Merge remote-tracking branches 'asoc/topic/inntel', 'asoc/topic/input', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <uapi/linux/input.h>
24 #include <linux/rmi.h>
25 #include "rmi_bus.h"
26 #include "rmi_driver.h"
27
28 #define HAS_NONSTANDARD_PDT_MASK 0x40
29 #define RMI4_MAX_PAGE 0xff
30 #define RMI4_PAGE_SIZE 0x100
31 #define RMI4_PAGE_MASK 0xFF00
32
33 #define RMI_DEVICE_RESET_CMD    0x01
34 #define DEFAULT_RESET_DELAY_MS  100
35
36 static void rmi_free_function_list(struct rmi_device *rmi_dev)
37 {
38         struct rmi_function *fn, *tmp;
39         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
40
41         data->f01_container = NULL;
42
43         /* Doing it in the reverse order so F01 will be removed last */
44         list_for_each_entry_safe_reverse(fn, tmp,
45                                          &data->function_list, node) {
46                 list_del(&fn->node);
47                 rmi_unregister_function(fn);
48         }
49 }
50
51 static int reset_one_function(struct rmi_function *fn)
52 {
53         struct rmi_function_handler *fh;
54         int retval = 0;
55
56         if (!fn || !fn->dev.driver)
57                 return 0;
58
59         fh = to_rmi_function_handler(fn->dev.driver);
60         if (fh->reset) {
61                 retval = fh->reset(fn);
62                 if (retval < 0)
63                         dev_err(&fn->dev, "Reset failed with code %d.\n",
64                                 retval);
65         }
66
67         return retval;
68 }
69
70 static int configure_one_function(struct rmi_function *fn)
71 {
72         struct rmi_function_handler *fh;
73         int retval = 0;
74
75         if (!fn || !fn->dev.driver)
76                 return 0;
77
78         fh = to_rmi_function_handler(fn->dev.driver);
79         if (fh->config) {
80                 retval = fh->config(fn);
81                 if (retval < 0)
82                         dev_err(&fn->dev, "Config failed with code %d.\n",
83                                 retval);
84         }
85
86         return retval;
87 }
88
89 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
90 {
91         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
92         struct rmi_function *entry;
93         int retval;
94
95         list_for_each_entry(entry, &data->function_list, node) {
96                 retval = reset_one_function(entry);
97                 if (retval < 0)
98                         return retval;
99         }
100
101         return 0;
102 }
103
104 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
105 {
106         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
107         struct rmi_function *entry;
108         int retval;
109
110         list_for_each_entry(entry, &data->function_list, node) {
111                 retval = configure_one_function(entry);
112                 if (retval < 0)
113                         return retval;
114         }
115
116         return 0;
117 }
118
119 static void process_one_interrupt(struct rmi_driver_data *data,
120                                   struct rmi_function *fn)
121 {
122         struct rmi_function_handler *fh;
123
124         if (!fn || !fn->dev.driver)
125                 return;
126
127         fh = to_rmi_function_handler(fn->dev.driver);
128         if (fh->attention) {
129                 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
130                                 data->irq_count);
131                 if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
132                         fh->attention(fn, data->fn_irq_bits);
133         }
134 }
135
136 int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
137 {
138         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
139         struct device *dev = &rmi_dev->dev;
140         struct rmi_function *entry;
141         int error;
142
143         if (!data)
144                 return 0;
145
146         if (!rmi_dev->xport->attn_data) {
147                 error = rmi_read_block(rmi_dev,
148                                 data->f01_container->fd.data_base_addr + 1,
149                                 data->irq_status, data->num_of_irq_regs);
150                 if (error < 0) {
151                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
152                         return error;
153                 }
154         }
155
156         mutex_lock(&data->irq_mutex);
157         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
158                data->irq_count);
159         /*
160          * At this point, irq_status has all bits that are set in the
161          * interrupt status register and are enabled.
162          */
163         mutex_unlock(&data->irq_mutex);
164
165         /*
166          * It would be nice to be able to use irq_chip to handle these
167          * nested IRQs.  Unfortunately, most of the current customers for
168          * this driver are using older kernels (3.0.x) that don't support
169          * the features required for that.  Once they've shifted to more
170          * recent kernels (say, 3.3 and higher), this should be switched to
171          * use irq_chip.
172          */
173         list_for_each_entry(entry, &data->function_list, node)
174                 process_one_interrupt(data, entry);
175
176         if (data->input)
177                 input_sync(data->input);
178
179         return 0;
180 }
181 EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
182
183 static int suspend_one_function(struct rmi_function *fn)
184 {
185         struct rmi_function_handler *fh;
186         int retval = 0;
187
188         if (!fn || !fn->dev.driver)
189                 return 0;
190
191         fh = to_rmi_function_handler(fn->dev.driver);
192         if (fh->suspend) {
193                 retval = fh->suspend(fn);
194                 if (retval < 0)
195                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
196                                 retval);
197         }
198
199         return retval;
200 }
201
202 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
203 {
204         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
205         struct rmi_function *entry;
206         int retval;
207
208         list_for_each_entry(entry, &data->function_list, node) {
209                 retval = suspend_one_function(entry);
210                 if (retval < 0)
211                         return retval;
212         }
213
214         return 0;
215 }
216
217 static int resume_one_function(struct rmi_function *fn)
218 {
219         struct rmi_function_handler *fh;
220         int retval = 0;
221
222         if (!fn || !fn->dev.driver)
223                 return 0;
224
225         fh = to_rmi_function_handler(fn->dev.driver);
226         if (fh->resume) {
227                 retval = fh->resume(fn);
228                 if (retval < 0)
229                         dev_err(&fn->dev, "Resume failed with code %d.\n",
230                                 retval);
231         }
232
233         return retval;
234 }
235
236 static int rmi_resume_functions(struct rmi_device *rmi_dev)
237 {
238         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
239         struct rmi_function *entry;
240         int retval;
241
242         list_for_each_entry(entry, &data->function_list, node) {
243                 retval = resume_one_function(entry);
244                 if (retval < 0)
245                         return retval;
246         }
247
248         return 0;
249 }
250
251 static int enable_sensor(struct rmi_device *rmi_dev)
252 {
253         int retval = 0;
254
255         retval = rmi_driver_process_config_requests(rmi_dev);
256         if (retval < 0)
257                 return retval;
258
259         return rmi_process_interrupt_requests(rmi_dev);
260 }
261
262 /**
263  * rmi_driver_set_input_params - set input device id and other data.
264  *
265  * @rmi_dev: Pointer to an RMI device
266  * @input: Pointer to input device
267  *
268  */
269 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
270                                 struct input_dev *input)
271 {
272         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
273         input->id.vendor  = SYNAPTICS_VENDOR_ID;
274         input->id.bustype = BUS_RMI;
275         return 0;
276 }
277
278 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
279                                 struct input_dev *input)
280 {
281         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
282         char *device_name = rmi_f01_get_product_ID(data->f01_container);
283         char *name;
284
285         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
286                               "Synaptics %s", device_name);
287         if (!name)
288                 return;
289
290         input->name = name;
291 }
292
293 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
294                                    unsigned long *mask)
295 {
296         int error = 0;
297         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
298         struct device *dev = &rmi_dev->dev;
299
300         mutex_lock(&data->irq_mutex);
301         bitmap_or(data->new_irq_mask,
302                   data->current_irq_mask, mask, data->irq_count);
303
304         error = rmi_write_block(rmi_dev,
305                         data->f01_container->fd.control_base_addr + 1,
306                         data->new_irq_mask, data->num_of_irq_regs);
307         if (error < 0) {
308                 dev_err(dev, "%s: Failed to change enabled interrupts!",
309                                                         __func__);
310                 goto error_unlock;
311         }
312         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
313                     data->num_of_irq_regs);
314
315 error_unlock:
316         mutex_unlock(&data->irq_mutex);
317         return error;
318 }
319
320 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
321                                      unsigned long *mask)
322 {
323         int error = 0;
324         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
325         struct device *dev = &rmi_dev->dev;
326
327         mutex_lock(&data->irq_mutex);
328         bitmap_andnot(data->new_irq_mask,
329                   data->current_irq_mask, mask, data->irq_count);
330
331         error = rmi_write_block(rmi_dev,
332                         data->f01_container->fd.control_base_addr + 1,
333                         data->new_irq_mask, data->num_of_irq_regs);
334         if (error < 0) {
335                 dev_err(dev, "%s: Failed to change enabled interrupts!",
336                                                         __func__);
337                 goto error_unlock;
338         }
339         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
340                     data->num_of_irq_regs);
341
342 error_unlock:
343         mutex_unlock(&data->irq_mutex);
344         return error;
345 }
346
347 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
348 {
349         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
350         int error;
351
352         /*
353          * Can get called before the driver is fully ready to deal with
354          * this situation.
355          */
356         if (!data || !data->f01_container) {
357                 dev_warn(&rmi_dev->dev,
358                          "Not ready to handle reset yet!\n");
359                 return 0;
360         }
361
362         error = rmi_read_block(rmi_dev,
363                                data->f01_container->fd.control_base_addr + 1,
364                                data->current_irq_mask, data->num_of_irq_regs);
365         if (error < 0) {
366                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
367                         __func__);
368                 return error;
369         }
370
371         error = rmi_driver_process_reset_requests(rmi_dev);
372         if (error < 0)
373                 return error;
374
375         error = rmi_driver_process_config_requests(rmi_dev);
376         if (error < 0)
377                 return error;
378
379         return 0;
380 }
381
382 int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
383                         u16 pdt_address)
384 {
385         u8 buf[RMI_PDT_ENTRY_SIZE];
386         int error;
387
388         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
389         if (error) {
390                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
391                                 pdt_address, error);
392                 return error;
393         }
394
395         entry->page_start = pdt_address & RMI4_PAGE_MASK;
396         entry->query_base_addr = buf[0];
397         entry->command_base_addr = buf[1];
398         entry->control_base_addr = buf[2];
399         entry->data_base_addr = buf[3];
400         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
401         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
402         entry->function_number = buf[5];
403
404         return 0;
405 }
406 EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
407
408 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
409                                       struct rmi_function_descriptor *fd)
410 {
411         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
412         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
413         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
414         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
415         fd->function_number = pdt->function_number;
416         fd->interrupt_source_count = pdt->interrupt_source_count;
417         fd->function_version = pdt->function_version;
418 }
419
420 #define RMI_SCAN_CONTINUE       0
421 #define RMI_SCAN_DONE           1
422
423 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
424                              int page,
425                              void *ctx,
426                              int (*callback)(struct rmi_device *rmi_dev,
427                                              void *ctx,
428                                              const struct pdt_entry *entry))
429 {
430         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
431         struct pdt_entry pdt_entry;
432         u16 page_start = RMI4_PAGE_SIZE * page;
433         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
434         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
435         u16 addr;
436         int error;
437         int retval;
438
439         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
440                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
441                 if (error)
442                         return error;
443
444                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
445                         break;
446
447                 retval = callback(rmi_dev, ctx, &pdt_entry);
448                 if (retval != RMI_SCAN_CONTINUE)
449                         return retval;
450         }
451
452         return (data->f01_bootloader_mode || addr == pdt_start) ?
453                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
454 }
455
456 static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
457                         int (*callback)(struct rmi_device *rmi_dev,
458                                         void *ctx,
459                                         const struct pdt_entry *entry))
460 {
461         int page;
462         int retval = RMI_SCAN_DONE;
463
464         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
465                 retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
466                 if (retval != RMI_SCAN_CONTINUE)
467                         break;
468         }
469
470         return retval < 0 ? retval : 0;
471 }
472
473 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
474                                 struct rmi_register_descriptor *rdesc)
475 {
476         int ret;
477         u8 size_presence_reg;
478         u8 buf[35];
479         int presense_offset = 1;
480         u8 *struct_buf;
481         int reg;
482         int offset = 0;
483         int map_offset = 0;
484         int i;
485         int b;
486
487         /*
488          * The first register of the register descriptor is the size of
489          * the register descriptor's presense register.
490          */
491         ret = rmi_read(d, addr, &size_presence_reg);
492         if (ret)
493                 return ret;
494         ++addr;
495
496         if (size_presence_reg < 0 || size_presence_reg > 35)
497                 return -EIO;
498
499         memset(buf, 0, sizeof(buf));
500
501         /*
502          * The presence register contains the size of the register structure
503          * and a bitmap which identified which packet registers are present
504          * for this particular register type (ie query, control, or data).
505          */
506         ret = rmi_read_block(d, addr, buf, size_presence_reg);
507         if (ret)
508                 return ret;
509         ++addr;
510
511         if (buf[0] == 0) {
512                 presense_offset = 3;
513                 rdesc->struct_size = buf[1] | (buf[2] << 8);
514         } else {
515                 rdesc->struct_size = buf[0];
516         }
517
518         for (i = presense_offset; i < size_presence_reg; i++) {
519                 for (b = 0; b < 8; b++) {
520                         if (buf[i] & (0x1 << b))
521                                 bitmap_set(rdesc->presense_map, map_offset, 1);
522                         ++map_offset;
523                 }
524         }
525
526         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
527                                                 RMI_REG_DESC_PRESENSE_BITS);
528
529         rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
530                                 sizeof(struct rmi_register_desc_item),
531                                 GFP_KERNEL);
532         if (!rdesc->registers)
533                 return -ENOMEM;
534
535         /*
536          * Allocate a temporary buffer to hold the register structure.
537          * I'm not using devm_kzalloc here since it will not be retained
538          * after exiting this function
539          */
540         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
541         if (!struct_buf)
542                 return -ENOMEM;
543
544         /*
545          * The register structure contains information about every packet
546          * register of this type. This includes the size of the packet
547          * register and a bitmap of all subpackets contained in the packet
548          * register.
549          */
550         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
551         if (ret)
552                 goto free_struct_buff;
553
554         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
555         for (i = 0; i < rdesc->num_registers; i++) {
556                 struct rmi_register_desc_item *item = &rdesc->registers[i];
557                 int reg_size = struct_buf[offset];
558
559                 ++offset;
560                 if (reg_size == 0) {
561                         reg_size = struct_buf[offset] |
562                                         (struct_buf[offset + 1] << 8);
563                         offset += 2;
564                 }
565
566                 if (reg_size == 0) {
567                         reg_size = struct_buf[offset] |
568                                         (struct_buf[offset + 1] << 8) |
569                                         (struct_buf[offset + 2] << 16) |
570                                         (struct_buf[offset + 3] << 24);
571                         offset += 4;
572                 }
573
574                 item->reg = reg;
575                 item->reg_size = reg_size;
576
577                 map_offset = 0;
578
579                 do {
580                         for (b = 0; b < 7; b++) {
581                                 if (struct_buf[offset] & (0x1 << b))
582                                         bitmap_set(item->subpacket_map,
583                                                 map_offset, 1);
584                                 ++map_offset;
585                         }
586                 } while (struct_buf[offset++] & 0x80);
587
588                 item->num_subpackets = bitmap_weight(item->subpacket_map,
589                                                 RMI_REG_DESC_SUBPACKET_BITS);
590
591                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
592                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
593                         item->reg, item->reg_size, item->num_subpackets);
594
595                 reg = find_next_bit(rdesc->presense_map,
596                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
597         }
598
599 free_struct_buff:
600         kfree(struct_buf);
601         return ret;
602 }
603 EXPORT_SYMBOL_GPL(rmi_read_register_desc);
604
605 const struct rmi_register_desc_item *rmi_get_register_desc_item(
606                                 struct rmi_register_descriptor *rdesc, u16 reg)
607 {
608         const struct rmi_register_desc_item *item;
609         int i;
610
611         for (i = 0; i < rdesc->num_registers; i++) {
612                 item = &rdesc->registers[i];
613                 if (item->reg == reg)
614                         return item;
615         }
616
617         return NULL;
618 }
619 EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
620
621 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
622 {
623         const struct rmi_register_desc_item *item;
624         int i;
625         size_t size = 0;
626
627         for (i = 0; i < rdesc->num_registers; i++) {
628                 item = &rdesc->registers[i];
629                 size += item->reg_size;
630         }
631         return size;
632 }
633 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
634
635 /* Compute the register offset relative to the base address */
636 int rmi_register_desc_calc_reg_offset(
637                 struct rmi_register_descriptor *rdesc, u16 reg)
638 {
639         const struct rmi_register_desc_item *item;
640         int offset = 0;
641         int i;
642
643         for (i = 0; i < rdesc->num_registers; i++) {
644                 item = &rdesc->registers[i];
645                 if (item->reg == reg)
646                         return offset;
647                 ++offset;
648         }
649         return -1;
650 }
651 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
652
653 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
654         u8 subpacket)
655 {
656         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
657                                 subpacket) == subpacket;
658 }
659
660 /* Indicates that flash programming is enabled (bootloader mode). */
661 #define RMI_F01_STATUS_BOOTLOADER(status)       (!!((status) & 0x40))
662
663 /*
664  * Given the PDT entry for F01, read the device status register to determine
665  * if we're stuck in bootloader mode or not.
666  *
667  */
668 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
669                                      const struct pdt_entry *pdt)
670 {
671         int error;
672         u8 device_status;
673
674         error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
675                          &device_status);
676         if (error) {
677                 dev_err(&rmi_dev->dev,
678                         "Failed to read device status: %d.\n", error);
679                 return error;
680         }
681
682         return RMI_F01_STATUS_BOOTLOADER(device_status);
683 }
684
685 static int rmi_count_irqs(struct rmi_device *rmi_dev,
686                          void *ctx, const struct pdt_entry *pdt)
687 {
688         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
689         int *irq_count = ctx;
690
691         *irq_count += pdt->interrupt_source_count;
692         if (pdt->function_number == 0x01) {
693                 data->f01_bootloader_mode =
694                         rmi_check_bootloader_mode(rmi_dev, pdt);
695                 if (data->f01_bootloader_mode)
696                         dev_warn(&rmi_dev->dev,
697                                 "WARNING: RMI4 device is in bootloader mode!\n");
698         }
699
700         return RMI_SCAN_CONTINUE;
701 }
702
703 static int rmi_initial_reset(struct rmi_device *rmi_dev,
704                              void *ctx, const struct pdt_entry *pdt)
705 {
706         int error;
707
708         if (pdt->function_number == 0x01) {
709                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
710                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
711                 const struct rmi_device_platform_data *pdata =
712                                 rmi_get_platform_data(rmi_dev);
713
714                 if (rmi_dev->xport->ops->reset) {
715                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
716                                                                 cmd_addr);
717                         if (error)
718                                 return error;
719
720                         return RMI_SCAN_DONE;
721                 }
722
723                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
724                 if (error) {
725                         dev_err(&rmi_dev->dev,
726                                 "Initial reset failed. Code = %d.\n", error);
727                         return error;
728                 }
729
730                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
731
732                 return RMI_SCAN_DONE;
733         }
734
735         /* F01 should always be on page 0. If we don't find it there, fail. */
736         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
737 }
738
739 static int rmi_create_function(struct rmi_device *rmi_dev,
740                                void *ctx, const struct pdt_entry *pdt)
741 {
742         struct device *dev = &rmi_dev->dev;
743         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
744         int *current_irq_count = ctx;
745         struct rmi_function *fn;
746         int i;
747         int error;
748
749         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
750                         pdt->function_number);
751
752         fn = kzalloc(sizeof(struct rmi_function) +
753                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
754                      GFP_KERNEL);
755         if (!fn) {
756                 dev_err(dev, "Failed to allocate memory for F%02X\n",
757                         pdt->function_number);
758                 return -ENOMEM;
759         }
760
761         INIT_LIST_HEAD(&fn->node);
762         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
763
764         fn->rmi_dev = rmi_dev;
765
766         fn->num_of_irqs = pdt->interrupt_source_count;
767         fn->irq_pos = *current_irq_count;
768         *current_irq_count += fn->num_of_irqs;
769
770         for (i = 0; i < fn->num_of_irqs; i++)
771                 set_bit(fn->irq_pos + i, fn->irq_mask);
772
773         error = rmi_register_function(fn);
774         if (error)
775                 goto err_put_fn;
776
777         if (pdt->function_number == 0x01)
778                 data->f01_container = fn;
779
780         list_add_tail(&fn->node, &data->function_list);
781
782         return RMI_SCAN_CONTINUE;
783
784 err_put_fn:
785         put_device(&fn->dev);
786         return error;
787 }
788
789 int rmi_driver_suspend(struct rmi_device *rmi_dev)
790 {
791         int retval = 0;
792
793         retval = rmi_suspend_functions(rmi_dev);
794         if (retval)
795                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
796                         retval);
797
798         return retval;
799 }
800 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
801
802 int rmi_driver_resume(struct rmi_device *rmi_dev)
803 {
804         int retval;
805
806         retval = rmi_resume_functions(rmi_dev);
807         if (retval)
808                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
809                         retval);
810
811         return retval;
812 }
813 EXPORT_SYMBOL_GPL(rmi_driver_resume);
814
815 static int rmi_driver_remove(struct device *dev)
816 {
817         struct rmi_device *rmi_dev = to_rmi_device(dev);
818
819         rmi_free_function_list(rmi_dev);
820
821         return 0;
822 }
823
824 #ifdef CONFIG_OF
825 static int rmi_driver_of_probe(struct device *dev,
826                                 struct rmi_device_platform_data *pdata)
827 {
828         int retval;
829
830         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
831                                         "syna,reset-delay-ms", 1);
832         if (retval)
833                 return retval;
834
835         return 0;
836 }
837 #else
838 static inline int rmi_driver_of_probe(struct device *dev,
839                                         struct rmi_device_platform_data *pdata)
840 {
841         return -ENODEV;
842 }
843 #endif
844
845 static int rmi_driver_probe(struct device *dev)
846 {
847         struct rmi_driver *rmi_driver;
848         struct rmi_driver_data *data;
849         struct rmi_device_platform_data *pdata;
850         struct rmi_device *rmi_dev;
851         size_t size;
852         void *irq_memory;
853         int irq_count;
854         int retval;
855
856         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
857                         __func__);
858
859         if (!rmi_is_physical_device(dev)) {
860                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
861                 return -ENODEV;
862         }
863
864         rmi_dev = to_rmi_device(dev);
865         rmi_driver = to_rmi_driver(dev->driver);
866         rmi_dev->driver = rmi_driver;
867
868         pdata = rmi_get_platform_data(rmi_dev);
869
870         if (rmi_dev->xport->dev->of_node) {
871                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
872                 if (retval)
873                         return retval;
874         }
875
876         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
877         if (!data)
878                 return -ENOMEM;
879
880         INIT_LIST_HEAD(&data->function_list);
881         data->rmi_dev = rmi_dev;
882         dev_set_drvdata(&rmi_dev->dev, data);
883
884         /*
885          * Right before a warm boot, the sensor might be in some unusual state,
886          * such as F54 diagnostics, or F34 bootloader mode after a firmware
887          * or configuration update.  In order to clear the sensor to a known
888          * state and/or apply any updates, we issue a initial reset to clear any
889          * previous settings and force it into normal operation.
890          *
891          * We have to do this before actually building the PDT because
892          * the reflash updates (if any) might cause various registers to move
893          * around.
894          *
895          * For a number of reasons, this initial reset may fail to return
896          * within the specified time, but we'll still be able to bring up the
897          * driver normally after that failure.  This occurs most commonly in
898          * a cold boot situation (where then firmware takes longer to come up
899          * than from a warm boot) and the reset_delay_ms in the platform data
900          * has been set too short to accommodate that.  Since the sensor will
901          * eventually come up and be usable, we don't want to just fail here
902          * and leave the customer's device unusable.  So we warn them, and
903          * continue processing.
904          */
905         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
906         if (retval < 0)
907                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
908
909         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
910         if (retval < 0) {
911                 /*
912                  * we'll print out a warning and continue since
913                  * failure to get the PDT properties is not a cause to fail
914                  */
915                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
916                          PDT_PROPERTIES_LOCATION, retval);
917         }
918
919         /*
920          * We need to count the IRQs and allocate their storage before scanning
921          * the PDT and creating the function entries, because adding a new
922          * function can trigger events that result in the IRQ related storage
923          * being accessed.
924          */
925         rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
926         irq_count = 0;
927         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
928         if (retval < 0) {
929                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
930                 goto err;
931         }
932         data->irq_count = irq_count;
933         data->num_of_irq_regs = (data->irq_count + 7) / 8;
934
935         mutex_init(&data->irq_mutex);
936
937         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
938         irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
939         if (!irq_memory) {
940                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
941                 goto err;
942         }
943
944         data->irq_status        = irq_memory + size * 0;
945         data->fn_irq_bits       = irq_memory + size * 1;
946         data->current_irq_mask  = irq_memory + size * 2;
947         data->new_irq_mask      = irq_memory + size * 3;
948
949         if (rmi_dev->xport->input) {
950                 /*
951                  * The transport driver already has an input device.
952                  * In some cases it is preferable to reuse the transport
953                  * devices input device instead of creating a new one here.
954                  * One example is some HID touchpads report "pass-through"
955                  * button events are not reported by rmi registers.
956                  */
957                 data->input = rmi_dev->xport->input;
958         } else {
959                 data->input = devm_input_allocate_device(dev);
960                 if (!data->input) {
961                         dev_err(dev, "%s: Failed to allocate input device.\n",
962                                 __func__);
963                         retval = -ENOMEM;
964                         goto err_destroy_functions;
965                 }
966                 rmi_driver_set_input_params(rmi_dev, data->input);
967                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
968                                                 "%s/input0", dev_name(dev));
969         }
970
971         irq_count = 0;
972         rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
973         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
974         if (retval < 0) {
975                 dev_err(dev, "Function creation failed with code %d.\n",
976                         retval);
977                 goto err_destroy_functions;
978         }
979
980         if (!data->f01_container) {
981                 dev_err(dev, "Missing F01 container!\n");
982                 retval = -EINVAL;
983                 goto err_destroy_functions;
984         }
985
986         retval = rmi_read_block(rmi_dev,
987                                 data->f01_container->fd.control_base_addr + 1,
988                                 data->current_irq_mask, data->num_of_irq_regs);
989         if (retval < 0) {
990                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
991                         __func__);
992                 goto err_destroy_functions;
993         }
994
995         if (data->input) {
996                 rmi_driver_set_input_name(rmi_dev, data->input);
997                 if (!rmi_dev->xport->input) {
998                         if (input_register_device(data->input)) {
999                                 dev_err(dev, "%s: Failed to register input device.\n",
1000                                         __func__);
1001                                 goto err_destroy_functions;
1002                         }
1003                 }
1004         }
1005
1006         if (data->f01_container->dev.driver)
1007                 /* Driver already bound, so enable ATTN now. */
1008                 return enable_sensor(rmi_dev);
1009
1010         return 0;
1011
1012 err_destroy_functions:
1013         rmi_free_function_list(rmi_dev);
1014 err:
1015         return retval < 0 ? retval : 0;
1016 }
1017
1018 static struct rmi_driver rmi_physical_driver = {
1019         .driver = {
1020                 .owner  = THIS_MODULE,
1021                 .name   = "rmi4_physical",
1022                 .bus    = &rmi_bus_type,
1023                 .probe = rmi_driver_probe,
1024                 .remove = rmi_driver_remove,
1025         },
1026         .reset_handler = rmi_driver_reset_handler,
1027         .clear_irq_bits = rmi_driver_clear_irq_bits,
1028         .set_irq_bits = rmi_driver_set_irq_bits,
1029         .set_input_params = rmi_driver_set_input_params,
1030 };
1031
1032 bool rmi_is_physical_driver(struct device_driver *drv)
1033 {
1034         return drv == &rmi_physical_driver.driver;
1035 }
1036
1037 int __init rmi_register_physical_driver(void)
1038 {
1039         int error;
1040
1041         error = driver_register(&rmi_physical_driver.driver);
1042         if (error) {
1043                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1044                        error);
1045                 return error;
1046         }
1047
1048         return 0;
1049 }
1050
1051 void __exit rmi_unregister_physical_driver(void)
1052 {
1053         driver_unregister(&rmi_physical_driver.driver);
1054 }