Merge branch 'next' into for-linus
[sfrench/cifs-2.6.git] / drivers / input / rmi4 / rmi_driver.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  *
6  * This driver provides the core support for a single RMI4-based device.
7  *
8  * The RMI4 specification can be found here (URL split for line length):
9  *
10  * http://www.synaptics.com/sites/default/files/
11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12  */
13
14 #include <linux/bitmap.h>
15 #include <linux/delay.h>
16 #include <linux/fs.h>
17 #include <linux/irq.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/irqdomain.h>
22 #include <uapi/linux/input.h>
23 #include <linux/rmi.h>
24 #include "rmi_bus.h"
25 #include "rmi_driver.h"
26
27 #define HAS_NONSTANDARD_PDT_MASK 0x40
28 #define RMI4_MAX_PAGE 0xff
29 #define RMI4_PAGE_SIZE 0x100
30 #define RMI4_PAGE_MASK 0xFF00
31
32 #define RMI_DEVICE_RESET_CMD    0x01
33 #define DEFAULT_RESET_DELAY_MS  100
34
35 void rmi_free_function_list(struct rmi_device *rmi_dev)
36 {
37         struct rmi_function *fn, *tmp;
38         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
39
40         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
41
42         /* Doing it in the reverse order so F01 will be removed last */
43         list_for_each_entry_safe_reverse(fn, tmp,
44                                          &data->function_list, node) {
45                 list_del(&fn->node);
46                 rmi_unregister_function(fn);
47         }
48
49         devm_kfree(&rmi_dev->dev, data->irq_memory);
50         data->irq_memory = NULL;
51         data->irq_status = NULL;
52         data->fn_irq_bits = NULL;
53         data->current_irq_mask = NULL;
54         data->new_irq_mask = NULL;
55
56         data->f01_container = NULL;
57         data->f34_container = NULL;
58 }
59
60 static int reset_one_function(struct rmi_function *fn)
61 {
62         struct rmi_function_handler *fh;
63         int retval = 0;
64
65         if (!fn || !fn->dev.driver)
66                 return 0;
67
68         fh = to_rmi_function_handler(fn->dev.driver);
69         if (fh->reset) {
70                 retval = fh->reset(fn);
71                 if (retval < 0)
72                         dev_err(&fn->dev, "Reset failed with code %d.\n",
73                                 retval);
74         }
75
76         return retval;
77 }
78
79 static int configure_one_function(struct rmi_function *fn)
80 {
81         struct rmi_function_handler *fh;
82         int retval = 0;
83
84         if (!fn || !fn->dev.driver)
85                 return 0;
86
87         fh = to_rmi_function_handler(fn->dev.driver);
88         if (fh->config) {
89                 retval = fh->config(fn);
90                 if (retval < 0)
91                         dev_err(&fn->dev, "Config failed with code %d.\n",
92                                 retval);
93         }
94
95         return retval;
96 }
97
98 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
99 {
100         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
101         struct rmi_function *entry;
102         int retval;
103
104         list_for_each_entry(entry, &data->function_list, node) {
105                 retval = reset_one_function(entry);
106                 if (retval < 0)
107                         return retval;
108         }
109
110         return 0;
111 }
112
113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
114 {
115         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
116         struct rmi_function *entry;
117         int retval;
118
119         list_for_each_entry(entry, &data->function_list, node) {
120                 retval = configure_one_function(entry);
121                 if (retval < 0)
122                         return retval;
123         }
124
125         return 0;
126 }
127
128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
129 {
130         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
131         struct device *dev = &rmi_dev->dev;
132         int i;
133         int error;
134
135         if (!data)
136                 return 0;
137
138         if (!data->attn_data.data) {
139                 error = rmi_read_block(rmi_dev,
140                                 data->f01_container->fd.data_base_addr + 1,
141                                 data->irq_status, data->num_of_irq_regs);
142                 if (error < 0) {
143                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
144                         return error;
145                 }
146         }
147
148         mutex_lock(&data->irq_mutex);
149         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
150                data->irq_count);
151         /*
152          * At this point, irq_status has all bits that are set in the
153          * interrupt status register and are enabled.
154          */
155         mutex_unlock(&data->irq_mutex);
156
157         for_each_set_bit(i, data->irq_status, data->irq_count)
158                 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
159
160         if (data->input)
161                 input_sync(data->input);
162
163         return 0;
164 }
165
166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
167                        void *data, size_t size)
168 {
169         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
170         struct rmi4_attn_data attn_data;
171         void *fifo_data;
172
173         if (!drvdata->enabled)
174                 return;
175
176         fifo_data = kmemdup(data, size, GFP_ATOMIC);
177         if (!fifo_data)
178                 return;
179
180         attn_data.irq_status = irq_status;
181         attn_data.size = size;
182         attn_data.data = fifo_data;
183
184         kfifo_put(&drvdata->attn_fifo, attn_data);
185 }
186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
187
188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
189 {
190         struct rmi_device *rmi_dev = dev_id;
191         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
192         struct rmi4_attn_data attn_data = {0};
193         int ret, count;
194
195         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
196         if (count) {
197                 *(drvdata->irq_status) = attn_data.irq_status;
198                 drvdata->attn_data = attn_data;
199         }
200
201         ret = rmi_process_interrupt_requests(rmi_dev);
202         if (ret)
203                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
204                         "Failed to process interrupt request: %d\n", ret);
205
206         if (count) {
207                 kfree(attn_data.data);
208                 attn_data.data = NULL;
209         }
210
211         if (!kfifo_is_empty(&drvdata->attn_fifo))
212                 return rmi_irq_fn(irq, dev_id);
213
214         return IRQ_HANDLED;
215 }
216
217 static int rmi_irq_init(struct rmi_device *rmi_dev)
218 {
219         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
220         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
221         int irq_flags = irq_get_trigger_type(pdata->irq);
222         int ret;
223
224         if (!irq_flags)
225                 irq_flags = IRQF_TRIGGER_LOW;
226
227         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
228                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
229                                         dev_driver_string(rmi_dev->xport->dev),
230                                         rmi_dev);
231         if (ret < 0) {
232                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
233                         pdata->irq);
234
235                 return ret;
236         }
237
238         data->enabled = true;
239
240         return 0;
241 }
242
243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
244 {
245         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246         struct rmi_function *entry;
247
248         list_for_each_entry(entry, &data->function_list, node) {
249                 if (entry->fd.function_number == number)
250                         return entry;
251         }
252
253         return NULL;
254 }
255
256 static int suspend_one_function(struct rmi_function *fn)
257 {
258         struct rmi_function_handler *fh;
259         int retval = 0;
260
261         if (!fn || !fn->dev.driver)
262                 return 0;
263
264         fh = to_rmi_function_handler(fn->dev.driver);
265         if (fh->suspend) {
266                 retval = fh->suspend(fn);
267                 if (retval < 0)
268                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
269                                 retval);
270         }
271
272         return retval;
273 }
274
275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
276 {
277         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
278         struct rmi_function *entry;
279         int retval;
280
281         list_for_each_entry(entry, &data->function_list, node) {
282                 retval = suspend_one_function(entry);
283                 if (retval < 0)
284                         return retval;
285         }
286
287         return 0;
288 }
289
290 static int resume_one_function(struct rmi_function *fn)
291 {
292         struct rmi_function_handler *fh;
293         int retval = 0;
294
295         if (!fn || !fn->dev.driver)
296                 return 0;
297
298         fh = to_rmi_function_handler(fn->dev.driver);
299         if (fh->resume) {
300                 retval = fh->resume(fn);
301                 if (retval < 0)
302                         dev_err(&fn->dev, "Resume failed with code %d.\n",
303                                 retval);
304         }
305
306         return retval;
307 }
308
309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
310 {
311         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
312         struct rmi_function *entry;
313         int retval;
314
315         list_for_each_entry(entry, &data->function_list, node) {
316                 retval = resume_one_function(entry);
317                 if (retval < 0)
318                         return retval;
319         }
320
321         return 0;
322 }
323
324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
325 {
326         int retval = 0;
327
328         retval = rmi_driver_process_config_requests(rmi_dev);
329         if (retval < 0)
330                 return retval;
331
332         return rmi_process_interrupt_requests(rmi_dev);
333 }
334
335 /**
336  * rmi_driver_set_input_params - set input device id and other data.
337  *
338  * @rmi_dev: Pointer to an RMI device
339  * @input: Pointer to input device
340  *
341  */
342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
343                                 struct input_dev *input)
344 {
345         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
346         input->id.vendor  = SYNAPTICS_VENDOR_ID;
347         input->id.bustype = BUS_RMI;
348         return 0;
349 }
350
351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
352                                 struct input_dev *input)
353 {
354         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
355         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
356         char *name;
357
358         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
359                               "Synaptics %s", device_name);
360         if (!name)
361                 return;
362
363         input->name = name;
364 }
365
366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
367                                    unsigned long *mask)
368 {
369         int error = 0;
370         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
371         struct device *dev = &rmi_dev->dev;
372
373         mutex_lock(&data->irq_mutex);
374         bitmap_or(data->new_irq_mask,
375                   data->current_irq_mask, mask, data->irq_count);
376
377         error = rmi_write_block(rmi_dev,
378                         data->f01_container->fd.control_base_addr + 1,
379                         data->new_irq_mask, data->num_of_irq_regs);
380         if (error < 0) {
381                 dev_err(dev, "%s: Failed to change enabled interrupts!",
382                                                         __func__);
383                 goto error_unlock;
384         }
385         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
386                     data->num_of_irq_regs);
387
388 error_unlock:
389         mutex_unlock(&data->irq_mutex);
390         return error;
391 }
392
393 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
394                                      unsigned long *mask)
395 {
396         int error = 0;
397         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398         struct device *dev = &rmi_dev->dev;
399
400         mutex_lock(&data->irq_mutex);
401         bitmap_andnot(data->new_irq_mask,
402                   data->current_irq_mask, mask, data->irq_count);
403
404         error = rmi_write_block(rmi_dev,
405                         data->f01_container->fd.control_base_addr + 1,
406                         data->new_irq_mask, data->num_of_irq_regs);
407         if (error < 0) {
408                 dev_err(dev, "%s: Failed to change enabled interrupts!",
409                                                         __func__);
410                 goto error_unlock;
411         }
412         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413                     data->num_of_irq_regs);
414
415 error_unlock:
416         mutex_unlock(&data->irq_mutex);
417         return error;
418 }
419
420 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
421 {
422         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
423         int error;
424
425         /*
426          * Can get called before the driver is fully ready to deal with
427          * this situation.
428          */
429         if (!data || !data->f01_container) {
430                 dev_warn(&rmi_dev->dev,
431                          "Not ready to handle reset yet!\n");
432                 return 0;
433         }
434
435         error = rmi_read_block(rmi_dev,
436                                data->f01_container->fd.control_base_addr + 1,
437                                data->current_irq_mask, data->num_of_irq_regs);
438         if (error < 0) {
439                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
440                         __func__);
441                 return error;
442         }
443
444         error = rmi_driver_process_reset_requests(rmi_dev);
445         if (error < 0)
446                 return error;
447
448         error = rmi_driver_process_config_requests(rmi_dev);
449         if (error < 0)
450                 return error;
451
452         return 0;
453 }
454
455 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
456                               struct pdt_entry *entry, u16 pdt_address)
457 {
458         u8 buf[RMI_PDT_ENTRY_SIZE];
459         int error;
460
461         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
462         if (error) {
463                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
464                                 pdt_address, error);
465                 return error;
466         }
467
468         entry->page_start = pdt_address & RMI4_PAGE_MASK;
469         entry->query_base_addr = buf[0];
470         entry->command_base_addr = buf[1];
471         entry->control_base_addr = buf[2];
472         entry->data_base_addr = buf[3];
473         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
474         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
475         entry->function_number = buf[5];
476
477         return 0;
478 }
479
480 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
481                                       struct rmi_function_descriptor *fd)
482 {
483         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
484         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
485         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
486         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
487         fd->function_number = pdt->function_number;
488         fd->interrupt_source_count = pdt->interrupt_source_count;
489         fd->function_version = pdt->function_version;
490 }
491
492 #define RMI_SCAN_CONTINUE       0
493 #define RMI_SCAN_DONE           1
494
495 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
496                              int page,
497                              int *empty_pages,
498                              void *ctx,
499                              int (*callback)(struct rmi_device *rmi_dev,
500                                              void *ctx,
501                                              const struct pdt_entry *entry))
502 {
503         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
504         struct pdt_entry pdt_entry;
505         u16 page_start = RMI4_PAGE_SIZE * page;
506         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
507         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
508         u16 addr;
509         int error;
510         int retval;
511
512         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
513                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
514                 if (error)
515                         return error;
516
517                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
518                         break;
519
520                 retval = callback(rmi_dev, ctx, &pdt_entry);
521                 if (retval != RMI_SCAN_CONTINUE)
522                         return retval;
523         }
524
525         /*
526          * Count number of empty PDT pages. If a gap of two pages
527          * or more is found, stop scanning.
528          */
529         if (addr == pdt_start)
530                 ++*empty_pages;
531         else
532                 *empty_pages = 0;
533
534         return (data->bootloader_mode || *empty_pages >= 2) ?
535                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
536 }
537
538 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
539                  int (*callback)(struct rmi_device *rmi_dev,
540                  void *ctx, const struct pdt_entry *entry))
541 {
542         int page;
543         int empty_pages = 0;
544         int retval = RMI_SCAN_DONE;
545
546         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
547                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
548                                            ctx, callback);
549                 if (retval != RMI_SCAN_CONTINUE)
550                         break;
551         }
552
553         return retval < 0 ? retval : 0;
554 }
555
556 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
557                                 struct rmi_register_descriptor *rdesc)
558 {
559         int ret;
560         u8 size_presence_reg;
561         u8 buf[35];
562         int presense_offset = 1;
563         u8 *struct_buf;
564         int reg;
565         int offset = 0;
566         int map_offset = 0;
567         int i;
568         int b;
569
570         /*
571          * The first register of the register descriptor is the size of
572          * the register descriptor's presense register.
573          */
574         ret = rmi_read(d, addr, &size_presence_reg);
575         if (ret)
576                 return ret;
577         ++addr;
578
579         if (size_presence_reg < 0 || size_presence_reg > 35)
580                 return -EIO;
581
582         memset(buf, 0, sizeof(buf));
583
584         /*
585          * The presence register contains the size of the register structure
586          * and a bitmap which identified which packet registers are present
587          * for this particular register type (ie query, control, or data).
588          */
589         ret = rmi_read_block(d, addr, buf, size_presence_reg);
590         if (ret)
591                 return ret;
592         ++addr;
593
594         if (buf[0] == 0) {
595                 presense_offset = 3;
596                 rdesc->struct_size = buf[1] | (buf[2] << 8);
597         } else {
598                 rdesc->struct_size = buf[0];
599         }
600
601         for (i = presense_offset; i < size_presence_reg; i++) {
602                 for (b = 0; b < 8; b++) {
603                         if (buf[i] & (0x1 << b))
604                                 bitmap_set(rdesc->presense_map, map_offset, 1);
605                         ++map_offset;
606                 }
607         }
608
609         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
610                                                 RMI_REG_DESC_PRESENSE_BITS);
611
612         rdesc->registers = devm_kcalloc(&d->dev,
613                                         rdesc->num_registers,
614                                         sizeof(struct rmi_register_desc_item),
615                                         GFP_KERNEL);
616         if (!rdesc->registers)
617                 return -ENOMEM;
618
619         /*
620          * Allocate a temporary buffer to hold the register structure.
621          * I'm not using devm_kzalloc here since it will not be retained
622          * after exiting this function
623          */
624         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
625         if (!struct_buf)
626                 return -ENOMEM;
627
628         /*
629          * The register structure contains information about every packet
630          * register of this type. This includes the size of the packet
631          * register and a bitmap of all subpackets contained in the packet
632          * register.
633          */
634         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
635         if (ret)
636                 goto free_struct_buff;
637
638         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
639         for (i = 0; i < rdesc->num_registers; i++) {
640                 struct rmi_register_desc_item *item = &rdesc->registers[i];
641                 int reg_size = struct_buf[offset];
642
643                 ++offset;
644                 if (reg_size == 0) {
645                         reg_size = struct_buf[offset] |
646                                         (struct_buf[offset + 1] << 8);
647                         offset += 2;
648                 }
649
650                 if (reg_size == 0) {
651                         reg_size = struct_buf[offset] |
652                                         (struct_buf[offset + 1] << 8) |
653                                         (struct_buf[offset + 2] << 16) |
654                                         (struct_buf[offset + 3] << 24);
655                         offset += 4;
656                 }
657
658                 item->reg = reg;
659                 item->reg_size = reg_size;
660
661                 map_offset = 0;
662
663                 do {
664                         for (b = 0; b < 7; b++) {
665                                 if (struct_buf[offset] & (0x1 << b))
666                                         bitmap_set(item->subpacket_map,
667                                                 map_offset, 1);
668                                 ++map_offset;
669                         }
670                 } while (struct_buf[offset++] & 0x80);
671
672                 item->num_subpackets = bitmap_weight(item->subpacket_map,
673                                                 RMI_REG_DESC_SUBPACKET_BITS);
674
675                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
676                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
677                         item->reg, item->reg_size, item->num_subpackets);
678
679                 reg = find_next_bit(rdesc->presense_map,
680                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
681         }
682
683 free_struct_buff:
684         kfree(struct_buf);
685         return ret;
686 }
687
688 const struct rmi_register_desc_item *rmi_get_register_desc_item(
689                                 struct rmi_register_descriptor *rdesc, u16 reg)
690 {
691         const struct rmi_register_desc_item *item;
692         int i;
693
694         for (i = 0; i < rdesc->num_registers; i++) {
695                 item = &rdesc->registers[i];
696                 if (item->reg == reg)
697                         return item;
698         }
699
700         return NULL;
701 }
702
703 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
704 {
705         const struct rmi_register_desc_item *item;
706         int i;
707         size_t size = 0;
708
709         for (i = 0; i < rdesc->num_registers; i++) {
710                 item = &rdesc->registers[i];
711                 size += item->reg_size;
712         }
713         return size;
714 }
715
716 /* Compute the register offset relative to the base address */
717 int rmi_register_desc_calc_reg_offset(
718                 struct rmi_register_descriptor *rdesc, u16 reg)
719 {
720         const struct rmi_register_desc_item *item;
721         int offset = 0;
722         int i;
723
724         for (i = 0; i < rdesc->num_registers; i++) {
725                 item = &rdesc->registers[i];
726                 if (item->reg == reg)
727                         return offset;
728                 ++offset;
729         }
730         return -1;
731 }
732
733 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
734         u8 subpacket)
735 {
736         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
737                                 subpacket) == subpacket;
738 }
739
740 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
741                                      const struct pdt_entry *pdt)
742 {
743         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
744         int ret;
745         u8 status;
746
747         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
748                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
749                 if (ret) {
750                         dev_err(&rmi_dev->dev,
751                                 "Failed to read F34 status: %d.\n", ret);
752                         return ret;
753                 }
754
755                 if (status & BIT(7))
756                         data->bootloader_mode = true;
757         } else if (pdt->function_number == 0x01) {
758                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
759                 if (ret) {
760                         dev_err(&rmi_dev->dev,
761                                 "Failed to read F01 status: %d.\n", ret);
762                         return ret;
763                 }
764
765                 if (status & BIT(6))
766                         data->bootloader_mode = true;
767         }
768
769         return 0;
770 }
771
772 static int rmi_count_irqs(struct rmi_device *rmi_dev,
773                          void *ctx, const struct pdt_entry *pdt)
774 {
775         int *irq_count = ctx;
776         int ret;
777
778         *irq_count += pdt->interrupt_source_count;
779
780         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
781         if (ret < 0)
782                 return ret;
783
784         return RMI_SCAN_CONTINUE;
785 }
786
787 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
788                       const struct pdt_entry *pdt)
789 {
790         int error;
791
792         if (pdt->function_number == 0x01) {
793                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
794                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
795                 const struct rmi_device_platform_data *pdata =
796                                 rmi_get_platform_data(rmi_dev);
797
798                 if (rmi_dev->xport->ops->reset) {
799                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
800                                                                 cmd_addr);
801                         if (error)
802                                 return error;
803
804                         return RMI_SCAN_DONE;
805                 }
806
807                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
808                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
809                 if (error) {
810                         dev_err(&rmi_dev->dev,
811                                 "Initial reset failed. Code = %d.\n", error);
812                         return error;
813                 }
814
815                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
816
817                 return RMI_SCAN_DONE;
818         }
819
820         /* F01 should always be on page 0. If we don't find it there, fail. */
821         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
822 }
823
824 static int rmi_create_function(struct rmi_device *rmi_dev,
825                                void *ctx, const struct pdt_entry *pdt)
826 {
827         struct device *dev = &rmi_dev->dev;
828         struct rmi_driver_data *data = dev_get_drvdata(dev);
829         int *current_irq_count = ctx;
830         struct rmi_function *fn;
831         int i;
832         int error;
833
834         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
835                         pdt->function_number);
836
837         fn = kzalloc(sizeof(struct rmi_function) +
838                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
839                      GFP_KERNEL);
840         if (!fn) {
841                 dev_err(dev, "Failed to allocate memory for F%02X\n",
842                         pdt->function_number);
843                 return -ENOMEM;
844         }
845
846         INIT_LIST_HEAD(&fn->node);
847         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
848
849         fn->rmi_dev = rmi_dev;
850
851         fn->num_of_irqs = pdt->interrupt_source_count;
852         fn->irq_pos = *current_irq_count;
853         *current_irq_count += fn->num_of_irqs;
854
855         for (i = 0; i < fn->num_of_irqs; i++)
856                 set_bit(fn->irq_pos + i, fn->irq_mask);
857
858         error = rmi_register_function(fn);
859         if (error)
860                 return error;
861
862         if (pdt->function_number == 0x01)
863                 data->f01_container = fn;
864         else if (pdt->function_number == 0x34)
865                 data->f34_container = fn;
866
867         list_add_tail(&fn->node, &data->function_list);
868
869         return RMI_SCAN_CONTINUE;
870 }
871
872 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
873 {
874         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
875         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
876         int irq = pdata->irq;
877         int irq_flags;
878         int retval;
879
880         mutex_lock(&data->enabled_mutex);
881
882         if (data->enabled)
883                 goto out;
884
885         enable_irq(irq);
886         data->enabled = true;
887         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
888                 retval = disable_irq_wake(irq);
889                 if (retval)
890                         dev_warn(&rmi_dev->dev,
891                                  "Failed to disable irq for wake: %d\n",
892                                  retval);
893         }
894
895         /*
896          * Call rmi_process_interrupt_requests() after enabling irq,
897          * otherwise we may lose interrupt on edge-triggered systems.
898          */
899         irq_flags = irq_get_trigger_type(pdata->irq);
900         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
901                 rmi_process_interrupt_requests(rmi_dev);
902
903 out:
904         mutex_unlock(&data->enabled_mutex);
905 }
906
907 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
908 {
909         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
910         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
911         struct rmi4_attn_data attn_data = {0};
912         int irq = pdata->irq;
913         int retval, count;
914
915         mutex_lock(&data->enabled_mutex);
916
917         if (!data->enabled)
918                 goto out;
919
920         data->enabled = false;
921         disable_irq(irq);
922         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
923                 retval = enable_irq_wake(irq);
924                 if (retval)
925                         dev_warn(&rmi_dev->dev,
926                                  "Failed to enable irq for wake: %d\n",
927                                  retval);
928         }
929
930         /* make sure the fifo is clean */
931         while (!kfifo_is_empty(&data->attn_fifo)) {
932                 count = kfifo_get(&data->attn_fifo, &attn_data);
933                 if (count)
934                         kfree(attn_data.data);
935         }
936
937 out:
938         mutex_unlock(&data->enabled_mutex);
939 }
940
941 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
942 {
943         int retval;
944
945         retval = rmi_suspend_functions(rmi_dev);
946         if (retval)
947                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
948                         retval);
949
950         rmi_disable_irq(rmi_dev, enable_wake);
951         return retval;
952 }
953 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
954
955 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
956 {
957         int retval;
958
959         rmi_enable_irq(rmi_dev, clear_wake);
960
961         retval = rmi_resume_functions(rmi_dev);
962         if (retval)
963                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
964                         retval);
965
966         return retval;
967 }
968 EXPORT_SYMBOL_GPL(rmi_driver_resume);
969
970 static int rmi_driver_remove(struct device *dev)
971 {
972         struct rmi_device *rmi_dev = to_rmi_device(dev);
973         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
974
975         rmi_disable_irq(rmi_dev, false);
976
977         irq_domain_remove(data->irqdomain);
978         data->irqdomain = NULL;
979
980         rmi_f34_remove_sysfs(rmi_dev);
981         rmi_free_function_list(rmi_dev);
982
983         return 0;
984 }
985
986 #ifdef CONFIG_OF
987 static int rmi_driver_of_probe(struct device *dev,
988                                 struct rmi_device_platform_data *pdata)
989 {
990         int retval;
991
992         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
993                                         "syna,reset-delay-ms", 1);
994         if (retval)
995                 return retval;
996
997         return 0;
998 }
999 #else
1000 static inline int rmi_driver_of_probe(struct device *dev,
1001                                         struct rmi_device_platform_data *pdata)
1002 {
1003         return -ENODEV;
1004 }
1005 #endif
1006
1007 int rmi_probe_interrupts(struct rmi_driver_data *data)
1008 {
1009         struct rmi_device *rmi_dev = data->rmi_dev;
1010         struct device *dev = &rmi_dev->dev;
1011         struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1012         int irq_count = 0;
1013         size_t size;
1014         int retval;
1015
1016         /*
1017          * We need to count the IRQs and allocate their storage before scanning
1018          * the PDT and creating the function entries, because adding a new
1019          * function can trigger events that result in the IRQ related storage
1020          * being accessed.
1021          */
1022         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1023         data->bootloader_mode = false;
1024
1025         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1026         if (retval < 0) {
1027                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1028                 return retval;
1029         }
1030
1031         if (data->bootloader_mode)
1032                 dev_warn(dev, "Device in bootloader mode.\n");
1033
1034         /* Allocate and register a linear revmap irq_domain */
1035         data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1036                                                    &irq_domain_simple_ops,
1037                                                    data);
1038         if (!data->irqdomain) {
1039                 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1040                 return -ENOMEM;
1041         }
1042
1043         data->irq_count = irq_count;
1044         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1045
1046         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1047         data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1048         if (!data->irq_memory) {
1049                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1050                 return -ENOMEM;
1051         }
1052
1053         data->irq_status        = data->irq_memory + size * 0;
1054         data->fn_irq_bits       = data->irq_memory + size * 1;
1055         data->current_irq_mask  = data->irq_memory + size * 2;
1056         data->new_irq_mask      = data->irq_memory + size * 3;
1057
1058         return retval;
1059 }
1060
1061 int rmi_init_functions(struct rmi_driver_data *data)
1062 {
1063         struct rmi_device *rmi_dev = data->rmi_dev;
1064         struct device *dev = &rmi_dev->dev;
1065         int irq_count = 0;
1066         int retval;
1067
1068         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1069         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1070         if (retval < 0) {
1071                 dev_err(dev, "Function creation failed with code %d.\n",
1072                         retval);
1073                 goto err_destroy_functions;
1074         }
1075
1076         if (!data->f01_container) {
1077                 dev_err(dev, "Missing F01 container!\n");
1078                 retval = -EINVAL;
1079                 goto err_destroy_functions;
1080         }
1081
1082         retval = rmi_read_block(rmi_dev,
1083                                 data->f01_container->fd.control_base_addr + 1,
1084                                 data->current_irq_mask, data->num_of_irq_regs);
1085         if (retval < 0) {
1086                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1087                         __func__);
1088                 goto err_destroy_functions;
1089         }
1090
1091         return 0;
1092
1093 err_destroy_functions:
1094         rmi_free_function_list(rmi_dev);
1095         return retval;
1096 }
1097
1098 static int rmi_driver_probe(struct device *dev)
1099 {
1100         struct rmi_driver *rmi_driver;
1101         struct rmi_driver_data *data;
1102         struct rmi_device_platform_data *pdata;
1103         struct rmi_device *rmi_dev;
1104         int retval;
1105
1106         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1107                         __func__);
1108
1109         if (!rmi_is_physical_device(dev)) {
1110                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1111                 return -ENODEV;
1112         }
1113
1114         rmi_dev = to_rmi_device(dev);
1115         rmi_driver = to_rmi_driver(dev->driver);
1116         rmi_dev->driver = rmi_driver;
1117
1118         pdata = rmi_get_platform_data(rmi_dev);
1119
1120         if (rmi_dev->xport->dev->of_node) {
1121                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1122                 if (retval)
1123                         return retval;
1124         }
1125
1126         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1127         if (!data)
1128                 return -ENOMEM;
1129
1130         INIT_LIST_HEAD(&data->function_list);
1131         data->rmi_dev = rmi_dev;
1132         dev_set_drvdata(&rmi_dev->dev, data);
1133
1134         /*
1135          * Right before a warm boot, the sensor might be in some unusual state,
1136          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1137          * or configuration update.  In order to clear the sensor to a known
1138          * state and/or apply any updates, we issue a initial reset to clear any
1139          * previous settings and force it into normal operation.
1140          *
1141          * We have to do this before actually building the PDT because
1142          * the reflash updates (if any) might cause various registers to move
1143          * around.
1144          *
1145          * For a number of reasons, this initial reset may fail to return
1146          * within the specified time, but we'll still be able to bring up the
1147          * driver normally after that failure.  This occurs most commonly in
1148          * a cold boot situation (where then firmware takes longer to come up
1149          * than from a warm boot) and the reset_delay_ms in the platform data
1150          * has been set too short to accommodate that.  Since the sensor will
1151          * eventually come up and be usable, we don't want to just fail here
1152          * and leave the customer's device unusable.  So we warn them, and
1153          * continue processing.
1154          */
1155         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1156         if (retval < 0)
1157                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1158
1159         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1160         if (retval < 0) {
1161                 /*
1162                  * we'll print out a warning and continue since
1163                  * failure to get the PDT properties is not a cause to fail
1164                  */
1165                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1166                          PDT_PROPERTIES_LOCATION, retval);
1167         }
1168
1169         mutex_init(&data->irq_mutex);
1170         mutex_init(&data->enabled_mutex);
1171
1172         retval = rmi_probe_interrupts(data);
1173         if (retval)
1174                 goto err;
1175
1176         if (rmi_dev->xport->input) {
1177                 /*
1178                  * The transport driver already has an input device.
1179                  * In some cases it is preferable to reuse the transport
1180                  * devices input device instead of creating a new one here.
1181                  * One example is some HID touchpads report "pass-through"
1182                  * button events are not reported by rmi registers.
1183                  */
1184                 data->input = rmi_dev->xport->input;
1185         } else {
1186                 data->input = devm_input_allocate_device(dev);
1187                 if (!data->input) {
1188                         dev_err(dev, "%s: Failed to allocate input device.\n",
1189                                 __func__);
1190                         retval = -ENOMEM;
1191                         goto err;
1192                 }
1193                 rmi_driver_set_input_params(rmi_dev, data->input);
1194                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1195                                                 "%s/input0", dev_name(dev));
1196         }
1197
1198         retval = rmi_init_functions(data);
1199         if (retval)
1200                 goto err;
1201
1202         retval = rmi_f34_create_sysfs(rmi_dev);
1203         if (retval)
1204                 goto err;
1205
1206         if (data->input) {
1207                 rmi_driver_set_input_name(rmi_dev, data->input);
1208                 if (!rmi_dev->xport->input) {
1209                         if (input_register_device(data->input)) {
1210                                 dev_err(dev, "%s: Failed to register input device.\n",
1211                                         __func__);
1212                                 goto err_destroy_functions;
1213                         }
1214                 }
1215         }
1216
1217         retval = rmi_irq_init(rmi_dev);
1218         if (retval < 0)
1219                 goto err_destroy_functions;
1220
1221         if (data->f01_container->dev.driver) {
1222                 /* Driver already bound, so enable ATTN now. */
1223                 retval = rmi_enable_sensor(rmi_dev);
1224                 if (retval)
1225                         goto err_disable_irq;
1226         }
1227
1228         return 0;
1229
1230 err_disable_irq:
1231         rmi_disable_irq(rmi_dev, false);
1232 err_destroy_functions:
1233         rmi_free_function_list(rmi_dev);
1234 err:
1235         return retval;
1236 }
1237
1238 static struct rmi_driver rmi_physical_driver = {
1239         .driver = {
1240                 .owner  = THIS_MODULE,
1241                 .name   = "rmi4_physical",
1242                 .bus    = &rmi_bus_type,
1243                 .probe = rmi_driver_probe,
1244                 .remove = rmi_driver_remove,
1245         },
1246         .reset_handler = rmi_driver_reset_handler,
1247         .clear_irq_bits = rmi_driver_clear_irq_bits,
1248         .set_irq_bits = rmi_driver_set_irq_bits,
1249         .set_input_params = rmi_driver_set_input_params,
1250 };
1251
1252 bool rmi_is_physical_driver(struct device_driver *drv)
1253 {
1254         return drv == &rmi_physical_driver.driver;
1255 }
1256
1257 int __init rmi_register_physical_driver(void)
1258 {
1259         int error;
1260
1261         error = driver_register(&rmi_physical_driver.driver);
1262         if (error) {
1263                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1264                        error);
1265                 return error;
1266         }
1267
1268         return 0;
1269 }
1270
1271 void __exit rmi_unregister_physical_driver(void)
1272 {
1273         driver_unregister(&rmi_physical_driver.driver);
1274 }