK             0x1fUL
289 #define CTXDESC_CD_0_TCR_TG0_SHIFT      6
290 #define ARM64_TCR_TG0_SHIFT             14
291 #define ARM64_TCR_TG0_MASK              0x3UL
292 #define CTXDESC_CD_0_TCR_IRGN0_SHIFT    8
293 #define ARM64_TCR_IRGN0_SHIFT           8
294 #define ARM64_TCR_IRGN0_MASK            0x3UL
295 #define CTXDESC_CD_0_TCR_ORGN0_SHIFT    10
296 #define ARM64_TCR_ORGN0_SHIFT           10
297 #define ARM64_TCR_ORGN0_MASK            0x3UL
298 #define CTXDESC_CD_0_TCR_SH0_SHIFT      12
299 #define ARM64_TCR_SH0_SHIFT             12
300 #define ARM64_TCR_SH0_MASK              0x3UL
301 #define CTXDESC_CD_0_TCR_EPD0_SHIFT     14
302 #define ARM64_TCR_EPD0_SHIFT            7
303 #define ARM64_TCR_EPD0_MASK             0x1UL
304 #define CTXDESC_CD_0_TCR_EPD1_SHIFT     30
305 #define ARM64_TCR_EPD1_SHIFT            23
306 #define ARM64_TCR_EPD1_MASK             0x1UL
307
308 #define CTXDESC_CD_0_ENDI               (1UL << 15)
309 #define CTXDESC_CD_0_V                  (1UL << 31)
310
311 #define CTXDESC_CD_0_TCR_IPS_SHIFT      32
312 #define ARM64_TCR_IPS_SHIFT             32
313 #define ARM64_TCR_IPS_MASK              0x7UL
314 #define CTXDESC_CD_0_TCR_TBI0_SHIFT     38
315 #define ARM64_TCR_TBI0_SHIFT            37
316 #define ARM64_TCR_TBI0_MASK             0x1UL
317
318 #define CTXDESC_CD_0_AA64               (1UL << 41)
319 #define CTXDESC_CD_0_R                  (1UL << 45)
320 #define CTXDESC_CD_0_A                  (1UL << 46)
321 #define CTXDESC_CD_0_ASET_SHIFT         47
322 #define CTXDESC_CD_0_ASET_SHARED        (0UL << CTXDESC_CD_0_ASET_SHIFT)
323 #define CTXDESC_CD_0_ASET_PRIVATE       (1UL << CTXDESC_CD_0_ASET_SHIFT)
324 #define CTXDESC_CD_0_ASID_SHIFT         48
325 #define CTXDESC_CD_0_ASID_MASK          0xffffUL
326
327 #define CTXDESC_CD_1_TTB0_SHIFT         4
328 #define CTXDESC_CD_1_TTB0_MASK          0xfffffffffffUL
329
330 #define CTXDESC_CD_3_MAIR_SHIFT         0
331
332 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
333 #define ARM_SMMU_TCR2CD(tcr, fld)                                       \
334         (((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)    \
335          << CTXDESC_CD_0_TCR_##fld##_SHIFT)
336
337 /* Command queue */
338 #define CMDQ_ENT_DWORDS                 2
339 #define CMDQ_MAX_SZ_SHIFT               8
340
341 #define CMDQ_ERR_SHIFT                  24
342 #define CMDQ_ERR_MASK                   0x7f
343 #define CMDQ_ERR_CERROR_NONE_IDX        0
344 #define CMDQ_ERR_CERROR_ILL_IDX         1
345 #define CMDQ_ERR_CERROR_ABT_IDX         2
346
347 #define CMDQ_0_OP_SHIFT                 0
348 #define CMDQ_0_OP_MASK                  0xffUL
349 #define CMDQ_0_SSV                      (1UL << 11)
350
351 #define CMDQ_PREFETCH_0_SID_SHIFT       32
352 #define CMDQ_PREFETCH_1_SIZE_SHIFT      0
353 #define CMDQ_PREFETCH_1_ADDR_MASK       ~0xfffUL
354
355 #define CMDQ_CFGI_0_SID_SHIFT           32
356 #define CMDQ_CFGI_0_SID_MASK            0xffffffffUL
357 #define CMDQ_CFGI_1_LEAF                (1UL << 0)
358 #define CMDQ_CFGI_1_RANGE_SHIFT         0
359 #define CMDQ_CFGI_1_RANGE_MASK          0x1fUL
360
361 #define CMDQ_TLBI_0_VMID_SHIFT          32
362 #define CMDQ_TLBI_0_ASID_SHIFT          48
363 #define CMDQ_TLBI_1_LEAF                (1UL << 0)
364 #define CMDQ_TLBI_1_VA_MASK             ~0xfffUL
365 #define CMDQ_TLBI_1_IPA_MASK            0xfffffffff000UL
366
367 #define CMDQ_PRI_0_SSID_SHIFT           12
368 #define CMDQ_PRI_0_SSID_MASK            0xfffffUL
369 #define CMDQ_PRI_0_SID_SHIFT            32
370 #define CMDQ_PRI_0_SID_MASK             0xffffffffUL
371 #define CMDQ_PRI_1_GRPID_SHIFT          0
372 #define CMDQ_PRI_1_GRPID_MASK           0x1ffUL
373 #define CMDQ_PRI_1_RESP_SHIFT           12
374 #define CMDQ_PRI_1_RESP_DENY            (0UL << CMDQ_PRI_1_RESP_SHIFT)
375 #define CMDQ_PRI_1_RESP_FAIL            (1UL << CMDQ_PRI_1_RESP_SHIFT)
376 #define CMDQ_PRI_1_RESP_SUCC            (2UL << CMDQ_PRI_1_RESP_SHIFT)
377
378 #define CMDQ_SYNC_0_CS_SHIFT            12
379 #define CMDQ_SYNC_0_CS_NONE             (0UL << CMDQ_SYNC_0_CS_SHIFT)
380 #define CMDQ_SYNC_0_CS_SEV              (2UL << CMDQ_SYNC_0_CS_SHIFT)
381
382 /* Event queue */
383 #define EVTQ_ENT_DWORDS                 4
384 #define EVTQ_MAX_SZ_SHIFT               7
385
386 #define EVTQ_0_ID_SHIFT                 0
387 #define EVTQ_0_ID_MASK                  0xffUL
388
389 /* PRI queue */
390 #define PRIQ_ENT_DWORDS                 2
391 #define PRIQ_MAX_SZ_SHIFT               8
392
393 #define PRIQ_0_SID_SHIFT                0
394 #define PRIQ_0_SID_MASK                 0xffffffffUL
395 #define PRIQ_0_SSID_SHIFT               32
396 #define PRIQ_0_SSID_MASK                0xfffffUL
397 #define PRIQ_0_PERM_PRIV                (1UL << 58)
398 #define PRIQ_0_PERM_EXEC                (1UL << 59)
399 #define PRIQ_0_PERM_READ                (1UL << 60)
400 #define PRIQ_0_PERM_WRITE               (1UL << 61)
401 #define PRIQ_0_PRG_LAST                 (1UL << 62)
402 #define PRIQ_0_SSID_V                   (1UL << 63)
403
404 #define PRIQ_1_PRG_IDX_SHIFT            0
405 #define PRIQ_1_PRG_IDX_MASK             0x1ffUL
406 #define PRIQ_1_ADDR_SHIFT               12
407 #define PRIQ_1_ADDR_MASK                0xfffffffffffffUL
408
409 /* High-level queue structures */
410 #define ARM_SMMU_POLL_TIMEOUT_US        100
411
412 #define MSI_IOVA_BASE                   0x8000000
413 #define MSI_IOVA_LENGTH                 0x100000
414
415 static bool disable_bypass;
416 module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
417 MODULE_PARM_DESC(disable_bypass,
418         "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
419
420 enum pri_resp {
421         PRI_RESP_DENY,
422         PRI_RESP_FAIL,
423         PRI_RESP_SUCC,
424 };
425
426 enum arm_smmu_msi_index {
427         EVTQ_MSI_INDEX,
428         GERROR_MSI_INDEX,
429         PRIQ_MSI_INDEX,
430         ARM_SMMU_MAX_MSIS,
431 };
432
433 static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
434         [EVTQ_MSI_INDEX] = {
435                 ARM_SMMU_EVTQ_IRQ_CFG0,
436                 ARM_SMMU_EVTQ_IRQ_CFG1,
437                 ARM_SMMU_EVTQ_IRQ_CFG2,
438         },
439         [GERROR_MSI_INDEX] = {
440                 ARM_SMMU_GERROR_IRQ_CFG0,
441                 ARM_SMMU_GERROR_IRQ_CFG1,
442                 ARM_SMMU_GERROR_IRQ_CFG2,
443         },
444         [PRIQ_MSI_INDEX] = {
445                 ARM_SMMU_PRIQ_IRQ_CFG0,
446                 ARM_SMMU_PRIQ_IRQ_CFG1,
447                 ARM_SMMU_PRIQ_IRQ_CFG2,
448         },
449 };
450
451 struct arm_smmu_cmdq_ent {
452         /* Common fields */
453         u8                              opcode;
454         bool                            substream_valid;
455
456         /* Command-specific fields */
457         union {
458                 #define CMDQ_OP_PREFETCH_CFG    0x1
459                 struct {
460                         u32                     sid;
461                         u8                      size;
462                         u64                     addr;
463                 } prefetch;
464
465                 #define CMDQ_OP_CFGI_STE        0x3
466                 #define CMDQ_OP_CFGI_ALL        0x4
467                 struct {
468                         u32                     sid;
469                         union {
470                                 bool            leaf;
471                                 u8              span;
472                         };
473                 } cfgi;
474
475                 #define CMDQ_OP_TLBI_NH_ASID    0x11
476                 #define CMDQ_OP_TLBI_NH_VA      0x12
477                 #define CMDQ_OP_TLBI_EL2_ALL    0x20
478                 #define CMDQ_OP_TLBI_S12_VMALL  0x28
479                 #define CMDQ_OP_TLBI_S2_IPA     0x2a
480                 #define CMDQ_OP_TLBI_NSNH_ALL   0x30
481                 struct {
482                         u16                     asid;
483                         u16                     vmid;
484                         bool                    leaf;
485                         u64                     addr;
486                 } tlbi;
487
488                 #define CMDQ_OP_PRI_RESP        0x41
489                 struct {
490                         u32                     sid;
491                         u32                     ssid;
492                         u16                     grpid;
493                         enum pri_resp           resp;
494                 } pri;
495
496                 #define CMDQ_OP_CMD_SYNC        0x46
497         };
498 };
499
500 struct arm_smmu_queue {
501         int                             irq; /* Wired interrupt */
502
503         __le64                          *base;
504         dma_addr_t                      base_dma;
505         u64                             q_base;
506
507         size_t                          ent_dwords;
508         u32                             max_n_shift;
509         u32                             prod;
510         u32                             cons;
511
512         u32 __iomem                     *prod_reg;
513         u32 __iomem                     *cons_reg;
514 };
515
516 struct arm_smmu_cmdq {
517         struct arm_smmu_queue           q;
518         spinlock_t                      lock;
519 };
520
521 struct arm_smmu_evtq {
522         struct arm_smmu_queue           q;
523         u32                             max_stalls;
524 };
525
526 struct arm_smmu_priq {
527         struct arm_smmu_queue           q;
528 };
529
530 /* High-level stream table and context descriptor structures */
531 struct arm_smmu_strtab_l1_desc {
532         u8                              span;
533
534         __le64                          *l2ptr;
535         dma_addr_t                      l2ptr_dma;
536 };
537
538 struct arm_smmu_s1_cfg {
539         __le64                          *cdptr;
540         dma_addr_t                      cdptr_dma;
541
542         struct arm_smmu_ctx_desc {
543                 u16     asid;
544                 u64     ttbr;
545                 u64     tcr;
546                 u64     mair;
547         }                               cd;
548 };
549
550 struct arm_smmu_s2_cfg {
551         u16                             vmid;
552         u64                             vttbr;
553         u64                             vtcr;
554 };
555
556 struct arm_smmu_strtab_ent {
557         bool                            valid;
558
559         bool                            bypass; /* Overrides s1/s2 config */
560         struct arm_smmu_s1_cfg          *s1_cfg;
561         struct arm_smmu_s2_cfg          *s2_cfg;
562 };
563
564 struct arm_smmu_strtab_cfg {
565         __le64                          *strtab;
566         dma_addr_t                      strtab_dma;
567         struct arm_smmu_strtab_l1_desc  *l1_desc;
568         unsigned int                    num_l1_ents;
569
570         u64                             strtab_base;
571         u32                             strtab_base_cfg;
572 };
573
574 /* An SMMUv3 instance */
575 struct arm_smmu_device {
576         struct device                   *dev;
577         void __iomem                    *base;
578
579 #define ARM_SMMU_FEAT_2_LVL_STRTAB      (1 << 0)
580 #define ARM_SMMU_FEAT_2_LVL_CDTAB       (1 << 1)
581 #define ARM_SMMU_FEAT_TT_LE             (1 << 2)
582 #define ARM_SMMU_FEAT_TT_BE             (1 << 3)
583 #define ARM_SMMU_FEAT_PRI               (1 << 4)
584 #define ARM_SMMU_FEAT_ATS               (1 << 5)
585 #define ARM_SMMU_FEAT_SEV               (1 << 6)
586 #define ARM_SMMU_FEAT_MSI               (1 << 7)
587 #define ARM_SMMU_FEAT_COHERENCY         (1 << 8)
588 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 9)
589 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 10)
590 #define ARM_SMMU_FEAT_STALLS            (1 << 11)
591 #define ARM_SMMU_FEAT_HYP               (1 << 12)
592         u32                             features;
593
594 #define ARM_SMMU_OPT_SKIP_PREFETCH      (1 << 0)
595         u32                             options;
596
597         struct arm_smmu_cmdq            cmdq;
598         struct arm_smmu_evtq            evtq;
599         struct arm_smmu_priq            priq;
600
601         int                             gerr_irq;
602
603         unsigned long                   ias; /* IPA */
604         unsigned long                   oas; /* PA */
605         unsigned long                   pgsize_bitmap;
606
607 #define ARM_SMMU_MAX_ASIDS              (1 << 16)
608         unsigned int                    asid_bits;
609         DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);
610
611 #define ARM_SMMU_MAX_VMIDS              (1 << 16)
612         unsigned int                    vmid_bits;
613         DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);
614
615         unsigned int                    ssid_bits;
616         unsigned int                    sid_bits;
617
618         struct arm_smmu_strtab_cfg      strtab_cfg;
619
620         /* IOMMU core code handle */
621         struct iommu_device             iommu;
622 };
623
624 /* SMMU private data for each master */
625 struct arm_smmu_master_data {
626         struct arm_smmu_device          *smmu;
627         struct arm_smmu_strtab_ent      ste;
628 };
629
630 /* SMMU private data for an IOMMU domain */
631 enum arm_smmu_domain_stage {
632         ARM_SMMU_DOMAIN_S1 = 0,
633         ARM_SMMU_DOMAIN_S2,
634         ARM_SMMU_DOMAIN_NESTED,
635 };
636
637 struct arm_smmu_domain {
638         struct arm_smmu_device          *smmu;
639         struct mutex                    init_mutex; /* Protects smmu pointer */
640
641         struct io_pgtable_ops           *pgtbl_ops;
642         spinlock_t                      pgtbl_lock;
643
644         enum arm_smmu_domain_stage      stage;
645         union {
646                 struct arm_smmu_s1_cfg  s1_cfg;
647                 struct arm_smmu_s2_cfg  s2_cfg;
648         };
649
650         struct iommu_domain             domain;
651 };
652
653 struct arm_smmu_option_prop {
654         u32 opt;
655         const char *prop;
656 };
657
658 static struct arm_smmu_option_prop arm_smmu_options[] = {
659         { ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
660         { 0, NULL},
661 };
662
663 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
664 {
665         return container_of(dom, struct arm_smmu_domain, domain);
666 }
667
668 static void parse_driver_options(struct arm_smmu_device *smmu)
669 {
670         int i = 0;
671
672         do {
673                 if (of_property_read_bool(smmu->dev->of_node,
674                                                 arm_smmu_options[i].prop)) {
675                         smmu->options |= arm_smmu_options[i].opt;
676                         dev_notice(smmu->dev, "option %s\n",
677                                 arm_smmu_options[i].prop);
678                 }
679         } while (arm_smmu_options[++i].opt);
680 }
681
682 /* Low-level queue manipulation functions */
683 static bool queue_full(struct arm_smmu_queue *q)
684 {
685         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
686                Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
687 }
688
689 static bool queue_empty(struct arm_smmu_queue *q)
690 {
691         return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
692                Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
693 }
694
695 static void queue_sync_cons(struct arm_smmu_queue *q)
696 {
697         q->cons = readl_relaxed(q->cons_reg);
698 }
699
700 static void queue_inc_cons(struct arm_smmu_queue *q)
701 {
702         u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
703
704         q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
705         writel(q->cons, q->cons_reg);
706 }
707
708 static int queue_sync_prod(struct arm_smmu_queue *q)
709 {
710         int ret = 0;
711         u32 prod = readl_relaxed(q->prod_reg);
712
713         if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
714                 ret = -EOVERFLOW;
715
716         q->prod = prod;
717         return ret;
718 }
719
720 static void queue_inc_prod(struct arm_smmu_queue *q)
721 {
722         u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;
723
724         q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
725         writel(q->prod, q->prod_reg);
726 }
727
728 /*
729  * Wait for the SMMU to consume items. If drain is true, wait until the queue
730  * is empty. Otherwise, wait until there is at least one free slot.
731  */
732 static int queue_poll_cons(struct arm_smmu_queue *q, bool drain, bool wfe)
733 {
734         ktime_t timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
735
736         while (queue_sync_cons(q), (drain ? !queue_empty(q) : queue_full(q))) {
737                 if (ktime_compare(ktime_get(), timeout) > 0)
738                         return -ETIMEDOUT;
739
740                 if (wfe) {
741                         wfe();
742                 } else {
743                         cpu_relax();
744                         udelay(1);
745                 }
746         }
747
748         return 0;
749 }
750
751 static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
752 {
753         int i;
754
755         for (i = 0; i < n_dwords; ++i)
756                 *dst++ = cpu_to_le64(*src++);
757 }
758
759 static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
760 {
761         if (queue_full(q))
762                 return -ENOSPC;
763
764         queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
765         queue_inc_prod(q);
766         return 0;
767 }
768
769 static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
770 {
771         int i;
772
773         for (i = 0; i < n_dwords; ++i)
774                 *dst++ = le64_to_cpu(*src++);
775 }
776
777 static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
778 {
779         if (queue_empty(q))
780                 return -EAGAIN;
781
782         queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
783         queue_inc_cons(q);
784         return 0;
785 }
786
787 /* High-level queue accessors */
788 static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
789 {
790         memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
791         cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;
792
793         switch (ent->opcode) {
794         case CMDQ_OP_TLBI_EL2_ALL:
795         case CMDQ_OP_TLBI_NSNH_ALL:
796                 break;
797         case CMDQ_OP_PREFETCH_CFG:
798                 cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
799                 cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
800                 cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
801                 break;
802         case CMDQ_OP_CFGI_STE:
803                 cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
804                 cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
805                 break;
806         case CMDQ_OP_CFGI_ALL:
807                 /* Cover the entire SID range */
808                 cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
809                 break;
810         case CMDQ_OP_TLBI_NH_VA:
811                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
812                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
813                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
814                 break;
815         case CMDQ_OP_TLBI_S2_IPA:
816                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
817                 cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
818                 cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
819                 break;
820         case CMDQ_OP_TLBI_NH_ASID:
821                 cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
822                 /* Fallthrough */
823         case CMDQ_OP_TLBI_S12_VMALL:
824                 cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
825                 break;
826         case CMDQ_OP_PRI_RESP:
827                 cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
828                 cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
829                 cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
830                 cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
831                 switch (ent->pri.resp) {
832                 case PRI_RESP_DENY:
833                         cmd[1] |= CMDQ_PRI_1_RESP_DENY;
834                         break;
835                 case PRI_RESP_FAIL:
836                         cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
837                         break;
838                 case PRI_RESP_SUCC:
839                         cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
840                         break;
841                 default:
842                         return -EINVAL;
843                 }
844                 break;
845         case CMDQ_OP_CMD_SYNC:
846                 cmd[0] |= CMDQ_SYNC_0_CS_SEV;
847                 break;
848         default:
849                 return -ENOENT;
850         }
851
852         return 0;
853 }
854
855 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
856 {
857         static const char *cerror_str[] = {
858                 [CMDQ_ERR_CERROR_NONE_IDX]      = "No error",
859                 [CMDQ_ERR_CERROR_ILL_IDX]       = "Illegal command",
860                 [CMDQ_ERR_CERROR_ABT_IDX]       = "Abort on command fetch",
861         };
862
863         int i;
864         u64 cmd[CMDQ_ENT_DWORDS];
865         struct arm_smmu_queue *q = &smmu->cmdq.q;
866         u32 cons = readl_relaxed(q->cons_reg);
867         u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
868         struct arm_smmu_cmdq_ent cmd_sync = {
869                 .opcode = CMDQ_OP_CMD_SYNC,
870         };
871
872         dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
873                 idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
874
875         switch (idx) {
876         case CMDQ_ERR_CERROR_ABT_IDX:
877                 dev_err(smmu->dev, "retrying command fetch\n");
878         case CMDQ_ERR_CERROR_NONE_IDX:
879                 return;
880         case CMDQ_ERR_CERROR_ILL_IDX:
881                 /* Fallthrough */
882         default:
883                 break;
884         }
885
886         /*
887          * We may have concurrent producers, so we need to be careful
888          * not to touch any of the shadow cmdq state.
889          */
890         queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
891         dev_err(smmu->dev, "skipping command in error state:\n");
892         for (i = 0; i < ARRAY_SIZE(cmd); ++i)
893                 dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);
894
895         /* Convert the erroneous command into a CMD_SYNC */
896         if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
897                 dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
898                 return;
899         }
900
901         queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
902 }
903
904 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
905                                     struct arm_smmu_cmdq_ent *ent)
906 {
907         u64 cmd[CMDQ_ENT_DWORDS];
908         unsigned long flags;
909         bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
910         struct arm_smmu_queue *q = &smmu->cmdq.q;
911
912         if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
913                 dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
914                          ent->opcode);
915                 return;
916         }
917
918         spin_lock_irqsave(&smmu->cmdq.lock, flags);
919         while (queue_insert_raw(q, cmd) == -ENOSPC) {
920                 if (queue_poll_cons(q, false, wfe))
921                         dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
922         }
923
924         if (ent->opcode == CMDQ_OP_CMD_SYNC && queue_poll_cons(q, true, wfe))
925                 dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
926         spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
927 }
928
929 /* Context descriptor manipulation functions */
930 static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
931 {
932         u64 val = 0;
933
934         /* Repack the TCR. Just care about TTBR0 for now */
935         val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
936         val |= ARM_SMMU_TCR2CD(tcr, TG0);
937         val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
938         val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
939         val |= ARM_SMMU_TCR2CD(tcr, SH0);
940         val |= ARM_SMMU_TCR2CD(tcr, EPD0);
941         val |= ARM_SMMU_TCR2CD(tcr, EPD1);
942         val |= ARM_SMMU_TCR2CD(tcr, IPS);
943         val |= ARM_SMMU_TCR2CD(tcr, TBI0);
944
945         return val;
946 }
947
948 static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
949                                     struct arm_smmu_s1_cfg *cfg)
950 {
951         u64 val;
952
953         /*
954          * We don't need to issue any invalidation here, as we'll invalidate
955          * the STE when installing the new entry anyway.
956          */
957         val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
958 #ifdef __BIG_ENDIAN
959               CTXDESC_CD_0_ENDI |
960 #endif
961               CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
962               CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
963               CTXDESC_CD_0_V;
964         cfg->cdptr[0] = cpu_to_le64(val);
965
966         val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
967         cfg->cdptr[1] = cpu_to_le64(val);
968
969         cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
970 }
971
972 /* Stream table manipulation functions */
973 static void
974 arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
975 {
976         u64 val = 0;
977
978         val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
979                 << STRTAB_L1_DESC_SPAN_SHIFT;
980         val |= desc->l2ptr_dma &
981                STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;
982
983         *dst = cpu_to_le64(val);
984 }
985
986 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
987 {
988         struct arm_smmu_cmdq_ent cmd = {
989                 .opcode = CMDQ_OP_CFGI_STE,
990                 .cfgi   = {
991                         .sid    = sid,
992                         .leaf   = true,
993                 },
994         };
995
996         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
997         cmd.opcode = CMDQ_OP_CMD_SYNC;
998         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
999 }
1000
1001 static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
1002                                       __le64 *dst, struct arm_smmu_strtab_ent *ste)
1003 {
1004         /*
1005          * This is hideously complicated, but we only really care about
1006          * three cases at the moment:
1007          *
1008          * 1. Invalid (all zero) -> bypass  (init)
1009          * 2. Bypass -> translation (attach)
1010          * 3. Translation -> bypass (detach)
1011          *
1012          * Given that we can't update the STE atomically and the SMMU
1013          * doesn't read the thing in a defined order, that leaves us
1014          * with the following maintenance requirements:
1015          *
1016          * 1. Update Config, return (init time STEs aren't live)
1017          * 2. Write everything apart from dword 0, sync, write dword 0, sync
1018          * 3. Update Config, sync
1019          */
1020         u64 val = le64_to_cpu(dst[0]);
1021         bool ste_live = false;
1022         struct arm_smmu_cmdq_ent prefetch_cmd = {
1023                 .opcode         = CMDQ_OP_PREFETCH_CFG,
1024                 .prefetch       = {
1025                         .sid    = sid,
1026                 },
1027         };
1028
1029         if (val & STRTAB_STE_0_V) {
1030                 u64 cfg;
1031
1032                 cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
1033                 switch (cfg) {
1034                 case STRTAB_STE_0_CFG_BYPASS:
1035                         break;
1036                 case STRTAB_STE_0_CFG_S1_TRANS:
1037                 case STRTAB_STE_0_CFG_S2_TRANS:
1038                         ste_live = true;
1039                         break;
1040                 case STRTAB_STE_0_CFG_ABORT:
1041                         if (disable_bypass)
1042                                 break;
1043                 default:
1044                         BUG(); /* STE corruption */
1045                 }
1046         }
1047
1048         /* Nuke the existing STE_0 value, as we're going to rewrite it */
1049         val = ste->valid ? STRTAB_STE_0_V : 0;
1050
1051         if (ste->bypass) {
1052                 val |= disable_bypass ? STRTAB_STE_0_CFG_ABORT
1053                                       : STRTAB_STE_0_CFG_BYPASS;
1054                 dst[0] = cpu_to_le64(val);
1055                 dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
1056                          << STRTAB_STE_1_SHCFG_SHIFT);
1057                 dst[2] = 0; /* Nuke the VMID */
1058                 if (ste_live)
1059                         arm_smmu_sync_ste_for_sid(smmu, sid);
1060                 return;
1061         }
1062
1063         if (ste->s1_cfg) {
1064                 BUG_ON(ste_live);
1065                 dst[1] = cpu_to_le64(
1066                          STRTAB_STE_1_S1C_CACHE_WBRA
1067                          << STRTAB_STE_1_S1CIR_SHIFT |
1068                          STRTAB_STE_1_S1C_CACHE_WBRA
1069                          << STRTAB_STE_1_S1COR_SHIFT |
1070                          STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
1071 #ifdef CONFIG_PCI_ATS
1072                          STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
1073 #endif
1074                          STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);
1075
1076                 if (smmu->features & ARM_SMMU_FEAT_STALLS)
1077                         dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);
1078
1079                 val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
1080                         << STRTAB_STE_0_S1CTXPTR_SHIFT) |
1081                         STRTAB_STE_0_CFG_S1_TRANS;
1082         }
1083
1084         if (ste->s2_cfg) {
1085                 BUG_ON(ste_live);
1086                 dst[2] = cpu_to_le64(
1087                          ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
1088                          (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
1089                           << STRTAB_STE_2_VTCR_SHIFT |
1090 #ifdef __BIG_ENDIAN
1091                          STRTAB_STE_2_S2ENDI |
1092 #endif
1093                          STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
1094                          STRTAB_STE_2_S2R);
1095
1096                 dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
1097                          STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);
1098
1099                 val |= STRTAB_STE_0_CFG_S2_TRANS;
1100         }
1101
1102         arm_smmu_sync_ste_for_sid(smmu, sid);
1103         dst[0] = cpu_to_le64(val);
1104         arm_smmu_sync_ste_for_sid(smmu, sid);
1105
1106         /* It's likely that we'll want to use the new STE soon */
1107         if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
1108                 arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1109 }
1110
1111 static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
1112 {
1113         unsigned int i;
1114         struct arm_smmu_strtab_ent ste = {
1115                 .valid  = true,
1116                 .bypass = true,
1117         };
1118
1119         for (i = 0; i < nent; ++i) {
1120                 arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
1121                 strtab += STRTAB_STE_DWORDS;
1122         }
1123 }
1124
1125 static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
1126 {
1127         size_t size;
1128         void *strtab;
1129         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1130         struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];
1131
1132         if (desc->l2ptr)
1133                 return 0;
1134
1135         size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1136         strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1137
1138         desc->span = STRTAB_SPLIT + 1;
1139         desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1140                                           GFP_KERNEL | __GFP_ZERO);
1141         if (!desc->l2ptr) {
1142                 dev_err(smmu->dev,
1143                         "failed to allocate l2 stream table for SID %u\n",
1144                         sid);
1145                 return -ENOMEM;
1146         }
1147
1148         arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
1149         arm_smmu_write_strtab_l1_desc(strtab, desc);
1150         return 0;
1151 }
1152
1153 /* IRQ and event handlers */
1154 static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
1155 {
1156         int i;
1157         struct arm_smmu_device *smmu = dev;
1158         struct arm_smmu_queue *q = &smmu->evtq.q;
1159         u64 evt[EVTQ_ENT_DWORDS];
1160
1161         do {
1162                 while (!queue_remove_raw(q, evt)) {
1163                         u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;
1164
1165                         dev_info(smmu->dev, "event 0x%02x received:\n", id);
1166                         for (i = 0; i < ARRAY_SIZE(evt); ++i)
1167                                 dev_info(smmu->dev, "\t0x%016llx\n",
1168                                          (unsigned long long)evt[i]);
1169
1170                 }
1171
1172                 /*
1173                  * Not much we can do on overflow, so scream and pretend we're
1174                  * trying harder.
1175                  */
1176                 if (queue_sync_prod(q) == -EOVERFLOW)
1177                         dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1178         } while (!queue_empty(q));
1179
1180         /* Sync our overflow flag, as we believe we're up to speed */
1181         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1182         return IRQ_HANDLED;
1183 }
1184
1185 static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
1186 {
1187         u32 sid, ssid;
1188         u16 grpid;
1189         bool ssv, last;
1190
1191         sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
1192         ssv = evt[0] & PRIQ_0_SSID_V;
1193         ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
1194         last = evt[0] & PRIQ_0_PRG_LAST;
1195         grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;
1196
1197         dev_info(smmu->dev, "unexpected PRI request received:\n");
1198         dev_info(smmu->dev,
1199                  "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1200                  sid, ssid, grpid, last ? "L" : "",
1201                  evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
1202                  evt[0] & PRIQ_0_PERM_READ ? "R" : "",
1203                  evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
1204                  evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1205                  evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);
1206
1207         if (last) {
1208                 struct arm_smmu_cmdq_ent cmd = {
1209                         .opcode                 = CMDQ_OP_PRI_RESP,
1210                         .substream_valid        = ssv,
1211                         .pri                    = {
1212                                 .sid    = sid,
1213                                 .ssid   = ssid,
1214                                 .grpid  = grpid,
1215                                 .resp   = PRI_RESP_DENY,
1216                         },
1217                 };
1218
1219                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1220         }
1221 }
1222
1223 static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
1224 {
1225         struct arm_smmu_device *smmu = dev;
1226         struct arm_smmu_queue *q = &smmu->priq.q;
1227         u64 evt[PRIQ_ENT_DWORDS];
1228
1229         do {
1230                 while (!queue_remove_raw(q, evt))
1231                         arm_smmu_handle_ppr(smmu, evt);
1232
1233                 if (queue_sync_prod(q) == -EOVERFLOW)
1234                         dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1235         } while (!queue_empty(q));
1236
1237         /* Sync our overflow flag, as we believe we're up to speed */
1238         q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
1239         return IRQ_HANDLED;
1240 }
1241
1242 static irqreturn_t arm_smmu_cmdq_sync_handler(int irq, void *dev)
1243 {
1244         /* We don't actually use CMD_SYNC interrupts for anything */
1245         return IRQ_HANDLED;
1246 }
1247
1248 static int arm_smmu_device_disable(struct arm_smmu_device *smmu);
1249
1250 static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
1251 {
1252         u32 gerror, gerrorn, active;
1253         struct arm_smmu_device *smmu = dev;
1254
1255         gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
1256         gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);
1257
1258         active = gerror ^ gerrorn;
1259         if (!(active & GERROR_ERR_MASK))
1260                 return IRQ_NONE; /* No errors pending */
1261
1262         dev_warn(smmu->dev,
1263                  "unexpected global error reported (0x%08x), this could be serious\n",
1264                  active);
1265
1266         if (active & GERROR_SFM_ERR) {
1267                 dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
1268                 arm_smmu_device_disable(smmu);
1269         }
1270
1271         if (active & GERROR_MSI_GERROR_ABT_ERR)
1272                 dev_warn(smmu->dev, "GERROR MSI write aborted\n");
1273
1274         if (active & GERROR_MSI_PRIQ_ABT_ERR)
1275                 dev_warn(smmu->dev, "PRIQ MSI write aborted\n");
1276
1277         if (active & GERROR_MSI_EVTQ_ABT_ERR)
1278                 dev_warn(smmu->dev, "EVTQ MSI write aborted\n");
1279
1280         if (active & GERROR_MSI_CMDQ_ABT_ERR) {
1281                 dev_warn(smmu->dev, "CMDQ MSI write aborted\n");
1282                 arm_smmu_cmdq_sync_handler(irq, smmu->dev);
1283         }
1284
1285         if (active & GERROR_PRIQ_ABT_ERR)
1286                 dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");
1287
1288         if (active & GERROR_EVTQ_ABT_ERR)
1289                 dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");
1290
1291         if (active & GERROR_CMDQ_ERR)
1292                 arm_smmu_cmdq_skip_err(smmu);
1293
1294         writel(gerror, smmu->base + ARM_SMMU_GERRORN);
1295         return IRQ_HANDLED;
1296 }
1297
1298 /* IO_PGTABLE API */
1299 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
1300 {
1301         struct arm_smmu_cmdq_ent cmd;
1302
1303         cmd.opcode = CMDQ_OP_CMD_SYNC;
1304         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1305 }
1306
1307 static void arm_smmu_tlb_sync(void *cookie)
1308 {
1309         struct arm_smmu_domain *smmu_domain = cookie;
1310         __arm_smmu_tlb_sync(smmu_domain->smmu);
1311 }
1312
1313 static void arm_smmu_tlb_inv_context(void *cookie)
1314 {
1315         struct arm_smmu_domain *smmu_domain = cookie;
1316         struct arm_smmu_device *smmu = smmu_domain->smmu;
1317         struct arm_smmu_cmdq_ent cmd;
1318
1319         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1320                 cmd.opcode      = CMDQ_OP_TLBI_NH_ASID;
1321                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1322                 cmd.tlbi.vmid   = 0;
1323         } else {
1324                 cmd.opcode      = CMDQ_OP_TLBI_S12_VMALL;
1325                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1326         }
1327
1328         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1329         __arm_smmu_tlb_sync(smmu);
1330 }
1331
1332 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
1333                                           size_t granule, bool leaf, void *cookie)
1334 {
1335         struct arm_smmu_domain *smmu_domain = cookie;
1336         struct arm_smmu_device *smmu = smmu_domain->smmu;
1337         struct arm_smmu_cmdq_ent cmd = {
1338                 .tlbi = {
1339                         .leaf   = leaf,
1340                         .addr   = iova,
1341                 },
1342         };
1343
1344         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1345                 cmd.opcode      = CMDQ_OP_TLBI_NH_VA;
1346                 cmd.tlbi.asid   = smmu_domain->s1_cfg.cd.asid;
1347         } else {
1348                 cmd.opcode      = CMDQ_OP_TLBI_S2_IPA;
1349                 cmd.tlbi.vmid   = smmu_domain->s2_cfg.vmid;
1350         }
1351
1352         do {
1353                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1354                 cmd.tlbi.addr += granule;
1355         } while (size -= granule);
1356 }
1357
1358 static const struct iommu_gather_ops arm_smmu_gather_ops = {
1359         .tlb_flush_all  = arm_smmu_tlb_inv_context,
1360         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
1361         .tlb_sync       = arm_smmu_tlb_sync,
1362 };
1363
1364 /* IOMMU API */
1365 static bool arm_smmu_capable(enum iommu_cap cap)
1366 {
1367         switch (cap) {
1368         case IOMMU_CAP_CACHE_COHERENCY:
1369                 return true;
1370         case IOMMU_CAP_NOEXEC:
1371                 return true;
1372         default:
1373                 return false;
1374         }
1375 }
1376
1377 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
1378 {
1379         struct arm_smmu_domain *smmu_domain;
1380
1381         if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
1382                 return NULL;
1383
1384         /*
1385          * Allocate the domain and initialise some of its data structures.
1386          * We can't really do anything meaningful until we've added a
1387          * master.
1388          */
1389         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
1390         if (!smmu_domain)
1391                 return NULL;
1392
1393         if (type == IOMMU_DOMAIN_DMA &&
1394             iommu_get_dma_cookie(&smmu_domain->domain)) {
1395                 kfree(smmu_domain);
1396                 return NULL;
1397         }
1398
1399         mutex_init(&smmu_domain->init_mutex);
1400         spin_lock_init(&smmu_domain->pgtbl_lock);
1401         return &smmu_domain->domain;
1402 }
1403
1404 static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
1405 {
1406         int idx, size = 1 << span;
1407
1408         do {
1409                 idx = find_first_zero_bit(map, size);
1410                 if (idx == size)
1411                         return -ENOSPC;
1412         } while (test_and_set_bit(idx, map));
1413
1414         return idx;
1415 }
1416
1417 static void arm_smmu_bitmap_free(unsigned long *map, int idx)
1418 {
1419         clear_bit(idx, map);
1420 }
1421
1422 static void arm_smmu_domain_free(struct iommu_domain *domain)
1423 {
1424         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1425         struct arm_smmu_device *smmu = smmu_domain->smmu;
1426
1427         iommu_put_dma_cookie(domain);
1428         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1429
1430         /* Free the CD and ASID, if we allocated them */
1431         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1432                 struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1433
1434                 if (cfg->cdptr) {
1435                         dmam_free_coherent(smmu_domain->smmu->dev,
1436                                            CTXDESC_CD_DWORDS << 3,
1437                                            cfg->cdptr,
1438                                            cfg->cdptr_dma);
1439
1440                         arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
1441                 }
1442         } else {
1443                 struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1444                 if (cfg->vmid)
1445                         arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
1446         }
1447
1448         kfree(smmu_domain);
1449 }
1450
1451 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1452                                        struct io_pgtable_cfg *pgtbl_cfg)
1453 {
1454         int ret;
1455         int asid;
1456         struct arm_smmu_device *smmu = smmu_domain->smmu;
1457         struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1458
1459         asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
1460         if (asid < 0)
1461                 return asid;
1462
1463         cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
1464                                          &cfg->cdptr_dma,
1465                                          GFP_KERNEL | __GFP_ZERO);
1466         if (!cfg->cdptr) {
1467                 dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1468                 ret = -ENOMEM;
1469                 goto out_free_asid;
1470         }
1471
1472         cfg->cd.asid    = (u16)asid;
1473         cfg->cd.ttbr    = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
1474         cfg->cd.tcr     = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1475         cfg->cd.mair    = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
1476         return 0;
1477
1478 out_free_asid:
1479         arm_smmu_bitmap_free(smmu->asid_map, asid);
1480         return ret;
1481 }
1482
1483 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1484                                        struct io_pgtable_cfg *pgtbl_cfg)
1485 {
1486         int vmid;
1487         struct arm_smmu_device *smmu = smmu_domain->smmu;
1488         struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1489
1490         vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1491         if (vmid < 0)
1492                 return vmid;
1493
1494         cfg->vmid       = (u16)vmid;
1495         cfg->vttbr      = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1496         cfg->vtcr       = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1497         return 0;
1498 }
1499
1500 static int arm_smmu_domain_finalise(struct iommu_domain *domain)
1501 {
1502         int ret;
1503         unsigned long ias, oas;
1504         enum io_pgtable_fmt fmt;
1505         struct io_pgtable_cfg pgtbl_cfg;
1506         struct io_pgtable_ops *pgtbl_ops;
1507         int (*finalise_stage_fn)(struct arm_smmu_domain *,
1508                                  struct io_pgtable_cfg *);
1509         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1510         struct arm_smmu_device *smmu = smmu_domain->smmu;
1511
1512         /* Restrict the stage to what we can actually support */
1513         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
1514                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
1515         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
1516                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1517
1518         switch (smmu_domain->stage) {
1519         case ARM_SMMU_DOMAIN_S1:
1520                 ias = VA_BITS;
1521                 oas = smmu->ias;
1522                 fmt = ARM_64_LPAE_S1;
1523                 finalise_stage_fn = arm_smmu_domain_finalise_s1;
1524                 break;
1525         case ARM_SMMU_DOMAIN_NESTED:
1526         case ARM_SMMU_DOMAIN_S2:
1527                 ias = smmu->ias;
1528                 oas = smmu->oas;
1529                 fmt = ARM_64_LPAE_S2;
1530                 finalise_stage_fn = arm_smmu_domain_finalise_s2;
1531                 break;
1532         default:
1533                 return -EINVAL;
1534         }
1535
1536         pgtbl_cfg = (struct io_pgtable_cfg) {
1537                 .pgsize_bitmap  = smmu->pgsize_bitmap,
1538                 .ias            = ias,
1539                 .oas            = oas,
1540                 .tlb            = &arm_smmu_gather_ops,
1541                 .iommu_dev      = smmu->dev,
1542         };
1543
1544         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
1545         if (!pgtbl_ops)
1546                 return -ENOMEM;
1547
1548         domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1549         domain->geometry.aperture_end = (1UL << ias) - 1;
1550         domain->geometry.force_aperture = true;
1551         smmu_domain->pgtbl_ops = pgtbl_ops;
1552
1553         ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
1554         if (ret < 0)
1555                 free_io_pgtable_ops(pgtbl_ops);
1556
1557         return ret;
1558 }
1559
1560 static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
1561 {
1562         __le64 *step;
1563         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1564
1565         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1566                 struct arm_smmu_strtab_l1_desc *l1_desc;
1567                 int idx;
1568
1569                 /* Two-level walk */
1570                 idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
1571                 l1_desc = &cfg->l1_desc[idx];
1572                 idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
1573                 step = &l1_desc->l2ptr[idx];
1574         } else {
1575                 /* Simple linear lookup */
1576                 step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
1577         }
1578
1579         return step;
1580 }
1581
1582 static int arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
1583 {
1584         int i;
1585         struct arm_smmu_master_data *master = fwspec->iommu_priv;
1586         struct arm_smmu_device *smmu = master->smmu;
1587
1588         for (i = 0; i < fwspec->num_ids; ++i) {
1589                 u32 sid = fwspec->ids[i];
1590                 __le64 *step = arm_smmu_get_step_for_sid(smmu, sid);
1591
1592                 arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
1593         }
1594
1595         return 0;
1596 }
1597
1598 static void arm_smmu_detach_dev(struct device *dev)
1599 {
1600         struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;
1601
1602         master->ste.bypass = true;
1603         if (arm_smmu_install_ste_for_dev(dev->iommu_fwspec) < 0)
1604                 dev_warn(dev, "failed to install bypass STE\n");
1605 }
1606
1607 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1608 {
1609         int ret = 0;
1610         struct arm_smmu_device *smmu;
1611         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1612         struct arm_smmu_master_data *master;
1613         struct arm_smmu_strtab_ent *ste;
1614
1615         if (!dev->iommu_fwspec)
1616                 return -ENOENT;
1617
1618         master = dev->iommu_fwspec->iommu_priv;
1619         smmu = master->smmu;
1620         ste = &master->ste;
1621
1622         /* Already attached to a different domain? */
1623         if (!ste->bypass)
1624                 arm_smmu_detach_dev(dev);
1625
1626         mutex_lock(&smmu_domain->init_mutex);
1627
1628         if (!smmu_domain->smmu) {
1629                 smmu_domain->smmu = smmu;
1630                 ret = arm_smmu_domain_finalise(domain);
1631                 if (ret) {
1632                         smmu_domain->smmu = NULL;
1633                         goto out_unlock;
1634                 }
1635         } else if (smmu_domain->smmu != smmu) {
1636                 dev_err(dev,
1637                         "cannot attach to SMMU %s (upstream of %s)\n",
1638                         dev_name(smmu_domain->smmu->dev),
1639                         dev_name(smmu->dev));
1640                 ret = -ENXIO;
1641                 goto out_unlock;
1642         }
1643
1644         ste->bypass = false;
1645         ste->valid = true;
1646
1647         if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1648                 ste->s1_cfg = &smmu_domain->s1_cfg;
1649                 ste->s2_cfg = NULL;
1650                 arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
1651         } else {
1652                 ste->s1_cfg = NULL;
1653                 ste->s2_cfg = &smmu_domain->s2_cfg;
1654         }
1655
1656         ret = arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
1657         if (ret < 0)
1658                 ste->valid = false;
1659
1660 out_unlock:
1661         mutex_unlock(&smmu_domain->init_mutex);
1662         return ret;
1663 }
1664
1665 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1666                         phys_addr_t paddr, size_t size, int prot)
1667 {
1668         int ret;
1669         unsigned long flags;
1670         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1671         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1672
1673         if (!ops)
1674                 return -ENODEV;
1675
1676         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1677         ret = ops->map(ops, iova, paddr, size, prot);
1678         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1679         return ret;
1680 }
1681
1682 static size_t
1683 arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
1684 {
1685         size_t ret;
1686         unsigned long flags;
1687         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1688         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1689
1690         if (!ops)
1691                 return 0;
1692
1693         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1694         ret = ops->unmap(ops, iova, size);
1695         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1696         return ret;
1697 }
1698
1699 static phys_addr_t
1700 arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1701 {
1702         phys_addr_t ret;
1703         unsigned long flags;
1704         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1705         struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1706
1707         if (!ops)
1708                 return 0;
1709
1710         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1711         ret = ops->iova_to_phys(ops, iova);
1712         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1713
1714         return ret;
1715 }
1716
1717 static struct platform_driver arm_smmu_driver;
1718
1719 static int arm_smmu_match_node(struct device *dev, void *data)
1720 {
1721         return dev->fwnode == data;
1722 }
1723
1724 static
1725 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1726 {
1727         struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
1728                                                 fwnode, arm_smmu_match_node);
1729         put_device(dev);
1730         return dev ? dev_get_drvdata(dev) : NULL;
1731 }
1732
1733 static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
1734 {
1735         unsigned long limit = smmu->strtab_cfg.num_l1_ents;
1736
1737         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
1738                 limit *= 1UL << STRTAB_SPLIT;
1739
1740         return sid < limit;
1741 }
1742
1743 static struct iommu_ops arm_smmu_ops;
1744
1745 static int arm_smmu_add_device(struct device *dev)
1746 {
1747         int i, ret;
1748         struct arm_smmu_device *smmu;
1749         struct arm_smmu_master_data *master;
1750         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1751         struct iommu_group *group;
1752
1753         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1754                 return -ENODEV;
1755         /*
1756          * We _can_ actually withstand dodgy bus code re-calling add_device()
1757          * without an intervening remove_device()/of_xlate() sequence, but
1758          * we're not going to do so quietly...
1759          */
1760         if (WARN_ON_ONCE(fwspec->iommu_priv)) {
1761                 master = fwspec->iommu_priv;
1762                 smmu = master->smmu;
1763         } else {
1764                 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1765                 if (!smmu)
1766                         return -ENODEV;
1767                 master = kzalloc(sizeof(*master), GFP_KERNEL);
1768                 if (!master)
1769                         return -ENOMEM;
1770
1771                 master->smmu = smmu;
1772                 fwspec->iommu_priv = master;
1773         }
1774
1775         /* Check the SIDs are in range of the SMMU and our stream table */
1776         for (i = 0; i < fwspec->num_ids; i++) {
1777                 u32 sid = fwspec->ids[i];
1778
1779                 if (!arm_smmu_sid_in_range(smmu, sid))
1780                         return -ERANGE;
1781
1782                 /* Ensure l2 strtab is initialised */
1783                 if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
1784                         ret = arm_smmu_init_l2_strtab(smmu, sid);
1785                         if (ret)
1786                                 return ret;
1787                 }
1788         }
1789
1790         group = iommu_group_get_for_dev(dev);
1791         if (!IS_ERR(group)) {
1792                 iommu_group_put(group);
1793                 iommu_device_link(&smmu->iommu, dev);
1794         }
1795
1796         return PTR_ERR_OR_ZERO(group);
1797 }
1798
1799 static void arm_smmu_remove_device(struct device *dev)
1800 {
1801         struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1802         struct arm_smmu_master_data *master;
1803         struct arm_smmu_device *smmu;
1804
1805         if (!fwspec || fwspec->ops != &arm_smmu_ops)
1806                 return;
1807
1808         master = fwspec->iommu_priv;
1809         smmu = master->smmu;
1810         if (master && master->ste.valid)
1811                 arm_smmu_detach_dev(dev);
1812         iommu_group_remove_device(dev);
1813         iommu_device_unlink(&smmu->iommu, dev);
1814         kfree(master);
1815         iommu_fwspec_free(dev);
1816 }
1817
1818 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1819 {
1820         struct iommu_group *group;
1821
1822         /*
1823          * We don't support devices sharing stream IDs other than PCI RID
1824          * aliases, since the necessary ID-to-device lookup becomes rather
1825          * impractical given a potential sparse 32-bit stream ID space.
1826          */
1827         if (dev_is_pci(dev))
1828                 group = pci_device_group(dev);
1829         else
1830                 group = generic_device_group(dev);
1831
1832         return group;
1833 }
1834
1835 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1836                                     enum iommu_attr attr, void *data)
1837 {
1838         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1839
1840         switch (attr) {
1841         case DOMAIN_ATTR_NESTING:
1842                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1843                 return 0;
1844         default:
1845                 return -ENODEV;
1846         }
1847 }
1848
1849 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1850                                     enum iommu_attr attr, void *data)
1851 {
1852         int ret = 0;
1853         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1854
1855         mutex_lock(&smmu_domain->init_mutex);
1856
1857         switch (attr) {
1858         case DOMAIN_ATTR_NESTING:
1859                 if (smmu_domain->smmu) {
1860                         ret = -EPERM;
1861                         goto out_unlock;
1862                 }
1863
1864                 if (*(int *)data)
1865                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1866                 else
1867                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1868
1869                 break;
1870         default:
1871                 ret = -ENODEV;
1872         }
1873
1874 out_unlock:
1875         mutex_unlock(&smmu_domain->init_mutex);
1876         return ret;
1877 }
1878
1879 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1880 {
1881         return iommu_fwspec_add_ids(dev, args->args, 1);
1882 }
1883
1884 static void arm_smmu_get_resv_regions(struct device *dev,
1885                                       struct list_head *head)
1886 {
1887         struct iommu_resv_region *region;
1888         int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1889
1890         region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1891                                          prot, IOMMU_RESV_SW_MSI);
1892         if (!region)
1893                 return;
1894
1895         list_add_tail(&region->list, head);
1896 }
1897
1898 static void arm_smmu_put_resv_regions(struct device *dev,
1899                                       struct list_head *head)
1900 {
1901         struct iommu_resv_region *entry, *next;
1902
1903         list_for_each_entry_safe(entry, next, head, list)
1904                 kfree(entry);
1905 }
1906
1907 static struct iommu_ops arm_smmu_ops = {
1908         .capable                = arm_smmu_capable,
1909         .domain_alloc           = arm_smmu_domain_alloc,
1910         .domain_free            = arm_smmu_domain_free,
1911         .attach_dev             = arm_smmu_attach_dev,
1912         .map                    = arm_smmu_map,
1913         .unmap                  = arm_smmu_unmap,
1914         .map_sg                 = default_iommu_map_sg,
1915         .iova_to_phys           = arm_smmu_iova_to_phys,
1916         .add_device             = arm_smmu_add_device,
1917         .remove_device          = arm_smmu_remove_device,
1918         .device_group           = arm_smmu_device_group,
1919         .domain_get_attr        = arm_smmu_domain_get_attr,
1920         .domain_set_attr        = arm_smmu_domain_set_attr,
1921         .of_xlate               = arm_smmu_of_xlate,
1922         .get_resv_regions       = arm_smmu_get_resv_regions,
1923         .put_resv_regions       = arm_smmu_put_resv_regions,
1924         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1925 };
1926
1927 /* Probing and initialisation functions */
1928 static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
1929                                    struct arm_smmu_queue *q,
1930                                    unsigned long prod_off,
1931                                    unsigned long cons_off,
1932                                    size_t dwords)
1933 {
1934         size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;
1935
1936         q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
1937         if (!q->base) {
1938                 dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
1939                         qsz);
1940                 return -ENOMEM;
1941         }
1942
1943         q->prod_reg     = smmu->base + prod_off;
1944         q->cons_reg     = smmu->base + cons_off;
1945         q->ent_dwords   = dwords;
1946
1947         q->q_base  = Q_BASE_RWA;
1948         q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
1949         q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
1950                      << Q_BASE_LOG2SIZE_SHIFT;
1951
1952         q->prod = q->cons = 0;
1953         return 0;
1954 }
1955
1956 static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
1957 {
1958         int ret;
1959
1960         /* cmdq */
1961         spin_lock_init(&smmu->cmdq.lock);
1962         ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
1963                                       ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
1964         if (ret)
1965                 return ret;
1966
1967         /* evtq */
1968         ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
1969                                       ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
1970         if (ret)
1971                 return ret;
1972
1973         /* priq */
1974         if (!(smmu->features & ARM_SMMU_FEAT_PRI))
1975                 return 0;
1976
1977         return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
1978                                        ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
1979 }
1980
1981 static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
1982 {
1983         unsigned int i;
1984         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
1985         size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
1986         void *strtab = smmu->strtab_cfg.strtab;
1987
1988         cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
1989         if (!cfg->l1_desc) {
1990                 dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
1991                 return -ENOMEM;
1992         }
1993
1994         for (i = 0; i < cfg->num_l1_ents; ++i) {
1995                 arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
1996                 strtab += STRTAB_L1_DESC_DWORDS << 3;
1997         }
1998
1999         return 0;
2000 }
2001
2002 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
2003 {
2004         void *strtab;
2005         u64 reg;
2006         u32 size, l1size;
2007         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2008
2009         /* Calculate the L1 size, capped to the SIDSIZE. */
2010         size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
2011         size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2012         cfg->num_l1_ents = 1 << size;
2013
2014         size += STRTAB_SPLIT;
2015         if (size < smmu->sid_bits)
2016                 dev_warn(smmu->dev,
2017                          "2-level strtab only covers %u/%u bits of SID\n",
2018                          size, smmu->sid_bits);
2019
2020         l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2021         strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2022                                      GFP_KERNEL | __GFP_ZERO);
2023         if (!strtab) {
2024                 dev_err(smmu->dev,
2025                         "failed to allocate l1 stream table (%u bytes)\n",
2026                         size);
2027                 return -ENOMEM;
2028         }
2029         cfg->strtab = strtab;
2030
2031         /* Configure strtab_base_cfg for 2 levels */
2032         reg  = STRTAB_BASE_CFG_FMT_2LVL;
2033         reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2034                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2035         reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
2036                 << STRTAB_BASE_CFG_SPLIT_SHIFT;
2037         cfg->strtab_base_cfg = reg;
2038
2039         return arm_smmu_init_l1_strtab(smmu);
2040 }
2041
2042 static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
2043 {
2044         void *strtab;
2045         u64 reg;
2046         u32 size;
2047         struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
2048
2049         size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2050         strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2051                                      GFP_KERNEL | __GFP_ZERO);
2052         if (!strtab) {
2053                 dev_err(smmu->dev,
2054                         "failed to allocate linear stream table (%u bytes)\n",
2055                         size);
2056                 return -ENOMEM;
2057         }
2058         cfg->strtab = strtab;
2059         cfg->num_l1_ents = 1 << smmu->sid_bits;
2060
2061         /* Configure strtab_base_cfg for a linear table covering all SIDs */
2062         reg  = STRTAB_BASE_CFG_FMT_LINEAR;
2063         reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
2064                 << STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
2065         cfg->strtab_base_cfg = reg;
2066
2067         arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
2068         return 0;
2069 }
2070
2071 static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
2072 {
2073         u64 reg;
2074         int ret;
2075
2076         if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
2077                 ret = arm_smmu_init_strtab_2lvl(smmu);
2078         else
2079                 ret = arm_smmu_init_strtab_linear(smmu);
2080
2081         if (ret)
2082                 return ret;
2083
2084         /* Set the strtab base address */
2085         reg  = smmu->strtab_cfg.strtab_dma &
2086                STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
2087         reg |= STRTAB_BASE_RA;
2088         smmu->strtab_cfg.strtab_base = reg;
2089
2090         /* Allocate the first VMID for stage-2 bypass STEs */
2091         set_bit(0, smmu->vmid_map);
2092         return 0;
2093 }
2094
2095 static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
2096 {
2097         int ret;
2098
2099         ret = arm_smmu_init_queues(smmu);
2100         if (ret)
2101                 return ret;
2102
2103         return arm_smmu_init_strtab(smmu);
2104 }
2105
2106 static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
2107                                    unsigned int reg_off, unsigned int ack_off)
2108 {
2109         u32 reg;
2110
2111         writel_relaxed(val, smmu->base + reg_off);
2112         return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
2113                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2114 }
2115
2116 /* GBPA is "special" */
2117 static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
2118 {
2119         int ret;
2120         u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;
2121
2122         ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2123                                          1, ARM_SMMU_POLL_TIMEOUT_US);
2124         if (ret)
2125                 return ret;
2126
2127         reg &= ~clr;
2128         reg |= set;
2129         writel_relaxed(reg | GBPA_UPDATE, gbpa);
2130         return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
2131                                           1, ARM_SMMU_POLL_TIMEOUT_US);
2132 }
2133
2134 static void arm_smmu_free_msis(void *data)
2135 {
2136         struct device *dev = data;
2137         platform_msi_domain_free_irqs(dev);
2138 }
2139
2140 static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
2141 {
2142         phys_addr_t doorbell;
2143         struct device *dev = msi_desc_to_dev(desc);
2144         struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2145         phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];
2146
2147         doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2148         doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;
2149
2150         writeq_relaxed(doorbell, smmu->base + cfg[0]);
2151         writel_relaxed(msg->data, smmu->base + cfg[1]);
2152         writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2153 }
2154
2155 static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
2156 {
2157         struct msi_desc *desc;
2158         int ret, nvec = ARM_SMMU_MAX_MSIS;
2159         struct device *dev = smmu->dev;
2160
2161         /* Clear the MSI address regs */
2162         writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
2163         writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);
2164
2165         if (smmu->features & ARM_SMMU_FEAT_PRI)
2166                 writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
2167         else
2168                 nvec--;
2169
2170         if (!(smmu->features & ARM_SMMU_FEAT_MSI))
2171                 return;
2172
2173         /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2174         ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
2175         if (ret) {
2176                 dev_warn(dev, "failed to allocate MSIs\n");
2177                 return;
2178         }
2179
2180         for_each_msi_entry(desc, dev) {
2181                 switch (desc->platform.msi_index) {
2182                 case EVTQ_MSI_INDEX:
2183                         smmu->evtq.q.irq = desc->irq;
2184                         break;
2185                 case GERROR_MSI_INDEX:
2186                         smmu->gerr_irq = desc->irq;
2187                         break;
2188                 case PRIQ_MSI_INDEX:
2189                         smmu->priq.q.irq = desc->irq;
2190                         break;
2191                 default:        /* Unknown */
2192                         continue;
2193                 }
2194         }
2195
2196         /* Add callback to free MSIs on teardown */
2197         devm_add_action(dev, arm_smmu_free_msis, dev);
2198 }
2199
2200 static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
2201 {
2202         int ret, irq;
2203         u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;
2204
2205         /* Disable IRQs first */
2206         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
2207                                       ARM_SMMU_IRQ_CTRLACK);
2208         if (ret) {
2209                 dev_err(smmu->dev, "failed to disable irqs\n");
2210                 return ret;
2211         }
2212
2213         arm_smmu_setup_msis(smmu);
2214
2215         /* Request interrupt lines */
2216         irq = smmu->evtq.q.irq;
2217         if (irq) {
2218                 ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2219                                                 arm_smmu_evtq_thread,
2220                                                 IRQF_ONESHOT,
2221                                                 "arm-smmu-v3-evtq", smmu);
2222                 if (ret < 0)
2223                         dev_warn(smmu->dev, "failed to enable evtq irq\n");
2224         }
2225
2226         irq = smmu->cmdq.q.irq;
2227         if (irq) {
2228                 ret = devm_request_irq(smmu->dev, irq,
2229                                        arm_smmu_cmdq_sync_handler, 0,
2230                                        "arm-smmu-v3-cmdq-sync", smmu);
2231                 if (ret < 0)
2232                         dev_warn(smmu->dev, "failed to enable cmdq-sync irq\n");
2233         }
2234
2235         irq = smmu->gerr_irq;
2236         if (irq) {
2237                 ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
2238                                        0, "arm-smmu-v3-gerror", smmu);
2239                 if (ret < 0)
2240                         dev_warn(smmu->dev, "failed to enable gerror irq\n");
2241         }
2242
2243         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2244                 irq = smmu->priq.q.irq;
2245                 if (irq) {
2246                         ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2247                                                         arm_smmu_priq_thread,
2248                                                         IRQF_ONESHOT,
2249                                                         "arm-smmu-v3-priq",
2250                                                         smmu);
2251                         if (ret < 0)
2252                                 dev_warn(smmu->dev,
2253                                          "failed to enable priq irq\n");
2254                         else
2255                                 irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2256                 }
2257         }
2258
2259         /* Enable interrupt generation on the SMMU */
2260         ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2261                                       ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
2262         if (ret)
2263                 dev_warn(smmu->dev, "failed to enable irqs\n");
2264
2265         return 0;
2266 }
2267
2268 static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
2269 {
2270         int ret;
2271
2272         ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
2273         if (ret)
2274                 dev_err(smmu->dev, "failed to clear cr0\n");
2275
2276         return ret;
2277 }
2278
2279 static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2280 {
2281         int ret;
2282         u32 reg, enables;
2283         struct arm_smmu_cmdq_ent cmd;
2284
2285         /* Clear CR0 and sync (disables SMMU and queue processing) */
2286         reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2287         if (reg & CR0_SMMUEN)
2288                 dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2289
2290         ret = arm_smmu_device_disable(smmu);
2291         if (ret)
2292                 return ret;
2293
2294         /* CR1 (table and queue memory attributes) */
2295         reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
2296               (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
2297               (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
2298               (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
2299               (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
2300               (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
2301         writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);
2302
2303         /* CR2 (random crap) */
2304         reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
2305         writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);
2306
2307         /* Stream table */
2308         writeq_relaxed(smmu->strtab_cfg.strtab_base,
2309                        smmu->base + ARM_SMMU_STRTAB_BASE);
2310         writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
2311                        smmu->base + ARM_SMMU_STRTAB_BASE_CFG);
2312
2313         /* Command queue */
2314         writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2315         writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
2316         writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2317
2318         enables = CR0_CMDQEN;
2319         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2320                                       ARM_SMMU_CR0ACK);
2321         if (ret) {
2322                 dev_err(smmu->dev, "failed to enable command queue\n");
2323                 return ret;
2324         }
2325
2326         /* Invalidate any cached configuration */
2327         cmd.opcode = CMDQ_OP_CFGI_ALL;
2328         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2329         cmd.opcode = CMDQ_OP_CMD_SYNC;
2330         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2331
2332         /* Invalidate any stale TLB entries */
2333         if (smmu->features & ARM_SMMU_FEAT_HYP) {
2334                 cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
2335                 arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2336         }
2337
2338         cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
2339         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2340         cmd.opcode = CMDQ_OP_CMD_SYNC;
2341         arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2342
2343         /* Event queue */
2344         writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2345         writel_relaxed(smmu->evtq.q.prod, smmu->base + ARM_SMMU_EVTQ_PROD);
2346         writel_relaxed(smmu->evtq.q.cons, smmu->base + ARM_SMMU_EVTQ_CONS);
2347
2348         enables |= CR0_EVTQEN;
2349         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2350                                       ARM_SMMU_CR0ACK);
2351         if (ret) {
2352                 dev_err(smmu->dev, "failed to enable event queue\n");
2353                 return ret;
2354         }
2355
2356         /* PRI queue */
2357         if (smmu->features & ARM_SMMU_FEAT_PRI) {
2358                 writeq_relaxed(smmu->priq.q.q_base,
2359                                smmu->base + ARM_SMMU_PRIQ_BASE);
2360                 writel_relaxed(smmu->priq.q.prod,
2361                                smmu->base + ARM_SMMU_PRIQ_PROD);
2362                 writel_relaxed(smmu->priq.q.cons,
2363                                smmu->base + ARM_SMMU_PRIQ_CONS);
2364
2365                 enables |= CR0_PRIQEN;
2366                 ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2367                                               ARM_SMMU_CR0ACK);
2368                 if (ret) {
2369                         dev_err(smmu->dev, "failed to enable PRI queue\n");
2370                         return ret;
2371                 }
2372         }
2373
2374         ret = arm_smmu_setup_irqs(smmu);
2375         if (ret) {
2376                 dev_err(smmu->dev, "failed to setup irqs\n");
2377                 return ret;
2378         }
2379
2380
2381         /* Enable the SMMU interface, or ensure bypass */
2382         if (!bypass || disable_bypass) {
2383                 enables |= CR0_SMMUEN;
2384         } else {
2385                 ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
2386                 if (ret) {
2387                         dev_err(smmu->dev, "GBPA not responding to update\n");
2388                         return ret;
2389                 }
2390         }
2391         ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
2392                                       ARM_SMMU_CR0ACK);
2393         if (ret) {
2394                 dev_err(smmu->dev, "failed to enable SMMU interface\n");
2395                 return ret;
2396         }
2397
2398         return 0;
2399 }
2400
2401 static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
2402 {
2403         u32 reg;
2404         bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
2405
2406         /* IDR0 */
2407         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);
2408
2409         /* 2-level structures */
2410         if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
2411                 smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;
2412
2413         if (reg & IDR0_CD2L)
2414                 smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;
2415
2416         /*
2417          * Translation table endianness.
2418          * We currently require the same endianness as the CPU, but this
2419          * could be changed later by adding a new IO_PGTABLE_QUIRK.
2420          */
2421         switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
2422         case IDR0_TTENDIAN_MIXED:
2423                 smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
2424                 break;
2425 #ifdef __BIG_ENDIAN
2426         case IDR0_TTENDIAN_BE:
2427                 smmu->features |= ARM_SMMU_FEAT_TT_BE;
2428                 break;
2429 #else
2430         case IDR0_TTENDIAN_LE:
2431                 smmu->features |= ARM_SMMU_FEAT_TT_LE;
2432                 break;
2433 #endif
2434         default:
2435                 dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
2436                 return -ENXIO;
2437         }
2438
2439         /* Boolean feature flags */
2440         if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
2441                 smmu->features |= ARM_SMMU_FEAT_PRI;
2442
2443         if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
2444                 smmu->features |= ARM_SMMU_FEAT_ATS;
2445
2446         if (reg & IDR0_SEV)
2447                 smmu->features |= ARM_SMMU_FEAT_SEV;
2448
2449         if (reg & IDR0_MSI)
2450                 smmu->features |= ARM_SMMU_FEAT_MSI;
2451
2452         if (reg & IDR0_HYP)
2453                 smmu->features |= ARM_SMMU_FEAT_HYP;
2454
2455         /*
2456          * The coherency feature as set by FW is used in preference to the ID
2457          * register, but warn on mismatch.
2458          */
2459         if (!!(reg & IDR0_COHACC) != coherent)
2460                 dev_warn(smmu->dev, "IDR0.COHACC overridden by dma-coherent property (%s)\n",
2461                          coherent ? "true" : "false");
2462
2463         switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
2464         case IDR0_STALL_MODEL_STALL:
2465                 /* Fallthrough */
2466         case IDR0_STALL_MODEL_FORCE:
2467                 smmu->features |= ARM_SMMU_FEAT_STALLS;
2468         }
2469
2470         if (reg & IDR0_S1P)
2471                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
2472
2473         if (reg & IDR0_S2P)
2474                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
2475
2476         if (!(reg & (IDR0_S1P | IDR0_S2P))) {
2477                 dev_err(smmu->dev, "no translation support!\n");
2478                 return -ENXIO;
2479         }
2480
2481         /* We only support the AArch64 table format at present */
2482         switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
2483         case IDR0_TTF_AARCH32_64:
2484                 smmu->ias = 40;
2485                 /* Fallthrough */
2486         case IDR0_TTF_AARCH64:
2487                 break;
2488         default:
2489                 dev_err(smmu->dev, "AArch64 table format not supported!\n");
2490                 return -ENXIO;
2491         }
2492
2493         /* ASID/VMID sizes */
2494         smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
2495         smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;
2496
2497         /* IDR1 */
2498         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
2499         if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
2500                 dev_err(smmu->dev, "embedded implementation not supported\n");
2501                 return -ENXIO;
2502         }
2503
2504         /* Queue sizes, capped at 4k */
2505         smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
2506                                        reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
2507         if (!smmu->cmdq.q.max_n_shift) {
2508                 /* Odd alignment restrictions on the base, so ignore for now */
2509                 dev_err(smmu->dev, "unit-length command queue not supported\n");
2510                 return -ENXIO;
2511         }
2512
2513         smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
2514                                        reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
2515         smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
2516                                        reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);
2517
2518         /* SID/SSID sizes */
2519         smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
2520         smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;
2521
2522         /*
2523          * If the SMMU supports fewer bits than would fill a single L2 stream
2524          * table, use a linear table instead.
2525          */
2526         if (smmu->sid_bits <= STRTAB_SPLIT)
2527                 smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;
2528
2529         /* IDR5 */
2530         reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);
2531
2532         /* Maximum number of outstanding stalls */
2533         smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
2534                                 & IDR5_STALL_MAX_MASK;
2535
2536         /* Page sizes */
2537         if (reg & IDR5_GRAN64K)
2538                 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
2539         if (reg & IDR5_GRAN16K)
2540                 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
2541         if (reg & IDR5_GRAN4K)
2542                 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
2543
2544         if (arm_smmu_ops.pgsize_bitmap == -1UL)
2545                 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
2546         else
2547                 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
2548
2549         /* Output address size */
2550         switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
2551         case IDR5_OAS_32_BIT:
2552                 smmu->oas = 32;
2553                 break;
2554         case IDR5_OAS_36_BIT:
2555                 smmu->oas = 36;
2556                 break;
2557         case IDR5_OAS_40_BIT:
2558                 smmu->oas = 40;
2559                 break;
2560         case IDR5_OAS_42_BIT:
2561                 smmu->oas = 42;
2562                 break;
2563         case IDR5_OAS_44_BIT:
2564                 smmu->oas = 44;
2565                 break;
2566         default:
2567                 dev_info(smmu->dev,
2568                         "unknown output address size. Truncating to 48-bit\n");
2569                 /* Fallthrough */
2570         case IDR5_OAS_48_BIT:
2571                 smmu->oas = 48;
2572         }
2573
2574         /* Set the DMA mask for our table walker */
2575         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
2576                 dev_warn(smmu->dev,
2577                          "failed to set DMA mask for table walker\n");
2578
2579         smmu->ias = max(smmu->ias, smmu->oas);
2580
2581         dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2582                  smmu->ias, smmu->oas, smmu->features);
2583         return 0;
2584 }
2585
2586 #ifdef CONFIG_ACPI
2587 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2588                                       struct arm_smmu_device *smmu)
2589 {
2590         struct acpi_iort_smmu_v3 *iort_smmu;
2591         struct device *dev = smmu->dev;
2592         struct acpi_iort_node *node;
2593
2594         node = *(struct acpi_iort_node **)dev_get_platdata(dev);
2595
2596         /* Retrieve SMMUv3 specific data */
2597         iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
2598
2599         if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
2600                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2601
2602         return 0;
2603 }
2604 #else
2605 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
2606                                              struct arm_smmu_device *smmu)
2607 {
2608         return -ENODEV;
2609 }
2610 #endif
2611
2612 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
2613                                     struct arm_smmu_device *smmu)
2614 {
2615         struct device *dev = &pdev->dev;
2616         u32 cells;
2617         int ret = -EINVAL;
2618
2619         if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
2620                 dev_err(dev, "missing #iommu-cells property\n");
2621         else if (cells != 1)
2622                 dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
2623         else
2624                 ret = 0;
2625
2626         parse_driver_options(smmu);
2627
2628         if (of_dma_is_coherent(dev->of_node))
2629                 smmu->features |= ARM_SMMU_FEAT_COHERENCY;
2630
2631         return ret;
2632 }
2633
2634 static int arm_smmu_device_probe(struct platform_device *pdev)
2635 {
2636         int irq, ret;
2637         struct resource *res;
2638         resource_size_t ioaddr;
2639         struct arm_smmu_device *smmu;
2640         struct device *dev = &pdev->dev;
2641         bool bypass;
2642
2643         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2644         if (!smmu) {
2645                 dev_err(dev, "failed to allocate arm_smmu_device\n");
2646                 return -ENOMEM;
2647         }
2648         smmu->dev = dev;
2649
2650         /* Base address */
2651         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2652         if (resource_size(res) + 1 < SZ_128K) {
2653                 dev_err(dev, "MMIO region too small (%pr)\n", res);
2654                 return -EINVAL;
2655         }
2656         ioaddr = res->start;
2657
2658         smmu->base = devm_ioremap_resource(dev, res);
2659         if (IS_ERR(smmu->base))
2660                 return PTR_ERR(smmu->base);
2661
2662         /* Interrupt lines */
2663         irq = platform_get_irq_byname(pdev, "eventq");
2664         if (irq > 0)
2665                 smmu->evtq.q.irq = irq;
2666
2667         irq = platform_get_irq_byname(pdev, "priq");
2668         if (irq > 0)
2669                 smmu->priq.q.irq = irq;
2670
2671         irq = platform_get_irq_byname(pdev, "cmdq-sync");
2672         if (irq > 0)
2673                 smmu->cmdq.q.irq = irq;
2674
2675         irq = platform_get_irq_byname(pdev, "gerror");
2676         if (irq > 0)
2677                 smmu->gerr_irq = irq;
2678
2679         if (dev->of_node) {
2680                 ret = arm_smmu_device_dt_probe(pdev, smmu);
2681         } else {
2682                 ret = arm_smmu_device_acpi_probe(pdev, smmu);
2683                 if (ret == -ENODEV)
2684                         return ret;
2685         }
2686
2687         /* Set bypass mode according to firmware probing result */
2688         bypass = !!ret;
2689
2690         /* Probe the h/w */
2691         ret = arm_smmu_device_hw_probe(smmu);
2692         if (ret)
2693                 return ret;
2694
2695         /* Initialise in-memory data structures */
2696         ret = arm_smmu_init_structures(smmu);
2697         if (ret)
2698                 return ret;
2699
2700         /* Record our private device structure */
2701         platform_set_drvdata(pdev, smmu);
2702
2703         /* Reset the device */
2704         ret = arm_smmu_device_reset(smmu, bypass);
2705         if (ret)
2706                 return ret;
2707
2708         /* And we're up. Go go go! */
2709         ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
2710                                      "smmu3.%pa", &ioaddr);
2711         if (ret)
2712                 return ret;
2713
2714         iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2715         iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2716
2717         ret = iommu_device_register(&smmu->iommu);
2718
2719 #ifdef CONFIG_PCI
2720         if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
2721                 pci_request_acs();
2722                 ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2723                 if (ret)
2724                         return ret;
2725         }
2726 #endif
2727 #ifdef CONFIG_ARM_AMBA
2728         if (amba_bustype.iommu_ops != &arm_smmu_ops) {
2729                 ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2730                 if (ret)
2731                         return ret;
2732         }
2733 #endif
2734         if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
2735                 ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2736                 if (ret)
2737                         return ret;
2738         }
2739         return 0;
2740 }
2741
2742 static int arm_smmu_device_remove(struct platform_device *pdev)
2743 {
2744         struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2745
2746         arm_smmu_device_disable(smmu);
2747         return 0;
2748 }
2749
2750 static struct of_device_id arm_smmu_of_match[] = {
2751         { .compatible = "arm,smmu-v3", },
2752         { },
2753 };
2754 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2755
2756 static struct platform_driver arm_smmu_driver = {
2757         .driver = {
2758                 .name           = "arm-smmu-v3",
2759                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2760         },
2761         .probe  = arm_smmu_device_probe,
2762         .remove = arm_smmu_device_remove,
2763 };
2764
2765 static int __init arm_smmu_init(void)
2766 {
2767         static bool registered;
2768         int ret = 0;
2769
2770         if (!registered) {
2771                 ret = platform_driver_register(&arm_smmu_driver);
2772                 registered = !ret;
2773         }
2774         return ret;
2775 }
2776
2777 static void __exit arm_smmu_exit(void)
2778 {
2779         return platform_driver_unregister(&arm_smmu_driver);
2780 }
2781
2782 subsys_initcall(arm_smmu_init);
2783 module_exit(arm_smmu_exit);
2784
2785 static int __init arm_smmu_of_init(struct device_node *np)
2786 {
2787         int ret = arm_smmu_init();
2788
2789         if (ret)
2790                 return ret;
2791
2792         if (!of_platform_device_create(np, NULL, platform_bus_type.dev_root))
2793                 return -ENODEV;
2794
2795         return 0;
2796 }
2797 IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", arm_smmu_of_init);
2798
2799 #ifdef CONFIG_ACPI
2800 static int __init acpi_smmu_v3_init(struct acpi_table_header *table)
2801 {
2802         if (iort_node_match(ACPI_IORT_NODE_SMMU_V3))
2803                 return arm_smmu_init();
2804
2805         return 0;
2806 }
2807 IORT_ACPI_DECLARE(arm_smmu_v3, ACPI_SIG_IORT, acpi_smmu_v3_init);
2808 #endif
2809
2810 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2811 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2812 MODULE_LICENSE("GPL v2");