Merge tag 'linux-watchdog-4.16-rc1' of git://www.linux-watchdog.org/linux-watchdog
[sfrench/cifs-2.6.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57                                struct rdma_ah_attr *ah_attr);
58
59 static const char * const ib_events[] = {
60         [IB_EVENT_CQ_ERR]               = "CQ error",
61         [IB_EVENT_QP_FATAL]             = "QP fatal error",
62         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
63         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
64         [IB_EVENT_COMM_EST]             = "communication established",
65         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
66         [IB_EVENT_PATH_MIG]             = "path migration successful",
67         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
68         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
69         [IB_EVENT_PORT_ACTIVE]          = "port active",
70         [IB_EVENT_PORT_ERR]             = "port error",
71         [IB_EVENT_LID_CHANGE]           = "LID change",
72         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
73         [IB_EVENT_SM_CHANGE]            = "SM change",
74         [IB_EVENT_SRQ_ERR]              = "SRQ error",
75         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
76         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
77         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
78         [IB_EVENT_GID_CHANGE]           = "GID changed",
79 };
80
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83         size_t index = event;
84
85         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86                         ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89
90 static const char * const wc_statuses[] = {
91         [IB_WC_SUCCESS]                 = "success",
92         [IB_WC_LOC_LEN_ERR]             = "local length error",
93         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
94         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
95         [IB_WC_LOC_PROT_ERR]            = "local protection error",
96         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
97         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
98         [IB_WC_BAD_RESP_ERR]            = "bad response error",
99         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
100         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
101         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
102         [IB_WC_REM_OP_ERR]              = "remote operation error",
103         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
104         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
105         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
106         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
107         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
108         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
109         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
110         [IB_WC_FATAL_ERR]               = "fatal error",
111         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
112         [IB_WC_GENERAL_ERR]             = "general error",
113 };
114
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117         size_t index = status;
118
119         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120                         wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126         switch (rate) {
127         case IB_RATE_2_5_GBPS: return   1;
128         case IB_RATE_5_GBPS:   return   2;
129         case IB_RATE_10_GBPS:  return   4;
130         case IB_RATE_20_GBPS:  return   8;
131         case IB_RATE_30_GBPS:  return  12;
132         case IB_RATE_40_GBPS:  return  16;
133         case IB_RATE_60_GBPS:  return  24;
134         case IB_RATE_80_GBPS:  return  32;
135         case IB_RATE_120_GBPS: return  48;
136         case IB_RATE_14_GBPS:  return   6;
137         case IB_RATE_56_GBPS:  return  22;
138         case IB_RATE_112_GBPS: return  45;
139         case IB_RATE_168_GBPS: return  67;
140         case IB_RATE_25_GBPS:  return  10;
141         case IB_RATE_100_GBPS: return  40;
142         case IB_RATE_200_GBPS: return  80;
143         case IB_RATE_300_GBPS: return 120;
144         default:               return  -1;
145         }
146 }
147 EXPORT_SYMBOL(ib_rate_to_mult);
148
149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
150 {
151         switch (mult) {
152         case 1:   return IB_RATE_2_5_GBPS;
153         case 2:   return IB_RATE_5_GBPS;
154         case 4:   return IB_RATE_10_GBPS;
155         case 8:   return IB_RATE_20_GBPS;
156         case 12:  return IB_RATE_30_GBPS;
157         case 16:  return IB_RATE_40_GBPS;
158         case 24:  return IB_RATE_60_GBPS;
159         case 32:  return IB_RATE_80_GBPS;
160         case 48:  return IB_RATE_120_GBPS;
161         case 6:   return IB_RATE_14_GBPS;
162         case 22:  return IB_RATE_56_GBPS;
163         case 45:  return IB_RATE_112_GBPS;
164         case 67:  return IB_RATE_168_GBPS;
165         case 10:  return IB_RATE_25_GBPS;
166         case 40:  return IB_RATE_100_GBPS;
167         case 80:  return IB_RATE_200_GBPS;
168         case 120: return IB_RATE_300_GBPS;
169         default:  return IB_RATE_PORT_CURRENT;
170         }
171 }
172 EXPORT_SYMBOL(mult_to_ib_rate);
173
174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
175 {
176         switch (rate) {
177         case IB_RATE_2_5_GBPS: return 2500;
178         case IB_RATE_5_GBPS:   return 5000;
179         case IB_RATE_10_GBPS:  return 10000;
180         case IB_RATE_20_GBPS:  return 20000;
181         case IB_RATE_30_GBPS:  return 30000;
182         case IB_RATE_40_GBPS:  return 40000;
183         case IB_RATE_60_GBPS:  return 60000;
184         case IB_RATE_80_GBPS:  return 80000;
185         case IB_RATE_120_GBPS: return 120000;
186         case IB_RATE_14_GBPS:  return 14062;
187         case IB_RATE_56_GBPS:  return 56250;
188         case IB_RATE_112_GBPS: return 112500;
189         case IB_RATE_168_GBPS: return 168750;
190         case IB_RATE_25_GBPS:  return 25781;
191         case IB_RATE_100_GBPS: return 103125;
192         case IB_RATE_200_GBPS: return 206250;
193         case IB_RATE_300_GBPS: return 309375;
194         default:               return -1;
195         }
196 }
197 EXPORT_SYMBOL(ib_rate_to_mbps);
198
199 __attribute_const__ enum rdma_transport_type
200 rdma_node_get_transport(enum rdma_node_type node_type)
201 {
202
203         if (node_type == RDMA_NODE_USNIC)
204                 return RDMA_TRANSPORT_USNIC;
205         if (node_type == RDMA_NODE_USNIC_UDP)
206                 return RDMA_TRANSPORT_USNIC_UDP;
207         if (node_type == RDMA_NODE_RNIC)
208                 return RDMA_TRANSPORT_IWARP;
209
210         return RDMA_TRANSPORT_IB;
211 }
212 EXPORT_SYMBOL(rdma_node_get_transport);
213
214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
215 {
216         enum rdma_transport_type lt;
217         if (device->get_link_layer)
218                 return device->get_link_layer(device, port_num);
219
220         lt = rdma_node_get_transport(device->node_type);
221         if (lt == RDMA_TRANSPORT_IB)
222                 return IB_LINK_LAYER_INFINIBAND;
223
224         return IB_LINK_LAYER_ETHERNET;
225 }
226 EXPORT_SYMBOL(rdma_port_get_link_layer);
227
228 /* Protection domains */
229
230 /**
231  * ib_alloc_pd - Allocates an unused protection domain.
232  * @device: The device on which to allocate the protection domain.
233  *
234  * A protection domain object provides an association between QPs, shared
235  * receive queues, address handles, memory regions, and memory windows.
236  *
237  * Every PD has a local_dma_lkey which can be used as the lkey value for local
238  * memory operations.
239  */
240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
241                 const char *caller)
242 {
243         struct ib_pd *pd;
244         int mr_access_flags = 0;
245
246         pd = device->alloc_pd(device, NULL, NULL);
247         if (IS_ERR(pd))
248                 return pd;
249
250         pd->device = device;
251         pd->uobject = NULL;
252         pd->__internal_mr = NULL;
253         atomic_set(&pd->usecnt, 0);
254         pd->flags = flags;
255
256         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
257                 pd->local_dma_lkey = device->local_dma_lkey;
258         else
259                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
260
261         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
262                 pr_warn("%s: enabling unsafe global rkey\n", caller);
263                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
264         }
265
266         pd->res.type = RDMA_RESTRACK_PD;
267         pd->res.kern_name = caller;
268         rdma_restrack_add(&pd->res);
269
270         if (mr_access_flags) {
271                 struct ib_mr *mr;
272
273                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
274                 if (IS_ERR(mr)) {
275                         ib_dealloc_pd(pd);
276                         return ERR_CAST(mr);
277                 }
278
279                 mr->device      = pd->device;
280                 mr->pd          = pd;
281                 mr->uobject     = NULL;
282                 mr->need_inval  = false;
283
284                 pd->__internal_mr = mr;
285
286                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
287                         pd->local_dma_lkey = pd->__internal_mr->lkey;
288
289                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
290                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
291         }
292
293         return pd;
294 }
295 EXPORT_SYMBOL(__ib_alloc_pd);
296
297 /**
298  * ib_dealloc_pd - Deallocates a protection domain.
299  * @pd: The protection domain to deallocate.
300  *
301  * It is an error to call this function while any resources in the pd still
302  * exist.  The caller is responsible to synchronously destroy them and
303  * guarantee no new allocations will happen.
304  */
305 void ib_dealloc_pd(struct ib_pd *pd)
306 {
307         int ret;
308
309         if (pd->__internal_mr) {
310                 ret = pd->device->dereg_mr(pd->__internal_mr);
311                 WARN_ON(ret);
312                 pd->__internal_mr = NULL;
313         }
314
315         /* uverbs manipulates usecnt with proper locking, while the kabi
316            requires the caller to guarantee we can't race here. */
317         WARN_ON(atomic_read(&pd->usecnt));
318
319         rdma_restrack_del(&pd->res);
320         /* Making delalloc_pd a void return is a WIP, no driver should return
321            an error here. */
322         ret = pd->device->dealloc_pd(pd);
323         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
324 }
325 EXPORT_SYMBOL(ib_dealloc_pd);
326
327 /* Address handles */
328
329 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
330                                      struct rdma_ah_attr *ah_attr,
331                                      struct ib_udata *udata)
332 {
333         struct ib_ah *ah;
334
335         ah = pd->device->create_ah(pd, ah_attr, udata);
336
337         if (!IS_ERR(ah)) {
338                 ah->device  = pd->device;
339                 ah->pd      = pd;
340                 ah->uobject = NULL;
341                 ah->type    = ah_attr->type;
342                 atomic_inc(&pd->usecnt);
343         }
344
345         return ah;
346 }
347
348 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
349 {
350         return _rdma_create_ah(pd, ah_attr, NULL);
351 }
352 EXPORT_SYMBOL(rdma_create_ah);
353
354 /**
355  * rdma_create_user_ah - Creates an address handle for the
356  * given address vector.
357  * It resolves destination mac address for ah attribute of RoCE type.
358  * @pd: The protection domain associated with the address handle.
359  * @ah_attr: The attributes of the address vector.
360  * @udata: pointer to user's input output buffer information need by
361  *         provider driver.
362  *
363  * It returns 0 on success and returns appropriate error code on error.
364  * The address handle is used to reference a local or global destination
365  * in all UD QP post sends.
366  */
367 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
368                                   struct rdma_ah_attr *ah_attr,
369                                   struct ib_udata *udata)
370 {
371         int err;
372
373         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
374                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
375                 if (err)
376                         return ERR_PTR(err);
377         }
378
379         return _rdma_create_ah(pd, ah_attr, udata);
380 }
381 EXPORT_SYMBOL(rdma_create_user_ah);
382
383 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
384 {
385         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
386         struct iphdr ip4h_checked;
387         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
388
389         /* If it's IPv6, the version must be 6, otherwise, the first
390          * 20 bytes (before the IPv4 header) are garbled.
391          */
392         if (ip6h->version != 6)
393                 return (ip4h->version == 4) ? 4 : 0;
394         /* version may be 6 or 4 because the first 20 bytes could be garbled */
395
396         /* RoCE v2 requires no options, thus header length
397          * must be 5 words
398          */
399         if (ip4h->ihl != 5)
400                 return 6;
401
402         /* Verify checksum.
403          * We can't write on scattered buffers so we need to copy to
404          * temp buffer.
405          */
406         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
407         ip4h_checked.check = 0;
408         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
409         /* if IPv4 header checksum is OK, believe it */
410         if (ip4h->check == ip4h_checked.check)
411                 return 4;
412         return 6;
413 }
414 EXPORT_SYMBOL(ib_get_rdma_header_version);
415
416 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
417                                                      u8 port_num,
418                                                      const struct ib_grh *grh)
419 {
420         int grh_version;
421
422         if (rdma_protocol_ib(device, port_num))
423                 return RDMA_NETWORK_IB;
424
425         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
426
427         if (grh_version == 4)
428                 return RDMA_NETWORK_IPV4;
429
430         if (grh->next_hdr == IPPROTO_UDP)
431                 return RDMA_NETWORK_IPV6;
432
433         return RDMA_NETWORK_ROCE_V1;
434 }
435
436 struct find_gid_index_context {
437         u16 vlan_id;
438         enum ib_gid_type gid_type;
439 };
440
441 static bool find_gid_index(const union ib_gid *gid,
442                            const struct ib_gid_attr *gid_attr,
443                            void *context)
444 {
445         struct find_gid_index_context *ctx = context;
446
447         if (ctx->gid_type != gid_attr->gid_type)
448                 return false;
449
450         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
451             (is_vlan_dev(gid_attr->ndev) &&
452              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
453                 return false;
454
455         return true;
456 }
457
458 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
459                                    u16 vlan_id, const union ib_gid *sgid,
460                                    enum ib_gid_type gid_type,
461                                    u16 *gid_index)
462 {
463         struct find_gid_index_context context = {.vlan_id = vlan_id,
464                                                  .gid_type = gid_type};
465
466         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
467                                      &context, gid_index);
468 }
469
470 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
471                               enum rdma_network_type net_type,
472                               union ib_gid *sgid, union ib_gid *dgid)
473 {
474         struct sockaddr_in  src_in;
475         struct sockaddr_in  dst_in;
476         __be32 src_saddr, dst_saddr;
477
478         if (!sgid || !dgid)
479                 return -EINVAL;
480
481         if (net_type == RDMA_NETWORK_IPV4) {
482                 memcpy(&src_in.sin_addr.s_addr,
483                        &hdr->roce4grh.saddr, 4);
484                 memcpy(&dst_in.sin_addr.s_addr,
485                        &hdr->roce4grh.daddr, 4);
486                 src_saddr = src_in.sin_addr.s_addr;
487                 dst_saddr = dst_in.sin_addr.s_addr;
488                 ipv6_addr_set_v4mapped(src_saddr,
489                                        (struct in6_addr *)sgid);
490                 ipv6_addr_set_v4mapped(dst_saddr,
491                                        (struct in6_addr *)dgid);
492                 return 0;
493         } else if (net_type == RDMA_NETWORK_IPV6 ||
494                    net_type == RDMA_NETWORK_IB) {
495                 *dgid = hdr->ibgrh.dgid;
496                 *sgid = hdr->ibgrh.sgid;
497                 return 0;
498         } else {
499                 return -EINVAL;
500         }
501 }
502 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
503
504 /* Resolve destination mac address and hop limit for unicast destination
505  * GID entry, considering the source GID entry as well.
506  * ah_attribute must have have valid port_num, sgid_index.
507  */
508 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
509                                        struct rdma_ah_attr *ah_attr)
510 {
511         struct ib_gid_attr sgid_attr;
512         struct ib_global_route *grh;
513         int hop_limit = 0xff;
514         union ib_gid sgid;
515         int ret;
516
517         grh = rdma_ah_retrieve_grh(ah_attr);
518
519         ret = ib_query_gid(device,
520                            rdma_ah_get_port_num(ah_attr),
521                            grh->sgid_index,
522                            &sgid, &sgid_attr);
523         if (ret || !sgid_attr.ndev) {
524                 if (!ret)
525                         ret = -ENXIO;
526                 return ret;
527         }
528
529         /* If destination is link local and source GID is RoCEv1,
530          * IP stack is not used.
531          */
532         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
533             sgid_attr.gid_type == IB_GID_TYPE_ROCE) {
534                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
535                                 ah_attr->roce.dmac);
536                 goto done;
537         }
538
539         ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
540                                            ah_attr->roce.dmac,
541                                            sgid_attr.ndev, &hop_limit);
542 done:
543         dev_put(sgid_attr.ndev);
544
545         grh->hop_limit = hop_limit;
546         return ret;
547 }
548
549 /*
550  * This function initializes address handle attributes from the incoming packet.
551  * Incoming packet has dgid of the receiver node on which this code is
552  * getting executed and, sgid contains the GID of the sender.
553  *
554  * When resolving mac address of destination, the arrived dgid is used
555  * as sgid and, sgid is used as dgid because sgid contains destinations
556  * GID whom to respond to.
557  *
558  */
559 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
560                             const struct ib_wc *wc, const struct ib_grh *grh,
561                             struct rdma_ah_attr *ah_attr)
562 {
563         u32 flow_class;
564         u16 gid_index;
565         int ret;
566         enum rdma_network_type net_type = RDMA_NETWORK_IB;
567         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
568         int hoplimit = 0xff;
569         union ib_gid dgid;
570         union ib_gid sgid;
571
572         might_sleep();
573
574         memset(ah_attr, 0, sizeof *ah_attr);
575         ah_attr->type = rdma_ah_find_type(device, port_num);
576         if (rdma_cap_eth_ah(device, port_num)) {
577                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
578                         net_type = wc->network_hdr_type;
579                 else
580                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
581                 gid_type = ib_network_to_gid_type(net_type);
582         }
583         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
584                                         &sgid, &dgid);
585         if (ret)
586                 return ret;
587
588         rdma_ah_set_sl(ah_attr, wc->sl);
589         rdma_ah_set_port_num(ah_attr, port_num);
590
591         if (rdma_protocol_roce(device, port_num)) {
592                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
593                                 wc->vlan_id : 0xffff;
594
595                 if (!(wc->wc_flags & IB_WC_GRH))
596                         return -EPROTOTYPE;
597
598                 ret = get_sgid_index_from_eth(device, port_num,
599                                               vlan_id, &dgid,
600                                               gid_type, &gid_index);
601                 if (ret)
602                         return ret;
603
604                 flow_class = be32_to_cpu(grh->version_tclass_flow);
605                 rdma_ah_set_grh(ah_attr, &sgid,
606                                 flow_class & 0xFFFFF,
607                                 (u8)gid_index, hoplimit,
608                                 (flow_class >> 20) & 0xFF);
609                 return ib_resolve_unicast_gid_dmac(device, ah_attr);
610         } else {
611                 rdma_ah_set_dlid(ah_attr, wc->slid);
612                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
613
614                 if (wc->wc_flags & IB_WC_GRH) {
615                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
616                                 ret = ib_find_cached_gid_by_port(device, &dgid,
617                                                                  IB_GID_TYPE_IB,
618                                                                  port_num, NULL,
619                                                                  &gid_index);
620                                 if (ret)
621                                         return ret;
622                         } else {
623                                 gid_index = 0;
624                         }
625
626                         flow_class = be32_to_cpu(grh->version_tclass_flow);
627                         rdma_ah_set_grh(ah_attr, &sgid,
628                                         flow_class & 0xFFFFF,
629                                         (u8)gid_index, hoplimit,
630                                         (flow_class >> 20) & 0xFF);
631                 }
632                 return 0;
633         }
634 }
635 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
636
637 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
638                                    const struct ib_grh *grh, u8 port_num)
639 {
640         struct rdma_ah_attr ah_attr;
641         int ret;
642
643         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
644         if (ret)
645                 return ERR_PTR(ret);
646
647         return rdma_create_ah(pd, &ah_attr);
648 }
649 EXPORT_SYMBOL(ib_create_ah_from_wc);
650
651 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
652 {
653         if (ah->type != ah_attr->type)
654                 return -EINVAL;
655
656         return ah->device->modify_ah ?
657                 ah->device->modify_ah(ah, ah_attr) :
658                 -ENOSYS;
659 }
660 EXPORT_SYMBOL(rdma_modify_ah);
661
662 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
663 {
664         return ah->device->query_ah ?
665                 ah->device->query_ah(ah, ah_attr) :
666                 -ENOSYS;
667 }
668 EXPORT_SYMBOL(rdma_query_ah);
669
670 int rdma_destroy_ah(struct ib_ah *ah)
671 {
672         struct ib_pd *pd;
673         int ret;
674
675         pd = ah->pd;
676         ret = ah->device->destroy_ah(ah);
677         if (!ret)
678                 atomic_dec(&pd->usecnt);
679
680         return ret;
681 }
682 EXPORT_SYMBOL(rdma_destroy_ah);
683
684 /* Shared receive queues */
685
686 struct ib_srq *ib_create_srq(struct ib_pd *pd,
687                              struct ib_srq_init_attr *srq_init_attr)
688 {
689         struct ib_srq *srq;
690
691         if (!pd->device->create_srq)
692                 return ERR_PTR(-ENOSYS);
693
694         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
695
696         if (!IS_ERR(srq)) {
697                 srq->device        = pd->device;
698                 srq->pd            = pd;
699                 srq->uobject       = NULL;
700                 srq->event_handler = srq_init_attr->event_handler;
701                 srq->srq_context   = srq_init_attr->srq_context;
702                 srq->srq_type      = srq_init_attr->srq_type;
703                 if (ib_srq_has_cq(srq->srq_type)) {
704                         srq->ext.cq   = srq_init_attr->ext.cq;
705                         atomic_inc(&srq->ext.cq->usecnt);
706                 }
707                 if (srq->srq_type == IB_SRQT_XRC) {
708                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
709                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
710                 }
711                 atomic_inc(&pd->usecnt);
712                 atomic_set(&srq->usecnt, 0);
713         }
714
715         return srq;
716 }
717 EXPORT_SYMBOL(ib_create_srq);
718
719 int ib_modify_srq(struct ib_srq *srq,
720                   struct ib_srq_attr *srq_attr,
721                   enum ib_srq_attr_mask srq_attr_mask)
722 {
723         return srq->device->modify_srq ?
724                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
725                 -ENOSYS;
726 }
727 EXPORT_SYMBOL(ib_modify_srq);
728
729 int ib_query_srq(struct ib_srq *srq,
730                  struct ib_srq_attr *srq_attr)
731 {
732         return srq->device->query_srq ?
733                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
734 }
735 EXPORT_SYMBOL(ib_query_srq);
736
737 int ib_destroy_srq(struct ib_srq *srq)
738 {
739         struct ib_pd *pd;
740         enum ib_srq_type srq_type;
741         struct ib_xrcd *uninitialized_var(xrcd);
742         struct ib_cq *uninitialized_var(cq);
743         int ret;
744
745         if (atomic_read(&srq->usecnt))
746                 return -EBUSY;
747
748         pd = srq->pd;
749         srq_type = srq->srq_type;
750         if (ib_srq_has_cq(srq_type))
751                 cq = srq->ext.cq;
752         if (srq_type == IB_SRQT_XRC)
753                 xrcd = srq->ext.xrc.xrcd;
754
755         ret = srq->device->destroy_srq(srq);
756         if (!ret) {
757                 atomic_dec(&pd->usecnt);
758                 if (srq_type == IB_SRQT_XRC)
759                         atomic_dec(&xrcd->usecnt);
760                 if (ib_srq_has_cq(srq_type))
761                         atomic_dec(&cq->usecnt);
762         }
763
764         return ret;
765 }
766 EXPORT_SYMBOL(ib_destroy_srq);
767
768 /* Queue pairs */
769
770 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
771 {
772         struct ib_qp *qp = context;
773         unsigned long flags;
774
775         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
776         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
777                 if (event->element.qp->event_handler)
778                         event->element.qp->event_handler(event, event->element.qp->qp_context);
779         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
780 }
781
782 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
783 {
784         mutex_lock(&xrcd->tgt_qp_mutex);
785         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
786         mutex_unlock(&xrcd->tgt_qp_mutex);
787 }
788
789 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
790                                   void (*event_handler)(struct ib_event *, void *),
791                                   void *qp_context)
792 {
793         struct ib_qp *qp;
794         unsigned long flags;
795         int err;
796
797         qp = kzalloc(sizeof *qp, GFP_KERNEL);
798         if (!qp)
799                 return ERR_PTR(-ENOMEM);
800
801         qp->real_qp = real_qp;
802         err = ib_open_shared_qp_security(qp, real_qp->device);
803         if (err) {
804                 kfree(qp);
805                 return ERR_PTR(err);
806         }
807
808         qp->real_qp = real_qp;
809         atomic_inc(&real_qp->usecnt);
810         qp->device = real_qp->device;
811         qp->event_handler = event_handler;
812         qp->qp_context = qp_context;
813         qp->qp_num = real_qp->qp_num;
814         qp->qp_type = real_qp->qp_type;
815
816         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
817         list_add(&qp->open_list, &real_qp->open_list);
818         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
819
820         return qp;
821 }
822
823 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
824                          struct ib_qp_open_attr *qp_open_attr)
825 {
826         struct ib_qp *qp, *real_qp;
827
828         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
829                 return ERR_PTR(-EINVAL);
830
831         qp = ERR_PTR(-EINVAL);
832         mutex_lock(&xrcd->tgt_qp_mutex);
833         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
834                 if (real_qp->qp_num == qp_open_attr->qp_num) {
835                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
836                                           qp_open_attr->qp_context);
837                         break;
838                 }
839         }
840         mutex_unlock(&xrcd->tgt_qp_mutex);
841         return qp;
842 }
843 EXPORT_SYMBOL(ib_open_qp);
844
845 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
846                 struct ib_qp_init_attr *qp_init_attr)
847 {
848         struct ib_qp *real_qp = qp;
849
850         qp->event_handler = __ib_shared_qp_event_handler;
851         qp->qp_context = qp;
852         qp->pd = NULL;
853         qp->send_cq = qp->recv_cq = NULL;
854         qp->srq = NULL;
855         qp->xrcd = qp_init_attr->xrcd;
856         atomic_inc(&qp_init_attr->xrcd->usecnt);
857         INIT_LIST_HEAD(&qp->open_list);
858
859         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
860                           qp_init_attr->qp_context);
861         if (!IS_ERR(qp))
862                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
863         else
864                 real_qp->device->destroy_qp(real_qp);
865         return qp;
866 }
867
868 struct ib_qp *ib_create_qp(struct ib_pd *pd,
869                            struct ib_qp_init_attr *qp_init_attr)
870 {
871         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
872         struct ib_qp *qp;
873         int ret;
874
875         if (qp_init_attr->rwq_ind_tbl &&
876             (qp_init_attr->recv_cq ||
877             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
878             qp_init_attr->cap.max_recv_sge))
879                 return ERR_PTR(-EINVAL);
880
881         /*
882          * If the callers is using the RDMA API calculate the resources
883          * needed for the RDMA READ/WRITE operations.
884          *
885          * Note that these callers need to pass in a port number.
886          */
887         if (qp_init_attr->cap.max_rdma_ctxs)
888                 rdma_rw_init_qp(device, qp_init_attr);
889
890         qp = _ib_create_qp(device, pd, qp_init_attr, NULL);
891         if (IS_ERR(qp))
892                 return qp;
893
894         ret = ib_create_qp_security(qp, device);
895         if (ret) {
896                 ib_destroy_qp(qp);
897                 return ERR_PTR(ret);
898         }
899
900         qp->real_qp    = qp;
901         qp->uobject    = NULL;
902         qp->qp_type    = qp_init_attr->qp_type;
903         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
904
905         atomic_set(&qp->usecnt, 0);
906         qp->mrs_used = 0;
907         spin_lock_init(&qp->mr_lock);
908         INIT_LIST_HEAD(&qp->rdma_mrs);
909         INIT_LIST_HEAD(&qp->sig_mrs);
910         qp->port = 0;
911
912         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
913                 return ib_create_xrc_qp(qp, qp_init_attr);
914
915         qp->event_handler = qp_init_attr->event_handler;
916         qp->qp_context = qp_init_attr->qp_context;
917         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
918                 qp->recv_cq = NULL;
919                 qp->srq = NULL;
920         } else {
921                 qp->recv_cq = qp_init_attr->recv_cq;
922                 if (qp_init_attr->recv_cq)
923                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
924                 qp->srq = qp_init_attr->srq;
925                 if (qp->srq)
926                         atomic_inc(&qp_init_attr->srq->usecnt);
927         }
928
929         qp->send_cq = qp_init_attr->send_cq;
930         qp->xrcd    = NULL;
931
932         atomic_inc(&pd->usecnt);
933         if (qp_init_attr->send_cq)
934                 atomic_inc(&qp_init_attr->send_cq->usecnt);
935         if (qp_init_attr->rwq_ind_tbl)
936                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
937
938         if (qp_init_attr->cap.max_rdma_ctxs) {
939                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
940                 if (ret) {
941                         pr_err("failed to init MR pool ret= %d\n", ret);
942                         ib_destroy_qp(qp);
943                         return ERR_PTR(ret);
944                 }
945         }
946
947         /*
948          * Note: all hw drivers guarantee that max_send_sge is lower than
949          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
950          * max_send_sge <= max_sge_rd.
951          */
952         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
953         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
954                                  device->attrs.max_sge_rd);
955
956         return qp;
957 }
958 EXPORT_SYMBOL(ib_create_qp);
959
960 static const struct {
961         int                     valid;
962         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
963         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
964 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
965         [IB_QPS_RESET] = {
966                 [IB_QPS_RESET] = { .valid = 1 },
967                 [IB_QPS_INIT]  = {
968                         .valid = 1,
969                         .req_param = {
970                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
971                                                 IB_QP_PORT                      |
972                                                 IB_QP_QKEY),
973                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
974                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
975                                                 IB_QP_PORT                      |
976                                                 IB_QP_ACCESS_FLAGS),
977                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
978                                                 IB_QP_PORT                      |
979                                                 IB_QP_ACCESS_FLAGS),
980                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
981                                                 IB_QP_PORT                      |
982                                                 IB_QP_ACCESS_FLAGS),
983                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
984                                                 IB_QP_PORT                      |
985                                                 IB_QP_ACCESS_FLAGS),
986                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
987                                                 IB_QP_QKEY),
988                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
989                                                 IB_QP_QKEY),
990                         }
991                 },
992         },
993         [IB_QPS_INIT]  = {
994                 [IB_QPS_RESET] = { .valid = 1 },
995                 [IB_QPS_ERR] =   { .valid = 1 },
996                 [IB_QPS_INIT]  = {
997                         .valid = 1,
998                         .opt_param = {
999                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1000                                                 IB_QP_PORT                      |
1001                                                 IB_QP_QKEY),
1002                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1003                                                 IB_QP_PORT                      |
1004                                                 IB_QP_ACCESS_FLAGS),
1005                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1006                                                 IB_QP_PORT                      |
1007                                                 IB_QP_ACCESS_FLAGS),
1008                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1009                                                 IB_QP_PORT                      |
1010                                                 IB_QP_ACCESS_FLAGS),
1011                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1012                                                 IB_QP_PORT                      |
1013                                                 IB_QP_ACCESS_FLAGS),
1014                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1015                                                 IB_QP_QKEY),
1016                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1017                                                 IB_QP_QKEY),
1018                         }
1019                 },
1020                 [IB_QPS_RTR]   = {
1021                         .valid = 1,
1022                         .req_param = {
1023                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1024                                                 IB_QP_PATH_MTU                  |
1025                                                 IB_QP_DEST_QPN                  |
1026                                                 IB_QP_RQ_PSN),
1027                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1028                                                 IB_QP_PATH_MTU                  |
1029                                                 IB_QP_DEST_QPN                  |
1030                                                 IB_QP_RQ_PSN                    |
1031                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1032                                                 IB_QP_MIN_RNR_TIMER),
1033                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1034                                                 IB_QP_PATH_MTU                  |
1035                                                 IB_QP_DEST_QPN                  |
1036                                                 IB_QP_RQ_PSN),
1037                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1038                                                 IB_QP_PATH_MTU                  |
1039                                                 IB_QP_DEST_QPN                  |
1040                                                 IB_QP_RQ_PSN                    |
1041                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1042                                                 IB_QP_MIN_RNR_TIMER),
1043                         },
1044                         .opt_param = {
1045                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1046                                                  IB_QP_QKEY),
1047                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1048                                                  IB_QP_ACCESS_FLAGS             |
1049                                                  IB_QP_PKEY_INDEX),
1050                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1051                                                  IB_QP_ACCESS_FLAGS             |
1052                                                  IB_QP_PKEY_INDEX),
1053                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1054                                                  IB_QP_ACCESS_FLAGS             |
1055                                                  IB_QP_PKEY_INDEX),
1056                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1057                                                  IB_QP_ACCESS_FLAGS             |
1058                                                  IB_QP_PKEY_INDEX),
1059                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1060                                                  IB_QP_QKEY),
1061                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1062                                                  IB_QP_QKEY),
1063                          },
1064                 },
1065         },
1066         [IB_QPS_RTR]   = {
1067                 [IB_QPS_RESET] = { .valid = 1 },
1068                 [IB_QPS_ERR] =   { .valid = 1 },
1069                 [IB_QPS_RTS]   = {
1070                         .valid = 1,
1071                         .req_param = {
1072                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1073                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1074                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1075                                                 IB_QP_RETRY_CNT                 |
1076                                                 IB_QP_RNR_RETRY                 |
1077                                                 IB_QP_SQ_PSN                    |
1078                                                 IB_QP_MAX_QP_RD_ATOMIC),
1079                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1080                                                 IB_QP_RETRY_CNT                 |
1081                                                 IB_QP_RNR_RETRY                 |
1082                                                 IB_QP_SQ_PSN                    |
1083                                                 IB_QP_MAX_QP_RD_ATOMIC),
1084                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1085                                                 IB_QP_SQ_PSN),
1086                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1087                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1088                         },
1089                         .opt_param = {
1090                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1091                                                  IB_QP_QKEY),
1092                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1093                                                  IB_QP_ALT_PATH                 |
1094                                                  IB_QP_ACCESS_FLAGS             |
1095                                                  IB_QP_PATH_MIG_STATE),
1096                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1097                                                  IB_QP_ALT_PATH                 |
1098                                                  IB_QP_ACCESS_FLAGS             |
1099                                                  IB_QP_MIN_RNR_TIMER            |
1100                                                  IB_QP_PATH_MIG_STATE),
1101                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1102                                                  IB_QP_ALT_PATH                 |
1103                                                  IB_QP_ACCESS_FLAGS             |
1104                                                  IB_QP_PATH_MIG_STATE),
1105                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1106                                                  IB_QP_ALT_PATH                 |
1107                                                  IB_QP_ACCESS_FLAGS             |
1108                                                  IB_QP_MIN_RNR_TIMER            |
1109                                                  IB_QP_PATH_MIG_STATE),
1110                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1111                                                  IB_QP_QKEY),
1112                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1113                                                  IB_QP_QKEY),
1114                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1115                          }
1116                 }
1117         },
1118         [IB_QPS_RTS]   = {
1119                 [IB_QPS_RESET] = { .valid = 1 },
1120                 [IB_QPS_ERR] =   { .valid = 1 },
1121                 [IB_QPS_RTS]   = {
1122                         .valid = 1,
1123                         .opt_param = {
1124                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1125                                                 IB_QP_QKEY),
1126                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1127                                                 IB_QP_ACCESS_FLAGS              |
1128                                                 IB_QP_ALT_PATH                  |
1129                                                 IB_QP_PATH_MIG_STATE),
1130                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1131                                                 IB_QP_ACCESS_FLAGS              |
1132                                                 IB_QP_ALT_PATH                  |
1133                                                 IB_QP_PATH_MIG_STATE            |
1134                                                 IB_QP_MIN_RNR_TIMER),
1135                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1136                                                 IB_QP_ACCESS_FLAGS              |
1137                                                 IB_QP_ALT_PATH                  |
1138                                                 IB_QP_PATH_MIG_STATE),
1139                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1140                                                 IB_QP_ACCESS_FLAGS              |
1141                                                 IB_QP_ALT_PATH                  |
1142                                                 IB_QP_PATH_MIG_STATE            |
1143                                                 IB_QP_MIN_RNR_TIMER),
1144                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1145                                                 IB_QP_QKEY),
1146                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1147                                                 IB_QP_QKEY),
1148                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1149                         }
1150                 },
1151                 [IB_QPS_SQD]   = {
1152                         .valid = 1,
1153                         .opt_param = {
1154                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1155                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1156                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1157                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1158                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1159                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1160                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1161                         }
1162                 },
1163         },
1164         [IB_QPS_SQD]   = {
1165                 [IB_QPS_RESET] = { .valid = 1 },
1166                 [IB_QPS_ERR] =   { .valid = 1 },
1167                 [IB_QPS_RTS]   = {
1168                         .valid = 1,
1169                         .opt_param = {
1170                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1171                                                 IB_QP_QKEY),
1172                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1173                                                 IB_QP_ALT_PATH                  |
1174                                                 IB_QP_ACCESS_FLAGS              |
1175                                                 IB_QP_PATH_MIG_STATE),
1176                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1177                                                 IB_QP_ALT_PATH                  |
1178                                                 IB_QP_ACCESS_FLAGS              |
1179                                                 IB_QP_MIN_RNR_TIMER             |
1180                                                 IB_QP_PATH_MIG_STATE),
1181                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1182                                                 IB_QP_ALT_PATH                  |
1183                                                 IB_QP_ACCESS_FLAGS              |
1184                                                 IB_QP_PATH_MIG_STATE),
1185                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1186                                                 IB_QP_ALT_PATH                  |
1187                                                 IB_QP_ACCESS_FLAGS              |
1188                                                 IB_QP_MIN_RNR_TIMER             |
1189                                                 IB_QP_PATH_MIG_STATE),
1190                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1191                                                 IB_QP_QKEY),
1192                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1193                                                 IB_QP_QKEY),
1194                         }
1195                 },
1196                 [IB_QPS_SQD]   = {
1197                         .valid = 1,
1198                         .opt_param = {
1199                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1200                                                 IB_QP_QKEY),
1201                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1202                                                 IB_QP_ALT_PATH                  |
1203                                                 IB_QP_ACCESS_FLAGS              |
1204                                                 IB_QP_PKEY_INDEX                |
1205                                                 IB_QP_PATH_MIG_STATE),
1206                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1207                                                 IB_QP_AV                        |
1208                                                 IB_QP_TIMEOUT                   |
1209                                                 IB_QP_RETRY_CNT                 |
1210                                                 IB_QP_RNR_RETRY                 |
1211                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1212                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1213                                                 IB_QP_ALT_PATH                  |
1214                                                 IB_QP_ACCESS_FLAGS              |
1215                                                 IB_QP_PKEY_INDEX                |
1216                                                 IB_QP_MIN_RNR_TIMER             |
1217                                                 IB_QP_PATH_MIG_STATE),
1218                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1219                                                 IB_QP_AV                        |
1220                                                 IB_QP_TIMEOUT                   |
1221                                                 IB_QP_RETRY_CNT                 |
1222                                                 IB_QP_RNR_RETRY                 |
1223                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1224                                                 IB_QP_ALT_PATH                  |
1225                                                 IB_QP_ACCESS_FLAGS              |
1226                                                 IB_QP_PKEY_INDEX                |
1227                                                 IB_QP_PATH_MIG_STATE),
1228                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1229                                                 IB_QP_AV                        |
1230                                                 IB_QP_TIMEOUT                   |
1231                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1232                                                 IB_QP_ALT_PATH                  |
1233                                                 IB_QP_ACCESS_FLAGS              |
1234                                                 IB_QP_PKEY_INDEX                |
1235                                                 IB_QP_MIN_RNR_TIMER             |
1236                                                 IB_QP_PATH_MIG_STATE),
1237                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1238                                                 IB_QP_QKEY),
1239                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1240                                                 IB_QP_QKEY),
1241                         }
1242                 }
1243         },
1244         [IB_QPS_SQE]   = {
1245                 [IB_QPS_RESET] = { .valid = 1 },
1246                 [IB_QPS_ERR] =   { .valid = 1 },
1247                 [IB_QPS_RTS]   = {
1248                         .valid = 1,
1249                         .opt_param = {
1250                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1251                                                 IB_QP_QKEY),
1252                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1253                                                 IB_QP_ACCESS_FLAGS),
1254                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1255                                                 IB_QP_QKEY),
1256                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1257                                                 IB_QP_QKEY),
1258                         }
1259                 }
1260         },
1261         [IB_QPS_ERR] = {
1262                 [IB_QPS_RESET] = { .valid = 1 },
1263                 [IB_QPS_ERR] =   { .valid = 1 }
1264         }
1265 };
1266
1267 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1268                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1269                        enum rdma_link_layer ll)
1270 {
1271         enum ib_qp_attr_mask req_param, opt_param;
1272
1273         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1274             next_state < 0 || next_state > IB_QPS_ERR)
1275                 return 0;
1276
1277         if (mask & IB_QP_CUR_STATE  &&
1278             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1279             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1280                 return 0;
1281
1282         if (!qp_state_table[cur_state][next_state].valid)
1283                 return 0;
1284
1285         req_param = qp_state_table[cur_state][next_state].req_param[type];
1286         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1287
1288         if ((mask & req_param) != req_param)
1289                 return 0;
1290
1291         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1292                 return 0;
1293
1294         return 1;
1295 }
1296 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1297
1298 static int ib_resolve_eth_dmac(struct ib_device *device,
1299                                struct rdma_ah_attr *ah_attr)
1300 {
1301         int           ret = 0;
1302         struct ib_global_route *grh;
1303
1304         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1305                 return -EINVAL;
1306
1307         grh = rdma_ah_retrieve_grh(ah_attr);
1308
1309         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1310                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1311                         __be32 addr = 0;
1312
1313                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1314                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1315                 } else {
1316                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1317                                         (char *)ah_attr->roce.dmac);
1318                 }
1319         } else {
1320                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1321         }
1322         return ret;
1323 }
1324
1325 /**
1326  * IB core internal function to perform QP attributes modification.
1327  */
1328 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1329                          int attr_mask, struct ib_udata *udata)
1330 {
1331         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1332         int ret;
1333
1334         if (rdma_ib_or_roce(qp->device, port)) {
1335                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1336                         pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n",
1337                                 __func__, qp->device->name);
1338                         attr->rq_psn &= 0xffffff;
1339                 }
1340
1341                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1342                         pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n",
1343                                 __func__, qp->device->name);
1344                         attr->sq_psn &= 0xffffff;
1345                 }
1346         }
1347
1348         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1349         if (!ret && (attr_mask & IB_QP_PORT))
1350                 qp->port = attr->port_num;
1351
1352         return ret;
1353 }
1354
1355 static bool is_qp_type_connected(const struct ib_qp *qp)
1356 {
1357         return (qp->qp_type == IB_QPT_UC ||
1358                 qp->qp_type == IB_QPT_RC ||
1359                 qp->qp_type == IB_QPT_XRC_INI ||
1360                 qp->qp_type == IB_QPT_XRC_TGT);
1361 }
1362
1363 /**
1364  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1365  * @ib_qp: The QP to modify.
1366  * @attr: On input, specifies the QP attributes to modify.  On output,
1367  *   the current values of selected QP attributes are returned.
1368  * @attr_mask: A bit-mask used to specify which attributes of the QP
1369  *   are being modified.
1370  * @udata: pointer to user's input output buffer information
1371  *   are being modified.
1372  * It returns 0 on success and returns appropriate error code on error.
1373  */
1374 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1375                             int attr_mask, struct ib_udata *udata)
1376 {
1377         struct ib_qp *qp = ib_qp->real_qp;
1378         int ret;
1379
1380         if (attr_mask & IB_QP_AV &&
1381             attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1382             is_qp_type_connected(qp)) {
1383                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1384                 if (ret)
1385                         return ret;
1386         }
1387         return _ib_modify_qp(qp, attr, attr_mask, udata);
1388 }
1389 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1390
1391 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1392 {
1393         int rc;
1394         u32 netdev_speed;
1395         struct net_device *netdev;
1396         struct ethtool_link_ksettings lksettings;
1397
1398         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1399                 return -EINVAL;
1400
1401         if (!dev->get_netdev)
1402                 return -EOPNOTSUPP;
1403
1404         netdev = dev->get_netdev(dev, port_num);
1405         if (!netdev)
1406                 return -ENODEV;
1407
1408         rtnl_lock();
1409         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1410         rtnl_unlock();
1411
1412         dev_put(netdev);
1413
1414         if (!rc) {
1415                 netdev_speed = lksettings.base.speed;
1416         } else {
1417                 netdev_speed = SPEED_1000;
1418                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1419                         netdev_speed);
1420         }
1421
1422         if (netdev_speed <= SPEED_1000) {
1423                 *width = IB_WIDTH_1X;
1424                 *speed = IB_SPEED_SDR;
1425         } else if (netdev_speed <= SPEED_10000) {
1426                 *width = IB_WIDTH_1X;
1427                 *speed = IB_SPEED_FDR10;
1428         } else if (netdev_speed <= SPEED_20000) {
1429                 *width = IB_WIDTH_4X;
1430                 *speed = IB_SPEED_DDR;
1431         } else if (netdev_speed <= SPEED_25000) {
1432                 *width = IB_WIDTH_1X;
1433                 *speed = IB_SPEED_EDR;
1434         } else if (netdev_speed <= SPEED_40000) {
1435                 *width = IB_WIDTH_4X;
1436                 *speed = IB_SPEED_FDR10;
1437         } else {
1438                 *width = IB_WIDTH_4X;
1439                 *speed = IB_SPEED_EDR;
1440         }
1441
1442         return 0;
1443 }
1444 EXPORT_SYMBOL(ib_get_eth_speed);
1445
1446 int ib_modify_qp(struct ib_qp *qp,
1447                  struct ib_qp_attr *qp_attr,
1448                  int qp_attr_mask)
1449 {
1450         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1451 }
1452 EXPORT_SYMBOL(ib_modify_qp);
1453
1454 int ib_query_qp(struct ib_qp *qp,
1455                 struct ib_qp_attr *qp_attr,
1456                 int qp_attr_mask,
1457                 struct ib_qp_init_attr *qp_init_attr)
1458 {
1459         return qp->device->query_qp ?
1460                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1461                 -ENOSYS;
1462 }
1463 EXPORT_SYMBOL(ib_query_qp);
1464
1465 int ib_close_qp(struct ib_qp *qp)
1466 {
1467         struct ib_qp *real_qp;
1468         unsigned long flags;
1469
1470         real_qp = qp->real_qp;
1471         if (real_qp == qp)
1472                 return -EINVAL;
1473
1474         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1475         list_del(&qp->open_list);
1476         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1477
1478         atomic_dec(&real_qp->usecnt);
1479         if (qp->qp_sec)
1480                 ib_close_shared_qp_security(qp->qp_sec);
1481         kfree(qp);
1482
1483         return 0;
1484 }
1485 EXPORT_SYMBOL(ib_close_qp);
1486
1487 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1488 {
1489         struct ib_xrcd *xrcd;
1490         struct ib_qp *real_qp;
1491         int ret;
1492
1493         real_qp = qp->real_qp;
1494         xrcd = real_qp->xrcd;
1495
1496         mutex_lock(&xrcd->tgt_qp_mutex);
1497         ib_close_qp(qp);
1498         if (atomic_read(&real_qp->usecnt) == 0)
1499                 list_del(&real_qp->xrcd_list);
1500         else
1501                 real_qp = NULL;
1502         mutex_unlock(&xrcd->tgt_qp_mutex);
1503
1504         if (real_qp) {
1505                 ret = ib_destroy_qp(real_qp);
1506                 if (!ret)
1507                         atomic_dec(&xrcd->usecnt);
1508                 else
1509                         __ib_insert_xrcd_qp(xrcd, real_qp);
1510         }
1511
1512         return 0;
1513 }
1514
1515 int ib_destroy_qp(struct ib_qp *qp)
1516 {
1517         struct ib_pd *pd;
1518         struct ib_cq *scq, *rcq;
1519         struct ib_srq *srq;
1520         struct ib_rwq_ind_table *ind_tbl;
1521         struct ib_qp_security *sec;
1522         int ret;
1523
1524         WARN_ON_ONCE(qp->mrs_used > 0);
1525
1526         if (atomic_read(&qp->usecnt))
1527                 return -EBUSY;
1528
1529         if (qp->real_qp != qp)
1530                 return __ib_destroy_shared_qp(qp);
1531
1532         pd   = qp->pd;
1533         scq  = qp->send_cq;
1534         rcq  = qp->recv_cq;
1535         srq  = qp->srq;
1536         ind_tbl = qp->rwq_ind_tbl;
1537         sec  = qp->qp_sec;
1538         if (sec)
1539                 ib_destroy_qp_security_begin(sec);
1540
1541         if (!qp->uobject)
1542                 rdma_rw_cleanup_mrs(qp);
1543
1544         rdma_restrack_del(&qp->res);
1545         ret = qp->device->destroy_qp(qp);
1546         if (!ret) {
1547                 if (pd)
1548                         atomic_dec(&pd->usecnt);
1549                 if (scq)
1550                         atomic_dec(&scq->usecnt);
1551                 if (rcq)
1552                         atomic_dec(&rcq->usecnt);
1553                 if (srq)
1554                         atomic_dec(&srq->usecnt);
1555                 if (ind_tbl)
1556                         atomic_dec(&ind_tbl->usecnt);
1557                 if (sec)
1558                         ib_destroy_qp_security_end(sec);
1559         } else {
1560                 if (sec)
1561                         ib_destroy_qp_security_abort(sec);
1562         }
1563
1564         return ret;
1565 }
1566 EXPORT_SYMBOL(ib_destroy_qp);
1567
1568 /* Completion queues */
1569
1570 struct ib_cq *ib_create_cq(struct ib_device *device,
1571                            ib_comp_handler comp_handler,
1572                            void (*event_handler)(struct ib_event *, void *),
1573                            void *cq_context,
1574                            const struct ib_cq_init_attr *cq_attr)
1575 {
1576         struct ib_cq *cq;
1577
1578         cq = device->create_cq(device, cq_attr, NULL, NULL);
1579
1580         if (!IS_ERR(cq)) {
1581                 cq->device        = device;
1582                 cq->uobject       = NULL;
1583                 cq->comp_handler  = comp_handler;
1584                 cq->event_handler = event_handler;
1585                 cq->cq_context    = cq_context;
1586                 atomic_set(&cq->usecnt, 0);
1587                 cq->res.type = RDMA_RESTRACK_CQ;
1588                 rdma_restrack_add(&cq->res);
1589         }
1590
1591         return cq;
1592 }
1593 EXPORT_SYMBOL(ib_create_cq);
1594
1595 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1596 {
1597         return cq->device->modify_cq ?
1598                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1599 }
1600 EXPORT_SYMBOL(rdma_set_cq_moderation);
1601
1602 int ib_destroy_cq(struct ib_cq *cq)
1603 {
1604         if (atomic_read(&cq->usecnt))
1605                 return -EBUSY;
1606
1607         rdma_restrack_del(&cq->res);
1608         return cq->device->destroy_cq(cq);
1609 }
1610 EXPORT_SYMBOL(ib_destroy_cq);
1611
1612 int ib_resize_cq(struct ib_cq *cq, int cqe)
1613 {
1614         return cq->device->resize_cq ?
1615                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1616 }
1617 EXPORT_SYMBOL(ib_resize_cq);
1618
1619 /* Memory regions */
1620
1621 int ib_dereg_mr(struct ib_mr *mr)
1622 {
1623         struct ib_pd *pd = mr->pd;
1624         int ret;
1625
1626         ret = mr->device->dereg_mr(mr);
1627         if (!ret)
1628                 atomic_dec(&pd->usecnt);
1629
1630         return ret;
1631 }
1632 EXPORT_SYMBOL(ib_dereg_mr);
1633
1634 /**
1635  * ib_alloc_mr() - Allocates a memory region
1636  * @pd:            protection domain associated with the region
1637  * @mr_type:       memory region type
1638  * @max_num_sg:    maximum sg entries available for registration.
1639  *
1640  * Notes:
1641  * Memory registeration page/sg lists must not exceed max_num_sg.
1642  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1643  * max_num_sg * used_page_size.
1644  *
1645  */
1646 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1647                           enum ib_mr_type mr_type,
1648                           u32 max_num_sg)
1649 {
1650         struct ib_mr *mr;
1651
1652         if (!pd->device->alloc_mr)
1653                 return ERR_PTR(-ENOSYS);
1654
1655         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1656         if (!IS_ERR(mr)) {
1657                 mr->device  = pd->device;
1658                 mr->pd      = pd;
1659                 mr->uobject = NULL;
1660                 atomic_inc(&pd->usecnt);
1661                 mr->need_inval = false;
1662         }
1663
1664         return mr;
1665 }
1666 EXPORT_SYMBOL(ib_alloc_mr);
1667
1668 /* "Fast" memory regions */
1669
1670 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1671                             int mr_access_flags,
1672                             struct ib_fmr_attr *fmr_attr)
1673 {
1674         struct ib_fmr *fmr;
1675
1676         if (!pd->device->alloc_fmr)
1677                 return ERR_PTR(-ENOSYS);
1678
1679         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1680         if (!IS_ERR(fmr)) {
1681                 fmr->device = pd->device;
1682                 fmr->pd     = pd;
1683                 atomic_inc(&pd->usecnt);
1684         }
1685
1686         return fmr;
1687 }
1688 EXPORT_SYMBOL(ib_alloc_fmr);
1689
1690 int ib_unmap_fmr(struct list_head *fmr_list)
1691 {
1692         struct ib_fmr *fmr;
1693
1694         if (list_empty(fmr_list))
1695                 return 0;
1696
1697         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1698         return fmr->device->unmap_fmr(fmr_list);
1699 }
1700 EXPORT_SYMBOL(ib_unmap_fmr);
1701
1702 int ib_dealloc_fmr(struct ib_fmr *fmr)
1703 {
1704         struct ib_pd *pd;
1705         int ret;
1706
1707         pd = fmr->pd;
1708         ret = fmr->device->dealloc_fmr(fmr);
1709         if (!ret)
1710                 atomic_dec(&pd->usecnt);
1711
1712         return ret;
1713 }
1714 EXPORT_SYMBOL(ib_dealloc_fmr);
1715
1716 /* Multicast groups */
1717
1718 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1719 {
1720         struct ib_qp_init_attr init_attr = {};
1721         struct ib_qp_attr attr = {};
1722         int num_eth_ports = 0;
1723         int port;
1724
1725         /* If QP state >= init, it is assigned to a port and we can check this
1726          * port only.
1727          */
1728         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1729                 if (attr.qp_state >= IB_QPS_INIT) {
1730                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1731                             IB_LINK_LAYER_INFINIBAND)
1732                                 return true;
1733                         goto lid_check;
1734                 }
1735         }
1736
1737         /* Can't get a quick answer, iterate over all ports */
1738         for (port = 0; port < qp->device->phys_port_cnt; port++)
1739                 if (rdma_port_get_link_layer(qp->device, port) !=
1740                     IB_LINK_LAYER_INFINIBAND)
1741                         num_eth_ports++;
1742
1743         /* If we have at lease one Ethernet port, RoCE annex declares that
1744          * multicast LID should be ignored. We can't tell at this step if the
1745          * QP belongs to an IB or Ethernet port.
1746          */
1747         if (num_eth_ports)
1748                 return true;
1749
1750         /* If all the ports are IB, we can check according to IB spec. */
1751 lid_check:
1752         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1753                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1754 }
1755
1756 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1757 {
1758         int ret;
1759
1760         if (!qp->device->attach_mcast)
1761                 return -ENOSYS;
1762
1763         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1764             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1765                 return -EINVAL;
1766
1767         ret = qp->device->attach_mcast(qp, gid, lid);
1768         if (!ret)
1769                 atomic_inc(&qp->usecnt);
1770         return ret;
1771 }
1772 EXPORT_SYMBOL(ib_attach_mcast);
1773
1774 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1775 {
1776         int ret;
1777
1778         if (!qp->device->detach_mcast)
1779                 return -ENOSYS;
1780
1781         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1782             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1783                 return -EINVAL;
1784
1785         ret = qp->device->detach_mcast(qp, gid, lid);
1786         if (!ret)
1787                 atomic_dec(&qp->usecnt);
1788         return ret;
1789 }
1790 EXPORT_SYMBOL(ib_detach_mcast);
1791
1792 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
1793 {
1794         struct ib_xrcd *xrcd;
1795
1796         if (!device->alloc_xrcd)
1797                 return ERR_PTR(-ENOSYS);
1798
1799         xrcd = device->alloc_xrcd(device, NULL, NULL);
1800         if (!IS_ERR(xrcd)) {
1801                 xrcd->device = device;
1802                 xrcd->inode = NULL;
1803                 atomic_set(&xrcd->usecnt, 0);
1804                 mutex_init(&xrcd->tgt_qp_mutex);
1805                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1806         }
1807
1808         return xrcd;
1809 }
1810 EXPORT_SYMBOL(__ib_alloc_xrcd);
1811
1812 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1813 {
1814         struct ib_qp *qp;
1815         int ret;
1816
1817         if (atomic_read(&xrcd->usecnt))
1818                 return -EBUSY;
1819
1820         while (!list_empty(&xrcd->tgt_qp_list)) {
1821                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1822                 ret = ib_destroy_qp(qp);
1823                 if (ret)
1824                         return ret;
1825         }
1826
1827         return xrcd->device->dealloc_xrcd(xrcd);
1828 }
1829 EXPORT_SYMBOL(ib_dealloc_xrcd);
1830
1831 /**
1832  * ib_create_wq - Creates a WQ associated with the specified protection
1833  * domain.
1834  * @pd: The protection domain associated with the WQ.
1835  * @wq_attr: A list of initial attributes required to create the
1836  * WQ. If WQ creation succeeds, then the attributes are updated to
1837  * the actual capabilities of the created WQ.
1838  *
1839  * wq_attr->max_wr and wq_attr->max_sge determine
1840  * the requested size of the WQ, and set to the actual values allocated
1841  * on return.
1842  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1843  * at least as large as the requested values.
1844  */
1845 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1846                            struct ib_wq_init_attr *wq_attr)
1847 {
1848         struct ib_wq *wq;
1849
1850         if (!pd->device->create_wq)
1851                 return ERR_PTR(-ENOSYS);
1852
1853         wq = pd->device->create_wq(pd, wq_attr, NULL);
1854         if (!IS_ERR(wq)) {
1855                 wq->event_handler = wq_attr->event_handler;
1856                 wq->wq_context = wq_attr->wq_context;
1857                 wq->wq_type = wq_attr->wq_type;
1858                 wq->cq = wq_attr->cq;
1859                 wq->device = pd->device;
1860                 wq->pd = pd;
1861                 wq->uobject = NULL;
1862                 atomic_inc(&pd->usecnt);
1863                 atomic_inc(&wq_attr->cq->usecnt);
1864                 atomic_set(&wq->usecnt, 0);
1865         }
1866         return wq;
1867 }
1868 EXPORT_SYMBOL(ib_create_wq);
1869
1870 /**
1871  * ib_destroy_wq - Destroys the specified WQ.
1872  * @wq: The WQ to destroy.
1873  */
1874 int ib_destroy_wq(struct ib_wq *wq)
1875 {
1876         int err;
1877         struct ib_cq *cq = wq->cq;
1878         struct ib_pd *pd = wq->pd;
1879
1880         if (atomic_read(&wq->usecnt))
1881                 return -EBUSY;
1882
1883         err = wq->device->destroy_wq(wq);
1884         if (!err) {
1885                 atomic_dec(&pd->usecnt);
1886                 atomic_dec(&cq->usecnt);
1887         }
1888         return err;
1889 }
1890 EXPORT_SYMBOL(ib_destroy_wq);
1891
1892 /**
1893  * ib_modify_wq - Modifies the specified WQ.
1894  * @wq: The WQ to modify.
1895  * @wq_attr: On input, specifies the WQ attributes to modify.
1896  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1897  *   are being modified.
1898  * On output, the current values of selected WQ attributes are returned.
1899  */
1900 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1901                  u32 wq_attr_mask)
1902 {
1903         int err;
1904
1905         if (!wq->device->modify_wq)
1906                 return -ENOSYS;
1907
1908         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1909         return err;
1910 }
1911 EXPORT_SYMBOL(ib_modify_wq);
1912
1913 /*
1914  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1915  * @device: The device on which to create the rwq indirection table.
1916  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1917  * create the Indirection Table.
1918  *
1919  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1920  *      than the created ib_rwq_ind_table object and the caller is responsible
1921  *      for its memory allocation/free.
1922  */
1923 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1924                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1925 {
1926         struct ib_rwq_ind_table *rwq_ind_table;
1927         int i;
1928         u32 table_size;
1929
1930         if (!device->create_rwq_ind_table)
1931                 return ERR_PTR(-ENOSYS);
1932
1933         table_size = (1 << init_attr->log_ind_tbl_size);
1934         rwq_ind_table = device->create_rwq_ind_table(device,
1935                                 init_attr, NULL);
1936         if (IS_ERR(rwq_ind_table))
1937                 return rwq_ind_table;
1938
1939         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1940         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1941         rwq_ind_table->device = device;
1942         rwq_ind_table->uobject = NULL;
1943         atomic_set(&rwq_ind_table->usecnt, 0);
1944
1945         for (i = 0; i < table_size; i++)
1946                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1947
1948         return rwq_ind_table;
1949 }
1950 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1951
1952 /*
1953  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1954  * @wq_ind_table: The Indirection Table to destroy.
1955 */
1956 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1957 {
1958         int err, i;
1959         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1960         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1961
1962         if (atomic_read(&rwq_ind_table->usecnt))
1963                 return -EBUSY;
1964
1965         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1966         if (!err) {
1967                 for (i = 0; i < table_size; i++)
1968                         atomic_dec(&ind_tbl[i]->usecnt);
1969         }
1970
1971         return err;
1972 }
1973 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1974
1975 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1976                                struct ib_flow_attr *flow_attr,
1977                                int domain)
1978 {
1979         struct ib_flow *flow_id;
1980         if (!qp->device->create_flow)
1981                 return ERR_PTR(-ENOSYS);
1982
1983         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1984         if (!IS_ERR(flow_id)) {
1985                 atomic_inc(&qp->usecnt);
1986                 flow_id->qp = qp;
1987         }
1988         return flow_id;
1989 }
1990 EXPORT_SYMBOL(ib_create_flow);
1991
1992 int ib_destroy_flow(struct ib_flow *flow_id)
1993 {
1994         int err;
1995         struct ib_qp *qp = flow_id->qp;
1996
1997         err = qp->device->destroy_flow(flow_id);
1998         if (!err)
1999                 atomic_dec(&qp->usecnt);
2000         return err;
2001 }
2002 EXPORT_SYMBOL(ib_destroy_flow);
2003
2004 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2005                        struct ib_mr_status *mr_status)
2006 {
2007         return mr->device->check_mr_status ?
2008                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
2009 }
2010 EXPORT_SYMBOL(ib_check_mr_status);
2011
2012 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2013                          int state)
2014 {
2015         if (!device->set_vf_link_state)
2016                 return -ENOSYS;
2017
2018         return device->set_vf_link_state(device, vf, port, state);
2019 }
2020 EXPORT_SYMBOL(ib_set_vf_link_state);
2021
2022 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2023                      struct ifla_vf_info *info)
2024 {
2025         if (!device->get_vf_config)
2026                 return -ENOSYS;
2027
2028         return device->get_vf_config(device, vf, port, info);
2029 }
2030 EXPORT_SYMBOL(ib_get_vf_config);
2031
2032 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2033                     struct ifla_vf_stats *stats)
2034 {
2035         if (!device->get_vf_stats)
2036                 return -ENOSYS;
2037
2038         return device->get_vf_stats(device, vf, port, stats);
2039 }
2040 EXPORT_SYMBOL(ib_get_vf_stats);
2041
2042 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2043                    int type)
2044 {
2045         if (!device->set_vf_guid)
2046                 return -ENOSYS;
2047
2048         return device->set_vf_guid(device, vf, port, guid, type);
2049 }
2050 EXPORT_SYMBOL(ib_set_vf_guid);
2051
2052 /**
2053  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2054  *     and set it the memory region.
2055  * @mr:            memory region
2056  * @sg:            dma mapped scatterlist
2057  * @sg_nents:      number of entries in sg
2058  * @sg_offset:     offset in bytes into sg
2059  * @page_size:     page vector desired page size
2060  *
2061  * Constraints:
2062  * - The first sg element is allowed to have an offset.
2063  * - Each sg element must either be aligned to page_size or virtually
2064  *   contiguous to the previous element. In case an sg element has a
2065  *   non-contiguous offset, the mapping prefix will not include it.
2066  * - The last sg element is allowed to have length less than page_size.
2067  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2068  *   then only max_num_sg entries will be mapped.
2069  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2070  *   constraints holds and the page_size argument is ignored.
2071  *
2072  * Returns the number of sg elements that were mapped to the memory region.
2073  *
2074  * After this completes successfully, the  memory region
2075  * is ready for registration.
2076  */
2077 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2078                  unsigned int *sg_offset, unsigned int page_size)
2079 {
2080         if (unlikely(!mr->device->map_mr_sg))
2081                 return -ENOSYS;
2082
2083         mr->page_size = page_size;
2084
2085         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2086 }
2087 EXPORT_SYMBOL(ib_map_mr_sg);
2088
2089 /**
2090  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2091  *     to a page vector
2092  * @mr:            memory region
2093  * @sgl:           dma mapped scatterlist
2094  * @sg_nents:      number of entries in sg
2095  * @sg_offset_p:   IN:  start offset in bytes into sg
2096  *                 OUT: offset in bytes for element n of the sg of the first
2097  *                      byte that has not been processed where n is the return
2098  *                      value of this function.
2099  * @set_page:      driver page assignment function pointer
2100  *
2101  * Core service helper for drivers to convert the largest
2102  * prefix of given sg list to a page vector. The sg list
2103  * prefix converted is the prefix that meet the requirements
2104  * of ib_map_mr_sg.
2105  *
2106  * Returns the number of sg elements that were assigned to
2107  * a page vector.
2108  */
2109 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2110                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2111 {
2112         struct scatterlist *sg;
2113         u64 last_end_dma_addr = 0;
2114         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2115         unsigned int last_page_off = 0;
2116         u64 page_mask = ~((u64)mr->page_size - 1);
2117         int i, ret;
2118
2119         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2120                 return -EINVAL;
2121
2122         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2123         mr->length = 0;
2124
2125         for_each_sg(sgl, sg, sg_nents, i) {
2126                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2127                 u64 prev_addr = dma_addr;
2128                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2129                 u64 end_dma_addr = dma_addr + dma_len;
2130                 u64 page_addr = dma_addr & page_mask;
2131
2132                 /*
2133                  * For the second and later elements, check whether either the
2134                  * end of element i-1 or the start of element i is not aligned
2135                  * on a page boundary.
2136                  */
2137                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2138                         /* Stop mapping if there is a gap. */
2139                         if (last_end_dma_addr != dma_addr)
2140                                 break;
2141
2142                         /*
2143                          * Coalesce this element with the last. If it is small
2144                          * enough just update mr->length. Otherwise start
2145                          * mapping from the next page.
2146                          */
2147                         goto next_page;
2148                 }
2149
2150                 do {
2151                         ret = set_page(mr, page_addr);
2152                         if (unlikely(ret < 0)) {
2153                                 sg_offset = prev_addr - sg_dma_address(sg);
2154                                 mr->length += prev_addr - dma_addr;
2155                                 if (sg_offset_p)
2156                                         *sg_offset_p = sg_offset;
2157                                 return i || sg_offset ? i : ret;
2158                         }
2159                         prev_addr = page_addr;
2160 next_page:
2161                         page_addr += mr->page_size;
2162                 } while (page_addr < end_dma_addr);
2163
2164                 mr->length += dma_len;
2165                 last_end_dma_addr = end_dma_addr;
2166                 last_page_off = end_dma_addr & ~page_mask;
2167
2168                 sg_offset = 0;
2169         }
2170
2171         if (sg_offset_p)
2172                 *sg_offset_p = 0;
2173         return i;
2174 }
2175 EXPORT_SYMBOL(ib_sg_to_pages);
2176
2177 struct ib_drain_cqe {
2178         struct ib_cqe cqe;
2179         struct completion done;
2180 };
2181
2182 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2183 {
2184         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2185                                                 cqe);
2186
2187         complete(&cqe->done);
2188 }
2189
2190 /*
2191  * Post a WR and block until its completion is reaped for the SQ.
2192  */
2193 static void __ib_drain_sq(struct ib_qp *qp)
2194 {
2195         struct ib_cq *cq = qp->send_cq;
2196         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2197         struct ib_drain_cqe sdrain;
2198         struct ib_send_wr swr = {}, *bad_swr;
2199         int ret;
2200
2201         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2202         if (ret) {
2203                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2204                 return;
2205         }
2206
2207         swr.wr_cqe = &sdrain.cqe;
2208         sdrain.cqe.done = ib_drain_qp_done;
2209         init_completion(&sdrain.done);
2210
2211         ret = ib_post_send(qp, &swr, &bad_swr);
2212         if (ret) {
2213                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2214                 return;
2215         }
2216
2217         if (cq->poll_ctx == IB_POLL_DIRECT)
2218                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2219                         ib_process_cq_direct(cq, -1);
2220         else
2221                 wait_for_completion(&sdrain.done);
2222 }
2223
2224 /*
2225  * Post a WR and block until its completion is reaped for the RQ.
2226  */
2227 static void __ib_drain_rq(struct ib_qp *qp)
2228 {
2229         struct ib_cq *cq = qp->recv_cq;
2230         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2231         struct ib_drain_cqe rdrain;
2232         struct ib_recv_wr rwr = {}, *bad_rwr;
2233         int ret;
2234
2235         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2236         if (ret) {
2237                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2238                 return;
2239         }
2240
2241         rwr.wr_cqe = &rdrain.cqe;
2242         rdrain.cqe.done = ib_drain_qp_done;
2243         init_completion(&rdrain.done);
2244
2245         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2246         if (ret) {
2247                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2248                 return;
2249         }
2250
2251         if (cq->poll_ctx == IB_POLL_DIRECT)
2252                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2253                         ib_process_cq_direct(cq, -1);
2254         else
2255                 wait_for_completion(&rdrain.done);
2256 }
2257
2258 /**
2259  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2260  *                 application.
2261  * @qp:            queue pair to drain
2262  *
2263  * If the device has a provider-specific drain function, then
2264  * call that.  Otherwise call the generic drain function
2265  * __ib_drain_sq().
2266  *
2267  * The caller must:
2268  *
2269  * ensure there is room in the CQ and SQ for the drain work request and
2270  * completion.
2271  *
2272  * allocate the CQ using ib_alloc_cq().
2273  *
2274  * ensure that there are no other contexts that are posting WRs concurrently.
2275  * Otherwise the drain is not guaranteed.
2276  */
2277 void ib_drain_sq(struct ib_qp *qp)
2278 {
2279         if (qp->device->drain_sq)
2280                 qp->device->drain_sq(qp);
2281         else
2282                 __ib_drain_sq(qp);
2283 }
2284 EXPORT_SYMBOL(ib_drain_sq);
2285
2286 /**
2287  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2288  *                 application.
2289  * @qp:            queue pair to drain
2290  *
2291  * If the device has a provider-specific drain function, then
2292  * call that.  Otherwise call the generic drain function
2293  * __ib_drain_rq().
2294  *
2295  * The caller must:
2296  *
2297  * ensure there is room in the CQ and RQ for the drain work request and
2298  * completion.
2299  *
2300  * allocate the CQ using ib_alloc_cq().
2301  *
2302  * ensure that there are no other contexts that are posting WRs concurrently.
2303  * Otherwise the drain is not guaranteed.
2304  */
2305 void ib_drain_rq(struct ib_qp *qp)
2306 {
2307         if (qp->device->drain_rq)
2308                 qp->device->drain_rq(qp);
2309         else
2310                 __ib_drain_rq(qp);
2311 }
2312 EXPORT_SYMBOL(ib_drain_rq);
2313
2314 /**
2315  * ib_drain_qp() - Block until all CQEs have been consumed by the
2316  *                 application on both the RQ and SQ.
2317  * @qp:            queue pair to drain
2318  *
2319  * The caller must:
2320  *
2321  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2322  * and completions.
2323  *
2324  * allocate the CQs using ib_alloc_cq().
2325  *
2326  * ensure that there are no other contexts that are posting WRs concurrently.
2327  * Otherwise the drain is not guaranteed.
2328  */
2329 void ib_drain_qp(struct ib_qp *qp)
2330 {
2331         ib_drain_sq(qp);
2332         if (!qp->srq)
2333                 ib_drain_rq(qp);
2334 }
2335 EXPORT_SYMBOL(ib_drain_qp);