ieee1394: remove unused variables
[sfrench/cifs-2.6.git] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105  * Module load parameter definitions
106  */
107
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Limit data transfer speed (5 <= 3200, "
119                  "4 <= 1600, 3 <= 800, 2 <= 400, 1 <= 200, 0 = 100 Mb/s)");
120
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128                  "(default = Y, faster but buggy = N)");
129
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145                  "(default = 0 = use SCSI stack's default)");
146
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163                  "(default = Y, use N for concurrent initiators)");
164
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - power condition
190  *   Set the power condition field in the START STOP UNIT commands sent by
191  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192  *   Some disks need this to spin down or to resume properly.
193  *
194  * - override internal blacklist
195  *   Instead of adding to the built-in blacklist, use only the workarounds
196  *   specified in the module load parameter.
197  *   Useful if a blacklist entry interfered with a non-broken device.
198  */
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
204         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207         ", set power condition in start stop unit = "
208                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210         ", or a combination)");
211
212 /*
213  * This influences the format of the sysfs attribute
214  * /sys/bus/scsi/devices/.../ieee1394_id.
215  *
216  * The default format is like in older kernels:  %016Lx:%d:%d
217  * It contains the target's EUI-64, a number given to the logical unit by
218  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
219  *
220  * The long format is:  %016Lx:%06x:%04x
221  * It contains the target's EUI-64, the unit directory's directory_ID as per
222  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
223  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
225  * independent of the implementation of the ieee1394 nodemgr, the longer format
226  * is recommended for future use.
227  */
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231                  "(default = backwards-compatible = N, SAM-conforming = Y)");
232
233
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
236
237 /*
238  * Globals
239  */
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242                                       void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251                                     u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254                                       struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
257
258
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xa, 0xa, 0xa };
260
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
262
263 static struct hpsb_highlevel sbp2_highlevel = {
264         .name           = SBP2_DEVICE_NAME,
265         .host_reset     = sbp2_host_reset,
266 };
267
268 static const struct hpsb_address_ops sbp2_ops = {
269         .write          = sbp2_handle_status_write
270 };
271
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274                                      u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276                                     size_t, u16);
277
278 static const struct hpsb_address_ops sbp2_physdma_ops = {
279         .read           = sbp2_handle_physdma_read,
280         .write          = sbp2_handle_physdma_write,
281 };
282 #endif
283
284
285 /*
286  * Interface to driver core and IEEE 1394 core
287  */
288 static const struct ieee1394_device_id sbp2_id_table[] = {
289         {
290          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
293         {}
294 };
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
296
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
300
301 static struct hpsb_protocol_driver sbp2_driver = {
302         .name           = SBP2_DEVICE_NAME,
303         .id_table       = sbp2_id_table,
304         .update         = sbp2_update,
305         .driver         = {
306                 .probe          = sbp2_probe,
307                 .remove         = sbp2_remove,
308         },
309 };
310
311
312 /*
313  * Interface to SCSI core
314  */
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316                                  void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323                                            struct device_attribute *, char *);
324
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
326
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328         &dev_attr_ieee1394_id,
329         NULL
330 };
331
332 static struct scsi_host_template sbp2_shost_template = {
333         .module                  = THIS_MODULE,
334         .name                    = "SBP-2 IEEE-1394",
335         .proc_name               = SBP2_DEVICE_NAME,
336         .queuecommand            = sbp2scsi_queuecommand,
337         .eh_abort_handler        = sbp2scsi_abort,
338         .eh_device_reset_handler = sbp2scsi_reset,
339         .slave_alloc             = sbp2scsi_slave_alloc,
340         .slave_configure         = sbp2scsi_slave_configure,
341         .slave_destroy           = sbp2scsi_slave_destroy,
342         .this_id                 = -1,
343         .sg_tablesize            = SG_ALL,
344         .use_clustering          = ENABLE_CLUSTERING,
345         .cmd_per_lun             = SBP2_MAX_CMDS,
346         .can_queue               = SBP2_MAX_CMDS,
347         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
348 };
349
350 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
351 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
352
353 /*
354  * List of devices with known bugs.
355  *
356  * The firmware_revision field, masked with 0xffff00, is the best indicator
357  * for the type of bridge chip of a device.  It yields a few false positives
358  * but this did not break correctly behaving devices so far.
359  */
360 static const struct {
361         u32 firmware_revision;
362         u32 model;
363         unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366                 .firmware_revision      = 0x002800,
367                 .model                  = 0x001010,
368                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
369                                           SBP2_WORKAROUND_MODE_SENSE_8 |
370                                           SBP2_WORKAROUND_POWER_CONDITION,
371         },
372         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373                 .firmware_revision      = 0x002800,
374                 .model                  = 0x000000,
375                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
376         },
377         /* Initio bridges, actually only needed for some older ones */ {
378                 .firmware_revision      = 0x000200,
379                 .model                  = SBP2_ROM_VALUE_WILDCARD,
380                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
381         },
382         /* PL-3507 bridge with Prolific firmware */ {
383                 .firmware_revision      = 0x012800,
384                 .model                  = SBP2_ROM_VALUE_WILDCARD,
385                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
386         },
387         /* Symbios bridge */ {
388                 .firmware_revision      = 0xa0b800,
389                 .model                  = SBP2_ROM_VALUE_WILDCARD,
390                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
391         },
392         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
393                 .firmware_revision      = 0x002600,
394                 .model                  = SBP2_ROM_VALUE_WILDCARD,
395                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
396         },
397         /*
398          * iPod 2nd generation: needs 128k max transfer size workaround
399          * iPod 3rd generation: needs fix capacity workaround
400          */
401         {
402                 .firmware_revision      = 0x0a2700,
403                 .model                  = 0x000000,
404                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
405                                           SBP2_WORKAROUND_FIX_CAPACITY,
406         },
407         /* iPod 4th generation */ {
408                 .firmware_revision      = 0x0a2700,
409                 .model                  = 0x000021,
410                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
411         },
412         /* iPod mini */ {
413                 .firmware_revision      = 0x0a2700,
414                 .model                  = 0x000022,
415                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
416         },
417         /* iPod mini */ {
418                 .firmware_revision      = 0x0a2700,
419                 .model                  = 0x000023,
420                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
421         },
422         /* iPod Photo */ {
423                 .firmware_revision      = 0x0a2700,
424                 .model                  = 0x00007e,
425                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
426         }
427 };
428
429 /**************************************
430  * General utility functions
431  **************************************/
432
433 #ifndef __BIG_ENDIAN
434 /*
435  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
436  */
437 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
438 {
439         u32 *temp = buffer;
440
441         for (length = (length >> 2); length--; )
442                 temp[length] = be32_to_cpu(temp[length]);
443 }
444
445 /*
446  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
447  */
448 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
449 {
450         u32 *temp = buffer;
451
452         for (length = (length >> 2); length--; )
453                 temp[length] = cpu_to_be32(temp[length]);
454 }
455 #else /* BIG_ENDIAN */
456 /* Why waste the cpu cycles? */
457 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
458 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
459 #endif
460
461 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
462
463 /*
464  * Waits for completion of an SBP-2 access request.
465  * Returns nonzero if timed out or prematurely interrupted.
466  */
467 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
468 {
469         long leftover;
470
471         leftover = wait_event_interruptible_timeout(
472                         sbp2_access_wq, lu->access_complete, timeout);
473         lu->access_complete = 0;
474         return leftover <= 0;
475 }
476
477 static void sbp2_free_packet(void *packet)
478 {
479         hpsb_free_tlabel(packet);
480         hpsb_free_packet(packet);
481 }
482
483 /*
484  * This is much like hpsb_node_write(), except it ignores the response
485  * subaction and returns immediately. Can be used from atomic context.
486  */
487 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
488                                        quadlet_t *buf, size_t len)
489 {
490         struct hpsb_packet *packet;
491
492         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
493         if (!packet)
494                 return -ENOMEM;
495
496         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
497         hpsb_node_fill_packet(ne, packet);
498         if (hpsb_send_packet(packet) < 0) {
499                 sbp2_free_packet(packet);
500                 return -EIO;
501         }
502         return 0;
503 }
504
505 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
506                                         quadlet_t *data, size_t len)
507 {
508         /* There is a small window after a bus reset within which the node
509          * entry's generation is current but the reconnect wasn't completed. */
510         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
511                 return;
512
513         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
514                             data, len))
515                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
516
517         /* Now accept new SCSI commands, unless a bus reset happended during
518          * hpsb_node_write. */
519         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
520                 scsi_unblock_requests(lu->shost);
521 }
522
523 static void sbp2util_write_orb_pointer(struct work_struct *work)
524 {
525         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
526         quadlet_t data[2];
527
528         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
529         data[1] = lu->last_orb_dma;
530         sbp2util_cpu_to_be32_buffer(data, 8);
531         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
532 }
533
534 static void sbp2util_write_doorbell(struct work_struct *work)
535 {
536         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
537
538         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
539 }
540
541 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
542 {
543         struct sbp2_command_info *cmd;
544         struct device *dmadev = lu->hi->host->device.parent;
545         int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
546
547         for (i = 0; i < orbs; i++) {
548                 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
549                 if (!cmd)
550                         goto failed_alloc;
551
552                 cmd->command_orb_dma =
553                     dma_map_single(dmadev, &cmd->command_orb,
554                                    sizeof(struct sbp2_command_orb),
555                                    DMA_TO_DEVICE);
556                 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
557                         goto failed_orb;
558
559                 cmd->sge_dma =
560                     dma_map_single(dmadev, &cmd->scatter_gather_element,
561                                    sizeof(cmd->scatter_gather_element),
562                                    DMA_TO_DEVICE);
563                 if (dma_mapping_error(dmadev, cmd->sge_dma))
564                         goto failed_sge;
565
566                 INIT_LIST_HEAD(&cmd->list);
567                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
568         }
569         return 0;
570
571 failed_sge:
572         dma_unmap_single(dmadev, cmd->command_orb_dma,
573                          sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
574 failed_orb:
575         kfree(cmd);
576 failed_alloc:
577         return -ENOMEM;
578 }
579
580 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
581                                              struct hpsb_host *host)
582 {
583         struct list_head *lh, *next;
584         struct sbp2_command_info *cmd;
585         unsigned long flags;
586
587         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
588         if (!list_empty(&lu->cmd_orb_completed))
589                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
590                         cmd = list_entry(lh, struct sbp2_command_info, list);
591                         dma_unmap_single(host->device.parent,
592                                          cmd->command_orb_dma,
593                                          sizeof(struct sbp2_command_orb),
594                                          DMA_TO_DEVICE);
595                         dma_unmap_single(host->device.parent, cmd->sge_dma,
596                                          sizeof(cmd->scatter_gather_element),
597                                          DMA_TO_DEVICE);
598                         kfree(cmd);
599                 }
600         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
601         return;
602 }
603
604 /*
605  * Finds the sbp2_command for a given outstanding command ORB.
606  * Only looks at the in-use list.
607  */
608 static struct sbp2_command_info *sbp2util_find_command_for_orb(
609                                 struct sbp2_lu *lu, dma_addr_t orb)
610 {
611         struct sbp2_command_info *cmd;
612         unsigned long flags;
613
614         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
615         if (!list_empty(&lu->cmd_orb_inuse))
616                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
617                         if (cmd->command_orb_dma == orb) {
618                                 spin_unlock_irqrestore(
619                                                 &lu->cmd_orb_lock, flags);
620                                 return cmd;
621                         }
622         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
623         return NULL;
624 }
625
626 /*
627  * Finds the sbp2_command for a given outstanding SCpnt.
628  * Only looks at the in-use list.
629  * Must be called with lu->cmd_orb_lock held.
630  */
631 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
632                                 struct sbp2_lu *lu, void *SCpnt)
633 {
634         struct sbp2_command_info *cmd;
635
636         if (!list_empty(&lu->cmd_orb_inuse))
637                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
638                         if (cmd->Current_SCpnt == SCpnt)
639                                 return cmd;
640         return NULL;
641 }
642
643 static struct sbp2_command_info *sbp2util_allocate_command_orb(
644                                 struct sbp2_lu *lu,
645                                 struct scsi_cmnd *Current_SCpnt,
646                                 void (*Current_done)(struct scsi_cmnd *))
647 {
648         struct list_head *lh;
649         struct sbp2_command_info *cmd = NULL;
650         unsigned long flags;
651
652         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
653         if (!list_empty(&lu->cmd_orb_completed)) {
654                 lh = lu->cmd_orb_completed.next;
655                 list_del(lh);
656                 cmd = list_entry(lh, struct sbp2_command_info, list);
657                 cmd->Current_done = Current_done;
658                 cmd->Current_SCpnt = Current_SCpnt;
659                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
660         } else
661                 SBP2_ERR("%s: no orbs available", __func__);
662         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
663         return cmd;
664 }
665
666 /*
667  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
668  * Must be called with lu->cmd_orb_lock held.
669  */
670 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
671                                             struct sbp2_command_info *cmd)
672 {
673         if (scsi_sg_count(cmd->Current_SCpnt))
674                 dma_unmap_sg(lu->ud->ne->host->device.parent,
675                              scsi_sglist(cmd->Current_SCpnt),
676                              scsi_sg_count(cmd->Current_SCpnt),
677                              cmd->Current_SCpnt->sc_data_direction);
678         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
679 }
680
681 /*
682  * Is lu valid? Is the 1394 node still present?
683  */
684 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
685 {
686         return lu && lu->ne && !lu->ne->in_limbo;
687 }
688
689 /*********************************************
690  * IEEE-1394 core driver stack related section
691  *********************************************/
692
693 static int sbp2_probe(struct device *dev)
694 {
695         struct unit_directory *ud;
696         struct sbp2_lu *lu;
697
698         ud = container_of(dev, struct unit_directory, device);
699
700         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
701          * instead. */
702         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
703                 return -ENODEV;
704
705         lu = sbp2_alloc_device(ud);
706         if (!lu)
707                 return -ENOMEM;
708
709         sbp2_parse_unit_directory(lu, ud);
710         return sbp2_start_device(lu);
711 }
712
713 static int sbp2_remove(struct device *dev)
714 {
715         struct unit_directory *ud;
716         struct sbp2_lu *lu;
717         struct scsi_device *sdev;
718
719         ud = container_of(dev, struct unit_directory, device);
720         lu = dev_get_drvdata(&ud->device);
721         if (!lu)
722                 return 0;
723
724         if (lu->shost) {
725                 /* Get rid of enqueued commands if there is no chance to
726                  * send them. */
727                 if (!sbp2util_node_is_available(lu))
728                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
729                 /* scsi_remove_device() may trigger shutdown functions of SCSI
730                  * highlevel drivers which would deadlock if blocked. */
731                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
732                 scsi_unblock_requests(lu->shost);
733         }
734         sdev = lu->sdev;
735         if (sdev) {
736                 lu->sdev = NULL;
737                 scsi_remove_device(sdev);
738         }
739
740         sbp2_logout_device(lu);
741         sbp2_remove_device(lu);
742
743         return 0;
744 }
745
746 static int sbp2_update(struct unit_directory *ud)
747 {
748         struct sbp2_lu *lu = dev_get_drvdata(&ud->device);
749
750         if (sbp2_reconnect_device(lu) != 0) {
751                 /*
752                  * Reconnect failed.  If another bus reset happened,
753                  * let nodemgr proceed and call sbp2_update again later
754                  * (or sbp2_remove if this node went away).
755                  */
756                 if (!hpsb_node_entry_valid(lu->ne))
757                         return 0;
758                 /*
759                  * Or the target rejected the reconnect because we weren't
760                  * fast enough.  Try a regular login, but first log out
761                  * just in case of any weirdness.
762                  */
763                 sbp2_logout_device(lu);
764
765                 if (sbp2_login_device(lu) != 0) {
766                         if (!hpsb_node_entry_valid(lu->ne))
767                                 return 0;
768
769                         /* Maybe another initiator won the login. */
770                         SBP2_ERR("Failed to reconnect to sbp2 device!");
771                         return -EBUSY;
772                 }
773         }
774
775         sbp2_set_busy_timeout(lu);
776         sbp2_agent_reset(lu, 1);
777         sbp2_max_speed_and_size(lu);
778
779         /* Complete any pending commands with busy (so they get retried)
780          * and remove them from our queue. */
781         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
782
783         /* Accept new commands unless there was another bus reset in the
784          * meantime. */
785         if (hpsb_node_entry_valid(lu->ne)) {
786                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
787                 scsi_unblock_requests(lu->shost);
788         }
789         return 0;
790 }
791
792 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
793 {
794         struct sbp2_fwhost_info *hi;
795         struct Scsi_Host *shost = NULL;
796         struct sbp2_lu *lu = NULL;
797         unsigned long flags;
798
799         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
800         if (!lu) {
801                 SBP2_ERR("failed to create lu");
802                 goto failed_alloc;
803         }
804
805         lu->ne = ud->ne;
806         lu->ud = ud;
807         lu->speed_code = IEEE1394_SPEED_100;
808         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
809         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
810         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
811         INIT_LIST_HEAD(&lu->cmd_orb_completed);
812         INIT_LIST_HEAD(&lu->lu_list);
813         spin_lock_init(&lu->cmd_orb_lock);
814         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
815         INIT_WORK(&lu->protocol_work, NULL);
816
817         dev_set_drvdata(&ud->device, lu);
818
819         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
820         if (!hi) {
821                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
822                                           sizeof(*hi));
823                 if (!hi) {
824                         SBP2_ERR("failed to allocate hostinfo");
825                         goto failed_alloc;
826                 }
827                 hi->host = ud->ne->host;
828                 INIT_LIST_HEAD(&hi->logical_units);
829
830 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
831                 /* Handle data movement if physical dma is not
832                  * enabled or not supported on host controller */
833                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
834                                              &sbp2_physdma_ops,
835                                              0x0ULL, 0xfffffffcULL)) {
836                         SBP2_ERR("failed to register lower 4GB address range");
837                         goto failed_alloc;
838                 }
839 #endif
840         }
841
842         if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
843                 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
844                                             SBP2_MAX_SEG_SIZE));
845
846         /* Prevent unloading of the 1394 host */
847         if (!try_module_get(hi->host->driver->owner)) {
848                 SBP2_ERR("failed to get a reference on 1394 host driver");
849                 goto failed_alloc;
850         }
851
852         lu->hi = hi;
853
854         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
855         list_add_tail(&lu->lu_list, &hi->logical_units);
856         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
857
858         /* Register the status FIFO address range. We could use the same FIFO
859          * for targets at different nodes. However we need different FIFOs per
860          * target in order to support multi-unit devices.
861          * The FIFO is located out of the local host controller's physical range
862          * but, if possible, within the posted write area. Status writes will
863          * then be performed as unified transactions. This slightly reduces
864          * bandwidth usage, and some Prolific based devices seem to require it.
865          */
866         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
867                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
868                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
869                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
870         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
871                 SBP2_ERR("failed to allocate status FIFO address range");
872                 goto failed_alloc;
873         }
874
875         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
876         if (!shost) {
877                 SBP2_ERR("failed to register scsi host");
878                 goto failed_alloc;
879         }
880
881         shost->hostdata[0] = (unsigned long)lu;
882         shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
883
884         if (!scsi_add_host(shost, &ud->device)) {
885                 lu->shost = shost;
886                 return lu;
887         }
888
889         SBP2_ERR("failed to add scsi host");
890         scsi_host_put(shost);
891
892 failed_alloc:
893         sbp2_remove_device(lu);
894         return NULL;
895 }
896
897 static void sbp2_host_reset(struct hpsb_host *host)
898 {
899         struct sbp2_fwhost_info *hi;
900         struct sbp2_lu *lu;
901         unsigned long flags;
902
903         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
904         if (!hi)
905                 return;
906
907         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
908
909         list_for_each_entry(lu, &hi->logical_units, lu_list)
910                 if (atomic_cmpxchg(&lu->state,
911                                    SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET)
912                     == SBP2LU_STATE_RUNNING)
913                         scsi_block_requests(lu->shost);
914
915         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
916 }
917
918 static int sbp2_start_device(struct sbp2_lu *lu)
919 {
920         struct sbp2_fwhost_info *hi = lu->hi;
921         int error;
922
923         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
924                                      sizeof(struct sbp2_login_response),
925                                      &lu->login_response_dma, GFP_KERNEL);
926         if (!lu->login_response)
927                 goto alloc_fail;
928
929         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
930                                      sizeof(struct sbp2_query_logins_orb),
931                                      &lu->query_logins_orb_dma, GFP_KERNEL);
932         if (!lu->query_logins_orb)
933                 goto alloc_fail;
934
935         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
936                                      sizeof(struct sbp2_query_logins_response),
937                                      &lu->query_logins_response_dma, GFP_KERNEL);
938         if (!lu->query_logins_response)
939                 goto alloc_fail;
940
941         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
942                                      sizeof(struct sbp2_reconnect_orb),
943                                      &lu->reconnect_orb_dma, GFP_KERNEL);
944         if (!lu->reconnect_orb)
945                 goto alloc_fail;
946
947         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
948                                      sizeof(struct sbp2_logout_orb),
949                                      &lu->logout_orb_dma, GFP_KERNEL);
950         if (!lu->logout_orb)
951                 goto alloc_fail;
952
953         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
954                                      sizeof(struct sbp2_login_orb),
955                                      &lu->login_orb_dma, GFP_KERNEL);
956         if (!lu->login_orb)
957                 goto alloc_fail;
958
959         if (sbp2util_create_command_orb_pool(lu))
960                 goto alloc_fail;
961
962         /* Wait a second before trying to log in. Previously logged in
963          * initiators need a chance to reconnect. */
964         if (msleep_interruptible(1000)) {
965                 sbp2_remove_device(lu);
966                 return -EINTR;
967         }
968
969         if (sbp2_login_device(lu)) {
970                 sbp2_remove_device(lu);
971                 return -EBUSY;
972         }
973
974         sbp2_set_busy_timeout(lu);
975         sbp2_agent_reset(lu, 1);
976         sbp2_max_speed_and_size(lu);
977
978         if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
979                 ssleep(SBP2_INQUIRY_DELAY);
980
981         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
982         if (error) {
983                 SBP2_ERR("scsi_add_device failed");
984                 sbp2_logout_device(lu);
985                 sbp2_remove_device(lu);
986                 return error;
987         }
988
989         return 0;
990
991 alloc_fail:
992         SBP2_ERR("Could not allocate memory for lu");
993         sbp2_remove_device(lu);
994         return -ENOMEM;
995 }
996
997 static void sbp2_remove_device(struct sbp2_lu *lu)
998 {
999         struct sbp2_fwhost_info *hi;
1000         unsigned long flags;
1001
1002         if (!lu)
1003                 return;
1004         hi = lu->hi;
1005         if (!hi)
1006                 goto no_hi;
1007
1008         if (lu->shost) {
1009                 scsi_remove_host(lu->shost);
1010                 scsi_host_put(lu->shost);
1011         }
1012         flush_scheduled_work();
1013         sbp2util_remove_command_orb_pool(lu, hi->host);
1014
1015         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1016         list_del(&lu->lu_list);
1017         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1018
1019         if (lu->login_response)
1020                 dma_free_coherent(hi->host->device.parent,
1021                                     sizeof(struct sbp2_login_response),
1022                                     lu->login_response,
1023                                     lu->login_response_dma);
1024         if (lu->login_orb)
1025                 dma_free_coherent(hi->host->device.parent,
1026                                     sizeof(struct sbp2_login_orb),
1027                                     lu->login_orb,
1028                                     lu->login_orb_dma);
1029         if (lu->reconnect_orb)
1030                 dma_free_coherent(hi->host->device.parent,
1031                                     sizeof(struct sbp2_reconnect_orb),
1032                                     lu->reconnect_orb,
1033                                     lu->reconnect_orb_dma);
1034         if (lu->logout_orb)
1035                 dma_free_coherent(hi->host->device.parent,
1036                                     sizeof(struct sbp2_logout_orb),
1037                                     lu->logout_orb,
1038                                     lu->logout_orb_dma);
1039         if (lu->query_logins_orb)
1040                 dma_free_coherent(hi->host->device.parent,
1041                                     sizeof(struct sbp2_query_logins_orb),
1042                                     lu->query_logins_orb,
1043                                     lu->query_logins_orb_dma);
1044         if (lu->query_logins_response)
1045                 dma_free_coherent(hi->host->device.parent,
1046                                     sizeof(struct sbp2_query_logins_response),
1047                                     lu->query_logins_response,
1048                                     lu->query_logins_response_dma);
1049
1050         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1051                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1052                                           lu->status_fifo_addr);
1053
1054         dev_set_drvdata(&lu->ud->device, NULL);
1055
1056         module_put(hi->host->driver->owner);
1057 no_hi:
1058         kfree(lu);
1059 }
1060
1061 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1062 /*
1063  * Deal with write requests on adapters which do not support physical DMA or
1064  * have it switched off.
1065  */
1066 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1067                                      int destid, quadlet_t *data, u64 addr,
1068                                      size_t length, u16 flags)
1069 {
1070         memcpy(bus_to_virt((u32) addr), data, length);
1071         return RCODE_COMPLETE;
1072 }
1073
1074 /*
1075  * Deal with read requests on adapters which do not support physical DMA or
1076  * have it switched off.
1077  */
1078 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1079                                     quadlet_t *data, u64 addr, size_t length,
1080                                     u16 flags)
1081 {
1082         memcpy(data, bus_to_virt((u32) addr), length);
1083         return RCODE_COMPLETE;
1084 }
1085 #endif
1086
1087 /**************************************
1088  * SBP-2 protocol related section
1089  **************************************/
1090
1091 static int sbp2_query_logins(struct sbp2_lu *lu)
1092 {
1093         struct sbp2_fwhost_info *hi = lu->hi;
1094         quadlet_t data[2];
1095         int max_logins;
1096         int active_logins;
1097
1098         lu->query_logins_orb->reserved1 = 0x0;
1099         lu->query_logins_orb->reserved2 = 0x0;
1100
1101         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1102         lu->query_logins_orb->query_response_hi =
1103                         ORB_SET_NODE_ID(hi->host->node_id);
1104         lu->query_logins_orb->lun_misc =
1105                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1106         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1107         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1108
1109         lu->query_logins_orb->reserved_resp_length =
1110                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1111                         sizeof(struct sbp2_query_logins_response));
1112
1113         lu->query_logins_orb->status_fifo_hi =
1114                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1115         lu->query_logins_orb->status_fifo_lo =
1116                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1117
1118         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1119                                     sizeof(struct sbp2_query_logins_orb));
1120
1121         memset(lu->query_logins_response, 0,
1122                sizeof(struct sbp2_query_logins_response));
1123
1124         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1125         data[1] = lu->query_logins_orb_dma;
1126         sbp2util_cpu_to_be32_buffer(data, 8);
1127
1128         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1129
1130         if (sbp2util_access_timeout(lu, 2*HZ)) {
1131                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1132                 return -EIO;
1133         }
1134
1135         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1136                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1137                 return -EIO;
1138         }
1139
1140         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1141                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1142                 return -EIO;
1143         }
1144
1145         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1146                                     sizeof(struct sbp2_query_logins_response));
1147
1148         max_logins = RESPONSE_GET_MAX_LOGINS(
1149                         lu->query_logins_response->length_max_logins);
1150         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1151
1152         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1153                         lu->query_logins_response->length_max_logins);
1154         SBP2_INFO("Number of active logins: %d", active_logins);
1155
1156         if (active_logins >= max_logins) {
1157                 return -EIO;
1158         }
1159
1160         return 0;
1161 }
1162
1163 static int sbp2_login_device(struct sbp2_lu *lu)
1164 {
1165         struct sbp2_fwhost_info *hi = lu->hi;
1166         quadlet_t data[2];
1167
1168         if (!lu->login_orb)
1169                 return -EIO;
1170
1171         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1172                 SBP2_INFO("Device does not support any more concurrent logins");
1173                 return -EIO;
1174         }
1175
1176         /* assume no password */
1177         lu->login_orb->password_hi = 0;
1178         lu->login_orb->password_lo = 0;
1179
1180         lu->login_orb->login_response_lo = lu->login_response_dma;
1181         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1182         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1183
1184         /* one second reconnect time */
1185         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1186         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1187         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1188         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1189
1190         lu->login_orb->passwd_resp_lengths =
1191                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1192
1193         lu->login_orb->status_fifo_hi =
1194                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1195         lu->login_orb->status_fifo_lo =
1196                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1197
1198         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1199                                     sizeof(struct sbp2_login_orb));
1200
1201         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1202
1203         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1204         data[1] = lu->login_orb_dma;
1205         sbp2util_cpu_to_be32_buffer(data, 8);
1206
1207         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1208
1209         /* wait up to 20 seconds for login status */
1210         if (sbp2util_access_timeout(lu, 20*HZ)) {
1211                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1212                 return -EIO;
1213         }
1214
1215         /* make sure that the returned status matches the login ORB */
1216         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1217                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1218                 return -EIO;
1219         }
1220
1221         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1222                 SBP2_ERR("Error logging into SBP-2 device - failed");
1223                 return -EIO;
1224         }
1225
1226         sbp2util_cpu_to_be32_buffer(lu->login_response,
1227                                     sizeof(struct sbp2_login_response));
1228         lu->command_block_agent_addr =
1229                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1230         lu->command_block_agent_addr |=
1231                         ((u64)lu->login_response->command_block_agent_lo);
1232         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1233
1234         SBP2_INFO("Logged into SBP-2 device");
1235         return 0;
1236 }
1237
1238 static int sbp2_logout_device(struct sbp2_lu *lu)
1239 {
1240         struct sbp2_fwhost_info *hi = lu->hi;
1241         quadlet_t data[2];
1242         int error;
1243
1244         lu->logout_orb->reserved1 = 0x0;
1245         lu->logout_orb->reserved2 = 0x0;
1246         lu->logout_orb->reserved3 = 0x0;
1247         lu->logout_orb->reserved4 = 0x0;
1248
1249         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1250         lu->logout_orb->login_ID_misc |=
1251                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1252         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1253
1254         lu->logout_orb->reserved5 = 0x0;
1255         lu->logout_orb->status_fifo_hi =
1256                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1257         lu->logout_orb->status_fifo_lo =
1258                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1259
1260         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1261                                     sizeof(struct sbp2_logout_orb));
1262
1263         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1264         data[1] = lu->logout_orb_dma;
1265         sbp2util_cpu_to_be32_buffer(data, 8);
1266
1267         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1268         if (error)
1269                 return error;
1270
1271         /* wait up to 1 second for the device to complete logout */
1272         if (sbp2util_access_timeout(lu, HZ))
1273                 return -EIO;
1274
1275         SBP2_INFO("Logged out of SBP-2 device");
1276         return 0;
1277 }
1278
1279 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1280 {
1281         struct sbp2_fwhost_info *hi = lu->hi;
1282         quadlet_t data[2];
1283         int error;
1284
1285         lu->reconnect_orb->reserved1 = 0x0;
1286         lu->reconnect_orb->reserved2 = 0x0;
1287         lu->reconnect_orb->reserved3 = 0x0;
1288         lu->reconnect_orb->reserved4 = 0x0;
1289
1290         lu->reconnect_orb->login_ID_misc =
1291                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1292         lu->reconnect_orb->login_ID_misc |=
1293                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1294         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1295
1296         lu->reconnect_orb->reserved5 = 0x0;
1297         lu->reconnect_orb->status_fifo_hi =
1298                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1299         lu->reconnect_orb->status_fifo_lo =
1300                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1301
1302         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1303                                     sizeof(struct sbp2_reconnect_orb));
1304
1305         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1306         data[1] = lu->reconnect_orb_dma;
1307         sbp2util_cpu_to_be32_buffer(data, 8);
1308
1309         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1310         if (error)
1311                 return error;
1312
1313         /* wait up to 1 second for reconnect status */
1314         if (sbp2util_access_timeout(lu, HZ)) {
1315                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1316                 return -EIO;
1317         }
1318
1319         /* make sure that the returned status matches the reconnect ORB */
1320         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1321                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1322                 return -EIO;
1323         }
1324
1325         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1326                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1327                 return -EIO;
1328         }
1329
1330         SBP2_INFO("Reconnected to SBP-2 device");
1331         return 0;
1332 }
1333
1334 /*
1335  * Set the target node's Single Phase Retry limit. Affects the target's retry
1336  * behaviour if our node is too busy to accept requests.
1337  */
1338 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1339 {
1340         quadlet_t data;
1341
1342         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1343         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1344                 SBP2_ERR("%s error", __func__);
1345         return 0;
1346 }
1347
1348 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1349                                       struct unit_directory *ud)
1350 {
1351         struct csr1212_keyval *kv;
1352         struct csr1212_dentry *dentry;
1353         u64 management_agent_addr;
1354         u32 firmware_revision, model;
1355         unsigned workarounds;
1356         int i;
1357
1358         management_agent_addr = 0;
1359         firmware_revision = SBP2_ROM_VALUE_MISSING;
1360         model = ud->flags & UNIT_DIRECTORY_MODEL_ID ?
1361                                 ud->model_id : SBP2_ROM_VALUE_MISSING;
1362
1363         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1364                 switch (kv->key.id) {
1365                 case CSR1212_KV_ID_DEPENDENT_INFO:
1366                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1367                                 management_agent_addr =
1368                                     CSR1212_REGISTER_SPACE_BASE +
1369                                     (kv->value.csr_offset << 2);
1370
1371                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1372                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1373                         break;
1374
1375
1376                 case SBP2_FIRMWARE_REVISION_KEY:
1377                         firmware_revision = kv->value.immediate;
1378                         break;
1379
1380                 default:
1381                         /* FIXME: Check for SBP2_UNIT_CHARACTERISTICS_KEY
1382                          * mgt_ORB_timeout and ORB_size, SBP-2 clause 7.4.8. */
1383
1384                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1385                          * Its "ordered" bit has consequences for command ORB
1386                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1387                         break;
1388                 }
1389         }
1390
1391         workarounds = sbp2_default_workarounds;
1392
1393         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1394                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1395                         if (sbp2_workarounds_table[i].firmware_revision !=
1396                             SBP2_ROM_VALUE_WILDCARD &&
1397                             sbp2_workarounds_table[i].firmware_revision !=
1398                             (firmware_revision & 0xffff00))
1399                                 continue;
1400                         if (sbp2_workarounds_table[i].model !=
1401                             SBP2_ROM_VALUE_WILDCARD &&
1402                             sbp2_workarounds_table[i].model != model)
1403                                 continue;
1404                         workarounds |= sbp2_workarounds_table[i].workarounds;
1405                         break;
1406                 }
1407
1408         if (workarounds)
1409                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1410                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1411                           " model_id 0x%06x)",
1412                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1413                           workarounds, firmware_revision, ud->vendor_id,
1414                           model);
1415
1416         /* We would need one SCSI host template for each target to adjust
1417          * max_sectors on the fly, therefore warn only. */
1418         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1419             (sbp2_max_sectors * 512) > (128 * 1024))
1420                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1421                           "max transfer size. WARNING: Current max_sectors "
1422                           "setting is larger than 128KB (%d sectors)",
1423                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1424                           sbp2_max_sectors);
1425
1426         /* If this is a logical unit directory entry, process the parent
1427          * to get the values. */
1428         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1429                 struct unit_directory *parent_ud = container_of(
1430                         ud->device.parent, struct unit_directory, device);
1431                 sbp2_parse_unit_directory(lu, parent_ud);
1432         } else {
1433                 lu->management_agent_addr = management_agent_addr;
1434                 lu->workarounds = workarounds;
1435                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1436                         lu->lun = ORB_SET_LUN(ud->lun);
1437         }
1438 }
1439
1440 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1441
1442 /*
1443  * This function is called in order to determine the max speed and packet
1444  * size we can use in our ORBs. Note, that we (the driver and host) only
1445  * initiate the transaction. The SBP-2 device actually transfers the data
1446  * (by reading from the DMA area we tell it). This means that the SBP-2
1447  * device decides the actual maximum data it can transfer. We just tell it
1448  * the speed that it needs to use, and the max_rec the host supports, and
1449  * it takes care of the rest.
1450  */
1451 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1452 {
1453         struct sbp2_fwhost_info *hi = lu->hi;
1454         u8 payload;
1455
1456         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1457
1458         if (lu->speed_code > sbp2_max_speed) {
1459                 lu->speed_code = sbp2_max_speed;
1460                 SBP2_INFO("Reducing speed to %s",
1461                           hpsb_speedto_str[sbp2_max_speed]);
1462         }
1463
1464         /* Payload size is the lesser of what our speed supports and what
1465          * our host supports.  */
1466         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1467                       (u8) (hi->host->csr.max_rec - 1));
1468
1469         /* If physical DMA is off, work around limitation in ohci1394:
1470          * packet size must not exceed PAGE_SIZE */
1471         if (lu->ne->host->low_addr_space < (1ULL << 32))
1472                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1473                        payload)
1474                         payload--;
1475
1476         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1477                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1478                   hpsb_speedto_str[lu->speed_code],
1479                   SBP2_PAYLOAD_TO_BYTES(payload));
1480
1481         lu->max_payload_size = payload;
1482         return 0;
1483 }
1484
1485 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1486 {
1487         quadlet_t data;
1488         u64 addr;
1489         int retval;
1490         unsigned long flags;
1491
1492         /* flush lu->protocol_work */
1493         if (wait)
1494                 flush_scheduled_work();
1495
1496         data = ntohl(SBP2_AGENT_RESET_DATA);
1497         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1498
1499         if (wait)
1500                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1501         else
1502                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1503
1504         if (retval < 0) {
1505                 SBP2_ERR("hpsb_node_write failed.\n");
1506                 return -EIO;
1507         }
1508
1509         /* make sure that the ORB_POINTER is written on next command */
1510         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1511         lu->last_orb = NULL;
1512         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1513
1514         return 0;
1515 }
1516
1517 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1518                                     struct sbp2_fwhost_info *hi,
1519                                     struct sbp2_command_info *cmd,
1520                                     unsigned int sg_count,
1521                                     struct scatterlist *sg,
1522                                     u32 orb_direction,
1523                                     enum dma_data_direction dma_dir)
1524 {
1525         struct device *dmadev = hi->host->device.parent;
1526         struct sbp2_unrestricted_page_table *pt;
1527         int i, n;
1528
1529         n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1530         if (n == 0)
1531                 return -ENOMEM;
1532
1533         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1534         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1535
1536         /* special case if only one element (and less than 64KB in size) */
1537         if (n == 1) {
1538                 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1539                 orb->data_descriptor_lo = sg_dma_address(sg);
1540         } else {
1541                 pt = &cmd->scatter_gather_element[0];
1542
1543                 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1544                                         sizeof(cmd->scatter_gather_element),
1545                                         DMA_TO_DEVICE);
1546
1547                 for_each_sg(sg, sg, n, i) {
1548                         pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1549                         pt[i].low = cpu_to_be32(sg_dma_address(sg));
1550                 }
1551
1552                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1553                              ORB_SET_DATA_SIZE(n);
1554                 orb->data_descriptor_lo = cmd->sge_dma;
1555
1556                 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1557                                            sizeof(cmd->scatter_gather_element),
1558                                            DMA_TO_DEVICE);
1559         }
1560         return 0;
1561 }
1562
1563 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1564                                    struct sbp2_command_info *cmd,
1565                                    struct scsi_cmnd *SCpnt)
1566 {
1567         struct device *dmadev = lu->hi->host->device.parent;
1568         struct sbp2_command_orb *orb = &cmd->command_orb;
1569         unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1570         enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1571         u32 orb_direction;
1572         int ret;
1573
1574         dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1575                                 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1576         /*
1577          * Set-up our command ORB.
1578          *
1579          * NOTE: We're doing unrestricted page tables (s/g), as this is
1580          * best performance (at least with the devices I have). This means
1581          * that data_size becomes the number of s/g elements, and
1582          * page_size should be zero (for unrestricted).
1583          */
1584         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1585         orb->next_ORB_lo = 0x0;
1586         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1587         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1588         orb->misc |= ORB_SET_NOTIFY(1);
1589
1590         if (dma_dir == DMA_NONE)
1591                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1592         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1593                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1594         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1595                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1596         else {
1597                 SBP2_INFO("Falling back to DMA_NONE");
1598                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1599         }
1600
1601         /* set up our page table stuff */
1602         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1603                 orb->data_descriptor_hi = 0x0;
1604                 orb->data_descriptor_lo = 0x0;
1605                 orb->misc |= ORB_SET_DIRECTION(1);
1606                 ret = 0;
1607         } else {
1608                 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1609                                                scsi_sg_count(SCpnt),
1610                                                scsi_sglist(SCpnt),
1611                                                orb_direction, dma_dir);
1612         }
1613         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1614
1615         memset(orb->cdb, 0, sizeof(orb->cdb));
1616         memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1617
1618         dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1619                         sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1620         return ret;
1621 }
1622
1623 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1624                                   struct sbp2_command_info *cmd)
1625 {
1626         struct sbp2_fwhost_info *hi = lu->hi;
1627         struct sbp2_command_orb *last_orb;
1628         dma_addr_t last_orb_dma;
1629         u64 addr = lu->command_block_agent_addr;
1630         quadlet_t data[2];
1631         size_t length;
1632         unsigned long flags;
1633
1634         /* check to see if there are any previous orbs to use */
1635         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1636         last_orb = lu->last_orb;
1637         last_orb_dma = lu->last_orb_dma;
1638         if (!last_orb) {
1639                 /*
1640                  * last_orb == NULL means: We know that the target's fetch agent
1641                  * is not active right now.
1642                  */
1643                 addr += SBP2_ORB_POINTER_OFFSET;
1644                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1645                 data[1] = cmd->command_orb_dma;
1646                 sbp2util_cpu_to_be32_buffer(data, 8);
1647                 length = 8;
1648         } else {
1649                 /*
1650                  * last_orb != NULL means: We know that the target's fetch agent
1651                  * is (very probably) not dead or in reset state right now.
1652                  * We have an ORB already sent that we can append a new one to.
1653                  * The target's fetch agent may or may not have read this
1654                  * previous ORB yet.
1655                  */
1656                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1657                                         sizeof(struct sbp2_command_orb),
1658                                         DMA_TO_DEVICE);
1659                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1660                 wmb();
1661                 /* Tells hardware that this pointer is valid */
1662                 last_orb->next_ORB_hi = 0;
1663                 dma_sync_single_for_device(hi->host->device.parent,
1664                                            last_orb_dma,
1665                                            sizeof(struct sbp2_command_orb),
1666                                            DMA_TO_DEVICE);
1667                 addr += SBP2_DOORBELL_OFFSET;
1668                 data[0] = 0;
1669                 length = 4;
1670         }
1671         lu->last_orb = &cmd->command_orb;
1672         lu->last_orb_dma = cmd->command_orb_dma;
1673         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1674
1675         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1676                 /*
1677                  * sbp2util_node_write_no_wait failed. We certainly ran out
1678                  * of transaction labels, perhaps just because there were no
1679                  * context switches which gave khpsbpkt a chance to collect
1680                  * free tlabels. Try again in non-atomic context. If necessary,
1681                  * the workqueue job will sleep to guaranteedly get a tlabel.
1682                  * We do not accept new commands until the job is over.
1683                  */
1684                 scsi_block_requests(lu->shost);
1685                 PREPARE_WORK(&lu->protocol_work,
1686                              last_orb ? sbp2util_write_doorbell:
1687                                         sbp2util_write_orb_pointer);
1688                 schedule_work(&lu->protocol_work);
1689         }
1690 }
1691
1692 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1693                              void (*done)(struct scsi_cmnd *))
1694 {
1695         struct sbp2_command_info *cmd;
1696
1697         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1698         if (!cmd)
1699                 return -EIO;
1700
1701         if (sbp2_create_command_orb(lu, cmd, SCpnt))
1702                 return -ENOMEM;
1703
1704         sbp2_link_orb_command(lu, cmd);
1705         return 0;
1706 }
1707
1708 /*
1709  * Translates SBP-2 status into SCSI sense data for check conditions
1710  */
1711 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1712                                               unchar *sense_data)
1713 {
1714         /* OK, it's pretty ugly... ;-) */
1715         sense_data[0] = 0x70;
1716         sense_data[1] = 0x0;
1717         sense_data[2] = sbp2_status[9];
1718         sense_data[3] = sbp2_status[12];
1719         sense_data[4] = sbp2_status[13];
1720         sense_data[5] = sbp2_status[14];
1721         sense_data[6] = sbp2_status[15];
1722         sense_data[7] = 10;
1723         sense_data[8] = sbp2_status[16];
1724         sense_data[9] = sbp2_status[17];
1725         sense_data[10] = sbp2_status[18];
1726         sense_data[11] = sbp2_status[19];
1727         sense_data[12] = sbp2_status[10];
1728         sense_data[13] = sbp2_status[11];
1729         sense_data[14] = sbp2_status[20];
1730         sense_data[15] = sbp2_status[21];
1731
1732         return sbp2_status[8] & 0x3f;
1733 }
1734
1735 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1736                                     int destid, quadlet_t *data, u64 addr,
1737                                     size_t length, u16 fl)
1738 {
1739         struct sbp2_fwhost_info *hi;
1740         struct sbp2_lu *lu = NULL, *lu_tmp;
1741         struct scsi_cmnd *SCpnt = NULL;
1742         struct sbp2_status_block *sb;
1743         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1744         struct sbp2_command_info *cmd;
1745         unsigned long flags;
1746
1747         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1748                 SBP2_ERR("Wrong size of status block");
1749                 return RCODE_ADDRESS_ERROR;
1750         }
1751         if (unlikely(!host)) {
1752                 SBP2_ERR("host is NULL - this is bad!");
1753                 return RCODE_ADDRESS_ERROR;
1754         }
1755         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1756         if (unlikely(!hi)) {
1757                 SBP2_ERR("host info is NULL - this is bad!");
1758                 return RCODE_ADDRESS_ERROR;
1759         }
1760
1761         /* Find the unit which wrote the status. */
1762         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1763         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1764                 if (lu_tmp->ne->nodeid == nodeid &&
1765                     lu_tmp->status_fifo_addr == addr) {
1766                         lu = lu_tmp;
1767                         break;
1768                 }
1769         }
1770         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1771
1772         if (unlikely(!lu)) {
1773                 SBP2_ERR("lu is NULL - device is gone?");
1774                 return RCODE_ADDRESS_ERROR;
1775         }
1776
1777         /* Put response into lu status fifo buffer. The first two bytes
1778          * come in big endian bit order. Often the target writes only a
1779          * truncated status block, minimally the first two quadlets. The rest
1780          * is implied to be zeros. */
1781         sb = &lu->status_block;
1782         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1783         memcpy(sb, data, length);
1784         sbp2util_be32_to_cpu_buffer(sb, 8);
1785
1786         /* Ignore unsolicited status. Handle command ORB status. */
1787         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1788                 cmd = NULL;
1789         else
1790                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1791         if (cmd) {
1792                 /* Grab SCSI command pointers and check status. */
1793                 /*
1794                  * FIXME: If the src field in the status is 1, the ORB DMA must
1795                  * not be reused until status for a subsequent ORB is received.
1796                  */
1797                 SCpnt = cmd->Current_SCpnt;
1798                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1799                 sbp2util_mark_command_completed(lu, cmd);
1800                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1801
1802                 if (SCpnt) {
1803                         u32 h = sb->ORB_offset_hi_misc;
1804                         u32 r = STATUS_GET_RESP(h);
1805
1806                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1807                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1808                                           r, STATUS_GET_SBP_STATUS(h));
1809                                 scsi_status =
1810                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1811                                         SBP2_SCSI_STATUS_BUSY :
1812                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1813                         }
1814
1815                         if (STATUS_GET_LEN(h) > 1)
1816                                 scsi_status = sbp2_status_to_sense_data(
1817                                         (unchar *)sb, SCpnt->sense_buffer);
1818
1819                         if (STATUS_TEST_DEAD(h))
1820                                 sbp2_agent_reset(lu, 0);
1821                 }
1822
1823                 /* Check here to see if there are no commands in-use. If there
1824                  * are none, we know that the fetch agent left the active state
1825                  * _and_ that we did not reactivate it yet. Therefore clear
1826                  * last_orb so that next time we write directly to the
1827                  * ORB_POINTER register. That way the fetch agent does not need
1828                  * to refetch the next_ORB. */
1829                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1830                 if (list_empty(&lu->cmd_orb_inuse))
1831                         lu->last_orb = NULL;
1832                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1833
1834         } else {
1835                 /* It's probably status after a management request. */
1836                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1837                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1838                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1839                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1840                         lu->access_complete = 1;
1841                         wake_up_interruptible(&sbp2_access_wq);
1842                 }
1843         }
1844
1845         if (SCpnt)
1846                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1847                                           cmd->Current_done);
1848         return RCODE_COMPLETE;
1849 }
1850
1851 /**************************************
1852  * SCSI interface related section
1853  **************************************/
1854
1855 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1856                                  void (*done)(struct scsi_cmnd *))
1857 {
1858         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1859         struct sbp2_fwhost_info *hi;
1860         int result = DID_NO_CONNECT << 16;
1861
1862         if (unlikely(!sbp2util_node_is_available(lu)))
1863                 goto done;
1864
1865         hi = lu->hi;
1866
1867         if (unlikely(!hi)) {
1868                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1869                 goto done;
1870         }
1871
1872         /* Multiple units are currently represented to the SCSI core as separate
1873          * targets, not as one target with multiple LUs. Therefore return
1874          * selection time-out to any IO directed at non-zero LUNs. */
1875         if (unlikely(SCpnt->device->lun))
1876                 goto done;
1877
1878         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1879                 SBP2_ERR("Bus reset in progress - rejecting command");
1880                 result = DID_BUS_BUSY << 16;
1881                 goto done;
1882         }
1883
1884         /* Bidirectional commands are not yet implemented,
1885          * and unknown transfer direction not handled. */
1886         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1887                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1888                 result = DID_ERROR << 16;
1889                 goto done;
1890         }
1891
1892         if (sbp2_send_command(lu, SCpnt, done)) {
1893                 SBP2_ERR("Error sending SCSI command");
1894                 sbp2scsi_complete_command(lu,
1895                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1896                                           SCpnt, done);
1897         }
1898         return 0;
1899
1900 done:
1901         SCpnt->result = result;
1902         done(SCpnt);
1903         return 0;
1904 }
1905
1906 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1907 {
1908         struct list_head *lh;
1909         struct sbp2_command_info *cmd;
1910         unsigned long flags;
1911
1912         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1913         while (!list_empty(&lu->cmd_orb_inuse)) {
1914                 lh = lu->cmd_orb_inuse.next;
1915                 cmd = list_entry(lh, struct sbp2_command_info, list);
1916                 sbp2util_mark_command_completed(lu, cmd);
1917                 if (cmd->Current_SCpnt) {
1918                         cmd->Current_SCpnt->result = status << 16;
1919                         cmd->Current_done(cmd->Current_SCpnt);
1920                 }
1921         }
1922         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1923
1924         return;
1925 }
1926
1927 /*
1928  * Complete a regular SCSI command. Can be called in atomic context.
1929  */
1930 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1931                                       struct scsi_cmnd *SCpnt,
1932                                       void (*done)(struct scsi_cmnd *))
1933 {
1934         if (!SCpnt) {
1935                 SBP2_ERR("SCpnt is NULL");
1936                 return;
1937         }
1938
1939         switch (scsi_status) {
1940         case SBP2_SCSI_STATUS_GOOD:
1941                 SCpnt->result = DID_OK << 16;
1942                 break;
1943
1944         case SBP2_SCSI_STATUS_BUSY:
1945                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1946                 SCpnt->result = DID_BUS_BUSY << 16;
1947                 break;
1948
1949         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1950                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1951                 break;
1952
1953         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1954                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1955                 SCpnt->result = DID_NO_CONNECT << 16;
1956                 scsi_print_command(SCpnt);
1957                 break;
1958
1959         case SBP2_SCSI_STATUS_CONDITION_MET:
1960         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1961         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1962                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1963                 SCpnt->result = DID_ERROR << 16;
1964                 scsi_print_command(SCpnt);
1965                 break;
1966
1967         default:
1968                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1969                 SCpnt->result = DID_ERROR << 16;
1970         }
1971
1972         /* If a bus reset is in progress and there was an error, complete
1973          * the command as busy so that it will get retried. */
1974         if (!hpsb_node_entry_valid(lu->ne)
1975             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1976                 SBP2_ERR("Completing command with busy (bus reset)");
1977                 SCpnt->result = DID_BUS_BUSY << 16;
1978         }
1979
1980         /* Tell the SCSI stack that we're done with this command. */
1981         done(SCpnt);
1982 }
1983
1984 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1985 {
1986         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1987
1988         if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1989                 return -ENODEV;
1990
1991         lu->sdev = sdev;
1992         sdev->allow_restart = 1;
1993
1994         /* SBP-2 requires quadlet alignment of the data buffers. */
1995         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1996
1997         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1998                 sdev->inquiry_len = 36;
1999         return 0;
2000 }
2001
2002 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2003 {
2004         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2005
2006         sdev->use_10_for_rw = 1;
2007
2008         if (sbp2_exclusive_login)
2009                 sdev->manage_start_stop = 1;
2010         if (sdev->type == TYPE_ROM)
2011                 sdev->use_10_for_ms = 1;
2012         if (sdev->type == TYPE_DISK &&
2013             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2014                 sdev->skip_ms_page_8 = 1;
2015         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2016                 sdev->fix_capacity = 1;
2017         if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2018                 sdev->start_stop_pwr_cond = 1;
2019         if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2020                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2021
2022         blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2023         return 0;
2024 }
2025
2026 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2027 {
2028         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2029         return;
2030 }
2031
2032 /*
2033  * Called by scsi stack when something has really gone wrong.
2034  * Usually called when a command has timed-out for some reason.
2035  */
2036 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2037 {
2038         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2039         struct sbp2_command_info *cmd;
2040         unsigned long flags;
2041
2042         SBP2_INFO("aborting sbp2 command");
2043         scsi_print_command(SCpnt);
2044
2045         if (sbp2util_node_is_available(lu)) {
2046                 sbp2_agent_reset(lu, 1);
2047
2048                 /* Return a matching command structure to the free pool. */
2049                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2050                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2051                 if (cmd) {
2052                         sbp2util_mark_command_completed(lu, cmd);
2053                         if (cmd->Current_SCpnt) {
2054                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2055                                 cmd->Current_done(cmd->Current_SCpnt);
2056                         }
2057                 }
2058                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2059
2060                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2061         }
2062
2063         return SUCCESS;
2064 }
2065
2066 /*
2067  * Called by scsi stack when something has really gone wrong.
2068  */
2069 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2070 {
2071         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2072
2073         SBP2_INFO("reset requested");
2074
2075         if (sbp2util_node_is_available(lu)) {
2076                 SBP2_INFO("generating sbp2 fetch agent reset");
2077                 sbp2_agent_reset(lu, 1);
2078         }
2079
2080         return SUCCESS;
2081 }
2082
2083 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2084                                            struct device_attribute *attr,
2085                                            char *buf)
2086 {
2087         struct scsi_device *sdev;
2088         struct sbp2_lu *lu;
2089
2090         if (!(sdev = to_scsi_device(dev)))
2091                 return 0;
2092
2093         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2094                 return 0;
2095
2096         if (sbp2_long_sysfs_ieee1394_id)
2097                 return sprintf(buf, "%016Lx:%06x:%04x\n",
2098                                 (unsigned long long)lu->ne->guid,
2099                                 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2100         else
2101                 return sprintf(buf, "%016Lx:%d:%d\n",
2102                                 (unsigned long long)lu->ne->guid,
2103                                 lu->ud->id, ORB_SET_LUN(lu->lun));
2104 }
2105
2106 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2107 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2108 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2109 MODULE_LICENSE("GPL");
2110
2111 static int sbp2_module_init(void)
2112 {
2113         int ret;
2114
2115         if (sbp2_serialize_io) {
2116                 sbp2_shost_template.can_queue = 1;
2117                 sbp2_shost_template.cmd_per_lun = 1;
2118         }
2119
2120         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2121
2122         hpsb_register_highlevel(&sbp2_highlevel);
2123         ret = hpsb_register_protocol(&sbp2_driver);
2124         if (ret) {
2125                 SBP2_ERR("Failed to register protocol");
2126                 hpsb_unregister_highlevel(&sbp2_highlevel);
2127                 return ret;
2128         }
2129         return 0;
2130 }
2131
2132 static void __exit sbp2_module_exit(void)
2133 {
2134         hpsb_unregister_protocol(&sbp2_driver);
2135         hpsb_unregister_highlevel(&sbp2_highlevel);
2136 }
2137
2138 module_init(sbp2_module_init);
2139 module_exit(sbp2_module_exit);