ACPI / scan: Add labels for PNP button devices
[sfrench/cifs-2.6.git] / drivers / input / rmi4 / rmi_driver.c
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/irqdomain.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
29
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
34
35 #define RMI_DEVICE_RESET_CMD    0x01
36 #define DEFAULT_RESET_DELAY_MS  100
37
38 void rmi_free_function_list(struct rmi_device *rmi_dev)
39 {
40         struct rmi_function *fn, *tmp;
41         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
42
43         rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
44
45         /* Doing it in the reverse order so F01 will be removed last */
46         list_for_each_entry_safe_reverse(fn, tmp,
47                                          &data->function_list, node) {
48                 list_del(&fn->node);
49                 rmi_unregister_function(fn);
50         }
51
52         devm_kfree(&rmi_dev->dev, data->irq_memory);
53         data->irq_memory = NULL;
54         data->irq_status = NULL;
55         data->fn_irq_bits = NULL;
56         data->current_irq_mask = NULL;
57         data->new_irq_mask = NULL;
58
59         data->f01_container = NULL;
60         data->f34_container = NULL;
61 }
62
63 static int reset_one_function(struct rmi_function *fn)
64 {
65         struct rmi_function_handler *fh;
66         int retval = 0;
67
68         if (!fn || !fn->dev.driver)
69                 return 0;
70
71         fh = to_rmi_function_handler(fn->dev.driver);
72         if (fh->reset) {
73                 retval = fh->reset(fn);
74                 if (retval < 0)
75                         dev_err(&fn->dev, "Reset failed with code %d.\n",
76                                 retval);
77         }
78
79         return retval;
80 }
81
82 static int configure_one_function(struct rmi_function *fn)
83 {
84         struct rmi_function_handler *fh;
85         int retval = 0;
86
87         if (!fn || !fn->dev.driver)
88                 return 0;
89
90         fh = to_rmi_function_handler(fn->dev.driver);
91         if (fh->config) {
92                 retval = fh->config(fn);
93                 if (retval < 0)
94                         dev_err(&fn->dev, "Config failed with code %d.\n",
95                                 retval);
96         }
97
98         return retval;
99 }
100
101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
102 {
103         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104         struct rmi_function *entry;
105         int retval;
106
107         list_for_each_entry(entry, &data->function_list, node) {
108                 retval = reset_one_function(entry);
109                 if (retval < 0)
110                         return retval;
111         }
112
113         return 0;
114 }
115
116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
117 {
118         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119         struct rmi_function *entry;
120         int retval;
121
122         list_for_each_entry(entry, &data->function_list, node) {
123                 retval = configure_one_function(entry);
124                 if (retval < 0)
125                         return retval;
126         }
127
128         return 0;
129 }
130
131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
132 {
133         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
134         struct device *dev = &rmi_dev->dev;
135         int i;
136         int error;
137
138         if (!data)
139                 return 0;
140
141         if (!data->attn_data.data) {
142                 error = rmi_read_block(rmi_dev,
143                                 data->f01_container->fd.data_base_addr + 1,
144                                 data->irq_status, data->num_of_irq_regs);
145                 if (error < 0) {
146                         dev_err(dev, "Failed to read irqs, code=%d\n", error);
147                         return error;
148                 }
149         }
150
151         mutex_lock(&data->irq_mutex);
152         bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
153                data->irq_count);
154         /*
155          * At this point, irq_status has all bits that are set in the
156          * interrupt status register and are enabled.
157          */
158         mutex_unlock(&data->irq_mutex);
159
160         for_each_set_bit(i, data->irq_status, data->irq_count)
161                 handle_nested_irq(irq_find_mapping(data->irqdomain, i));
162
163         if (data->input)
164                 input_sync(data->input);
165
166         return 0;
167 }
168
169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
170                        void *data, size_t size)
171 {
172         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
173         struct rmi4_attn_data attn_data;
174         void *fifo_data;
175
176         if (!drvdata->enabled)
177                 return;
178
179         fifo_data = kmemdup(data, size, GFP_ATOMIC);
180         if (!fifo_data)
181                 return;
182
183         attn_data.irq_status = irq_status;
184         attn_data.size = size;
185         attn_data.data = fifo_data;
186
187         kfifo_put(&drvdata->attn_fifo, attn_data);
188 }
189 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
190
191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
192 {
193         struct rmi_device *rmi_dev = dev_id;
194         struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
195         struct rmi4_attn_data attn_data = {0};
196         int ret, count;
197
198         count = kfifo_get(&drvdata->attn_fifo, &attn_data);
199         if (count) {
200                 *(drvdata->irq_status) = attn_data.irq_status;
201                 drvdata->attn_data = attn_data;
202         }
203
204         ret = rmi_process_interrupt_requests(rmi_dev);
205         if (ret)
206                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
207                         "Failed to process interrupt request: %d\n", ret);
208
209         if (count) {
210                 kfree(attn_data.data);
211                 attn_data.data = NULL;
212         }
213
214         if (!kfifo_is_empty(&drvdata->attn_fifo))
215                 return rmi_irq_fn(irq, dev_id);
216
217         return IRQ_HANDLED;
218 }
219
220 static int rmi_irq_init(struct rmi_device *rmi_dev)
221 {
222         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
223         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
224         int irq_flags = irq_get_trigger_type(pdata->irq);
225         int ret;
226
227         if (!irq_flags)
228                 irq_flags = IRQF_TRIGGER_LOW;
229
230         ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
231                                         rmi_irq_fn, irq_flags | IRQF_ONESHOT,
232                                         dev_driver_string(rmi_dev->xport->dev),
233                                         rmi_dev);
234         if (ret < 0) {
235                 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
236                         pdata->irq);
237
238                 return ret;
239         }
240
241         data->enabled = true;
242
243         return 0;
244 }
245
246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
247 {
248         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
249         struct rmi_function *entry;
250
251         list_for_each_entry(entry, &data->function_list, node) {
252                 if (entry->fd.function_number == number)
253                         return entry;
254         }
255
256         return NULL;
257 }
258
259 static int suspend_one_function(struct rmi_function *fn)
260 {
261         struct rmi_function_handler *fh;
262         int retval = 0;
263
264         if (!fn || !fn->dev.driver)
265                 return 0;
266
267         fh = to_rmi_function_handler(fn->dev.driver);
268         if (fh->suspend) {
269                 retval = fh->suspend(fn);
270                 if (retval < 0)
271                         dev_err(&fn->dev, "Suspend failed with code %d.\n",
272                                 retval);
273         }
274
275         return retval;
276 }
277
278 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
279 {
280         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
281         struct rmi_function *entry;
282         int retval;
283
284         list_for_each_entry(entry, &data->function_list, node) {
285                 retval = suspend_one_function(entry);
286                 if (retval < 0)
287                         return retval;
288         }
289
290         return 0;
291 }
292
293 static int resume_one_function(struct rmi_function *fn)
294 {
295         struct rmi_function_handler *fh;
296         int retval = 0;
297
298         if (!fn || !fn->dev.driver)
299                 return 0;
300
301         fh = to_rmi_function_handler(fn->dev.driver);
302         if (fh->resume) {
303                 retval = fh->resume(fn);
304                 if (retval < 0)
305                         dev_err(&fn->dev, "Resume failed with code %d.\n",
306                                 retval);
307         }
308
309         return retval;
310 }
311
312 static int rmi_resume_functions(struct rmi_device *rmi_dev)
313 {
314         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
315         struct rmi_function *entry;
316         int retval;
317
318         list_for_each_entry(entry, &data->function_list, node) {
319                 retval = resume_one_function(entry);
320                 if (retval < 0)
321                         return retval;
322         }
323
324         return 0;
325 }
326
327 int rmi_enable_sensor(struct rmi_device *rmi_dev)
328 {
329         int retval = 0;
330
331         retval = rmi_driver_process_config_requests(rmi_dev);
332         if (retval < 0)
333                 return retval;
334
335         return rmi_process_interrupt_requests(rmi_dev);
336 }
337
338 /**
339  * rmi_driver_set_input_params - set input device id and other data.
340  *
341  * @rmi_dev: Pointer to an RMI device
342  * @input: Pointer to input device
343  *
344  */
345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
346                                 struct input_dev *input)
347 {
348         input->name = SYNAPTICS_INPUT_DEVICE_NAME;
349         input->id.vendor  = SYNAPTICS_VENDOR_ID;
350         input->id.bustype = BUS_RMI;
351         return 0;
352 }
353
354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
355                                 struct input_dev *input)
356 {
357         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
358         const char *device_name = rmi_f01_get_product_ID(data->f01_container);
359         char *name;
360
361         name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
362                               "Synaptics %s", device_name);
363         if (!name)
364                 return;
365
366         input->name = name;
367 }
368
369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
370                                    unsigned long *mask)
371 {
372         int error = 0;
373         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
374         struct device *dev = &rmi_dev->dev;
375
376         mutex_lock(&data->irq_mutex);
377         bitmap_or(data->new_irq_mask,
378                   data->current_irq_mask, mask, data->irq_count);
379
380         error = rmi_write_block(rmi_dev,
381                         data->f01_container->fd.control_base_addr + 1,
382                         data->new_irq_mask, data->num_of_irq_regs);
383         if (error < 0) {
384                 dev_err(dev, "%s: Failed to change enabled interrupts!",
385                                                         __func__);
386                 goto error_unlock;
387         }
388         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
389                     data->num_of_irq_regs);
390
391 error_unlock:
392         mutex_unlock(&data->irq_mutex);
393         return error;
394 }
395
396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
397                                      unsigned long *mask)
398 {
399         int error = 0;
400         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
401         struct device *dev = &rmi_dev->dev;
402
403         mutex_lock(&data->irq_mutex);
404         bitmap_andnot(data->new_irq_mask,
405                   data->current_irq_mask, mask, data->irq_count);
406
407         error = rmi_write_block(rmi_dev,
408                         data->f01_container->fd.control_base_addr + 1,
409                         data->new_irq_mask, data->num_of_irq_regs);
410         if (error < 0) {
411                 dev_err(dev, "%s: Failed to change enabled interrupts!",
412                                                         __func__);
413                 goto error_unlock;
414         }
415         bitmap_copy(data->current_irq_mask, data->new_irq_mask,
416                     data->num_of_irq_regs);
417
418 error_unlock:
419         mutex_unlock(&data->irq_mutex);
420         return error;
421 }
422
423 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
424 {
425         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
426         int error;
427
428         /*
429          * Can get called before the driver is fully ready to deal with
430          * this situation.
431          */
432         if (!data || !data->f01_container) {
433                 dev_warn(&rmi_dev->dev,
434                          "Not ready to handle reset yet!\n");
435                 return 0;
436         }
437
438         error = rmi_read_block(rmi_dev,
439                                data->f01_container->fd.control_base_addr + 1,
440                                data->current_irq_mask, data->num_of_irq_regs);
441         if (error < 0) {
442                 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
443                         __func__);
444                 return error;
445         }
446
447         error = rmi_driver_process_reset_requests(rmi_dev);
448         if (error < 0)
449                 return error;
450
451         error = rmi_driver_process_config_requests(rmi_dev);
452         if (error < 0)
453                 return error;
454
455         return 0;
456 }
457
458 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
459                               struct pdt_entry *entry, u16 pdt_address)
460 {
461         u8 buf[RMI_PDT_ENTRY_SIZE];
462         int error;
463
464         error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
465         if (error) {
466                 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
467                                 pdt_address, error);
468                 return error;
469         }
470
471         entry->page_start = pdt_address & RMI4_PAGE_MASK;
472         entry->query_base_addr = buf[0];
473         entry->command_base_addr = buf[1];
474         entry->control_base_addr = buf[2];
475         entry->data_base_addr = buf[3];
476         entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
477         entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
478         entry->function_number = buf[5];
479
480         return 0;
481 }
482
483 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
484                                       struct rmi_function_descriptor *fd)
485 {
486         fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
487         fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
488         fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
489         fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
490         fd->function_number = pdt->function_number;
491         fd->interrupt_source_count = pdt->interrupt_source_count;
492         fd->function_version = pdt->function_version;
493 }
494
495 #define RMI_SCAN_CONTINUE       0
496 #define RMI_SCAN_DONE           1
497
498 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
499                              int page,
500                              int *empty_pages,
501                              void *ctx,
502                              int (*callback)(struct rmi_device *rmi_dev,
503                                              void *ctx,
504                                              const struct pdt_entry *entry))
505 {
506         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
507         struct pdt_entry pdt_entry;
508         u16 page_start = RMI4_PAGE_SIZE * page;
509         u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
510         u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
511         u16 addr;
512         int error;
513         int retval;
514
515         for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
516                 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
517                 if (error)
518                         return error;
519
520                 if (RMI4_END_OF_PDT(pdt_entry.function_number))
521                         break;
522
523                 retval = callback(rmi_dev, ctx, &pdt_entry);
524                 if (retval != RMI_SCAN_CONTINUE)
525                         return retval;
526         }
527
528         /*
529          * Count number of empty PDT pages. If a gap of two pages
530          * or more is found, stop scanning.
531          */
532         if (addr == pdt_start)
533                 ++*empty_pages;
534         else
535                 *empty_pages = 0;
536
537         return (data->bootloader_mode || *empty_pages >= 2) ?
538                                         RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
539 }
540
541 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
542                  int (*callback)(struct rmi_device *rmi_dev,
543                  void *ctx, const struct pdt_entry *entry))
544 {
545         int page;
546         int empty_pages = 0;
547         int retval = RMI_SCAN_DONE;
548
549         for (page = 0; page <= RMI4_MAX_PAGE; page++) {
550                 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
551                                            ctx, callback);
552                 if (retval != RMI_SCAN_CONTINUE)
553                         break;
554         }
555
556         return retval < 0 ? retval : 0;
557 }
558
559 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
560                                 struct rmi_register_descriptor *rdesc)
561 {
562         int ret;
563         u8 size_presence_reg;
564         u8 buf[35];
565         int presense_offset = 1;
566         u8 *struct_buf;
567         int reg;
568         int offset = 0;
569         int map_offset = 0;
570         int i;
571         int b;
572
573         /*
574          * The first register of the register descriptor is the size of
575          * the register descriptor's presense register.
576          */
577         ret = rmi_read(d, addr, &size_presence_reg);
578         if (ret)
579                 return ret;
580         ++addr;
581
582         if (size_presence_reg < 0 || size_presence_reg > 35)
583                 return -EIO;
584
585         memset(buf, 0, sizeof(buf));
586
587         /*
588          * The presence register contains the size of the register structure
589          * and a bitmap which identified which packet registers are present
590          * for this particular register type (ie query, control, or data).
591          */
592         ret = rmi_read_block(d, addr, buf, size_presence_reg);
593         if (ret)
594                 return ret;
595         ++addr;
596
597         if (buf[0] == 0) {
598                 presense_offset = 3;
599                 rdesc->struct_size = buf[1] | (buf[2] << 8);
600         } else {
601                 rdesc->struct_size = buf[0];
602         }
603
604         for (i = presense_offset; i < size_presence_reg; i++) {
605                 for (b = 0; b < 8; b++) {
606                         if (buf[i] & (0x1 << b))
607                                 bitmap_set(rdesc->presense_map, map_offset, 1);
608                         ++map_offset;
609                 }
610         }
611
612         rdesc->num_registers = bitmap_weight(rdesc->presense_map,
613                                                 RMI_REG_DESC_PRESENSE_BITS);
614
615         rdesc->registers = devm_kcalloc(&d->dev,
616                                         rdesc->num_registers,
617                                         sizeof(struct rmi_register_desc_item),
618                                         GFP_KERNEL);
619         if (!rdesc->registers)
620                 return -ENOMEM;
621
622         /*
623          * Allocate a temporary buffer to hold the register structure.
624          * I'm not using devm_kzalloc here since it will not be retained
625          * after exiting this function
626          */
627         struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
628         if (!struct_buf)
629                 return -ENOMEM;
630
631         /*
632          * The register structure contains information about every packet
633          * register of this type. This includes the size of the packet
634          * register and a bitmap of all subpackets contained in the packet
635          * register.
636          */
637         ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
638         if (ret)
639                 goto free_struct_buff;
640
641         reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
642         for (i = 0; i < rdesc->num_registers; i++) {
643                 struct rmi_register_desc_item *item = &rdesc->registers[i];
644                 int reg_size = struct_buf[offset];
645
646                 ++offset;
647                 if (reg_size == 0) {
648                         reg_size = struct_buf[offset] |
649                                         (struct_buf[offset + 1] << 8);
650                         offset += 2;
651                 }
652
653                 if (reg_size == 0) {
654                         reg_size = struct_buf[offset] |
655                                         (struct_buf[offset + 1] << 8) |
656                                         (struct_buf[offset + 2] << 16) |
657                                         (struct_buf[offset + 3] << 24);
658                         offset += 4;
659                 }
660
661                 item->reg = reg;
662                 item->reg_size = reg_size;
663
664                 map_offset = 0;
665
666                 do {
667                         for (b = 0; b < 7; b++) {
668                                 if (struct_buf[offset] & (0x1 << b))
669                                         bitmap_set(item->subpacket_map,
670                                                 map_offset, 1);
671                                 ++map_offset;
672                         }
673                 } while (struct_buf[offset++] & 0x80);
674
675                 item->num_subpackets = bitmap_weight(item->subpacket_map,
676                                                 RMI_REG_DESC_SUBPACKET_BITS);
677
678                 rmi_dbg(RMI_DEBUG_CORE, &d->dev,
679                         "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
680                         item->reg, item->reg_size, item->num_subpackets);
681
682                 reg = find_next_bit(rdesc->presense_map,
683                                 RMI_REG_DESC_PRESENSE_BITS, reg + 1);
684         }
685
686 free_struct_buff:
687         kfree(struct_buf);
688         return ret;
689 }
690
691 const struct rmi_register_desc_item *rmi_get_register_desc_item(
692                                 struct rmi_register_descriptor *rdesc, u16 reg)
693 {
694         const struct rmi_register_desc_item *item;
695         int i;
696
697         for (i = 0; i < rdesc->num_registers; i++) {
698                 item = &rdesc->registers[i];
699                 if (item->reg == reg)
700                         return item;
701         }
702
703         return NULL;
704 }
705
706 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
707 {
708         const struct rmi_register_desc_item *item;
709         int i;
710         size_t size = 0;
711
712         for (i = 0; i < rdesc->num_registers; i++) {
713                 item = &rdesc->registers[i];
714                 size += item->reg_size;
715         }
716         return size;
717 }
718
719 /* Compute the register offset relative to the base address */
720 int rmi_register_desc_calc_reg_offset(
721                 struct rmi_register_descriptor *rdesc, u16 reg)
722 {
723         const struct rmi_register_desc_item *item;
724         int offset = 0;
725         int i;
726
727         for (i = 0; i < rdesc->num_registers; i++) {
728                 item = &rdesc->registers[i];
729                 if (item->reg == reg)
730                         return offset;
731                 ++offset;
732         }
733         return -1;
734 }
735
736 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
737         u8 subpacket)
738 {
739         return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
740                                 subpacket) == subpacket;
741 }
742
743 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
744                                      const struct pdt_entry *pdt)
745 {
746         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
747         int ret;
748         u8 status;
749
750         if (pdt->function_number == 0x34 && pdt->function_version > 1) {
751                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
752                 if (ret) {
753                         dev_err(&rmi_dev->dev,
754                                 "Failed to read F34 status: %d.\n", ret);
755                         return ret;
756                 }
757
758                 if (status & BIT(7))
759                         data->bootloader_mode = true;
760         } else if (pdt->function_number == 0x01) {
761                 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
762                 if (ret) {
763                         dev_err(&rmi_dev->dev,
764                                 "Failed to read F01 status: %d.\n", ret);
765                         return ret;
766                 }
767
768                 if (status & BIT(6))
769                         data->bootloader_mode = true;
770         }
771
772         return 0;
773 }
774
775 static int rmi_count_irqs(struct rmi_device *rmi_dev,
776                          void *ctx, const struct pdt_entry *pdt)
777 {
778         int *irq_count = ctx;
779         int ret;
780
781         *irq_count += pdt->interrupt_source_count;
782
783         ret = rmi_check_bootloader_mode(rmi_dev, pdt);
784         if (ret < 0)
785                 return ret;
786
787         return RMI_SCAN_CONTINUE;
788 }
789
790 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
791                       const struct pdt_entry *pdt)
792 {
793         int error;
794
795         if (pdt->function_number == 0x01) {
796                 u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
797                 u8 cmd_buf = RMI_DEVICE_RESET_CMD;
798                 const struct rmi_device_platform_data *pdata =
799                                 rmi_get_platform_data(rmi_dev);
800
801                 if (rmi_dev->xport->ops->reset) {
802                         error = rmi_dev->xport->ops->reset(rmi_dev->xport,
803                                                                 cmd_addr);
804                         if (error)
805                                 return error;
806
807                         return RMI_SCAN_DONE;
808                 }
809
810                 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
811                 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
812                 if (error) {
813                         dev_err(&rmi_dev->dev,
814                                 "Initial reset failed. Code = %d.\n", error);
815                         return error;
816                 }
817
818                 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
819
820                 return RMI_SCAN_DONE;
821         }
822
823         /* F01 should always be on page 0. If we don't find it there, fail. */
824         return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
825 }
826
827 static int rmi_create_function(struct rmi_device *rmi_dev,
828                                void *ctx, const struct pdt_entry *pdt)
829 {
830         struct device *dev = &rmi_dev->dev;
831         struct rmi_driver_data *data = dev_get_drvdata(dev);
832         int *current_irq_count = ctx;
833         struct rmi_function *fn;
834         int i;
835         int error;
836
837         rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
838                         pdt->function_number);
839
840         fn = kzalloc(sizeof(struct rmi_function) +
841                         BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
842                      GFP_KERNEL);
843         if (!fn) {
844                 dev_err(dev, "Failed to allocate memory for F%02X\n",
845                         pdt->function_number);
846                 return -ENOMEM;
847         }
848
849         INIT_LIST_HEAD(&fn->node);
850         rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
851
852         fn->rmi_dev = rmi_dev;
853
854         fn->num_of_irqs = pdt->interrupt_source_count;
855         fn->irq_pos = *current_irq_count;
856         *current_irq_count += fn->num_of_irqs;
857
858         for (i = 0; i < fn->num_of_irqs; i++)
859                 set_bit(fn->irq_pos + i, fn->irq_mask);
860
861         error = rmi_register_function(fn);
862         if (error)
863                 goto err_put_fn;
864
865         if (pdt->function_number == 0x01)
866                 data->f01_container = fn;
867         else if (pdt->function_number == 0x34)
868                 data->f34_container = fn;
869
870         list_add_tail(&fn->node, &data->function_list);
871
872         return RMI_SCAN_CONTINUE;
873
874 err_put_fn:
875         put_device(&fn->dev);
876         return error;
877 }
878
879 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
880 {
881         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
882         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
883         int irq = pdata->irq;
884         int irq_flags;
885         int retval;
886
887         mutex_lock(&data->enabled_mutex);
888
889         if (data->enabled)
890                 goto out;
891
892         enable_irq(irq);
893         data->enabled = true;
894         if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
895                 retval = disable_irq_wake(irq);
896                 if (retval)
897                         dev_warn(&rmi_dev->dev,
898                                  "Failed to disable irq for wake: %d\n",
899                                  retval);
900         }
901
902         /*
903          * Call rmi_process_interrupt_requests() after enabling irq,
904          * otherwise we may lose interrupt on edge-triggered systems.
905          */
906         irq_flags = irq_get_trigger_type(pdata->irq);
907         if (irq_flags & IRQ_TYPE_EDGE_BOTH)
908                 rmi_process_interrupt_requests(rmi_dev);
909
910 out:
911         mutex_unlock(&data->enabled_mutex);
912 }
913
914 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
915 {
916         struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
917         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
918         struct rmi4_attn_data attn_data = {0};
919         int irq = pdata->irq;
920         int retval, count;
921
922         mutex_lock(&data->enabled_mutex);
923
924         if (!data->enabled)
925                 goto out;
926
927         data->enabled = false;
928         disable_irq(irq);
929         if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
930                 retval = enable_irq_wake(irq);
931                 if (retval)
932                         dev_warn(&rmi_dev->dev,
933                                  "Failed to enable irq for wake: %d\n",
934                                  retval);
935         }
936
937         /* make sure the fifo is clean */
938         while (!kfifo_is_empty(&data->attn_fifo)) {
939                 count = kfifo_get(&data->attn_fifo, &attn_data);
940                 if (count)
941                         kfree(attn_data.data);
942         }
943
944 out:
945         mutex_unlock(&data->enabled_mutex);
946 }
947
948 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
949 {
950         int retval;
951
952         retval = rmi_suspend_functions(rmi_dev);
953         if (retval)
954                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
955                         retval);
956
957         rmi_disable_irq(rmi_dev, enable_wake);
958         return retval;
959 }
960 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
961
962 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
963 {
964         int retval;
965
966         rmi_enable_irq(rmi_dev, clear_wake);
967
968         retval = rmi_resume_functions(rmi_dev);
969         if (retval)
970                 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
971                         retval);
972
973         return retval;
974 }
975 EXPORT_SYMBOL_GPL(rmi_driver_resume);
976
977 static int rmi_driver_remove(struct device *dev)
978 {
979         struct rmi_device *rmi_dev = to_rmi_device(dev);
980         struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
981
982         rmi_disable_irq(rmi_dev, false);
983
984         irq_domain_remove(data->irqdomain);
985         data->irqdomain = NULL;
986
987         rmi_f34_remove_sysfs(rmi_dev);
988         rmi_free_function_list(rmi_dev);
989
990         return 0;
991 }
992
993 #ifdef CONFIG_OF
994 static int rmi_driver_of_probe(struct device *dev,
995                                 struct rmi_device_platform_data *pdata)
996 {
997         int retval;
998
999         retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1000                                         "syna,reset-delay-ms", 1);
1001         if (retval)
1002                 return retval;
1003
1004         return 0;
1005 }
1006 #else
1007 static inline int rmi_driver_of_probe(struct device *dev,
1008                                         struct rmi_device_platform_data *pdata)
1009 {
1010         return -ENODEV;
1011 }
1012 #endif
1013
1014 int rmi_probe_interrupts(struct rmi_driver_data *data)
1015 {
1016         struct rmi_device *rmi_dev = data->rmi_dev;
1017         struct device *dev = &rmi_dev->dev;
1018         struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1019         int irq_count = 0;
1020         size_t size;
1021         int retval;
1022
1023         /*
1024          * We need to count the IRQs and allocate their storage before scanning
1025          * the PDT and creating the function entries, because adding a new
1026          * function can trigger events that result in the IRQ related storage
1027          * being accessed.
1028          */
1029         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1030         data->bootloader_mode = false;
1031
1032         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1033         if (retval < 0) {
1034                 dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1035                 return retval;
1036         }
1037
1038         if (data->bootloader_mode)
1039                 dev_warn(dev, "Device in bootloader mode.\n");
1040
1041         /* Allocate and register a linear revmap irq_domain */
1042         data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1043                                                    &irq_domain_simple_ops,
1044                                                    data);
1045         if (!data->irqdomain) {
1046                 dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1047                 return -ENOMEM;
1048         }
1049
1050         data->irq_count = irq_count;
1051         data->num_of_irq_regs = (data->irq_count + 7) / 8;
1052
1053         size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1054         data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1055         if (!data->irq_memory) {
1056                 dev_err(dev, "Failed to allocate memory for irq masks.\n");
1057                 return -ENOMEM;
1058         }
1059
1060         data->irq_status        = data->irq_memory + size * 0;
1061         data->fn_irq_bits       = data->irq_memory + size * 1;
1062         data->current_irq_mask  = data->irq_memory + size * 2;
1063         data->new_irq_mask      = data->irq_memory + size * 3;
1064
1065         return retval;
1066 }
1067
1068 int rmi_init_functions(struct rmi_driver_data *data)
1069 {
1070         struct rmi_device *rmi_dev = data->rmi_dev;
1071         struct device *dev = &rmi_dev->dev;
1072         int irq_count = 0;
1073         int retval;
1074
1075         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1076         retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1077         if (retval < 0) {
1078                 dev_err(dev, "Function creation failed with code %d.\n",
1079                         retval);
1080                 goto err_destroy_functions;
1081         }
1082
1083         if (!data->f01_container) {
1084                 dev_err(dev, "Missing F01 container!\n");
1085                 retval = -EINVAL;
1086                 goto err_destroy_functions;
1087         }
1088
1089         retval = rmi_read_block(rmi_dev,
1090                                 data->f01_container->fd.control_base_addr + 1,
1091                                 data->current_irq_mask, data->num_of_irq_regs);
1092         if (retval < 0) {
1093                 dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1094                         __func__);
1095                 goto err_destroy_functions;
1096         }
1097
1098         return 0;
1099
1100 err_destroy_functions:
1101         rmi_free_function_list(rmi_dev);
1102         return retval;
1103 }
1104
1105 static int rmi_driver_probe(struct device *dev)
1106 {
1107         struct rmi_driver *rmi_driver;
1108         struct rmi_driver_data *data;
1109         struct rmi_device_platform_data *pdata;
1110         struct rmi_device *rmi_dev;
1111         int retval;
1112
1113         rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1114                         __func__);
1115
1116         if (!rmi_is_physical_device(dev)) {
1117                 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1118                 return -ENODEV;
1119         }
1120
1121         rmi_dev = to_rmi_device(dev);
1122         rmi_driver = to_rmi_driver(dev->driver);
1123         rmi_dev->driver = rmi_driver;
1124
1125         pdata = rmi_get_platform_data(rmi_dev);
1126
1127         if (rmi_dev->xport->dev->of_node) {
1128                 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1129                 if (retval)
1130                         return retval;
1131         }
1132
1133         data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1134         if (!data)
1135                 return -ENOMEM;
1136
1137         INIT_LIST_HEAD(&data->function_list);
1138         data->rmi_dev = rmi_dev;
1139         dev_set_drvdata(&rmi_dev->dev, data);
1140
1141         /*
1142          * Right before a warm boot, the sensor might be in some unusual state,
1143          * such as F54 diagnostics, or F34 bootloader mode after a firmware
1144          * or configuration update.  In order to clear the sensor to a known
1145          * state and/or apply any updates, we issue a initial reset to clear any
1146          * previous settings and force it into normal operation.
1147          *
1148          * We have to do this before actually building the PDT because
1149          * the reflash updates (if any) might cause various registers to move
1150          * around.
1151          *
1152          * For a number of reasons, this initial reset may fail to return
1153          * within the specified time, but we'll still be able to bring up the
1154          * driver normally after that failure.  This occurs most commonly in
1155          * a cold boot situation (where then firmware takes longer to come up
1156          * than from a warm boot) and the reset_delay_ms in the platform data
1157          * has been set too short to accommodate that.  Since the sensor will
1158          * eventually come up and be usable, we don't want to just fail here
1159          * and leave the customer's device unusable.  So we warn them, and
1160          * continue processing.
1161          */
1162         retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1163         if (retval < 0)
1164                 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1165
1166         retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1167         if (retval < 0) {
1168                 /*
1169                  * we'll print out a warning and continue since
1170                  * failure to get the PDT properties is not a cause to fail
1171                  */
1172                 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1173                          PDT_PROPERTIES_LOCATION, retval);
1174         }
1175
1176         mutex_init(&data->irq_mutex);
1177         mutex_init(&data->enabled_mutex);
1178
1179         retval = rmi_probe_interrupts(data);
1180         if (retval)
1181                 goto err;
1182
1183         if (rmi_dev->xport->input) {
1184                 /*
1185                  * The transport driver already has an input device.
1186                  * In some cases it is preferable to reuse the transport
1187                  * devices input device instead of creating a new one here.
1188                  * One example is some HID touchpads report "pass-through"
1189                  * button events are not reported by rmi registers.
1190                  */
1191                 data->input = rmi_dev->xport->input;
1192         } else {
1193                 data->input = devm_input_allocate_device(dev);
1194                 if (!data->input) {
1195                         dev_err(dev, "%s: Failed to allocate input device.\n",
1196                                 __func__);
1197                         retval = -ENOMEM;
1198                         goto err;
1199                 }
1200                 rmi_driver_set_input_params(rmi_dev, data->input);
1201                 data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1202                                                 "%s/input0", dev_name(dev));
1203         }
1204
1205         retval = rmi_init_functions(data);
1206         if (retval)
1207                 goto err;
1208
1209         retval = rmi_f34_create_sysfs(rmi_dev);
1210         if (retval)
1211                 goto err;
1212
1213         if (data->input) {
1214                 rmi_driver_set_input_name(rmi_dev, data->input);
1215                 if (!rmi_dev->xport->input) {
1216                         if (input_register_device(data->input)) {
1217                                 dev_err(dev, "%s: Failed to register input device.\n",
1218                                         __func__);
1219                                 goto err_destroy_functions;
1220                         }
1221                 }
1222         }
1223
1224         retval = rmi_irq_init(rmi_dev);
1225         if (retval < 0)
1226                 goto err_destroy_functions;
1227
1228         if (data->f01_container->dev.driver) {
1229                 /* Driver already bound, so enable ATTN now. */
1230                 retval = rmi_enable_sensor(rmi_dev);
1231                 if (retval)
1232                         goto err_disable_irq;
1233         }
1234
1235         return 0;
1236
1237 err_disable_irq:
1238         rmi_disable_irq(rmi_dev, false);
1239 err_destroy_functions:
1240         rmi_free_function_list(rmi_dev);
1241 err:
1242         return retval;
1243 }
1244
1245 static struct rmi_driver rmi_physical_driver = {
1246         .driver = {
1247                 .owner  = THIS_MODULE,
1248                 .name   = "rmi4_physical",
1249                 .bus    = &rmi_bus_type,
1250                 .probe = rmi_driver_probe,
1251                 .remove = rmi_driver_remove,
1252         },
1253         .reset_handler = rmi_driver_reset_handler,
1254         .clear_irq_bits = rmi_driver_clear_irq_bits,
1255         .set_irq_bits = rmi_driver_set_irq_bits,
1256         .set_input_params = rmi_driver_set_input_params,
1257 };
1258
1259 bool rmi_is_physical_driver(struct device_driver *drv)
1260 {
1261         return drv == &rmi_physical_driver.driver;
1262 }
1263
1264 int __init rmi_register_physical_driver(void)
1265 {
1266         int error;
1267
1268         error = driver_register(&rmi_physical_driver.driver);
1269         if (error) {
1270                 pr_err("%s: driver register failed, code=%d.\n", __func__,
1271                        error);
1272                 return error;
1273         }
1274
1275         return 0;
1276 }
1277
1278 void __exit rmi_unregister_physical_driver(void)
1279 {
1280         driver_unregister(&rmi_physical_driver.driver);
1281 }