Merge remote-tracking branch 'asoc/fix/rcar' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / iio / adc / cpcap-adc.c
1 /*
2  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
3  *
4  * Rewritten for Linux IIO framework with some code based on
5  * earlier driver found in the Motorola Linux kernel:
6  *
7  * Copyright (C) 2009-2010 Motorola, Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/platform_device.h>
29 #include <linux/regmap.h>
30
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/driver.h>
33 #include <linux/iio/iio.h>
34 #include <linux/iio/kfifo_buf.h>
35 #include <linux/mfd/motorola-cpcap.h>
36
37 /* Register CPCAP_REG_ADCC1 bits */
38 #define CPCAP_BIT_ADEN_AUTO_CLR         BIT(15) /* Currently unused */
39 #define CPCAP_BIT_CAL_MODE              BIT(14) /* Set with BIT_RAND0 */
40 #define CPCAP_BIT_ADC_CLK_SEL1          BIT(13) /* Currently unused */
41 #define CPCAP_BIT_ADC_CLK_SEL0          BIT(12) /* Currently unused */
42 #define CPCAP_BIT_ATOX                  BIT(11)
43 #define CPCAP_BIT_ATO3                  BIT(10)
44 #define CPCAP_BIT_ATO2                  BIT(9)
45 #define CPCAP_BIT_ATO1                  BIT(8)
46 #define CPCAP_BIT_ATO0                  BIT(7)
47 #define CPCAP_BIT_ADA2                  BIT(6)
48 #define CPCAP_BIT_ADA1                  BIT(5)
49 #define CPCAP_BIT_ADA0                  BIT(4)
50 #define CPCAP_BIT_AD_SEL1               BIT(3)  /* Set for bank1 */
51 #define CPCAP_BIT_RAND1                 BIT(2)  /* Set for channel 16 & 17 */
52 #define CPCAP_BIT_RAND0                 BIT(1)  /* Set with CAL_MODE */
53 #define CPCAP_BIT_ADEN                  BIT(0)  /* Currently unused */
54
55 #define CPCAP_REG_ADCC1_DEFAULTS        (CPCAP_BIT_ADEN_AUTO_CLR | \
56                                          CPCAP_BIT_ADC_CLK_SEL0 |  \
57                                          CPCAP_BIT_RAND1)
58
59 /* Register CPCAP_REG_ADCC2 bits */
60 #define CPCAP_BIT_CAL_FACTOR_ENABLE     BIT(15) /* Currently unused */
61 #define CPCAP_BIT_BATDETB_EN            BIT(14) /* Currently unused */
62 #define CPCAP_BIT_ADTRIG_ONESHOT        BIT(13) /* Set for !TIMING_IMM */
63 #define CPCAP_BIT_ASC                   BIT(12) /* Set for TIMING_IMM */
64 #define CPCAP_BIT_ATOX_PS_FACTOR        BIT(11)
65 #define CPCAP_BIT_ADC_PS_FACTOR1        BIT(10)
66 #define CPCAP_BIT_ADC_PS_FACTOR0        BIT(9)
67 #define CPCAP_BIT_AD4_SELECT            BIT(8)  /* Currently unused */
68 #define CPCAP_BIT_ADC_BUSY              BIT(7)  /* Currently unused */
69 #define CPCAP_BIT_THERMBIAS_EN          BIT(6)  /* Bias for AD0_BATTDETB */
70 #define CPCAP_BIT_ADTRIG_DIS            BIT(5)  /* Disable interrupt */
71 #define CPCAP_BIT_LIADC                 BIT(4)  /* Currently unused */
72 #define CPCAP_BIT_TS_REFEN              BIT(3)  /* Currently unused */
73 #define CPCAP_BIT_TS_M2                 BIT(2)  /* Currently unused */
74 #define CPCAP_BIT_TS_M1                 BIT(1)  /* Currently unused */
75 #define CPCAP_BIT_TS_M0                 BIT(0)  /* Currently unused */
76
77 #define CPCAP_REG_ADCC2_DEFAULTS        (CPCAP_BIT_AD4_SELECT | \
78                                          CPCAP_BIT_ADTRIG_DIS | \
79                                          CPCAP_BIT_LIADC | \
80                                          CPCAP_BIT_TS_M2 | \
81                                          CPCAP_BIT_TS_M1)
82
83 #define CPCAP_MAX_TEMP_LVL              27
84 #define CPCAP_FOUR_POINT_TWO_ADC        801
85 #define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530
86 #define ST_ADC_CAL_CHRGI_LOW_THRESHOLD  494
87 #define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530
88 #define ST_ADC_CAL_BATTI_LOW_THRESHOLD  494
89 #define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3
90
91 #define CPCAP_ADC_MAX_RETRIES           5       /* Calibration */
92
93 /**
94  * struct cpcap_adc_ato - timing settings for cpcap adc
95  *
96  * Unfortunately no cpcap documentation available, please document when
97  * using these.
98  */
99 struct cpcap_adc_ato {
100         unsigned short ato_in;
101         unsigned short atox_in;
102         unsigned short adc_ps_factor_in;
103         unsigned short atox_ps_factor_in;
104         unsigned short ato_out;
105         unsigned short atox_out;
106         unsigned short adc_ps_factor_out;
107         unsigned short atox_ps_factor_out;
108 };
109
110 /**
111  * struct cpcap-adc - cpcap adc device driver data
112  * @reg: cpcap regmap
113  * @dev: struct device
114  * @vendor: cpcap vendor
115  * @irq: interrupt
116  * @lock: mutex
117  * @ato: request timings
118  * @wq_data_avail: work queue
119  * @done: work done
120  */
121 struct cpcap_adc {
122         struct regmap *reg;
123         struct device *dev;
124         u16 vendor;
125         int irq;
126         struct mutex lock;      /* ADC register access lock */
127         const struct cpcap_adc_ato *ato;
128         wait_queue_head_t wq_data_avail;
129         bool done;
130 };
131
132 /**
133  * enum cpcap_adc_channel - cpcap adc channels
134  */
135 enum cpcap_adc_channel {
136         /* Bank0 channels */
137         CPCAP_ADC_AD0,          /* Battery temperature */
138         CPCAP_ADC_BATTP,        /* Battery voltage */
139         CPCAP_ADC_VBUS,         /* USB VBUS voltage */
140         CPCAP_ADC_AD3,          /* Die temperature when charging */
141         CPCAP_ADC_BPLUS_AD4,    /* Another battery or system voltage */
142         CPCAP_ADC_CHG_ISENSE,   /* Calibrated charge current */
143         CPCAP_ADC_BATTI,        /* Calibrated system current */
144         CPCAP_ADC_USB_ID,       /* USB OTG ID, unused on droid 4? */
145
146         /* Bank1 channels */
147         CPCAP_ADC_AD8,          /* Seems unused */
148         CPCAP_ADC_AD9,          /* Seems unused */
149         CPCAP_ADC_LICELL,       /* Maybe system voltage? Always 3V */
150         CPCAP_ADC_HV_BATTP,     /* Another battery detection? */
151         CPCAP_ADC_TSX1_AD12,    /* Seems unused, for touchscreen? */
152         CPCAP_ADC_TSX2_AD13,    /* Seems unused, for touchscreen? */
153         CPCAP_ADC_TSY1_AD14,    /* Seems unused, for touchscreen? */
154         CPCAP_ADC_TSY2_AD15,    /* Seems unused, for touchscreen? */
155
156         /* Remuxed channels using bank0 entries */
157         CPCAP_ADC_BATTP_PI16,   /* Alternative mux mode for BATTP */
158         CPCAP_ADC_BATTI_PI17,   /* Alternative mux mode for BATTI */
159
160         CPCAP_ADC_CHANNEL_NUM,
161 };
162
163 /**
164  * enum cpcap_adc_timing - cpcap adc timing options
165  *
166  * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
167  * Please document when using.
168  */
169 enum cpcap_adc_timing {
170         CPCAP_ADC_TIMING_IMM,
171         CPCAP_ADC_TIMING_IN,
172         CPCAP_ADC_TIMING_OUT,
173 };
174
175 /**
176  * struct cpcap_adc_phasing_tbl - cpcap phasing table
177  * @offset: offset in the phasing table
178  * @multiplier: multiplier in the phasing table
179  * @divider: divider in the phasing table
180  * @min: minimum value
181  * @max: maximum value
182  */
183 struct cpcap_adc_phasing_tbl {
184         short offset;
185         unsigned short multiplier;
186         unsigned short divider;
187         short min;
188         short max;
189 };
190
191 /**
192  * struct cpcap_adc_conversion_tbl - cpcap conversion table
193  * @conv_type: conversion type
194  * @align_offset: align offset
195  * @conv_offset: conversion offset
196  * @cal_offset: calibration offset
197  * @multiplier: conversion multiplier
198  * @divider: conversion divider
199  */
200 struct cpcap_adc_conversion_tbl {
201         enum iio_chan_info_enum conv_type;
202         int align_offset;
203         int conv_offset;
204         int cal_offset;
205         int multiplier;
206         int divider;
207 };
208
209 /**
210  * struct cpcap_adc_request - cpcap adc request
211  * @channel: request channel
212  * @phase_tbl: channel phasing table
213  * @conv_tbl: channel conversion table
214  * @bank_index: channel index within the bank
215  * @timing: timing settings
216  * @result: result
217  */
218 struct cpcap_adc_request {
219         int channel;
220         const struct cpcap_adc_phasing_tbl *phase_tbl;
221         const struct cpcap_adc_conversion_tbl *conv_tbl;
222         int bank_index;
223         enum cpcap_adc_timing timing;
224         int result;
225 };
226
227 /* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
228 static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
229         /* Bank0 */
230         [CPCAP_ADC_AD0] =          {0, 0x80, 0x80,    0, 1023},
231         [CPCAP_ADC_BATTP] =        {0, 0x80, 0x80,    0, 1023},
232         [CPCAP_ADC_VBUS] =         {0, 0x80, 0x80,    0, 1023},
233         [CPCAP_ADC_AD3] =          {0, 0x80, 0x80,    0, 1023},
234         [CPCAP_ADC_BPLUS_AD4] =    {0, 0x80, 0x80,    0, 1023},
235         [CPCAP_ADC_CHG_ISENSE] =   {0, 0x80, 0x80, -512,  511},
236         [CPCAP_ADC_BATTI] =        {0, 0x80, 0x80, -512,  511},
237         [CPCAP_ADC_USB_ID] =       {0, 0x80, 0x80,    0, 1023},
238
239         /* Bank1 */
240         [CPCAP_ADC_AD8] =          {0, 0x80, 0x80,    0, 1023},
241         [CPCAP_ADC_AD9] =          {0, 0x80, 0x80,    0, 1023},
242         [CPCAP_ADC_LICELL] =       {0, 0x80, 0x80,    0, 1023},
243         [CPCAP_ADC_HV_BATTP] =     {0, 0x80, 0x80,    0, 1023},
244         [CPCAP_ADC_TSX1_AD12] =    {0, 0x80, 0x80,    0, 1023},
245         [CPCAP_ADC_TSX2_AD13] =    {0, 0x80, 0x80,    0, 1023},
246         [CPCAP_ADC_TSY1_AD14] =    {0, 0x80, 0x80,    0, 1023},
247         [CPCAP_ADC_TSY2_AD15] =    {0, 0x80, 0x80,    0, 1023},
248 };
249
250 /*
251  * Conversion table for channels. Updated during init based on calibration.
252  * Here too channels 16 & 17 use BATTP and BATTI.
253  */
254 static struct cpcap_adc_conversion_tbl bank_conversion[] = {
255         /* Bank0 */
256         [CPCAP_ADC_AD0] = {
257                 IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
258         },
259         [CPCAP_ADC_BATTP] = {
260                 IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
261         },
262         [CPCAP_ADC_VBUS] = {
263                 IIO_CHAN_INFO_PROCESSED,    0,    0, 0, 10000, 1023,
264         },
265         [CPCAP_ADC_AD3] = {
266                 IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
267                 },
268         [CPCAP_ADC_BPLUS_AD4] = {
269                 IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
270         },
271         [CPCAP_ADC_CHG_ISENSE] = {
272                 IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
273         },
274         [CPCAP_ADC_BATTI] = {
275                 IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
276         },
277         [CPCAP_ADC_USB_ID] = {
278                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
279         },
280
281         /* Bank1 */
282         [CPCAP_ADC_AD8] = {
283                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
284         },
285         [CPCAP_ADC_AD9] = {
286                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
287         },
288         [CPCAP_ADC_LICELL] = {
289                 IIO_CHAN_INFO_PROCESSED,    0,    0, 0,  3400, 1023,
290         },
291         [CPCAP_ADC_HV_BATTP] = {
292                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
293         },
294         [CPCAP_ADC_TSX1_AD12] = {
295                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
296         },
297         [CPCAP_ADC_TSX2_AD13] = {
298                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
299         },
300         [CPCAP_ADC_TSY1_AD14] = {
301                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
302         },
303         [CPCAP_ADC_TSY2_AD15] = {
304                 IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
305         },
306 };
307
308 /*
309  * Temperature lookup table of register values to milliCelcius.
310  * REVISIT: Check the duplicate 0x3ff entry in a freezer
311  */
312 static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
313         { 0x03ff, -40000 },
314         { 0x03ff, -35000 },
315         { 0x03ef, -30000 },
316         { 0x03b2, -25000 },
317         { 0x036c, -20000 },
318         { 0x0320, -15000 },
319         { 0x02d0, -10000 },
320         { 0x027f, -5000 },
321         { 0x022f, 0 },
322         { 0x01e4, 5000 },
323         { 0x019f, 10000 },
324         { 0x0161, 15000 },
325         { 0x012b, 20000 },
326         { 0x00fc, 25000 },
327         { 0x00d4, 30000 },
328         { 0x00b2, 35000 },
329         { 0x0095, 40000 },
330         { 0x007d, 45000 },
331         { 0x0069, 50000 },
332         { 0x0059, 55000 },
333         { 0x004b, 60000 },
334         { 0x003f, 65000 },
335         { 0x0036, 70000 },
336         { 0x002e, 75000 },
337         { 0x0027, 80000 },
338         { 0x0022, 85000 },
339         { 0x001d, 90000 },
340 };
341
342 #define CPCAP_CHAN(_type, _index, _address, _datasheet_name) {  \
343         .type = (_type), \
344         .address = (_address), \
345         .indexed = 1, \
346         .channel = (_index), \
347         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
348                               BIT(IIO_CHAN_INFO_PROCESSED), \
349         .scan_index = (_index), \
350         .scan_type = { \
351                 .sign = 'u', \
352                 .realbits = 10, \
353                 .storagebits = 16, \
354                 .endianness = IIO_CPU, \
355         }, \
356         .datasheet_name = (_datasheet_name), \
357 }
358
359 /*
360  * The datasheet names are from Motorola mapphone Linux kernel except
361  * for the last two which might be uncalibrated charge voltage and
362  * current.
363  */
364 static const struct iio_chan_spec cpcap_adc_channels[] = {
365         /* Bank0 */
366         CPCAP_CHAN(IIO_TEMP,    0, CPCAP_REG_ADCD0,  "battdetb"),
367         CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1,  "battp"),
368         CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2,  "vbus"),
369         CPCAP_CHAN(IIO_TEMP,    3, CPCAP_REG_ADCD3,  "ad3"),
370         CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4,  "ad4"),
371         CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5,  "chg_isense"),
372         CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6,  "batti"),
373         CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7,  "usb_id"),
374
375         /* Bank1 */
376         CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0,  "ad8"),
377         CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1,  "ad9"),
378         CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
379         CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
380         CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
381         CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
382         CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
383         CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
384
385         /* There are two registers with multiplexed functionality */
386         CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
387         CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
388 };
389
390 static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
391 {
392         struct iio_dev *indio_dev = data;
393         struct cpcap_adc *ddata = iio_priv(indio_dev);
394         int error;
395
396         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
397                                    CPCAP_BIT_ADTRIG_DIS,
398                                    CPCAP_BIT_ADTRIG_DIS);
399         if (error)
400                 return IRQ_NONE;
401
402         ddata->done = true;
403         wake_up_interruptible(&ddata->wq_data_avail);
404
405         return IRQ_HANDLED;
406 }
407
408 /* ADC calibration functions */
409 static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
410                                       enum cpcap_adc_channel chan)
411 {
412         unsigned int value = 0;
413         unsigned long timeout = jiffies + msecs_to_jiffies(3000);
414         int error;
415
416         if ((chan != CPCAP_ADC_CHG_ISENSE) &&
417             (chan != CPCAP_ADC_BATTI))
418                 return;
419
420         value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
421         value |= ((chan << 4) &
422                   (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
423
424         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
425                                    CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
426                                    CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
427                                    CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
428                                    CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
429                                    CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
430                                    CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
431                                    value);
432         if (error)
433                 return;
434
435         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
436                                    CPCAP_BIT_ATOX_PS_FACTOR |
437                                    CPCAP_BIT_ADC_PS_FACTOR1 |
438                                    CPCAP_BIT_ADC_PS_FACTOR0,
439                                    0);
440         if (error)
441                 return;
442
443         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
444                                    CPCAP_BIT_ADTRIG_DIS,
445                                    CPCAP_BIT_ADTRIG_DIS);
446         if (error)
447                 return;
448
449         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
450                                    CPCAP_BIT_ASC,
451                                    CPCAP_BIT_ASC);
452         if (error)
453                 return;
454
455         do {
456                 schedule_timeout_uninterruptible(1);
457                 error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
458                 if (error)
459                         return;
460         } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
461
462         if (value & CPCAP_BIT_ASC)
463                 dev_err(ddata->dev,
464                         "Timeout waiting for calibration to complete\n");
465
466         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
467                                    CPCAP_BIT_CAL_MODE, 0);
468         if (error)
469                 return;
470 }
471
472 static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
473                                    int channel,
474                                    u16 calibration_register,
475                                    int lower_threshold,
476                                    int upper_threshold)
477 {
478         unsigned int calibration_data[2];
479         unsigned short cal_data_diff;
480         int i, error;
481
482         for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
483                 calibration_data[0]  = 0;
484                 calibration_data[1]  = 0;
485                 cal_data_diff = 0;
486                 cpcap_adc_setup_calibrate(ddata, channel);
487                 error = regmap_read(ddata->reg, calibration_register,
488                                     &calibration_data[0]);
489                 if (error)
490                         return error;
491                 cpcap_adc_setup_calibrate(ddata, channel);
492                 error = regmap_read(ddata->reg, calibration_register,
493                                     &calibration_data[1]);
494                 if (error)
495                         return error;
496
497                 if (calibration_data[0] > calibration_data[1])
498                         cal_data_diff =
499                                 calibration_data[0] - calibration_data[1];
500                 else
501                         cal_data_diff =
502                                 calibration_data[1] - calibration_data[0];
503
504                 if (((calibration_data[1] >= lower_threshold) &&
505                      (calibration_data[1] <= upper_threshold) &&
506                      (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
507                     (ddata->vendor == CPCAP_VENDOR_TI)) {
508                         bank_conversion[channel].cal_offset =
509                                 ((short)calibration_data[1] * -1) + 512;
510                         dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
511                                 channel, bank_conversion[channel].cal_offset);
512                         break;
513                 }
514                 usleep_range(5000, 10000);
515         }
516
517         return 0;
518 }
519
520 static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
521 {
522         int error;
523
524         error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
525                                         CPCAP_REG_ADCAL1,
526                                         ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
527                                         ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
528         if (error)
529                 return error;
530
531         error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
532                                         CPCAP_REG_ADCAL2,
533                                         ST_ADC_CAL_BATTI_LOW_THRESHOLD,
534                                         ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
535         if (error)
536                 return error;
537
538         return 0;
539 }
540
541 /* ADC setup, read and scale functions */
542 static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
543                                  struct cpcap_adc_request *req)
544 {
545         const struct cpcap_adc_ato *ato = ddata->ato;
546         unsigned short value1 = 0;
547         unsigned short value2 = 0;
548         int error;
549
550         if (!ato)
551                 return;
552
553         switch (req->channel) {
554         case CPCAP_ADC_AD0:
555                 value2 |= CPCAP_BIT_THERMBIAS_EN;
556                 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
557                                            CPCAP_BIT_THERMBIAS_EN,
558                                            value2);
559                 if (error)
560                         return;
561                 usleep_range(800, 1000);
562                 break;
563         case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
564                 value1 |= CPCAP_BIT_AD_SEL1;
565                 break;
566         case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
567                 value1 |= CPCAP_BIT_RAND1;
568         default:
569                 break;
570         }
571
572         switch (req->timing) {
573         case CPCAP_ADC_TIMING_IN:
574                 value1 |= ato->ato_in;
575                 value1 |= ato->atox_in;
576                 value2 |= ato->adc_ps_factor_in;
577                 value2 |= ato->atox_ps_factor_in;
578                 break;
579         case CPCAP_ADC_TIMING_OUT:
580                 value1 |= ato->ato_out;
581                 value1 |= ato->atox_out;
582                 value2 |= ato->adc_ps_factor_out;
583                 value2 |= ato->atox_ps_factor_out;
584                 break;
585
586         case CPCAP_ADC_TIMING_IMM:
587         default:
588                 break;
589         }
590
591         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
592                                    CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
593                                    CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
594                                    CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
595                                    CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
596                                    CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
597                                    CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
598                                    value1);
599         if (error)
600                 return;
601
602         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
603                                    CPCAP_BIT_ATOX_PS_FACTOR |
604                                    CPCAP_BIT_ADC_PS_FACTOR1 |
605                                    CPCAP_BIT_ADC_PS_FACTOR0 |
606                                    CPCAP_BIT_THERMBIAS_EN,
607                                    value2);
608         if (error)
609                 return;
610
611         if (req->timing == CPCAP_ADC_TIMING_IMM) {
612                 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
613                                            CPCAP_BIT_ADTRIG_DIS,
614                                            CPCAP_BIT_ADTRIG_DIS);
615                 if (error)
616                         return;
617
618                 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
619                                            CPCAP_BIT_ASC,
620                                            CPCAP_BIT_ASC);
621                 if (error)
622                         return;
623         } else {
624                 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
625                                            CPCAP_BIT_ADTRIG_ONESHOT,
626                                            CPCAP_BIT_ADTRIG_ONESHOT);
627                 if (error)
628                         return;
629
630                 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
631                                            CPCAP_BIT_ADTRIG_DIS, 0);
632                 if (error)
633                         return;
634         }
635 }
636
637 static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
638                                 struct cpcap_adc_request *req)
639 {
640         int i, error;
641
642         req->timing = CPCAP_ADC_TIMING_IMM;
643         ddata->done = false;
644
645         for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
646                 cpcap_adc_setup_bank(ddata, req);
647                 error = wait_event_interruptible_timeout(ddata->wq_data_avail,
648                                                          ddata->done,
649                                                          msecs_to_jiffies(50));
650                 if (error > 0)
651                         return 0;
652
653                 if (error == 0) {
654                         error = -ETIMEDOUT;
655                         continue;
656                 }
657
658                 if (error < 0)
659                         return error;
660         }
661
662         return error;
663 }
664
665 static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
666 {
667         int error;
668
669         error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
670                                    0xffff,
671                                    CPCAP_REG_ADCC1_DEFAULTS);
672         if (error)
673                 return error;
674
675         return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
676                                   0xffff,
677                                   CPCAP_REG_ADCC2_DEFAULTS);
678 }
679
680 static void cpcap_adc_phase(struct cpcap_adc_request *req)
681 {
682         const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
683         const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
684         int index = req->channel;
685
686         /* Remuxed channels 16 and 17 use BATTP and BATTI entries */
687         switch (req->channel) {
688         case CPCAP_ADC_BATTP:
689         case CPCAP_ADC_BATTP_PI16:
690                 index = req->bank_index;
691                 req->result -= phase_tbl[index].offset;
692                 req->result -= CPCAP_FOUR_POINT_TWO_ADC;
693                 req->result *= phase_tbl[index].multiplier;
694                 if (phase_tbl[index].divider == 0)
695                         return;
696                 req->result /= phase_tbl[index].divider;
697                 req->result += CPCAP_FOUR_POINT_TWO_ADC;
698                 break;
699         case CPCAP_ADC_BATTI_PI17:
700                 index = req->bank_index;
701                 /* fallthrough */
702         default:
703                 req->result += conv_tbl[index].cal_offset;
704                 req->result += conv_tbl[index].align_offset;
705                 req->result *= phase_tbl[index].multiplier;
706                 if (phase_tbl[index].divider == 0)
707                         return;
708                 req->result /= phase_tbl[index].divider;
709                 req->result += phase_tbl[index].offset;
710                 break;
711         }
712
713         if (req->result < phase_tbl[index].min)
714                 req->result = phase_tbl[index].min;
715         else if (req->result > phase_tbl[index].max)
716                 req->result = phase_tbl[index].max;
717 }
718
719 /* Looks up temperatures in a table and calculates averages if needed */
720 static int cpcap_adc_table_to_millicelcius(unsigned short value)
721 {
722         int i, result = 0, alpha;
723
724         if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
725                 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
726
727         if (value >= temp_map[0][0])
728                 return temp_map[0][1];
729
730         for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
731                 if ((value <= temp_map[i][0]) &&
732                     (value >= temp_map[i + 1][0])) {
733                         if (value == temp_map[i][0]) {
734                                 result = temp_map[i][1];
735                         } else if (value == temp_map[i + 1][0]) {
736                                 result = temp_map[i + 1][1];
737                         } else {
738                                 alpha = ((value - temp_map[i][0]) * 1000) /
739                                         (temp_map[i + 1][0] - temp_map[i][0]);
740
741                                 result = temp_map[i][1] +
742                                         ((alpha * (temp_map[i + 1][1] -
743                                                  temp_map[i][1])) / 1000);
744                         }
745                         break;
746                 }
747         }
748
749         return result;
750 }
751
752 static void cpcap_adc_convert(struct cpcap_adc_request *req)
753 {
754         const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
755         int index = req->channel;
756
757         /* Remuxed channels 16 and 17 use BATTP and BATTI entries */
758         switch (req->channel) {
759         case CPCAP_ADC_BATTP_PI16:
760                 index = CPCAP_ADC_BATTP;
761                 break;
762         case CPCAP_ADC_BATTI_PI17:
763                 index = CPCAP_ADC_BATTI;
764                 break;
765         default:
766                 break;
767         }
768
769         /* No conversion for raw channels */
770         if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
771                 return;
772
773         /* Temperatures use a lookup table instead of conversion table */
774         if ((req->channel == CPCAP_ADC_AD0) ||
775             (req->channel == CPCAP_ADC_AD3)) {
776                 req->result =
777                         cpcap_adc_table_to_millicelcius(req->result);
778
779                 return;
780         }
781
782         /* All processed channels use a conversion table */
783         req->result *= conv_tbl[index].multiplier;
784         if (conv_tbl[index].divider == 0)
785                 return;
786         req->result /= conv_tbl[index].divider;
787         req->result += conv_tbl[index].conv_offset;
788 }
789
790 /*
791  * REVISIT: Check if timed sampling can use multiple channels at the
792  * same time. If not, replace channel_mask with just channel.
793  */
794 static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
795                                       struct cpcap_adc_request *req)
796 {
797         int calibration_data, error, addr;
798
799         if (ddata->vendor == CPCAP_VENDOR_TI) {
800                 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
801                                     &calibration_data);
802                 if (error)
803                         return error;
804                 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
805                         ((short)calibration_data * -1) + 512;
806
807                 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
808                                     &calibration_data);
809                 if (error)
810                         return error;
811                 bank_conversion[CPCAP_ADC_BATTI].cal_offset =
812                         ((short)calibration_data * -1) + 512;
813         }
814
815         addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
816
817         error = regmap_read(ddata->reg, addr, &req->result);
818         if (error)
819                 return error;
820
821         req->result &= 0x3ff;
822         cpcap_adc_phase(req);
823         cpcap_adc_convert(req);
824
825         return 0;
826 }
827
828 static int cpcap_adc_init_request(struct cpcap_adc_request *req,
829                                   int channel)
830 {
831         req->channel = channel;
832         req->phase_tbl = bank_phasing;
833         req->conv_tbl = bank_conversion;
834
835         switch (channel) {
836         case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
837                 req->bank_index = channel;
838                 break;
839         case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
840                 req->bank_index = channel - 8;
841                 break;
842         case CPCAP_ADC_BATTP_PI16:
843                 req->bank_index = CPCAP_ADC_BATTP;
844                 break;
845         case CPCAP_ADC_BATTI_PI17:
846                 req->bank_index = CPCAP_ADC_BATTI;
847                 break;
848         default:
849                 return -EINVAL;
850         }
851
852         return 0;
853 }
854
855 static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
856                                       int addr, int *val)
857 {
858         int error;
859
860         error = regmap_read(ddata->reg, addr, val);
861         if (error)
862                 return error;
863
864         *val -= 282;
865         *val *= 114;
866         *val += 25000;
867
868         return 0;
869 }
870
871 static int cpcap_adc_read(struct iio_dev *indio_dev,
872                           struct iio_chan_spec const *chan,
873                           int *val, int *val2, long mask)
874 {
875         struct cpcap_adc *ddata = iio_priv(indio_dev);
876         struct cpcap_adc_request req;
877         int error;
878
879         error = cpcap_adc_init_request(&req, chan->channel);
880         if (error)
881                 return error;
882
883         switch (mask) {
884         case IIO_CHAN_INFO_RAW:
885                 mutex_lock(&ddata->lock);
886                 error = cpcap_adc_start_bank(ddata, &req);
887                 if (error)
888                         goto err_unlock;
889                 error = regmap_read(ddata->reg, chan->address, val);
890                 if (error)
891                         goto err_unlock;
892                 error = cpcap_adc_stop_bank(ddata);
893                 if (error)
894                         goto err_unlock;
895                 mutex_unlock(&ddata->lock);
896                 break;
897         case IIO_CHAN_INFO_PROCESSED:
898                 mutex_lock(&ddata->lock);
899                 error = cpcap_adc_start_bank(ddata, &req);
900                 if (error)
901                         goto err_unlock;
902                 if ((ddata->vendor == CPCAP_VENDOR_ST) &&
903                     (chan->channel == CPCAP_ADC_AD3)) {
904                         error = cpcap_adc_read_st_die_temp(ddata,
905                                                            chan->address,
906                                                            &req.result);
907                         if (error)
908                                 goto err_unlock;
909                 } else {
910                         error = cpcap_adc_read_bank_scaled(ddata, &req);
911                         if (error)
912                                 goto err_unlock;
913                 }
914                 error = cpcap_adc_stop_bank(ddata);
915                 if (error)
916                         goto err_unlock;
917                 mutex_unlock(&ddata->lock);
918                 *val = req.result;
919                 break;
920         default:
921                 return -EINVAL;
922         }
923
924         return IIO_VAL_INT;
925
926 err_unlock:
927         mutex_unlock(&ddata->lock);
928         dev_err(ddata->dev, "error reading ADC: %i\n", error);
929
930         return error;
931 }
932
933 static const struct iio_info cpcap_adc_info = {
934         .read_raw = &cpcap_adc_read,
935 };
936
937 /*
938  * Configuration for Motorola mapphone series such as droid 4.
939  * Copied from the Motorola mapphone kernel tree.
940  */
941 static const struct cpcap_adc_ato mapphone_adc = {
942         .ato_in = 0x0480,
943         .atox_in = 0,
944         .adc_ps_factor_in = 0x0200,
945         .atox_ps_factor_in = 0,
946         .ato_out = 0,
947         .atox_out = 0,
948         .adc_ps_factor_out = 0,
949         .atox_ps_factor_out = 0,
950 };
951
952 static const struct of_device_id cpcap_adc_id_table[] = {
953         {
954                 .compatible = "motorola,cpcap-adc",
955         },
956         {
957                 .compatible = "motorola,mapphone-cpcap-adc",
958                 .data = &mapphone_adc,
959         },
960         { /* sentinel */ },
961 };
962 MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
963
964 static int cpcap_adc_probe(struct platform_device *pdev)
965 {
966         const struct of_device_id *match;
967         struct cpcap_adc *ddata;
968         struct iio_dev *indio_dev;
969         int error;
970
971         match = of_match_device(of_match_ptr(cpcap_adc_id_table),
972                                 &pdev->dev);
973         if (!match)
974                 return -EINVAL;
975
976         if (!match->data) {
977                 dev_err(&pdev->dev, "no configuration data found\n");
978
979                 return -ENODEV;
980         }
981
982         indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
983         if (!indio_dev) {
984                 dev_err(&pdev->dev, "failed to allocate iio device\n");
985
986                 return -ENOMEM;
987         }
988         ddata = iio_priv(indio_dev);
989         ddata->ato = match->data;
990         ddata->dev = &pdev->dev;
991
992         mutex_init(&ddata->lock);
993         init_waitqueue_head(&ddata->wq_data_avail);
994
995         indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
996         indio_dev->dev.parent = &pdev->dev;
997         indio_dev->dev.of_node = pdev->dev.of_node;
998         indio_dev->channels = cpcap_adc_channels;
999         indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
1000         indio_dev->name = dev_name(&pdev->dev);
1001         indio_dev->info = &cpcap_adc_info;
1002
1003         ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
1004         if (!ddata->reg)
1005                 return -ENODEV;
1006
1007         error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1008         if (error)
1009                 return error;
1010
1011         platform_set_drvdata(pdev, indio_dev);
1012
1013         ddata->irq = platform_get_irq_byname(pdev, "adcdone");
1014         if (ddata->irq < 0)
1015                 return -ENODEV;
1016
1017         error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
1018                                           cpcap_adc_irq_thread,
1019                                           IRQF_TRIGGER_NONE,
1020                                           "cpcap-adc", indio_dev);
1021         if (error) {
1022                 dev_err(&pdev->dev, "could not get irq: %i\n",
1023                         error);
1024
1025                 return error;
1026         }
1027
1028         error = cpcap_adc_calibrate(ddata);
1029         if (error)
1030                 return error;
1031
1032         dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1033
1034         return devm_iio_device_register(&pdev->dev, indio_dev);
1035 }
1036
1037 static struct platform_driver cpcap_adc_driver = {
1038         .driver = {
1039                 .name = "cpcap_adc",
1040                 .of_match_table = of_match_ptr(cpcap_adc_id_table),
1041         },
1042         .probe = cpcap_adc_probe,
1043 };
1044
1045 module_platform_driver(cpcap_adc_driver);
1046
1047 MODULE_ALIAS("platform:cpcap_adc");
1048 MODULE_DESCRIPTION("CPCAP ADC driver");
1049 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1050 MODULE_LICENSE("GPL v2");