Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[sfrench/cifs-2.6.git] / drivers / infiniband / sw / rdmavt / qp.c
1 /*
2  * Copyright(c) 2016 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/hash.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/vmalloc.h>
52 #include <linux/slab.h>
53 #include <rdma/ib_verbs.h>
54 #include <rdma/ib_hdrs.h>
55 #include <rdma/opa_addr.h>
56 #include <rdma/uverbs_ioctl.h>
57 #include "qp.h"
58 #include "vt.h"
59 #include "trace.h"
60
61 static void rvt_rc_timeout(struct timer_list *t);
62
63 /*
64  * Convert the AETH RNR timeout code into the number of microseconds.
65  */
66 static const u32 ib_rvt_rnr_table[32] = {
67         655360, /* 00: 655.36 */
68         10,     /* 01:    .01 */
69         20,     /* 02     .02 */
70         30,     /* 03:    .03 */
71         40,     /* 04:    .04 */
72         60,     /* 05:    .06 */
73         80,     /* 06:    .08 */
74         120,    /* 07:    .12 */
75         160,    /* 08:    .16 */
76         240,    /* 09:    .24 */
77         320,    /* 0A:    .32 */
78         480,    /* 0B:    .48 */
79         640,    /* 0C:    .64 */
80         960,    /* 0D:    .96 */
81         1280,   /* 0E:   1.28 */
82         1920,   /* 0F:   1.92 */
83         2560,   /* 10:   2.56 */
84         3840,   /* 11:   3.84 */
85         5120,   /* 12:   5.12 */
86         7680,   /* 13:   7.68 */
87         10240,  /* 14:  10.24 */
88         15360,  /* 15:  15.36 */
89         20480,  /* 16:  20.48 */
90         30720,  /* 17:  30.72 */
91         40960,  /* 18:  40.96 */
92         61440,  /* 19:  61.44 */
93         81920,  /* 1A:  81.92 */
94         122880, /* 1B: 122.88 */
95         163840, /* 1C: 163.84 */
96         245760, /* 1D: 245.76 */
97         327680, /* 1E: 327.68 */
98         491520  /* 1F: 491.52 */
99 };
100
101 /*
102  * Note that it is OK to post send work requests in the SQE and ERR
103  * states; rvt_do_send() will process them and generate error
104  * completions as per IB 1.2 C10-96.
105  */
106 const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
107         [IB_QPS_RESET] = 0,
108         [IB_QPS_INIT] = RVT_POST_RECV_OK,
109         [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
110         [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
111             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
112             RVT_PROCESS_NEXT_SEND_OK,
113         [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
114             RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
115         [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
116             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
117         [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
118             RVT_POST_SEND_OK | RVT_FLUSH_SEND,
119 };
120 EXPORT_SYMBOL(ib_rvt_state_ops);
121
122 /* platform specific: return the last level cache (llc) size, in KiB */
123 static int rvt_wss_llc_size(void)
124 {
125         /* assume that the boot CPU value is universal for all CPUs */
126         return boot_cpu_data.x86_cache_size;
127 }
128
129 /* platform specific: cacheless copy */
130 static void cacheless_memcpy(void *dst, void *src, size_t n)
131 {
132         /*
133          * Use the only available X64 cacheless copy.  Add a __user cast
134          * to quiet sparse.  The src agument is already in the kernel so
135          * there are no security issues.  The extra fault recovery machinery
136          * is not invoked.
137          */
138         __copy_user_nocache(dst, (void __user *)src, n, 0);
139 }
140
141 void rvt_wss_exit(struct rvt_dev_info *rdi)
142 {
143         struct rvt_wss *wss = rdi->wss;
144
145         if (!wss)
146                 return;
147
148         /* coded to handle partially initialized and repeat callers */
149         kfree(wss->entries);
150         wss->entries = NULL;
151         kfree(rdi->wss);
152         rdi->wss = NULL;
153 }
154
155 /**
156  * rvt_wss_init - Init wss data structures
157  *
158  * Return: 0 on success
159  */
160 int rvt_wss_init(struct rvt_dev_info *rdi)
161 {
162         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
163         unsigned int wss_threshold = rdi->dparms.wss_threshold;
164         unsigned int wss_clean_period = rdi->dparms.wss_clean_period;
165         long llc_size;
166         long llc_bits;
167         long table_size;
168         long table_bits;
169         struct rvt_wss *wss;
170         int node = rdi->dparms.node;
171
172         if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) {
173                 rdi->wss = NULL;
174                 return 0;
175         }
176
177         rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node);
178         if (!rdi->wss)
179                 return -ENOMEM;
180         wss = rdi->wss;
181
182         /* check for a valid percent range - default to 80 if none or invalid */
183         if (wss_threshold < 1 || wss_threshold > 100)
184                 wss_threshold = 80;
185
186         /* reject a wildly large period */
187         if (wss_clean_period > 1000000)
188                 wss_clean_period = 256;
189
190         /* reject a zero period */
191         if (wss_clean_period == 0)
192                 wss_clean_period = 1;
193
194         /*
195          * Calculate the table size - the next power of 2 larger than the
196          * LLC size.  LLC size is in KiB.
197          */
198         llc_size = rvt_wss_llc_size() * 1024;
199         table_size = roundup_pow_of_two(llc_size);
200
201         /* one bit per page in rounded up table */
202         llc_bits = llc_size / PAGE_SIZE;
203         table_bits = table_size / PAGE_SIZE;
204         wss->pages_mask = table_bits - 1;
205         wss->num_entries = table_bits / BITS_PER_LONG;
206
207         wss->threshold = (llc_bits * wss_threshold) / 100;
208         if (wss->threshold == 0)
209                 wss->threshold = 1;
210
211         wss->clean_period = wss_clean_period;
212         atomic_set(&wss->clean_counter, wss_clean_period);
213
214         wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries),
215                                     GFP_KERNEL, node);
216         if (!wss->entries) {
217                 rvt_wss_exit(rdi);
218                 return -ENOMEM;
219         }
220
221         return 0;
222 }
223
224 /*
225  * Advance the clean counter.  When the clean period has expired,
226  * clean an entry.
227  *
228  * This is implemented in atomics to avoid locking.  Because multiple
229  * variables are involved, it can be racy which can lead to slightly
230  * inaccurate information.  Since this is only a heuristic, this is
231  * OK.  Any innaccuracies will clean themselves out as the counter
232  * advances.  That said, it is unlikely the entry clean operation will
233  * race - the next possible racer will not start until the next clean
234  * period.
235  *
236  * The clean counter is implemented as a decrement to zero.  When zero
237  * is reached an entry is cleaned.
238  */
239 static void wss_advance_clean_counter(struct rvt_wss *wss)
240 {
241         int entry;
242         int weight;
243         unsigned long bits;
244
245         /* become the cleaner if we decrement the counter to zero */
246         if (atomic_dec_and_test(&wss->clean_counter)) {
247                 /*
248                  * Set, not add, the clean period.  This avoids an issue
249                  * where the counter could decrement below the clean period.
250                  * Doing a set can result in lost decrements, slowing the
251                  * clean advance.  Since this a heuristic, this possible
252                  * slowdown is OK.
253                  *
254                  * An alternative is to loop, advancing the counter by a
255                  * clean period until the result is > 0. However, this could
256                  * lead to several threads keeping another in the clean loop.
257                  * This could be mitigated by limiting the number of times
258                  * we stay in the loop.
259                  */
260                 atomic_set(&wss->clean_counter, wss->clean_period);
261
262                 /*
263                  * Uniquely grab the entry to clean and move to next.
264                  * The current entry is always the lower bits of
265                  * wss.clean_entry.  The table size, wss.num_entries,
266                  * is always a power-of-2.
267                  */
268                 entry = (atomic_inc_return(&wss->clean_entry) - 1)
269                         & (wss->num_entries - 1);
270
271                 /* clear the entry and count the bits */
272                 bits = xchg(&wss->entries[entry], 0);
273                 weight = hweight64((u64)bits);
274                 /* only adjust the contended total count if needed */
275                 if (weight)
276                         atomic_sub(weight, &wss->total_count);
277         }
278 }
279
280 /*
281  * Insert the given address into the working set array.
282  */
283 static void wss_insert(struct rvt_wss *wss, void *address)
284 {
285         u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask;
286         u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
287         u32 nr = page & (BITS_PER_LONG - 1);
288
289         if (!test_and_set_bit(nr, &wss->entries[entry]))
290                 atomic_inc(&wss->total_count);
291
292         wss_advance_clean_counter(wss);
293 }
294
295 /*
296  * Is the working set larger than the threshold?
297  */
298 static inline bool wss_exceeds_threshold(struct rvt_wss *wss)
299 {
300         return atomic_read(&wss->total_count) >= wss->threshold;
301 }
302
303 static void get_map_page(struct rvt_qpn_table *qpt,
304                          struct rvt_qpn_map *map)
305 {
306         unsigned long page = get_zeroed_page(GFP_KERNEL);
307
308         /*
309          * Free the page if someone raced with us installing it.
310          */
311
312         spin_lock(&qpt->lock);
313         if (map->page)
314                 free_page(page);
315         else
316                 map->page = (void *)page;
317         spin_unlock(&qpt->lock);
318 }
319
320 /**
321  * init_qpn_table - initialize the QP number table for a device
322  * @qpt: the QPN table
323  */
324 static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
325 {
326         u32 offset, i;
327         struct rvt_qpn_map *map;
328         int ret = 0;
329
330         if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
331                 return -EINVAL;
332
333         spin_lock_init(&qpt->lock);
334
335         qpt->last = rdi->dparms.qpn_start;
336         qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
337
338         /*
339          * Drivers may want some QPs beyond what we need for verbs let them use
340          * our qpn table. No need for two. Lets go ahead and mark the bitmaps
341          * for those. The reserved range must be *after* the range which verbs
342          * will pick from.
343          */
344
345         /* Figure out number of bit maps needed before reserved range */
346         qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
347
348         /* This should always be zero */
349         offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
350
351         /* Starting with the first reserved bit map */
352         map = &qpt->map[qpt->nmaps];
353
354         rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
355                     rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
356         for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
357                 if (!map->page) {
358                         get_map_page(qpt, map);
359                         if (!map->page) {
360                                 ret = -ENOMEM;
361                                 break;
362                         }
363                 }
364                 set_bit(offset, map->page);
365                 offset++;
366                 if (offset == RVT_BITS_PER_PAGE) {
367                         /* next page */
368                         qpt->nmaps++;
369                         map++;
370                         offset = 0;
371                 }
372         }
373         return ret;
374 }
375
376 /**
377  * free_qpn_table - free the QP number table for a device
378  * @qpt: the QPN table
379  */
380 static void free_qpn_table(struct rvt_qpn_table *qpt)
381 {
382         int i;
383
384         for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
385                 free_page((unsigned long)qpt->map[i].page);
386 }
387
388 /**
389  * rvt_driver_qp_init - Init driver qp resources
390  * @rdi: rvt dev strucutre
391  *
392  * Return: 0 on success
393  */
394 int rvt_driver_qp_init(struct rvt_dev_info *rdi)
395 {
396         int i;
397         int ret = -ENOMEM;
398
399         if (!rdi->dparms.qp_table_size)
400                 return -EINVAL;
401
402         /*
403          * If driver is not doing any QP allocation then make sure it is
404          * providing the necessary QP functions.
405          */
406         if (!rdi->driver_f.free_all_qps ||
407             !rdi->driver_f.qp_priv_alloc ||
408             !rdi->driver_f.qp_priv_free ||
409             !rdi->driver_f.notify_qp_reset ||
410             !rdi->driver_f.notify_restart_rc)
411                 return -EINVAL;
412
413         /* allocate parent object */
414         rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
415                                    rdi->dparms.node);
416         if (!rdi->qp_dev)
417                 return -ENOMEM;
418
419         /* allocate hash table */
420         rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
421         rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
422         rdi->qp_dev->qp_table =
423                 kmalloc_array_node(rdi->qp_dev->qp_table_size,
424                              sizeof(*rdi->qp_dev->qp_table),
425                              GFP_KERNEL, rdi->dparms.node);
426         if (!rdi->qp_dev->qp_table)
427                 goto no_qp_table;
428
429         for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
430                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
431
432         spin_lock_init(&rdi->qp_dev->qpt_lock);
433
434         /* initialize qpn map */
435         if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
436                 goto fail_table;
437
438         spin_lock_init(&rdi->n_qps_lock);
439
440         return 0;
441
442 fail_table:
443         kfree(rdi->qp_dev->qp_table);
444         free_qpn_table(&rdi->qp_dev->qpn_table);
445
446 no_qp_table:
447         kfree(rdi->qp_dev);
448
449         return ret;
450 }
451
452 /**
453  * free_all_qps - check for QPs still in use
454  * @rdi: rvt device info structure
455  *
456  * There should not be any QPs still in use.
457  * Free memory for table.
458  */
459 static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
460 {
461         unsigned long flags;
462         struct rvt_qp *qp;
463         unsigned n, qp_inuse = 0;
464         spinlock_t *ql; /* work around too long line below */
465
466         if (rdi->driver_f.free_all_qps)
467                 qp_inuse = rdi->driver_f.free_all_qps(rdi);
468
469         qp_inuse += rvt_mcast_tree_empty(rdi);
470
471         if (!rdi->qp_dev)
472                 return qp_inuse;
473
474         ql = &rdi->qp_dev->qpt_lock;
475         spin_lock_irqsave(ql, flags);
476         for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
477                 qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
478                                                lockdep_is_held(ql));
479                 RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
480
481                 for (; qp; qp = rcu_dereference_protected(qp->next,
482                                                           lockdep_is_held(ql)))
483                         qp_inuse++;
484         }
485         spin_unlock_irqrestore(ql, flags);
486         synchronize_rcu();
487         return qp_inuse;
488 }
489
490 /**
491  * rvt_qp_exit - clean up qps on device exit
492  * @rdi: rvt dev structure
493  *
494  * Check for qp leaks and free resources.
495  */
496 void rvt_qp_exit(struct rvt_dev_info *rdi)
497 {
498         u32 qps_inuse = rvt_free_all_qps(rdi);
499
500         if (qps_inuse)
501                 rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
502                            qps_inuse);
503         if (!rdi->qp_dev)
504                 return;
505
506         kfree(rdi->qp_dev->qp_table);
507         free_qpn_table(&rdi->qp_dev->qpn_table);
508         kfree(rdi->qp_dev);
509 }
510
511 static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
512                               struct rvt_qpn_map *map, unsigned off)
513 {
514         return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
515 }
516
517 /**
518  * alloc_qpn - Allocate the next available qpn or zero/one for QP type
519  *             IB_QPT_SMI/IB_QPT_GSI
520  * @rdi: rvt device info structure
521  * @qpt: queue pair number table pointer
522  * @port_num: IB port number, 1 based, comes from core
523  *
524  * Return: The queue pair number
525  */
526 static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
527                      enum ib_qp_type type, u8 port_num)
528 {
529         u32 i, offset, max_scan, qpn;
530         struct rvt_qpn_map *map;
531         u32 ret;
532
533         if (rdi->driver_f.alloc_qpn)
534                 return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
535
536         if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
537                 unsigned n;
538
539                 ret = type == IB_QPT_GSI;
540                 n = 1 << (ret + 2 * (port_num - 1));
541                 spin_lock(&qpt->lock);
542                 if (qpt->flags & n)
543                         ret = -EINVAL;
544                 else
545                         qpt->flags |= n;
546                 spin_unlock(&qpt->lock);
547                 goto bail;
548         }
549
550         qpn = qpt->last + qpt->incr;
551         if (qpn >= RVT_QPN_MAX)
552                 qpn = qpt->incr | ((qpt->last & 1) ^ 1);
553         /* offset carries bit 0 */
554         offset = qpn & RVT_BITS_PER_PAGE_MASK;
555         map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
556         max_scan = qpt->nmaps - !offset;
557         for (i = 0;;) {
558                 if (unlikely(!map->page)) {
559                         get_map_page(qpt, map);
560                         if (unlikely(!map->page))
561                                 break;
562                 }
563                 do {
564                         if (!test_and_set_bit(offset, map->page)) {
565                                 qpt->last = qpn;
566                                 ret = qpn;
567                                 goto bail;
568                         }
569                         offset += qpt->incr;
570                         /*
571                          * This qpn might be bogus if offset >= BITS_PER_PAGE.
572                          * That is OK.   It gets re-assigned below
573                          */
574                         qpn = mk_qpn(qpt, map, offset);
575                 } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
576                 /*
577                  * In order to keep the number of pages allocated to a
578                  * minimum, we scan the all existing pages before increasing
579                  * the size of the bitmap table.
580                  */
581                 if (++i > max_scan) {
582                         if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
583                                 break;
584                         map = &qpt->map[qpt->nmaps++];
585                         /* start at incr with current bit 0 */
586                         offset = qpt->incr | (offset & 1);
587                 } else if (map < &qpt->map[qpt->nmaps]) {
588                         ++map;
589                         /* start at incr with current bit 0 */
590                         offset = qpt->incr | (offset & 1);
591                 } else {
592                         map = &qpt->map[0];
593                         /* wrap to first map page, invert bit 0 */
594                         offset = qpt->incr | ((offset & 1) ^ 1);
595                 }
596                 /* there can be no set bits in low-order QoS bits */
597                 WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
598                 qpn = mk_qpn(qpt, map, offset);
599         }
600
601         ret = -ENOMEM;
602
603 bail:
604         return ret;
605 }
606
607 /**
608  * rvt_clear_mr_refs - Drop help mr refs
609  * @qp: rvt qp data structure
610  * @clr_sends: If shoudl clear send side or not
611  */
612 static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
613 {
614         unsigned n;
615         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
616
617         if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
618                 rvt_put_ss(&qp->s_rdma_read_sge);
619
620         rvt_put_ss(&qp->r_sge);
621
622         if (clr_sends) {
623                 while (qp->s_last != qp->s_head) {
624                         struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
625
626                         rvt_put_swqe(wqe);
627
628                         if (qp->ibqp.qp_type == IB_QPT_UD ||
629                             qp->ibqp.qp_type == IB_QPT_SMI ||
630                             qp->ibqp.qp_type == IB_QPT_GSI)
631                                 atomic_dec(&ibah_to_rvtah(
632                                                 wqe->ud_wr.ah)->refcount);
633                         if (++qp->s_last >= qp->s_size)
634                                 qp->s_last = 0;
635                         smp_wmb(); /* see qp_set_savail */
636                 }
637                 if (qp->s_rdma_mr) {
638                         rvt_put_mr(qp->s_rdma_mr);
639                         qp->s_rdma_mr = NULL;
640                 }
641         }
642
643         for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
644                 struct rvt_ack_entry *e = &qp->s_ack_queue[n];
645
646                 if (e->rdma_sge.mr) {
647                         rvt_put_mr(e->rdma_sge.mr);
648                         e->rdma_sge.mr = NULL;
649                 }
650         }
651 }
652
653 /**
654  * rvt_swqe_has_lkey - return true if lkey is used by swqe
655  * @wqe - the send wqe
656  * @lkey - the lkey
657  *
658  * Test the swqe for using lkey
659  */
660 static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
661 {
662         int i;
663
664         for (i = 0; i < wqe->wr.num_sge; i++) {
665                 struct rvt_sge *sge = &wqe->sg_list[i];
666
667                 if (rvt_mr_has_lkey(sge->mr, lkey))
668                         return true;
669         }
670         return false;
671 }
672
673 /**
674  * rvt_qp_sends_has_lkey - return true is qp sends use lkey
675  * @qp - the rvt_qp
676  * @lkey - the lkey
677  */
678 static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
679 {
680         u32 s_last = qp->s_last;
681
682         while (s_last != qp->s_head) {
683                 struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
684
685                 if (rvt_swqe_has_lkey(wqe, lkey))
686                         return true;
687
688                 if (++s_last >= qp->s_size)
689                         s_last = 0;
690         }
691         if (qp->s_rdma_mr)
692                 if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
693                         return true;
694         return false;
695 }
696
697 /**
698  * rvt_qp_acks_has_lkey - return true if acks have lkey
699  * @qp - the qp
700  * @lkey - the lkey
701  */
702 static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
703 {
704         int i;
705         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
706
707         for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
708                 struct rvt_ack_entry *e = &qp->s_ack_queue[i];
709
710                 if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
711                         return true;
712         }
713         return false;
714 }
715
716 /*
717  * rvt_qp_mr_clean - clean up remote ops for lkey
718  * @qp - the qp
719  * @lkey - the lkey that is being de-registered
720  *
721  * This routine checks if the lkey is being used by
722  * the qp.
723  *
724  * If so, the qp is put into an error state to elminate
725  * any references from the qp.
726  */
727 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
728 {
729         bool lastwqe = false;
730
731         if (qp->ibqp.qp_type == IB_QPT_SMI ||
732             qp->ibqp.qp_type == IB_QPT_GSI)
733                 /* avoid special QPs */
734                 return;
735         spin_lock_irq(&qp->r_lock);
736         spin_lock(&qp->s_hlock);
737         spin_lock(&qp->s_lock);
738
739         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
740                 goto check_lwqe;
741
742         if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
743             rvt_qp_sends_has_lkey(qp, lkey) ||
744             rvt_qp_acks_has_lkey(qp, lkey))
745                 lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
746 check_lwqe:
747         spin_unlock(&qp->s_lock);
748         spin_unlock(&qp->s_hlock);
749         spin_unlock_irq(&qp->r_lock);
750         if (lastwqe) {
751                 struct ib_event ev;
752
753                 ev.device = qp->ibqp.device;
754                 ev.element.qp = &qp->ibqp;
755                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
756                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
757         }
758 }
759
760 /**
761  * rvt_remove_qp - remove qp form table
762  * @rdi: rvt dev struct
763  * @qp: qp to remove
764  *
765  * Remove the QP from the table so it can't be found asynchronously by
766  * the receive routine.
767  */
768 static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
769 {
770         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
771         u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
772         unsigned long flags;
773         int removed = 1;
774
775         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
776
777         if (rcu_dereference_protected(rvp->qp[0],
778                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
779                 RCU_INIT_POINTER(rvp->qp[0], NULL);
780         } else if (rcu_dereference_protected(rvp->qp[1],
781                         lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
782                 RCU_INIT_POINTER(rvp->qp[1], NULL);
783         } else {
784                 struct rvt_qp *q;
785                 struct rvt_qp __rcu **qpp;
786
787                 removed = 0;
788                 qpp = &rdi->qp_dev->qp_table[n];
789                 for (; (q = rcu_dereference_protected(*qpp,
790                         lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
791                         qpp = &q->next) {
792                         if (q == qp) {
793                                 RCU_INIT_POINTER(*qpp,
794                                      rcu_dereference_protected(qp->next,
795                                      lockdep_is_held(&rdi->qp_dev->qpt_lock)));
796                                 removed = 1;
797                                 trace_rvt_qpremove(qp, n);
798                                 break;
799                         }
800                 }
801         }
802
803         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
804         if (removed) {
805                 synchronize_rcu();
806                 rvt_put_qp(qp);
807         }
808 }
809
810 /**
811  * rvt_init_qp - initialize the QP state to the reset state
812  * @qp: the QP to init or reinit
813  * @type: the QP type
814  *
815  * This function is called from both rvt_create_qp() and
816  * rvt_reset_qp().   The difference is that the reset
817  * patch the necessary locks to protect against concurent
818  * access.
819  */
820 static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
821                         enum ib_qp_type type)
822 {
823         qp->remote_qpn = 0;
824         qp->qkey = 0;
825         qp->qp_access_flags = 0;
826         qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
827         qp->s_hdrwords = 0;
828         qp->s_wqe = NULL;
829         qp->s_draining = 0;
830         qp->s_next_psn = 0;
831         qp->s_last_psn = 0;
832         qp->s_sending_psn = 0;
833         qp->s_sending_hpsn = 0;
834         qp->s_psn = 0;
835         qp->r_psn = 0;
836         qp->r_msn = 0;
837         if (type == IB_QPT_RC) {
838                 qp->s_state = IB_OPCODE_RC_SEND_LAST;
839                 qp->r_state = IB_OPCODE_RC_SEND_LAST;
840         } else {
841                 qp->s_state = IB_OPCODE_UC_SEND_LAST;
842                 qp->r_state = IB_OPCODE_UC_SEND_LAST;
843         }
844         qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
845         qp->r_nak_state = 0;
846         qp->r_aflags = 0;
847         qp->r_flags = 0;
848         qp->s_head = 0;
849         qp->s_tail = 0;
850         qp->s_cur = 0;
851         qp->s_acked = 0;
852         qp->s_last = 0;
853         qp->s_ssn = 1;
854         qp->s_lsn = 0;
855         qp->s_mig_state = IB_MIG_MIGRATED;
856         qp->r_head_ack_queue = 0;
857         qp->s_tail_ack_queue = 0;
858         qp->s_acked_ack_queue = 0;
859         qp->s_num_rd_atomic = 0;
860         if (qp->r_rq.wq) {
861                 qp->r_rq.wq->head = 0;
862                 qp->r_rq.wq->tail = 0;
863         }
864         qp->r_sge.num_sge = 0;
865         atomic_set(&qp->s_reserved_used, 0);
866 }
867
868 /**
869  * rvt_reset_qp - initialize the QP state to the reset state
870  * @qp: the QP to reset
871  * @type: the QP type
872  *
873  * r_lock, s_hlock, and s_lock are required to be held by the caller
874  */
875 static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
876                          enum ib_qp_type type)
877         __must_hold(&qp->s_lock)
878         __must_hold(&qp->s_hlock)
879         __must_hold(&qp->r_lock)
880 {
881         lockdep_assert_held(&qp->r_lock);
882         lockdep_assert_held(&qp->s_hlock);
883         lockdep_assert_held(&qp->s_lock);
884         if (qp->state != IB_QPS_RESET) {
885                 qp->state = IB_QPS_RESET;
886
887                 /* Let drivers flush their waitlist */
888                 rdi->driver_f.flush_qp_waiters(qp);
889                 rvt_stop_rc_timers(qp);
890                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
891                 spin_unlock(&qp->s_lock);
892                 spin_unlock(&qp->s_hlock);
893                 spin_unlock_irq(&qp->r_lock);
894
895                 /* Stop the send queue and the retry timer */
896                 rdi->driver_f.stop_send_queue(qp);
897                 rvt_del_timers_sync(qp);
898                 /* Wait for things to stop */
899                 rdi->driver_f.quiesce_qp(qp);
900
901                 /* take qp out the hash and wait for it to be unused */
902                 rvt_remove_qp(rdi, qp);
903
904                 /* grab the lock b/c it was locked at call time */
905                 spin_lock_irq(&qp->r_lock);
906                 spin_lock(&qp->s_hlock);
907                 spin_lock(&qp->s_lock);
908
909                 rvt_clear_mr_refs(qp, 1);
910                 /*
911                  * Let the driver do any tear down or re-init it needs to for
912                  * a qp that has been reset
913                  */
914                 rdi->driver_f.notify_qp_reset(qp);
915         }
916         rvt_init_qp(rdi, qp, type);
917         lockdep_assert_held(&qp->r_lock);
918         lockdep_assert_held(&qp->s_hlock);
919         lockdep_assert_held(&qp->s_lock);
920 }
921
922 /** rvt_free_qpn - Free a qpn from the bit map
923  * @qpt: QP table
924  * @qpn: queue pair number to free
925  */
926 static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
927 {
928         struct rvt_qpn_map *map;
929
930         map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
931         if (map->page)
932                 clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
933 }
934
935 /**
936  * rvt_create_qp - create a queue pair for a device
937  * @ibpd: the protection domain who's device we create the queue pair for
938  * @init_attr: the attributes of the queue pair
939  * @udata: user data for libibverbs.so
940  *
941  * Queue pair creation is mostly an rvt issue. However, drivers have their own
942  * unique idea of what queue pair numbers mean. For instance there is a reserved
943  * range for PSM.
944  *
945  * Return: the queue pair on success, otherwise returns an errno.
946  *
947  * Called by the ib_create_qp() core verbs function.
948  */
949 struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
950                             struct ib_qp_init_attr *init_attr,
951                             struct ib_udata *udata)
952 {
953         struct rvt_qp *qp;
954         int err;
955         struct rvt_swqe *swq = NULL;
956         size_t sz;
957         size_t sg_list_sz;
958         struct ib_qp *ret = ERR_PTR(-ENOMEM);
959         struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
960         struct rvt_ucontext *ucontext = rdma_udata_to_drv_context(
961                 udata, struct rvt_ucontext, ibucontext);
962         void *priv = NULL;
963         size_t sqsize;
964
965         if (!rdi)
966                 return ERR_PTR(-EINVAL);
967
968         if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
969             init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
970             init_attr->create_flags)
971                 return ERR_PTR(-EINVAL);
972
973         /* Check receive queue parameters if no SRQ is specified. */
974         if (!init_attr->srq) {
975                 if (init_attr->cap.max_recv_sge >
976                     rdi->dparms.props.max_recv_sge ||
977                     init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
978                         return ERR_PTR(-EINVAL);
979
980                 if (init_attr->cap.max_send_sge +
981                     init_attr->cap.max_send_wr +
982                     init_attr->cap.max_recv_sge +
983                     init_attr->cap.max_recv_wr == 0)
984                         return ERR_PTR(-EINVAL);
985         }
986         sqsize =
987                 init_attr->cap.max_send_wr + 1 +
988                 rdi->dparms.reserved_operations;
989         switch (init_attr->qp_type) {
990         case IB_QPT_SMI:
991         case IB_QPT_GSI:
992                 if (init_attr->port_num == 0 ||
993                     init_attr->port_num > ibpd->device->phys_port_cnt)
994                         return ERR_PTR(-EINVAL);
995                 /* fall through */
996         case IB_QPT_UC:
997         case IB_QPT_RC:
998         case IB_QPT_UD:
999                 sz = sizeof(struct rvt_sge) *
1000                         init_attr->cap.max_send_sge +
1001                         sizeof(struct rvt_swqe);
1002                 swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
1003                 if (!swq)
1004                         return ERR_PTR(-ENOMEM);
1005
1006                 sz = sizeof(*qp);
1007                 sg_list_sz = 0;
1008                 if (init_attr->srq) {
1009                         struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
1010
1011                         if (srq->rq.max_sge > 1)
1012                                 sg_list_sz = sizeof(*qp->r_sg_list) *
1013                                         (srq->rq.max_sge - 1);
1014                 } else if (init_attr->cap.max_recv_sge > 1)
1015                         sg_list_sz = sizeof(*qp->r_sg_list) *
1016                                 (init_attr->cap.max_recv_sge - 1);
1017                 qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
1018                                   rdi->dparms.node);
1019                 if (!qp)
1020                         goto bail_swq;
1021
1022                 RCU_INIT_POINTER(qp->next, NULL);
1023                 if (init_attr->qp_type == IB_QPT_RC) {
1024                         qp->s_ack_queue =
1025                                 kcalloc_node(rvt_max_atomic(rdi),
1026                                              sizeof(*qp->s_ack_queue),
1027                                              GFP_KERNEL,
1028                                              rdi->dparms.node);
1029                         if (!qp->s_ack_queue)
1030                                 goto bail_qp;
1031                 }
1032                 /* initialize timers needed for rc qp */
1033                 timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
1034                 hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
1035                              HRTIMER_MODE_REL);
1036                 qp->s_rnr_timer.function = rvt_rc_rnr_retry;
1037
1038                 /*
1039                  * Driver needs to set up it's private QP structure and do any
1040                  * initialization that is needed.
1041                  */
1042                 priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
1043                 if (IS_ERR(priv)) {
1044                         ret = priv;
1045                         goto bail_qp;
1046                 }
1047                 qp->priv = priv;
1048                 qp->timeout_jiffies =
1049                         usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1050                                 1000UL);
1051                 if (init_attr->srq) {
1052                         sz = 0;
1053                 } else {
1054                         qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
1055                         qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
1056                         sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
1057                                 sizeof(struct rvt_rwqe);
1058                         if (udata)
1059                                 qp->r_rq.wq = vmalloc_user(
1060                                                 sizeof(struct rvt_rwq) +
1061                                                 qp->r_rq.size * sz);
1062                         else
1063                                 qp->r_rq.wq = vzalloc_node(
1064                                                 sizeof(struct rvt_rwq) +
1065                                                 qp->r_rq.size * sz,
1066                                                 rdi->dparms.node);
1067                         if (!qp->r_rq.wq)
1068                                 goto bail_driver_priv;
1069                 }
1070
1071                 /*
1072                  * ib_create_qp() will initialize qp->ibqp
1073                  * except for qp->ibqp.qp_num.
1074                  */
1075                 spin_lock_init(&qp->r_lock);
1076                 spin_lock_init(&qp->s_hlock);
1077                 spin_lock_init(&qp->s_lock);
1078                 spin_lock_init(&qp->r_rq.lock);
1079                 atomic_set(&qp->refcount, 0);
1080                 atomic_set(&qp->local_ops_pending, 0);
1081                 init_waitqueue_head(&qp->wait);
1082                 INIT_LIST_HEAD(&qp->rspwait);
1083                 qp->state = IB_QPS_RESET;
1084                 qp->s_wq = swq;
1085                 qp->s_size = sqsize;
1086                 qp->s_avail = init_attr->cap.max_send_wr;
1087                 qp->s_max_sge = init_attr->cap.max_send_sge;
1088                 if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
1089                         qp->s_flags = RVT_S_SIGNAL_REQ_WR;
1090
1091                 err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
1092                                 init_attr->qp_type,
1093                                 init_attr->port_num);
1094                 if (err < 0) {
1095                         ret = ERR_PTR(err);
1096                         goto bail_rq_wq;
1097                 }
1098                 qp->ibqp.qp_num = err;
1099                 qp->port_num = init_attr->port_num;
1100                 rvt_init_qp(rdi, qp, init_attr->qp_type);
1101                 if (rdi->driver_f.qp_priv_init) {
1102                         err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr);
1103                         if (err) {
1104                                 ret = ERR_PTR(err);
1105                                 goto bail_rq_wq;
1106                         }
1107                 }
1108                 break;
1109
1110         default:
1111                 /* Don't support raw QPs */
1112                 return ERR_PTR(-EINVAL);
1113         }
1114
1115         init_attr->cap.max_inline_data = 0;
1116
1117         /*
1118          * Return the address of the RWQ as the offset to mmap.
1119          * See rvt_mmap() for details.
1120          */
1121         if (udata && udata->outlen >= sizeof(__u64)) {
1122                 if (!qp->r_rq.wq) {
1123                         __u64 offset = 0;
1124
1125                         err = ib_copy_to_udata(udata, &offset,
1126                                                sizeof(offset));
1127                         if (err) {
1128                                 ret = ERR_PTR(err);
1129                                 goto bail_qpn;
1130                         }
1131                 } else {
1132                         u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
1133
1134                         qp->ip = rvt_create_mmap_info(rdi, s,
1135                                                       &ucontext->ibucontext,
1136                                                       qp->r_rq.wq);
1137                         if (!qp->ip) {
1138                                 ret = ERR_PTR(-ENOMEM);
1139                                 goto bail_qpn;
1140                         }
1141
1142                         err = ib_copy_to_udata(udata, &qp->ip->offset,
1143                                                sizeof(qp->ip->offset));
1144                         if (err) {
1145                                 ret = ERR_PTR(err);
1146                                 goto bail_ip;
1147                         }
1148                 }
1149                 qp->pid = current->pid;
1150         }
1151
1152         spin_lock(&rdi->n_qps_lock);
1153         if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
1154                 spin_unlock(&rdi->n_qps_lock);
1155                 ret = ERR_PTR(-ENOMEM);
1156                 goto bail_ip;
1157         }
1158
1159         rdi->n_qps_allocated++;
1160         /*
1161          * Maintain a busy_jiffies variable that will be added to the timeout
1162          * period in mod_retry_timer and add_retry_timer. This busy jiffies
1163          * is scaled by the number of rc qps created for the device to reduce
1164          * the number of timeouts occurring when there is a large number of
1165          * qps. busy_jiffies is incremented every rc qp scaling interval.
1166          * The scaling interval is selected based on extensive performance
1167          * evaluation of targeted workloads.
1168          */
1169         if (init_attr->qp_type == IB_QPT_RC) {
1170                 rdi->n_rc_qps++;
1171                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1172         }
1173         spin_unlock(&rdi->n_qps_lock);
1174
1175         if (qp->ip) {
1176                 spin_lock_irq(&rdi->pending_lock);
1177                 list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
1178                 spin_unlock_irq(&rdi->pending_lock);
1179         }
1180
1181         ret = &qp->ibqp;
1182
1183         /*
1184          * We have our QP and its good, now keep track of what types of opcodes
1185          * can be processed on this QP. We do this by keeping track of what the
1186          * 3 high order bits of the opcode are.
1187          */
1188         switch (init_attr->qp_type) {
1189         case IB_QPT_SMI:
1190         case IB_QPT_GSI:
1191         case IB_QPT_UD:
1192                 qp->allowed_ops = IB_OPCODE_UD;
1193                 break;
1194         case IB_QPT_RC:
1195                 qp->allowed_ops = IB_OPCODE_RC;
1196                 break;
1197         case IB_QPT_UC:
1198                 qp->allowed_ops = IB_OPCODE_UC;
1199                 break;
1200         default:
1201                 ret = ERR_PTR(-EINVAL);
1202                 goto bail_ip;
1203         }
1204
1205         return ret;
1206
1207 bail_ip:
1208         if (qp->ip)
1209                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1210
1211 bail_qpn:
1212         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1213
1214 bail_rq_wq:
1215         if (!qp->ip)
1216                 vfree(qp->r_rq.wq);
1217
1218 bail_driver_priv:
1219         rdi->driver_f.qp_priv_free(rdi, qp);
1220
1221 bail_qp:
1222         kfree(qp->s_ack_queue);
1223         kfree(qp);
1224
1225 bail_swq:
1226         vfree(swq);
1227
1228         return ret;
1229 }
1230
1231 /**
1232  * rvt_error_qp - put a QP into the error state
1233  * @qp: the QP to put into the error state
1234  * @err: the receive completion error to signal if a RWQE is active
1235  *
1236  * Flushes both send and receive work queues.
1237  *
1238  * Return: true if last WQE event should be generated.
1239  * The QP r_lock and s_lock should be held and interrupts disabled.
1240  * If we are already in error state, just return.
1241  */
1242 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
1243 {
1244         struct ib_wc wc;
1245         int ret = 0;
1246         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1247
1248         lockdep_assert_held(&qp->r_lock);
1249         lockdep_assert_held(&qp->s_lock);
1250         if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
1251                 goto bail;
1252
1253         qp->state = IB_QPS_ERR;
1254
1255         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
1256                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
1257                 del_timer(&qp->s_timer);
1258         }
1259
1260         if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
1261                 qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
1262
1263         rdi->driver_f.notify_error_qp(qp);
1264
1265         /* Schedule the sending tasklet to drain the send work queue. */
1266         if (READ_ONCE(qp->s_last) != qp->s_head)
1267                 rdi->driver_f.schedule_send(qp);
1268
1269         rvt_clear_mr_refs(qp, 0);
1270
1271         memset(&wc, 0, sizeof(wc));
1272         wc.qp = &qp->ibqp;
1273         wc.opcode = IB_WC_RECV;
1274
1275         if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
1276                 wc.wr_id = qp->r_wr_id;
1277                 wc.status = err;
1278                 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1279         }
1280         wc.status = IB_WC_WR_FLUSH_ERR;
1281
1282         if (qp->r_rq.wq) {
1283                 struct rvt_rwq *wq;
1284                 u32 head;
1285                 u32 tail;
1286
1287                 spin_lock(&qp->r_rq.lock);
1288
1289                 /* sanity check pointers before trusting them */
1290                 wq = qp->r_rq.wq;
1291                 head = wq->head;
1292                 if (head >= qp->r_rq.size)
1293                         head = 0;
1294                 tail = wq->tail;
1295                 if (tail >= qp->r_rq.size)
1296                         tail = 0;
1297                 while (tail != head) {
1298                         wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
1299                         if (++tail >= qp->r_rq.size)
1300                                 tail = 0;
1301                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1302                 }
1303                 wq->tail = tail;
1304
1305                 spin_unlock(&qp->r_rq.lock);
1306         } else if (qp->ibqp.event_handler) {
1307                 ret = 1;
1308         }
1309
1310 bail:
1311         return ret;
1312 }
1313 EXPORT_SYMBOL(rvt_error_qp);
1314
1315 /*
1316  * Put the QP into the hash table.
1317  * The hash table holds a reference to the QP.
1318  */
1319 static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
1320 {
1321         struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
1322         unsigned long flags;
1323
1324         rvt_get_qp(qp);
1325         spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
1326
1327         if (qp->ibqp.qp_num <= 1) {
1328                 rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
1329         } else {
1330                 u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
1331
1332                 qp->next = rdi->qp_dev->qp_table[n];
1333                 rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
1334                 trace_rvt_qpinsert(qp, n);
1335         }
1336
1337         spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
1338 }
1339
1340 /**
1341  * rvt_modify_qp - modify the attributes of a queue pair
1342  * @ibqp: the queue pair who's attributes we're modifying
1343  * @attr: the new attributes
1344  * @attr_mask: the mask of attributes to modify
1345  * @udata: user data for libibverbs.so
1346  *
1347  * Return: 0 on success, otherwise returns an errno.
1348  */
1349 int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1350                   int attr_mask, struct ib_udata *udata)
1351 {
1352         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1353         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1354         enum ib_qp_state cur_state, new_state;
1355         struct ib_event ev;
1356         int lastwqe = 0;
1357         int mig = 0;
1358         int pmtu = 0; /* for gcc warning only */
1359         int opa_ah;
1360
1361         spin_lock_irq(&qp->r_lock);
1362         spin_lock(&qp->s_hlock);
1363         spin_lock(&qp->s_lock);
1364
1365         cur_state = attr_mask & IB_QP_CUR_STATE ?
1366                 attr->cur_qp_state : qp->state;
1367         new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
1368         opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
1369
1370         if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
1371                                 attr_mask))
1372                 goto inval;
1373
1374         if (rdi->driver_f.check_modify_qp &&
1375             rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
1376                 goto inval;
1377
1378         if (attr_mask & IB_QP_AV) {
1379                 if (opa_ah) {
1380                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1381                                 opa_get_mcast_base(OPA_MCAST_NR))
1382                                 goto inval;
1383                 } else {
1384                         if (rdma_ah_get_dlid(&attr->ah_attr) >=
1385                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1386                                 goto inval;
1387                 }
1388
1389                 if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
1390                         goto inval;
1391         }
1392
1393         if (attr_mask & IB_QP_ALT_PATH) {
1394                 if (opa_ah) {
1395                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1396                                 opa_get_mcast_base(OPA_MCAST_NR))
1397                                 goto inval;
1398                 } else {
1399                         if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
1400                                 be16_to_cpu(IB_MULTICAST_LID_BASE))
1401                                 goto inval;
1402                 }
1403
1404                 if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
1405                         goto inval;
1406                 if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
1407                         goto inval;
1408         }
1409
1410         if (attr_mask & IB_QP_PKEY_INDEX)
1411                 if (attr->pkey_index >= rvt_get_npkeys(rdi))
1412                         goto inval;
1413
1414         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1415                 if (attr->min_rnr_timer > 31)
1416                         goto inval;
1417
1418         if (attr_mask & IB_QP_PORT)
1419                 if (qp->ibqp.qp_type == IB_QPT_SMI ||
1420                     qp->ibqp.qp_type == IB_QPT_GSI ||
1421                     attr->port_num == 0 ||
1422                     attr->port_num > ibqp->device->phys_port_cnt)
1423                         goto inval;
1424
1425         if (attr_mask & IB_QP_DEST_QPN)
1426                 if (attr->dest_qp_num > RVT_QPN_MASK)
1427                         goto inval;
1428
1429         if (attr_mask & IB_QP_RETRY_CNT)
1430                 if (attr->retry_cnt > 7)
1431                         goto inval;
1432
1433         if (attr_mask & IB_QP_RNR_RETRY)
1434                 if (attr->rnr_retry > 7)
1435                         goto inval;
1436
1437         /*
1438          * Don't allow invalid path_mtu values.  OK to set greater
1439          * than the active mtu (or even the max_cap, if we have tuned
1440          * that to a small mtu.  We'll set qp->path_mtu
1441          * to the lesser of requested attribute mtu and active,
1442          * for packetizing messages.
1443          * Note that the QP port has to be set in INIT and MTU in RTR.
1444          */
1445         if (attr_mask & IB_QP_PATH_MTU) {
1446                 pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
1447                 if (pmtu < 0)
1448                         goto inval;
1449         }
1450
1451         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1452                 if (attr->path_mig_state == IB_MIG_REARM) {
1453                         if (qp->s_mig_state == IB_MIG_ARMED)
1454                                 goto inval;
1455                         if (new_state != IB_QPS_RTS)
1456                                 goto inval;
1457                 } else if (attr->path_mig_state == IB_MIG_MIGRATED) {
1458                         if (qp->s_mig_state == IB_MIG_REARM)
1459                                 goto inval;
1460                         if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
1461                                 goto inval;
1462                         if (qp->s_mig_state == IB_MIG_ARMED)
1463                                 mig = 1;
1464                 } else {
1465                         goto inval;
1466                 }
1467         }
1468
1469         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1470                 if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
1471                         goto inval;
1472
1473         switch (new_state) {
1474         case IB_QPS_RESET:
1475                 if (qp->state != IB_QPS_RESET)
1476                         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1477                 break;
1478
1479         case IB_QPS_RTR:
1480                 /* Allow event to re-trigger if QP set to RTR more than once */
1481                 qp->r_flags &= ~RVT_R_COMM_EST;
1482                 qp->state = new_state;
1483                 break;
1484
1485         case IB_QPS_SQD:
1486                 qp->s_draining = qp->s_last != qp->s_cur;
1487                 qp->state = new_state;
1488                 break;
1489
1490         case IB_QPS_SQE:
1491                 if (qp->ibqp.qp_type == IB_QPT_RC)
1492                         goto inval;
1493                 qp->state = new_state;
1494                 break;
1495
1496         case IB_QPS_ERR:
1497                 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
1498                 break;
1499
1500         default:
1501                 qp->state = new_state;
1502                 break;
1503         }
1504
1505         if (attr_mask & IB_QP_PKEY_INDEX)
1506                 qp->s_pkey_index = attr->pkey_index;
1507
1508         if (attr_mask & IB_QP_PORT)
1509                 qp->port_num = attr->port_num;
1510
1511         if (attr_mask & IB_QP_DEST_QPN)
1512                 qp->remote_qpn = attr->dest_qp_num;
1513
1514         if (attr_mask & IB_QP_SQ_PSN) {
1515                 qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
1516                 qp->s_psn = qp->s_next_psn;
1517                 qp->s_sending_psn = qp->s_next_psn;
1518                 qp->s_last_psn = qp->s_next_psn - 1;
1519                 qp->s_sending_hpsn = qp->s_last_psn;
1520         }
1521
1522         if (attr_mask & IB_QP_RQ_PSN)
1523                 qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
1524
1525         if (attr_mask & IB_QP_ACCESS_FLAGS)
1526                 qp->qp_access_flags = attr->qp_access_flags;
1527
1528         if (attr_mask & IB_QP_AV) {
1529                 rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
1530                 qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
1531                 qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
1532         }
1533
1534         if (attr_mask & IB_QP_ALT_PATH) {
1535                 rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
1536                 qp->s_alt_pkey_index = attr->alt_pkey_index;
1537         }
1538
1539         if (attr_mask & IB_QP_PATH_MIG_STATE) {
1540                 qp->s_mig_state = attr->path_mig_state;
1541                 if (mig) {
1542                         qp->remote_ah_attr = qp->alt_ah_attr;
1543                         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
1544                         qp->s_pkey_index = qp->s_alt_pkey_index;
1545                 }
1546         }
1547
1548         if (attr_mask & IB_QP_PATH_MTU) {
1549                 qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
1550                 qp->log_pmtu = ilog2(qp->pmtu);
1551         }
1552
1553         if (attr_mask & IB_QP_RETRY_CNT) {
1554                 qp->s_retry_cnt = attr->retry_cnt;
1555                 qp->s_retry = attr->retry_cnt;
1556         }
1557
1558         if (attr_mask & IB_QP_RNR_RETRY) {
1559                 qp->s_rnr_retry_cnt = attr->rnr_retry;
1560                 qp->s_rnr_retry = attr->rnr_retry;
1561         }
1562
1563         if (attr_mask & IB_QP_MIN_RNR_TIMER)
1564                 qp->r_min_rnr_timer = attr->min_rnr_timer;
1565
1566         if (attr_mask & IB_QP_TIMEOUT) {
1567                 qp->timeout = attr->timeout;
1568                 qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
1569         }
1570
1571         if (attr_mask & IB_QP_QKEY)
1572                 qp->qkey = attr->qkey;
1573
1574         if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
1575                 qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
1576
1577         if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
1578                 qp->s_max_rd_atomic = attr->max_rd_atomic;
1579
1580         if (rdi->driver_f.modify_qp)
1581                 rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
1582
1583         spin_unlock(&qp->s_lock);
1584         spin_unlock(&qp->s_hlock);
1585         spin_unlock_irq(&qp->r_lock);
1586
1587         if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
1588                 rvt_insert_qp(rdi, qp);
1589
1590         if (lastwqe) {
1591                 ev.device = qp->ibqp.device;
1592                 ev.element.qp = &qp->ibqp;
1593                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
1594                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1595         }
1596         if (mig) {
1597                 ev.device = qp->ibqp.device;
1598                 ev.element.qp = &qp->ibqp;
1599                 ev.event = IB_EVENT_PATH_MIG;
1600                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
1601         }
1602         return 0;
1603
1604 inval:
1605         spin_unlock(&qp->s_lock);
1606         spin_unlock(&qp->s_hlock);
1607         spin_unlock_irq(&qp->r_lock);
1608         return -EINVAL;
1609 }
1610
1611 /**
1612  * rvt_destroy_qp - destroy a queue pair
1613  * @ibqp: the queue pair to destroy
1614  *
1615  * Note that this can be called while the QP is actively sending or
1616  * receiving!
1617  *
1618  * Return: 0 on success.
1619  */
1620 int rvt_destroy_qp(struct ib_qp *ibqp)
1621 {
1622         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1623         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1624
1625         spin_lock_irq(&qp->r_lock);
1626         spin_lock(&qp->s_hlock);
1627         spin_lock(&qp->s_lock);
1628         rvt_reset_qp(rdi, qp, ibqp->qp_type);
1629         spin_unlock(&qp->s_lock);
1630         spin_unlock(&qp->s_hlock);
1631         spin_unlock_irq(&qp->r_lock);
1632
1633         wait_event(qp->wait, !atomic_read(&qp->refcount));
1634         /* qpn is now available for use again */
1635         rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
1636
1637         spin_lock(&rdi->n_qps_lock);
1638         rdi->n_qps_allocated--;
1639         if (qp->ibqp.qp_type == IB_QPT_RC) {
1640                 rdi->n_rc_qps--;
1641                 rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
1642         }
1643         spin_unlock(&rdi->n_qps_lock);
1644
1645         if (qp->ip)
1646                 kref_put(&qp->ip->ref, rvt_release_mmap_info);
1647         else
1648                 vfree(qp->r_rq.wq);
1649         rdi->driver_f.qp_priv_free(rdi, qp);
1650         kfree(qp->s_ack_queue);
1651         rdma_destroy_ah_attr(&qp->remote_ah_attr);
1652         rdma_destroy_ah_attr(&qp->alt_ah_attr);
1653         vfree(qp->s_wq);
1654         kfree(qp);
1655         return 0;
1656 }
1657
1658 /**
1659  * rvt_query_qp - query an ipbq
1660  * @ibqp: IB qp to query
1661  * @attr: attr struct to fill in
1662  * @attr_mask: attr mask ignored
1663  * @init_attr: struct to fill in
1664  *
1665  * Return: always 0
1666  */
1667 int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
1668                  int attr_mask, struct ib_qp_init_attr *init_attr)
1669 {
1670         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1671         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
1672
1673         attr->qp_state = qp->state;
1674         attr->cur_qp_state = attr->qp_state;
1675         attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
1676         attr->path_mig_state = qp->s_mig_state;
1677         attr->qkey = qp->qkey;
1678         attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
1679         attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
1680         attr->dest_qp_num = qp->remote_qpn;
1681         attr->qp_access_flags = qp->qp_access_flags;
1682         attr->cap.max_send_wr = qp->s_size - 1 -
1683                 rdi->dparms.reserved_operations;
1684         attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
1685         attr->cap.max_send_sge = qp->s_max_sge;
1686         attr->cap.max_recv_sge = qp->r_rq.max_sge;
1687         attr->cap.max_inline_data = 0;
1688         attr->ah_attr = qp->remote_ah_attr;
1689         attr->alt_ah_attr = qp->alt_ah_attr;
1690         attr->pkey_index = qp->s_pkey_index;
1691         attr->alt_pkey_index = qp->s_alt_pkey_index;
1692         attr->en_sqd_async_notify = 0;
1693         attr->sq_draining = qp->s_draining;
1694         attr->max_rd_atomic = qp->s_max_rd_atomic;
1695         attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
1696         attr->min_rnr_timer = qp->r_min_rnr_timer;
1697         attr->port_num = qp->port_num;
1698         attr->timeout = qp->timeout;
1699         attr->retry_cnt = qp->s_retry_cnt;
1700         attr->rnr_retry = qp->s_rnr_retry_cnt;
1701         attr->alt_port_num =
1702                 rdma_ah_get_port_num(&qp->alt_ah_attr);
1703         attr->alt_timeout = qp->alt_timeout;
1704
1705         init_attr->event_handler = qp->ibqp.event_handler;
1706         init_attr->qp_context = qp->ibqp.qp_context;
1707         init_attr->send_cq = qp->ibqp.send_cq;
1708         init_attr->recv_cq = qp->ibqp.recv_cq;
1709         init_attr->srq = qp->ibqp.srq;
1710         init_attr->cap = attr->cap;
1711         if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
1712                 init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
1713         else
1714                 init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
1715         init_attr->qp_type = qp->ibqp.qp_type;
1716         init_attr->port_num = qp->port_num;
1717         return 0;
1718 }
1719
1720 /**
1721  * rvt_post_receive - post a receive on a QP
1722  * @ibqp: the QP to post the receive on
1723  * @wr: the WR to post
1724  * @bad_wr: the first bad WR is put here
1725  *
1726  * This may be called from interrupt context.
1727  *
1728  * Return: 0 on success otherwise errno
1729  */
1730 int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
1731                   const struct ib_recv_wr **bad_wr)
1732 {
1733         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
1734         struct rvt_rwq *wq = qp->r_rq.wq;
1735         unsigned long flags;
1736         int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
1737                                 !qp->ibqp.srq;
1738
1739         /* Check that state is OK to post receive. */
1740         if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
1741                 *bad_wr = wr;
1742                 return -EINVAL;
1743         }
1744
1745         for (; wr; wr = wr->next) {
1746                 struct rvt_rwqe *wqe;
1747                 u32 next;
1748                 int i;
1749
1750                 if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
1751                         *bad_wr = wr;
1752                         return -EINVAL;
1753                 }
1754
1755                 spin_lock_irqsave(&qp->r_rq.lock, flags);
1756                 next = wq->head + 1;
1757                 if (next >= qp->r_rq.size)
1758                         next = 0;
1759                 if (next == wq->tail) {
1760                         spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1761                         *bad_wr = wr;
1762                         return -ENOMEM;
1763                 }
1764                 if (unlikely(qp_err_flush)) {
1765                         struct ib_wc wc;
1766
1767                         memset(&wc, 0, sizeof(wc));
1768                         wc.qp = &qp->ibqp;
1769                         wc.opcode = IB_WC_RECV;
1770                         wc.wr_id = wr->wr_id;
1771                         wc.status = IB_WC_WR_FLUSH_ERR;
1772                         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
1773                 } else {
1774                         wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
1775                         wqe->wr_id = wr->wr_id;
1776                         wqe->num_sge = wr->num_sge;
1777                         for (i = 0; i < wr->num_sge; i++)
1778                                 wqe->sg_list[i] = wr->sg_list[i];
1779                         /*
1780                          * Make sure queue entry is written
1781                          * before the head index.
1782                          */
1783                         smp_wmb();
1784                         wq->head = next;
1785                 }
1786                 spin_unlock_irqrestore(&qp->r_rq.lock, flags);
1787         }
1788         return 0;
1789 }
1790
1791 /**
1792  * rvt_qp_valid_operation - validate post send wr request
1793  * @qp - the qp
1794  * @post-parms - the post send table for the driver
1795  * @wr - the work request
1796  *
1797  * The routine validates the operation based on the
1798  * validation table an returns the length of the operation
1799  * which can extend beyond the ib_send_bw.  Operation
1800  * dependent flags key atomic operation validation.
1801  *
1802  * There is an exception for UD qps that validates the pd and
1803  * overrides the length to include the additional UD specific
1804  * length.
1805  *
1806  * Returns a negative error or the length of the work request
1807  * for building the swqe.
1808  */
1809 static inline int rvt_qp_valid_operation(
1810         struct rvt_qp *qp,
1811         const struct rvt_operation_params *post_parms,
1812         const struct ib_send_wr *wr)
1813 {
1814         int len;
1815
1816         if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
1817                 return -EINVAL;
1818         if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
1819                 return -EINVAL;
1820         if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
1821             ibpd_to_rvtpd(qp->ibqp.pd)->user)
1822                 return -EINVAL;
1823         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
1824             (wr->num_sge == 0 ||
1825              wr->sg_list[0].length < sizeof(u64) ||
1826              wr->sg_list[0].addr & (sizeof(u64) - 1)))
1827                 return -EINVAL;
1828         if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
1829             !qp->s_max_rd_atomic)
1830                 return -EINVAL;
1831         len = post_parms[wr->opcode].length;
1832         /* UD specific */
1833         if (qp->ibqp.qp_type != IB_QPT_UC &&
1834             qp->ibqp.qp_type != IB_QPT_RC) {
1835                 if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
1836                         return -EINVAL;
1837                 len = sizeof(struct ib_ud_wr);
1838         }
1839         return len;
1840 }
1841
1842 /**
1843  * rvt_qp_is_avail - determine queue capacity
1844  * @qp: the qp
1845  * @rdi: the rdmavt device
1846  * @reserved_op: is reserved operation
1847  *
1848  * This assumes the s_hlock is held but the s_last
1849  * qp variable is uncontrolled.
1850  *
1851  * For non reserved operations, the qp->s_avail
1852  * may be changed.
1853  *
1854  * The return value is zero or a -ENOMEM.
1855  */
1856 static inline int rvt_qp_is_avail(
1857         struct rvt_qp *qp,
1858         struct rvt_dev_info *rdi,
1859         bool reserved_op)
1860 {
1861         u32 slast;
1862         u32 avail;
1863         u32 reserved_used;
1864
1865         /* see rvt_qp_wqe_unreserve() */
1866         smp_mb__before_atomic();
1867         reserved_used = atomic_read(&qp->s_reserved_used);
1868         if (unlikely(reserved_op)) {
1869                 /* see rvt_qp_wqe_unreserve() */
1870                 smp_mb__before_atomic();
1871                 if (reserved_used >= rdi->dparms.reserved_operations)
1872                         return -ENOMEM;
1873                 return 0;
1874         }
1875         /* non-reserved operations */
1876         if (likely(qp->s_avail))
1877                 return 0;
1878         slast = READ_ONCE(qp->s_last);
1879         if (qp->s_head >= slast)
1880                 avail = qp->s_size - (qp->s_head - slast);
1881         else
1882                 avail = slast - qp->s_head;
1883
1884         /* see rvt_qp_wqe_unreserve() */
1885         smp_mb__before_atomic();
1886         reserved_used = atomic_read(&qp->s_reserved_used);
1887         avail =  avail - 1 -
1888                 (rdi->dparms.reserved_operations - reserved_used);
1889         /* insure we don't assign a negative s_avail */
1890         if ((s32)avail <= 0)
1891                 return -ENOMEM;
1892         qp->s_avail = avail;
1893         if (WARN_ON(qp->s_avail >
1894                     (qp->s_size - 1 - rdi->dparms.reserved_operations)))
1895                 rvt_pr_err(rdi,
1896                            "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
1897                            qp->ibqp.qp_num, qp->s_size, qp->s_avail,
1898                            qp->s_head, qp->s_tail, qp->s_cur,
1899                            qp->s_acked, qp->s_last);
1900         return 0;
1901 }
1902
1903 /**
1904  * rvt_post_one_wr - post one RC, UC, or UD send work request
1905  * @qp: the QP to post on
1906  * @wr: the work request to send
1907  */
1908 static int rvt_post_one_wr(struct rvt_qp *qp,
1909                            const struct ib_send_wr *wr,
1910                            bool *call_send)
1911 {
1912         struct rvt_swqe *wqe;
1913         u32 next;
1914         int i;
1915         int j;
1916         int acc;
1917         struct rvt_lkey_table *rkt;
1918         struct rvt_pd *pd;
1919         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
1920         u8 log_pmtu;
1921         int ret;
1922         size_t cplen;
1923         bool reserved_op;
1924         int local_ops_delayed = 0;
1925
1926         BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
1927
1928         /* IB spec says that num_sge == 0 is OK. */
1929         if (unlikely(wr->num_sge > qp->s_max_sge))
1930                 return -EINVAL;
1931
1932         ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
1933         if (ret < 0)
1934                 return ret;
1935         cplen = ret;
1936
1937         /*
1938          * Local operations include fast register and local invalidate.
1939          * Fast register needs to be processed immediately because the
1940          * registered lkey may be used by following work requests and the
1941          * lkey needs to be valid at the time those requests are posted.
1942          * Local invalidate can be processed immediately if fencing is
1943          * not required and no previous local invalidate ops are pending.
1944          * Signaled local operations that have been processed immediately
1945          * need to have requests with "completion only" flags set posted
1946          * to the send queue in order to generate completions.
1947          */
1948         if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
1949                 switch (wr->opcode) {
1950                 case IB_WR_REG_MR:
1951                         ret = rvt_fast_reg_mr(qp,
1952                                               reg_wr(wr)->mr,
1953                                               reg_wr(wr)->key,
1954                                               reg_wr(wr)->access);
1955                         if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1956                                 return ret;
1957                         break;
1958                 case IB_WR_LOCAL_INV:
1959                         if ((wr->send_flags & IB_SEND_FENCE) ||
1960                             atomic_read(&qp->local_ops_pending)) {
1961                                 local_ops_delayed = 1;
1962                         } else {
1963                                 ret = rvt_invalidate_rkey(
1964                                         qp, wr->ex.invalidate_rkey);
1965                                 if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
1966                                         return ret;
1967                         }
1968                         break;
1969                 default:
1970                         return -EINVAL;
1971                 }
1972         }
1973
1974         reserved_op = rdi->post_parms[wr->opcode].flags &
1975                         RVT_OPERATION_USE_RESERVE;
1976         /* check for avail */
1977         ret = rvt_qp_is_avail(qp, rdi, reserved_op);
1978         if (ret)
1979                 return ret;
1980         next = qp->s_head + 1;
1981         if (next >= qp->s_size)
1982                 next = 0;
1983
1984         rkt = &rdi->lkey_table;
1985         pd = ibpd_to_rvtpd(qp->ibqp.pd);
1986         wqe = rvt_get_swqe_ptr(qp, qp->s_head);
1987
1988         /* cplen has length from above */
1989         memcpy(&wqe->wr, wr, cplen);
1990
1991         wqe->length = 0;
1992         j = 0;
1993         if (wr->num_sge) {
1994                 struct rvt_sge *last_sge = NULL;
1995
1996                 acc = wr->opcode >= IB_WR_RDMA_READ ?
1997                         IB_ACCESS_LOCAL_WRITE : 0;
1998                 for (i = 0; i < wr->num_sge; i++) {
1999                         u32 length = wr->sg_list[i].length;
2000
2001                         if (length == 0)
2002                                 continue;
2003                         ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
2004                                           &wr->sg_list[i], acc);
2005                         if (unlikely(ret < 0))
2006                                 goto bail_inval_free;
2007                         wqe->length += length;
2008                         if (ret)
2009                                 last_sge = &wqe->sg_list[j];
2010                         j += ret;
2011                 }
2012                 wqe->wr.num_sge = j;
2013         }
2014
2015         /*
2016          * Calculate and set SWQE PSN values prior to handing it off
2017          * to the driver's check routine. This give the driver the
2018          * opportunity to adjust PSN values based on internal checks.
2019          */
2020         log_pmtu = qp->log_pmtu;
2021         if (qp->ibqp.qp_type != IB_QPT_UC &&
2022             qp->ibqp.qp_type != IB_QPT_RC) {
2023                 struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
2024
2025                 log_pmtu = ah->log_pmtu;
2026                 atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2027         }
2028
2029         if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
2030                 if (local_ops_delayed)
2031                         atomic_inc(&qp->local_ops_pending);
2032                 else
2033                         wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
2034                 wqe->ssn = 0;
2035                 wqe->psn = 0;
2036                 wqe->lpsn = 0;
2037         } else {
2038                 wqe->ssn = qp->s_ssn++;
2039                 wqe->psn = qp->s_next_psn;
2040                 wqe->lpsn = wqe->psn +
2041                                 (wqe->length ?
2042                                         ((wqe->length - 1) >> log_pmtu) :
2043                                         0);
2044         }
2045
2046         /* general part of wqe valid - allow for driver checks */
2047         if (rdi->driver_f.setup_wqe) {
2048                 ret = rdi->driver_f.setup_wqe(qp, wqe, call_send);
2049                 if (ret < 0)
2050                         goto bail_inval_free_ref;
2051         }
2052
2053         if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL))
2054                 qp->s_next_psn = wqe->lpsn + 1;
2055
2056         if (unlikely(reserved_op)) {
2057                 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
2058                 rvt_qp_wqe_reserve(qp, wqe);
2059         } else {
2060                 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
2061                 qp->s_avail--;
2062         }
2063         trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
2064         smp_wmb(); /* see request builders */
2065         qp->s_head = next;
2066
2067         return 0;
2068
2069 bail_inval_free_ref:
2070         if (qp->ibqp.qp_type != IB_QPT_UC &&
2071             qp->ibqp.qp_type != IB_QPT_RC)
2072                 atomic_dec(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
2073 bail_inval_free:
2074         /* release mr holds */
2075         while (j) {
2076                 struct rvt_sge *sge = &wqe->sg_list[--j];
2077
2078                 rvt_put_mr(sge->mr);
2079         }
2080         return ret;
2081 }
2082
2083 /**
2084  * rvt_post_send - post a send on a QP
2085  * @ibqp: the QP to post the send on
2086  * @wr: the list of work requests to post
2087  * @bad_wr: the first bad WR is put here
2088  *
2089  * This may be called from interrupt context.
2090  *
2091  * Return: 0 on success else errno
2092  */
2093 int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
2094                   const struct ib_send_wr **bad_wr)
2095 {
2096         struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
2097         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2098         unsigned long flags = 0;
2099         bool call_send;
2100         unsigned nreq = 0;
2101         int err = 0;
2102
2103         spin_lock_irqsave(&qp->s_hlock, flags);
2104
2105         /*
2106          * Ensure QP state is such that we can send. If not bail out early,
2107          * there is no need to do this every time we post a send.
2108          */
2109         if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
2110                 spin_unlock_irqrestore(&qp->s_hlock, flags);
2111                 return -EINVAL;
2112         }
2113
2114         /*
2115          * If the send queue is empty, and we only have a single WR then just go
2116          * ahead and kick the send engine into gear. Otherwise we will always
2117          * just schedule the send to happen later.
2118          */
2119         call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
2120
2121         for (; wr; wr = wr->next) {
2122                 err = rvt_post_one_wr(qp, wr, &call_send);
2123                 if (unlikely(err)) {
2124                         *bad_wr = wr;
2125                         goto bail;
2126                 }
2127                 nreq++;
2128         }
2129 bail:
2130         spin_unlock_irqrestore(&qp->s_hlock, flags);
2131         if (nreq) {
2132                 /*
2133                  * Only call do_send if there is exactly one packet, and the
2134                  * driver said it was ok.
2135                  */
2136                 if (nreq == 1 && call_send)
2137                         rdi->driver_f.do_send(qp);
2138                 else
2139                         rdi->driver_f.schedule_send_no_lock(qp);
2140         }
2141         return err;
2142 }
2143
2144 /**
2145  * rvt_post_srq_receive - post a receive on a shared receive queue
2146  * @ibsrq: the SRQ to post the receive on
2147  * @wr: the list of work requests to post
2148  * @bad_wr: A pointer to the first WR to cause a problem is put here
2149  *
2150  * This may be called from interrupt context.
2151  *
2152  * Return: 0 on success else errno
2153  */
2154 int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
2155                       const struct ib_recv_wr **bad_wr)
2156 {
2157         struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
2158         struct rvt_rwq *wq;
2159         unsigned long flags;
2160
2161         for (; wr; wr = wr->next) {
2162                 struct rvt_rwqe *wqe;
2163                 u32 next;
2164                 int i;
2165
2166                 if ((unsigned)wr->num_sge > srq->rq.max_sge) {
2167                         *bad_wr = wr;
2168                         return -EINVAL;
2169                 }
2170
2171                 spin_lock_irqsave(&srq->rq.lock, flags);
2172                 wq = srq->rq.wq;
2173                 next = wq->head + 1;
2174                 if (next >= srq->rq.size)
2175                         next = 0;
2176                 if (next == wq->tail) {
2177                         spin_unlock_irqrestore(&srq->rq.lock, flags);
2178                         *bad_wr = wr;
2179                         return -ENOMEM;
2180                 }
2181
2182                 wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
2183                 wqe->wr_id = wr->wr_id;
2184                 wqe->num_sge = wr->num_sge;
2185                 for (i = 0; i < wr->num_sge; i++)
2186                         wqe->sg_list[i] = wr->sg_list[i];
2187                 /* Make sure queue entry is written before the head index. */
2188                 smp_wmb();
2189                 wq->head = next;
2190                 spin_unlock_irqrestore(&srq->rq.lock, flags);
2191         }
2192         return 0;
2193 }
2194
2195 /*
2196  * Validate a RWQE and fill in the SGE state.
2197  * Return 1 if OK.
2198  */
2199 static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
2200 {
2201         int i, j, ret;
2202         struct ib_wc wc;
2203         struct rvt_lkey_table *rkt;
2204         struct rvt_pd *pd;
2205         struct rvt_sge_state *ss;
2206         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2207
2208         rkt = &rdi->lkey_table;
2209         pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
2210         ss = &qp->r_sge;
2211         ss->sg_list = qp->r_sg_list;
2212         qp->r_len = 0;
2213         for (i = j = 0; i < wqe->num_sge; i++) {
2214                 if (wqe->sg_list[i].length == 0)
2215                         continue;
2216                 /* Check LKEY */
2217                 ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
2218                                   NULL, &wqe->sg_list[i],
2219                                   IB_ACCESS_LOCAL_WRITE);
2220                 if (unlikely(ret <= 0))
2221                         goto bad_lkey;
2222                 qp->r_len += wqe->sg_list[i].length;
2223                 j++;
2224         }
2225         ss->num_sge = j;
2226         ss->total_len = qp->r_len;
2227         return 1;
2228
2229 bad_lkey:
2230         while (j) {
2231                 struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
2232
2233                 rvt_put_mr(sge->mr);
2234         }
2235         ss->num_sge = 0;
2236         memset(&wc, 0, sizeof(wc));
2237         wc.wr_id = wqe->wr_id;
2238         wc.status = IB_WC_LOC_PROT_ERR;
2239         wc.opcode = IB_WC_RECV;
2240         wc.qp = &qp->ibqp;
2241         /* Signal solicited completion event. */
2242         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
2243         return 0;
2244 }
2245
2246 /**
2247  * rvt_get_rwqe - copy the next RWQE into the QP's RWQE
2248  * @qp: the QP
2249  * @wr_id_only: update qp->r_wr_id only, not qp->r_sge
2250  *
2251  * Return -1 if there is a local error, 0 if no RWQE is available,
2252  * otherwise return 1.
2253  *
2254  * Can be called from interrupt level.
2255  */
2256 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
2257 {
2258         unsigned long flags;
2259         struct rvt_rq *rq;
2260         struct rvt_rwq *wq;
2261         struct rvt_srq *srq;
2262         struct rvt_rwqe *wqe;
2263         void (*handler)(struct ib_event *, void *);
2264         u32 tail;
2265         int ret;
2266
2267         if (qp->ibqp.srq) {
2268                 srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
2269                 handler = srq->ibsrq.event_handler;
2270                 rq = &srq->rq;
2271         } else {
2272                 srq = NULL;
2273                 handler = NULL;
2274                 rq = &qp->r_rq;
2275         }
2276
2277         spin_lock_irqsave(&rq->lock, flags);
2278         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
2279                 ret = 0;
2280                 goto unlock;
2281         }
2282
2283         wq = rq->wq;
2284         tail = wq->tail;
2285         /* Validate tail before using it since it is user writable. */
2286         if (tail >= rq->size)
2287                 tail = 0;
2288         if (unlikely(tail == wq->head)) {
2289                 ret = 0;
2290                 goto unlock;
2291         }
2292         /* Make sure entry is read after head index is read. */
2293         smp_rmb();
2294         wqe = rvt_get_rwqe_ptr(rq, tail);
2295         /*
2296          * Even though we update the tail index in memory, the verbs
2297          * consumer is not supposed to post more entries until a
2298          * completion is generated.
2299          */
2300         if (++tail >= rq->size)
2301                 tail = 0;
2302         wq->tail = tail;
2303         if (!wr_id_only && !init_sge(qp, wqe)) {
2304                 ret = -1;
2305                 goto unlock;
2306         }
2307         qp->r_wr_id = wqe->wr_id;
2308
2309         ret = 1;
2310         set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
2311         if (handler) {
2312                 u32 n;
2313
2314                 /*
2315                  * Validate head pointer value and compute
2316                  * the number of remaining WQEs.
2317                  */
2318                 n = wq->head;
2319                 if (n >= rq->size)
2320                         n = 0;
2321                 if (n < tail)
2322                         n += rq->size - tail;
2323                 else
2324                         n -= tail;
2325                 if (n < srq->limit) {
2326                         struct ib_event ev;
2327
2328                         srq->limit = 0;
2329                         spin_unlock_irqrestore(&rq->lock, flags);
2330                         ev.device = qp->ibqp.device;
2331                         ev.element.srq = qp->ibqp.srq;
2332                         ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
2333                         handler(&ev, srq->ibsrq.srq_context);
2334                         goto bail;
2335                 }
2336         }
2337 unlock:
2338         spin_unlock_irqrestore(&rq->lock, flags);
2339 bail:
2340         return ret;
2341 }
2342 EXPORT_SYMBOL(rvt_get_rwqe);
2343
2344 /**
2345  * qp_comm_est - handle trap with QP established
2346  * @qp: the QP
2347  */
2348 void rvt_comm_est(struct rvt_qp *qp)
2349 {
2350         qp->r_flags |= RVT_R_COMM_EST;
2351         if (qp->ibqp.event_handler) {
2352                 struct ib_event ev;
2353
2354                 ev.device = qp->ibqp.device;
2355                 ev.element.qp = &qp->ibqp;
2356                 ev.event = IB_EVENT_COMM_EST;
2357                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2358         }
2359 }
2360 EXPORT_SYMBOL(rvt_comm_est);
2361
2362 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
2363 {
2364         unsigned long flags;
2365         int lastwqe;
2366
2367         spin_lock_irqsave(&qp->s_lock, flags);
2368         lastwqe = rvt_error_qp(qp, err);
2369         spin_unlock_irqrestore(&qp->s_lock, flags);
2370
2371         if (lastwqe) {
2372                 struct ib_event ev;
2373
2374                 ev.device = qp->ibqp.device;
2375                 ev.element.qp = &qp->ibqp;
2376                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
2377                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
2378         }
2379 }
2380 EXPORT_SYMBOL(rvt_rc_error);
2381
2382 /*
2383  *  rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
2384  *  @index - the index
2385  *  return usec from an index into ib_rvt_rnr_table
2386  */
2387 unsigned long rvt_rnr_tbl_to_usec(u32 index)
2388 {
2389         return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
2390 }
2391 EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
2392
2393 static inline unsigned long rvt_aeth_to_usec(u32 aeth)
2394 {
2395         return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
2396                                   IB_AETH_CREDIT_MASK];
2397 }
2398
2399 /*
2400  *  rvt_add_retry_timer_ext - add/start a retry timer
2401  *  @qp - the QP
2402  *  @shift - timeout shift to wait for multiple packets
2403  *  add a retry timer on the QP
2404  */
2405 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift)
2406 {
2407         struct ib_qp *ibqp = &qp->ibqp;
2408         struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
2409
2410         lockdep_assert_held(&qp->s_lock);
2411         qp->s_flags |= RVT_S_TIMER;
2412        /* 4.096 usec. * (1 << qp->timeout) */
2413         qp->s_timer.expires = jiffies + rdi->busy_jiffies +
2414                               (qp->timeout_jiffies << shift);
2415         add_timer(&qp->s_timer);
2416 }
2417 EXPORT_SYMBOL(rvt_add_retry_timer_ext);
2418
2419 /**
2420  * rvt_add_rnr_timer - add/start an rnr timer
2421  * @qp - the QP
2422  * @aeth - aeth of RNR timeout, simulated aeth for loopback
2423  * add an rnr timer on the QP
2424  */
2425 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
2426 {
2427         u32 to;
2428
2429         lockdep_assert_held(&qp->s_lock);
2430         qp->s_flags |= RVT_S_WAIT_RNR;
2431         to = rvt_aeth_to_usec(aeth);
2432         trace_rvt_rnrnak_add(qp, to);
2433         hrtimer_start(&qp->s_rnr_timer,
2434                       ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
2435 }
2436 EXPORT_SYMBOL(rvt_add_rnr_timer);
2437
2438 /**
2439  * rvt_stop_rc_timers - stop all timers
2440  * @qp - the QP
2441  * stop any pending timers
2442  */
2443 void rvt_stop_rc_timers(struct rvt_qp *qp)
2444 {
2445         lockdep_assert_held(&qp->s_lock);
2446         /* Remove QP from all timers */
2447         if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
2448                 qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
2449                 del_timer(&qp->s_timer);
2450                 hrtimer_try_to_cancel(&qp->s_rnr_timer);
2451         }
2452 }
2453 EXPORT_SYMBOL(rvt_stop_rc_timers);
2454
2455 /**
2456  * rvt_stop_rnr_timer - stop an rnr timer
2457  * @qp - the QP
2458  *
2459  * stop an rnr timer and return if the timer
2460  * had been pending.
2461  */
2462 static void rvt_stop_rnr_timer(struct rvt_qp *qp)
2463 {
2464         lockdep_assert_held(&qp->s_lock);
2465         /* Remove QP from rnr timer */
2466         if (qp->s_flags & RVT_S_WAIT_RNR) {
2467                 qp->s_flags &= ~RVT_S_WAIT_RNR;
2468                 trace_rvt_rnrnak_stop(qp, 0);
2469         }
2470 }
2471
2472 /**
2473  * rvt_del_timers_sync - wait for any timeout routines to exit
2474  * @qp - the QP
2475  */
2476 void rvt_del_timers_sync(struct rvt_qp *qp)
2477 {
2478         del_timer_sync(&qp->s_timer);
2479         hrtimer_cancel(&qp->s_rnr_timer);
2480 }
2481 EXPORT_SYMBOL(rvt_del_timers_sync);
2482
2483 /**
2484  * This is called from s_timer for missing responses.
2485  */
2486 static void rvt_rc_timeout(struct timer_list *t)
2487 {
2488         struct rvt_qp *qp = from_timer(qp, t, s_timer);
2489         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2490         unsigned long flags;
2491
2492         spin_lock_irqsave(&qp->r_lock, flags);
2493         spin_lock(&qp->s_lock);
2494         if (qp->s_flags & RVT_S_TIMER) {
2495                 struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
2496
2497                 qp->s_flags &= ~RVT_S_TIMER;
2498                 rvp->n_rc_timeouts++;
2499                 del_timer(&qp->s_timer);
2500                 trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
2501                 if (rdi->driver_f.notify_restart_rc)
2502                         rdi->driver_f.notify_restart_rc(qp,
2503                                                         qp->s_last_psn + 1,
2504                                                         1);
2505                 rdi->driver_f.schedule_send(qp);
2506         }
2507         spin_unlock(&qp->s_lock);
2508         spin_unlock_irqrestore(&qp->r_lock, flags);
2509 }
2510
2511 /*
2512  * This is called from s_timer for RNR timeouts.
2513  */
2514 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
2515 {
2516         struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
2517         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2518         unsigned long flags;
2519
2520         spin_lock_irqsave(&qp->s_lock, flags);
2521         rvt_stop_rnr_timer(qp);
2522         trace_rvt_rnrnak_timeout(qp, 0);
2523         rdi->driver_f.schedule_send(qp);
2524         spin_unlock_irqrestore(&qp->s_lock, flags);
2525         return HRTIMER_NORESTART;
2526 }
2527 EXPORT_SYMBOL(rvt_rc_rnr_retry);
2528
2529 /**
2530  * rvt_qp_iter_init - initial for QP iteration
2531  * @rdi: rvt devinfo
2532  * @v: u64 value
2533  *
2534  * This returns an iterator suitable for iterating QPs
2535  * in the system.
2536  *
2537  * The @cb is a user defined callback and @v is a 64
2538  * bit value passed to and relevant for processing in the
2539  * @cb.  An example use case would be to alter QP processing
2540  * based on criteria not part of the rvt_qp.
2541  *
2542  * Use cases that require memory allocation to succeed
2543  * must preallocate appropriately.
2544  *
2545  * Return: a pointer to an rvt_qp_iter or NULL
2546  */
2547 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
2548                                      u64 v,
2549                                      void (*cb)(struct rvt_qp *qp, u64 v))
2550 {
2551         struct rvt_qp_iter *i;
2552
2553         i = kzalloc(sizeof(*i), GFP_KERNEL);
2554         if (!i)
2555                 return NULL;
2556
2557         i->rdi = rdi;
2558         /* number of special QPs (SMI/GSI) for device */
2559         i->specials = rdi->ibdev.phys_port_cnt * 2;
2560         i->v = v;
2561         i->cb = cb;
2562
2563         return i;
2564 }
2565 EXPORT_SYMBOL(rvt_qp_iter_init);
2566
2567 /**
2568  * rvt_qp_iter_next - return the next QP in iter
2569  * @iter - the iterator
2570  *
2571  * Fine grained QP iterator suitable for use
2572  * with debugfs seq_file mechanisms.
2573  *
2574  * Updates iter->qp with the current QP when the return
2575  * value is 0.
2576  *
2577  * Return: 0 - iter->qp is valid 1 - no more QPs
2578  */
2579 int rvt_qp_iter_next(struct rvt_qp_iter *iter)
2580         __must_hold(RCU)
2581 {
2582         int n = iter->n;
2583         int ret = 1;
2584         struct rvt_qp *pqp = iter->qp;
2585         struct rvt_qp *qp;
2586         struct rvt_dev_info *rdi = iter->rdi;
2587
2588         /*
2589          * The approach is to consider the special qps
2590          * as additional table entries before the
2591          * real hash table.  Since the qp code sets
2592          * the qp->next hash link to NULL, this works just fine.
2593          *
2594          * iter->specials is 2 * # ports
2595          *
2596          * n = 0..iter->specials is the special qp indices
2597          *
2598          * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
2599          * the potential hash bucket entries
2600          *
2601          */
2602         for (; n <  rdi->qp_dev->qp_table_size + iter->specials; n++) {
2603                 if (pqp) {
2604                         qp = rcu_dereference(pqp->next);
2605                 } else {
2606                         if (n < iter->specials) {
2607                                 struct rvt_ibport *rvp;
2608                                 int pidx;
2609
2610                                 pidx = n % rdi->ibdev.phys_port_cnt;
2611                                 rvp = rdi->ports[pidx];
2612                                 qp = rcu_dereference(rvp->qp[n & 1]);
2613                         } else {
2614                                 qp = rcu_dereference(
2615                                         rdi->qp_dev->qp_table[
2616                                                 (n - iter->specials)]);
2617                         }
2618                 }
2619                 pqp = qp;
2620                 if (qp) {
2621                         iter->qp = qp;
2622                         iter->n = n;
2623                         return 0;
2624                 }
2625         }
2626         return ret;
2627 }
2628 EXPORT_SYMBOL(rvt_qp_iter_next);
2629
2630 /**
2631  * rvt_qp_iter - iterate all QPs
2632  * @rdi - rvt devinfo
2633  * @v - a 64 bit value
2634  * @cb - a callback
2635  *
2636  * This provides a way for iterating all QPs.
2637  *
2638  * The @cb is a user defined callback and @v is a 64
2639  * bit value passed to and relevant for processing in the
2640  * cb.  An example use case would be to alter QP processing
2641  * based on criteria not part of the rvt_qp.
2642  *
2643  * The code has an internal iterator to simplify
2644  * non seq_file use cases.
2645  */
2646 void rvt_qp_iter(struct rvt_dev_info *rdi,
2647                  u64 v,
2648                  void (*cb)(struct rvt_qp *qp, u64 v))
2649 {
2650         int ret;
2651         struct rvt_qp_iter i = {
2652                 .rdi = rdi,
2653                 .specials = rdi->ibdev.phys_port_cnt * 2,
2654                 .v = v,
2655                 .cb = cb
2656         };
2657
2658         rcu_read_lock();
2659         do {
2660                 ret = rvt_qp_iter_next(&i);
2661                 if (!ret) {
2662                         rvt_get_qp(i.qp);
2663                         rcu_read_unlock();
2664                         i.cb(i.qp, i.v);
2665                         rcu_read_lock();
2666                         rvt_put_qp(i.qp);
2667                 }
2668         } while (!ret);
2669         rcu_read_unlock();
2670 }
2671 EXPORT_SYMBOL(rvt_qp_iter);
2672
2673 /*
2674  * This should be called with s_lock held.
2675  */
2676 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
2677                        enum ib_wc_status status)
2678 {
2679         u32 old_last, last;
2680         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2681
2682         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2683                 return;
2684
2685         last = qp->s_last;
2686         old_last = last;
2687         trace_rvt_qp_send_completion(qp, wqe, last);
2688         if (++last >= qp->s_size)
2689                 last = 0;
2690         trace_rvt_qp_send_completion(qp, wqe, last);
2691         qp->s_last = last;
2692         /* See post_send() */
2693         barrier();
2694         rvt_put_swqe(wqe);
2695         if (qp->ibqp.qp_type == IB_QPT_UD ||
2696             qp->ibqp.qp_type == IB_QPT_SMI ||
2697             qp->ibqp.qp_type == IB_QPT_GSI)
2698                 atomic_dec(&ibah_to_rvtah(wqe->ud_wr.ah)->refcount);
2699
2700         rvt_qp_swqe_complete(qp,
2701                              wqe,
2702                              rdi->wc_opcode[wqe->wr.opcode],
2703                              status);
2704
2705         if (qp->s_acked == old_last)
2706                 qp->s_acked = last;
2707         if (qp->s_cur == old_last)
2708                 qp->s_cur = last;
2709         if (qp->s_tail == old_last)
2710                 qp->s_tail = last;
2711         if (qp->state == IB_QPS_SQD && last == qp->s_cur)
2712                 qp->s_draining = 0;
2713 }
2714 EXPORT_SYMBOL(rvt_send_complete);
2715
2716 /**
2717  * rvt_copy_sge - copy data to SGE memory
2718  * @qp: associated QP
2719  * @ss: the SGE state
2720  * @data: the data to copy
2721  * @length: the length of the data
2722  * @release: boolean to release MR
2723  * @copy_last: do a separate copy of the last 8 bytes
2724  */
2725 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
2726                   void *data, u32 length,
2727                   bool release, bool copy_last)
2728 {
2729         struct rvt_sge *sge = &ss->sge;
2730         int i;
2731         bool in_last = false;
2732         bool cacheless_copy = false;
2733         struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
2734         struct rvt_wss *wss = rdi->wss;
2735         unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode;
2736
2737         if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) {
2738                 cacheless_copy = length >= PAGE_SIZE;
2739         } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) {
2740                 if (length >= PAGE_SIZE) {
2741                         /*
2742                          * NOTE: this *assumes*:
2743                          * o The first vaddr is the dest.
2744                          * o If multiple pages, then vaddr is sequential.
2745                          */
2746                         wss_insert(wss, sge->vaddr);
2747                         if (length >= (2 * PAGE_SIZE))
2748                                 wss_insert(wss, (sge->vaddr + PAGE_SIZE));
2749
2750                         cacheless_copy = wss_exceeds_threshold(wss);
2751                 } else {
2752                         wss_advance_clean_counter(wss);
2753                 }
2754         }
2755
2756         if (copy_last) {
2757                 if (length > 8) {
2758                         length -= 8;
2759                 } else {
2760                         copy_last = false;
2761                         in_last = true;
2762                 }
2763         }
2764
2765 again:
2766         while (length) {
2767                 u32 len = rvt_get_sge_length(sge, length);
2768
2769                 WARN_ON_ONCE(len == 0);
2770                 if (unlikely(in_last)) {
2771                         /* enforce byte transfer ordering */
2772                         for (i = 0; i < len; i++)
2773                                 ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
2774                 } else if (cacheless_copy) {
2775                         cacheless_memcpy(sge->vaddr, data, len);
2776                 } else {
2777                         memcpy(sge->vaddr, data, len);
2778                 }
2779                 rvt_update_sge(ss, len, release);
2780                 data += len;
2781                 length -= len;
2782         }
2783
2784         if (copy_last) {
2785                 copy_last = false;
2786                 in_last = true;
2787                 length = 8;
2788                 goto again;
2789         }
2790 }
2791 EXPORT_SYMBOL(rvt_copy_sge);
2792
2793 static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp,
2794                                           struct rvt_qp *sqp)
2795 {
2796         rvp->n_pkt_drops++;
2797         /*
2798          * For RC, the requester would timeout and retry so
2799          * shortcut the timeouts and just signal too many retries.
2800          */
2801         return sqp->ibqp.qp_type == IB_QPT_RC ?
2802                 IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS;
2803 }
2804
2805 /**
2806  * ruc_loopback - handle UC and RC loopback requests
2807  * @sqp: the sending QP
2808  *
2809  * This is called from rvt_do_send() to forward a WQE addressed to the same HFI
2810  * Note that although we are single threaded due to the send engine, we still
2811  * have to protect against post_send().  We don't have to worry about
2812  * receive interrupts since this is a connected protocol and all packets
2813  * will pass through here.
2814  */
2815 void rvt_ruc_loopback(struct rvt_qp *sqp)
2816 {
2817         struct rvt_ibport *rvp =  NULL;
2818         struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device);
2819         struct rvt_qp *qp;
2820         struct rvt_swqe *wqe;
2821         struct rvt_sge *sge;
2822         unsigned long flags;
2823         struct ib_wc wc;
2824         u64 sdata;
2825         atomic64_t *maddr;
2826         enum ib_wc_status send_status;
2827         bool release;
2828         int ret;
2829         bool copy_last = false;
2830         int local_ops = 0;
2831
2832         rcu_read_lock();
2833         rvp = rdi->ports[sqp->port_num - 1];
2834
2835         /*
2836          * Note that we check the responder QP state after
2837          * checking the requester's state.
2838          */
2839
2840         qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp,
2841                             sqp->remote_qpn);
2842
2843         spin_lock_irqsave(&sqp->s_lock, flags);
2844
2845         /* Return if we are already busy processing a work request. */
2846         if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) ||
2847             !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND))
2848                 goto unlock;
2849
2850         sqp->s_flags |= RVT_S_BUSY;
2851
2852 again:
2853         if (sqp->s_last == READ_ONCE(sqp->s_head))
2854                 goto clr_busy;
2855         wqe = rvt_get_swqe_ptr(sqp, sqp->s_last);
2856
2857         /* Return if it is not OK to start a new work request. */
2858         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) {
2859                 if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND))
2860                         goto clr_busy;
2861                 /* We are in the error state, flush the work request. */
2862                 send_status = IB_WC_WR_FLUSH_ERR;
2863                 goto flush_send;
2864         }
2865
2866         /*
2867          * We can rely on the entry not changing without the s_lock
2868          * being held until we update s_last.
2869          * We increment s_cur to indicate s_last is in progress.
2870          */
2871         if (sqp->s_last == sqp->s_cur) {
2872                 if (++sqp->s_cur >= sqp->s_size)
2873                         sqp->s_cur = 0;
2874         }
2875         spin_unlock_irqrestore(&sqp->s_lock, flags);
2876
2877         if (!qp) {
2878                 send_status = loopback_qp_drop(rvp, sqp);
2879                 goto serr_no_r_lock;
2880         }
2881         spin_lock_irqsave(&qp->r_lock, flags);
2882         if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) ||
2883             qp->ibqp.qp_type != sqp->ibqp.qp_type) {
2884                 send_status = loopback_qp_drop(rvp, sqp);
2885                 goto serr;
2886         }
2887
2888         memset(&wc, 0, sizeof(wc));
2889         send_status = IB_WC_SUCCESS;
2890
2891         release = true;
2892         sqp->s_sge.sge = wqe->sg_list[0];
2893         sqp->s_sge.sg_list = wqe->sg_list + 1;
2894         sqp->s_sge.num_sge = wqe->wr.num_sge;
2895         sqp->s_len = wqe->length;
2896         switch (wqe->wr.opcode) {
2897         case IB_WR_REG_MR:
2898                 goto send_comp;
2899
2900         case IB_WR_LOCAL_INV:
2901                 if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) {
2902                         if (rvt_invalidate_rkey(sqp,
2903                                                 wqe->wr.ex.invalidate_rkey))
2904                                 send_status = IB_WC_LOC_PROT_ERR;
2905                         local_ops = 1;
2906                 }
2907                 goto send_comp;
2908
2909         case IB_WR_SEND_WITH_INV:
2910         case IB_WR_SEND_WITH_IMM:
2911         case IB_WR_SEND:
2912                 ret = rvt_get_rwqe(qp, false);
2913                 if (ret < 0)
2914                         goto op_err;
2915                 if (!ret)
2916                         goto rnr_nak;
2917                 if (wqe->length > qp->r_len)
2918                         goto inv_err;
2919                 switch (wqe->wr.opcode) {
2920                 case IB_WR_SEND_WITH_INV:
2921                         if (!rvt_invalidate_rkey(qp,
2922                                                  wqe->wr.ex.invalidate_rkey)) {
2923                                 wc.wc_flags = IB_WC_WITH_INVALIDATE;
2924                                 wc.ex.invalidate_rkey =
2925                                         wqe->wr.ex.invalidate_rkey;
2926                         }
2927                         break;
2928                 case IB_WR_SEND_WITH_IMM:
2929                         wc.wc_flags = IB_WC_WITH_IMM;
2930                         wc.ex.imm_data = wqe->wr.ex.imm_data;
2931                         break;
2932                 default:
2933                         break;
2934                 }
2935                 break;
2936
2937         case IB_WR_RDMA_WRITE_WITH_IMM:
2938                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2939                         goto inv_err;
2940                 wc.wc_flags = IB_WC_WITH_IMM;
2941                 wc.ex.imm_data = wqe->wr.ex.imm_data;
2942                 ret = rvt_get_rwqe(qp, true);
2943                 if (ret < 0)
2944                         goto op_err;
2945                 if (!ret)
2946                         goto rnr_nak;
2947                 /* skip copy_last set and qp_access_flags recheck */
2948                 goto do_write;
2949         case IB_WR_RDMA_WRITE:
2950                 copy_last = rvt_is_user_qp(qp);
2951                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
2952                         goto inv_err;
2953 do_write:
2954                 if (wqe->length == 0)
2955                         break;
2956                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length,
2957                                           wqe->rdma_wr.remote_addr,
2958                                           wqe->rdma_wr.rkey,
2959                                           IB_ACCESS_REMOTE_WRITE)))
2960                         goto acc_err;
2961                 qp->r_sge.sg_list = NULL;
2962                 qp->r_sge.num_sge = 1;
2963                 qp->r_sge.total_len = wqe->length;
2964                 break;
2965
2966         case IB_WR_RDMA_READ:
2967                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
2968                         goto inv_err;
2969                 if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length,
2970                                           wqe->rdma_wr.remote_addr,
2971                                           wqe->rdma_wr.rkey,
2972                                           IB_ACCESS_REMOTE_READ)))
2973                         goto acc_err;
2974                 release = false;
2975                 sqp->s_sge.sg_list = NULL;
2976                 sqp->s_sge.num_sge = 1;
2977                 qp->r_sge.sge = wqe->sg_list[0];
2978                 qp->r_sge.sg_list = wqe->sg_list + 1;
2979                 qp->r_sge.num_sge = wqe->wr.num_sge;
2980                 qp->r_sge.total_len = wqe->length;
2981                 break;
2982
2983         case IB_WR_ATOMIC_CMP_AND_SWP:
2984         case IB_WR_ATOMIC_FETCH_AND_ADD:
2985                 if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
2986                         goto inv_err;
2987                 if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
2988                                           wqe->atomic_wr.remote_addr,
2989                                           wqe->atomic_wr.rkey,
2990                                           IB_ACCESS_REMOTE_ATOMIC)))
2991                         goto acc_err;
2992                 /* Perform atomic OP and save result. */
2993                 maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
2994                 sdata = wqe->atomic_wr.compare_add;
2995                 *(u64 *)sqp->s_sge.sge.vaddr =
2996                         (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ?
2997                         (u64)atomic64_add_return(sdata, maddr) - sdata :
2998                         (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
2999                                       sdata, wqe->atomic_wr.swap);
3000                 rvt_put_mr(qp->r_sge.sge.mr);
3001                 qp->r_sge.num_sge = 0;
3002                 goto send_comp;
3003
3004         default:
3005                 send_status = IB_WC_LOC_QP_OP_ERR;
3006                 goto serr;
3007         }
3008
3009         sge = &sqp->s_sge.sge;
3010         while (sqp->s_len) {
3011                 u32 len = rvt_get_sge_length(sge, sqp->s_len);
3012
3013                 WARN_ON_ONCE(len == 0);
3014                 rvt_copy_sge(qp, &qp->r_sge, sge->vaddr,
3015                              len, release, copy_last);
3016                 rvt_update_sge(&sqp->s_sge, len, !release);
3017                 sqp->s_len -= len;
3018         }
3019         if (release)
3020                 rvt_put_ss(&qp->r_sge);
3021
3022         if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
3023                 goto send_comp;
3024
3025         if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM)
3026                 wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
3027         else
3028                 wc.opcode = IB_WC_RECV;
3029         wc.wr_id = qp->r_wr_id;
3030         wc.status = IB_WC_SUCCESS;
3031         wc.byte_len = wqe->length;
3032         wc.qp = &qp->ibqp;
3033         wc.src_qp = qp->remote_qpn;
3034         wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX;
3035         wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr);
3036         wc.port_num = 1;
3037         /* Signal completion event if the solicited bit is set. */
3038         rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
3039                      wqe->wr.send_flags & IB_SEND_SOLICITED);
3040
3041 send_comp:
3042         spin_unlock_irqrestore(&qp->r_lock, flags);
3043         spin_lock_irqsave(&sqp->s_lock, flags);
3044         rvp->n_loop_pkts++;
3045 flush_send:
3046         sqp->s_rnr_retry = sqp->s_rnr_retry_cnt;
3047         rvt_send_complete(sqp, wqe, send_status);
3048         if (local_ops) {
3049                 atomic_dec(&sqp->local_ops_pending);
3050                 local_ops = 0;
3051         }
3052         goto again;
3053
3054 rnr_nak:
3055         /* Handle RNR NAK */
3056         if (qp->ibqp.qp_type == IB_QPT_UC)
3057                 goto send_comp;
3058         rvp->n_rnr_naks++;
3059         /*
3060          * Note: we don't need the s_lock held since the BUSY flag
3061          * makes this single threaded.
3062          */
3063         if (sqp->s_rnr_retry == 0) {
3064                 send_status = IB_WC_RNR_RETRY_EXC_ERR;
3065                 goto serr;
3066         }
3067         if (sqp->s_rnr_retry_cnt < 7)
3068                 sqp->s_rnr_retry--;
3069         spin_unlock_irqrestore(&qp->r_lock, flags);
3070         spin_lock_irqsave(&sqp->s_lock, flags);
3071         if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK))
3072                 goto clr_busy;
3073         rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer <<
3074                                 IB_AETH_CREDIT_SHIFT);
3075         goto clr_busy;
3076
3077 op_err:
3078         send_status = IB_WC_REM_OP_ERR;
3079         wc.status = IB_WC_LOC_QP_OP_ERR;
3080         goto err;
3081
3082 inv_err:
3083         send_status =
3084                 sqp->ibqp.qp_type == IB_QPT_RC ?
3085                         IB_WC_REM_INV_REQ_ERR :
3086                         IB_WC_SUCCESS;
3087         wc.status = IB_WC_LOC_QP_OP_ERR;
3088         goto err;
3089
3090 acc_err:
3091         send_status = IB_WC_REM_ACCESS_ERR;
3092         wc.status = IB_WC_LOC_PROT_ERR;
3093 err:
3094         /* responder goes to error state */
3095         rvt_rc_error(qp, wc.status);
3096
3097 serr:
3098         spin_unlock_irqrestore(&qp->r_lock, flags);
3099 serr_no_r_lock:
3100         spin_lock_irqsave(&sqp->s_lock, flags);
3101         rvt_send_complete(sqp, wqe, send_status);
3102         if (sqp->ibqp.qp_type == IB_QPT_RC) {
3103                 int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR);
3104
3105                 sqp->s_flags &= ~RVT_S_BUSY;
3106                 spin_unlock_irqrestore(&sqp->s_lock, flags);
3107                 if (lastwqe) {
3108                         struct ib_event ev;
3109
3110                         ev.device = sqp->ibqp.device;
3111                         ev.element.qp = &sqp->ibqp;
3112                         ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
3113                         sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context);
3114                 }
3115                 goto done;
3116         }
3117 clr_busy:
3118         sqp->s_flags &= ~RVT_S_BUSY;
3119 unlock:
3120         spin_unlock_irqrestore(&sqp->s_lock, flags);
3121 done:
3122         rcu_read_unlock();
3123 }
3124 EXPORT_SYMBOL(rvt_ruc_loopback);