Merge git://www.linux-watchdog.org/linux-watchdog
[sfrench/cifs-2.6.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static const char * const ib_events[] = {
57         [IB_EVENT_CQ_ERR]               = "CQ error",
58         [IB_EVENT_QP_FATAL]             = "QP fatal error",
59         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
60         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
61         [IB_EVENT_COMM_EST]             = "communication established",
62         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
63         [IB_EVENT_PATH_MIG]             = "path migration successful",
64         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
65         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
66         [IB_EVENT_PORT_ACTIVE]          = "port active",
67         [IB_EVENT_PORT_ERR]             = "port error",
68         [IB_EVENT_LID_CHANGE]           = "LID change",
69         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
70         [IB_EVENT_SM_CHANGE]            = "SM change",
71         [IB_EVENT_SRQ_ERR]              = "SRQ error",
72         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
73         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
74         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
75         [IB_EVENT_GID_CHANGE]           = "GID changed",
76 };
77
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80         size_t index = event;
81
82         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83                         ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86
87 static const char * const wc_statuses[] = {
88         [IB_WC_SUCCESS]                 = "success",
89         [IB_WC_LOC_LEN_ERR]             = "local length error",
90         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
91         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
92         [IB_WC_LOC_PROT_ERR]            = "local protection error",
93         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
94         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
95         [IB_WC_BAD_RESP_ERR]            = "bad response error",
96         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
97         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
98         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
99         [IB_WC_REM_OP_ERR]              = "remote operation error",
100         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
101         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
102         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
103         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
104         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
105         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
106         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
107         [IB_WC_FATAL_ERR]               = "fatal error",
108         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
109         [IB_WC_GENERAL_ERR]             = "general error",
110 };
111
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114         size_t index = status;
115
116         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117                         wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123         switch (rate) {
124         case IB_RATE_2_5_GBPS: return  1;
125         case IB_RATE_5_GBPS:   return  2;
126         case IB_RATE_10_GBPS:  return  4;
127         case IB_RATE_20_GBPS:  return  8;
128         case IB_RATE_30_GBPS:  return 12;
129         case IB_RATE_40_GBPS:  return 16;
130         case IB_RATE_60_GBPS:  return 24;
131         case IB_RATE_80_GBPS:  return 32;
132         case IB_RATE_120_GBPS: return 48;
133         default:               return -1;
134         }
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140         switch (mult) {
141         case 1:  return IB_RATE_2_5_GBPS;
142         case 2:  return IB_RATE_5_GBPS;
143         case 4:  return IB_RATE_10_GBPS;
144         case 8:  return IB_RATE_20_GBPS;
145         case 12: return IB_RATE_30_GBPS;
146         case 16: return IB_RATE_40_GBPS;
147         case 24: return IB_RATE_60_GBPS;
148         case 32: return IB_RATE_80_GBPS;
149         case 48: return IB_RATE_120_GBPS;
150         default: return IB_RATE_PORT_CURRENT;
151         }
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157         switch (rate) {
158         case IB_RATE_2_5_GBPS: return 2500;
159         case IB_RATE_5_GBPS:   return 5000;
160         case IB_RATE_10_GBPS:  return 10000;
161         case IB_RATE_20_GBPS:  return 20000;
162         case IB_RATE_30_GBPS:  return 30000;
163         case IB_RATE_40_GBPS:  return 40000;
164         case IB_RATE_60_GBPS:  return 60000;
165         case IB_RATE_80_GBPS:  return 80000;
166         case IB_RATE_120_GBPS: return 120000;
167         case IB_RATE_14_GBPS:  return 14062;
168         case IB_RATE_56_GBPS:  return 56250;
169         case IB_RATE_112_GBPS: return 112500;
170         case IB_RATE_168_GBPS: return 168750;
171         case IB_RATE_25_GBPS:  return 25781;
172         case IB_RATE_100_GBPS: return 103125;
173         case IB_RATE_200_GBPS: return 206250;
174         case IB_RATE_300_GBPS: return 309375;
175         default:               return -1;
176         }
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183         switch (node_type) {
184         case RDMA_NODE_IB_CA:
185         case RDMA_NODE_IB_SWITCH:
186         case RDMA_NODE_IB_ROUTER:
187                 return RDMA_TRANSPORT_IB;
188         case RDMA_NODE_RNIC:
189                 return RDMA_TRANSPORT_IWARP;
190         case RDMA_NODE_USNIC:
191                 return RDMA_TRANSPORT_USNIC;
192         case RDMA_NODE_USNIC_UDP:
193                 return RDMA_TRANSPORT_USNIC_UDP;
194         default:
195                 BUG();
196                 return 0;
197         }
198 }
199 EXPORT_SYMBOL(rdma_node_get_transport);
200
201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 {
203         if (device->get_link_layer)
204                 return device->get_link_layer(device, port_num);
205
206         switch (rdma_node_get_transport(device->node_type)) {
207         case RDMA_TRANSPORT_IB:
208                 return IB_LINK_LAYER_INFINIBAND;
209         case RDMA_TRANSPORT_IWARP:
210         case RDMA_TRANSPORT_USNIC:
211         case RDMA_TRANSPORT_USNIC_UDP:
212                 return IB_LINK_LAYER_ETHERNET;
213         default:
214                 return IB_LINK_LAYER_UNSPECIFIED;
215         }
216 }
217 EXPORT_SYMBOL(rdma_port_get_link_layer);
218
219 /* Protection domains */
220
221 /**
222  * ib_alloc_pd - Allocates an unused protection domain.
223  * @device: The device on which to allocate the protection domain.
224  *
225  * A protection domain object provides an association between QPs, shared
226  * receive queues, address handles, memory regions, and memory windows.
227  *
228  * Every PD has a local_dma_lkey which can be used as the lkey value for local
229  * memory operations.
230  */
231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
232                 const char *caller)
233 {
234         struct ib_pd *pd;
235         int mr_access_flags = 0;
236
237         pd = device->alloc_pd(device, NULL, NULL);
238         if (IS_ERR(pd))
239                 return pd;
240
241         pd->device = device;
242         pd->uobject = NULL;
243         pd->__internal_mr = NULL;
244         atomic_set(&pd->usecnt, 0);
245         pd->flags = flags;
246
247         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
248                 pd->local_dma_lkey = device->local_dma_lkey;
249         else
250                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
251
252         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
253                 pr_warn("%s: enabling unsafe global rkey\n", caller);
254                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
255         }
256
257         if (mr_access_flags) {
258                 struct ib_mr *mr;
259
260                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
261                 if (IS_ERR(mr)) {
262                         ib_dealloc_pd(pd);
263                         return ERR_CAST(mr);
264                 }
265
266                 mr->device      = pd->device;
267                 mr->pd          = pd;
268                 mr->uobject     = NULL;
269                 mr->need_inval  = false;
270
271                 pd->__internal_mr = mr;
272
273                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
274                         pd->local_dma_lkey = pd->__internal_mr->lkey;
275
276                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
277                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
278         }
279
280         return pd;
281 }
282 EXPORT_SYMBOL(__ib_alloc_pd);
283
284 /**
285  * ib_dealloc_pd - Deallocates a protection domain.
286  * @pd: The protection domain to deallocate.
287  *
288  * It is an error to call this function while any resources in the pd still
289  * exist.  The caller is responsible to synchronously destroy them and
290  * guarantee no new allocations will happen.
291  */
292 void ib_dealloc_pd(struct ib_pd *pd)
293 {
294         int ret;
295
296         if (pd->__internal_mr) {
297                 ret = pd->device->dereg_mr(pd->__internal_mr);
298                 WARN_ON(ret);
299                 pd->__internal_mr = NULL;
300         }
301
302         /* uverbs manipulates usecnt with proper locking, while the kabi
303            requires the caller to guarantee we can't race here. */
304         WARN_ON(atomic_read(&pd->usecnt));
305
306         /* Making delalloc_pd a void return is a WIP, no driver should return
307            an error here. */
308         ret = pd->device->dealloc_pd(pd);
309         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
310 }
311 EXPORT_SYMBOL(ib_dealloc_pd);
312
313 /* Address handles */
314
315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
316 {
317         struct ib_ah *ah;
318
319         ah = pd->device->create_ah(pd, ah_attr, NULL);
320
321         if (!IS_ERR(ah)) {
322                 ah->device  = pd->device;
323                 ah->pd      = pd;
324                 ah->uobject = NULL;
325                 ah->type    = ah_attr->type;
326                 atomic_inc(&pd->usecnt);
327         }
328
329         return ah;
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332
333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
334 {
335         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
336         struct iphdr ip4h_checked;
337         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
338
339         /* If it's IPv6, the version must be 6, otherwise, the first
340          * 20 bytes (before the IPv4 header) are garbled.
341          */
342         if (ip6h->version != 6)
343                 return (ip4h->version == 4) ? 4 : 0;
344         /* version may be 6 or 4 because the first 20 bytes could be garbled */
345
346         /* RoCE v2 requires no options, thus header length
347          * must be 5 words
348          */
349         if (ip4h->ihl != 5)
350                 return 6;
351
352         /* Verify checksum.
353          * We can't write on scattered buffers so we need to copy to
354          * temp buffer.
355          */
356         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357         ip4h_checked.check = 0;
358         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
359         /* if IPv4 header checksum is OK, believe it */
360         if (ip4h->check == ip4h_checked.check)
361                 return 4;
362         return 6;
363 }
364 EXPORT_SYMBOL(ib_get_rdma_header_version);
365
366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
367                                                      u8 port_num,
368                                                      const struct ib_grh *grh)
369 {
370         int grh_version;
371
372         if (rdma_protocol_ib(device, port_num))
373                 return RDMA_NETWORK_IB;
374
375         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
376
377         if (grh_version == 4)
378                 return RDMA_NETWORK_IPV4;
379
380         if (grh->next_hdr == IPPROTO_UDP)
381                 return RDMA_NETWORK_IPV6;
382
383         return RDMA_NETWORK_ROCE_V1;
384 }
385
386 struct find_gid_index_context {
387         u16 vlan_id;
388         enum ib_gid_type gid_type;
389 };
390
391 static bool find_gid_index(const union ib_gid *gid,
392                            const struct ib_gid_attr *gid_attr,
393                            void *context)
394 {
395         struct find_gid_index_context *ctx =
396                 (struct find_gid_index_context *)context;
397
398         if (ctx->gid_type != gid_attr->gid_type)
399                 return false;
400
401         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
402             (is_vlan_dev(gid_attr->ndev) &&
403              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
404                 return false;
405
406         return true;
407 }
408
409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
410                                    u16 vlan_id, const union ib_gid *sgid,
411                                    enum ib_gid_type gid_type,
412                                    u16 *gid_index)
413 {
414         struct find_gid_index_context context = {.vlan_id = vlan_id,
415                                                  .gid_type = gid_type};
416
417         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
418                                      &context, gid_index);
419 }
420
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
422                               enum rdma_network_type net_type,
423                               union ib_gid *sgid, union ib_gid *dgid)
424 {
425         struct sockaddr_in  src_in;
426         struct sockaddr_in  dst_in;
427         __be32 src_saddr, dst_saddr;
428
429         if (!sgid || !dgid)
430                 return -EINVAL;
431
432         if (net_type == RDMA_NETWORK_IPV4) {
433                 memcpy(&src_in.sin_addr.s_addr,
434                        &hdr->roce4grh.saddr, 4);
435                 memcpy(&dst_in.sin_addr.s_addr,
436                        &hdr->roce4grh.daddr, 4);
437                 src_saddr = src_in.sin_addr.s_addr;
438                 dst_saddr = dst_in.sin_addr.s_addr;
439                 ipv6_addr_set_v4mapped(src_saddr,
440                                        (struct in6_addr *)sgid);
441                 ipv6_addr_set_v4mapped(dst_saddr,
442                                        (struct in6_addr *)dgid);
443                 return 0;
444         } else if (net_type == RDMA_NETWORK_IPV6 ||
445                    net_type == RDMA_NETWORK_IB) {
446                 *dgid = hdr->ibgrh.dgid;
447                 *sgid = hdr->ibgrh.sgid;
448                 return 0;
449         } else {
450                 return -EINVAL;
451         }
452 }
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
454
455 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
456                        const struct ib_wc *wc, const struct ib_grh *grh,
457                        struct rdma_ah_attr *ah_attr)
458 {
459         u32 flow_class;
460         u16 gid_index;
461         int ret;
462         enum rdma_network_type net_type = RDMA_NETWORK_IB;
463         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
464         int hoplimit = 0xff;
465         union ib_gid dgid;
466         union ib_gid sgid;
467
468         memset(ah_attr, 0, sizeof *ah_attr);
469         ah_attr->type = rdma_ah_find_type(device, port_num);
470         if (rdma_cap_eth_ah(device, port_num)) {
471                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
472                         net_type = wc->network_hdr_type;
473                 else
474                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
475                 gid_type = ib_network_to_gid_type(net_type);
476         }
477         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
478                                         &sgid, &dgid);
479         if (ret)
480                 return ret;
481
482         if (rdma_protocol_roce(device, port_num)) {
483                 int if_index = 0;
484                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
485                                 wc->vlan_id : 0xffff;
486                 struct net_device *idev;
487                 struct net_device *resolved_dev;
488
489                 if (!(wc->wc_flags & IB_WC_GRH))
490                         return -EPROTOTYPE;
491
492                 if (!device->get_netdev)
493                         return -EOPNOTSUPP;
494
495                 idev = device->get_netdev(device, port_num);
496                 if (!idev)
497                         return -ENODEV;
498
499                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
500                                                    ah_attr->roce.dmac,
501                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
502                                                    NULL : &vlan_id,
503                                                    &if_index, &hoplimit);
504                 if (ret) {
505                         dev_put(idev);
506                         return ret;
507                 }
508
509                 resolved_dev = dev_get_by_index(&init_net, if_index);
510                 if (resolved_dev->flags & IFF_LOOPBACK) {
511                         dev_put(resolved_dev);
512                         resolved_dev = idev;
513                         dev_hold(resolved_dev);
514                 }
515                 rcu_read_lock();
516                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
517                                                                    resolved_dev))
518                         ret = -EHOSTUNREACH;
519                 rcu_read_unlock();
520                 dev_put(idev);
521                 dev_put(resolved_dev);
522                 if (ret)
523                         return ret;
524
525                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
526                                               &dgid, gid_type, &gid_index);
527                 if (ret)
528                         return ret;
529         }
530
531         rdma_ah_set_dlid(ah_attr, wc->slid);
532         rdma_ah_set_sl(ah_attr, wc->sl);
533         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
534         rdma_ah_set_port_num(ah_attr, port_num);
535
536         if (wc->wc_flags & IB_WC_GRH) {
537                 if (!rdma_cap_eth_ah(device, port_num)) {
538                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
539                                 ret = ib_find_cached_gid_by_port(device, &dgid,
540                                                                  IB_GID_TYPE_IB,
541                                                                  port_num, NULL,
542                                                                  &gid_index);
543                                 if (ret)
544                                         return ret;
545                         } else {
546                                 gid_index = 0;
547                         }
548                 }
549
550                 flow_class = be32_to_cpu(grh->version_tclass_flow);
551                 rdma_ah_set_grh(ah_attr, &sgid,
552                                 flow_class & 0xFFFFF,
553                                 (u8)gid_index, hoplimit,
554                                 (flow_class >> 20) & 0xFF);
555
556         }
557         return 0;
558 }
559 EXPORT_SYMBOL(ib_init_ah_from_wc);
560
561 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
562                                    const struct ib_grh *grh, u8 port_num)
563 {
564         struct rdma_ah_attr ah_attr;
565         int ret;
566
567         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         return rdma_create_ah(pd, &ah_attr);
572 }
573 EXPORT_SYMBOL(ib_create_ah_from_wc);
574
575 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
576 {
577         if (ah->type != ah_attr->type)
578                 return -EINVAL;
579
580         return ah->device->modify_ah ?
581                 ah->device->modify_ah(ah, ah_attr) :
582                 -ENOSYS;
583 }
584 EXPORT_SYMBOL(rdma_modify_ah);
585
586 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
587 {
588         return ah->device->query_ah ?
589                 ah->device->query_ah(ah, ah_attr) :
590                 -ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_query_ah);
593
594 int rdma_destroy_ah(struct ib_ah *ah)
595 {
596         struct ib_pd *pd;
597         int ret;
598
599         pd = ah->pd;
600         ret = ah->device->destroy_ah(ah);
601         if (!ret)
602                 atomic_dec(&pd->usecnt);
603
604         return ret;
605 }
606 EXPORT_SYMBOL(rdma_destroy_ah);
607
608 /* Shared receive queues */
609
610 struct ib_srq *ib_create_srq(struct ib_pd *pd,
611                              struct ib_srq_init_attr *srq_init_attr)
612 {
613         struct ib_srq *srq;
614
615         if (!pd->device->create_srq)
616                 return ERR_PTR(-ENOSYS);
617
618         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
619
620         if (!IS_ERR(srq)) {
621                 srq->device        = pd->device;
622                 srq->pd            = pd;
623                 srq->uobject       = NULL;
624                 srq->event_handler = srq_init_attr->event_handler;
625                 srq->srq_context   = srq_init_attr->srq_context;
626                 srq->srq_type      = srq_init_attr->srq_type;
627                 if (srq->srq_type == IB_SRQT_XRC) {
628                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
629                         srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
630                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
631                         atomic_inc(&srq->ext.xrc.cq->usecnt);
632                 }
633                 atomic_inc(&pd->usecnt);
634                 atomic_set(&srq->usecnt, 0);
635         }
636
637         return srq;
638 }
639 EXPORT_SYMBOL(ib_create_srq);
640
641 int ib_modify_srq(struct ib_srq *srq,
642                   struct ib_srq_attr *srq_attr,
643                   enum ib_srq_attr_mask srq_attr_mask)
644 {
645         return srq->device->modify_srq ?
646                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
647                 -ENOSYS;
648 }
649 EXPORT_SYMBOL(ib_modify_srq);
650
651 int ib_query_srq(struct ib_srq *srq,
652                  struct ib_srq_attr *srq_attr)
653 {
654         return srq->device->query_srq ?
655                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
656 }
657 EXPORT_SYMBOL(ib_query_srq);
658
659 int ib_destroy_srq(struct ib_srq *srq)
660 {
661         struct ib_pd *pd;
662         enum ib_srq_type srq_type;
663         struct ib_xrcd *uninitialized_var(xrcd);
664         struct ib_cq *uninitialized_var(cq);
665         int ret;
666
667         if (atomic_read(&srq->usecnt))
668                 return -EBUSY;
669
670         pd = srq->pd;
671         srq_type = srq->srq_type;
672         if (srq_type == IB_SRQT_XRC) {
673                 xrcd = srq->ext.xrc.xrcd;
674                 cq = srq->ext.xrc.cq;
675         }
676
677         ret = srq->device->destroy_srq(srq);
678         if (!ret) {
679                 atomic_dec(&pd->usecnt);
680                 if (srq_type == IB_SRQT_XRC) {
681                         atomic_dec(&xrcd->usecnt);
682                         atomic_dec(&cq->usecnt);
683                 }
684         }
685
686         return ret;
687 }
688 EXPORT_SYMBOL(ib_destroy_srq);
689
690 /* Queue pairs */
691
692 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
693 {
694         struct ib_qp *qp = context;
695         unsigned long flags;
696
697         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
698         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
699                 if (event->element.qp->event_handler)
700                         event->element.qp->event_handler(event, event->element.qp->qp_context);
701         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
702 }
703
704 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
705 {
706         mutex_lock(&xrcd->tgt_qp_mutex);
707         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
708         mutex_unlock(&xrcd->tgt_qp_mutex);
709 }
710
711 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
712                                   void (*event_handler)(struct ib_event *, void *),
713                                   void *qp_context)
714 {
715         struct ib_qp *qp;
716         unsigned long flags;
717         int err;
718
719         qp = kzalloc(sizeof *qp, GFP_KERNEL);
720         if (!qp)
721                 return ERR_PTR(-ENOMEM);
722
723         qp->real_qp = real_qp;
724         err = ib_open_shared_qp_security(qp, real_qp->device);
725         if (err) {
726                 kfree(qp);
727                 return ERR_PTR(err);
728         }
729
730         qp->real_qp = real_qp;
731         atomic_inc(&real_qp->usecnt);
732         qp->device = real_qp->device;
733         qp->event_handler = event_handler;
734         qp->qp_context = qp_context;
735         qp->qp_num = real_qp->qp_num;
736         qp->qp_type = real_qp->qp_type;
737
738         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
739         list_add(&qp->open_list, &real_qp->open_list);
740         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
741
742         return qp;
743 }
744
745 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
746                          struct ib_qp_open_attr *qp_open_attr)
747 {
748         struct ib_qp *qp, *real_qp;
749
750         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
751                 return ERR_PTR(-EINVAL);
752
753         qp = ERR_PTR(-EINVAL);
754         mutex_lock(&xrcd->tgt_qp_mutex);
755         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
756                 if (real_qp->qp_num == qp_open_attr->qp_num) {
757                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
758                                           qp_open_attr->qp_context);
759                         break;
760                 }
761         }
762         mutex_unlock(&xrcd->tgt_qp_mutex);
763         return qp;
764 }
765 EXPORT_SYMBOL(ib_open_qp);
766
767 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
768                 struct ib_qp_init_attr *qp_init_attr)
769 {
770         struct ib_qp *real_qp = qp;
771
772         qp->event_handler = __ib_shared_qp_event_handler;
773         qp->qp_context = qp;
774         qp->pd = NULL;
775         qp->send_cq = qp->recv_cq = NULL;
776         qp->srq = NULL;
777         qp->xrcd = qp_init_attr->xrcd;
778         atomic_inc(&qp_init_attr->xrcd->usecnt);
779         INIT_LIST_HEAD(&qp->open_list);
780
781         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
782                           qp_init_attr->qp_context);
783         if (!IS_ERR(qp))
784                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
785         else
786                 real_qp->device->destroy_qp(real_qp);
787         return qp;
788 }
789
790 struct ib_qp *ib_create_qp(struct ib_pd *pd,
791                            struct ib_qp_init_attr *qp_init_attr)
792 {
793         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
794         struct ib_qp *qp;
795         int ret;
796
797         if (qp_init_attr->rwq_ind_tbl &&
798             (qp_init_attr->recv_cq ||
799             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
800             qp_init_attr->cap.max_recv_sge))
801                 return ERR_PTR(-EINVAL);
802
803         /*
804          * If the callers is using the RDMA API calculate the resources
805          * needed for the RDMA READ/WRITE operations.
806          *
807          * Note that these callers need to pass in a port number.
808          */
809         if (qp_init_attr->cap.max_rdma_ctxs)
810                 rdma_rw_init_qp(device, qp_init_attr);
811
812         qp = device->create_qp(pd, qp_init_attr, NULL);
813         if (IS_ERR(qp))
814                 return qp;
815
816         ret = ib_create_qp_security(qp, device);
817         if (ret) {
818                 ib_destroy_qp(qp);
819                 return ERR_PTR(ret);
820         }
821
822         qp->device     = device;
823         qp->real_qp    = qp;
824         qp->uobject    = NULL;
825         qp->qp_type    = qp_init_attr->qp_type;
826         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
827
828         atomic_set(&qp->usecnt, 0);
829         qp->mrs_used = 0;
830         spin_lock_init(&qp->mr_lock);
831         INIT_LIST_HEAD(&qp->rdma_mrs);
832         INIT_LIST_HEAD(&qp->sig_mrs);
833
834         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
835                 return ib_create_xrc_qp(qp, qp_init_attr);
836
837         qp->event_handler = qp_init_attr->event_handler;
838         qp->qp_context = qp_init_attr->qp_context;
839         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
840                 qp->recv_cq = NULL;
841                 qp->srq = NULL;
842         } else {
843                 qp->recv_cq = qp_init_attr->recv_cq;
844                 if (qp_init_attr->recv_cq)
845                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
846                 qp->srq = qp_init_attr->srq;
847                 if (qp->srq)
848                         atomic_inc(&qp_init_attr->srq->usecnt);
849         }
850
851         qp->pd      = pd;
852         qp->send_cq = qp_init_attr->send_cq;
853         qp->xrcd    = NULL;
854
855         atomic_inc(&pd->usecnt);
856         if (qp_init_attr->send_cq)
857                 atomic_inc(&qp_init_attr->send_cq->usecnt);
858         if (qp_init_attr->rwq_ind_tbl)
859                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
860
861         if (qp_init_attr->cap.max_rdma_ctxs) {
862                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
863                 if (ret) {
864                         pr_err("failed to init MR pool ret= %d\n", ret);
865                         ib_destroy_qp(qp);
866                         return ERR_PTR(ret);
867                 }
868         }
869
870         /*
871          * Note: all hw drivers guarantee that max_send_sge is lower than
872          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
873          * max_send_sge <= max_sge_rd.
874          */
875         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
876         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
877                                  device->attrs.max_sge_rd);
878
879         return qp;
880 }
881 EXPORT_SYMBOL(ib_create_qp);
882
883 static const struct {
884         int                     valid;
885         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
886         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
887 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
888         [IB_QPS_RESET] = {
889                 [IB_QPS_RESET] = { .valid = 1 },
890                 [IB_QPS_INIT]  = {
891                         .valid = 1,
892                         .req_param = {
893                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
894                                                 IB_QP_PORT                      |
895                                                 IB_QP_QKEY),
896                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
897                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
898                                                 IB_QP_PORT                      |
899                                                 IB_QP_ACCESS_FLAGS),
900                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
901                                                 IB_QP_PORT                      |
902                                                 IB_QP_ACCESS_FLAGS),
903                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
904                                                 IB_QP_PORT                      |
905                                                 IB_QP_ACCESS_FLAGS),
906                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
907                                                 IB_QP_PORT                      |
908                                                 IB_QP_ACCESS_FLAGS),
909                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
910                                                 IB_QP_QKEY),
911                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
912                                                 IB_QP_QKEY),
913                         }
914                 },
915         },
916         [IB_QPS_INIT]  = {
917                 [IB_QPS_RESET] = { .valid = 1 },
918                 [IB_QPS_ERR] =   { .valid = 1 },
919                 [IB_QPS_INIT]  = {
920                         .valid = 1,
921                         .opt_param = {
922                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
923                                                 IB_QP_PORT                      |
924                                                 IB_QP_QKEY),
925                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
926                                                 IB_QP_PORT                      |
927                                                 IB_QP_ACCESS_FLAGS),
928                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
929                                                 IB_QP_PORT                      |
930                                                 IB_QP_ACCESS_FLAGS),
931                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
932                                                 IB_QP_PORT                      |
933                                                 IB_QP_ACCESS_FLAGS),
934                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
935                                                 IB_QP_PORT                      |
936                                                 IB_QP_ACCESS_FLAGS),
937                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
938                                                 IB_QP_QKEY),
939                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
940                                                 IB_QP_QKEY),
941                         }
942                 },
943                 [IB_QPS_RTR]   = {
944                         .valid = 1,
945                         .req_param = {
946                                 [IB_QPT_UC]  = (IB_QP_AV                        |
947                                                 IB_QP_PATH_MTU                  |
948                                                 IB_QP_DEST_QPN                  |
949                                                 IB_QP_RQ_PSN),
950                                 [IB_QPT_RC]  = (IB_QP_AV                        |
951                                                 IB_QP_PATH_MTU                  |
952                                                 IB_QP_DEST_QPN                  |
953                                                 IB_QP_RQ_PSN                    |
954                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
955                                                 IB_QP_MIN_RNR_TIMER),
956                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
957                                                 IB_QP_PATH_MTU                  |
958                                                 IB_QP_DEST_QPN                  |
959                                                 IB_QP_RQ_PSN),
960                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
961                                                 IB_QP_PATH_MTU                  |
962                                                 IB_QP_DEST_QPN                  |
963                                                 IB_QP_RQ_PSN                    |
964                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
965                                                 IB_QP_MIN_RNR_TIMER),
966                         },
967                         .opt_param = {
968                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
969                                                  IB_QP_QKEY),
970                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
971                                                  IB_QP_ACCESS_FLAGS             |
972                                                  IB_QP_PKEY_INDEX),
973                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
974                                                  IB_QP_ACCESS_FLAGS             |
975                                                  IB_QP_PKEY_INDEX),
976                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
977                                                  IB_QP_ACCESS_FLAGS             |
978                                                  IB_QP_PKEY_INDEX),
979                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
980                                                  IB_QP_ACCESS_FLAGS             |
981                                                  IB_QP_PKEY_INDEX),
982                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
983                                                  IB_QP_QKEY),
984                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
985                                                  IB_QP_QKEY),
986                          },
987                 },
988         },
989         [IB_QPS_RTR]   = {
990                 [IB_QPS_RESET] = { .valid = 1 },
991                 [IB_QPS_ERR] =   { .valid = 1 },
992                 [IB_QPS_RTS]   = {
993                         .valid = 1,
994                         .req_param = {
995                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
996                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
997                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
998                                                 IB_QP_RETRY_CNT                 |
999                                                 IB_QP_RNR_RETRY                 |
1000                                                 IB_QP_SQ_PSN                    |
1001                                                 IB_QP_MAX_QP_RD_ATOMIC),
1002                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1003                                                 IB_QP_RETRY_CNT                 |
1004                                                 IB_QP_RNR_RETRY                 |
1005                                                 IB_QP_SQ_PSN                    |
1006                                                 IB_QP_MAX_QP_RD_ATOMIC),
1007                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1008                                                 IB_QP_SQ_PSN),
1009                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1010                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1011                         },
1012                         .opt_param = {
1013                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1014                                                  IB_QP_QKEY),
1015                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1016                                                  IB_QP_ALT_PATH                 |
1017                                                  IB_QP_ACCESS_FLAGS             |
1018                                                  IB_QP_PATH_MIG_STATE),
1019                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1020                                                  IB_QP_ALT_PATH                 |
1021                                                  IB_QP_ACCESS_FLAGS             |
1022                                                  IB_QP_MIN_RNR_TIMER            |
1023                                                  IB_QP_PATH_MIG_STATE),
1024                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1025                                                  IB_QP_ALT_PATH                 |
1026                                                  IB_QP_ACCESS_FLAGS             |
1027                                                  IB_QP_PATH_MIG_STATE),
1028                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1029                                                  IB_QP_ALT_PATH                 |
1030                                                  IB_QP_ACCESS_FLAGS             |
1031                                                  IB_QP_MIN_RNR_TIMER            |
1032                                                  IB_QP_PATH_MIG_STATE),
1033                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1034                                                  IB_QP_QKEY),
1035                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1036                                                  IB_QP_QKEY),
1037                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1038                          }
1039                 }
1040         },
1041         [IB_QPS_RTS]   = {
1042                 [IB_QPS_RESET] = { .valid = 1 },
1043                 [IB_QPS_ERR] =   { .valid = 1 },
1044                 [IB_QPS_RTS]   = {
1045                         .valid = 1,
1046                         .opt_param = {
1047                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1048                                                 IB_QP_QKEY),
1049                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1050                                                 IB_QP_ACCESS_FLAGS              |
1051                                                 IB_QP_ALT_PATH                  |
1052                                                 IB_QP_PATH_MIG_STATE),
1053                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1054                                                 IB_QP_ACCESS_FLAGS              |
1055                                                 IB_QP_ALT_PATH                  |
1056                                                 IB_QP_PATH_MIG_STATE            |
1057                                                 IB_QP_MIN_RNR_TIMER),
1058                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1059                                                 IB_QP_ACCESS_FLAGS              |
1060                                                 IB_QP_ALT_PATH                  |
1061                                                 IB_QP_PATH_MIG_STATE),
1062                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1063                                                 IB_QP_ACCESS_FLAGS              |
1064                                                 IB_QP_ALT_PATH                  |
1065                                                 IB_QP_PATH_MIG_STATE            |
1066                                                 IB_QP_MIN_RNR_TIMER),
1067                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1068                                                 IB_QP_QKEY),
1069                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1070                                                 IB_QP_QKEY),
1071                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1072                         }
1073                 },
1074                 [IB_QPS_SQD]   = {
1075                         .valid = 1,
1076                         .opt_param = {
1077                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1078                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1079                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1080                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1081                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1082                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1083                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1084                         }
1085                 },
1086         },
1087         [IB_QPS_SQD]   = {
1088                 [IB_QPS_RESET] = { .valid = 1 },
1089                 [IB_QPS_ERR] =   { .valid = 1 },
1090                 [IB_QPS_RTS]   = {
1091                         .valid = 1,
1092                         .opt_param = {
1093                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1094                                                 IB_QP_QKEY),
1095                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1096                                                 IB_QP_ALT_PATH                  |
1097                                                 IB_QP_ACCESS_FLAGS              |
1098                                                 IB_QP_PATH_MIG_STATE),
1099                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1100                                                 IB_QP_ALT_PATH                  |
1101                                                 IB_QP_ACCESS_FLAGS              |
1102                                                 IB_QP_MIN_RNR_TIMER             |
1103                                                 IB_QP_PATH_MIG_STATE),
1104                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1105                                                 IB_QP_ALT_PATH                  |
1106                                                 IB_QP_ACCESS_FLAGS              |
1107                                                 IB_QP_PATH_MIG_STATE),
1108                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1109                                                 IB_QP_ALT_PATH                  |
1110                                                 IB_QP_ACCESS_FLAGS              |
1111                                                 IB_QP_MIN_RNR_TIMER             |
1112                                                 IB_QP_PATH_MIG_STATE),
1113                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1114                                                 IB_QP_QKEY),
1115                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1116                                                 IB_QP_QKEY),
1117                         }
1118                 },
1119                 [IB_QPS_SQD]   = {
1120                         .valid = 1,
1121                         .opt_param = {
1122                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1123                                                 IB_QP_QKEY),
1124                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1125                                                 IB_QP_ALT_PATH                  |
1126                                                 IB_QP_ACCESS_FLAGS              |
1127                                                 IB_QP_PKEY_INDEX                |
1128                                                 IB_QP_PATH_MIG_STATE),
1129                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1130                                                 IB_QP_AV                        |
1131                                                 IB_QP_TIMEOUT                   |
1132                                                 IB_QP_RETRY_CNT                 |
1133                                                 IB_QP_RNR_RETRY                 |
1134                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1135                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1136                                                 IB_QP_ALT_PATH                  |
1137                                                 IB_QP_ACCESS_FLAGS              |
1138                                                 IB_QP_PKEY_INDEX                |
1139                                                 IB_QP_MIN_RNR_TIMER             |
1140                                                 IB_QP_PATH_MIG_STATE),
1141                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1142                                                 IB_QP_AV                        |
1143                                                 IB_QP_TIMEOUT                   |
1144                                                 IB_QP_RETRY_CNT                 |
1145                                                 IB_QP_RNR_RETRY                 |
1146                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1147                                                 IB_QP_ALT_PATH                  |
1148                                                 IB_QP_ACCESS_FLAGS              |
1149                                                 IB_QP_PKEY_INDEX                |
1150                                                 IB_QP_PATH_MIG_STATE),
1151                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1152                                                 IB_QP_AV                        |
1153                                                 IB_QP_TIMEOUT                   |
1154                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1155                                                 IB_QP_ALT_PATH                  |
1156                                                 IB_QP_ACCESS_FLAGS              |
1157                                                 IB_QP_PKEY_INDEX                |
1158                                                 IB_QP_MIN_RNR_TIMER             |
1159                                                 IB_QP_PATH_MIG_STATE),
1160                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1161                                                 IB_QP_QKEY),
1162                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1163                                                 IB_QP_QKEY),
1164                         }
1165                 }
1166         },
1167         [IB_QPS_SQE]   = {
1168                 [IB_QPS_RESET] = { .valid = 1 },
1169                 [IB_QPS_ERR] =   { .valid = 1 },
1170                 [IB_QPS_RTS]   = {
1171                         .valid = 1,
1172                         .opt_param = {
1173                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1174                                                 IB_QP_QKEY),
1175                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1176                                                 IB_QP_ACCESS_FLAGS),
1177                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1178                                                 IB_QP_QKEY),
1179                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1180                                                 IB_QP_QKEY),
1181                         }
1182                 }
1183         },
1184         [IB_QPS_ERR] = {
1185                 [IB_QPS_RESET] = { .valid = 1 },
1186                 [IB_QPS_ERR] =   { .valid = 1 }
1187         }
1188 };
1189
1190 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1191                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1192                        enum rdma_link_layer ll)
1193 {
1194         enum ib_qp_attr_mask req_param, opt_param;
1195
1196         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1197             next_state < 0 || next_state > IB_QPS_ERR)
1198                 return 0;
1199
1200         if (mask & IB_QP_CUR_STATE  &&
1201             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1202             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1203                 return 0;
1204
1205         if (!qp_state_table[cur_state][next_state].valid)
1206                 return 0;
1207
1208         req_param = qp_state_table[cur_state][next_state].req_param[type];
1209         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1210
1211         if ((mask & req_param) != req_param)
1212                 return 0;
1213
1214         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1215                 return 0;
1216
1217         return 1;
1218 }
1219 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1220
1221 int ib_resolve_eth_dmac(struct ib_device *device,
1222                         struct rdma_ah_attr *ah_attr)
1223 {
1224         int           ret = 0;
1225         struct ib_global_route *grh;
1226
1227         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1228                 return -EINVAL;
1229
1230         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1231                 return 0;
1232
1233         grh = rdma_ah_retrieve_grh(ah_attr);
1234
1235         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1236                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1237                                 ah_attr->roce.dmac);
1238         } else {
1239                 union ib_gid            sgid;
1240                 struct ib_gid_attr      sgid_attr;
1241                 int                     ifindex;
1242                 int                     hop_limit;
1243
1244                 ret = ib_query_gid(device,
1245                                    rdma_ah_get_port_num(ah_attr),
1246                                    grh->sgid_index,
1247                                    &sgid, &sgid_attr);
1248
1249                 if (ret || !sgid_attr.ndev) {
1250                         if (!ret)
1251                                 ret = -ENXIO;
1252                         goto out;
1253                 }
1254
1255                 ifindex = sgid_attr.ndev->ifindex;
1256
1257                 ret =
1258                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1259                                              ah_attr->roce.dmac,
1260                                              NULL, &ifindex, &hop_limit);
1261
1262                 dev_put(sgid_attr.ndev);
1263
1264                 grh->hop_limit = hop_limit;
1265         }
1266 out:
1267         return ret;
1268 }
1269 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1270
1271 int ib_modify_qp(struct ib_qp *qp,
1272                  struct ib_qp_attr *qp_attr,
1273                  int qp_attr_mask)
1274 {
1275
1276         if (qp_attr_mask & IB_QP_AV) {
1277                 int ret;
1278
1279                 ret = ib_resolve_eth_dmac(qp->device, &qp_attr->ah_attr);
1280                 if (ret)
1281                         return ret;
1282         }
1283
1284         return ib_security_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1285 }
1286 EXPORT_SYMBOL(ib_modify_qp);
1287
1288 int ib_query_qp(struct ib_qp *qp,
1289                 struct ib_qp_attr *qp_attr,
1290                 int qp_attr_mask,
1291                 struct ib_qp_init_attr *qp_init_attr)
1292 {
1293         return qp->device->query_qp ?
1294                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1295                 -ENOSYS;
1296 }
1297 EXPORT_SYMBOL(ib_query_qp);
1298
1299 int ib_close_qp(struct ib_qp *qp)
1300 {
1301         struct ib_qp *real_qp;
1302         unsigned long flags;
1303
1304         real_qp = qp->real_qp;
1305         if (real_qp == qp)
1306                 return -EINVAL;
1307
1308         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1309         list_del(&qp->open_list);
1310         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1311
1312         atomic_dec(&real_qp->usecnt);
1313         ib_close_shared_qp_security(qp->qp_sec);
1314         kfree(qp);
1315
1316         return 0;
1317 }
1318 EXPORT_SYMBOL(ib_close_qp);
1319
1320 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1321 {
1322         struct ib_xrcd *xrcd;
1323         struct ib_qp *real_qp;
1324         int ret;
1325
1326         real_qp = qp->real_qp;
1327         xrcd = real_qp->xrcd;
1328
1329         mutex_lock(&xrcd->tgt_qp_mutex);
1330         ib_close_qp(qp);
1331         if (atomic_read(&real_qp->usecnt) == 0)
1332                 list_del(&real_qp->xrcd_list);
1333         else
1334                 real_qp = NULL;
1335         mutex_unlock(&xrcd->tgt_qp_mutex);
1336
1337         if (real_qp) {
1338                 ret = ib_destroy_qp(real_qp);
1339                 if (!ret)
1340                         atomic_dec(&xrcd->usecnt);
1341                 else
1342                         __ib_insert_xrcd_qp(xrcd, real_qp);
1343         }
1344
1345         return 0;
1346 }
1347
1348 int ib_destroy_qp(struct ib_qp *qp)
1349 {
1350         struct ib_pd *pd;
1351         struct ib_cq *scq, *rcq;
1352         struct ib_srq *srq;
1353         struct ib_rwq_ind_table *ind_tbl;
1354         struct ib_qp_security *sec;
1355         int ret;
1356
1357         WARN_ON_ONCE(qp->mrs_used > 0);
1358
1359         if (atomic_read(&qp->usecnt))
1360                 return -EBUSY;
1361
1362         if (qp->real_qp != qp)
1363                 return __ib_destroy_shared_qp(qp);
1364
1365         pd   = qp->pd;
1366         scq  = qp->send_cq;
1367         rcq  = qp->recv_cq;
1368         srq  = qp->srq;
1369         ind_tbl = qp->rwq_ind_tbl;
1370         sec  = qp->qp_sec;
1371         if (sec)
1372                 ib_destroy_qp_security_begin(sec);
1373
1374         if (!qp->uobject)
1375                 rdma_rw_cleanup_mrs(qp);
1376
1377         ret = qp->device->destroy_qp(qp);
1378         if (!ret) {
1379                 if (pd)
1380                         atomic_dec(&pd->usecnt);
1381                 if (scq)
1382                         atomic_dec(&scq->usecnt);
1383                 if (rcq)
1384                         atomic_dec(&rcq->usecnt);
1385                 if (srq)
1386                         atomic_dec(&srq->usecnt);
1387                 if (ind_tbl)
1388                         atomic_dec(&ind_tbl->usecnt);
1389                 if (sec)
1390                         ib_destroy_qp_security_end(sec);
1391         } else {
1392                 if (sec)
1393                         ib_destroy_qp_security_abort(sec);
1394         }
1395
1396         return ret;
1397 }
1398 EXPORT_SYMBOL(ib_destroy_qp);
1399
1400 /* Completion queues */
1401
1402 struct ib_cq *ib_create_cq(struct ib_device *device,
1403                            ib_comp_handler comp_handler,
1404                            void (*event_handler)(struct ib_event *, void *),
1405                            void *cq_context,
1406                            const struct ib_cq_init_attr *cq_attr)
1407 {
1408         struct ib_cq *cq;
1409
1410         cq = device->create_cq(device, cq_attr, NULL, NULL);
1411
1412         if (!IS_ERR(cq)) {
1413                 cq->device        = device;
1414                 cq->uobject       = NULL;
1415                 cq->comp_handler  = comp_handler;
1416                 cq->event_handler = event_handler;
1417                 cq->cq_context    = cq_context;
1418                 atomic_set(&cq->usecnt, 0);
1419         }
1420
1421         return cq;
1422 }
1423 EXPORT_SYMBOL(ib_create_cq);
1424
1425 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1426 {
1427         return cq->device->modify_cq ?
1428                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1429 }
1430 EXPORT_SYMBOL(ib_modify_cq);
1431
1432 int ib_destroy_cq(struct ib_cq *cq)
1433 {
1434         if (atomic_read(&cq->usecnt))
1435                 return -EBUSY;
1436
1437         return cq->device->destroy_cq(cq);
1438 }
1439 EXPORT_SYMBOL(ib_destroy_cq);
1440
1441 int ib_resize_cq(struct ib_cq *cq, int cqe)
1442 {
1443         return cq->device->resize_cq ?
1444                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1445 }
1446 EXPORT_SYMBOL(ib_resize_cq);
1447
1448 /* Memory regions */
1449
1450 int ib_dereg_mr(struct ib_mr *mr)
1451 {
1452         struct ib_pd *pd = mr->pd;
1453         int ret;
1454
1455         ret = mr->device->dereg_mr(mr);
1456         if (!ret)
1457                 atomic_dec(&pd->usecnt);
1458
1459         return ret;
1460 }
1461 EXPORT_SYMBOL(ib_dereg_mr);
1462
1463 /**
1464  * ib_alloc_mr() - Allocates a memory region
1465  * @pd:            protection domain associated with the region
1466  * @mr_type:       memory region type
1467  * @max_num_sg:    maximum sg entries available for registration.
1468  *
1469  * Notes:
1470  * Memory registeration page/sg lists must not exceed max_num_sg.
1471  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1472  * max_num_sg * used_page_size.
1473  *
1474  */
1475 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1476                           enum ib_mr_type mr_type,
1477                           u32 max_num_sg)
1478 {
1479         struct ib_mr *mr;
1480
1481         if (!pd->device->alloc_mr)
1482                 return ERR_PTR(-ENOSYS);
1483
1484         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1485         if (!IS_ERR(mr)) {
1486                 mr->device  = pd->device;
1487                 mr->pd      = pd;
1488                 mr->uobject = NULL;
1489                 atomic_inc(&pd->usecnt);
1490                 mr->need_inval = false;
1491         }
1492
1493         return mr;
1494 }
1495 EXPORT_SYMBOL(ib_alloc_mr);
1496
1497 /* "Fast" memory regions */
1498
1499 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1500                             int mr_access_flags,
1501                             struct ib_fmr_attr *fmr_attr)
1502 {
1503         struct ib_fmr *fmr;
1504
1505         if (!pd->device->alloc_fmr)
1506                 return ERR_PTR(-ENOSYS);
1507
1508         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1509         if (!IS_ERR(fmr)) {
1510                 fmr->device = pd->device;
1511                 fmr->pd     = pd;
1512                 atomic_inc(&pd->usecnt);
1513         }
1514
1515         return fmr;
1516 }
1517 EXPORT_SYMBOL(ib_alloc_fmr);
1518
1519 int ib_unmap_fmr(struct list_head *fmr_list)
1520 {
1521         struct ib_fmr *fmr;
1522
1523         if (list_empty(fmr_list))
1524                 return 0;
1525
1526         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1527         return fmr->device->unmap_fmr(fmr_list);
1528 }
1529 EXPORT_SYMBOL(ib_unmap_fmr);
1530
1531 int ib_dealloc_fmr(struct ib_fmr *fmr)
1532 {
1533         struct ib_pd *pd;
1534         int ret;
1535
1536         pd = fmr->pd;
1537         ret = fmr->device->dealloc_fmr(fmr);
1538         if (!ret)
1539                 atomic_dec(&pd->usecnt);
1540
1541         return ret;
1542 }
1543 EXPORT_SYMBOL(ib_dealloc_fmr);
1544
1545 /* Multicast groups */
1546
1547 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1548 {
1549         int ret;
1550
1551         if (!qp->device->attach_mcast)
1552                 return -ENOSYS;
1553         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1554             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1555             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1556                 return -EINVAL;
1557
1558         ret = qp->device->attach_mcast(qp, gid, lid);
1559         if (!ret)
1560                 atomic_inc(&qp->usecnt);
1561         return ret;
1562 }
1563 EXPORT_SYMBOL(ib_attach_mcast);
1564
1565 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1566 {
1567         int ret;
1568
1569         if (!qp->device->detach_mcast)
1570                 return -ENOSYS;
1571         if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1572             lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1573             lid == be16_to_cpu(IB_LID_PERMISSIVE))
1574                 return -EINVAL;
1575
1576         ret = qp->device->detach_mcast(qp, gid, lid);
1577         if (!ret)
1578                 atomic_dec(&qp->usecnt);
1579         return ret;
1580 }
1581 EXPORT_SYMBOL(ib_detach_mcast);
1582
1583 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1584 {
1585         struct ib_xrcd *xrcd;
1586
1587         if (!device->alloc_xrcd)
1588                 return ERR_PTR(-ENOSYS);
1589
1590         xrcd = device->alloc_xrcd(device, NULL, NULL);
1591         if (!IS_ERR(xrcd)) {
1592                 xrcd->device = device;
1593                 xrcd->inode = NULL;
1594                 atomic_set(&xrcd->usecnt, 0);
1595                 mutex_init(&xrcd->tgt_qp_mutex);
1596                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1597         }
1598
1599         return xrcd;
1600 }
1601 EXPORT_SYMBOL(ib_alloc_xrcd);
1602
1603 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1604 {
1605         struct ib_qp *qp;
1606         int ret;
1607
1608         if (atomic_read(&xrcd->usecnt))
1609                 return -EBUSY;
1610
1611         while (!list_empty(&xrcd->tgt_qp_list)) {
1612                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1613                 ret = ib_destroy_qp(qp);
1614                 if (ret)
1615                         return ret;
1616         }
1617
1618         return xrcd->device->dealloc_xrcd(xrcd);
1619 }
1620 EXPORT_SYMBOL(ib_dealloc_xrcd);
1621
1622 /**
1623  * ib_create_wq - Creates a WQ associated with the specified protection
1624  * domain.
1625  * @pd: The protection domain associated with the WQ.
1626  * @wq_init_attr: A list of initial attributes required to create the
1627  * WQ. If WQ creation succeeds, then the attributes are updated to
1628  * the actual capabilities of the created WQ.
1629  *
1630  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1631  * the requested size of the WQ, and set to the actual values allocated
1632  * on return.
1633  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1634  * at least as large as the requested values.
1635  */
1636 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1637                            struct ib_wq_init_attr *wq_attr)
1638 {
1639         struct ib_wq *wq;
1640
1641         if (!pd->device->create_wq)
1642                 return ERR_PTR(-ENOSYS);
1643
1644         wq = pd->device->create_wq(pd, wq_attr, NULL);
1645         if (!IS_ERR(wq)) {
1646                 wq->event_handler = wq_attr->event_handler;
1647                 wq->wq_context = wq_attr->wq_context;
1648                 wq->wq_type = wq_attr->wq_type;
1649                 wq->cq = wq_attr->cq;
1650                 wq->device = pd->device;
1651                 wq->pd = pd;
1652                 wq->uobject = NULL;
1653                 atomic_inc(&pd->usecnt);
1654                 atomic_inc(&wq_attr->cq->usecnt);
1655                 atomic_set(&wq->usecnt, 0);
1656         }
1657         return wq;
1658 }
1659 EXPORT_SYMBOL(ib_create_wq);
1660
1661 /**
1662  * ib_destroy_wq - Destroys the specified WQ.
1663  * @wq: The WQ to destroy.
1664  */
1665 int ib_destroy_wq(struct ib_wq *wq)
1666 {
1667         int err;
1668         struct ib_cq *cq = wq->cq;
1669         struct ib_pd *pd = wq->pd;
1670
1671         if (atomic_read(&wq->usecnt))
1672                 return -EBUSY;
1673
1674         err = wq->device->destroy_wq(wq);
1675         if (!err) {
1676                 atomic_dec(&pd->usecnt);
1677                 atomic_dec(&cq->usecnt);
1678         }
1679         return err;
1680 }
1681 EXPORT_SYMBOL(ib_destroy_wq);
1682
1683 /**
1684  * ib_modify_wq - Modifies the specified WQ.
1685  * @wq: The WQ to modify.
1686  * @wq_attr: On input, specifies the WQ attributes to modify.
1687  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1688  *   are being modified.
1689  * On output, the current values of selected WQ attributes are returned.
1690  */
1691 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1692                  u32 wq_attr_mask)
1693 {
1694         int err;
1695
1696         if (!wq->device->modify_wq)
1697                 return -ENOSYS;
1698
1699         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1700         return err;
1701 }
1702 EXPORT_SYMBOL(ib_modify_wq);
1703
1704 /*
1705  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1706  * @device: The device on which to create the rwq indirection table.
1707  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1708  * create the Indirection Table.
1709  *
1710  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1711  *      than the created ib_rwq_ind_table object and the caller is responsible
1712  *      for its memory allocation/free.
1713  */
1714 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1715                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1716 {
1717         struct ib_rwq_ind_table *rwq_ind_table;
1718         int i;
1719         u32 table_size;
1720
1721         if (!device->create_rwq_ind_table)
1722                 return ERR_PTR(-ENOSYS);
1723
1724         table_size = (1 << init_attr->log_ind_tbl_size);
1725         rwq_ind_table = device->create_rwq_ind_table(device,
1726                                 init_attr, NULL);
1727         if (IS_ERR(rwq_ind_table))
1728                 return rwq_ind_table;
1729
1730         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1731         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1732         rwq_ind_table->device = device;
1733         rwq_ind_table->uobject = NULL;
1734         atomic_set(&rwq_ind_table->usecnt, 0);
1735
1736         for (i = 0; i < table_size; i++)
1737                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1738
1739         return rwq_ind_table;
1740 }
1741 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1742
1743 /*
1744  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1745  * @wq_ind_table: The Indirection Table to destroy.
1746 */
1747 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1748 {
1749         int err, i;
1750         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1751         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1752
1753         if (atomic_read(&rwq_ind_table->usecnt))
1754                 return -EBUSY;
1755
1756         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1757         if (!err) {
1758                 for (i = 0; i < table_size; i++)
1759                         atomic_dec(&ind_tbl[i]->usecnt);
1760         }
1761
1762         return err;
1763 }
1764 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1765
1766 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1767                                struct ib_flow_attr *flow_attr,
1768                                int domain)
1769 {
1770         struct ib_flow *flow_id;
1771         if (!qp->device->create_flow)
1772                 return ERR_PTR(-ENOSYS);
1773
1774         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1775         if (!IS_ERR(flow_id)) {
1776                 atomic_inc(&qp->usecnt);
1777                 flow_id->qp = qp;
1778         }
1779         return flow_id;
1780 }
1781 EXPORT_SYMBOL(ib_create_flow);
1782
1783 int ib_destroy_flow(struct ib_flow *flow_id)
1784 {
1785         int err;
1786         struct ib_qp *qp = flow_id->qp;
1787
1788         err = qp->device->destroy_flow(flow_id);
1789         if (!err)
1790                 atomic_dec(&qp->usecnt);
1791         return err;
1792 }
1793 EXPORT_SYMBOL(ib_destroy_flow);
1794
1795 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1796                        struct ib_mr_status *mr_status)
1797 {
1798         return mr->device->check_mr_status ?
1799                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1800 }
1801 EXPORT_SYMBOL(ib_check_mr_status);
1802
1803 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1804                          int state)
1805 {
1806         if (!device->set_vf_link_state)
1807                 return -ENOSYS;
1808
1809         return device->set_vf_link_state(device, vf, port, state);
1810 }
1811 EXPORT_SYMBOL(ib_set_vf_link_state);
1812
1813 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1814                      struct ifla_vf_info *info)
1815 {
1816         if (!device->get_vf_config)
1817                 return -ENOSYS;
1818
1819         return device->get_vf_config(device, vf, port, info);
1820 }
1821 EXPORT_SYMBOL(ib_get_vf_config);
1822
1823 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1824                     struct ifla_vf_stats *stats)
1825 {
1826         if (!device->get_vf_stats)
1827                 return -ENOSYS;
1828
1829         return device->get_vf_stats(device, vf, port, stats);
1830 }
1831 EXPORT_SYMBOL(ib_get_vf_stats);
1832
1833 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1834                    int type)
1835 {
1836         if (!device->set_vf_guid)
1837                 return -ENOSYS;
1838
1839         return device->set_vf_guid(device, vf, port, guid, type);
1840 }
1841 EXPORT_SYMBOL(ib_set_vf_guid);
1842
1843 /**
1844  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1845  *     and set it the memory region.
1846  * @mr:            memory region
1847  * @sg:            dma mapped scatterlist
1848  * @sg_nents:      number of entries in sg
1849  * @sg_offset:     offset in bytes into sg
1850  * @page_size:     page vector desired page size
1851  *
1852  * Constraints:
1853  * - The first sg element is allowed to have an offset.
1854  * - Each sg element must either be aligned to page_size or virtually
1855  *   contiguous to the previous element. In case an sg element has a
1856  *   non-contiguous offset, the mapping prefix will not include it.
1857  * - The last sg element is allowed to have length less than page_size.
1858  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1859  *   then only max_num_sg entries will be mapped.
1860  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1861  *   constraints holds and the page_size argument is ignored.
1862  *
1863  * Returns the number of sg elements that were mapped to the memory region.
1864  *
1865  * After this completes successfully, the  memory region
1866  * is ready for registration.
1867  */
1868 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1869                  unsigned int *sg_offset, unsigned int page_size)
1870 {
1871         if (unlikely(!mr->device->map_mr_sg))
1872                 return -ENOSYS;
1873
1874         mr->page_size = page_size;
1875
1876         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1877 }
1878 EXPORT_SYMBOL(ib_map_mr_sg);
1879
1880 /**
1881  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1882  *     to a page vector
1883  * @mr:            memory region
1884  * @sgl:           dma mapped scatterlist
1885  * @sg_nents:      number of entries in sg
1886  * @sg_offset_p:   IN:  start offset in bytes into sg
1887  *                 OUT: offset in bytes for element n of the sg of the first
1888  *                      byte that has not been processed where n is the return
1889  *                      value of this function.
1890  * @set_page:      driver page assignment function pointer
1891  *
1892  * Core service helper for drivers to convert the largest
1893  * prefix of given sg list to a page vector. The sg list
1894  * prefix converted is the prefix that meet the requirements
1895  * of ib_map_mr_sg.
1896  *
1897  * Returns the number of sg elements that were assigned to
1898  * a page vector.
1899  */
1900 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1901                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1902 {
1903         struct scatterlist *sg;
1904         u64 last_end_dma_addr = 0;
1905         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1906         unsigned int last_page_off = 0;
1907         u64 page_mask = ~((u64)mr->page_size - 1);
1908         int i, ret;
1909
1910         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1911                 return -EINVAL;
1912
1913         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1914         mr->length = 0;
1915
1916         for_each_sg(sgl, sg, sg_nents, i) {
1917                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
1918                 u64 prev_addr = dma_addr;
1919                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1920                 u64 end_dma_addr = dma_addr + dma_len;
1921                 u64 page_addr = dma_addr & page_mask;
1922
1923                 /*
1924                  * For the second and later elements, check whether either the
1925                  * end of element i-1 or the start of element i is not aligned
1926                  * on a page boundary.
1927                  */
1928                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1929                         /* Stop mapping if there is a gap. */
1930                         if (last_end_dma_addr != dma_addr)
1931                                 break;
1932
1933                         /*
1934                          * Coalesce this element with the last. If it is small
1935                          * enough just update mr->length. Otherwise start
1936                          * mapping from the next page.
1937                          */
1938                         goto next_page;
1939                 }
1940
1941                 do {
1942                         ret = set_page(mr, page_addr);
1943                         if (unlikely(ret < 0)) {
1944                                 sg_offset = prev_addr - sg_dma_address(sg);
1945                                 mr->length += prev_addr - dma_addr;
1946                                 if (sg_offset_p)
1947                                         *sg_offset_p = sg_offset;
1948                                 return i || sg_offset ? i : ret;
1949                         }
1950                         prev_addr = page_addr;
1951 next_page:
1952                         page_addr += mr->page_size;
1953                 } while (page_addr < end_dma_addr);
1954
1955                 mr->length += dma_len;
1956                 last_end_dma_addr = end_dma_addr;
1957                 last_page_off = end_dma_addr & ~page_mask;
1958
1959                 sg_offset = 0;
1960         }
1961
1962         if (sg_offset_p)
1963                 *sg_offset_p = 0;
1964         return i;
1965 }
1966 EXPORT_SYMBOL(ib_sg_to_pages);
1967
1968 struct ib_drain_cqe {
1969         struct ib_cqe cqe;
1970         struct completion done;
1971 };
1972
1973 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1974 {
1975         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1976                                                 cqe);
1977
1978         complete(&cqe->done);
1979 }
1980
1981 /*
1982  * Post a WR and block until its completion is reaped for the SQ.
1983  */
1984 static void __ib_drain_sq(struct ib_qp *qp)
1985 {
1986         struct ib_cq *cq = qp->send_cq;
1987         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1988         struct ib_drain_cqe sdrain;
1989         struct ib_send_wr swr = {}, *bad_swr;
1990         int ret;
1991
1992         swr.wr_cqe = &sdrain.cqe;
1993         sdrain.cqe.done = ib_drain_qp_done;
1994         init_completion(&sdrain.done);
1995
1996         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1997         if (ret) {
1998                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1999                 return;
2000         }
2001
2002         ret = ib_post_send(qp, &swr, &bad_swr);
2003         if (ret) {
2004                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2005                 return;
2006         }
2007
2008         if (cq->poll_ctx == IB_POLL_DIRECT)
2009                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2010                         ib_process_cq_direct(cq, -1);
2011         else
2012                 wait_for_completion(&sdrain.done);
2013 }
2014
2015 /*
2016  * Post a WR and block until its completion is reaped for the RQ.
2017  */
2018 static void __ib_drain_rq(struct ib_qp *qp)
2019 {
2020         struct ib_cq *cq = qp->recv_cq;
2021         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2022         struct ib_drain_cqe rdrain;
2023         struct ib_recv_wr rwr = {}, *bad_rwr;
2024         int ret;
2025
2026         rwr.wr_cqe = &rdrain.cqe;
2027         rdrain.cqe.done = ib_drain_qp_done;
2028         init_completion(&rdrain.done);
2029
2030         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2031         if (ret) {
2032                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2033                 return;
2034         }
2035
2036         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2037         if (ret) {
2038                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2039                 return;
2040         }
2041
2042         if (cq->poll_ctx == IB_POLL_DIRECT)
2043                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2044                         ib_process_cq_direct(cq, -1);
2045         else
2046                 wait_for_completion(&rdrain.done);
2047 }
2048
2049 /**
2050  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2051  *                 application.
2052  * @qp:            queue pair to drain
2053  *
2054  * If the device has a provider-specific drain function, then
2055  * call that.  Otherwise call the generic drain function
2056  * __ib_drain_sq().
2057  *
2058  * The caller must:
2059  *
2060  * ensure there is room in the CQ and SQ for the drain work request and
2061  * completion.
2062  *
2063  * allocate the CQ using ib_alloc_cq().
2064  *
2065  * ensure that there are no other contexts that are posting WRs concurrently.
2066  * Otherwise the drain is not guaranteed.
2067  */
2068 void ib_drain_sq(struct ib_qp *qp)
2069 {
2070         if (qp->device->drain_sq)
2071                 qp->device->drain_sq(qp);
2072         else
2073                 __ib_drain_sq(qp);
2074 }
2075 EXPORT_SYMBOL(ib_drain_sq);
2076
2077 /**
2078  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2079  *                 application.
2080  * @qp:            queue pair to drain
2081  *
2082  * If the device has a provider-specific drain function, then
2083  * call that.  Otherwise call the generic drain function
2084  * __ib_drain_rq().
2085  *
2086  * The caller must:
2087  *
2088  * ensure there is room in the CQ and RQ for the drain work request and
2089  * completion.
2090  *
2091  * allocate the CQ using ib_alloc_cq().
2092  *
2093  * ensure that there are no other contexts that are posting WRs concurrently.
2094  * Otherwise the drain is not guaranteed.
2095  */
2096 void ib_drain_rq(struct ib_qp *qp)
2097 {
2098         if (qp->device->drain_rq)
2099                 qp->device->drain_rq(qp);
2100         else
2101                 __ib_drain_rq(qp);
2102 }
2103 EXPORT_SYMBOL(ib_drain_rq);
2104
2105 /**
2106  * ib_drain_qp() - Block until all CQEs have been consumed by the
2107  *                 application on both the RQ and SQ.
2108  * @qp:            queue pair to drain
2109  *
2110  * The caller must:
2111  *
2112  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2113  * and completions.
2114  *
2115  * allocate the CQs using ib_alloc_cq().
2116  *
2117  * ensure that there are no other contexts that are posting WRs concurrently.
2118  * Otherwise the drain is not guaranteed.
2119  */
2120 void ib_drain_qp(struct ib_qp *qp)
2121 {
2122         ib_drain_sq(qp);
2123         if (!qp->srq)
2124                 ib_drain_rq(qp);
2125 }
2126 EXPORT_SYMBOL(ib_drain_qp);