qed: Revert error handling changes.
[sfrench/cifs-2.6.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 #define CREATE_TRACE_POINTS
38 #include "hv_trace_balloon.h"
39
40 /*
41  * We begin with definitions supporting the Dynamic Memory protocol
42  * with the host.
43  *
44  * Begin protocol definitions.
45  */
46
47
48
49 /*
50  * Protocol versions. The low word is the minor version, the high word the major
51  * version.
52  *
53  * History:
54  * Initial version 1.0
55  * Changed to 0.1 on 2009/03/25
56  * Changes to 0.2 on 2009/05/14
57  * Changes to 0.3 on 2009/12/03
58  * Changed to 1.0 on 2011/04/05
59  */
60
61 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
62 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
63 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
64
65 enum {
66         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
67         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
68         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
69
70         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
71         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
72         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
73
74         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
75 };
76
77
78
79 /*
80  * Message Types
81  */
82
83 enum dm_message_type {
84         /*
85          * Version 0.3
86          */
87         DM_ERROR                        = 0,
88         DM_VERSION_REQUEST              = 1,
89         DM_VERSION_RESPONSE             = 2,
90         DM_CAPABILITIES_REPORT          = 3,
91         DM_CAPABILITIES_RESPONSE        = 4,
92         DM_STATUS_REPORT                = 5,
93         DM_BALLOON_REQUEST              = 6,
94         DM_BALLOON_RESPONSE             = 7,
95         DM_UNBALLOON_REQUEST            = 8,
96         DM_UNBALLOON_RESPONSE           = 9,
97         DM_MEM_HOT_ADD_REQUEST          = 10,
98         DM_MEM_HOT_ADD_RESPONSE         = 11,
99         DM_VERSION_03_MAX               = 11,
100         /*
101          * Version 1.0.
102          */
103         DM_INFO_MESSAGE                 = 12,
104         DM_VERSION_1_MAX                = 12
105 };
106
107
108 /*
109  * Structures defining the dynamic memory management
110  * protocol.
111  */
112
113 union dm_version {
114         struct {
115                 __u16 minor_version;
116                 __u16 major_version;
117         };
118         __u32 version;
119 } __packed;
120
121
122 union dm_caps {
123         struct {
124                 __u64 balloon:1;
125                 __u64 hot_add:1;
126                 /*
127                  * To support guests that may have alignment
128                  * limitations on hot-add, the guest can specify
129                  * its alignment requirements; a value of n
130                  * represents an alignment of 2^n in mega bytes.
131                  */
132                 __u64 hot_add_alignment:4;
133                 __u64 reservedz:58;
134         } cap_bits;
135         __u64 caps;
136 } __packed;
137
138 union dm_mem_page_range {
139         struct  {
140                 /*
141                  * The PFN number of the first page in the range.
142                  * 40 bits is the architectural limit of a PFN
143                  * number for AMD64.
144                  */
145                 __u64 start_page:40;
146                 /*
147                  * The number of pages in the range.
148                  */
149                 __u64 page_cnt:24;
150         } finfo;
151         __u64  page_range;
152 } __packed;
153
154
155
156 /*
157  * The header for all dynamic memory messages:
158  *
159  * type: Type of the message.
160  * size: Size of the message in bytes; including the header.
161  * trans_id: The guest is responsible for manufacturing this ID.
162  */
163
164 struct dm_header {
165         __u16 type;
166         __u16 size;
167         __u32 trans_id;
168 } __packed;
169
170 /*
171  * A generic message format for dynamic memory.
172  * Specific message formats are defined later in the file.
173  */
174
175 struct dm_message {
176         struct dm_header hdr;
177         __u8 data[]; /* enclosed message */
178 } __packed;
179
180
181 /*
182  * Specific message types supporting the dynamic memory protocol.
183  */
184
185 /*
186  * Version negotiation message. Sent from the guest to the host.
187  * The guest is free to try different versions until the host
188  * accepts the version.
189  *
190  * dm_version: The protocol version requested.
191  * is_last_attempt: If TRUE, this is the last version guest will request.
192  * reservedz: Reserved field, set to zero.
193  */
194
195 struct dm_version_request {
196         struct dm_header hdr;
197         union dm_version version;
198         __u32 is_last_attempt:1;
199         __u32 reservedz:31;
200 } __packed;
201
202 /*
203  * Version response message; Host to Guest and indicates
204  * if the host has accepted the version sent by the guest.
205  *
206  * is_accepted: If TRUE, host has accepted the version and the guest
207  * should proceed to the next stage of the protocol. FALSE indicates that
208  * guest should re-try with a different version.
209  *
210  * reservedz: Reserved field, set to zero.
211  */
212
213 struct dm_version_response {
214         struct dm_header hdr;
215         __u64 is_accepted:1;
216         __u64 reservedz:63;
217 } __packed;
218
219 /*
220  * Message reporting capabilities. This is sent from the guest to the
221  * host.
222  */
223
224 struct dm_capabilities {
225         struct dm_header hdr;
226         union dm_caps caps;
227         __u64 min_page_cnt;
228         __u64 max_page_number;
229 } __packed;
230
231 /*
232  * Response to the capabilities message. This is sent from the host to the
233  * guest. This message notifies if the host has accepted the guest's
234  * capabilities. If the host has not accepted, the guest must shutdown
235  * the service.
236  *
237  * is_accepted: Indicates if the host has accepted guest's capabilities.
238  * reservedz: Must be 0.
239  */
240
241 struct dm_capabilities_resp_msg {
242         struct dm_header hdr;
243         __u64 is_accepted:1;
244         __u64 reservedz:63;
245 } __packed;
246
247 /*
248  * This message is used to report memory pressure from the guest.
249  * This message is not part of any transaction and there is no
250  * response to this message.
251  *
252  * num_avail: Available memory in pages.
253  * num_committed: Committed memory in pages.
254  * page_file_size: The accumulated size of all page files
255  *                 in the system in pages.
256  * zero_free: The nunber of zero and free pages.
257  * page_file_writes: The writes to the page file in pages.
258  * io_diff: An indicator of file cache efficiency or page file activity,
259  *          calculated as File Cache Page Fault Count - Page Read Count.
260  *          This value is in pages.
261  *
262  * Some of these metrics are Windows specific and fortunately
263  * the algorithm on the host side that computes the guest memory
264  * pressure only uses num_committed value.
265  */
266
267 struct dm_status {
268         struct dm_header hdr;
269         __u64 num_avail;
270         __u64 num_committed;
271         __u64 page_file_size;
272         __u64 zero_free;
273         __u32 page_file_writes;
274         __u32 io_diff;
275 } __packed;
276
277
278 /*
279  * Message to ask the guest to allocate memory - balloon up message.
280  * This message is sent from the host to the guest. The guest may not be
281  * able to allocate as much memory as requested.
282  *
283  * num_pages: number of pages to allocate.
284  */
285
286 struct dm_balloon {
287         struct dm_header hdr;
288         __u32 num_pages;
289         __u32 reservedz;
290 } __packed;
291
292
293 /*
294  * Balloon response message; this message is sent from the guest
295  * to the host in response to the balloon message.
296  *
297  * reservedz: Reserved; must be set to zero.
298  * more_pages: If FALSE, this is the last message of the transaction.
299  * if TRUE there will atleast one more message from the guest.
300  *
301  * range_count: The number of ranges in the range array.
302  *
303  * range_array: An array of page ranges returned to the host.
304  *
305  */
306
307 struct dm_balloon_response {
308         struct dm_header hdr;
309         __u32 reservedz;
310         __u32 more_pages:1;
311         __u32 range_count:31;
312         union dm_mem_page_range range_array[];
313 } __packed;
314
315 /*
316  * Un-balloon message; this message is sent from the host
317  * to the guest to give guest more memory.
318  *
319  * more_pages: If FALSE, this is the last message of the transaction.
320  * if TRUE there will atleast one more message from the guest.
321  *
322  * reservedz: Reserved; must be set to zero.
323  *
324  * range_count: The number of ranges in the range array.
325  *
326  * range_array: An array of page ranges returned to the host.
327  *
328  */
329
330 struct dm_unballoon_request {
331         struct dm_header hdr;
332         __u32 more_pages:1;
333         __u32 reservedz:31;
334         __u32 range_count;
335         union dm_mem_page_range range_array[];
336 } __packed;
337
338 /*
339  * Un-balloon response message; this message is sent from the guest
340  * to the host in response to an unballoon request.
341  *
342  */
343
344 struct dm_unballoon_response {
345         struct dm_header hdr;
346 } __packed;
347
348
349 /*
350  * Hot add request message. Message sent from the host to the guest.
351  *
352  * mem_range: Memory range to hot add.
353  *
354  * On Linux we currently don't support this since we cannot hot add
355  * arbitrary granularity of memory.
356  */
357
358 struct dm_hot_add {
359         struct dm_header hdr;
360         union dm_mem_page_range range;
361 } __packed;
362
363 /*
364  * Hot add response message.
365  * This message is sent by the guest to report the status of a hot add request.
366  * If page_count is less than the requested page count, then the host should
367  * assume all further hot add requests will fail, since this indicates that
368  * the guest has hit an upper physical memory barrier.
369  *
370  * Hot adds may also fail due to low resources; in this case, the guest must
371  * not complete this message until the hot add can succeed, and the host must
372  * not send a new hot add request until the response is sent.
373  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
374  * times it fails the request.
375  *
376  *
377  * page_count: number of pages that were successfully hot added.
378  *
379  * result: result of the operation 1: success, 0: failure.
380  *
381  */
382
383 struct dm_hot_add_response {
384         struct dm_header hdr;
385         __u32 page_count;
386         __u32 result;
387 } __packed;
388
389 /*
390  * Types of information sent from host to the guest.
391  */
392
393 enum dm_info_type {
394         INFO_TYPE_MAX_PAGE_CNT = 0,
395         MAX_INFO_TYPE
396 };
397
398
399 /*
400  * Header for the information message.
401  */
402
403 struct dm_info_header {
404         enum dm_info_type type;
405         __u32 data_size;
406 } __packed;
407
408 /*
409  * This message is sent from the host to the guest to pass
410  * some relevant information (win8 addition).
411  *
412  * reserved: no used.
413  * info_size: size of the information blob.
414  * info: information blob.
415  */
416
417 struct dm_info_msg {
418         struct dm_header hdr;
419         __u32 reserved;
420         __u32 info_size;
421         __u8  info[];
422 };
423
424 /*
425  * End protocol definitions.
426  */
427
428 /*
429  * State to manage hot adding memory into the guest.
430  * The range start_pfn : end_pfn specifies the range
431  * that the host has asked us to hot add. The range
432  * start_pfn : ha_end_pfn specifies the range that we have
433  * currently hot added. We hot add in multiples of 128M
434  * chunks; it is possible that we may not be able to bring
435  * online all the pages in the region. The range
436  * covered_start_pfn:covered_end_pfn defines the pages that can
437  * be brough online.
438  */
439
440 struct hv_hotadd_state {
441         struct list_head list;
442         unsigned long start_pfn;
443         unsigned long covered_start_pfn;
444         unsigned long covered_end_pfn;
445         unsigned long ha_end_pfn;
446         unsigned long end_pfn;
447         /*
448          * A list of gaps.
449          */
450         struct list_head gap_list;
451 };
452
453 struct hv_hotadd_gap {
454         struct list_head list;
455         unsigned long start_pfn;
456         unsigned long end_pfn;
457 };
458
459 struct balloon_state {
460         __u32 num_pages;
461         struct work_struct wrk;
462 };
463
464 struct hot_add_wrk {
465         union dm_mem_page_range ha_page_range;
466         union dm_mem_page_range ha_region_range;
467         struct work_struct wrk;
468 };
469
470 static bool hot_add = true;
471 static bool do_hot_add;
472 /*
473  * Delay reporting memory pressure by
474  * the specified number of seconds.
475  */
476 static uint pressure_report_delay = 45;
477
478 /*
479  * The last time we posted a pressure report to host.
480  */
481 static unsigned long last_post_time;
482
483 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
484 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
485
486 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
487 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
488 static atomic_t trans_id = ATOMIC_INIT(0);
489
490 static int dm_ring_size = (5 * PAGE_SIZE);
491
492 /*
493  * Driver specific state.
494  */
495
496 enum hv_dm_state {
497         DM_INITIALIZING = 0,
498         DM_INITIALIZED,
499         DM_BALLOON_UP,
500         DM_BALLOON_DOWN,
501         DM_HOT_ADD,
502         DM_INIT_ERROR
503 };
504
505
506 static __u8 recv_buffer[PAGE_SIZE];
507 static __u8 *send_buffer;
508 #define PAGES_IN_2M     512
509 #define HA_CHUNK (32 * 1024)
510
511 struct hv_dynmem_device {
512         struct hv_device *dev;
513         enum hv_dm_state state;
514         struct completion host_event;
515         struct completion config_event;
516
517         /*
518          * Number of pages we have currently ballooned out.
519          */
520         unsigned int num_pages_ballooned;
521         unsigned int num_pages_onlined;
522         unsigned int num_pages_added;
523
524         /*
525          * State to manage the ballooning (up) operation.
526          */
527         struct balloon_state balloon_wrk;
528
529         /*
530          * State to execute the "hot-add" operation.
531          */
532         struct hot_add_wrk ha_wrk;
533
534         /*
535          * This state tracks if the host has specified a hot-add
536          * region.
537          */
538         bool host_specified_ha_region;
539
540         /*
541          * State to synchronize hot-add.
542          */
543         struct completion  ol_waitevent;
544         bool ha_waiting;
545         /*
546          * This thread handles hot-add
547          * requests from the host as well as notifying
548          * the host with regards to memory pressure in
549          * the guest.
550          */
551         struct task_struct *thread;
552
553         /*
554          * Protects ha_region_list, num_pages_onlined counter and individual
555          * regions from ha_region_list.
556          */
557         spinlock_t ha_lock;
558
559         /*
560          * A list of hot-add regions.
561          */
562         struct list_head ha_region_list;
563
564         /*
565          * We start with the highest version we can support
566          * and downgrade based on the host; we save here the
567          * next version to try.
568          */
569         __u32 next_version;
570
571         /*
572          * The negotiated version agreed by host.
573          */
574         __u32 version;
575 };
576
577 static struct hv_dynmem_device dm_device;
578
579 static void post_status(struct hv_dynmem_device *dm);
580
581 #ifdef CONFIG_MEMORY_HOTPLUG
582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
583                                      unsigned long pfn)
584 {
585         struct hv_hotadd_gap *gap;
586
587         /* The page is not backed. */
588         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
589                 return false;
590
591         /* Check for gaps. */
592         list_for_each_entry(gap, &has->gap_list, list) {
593                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
594                         return false;
595         }
596
597         return true;
598 }
599
600 static unsigned long hv_page_offline_check(unsigned long start_pfn,
601                                            unsigned long nr_pages)
602 {
603         unsigned long pfn = start_pfn, count = 0;
604         struct hv_hotadd_state *has;
605         bool found;
606
607         while (pfn < start_pfn + nr_pages) {
608                 /*
609                  * Search for HAS which covers the pfn and when we find one
610                  * count how many consequitive PFNs are covered.
611                  */
612                 found = false;
613                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
614                         while ((pfn >= has->start_pfn) &&
615                                (pfn < has->end_pfn) &&
616                                (pfn < start_pfn + nr_pages)) {
617                                 found = true;
618                                 if (has_pfn_is_backed(has, pfn))
619                                         count++;
620                                 pfn++;
621                         }
622                 }
623
624                 /*
625                  * This PFN is not in any HAS (e.g. we're offlining a region
626                  * which was present at boot), no need to account for it. Go
627                  * to the next one.
628                  */
629                 if (!found)
630                         pfn++;
631         }
632
633         return count;
634 }
635
636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
637                               void *v)
638 {
639         struct memory_notify *mem = (struct memory_notify *)v;
640         unsigned long flags, pfn_count;
641
642         switch (val) {
643         case MEM_ONLINE:
644         case MEM_CANCEL_ONLINE:
645                 if (dm_device.ha_waiting) {
646                         dm_device.ha_waiting = false;
647                         complete(&dm_device.ol_waitevent);
648                 }
649                 break;
650
651         case MEM_OFFLINE:
652                 spin_lock_irqsave(&dm_device.ha_lock, flags);
653                 pfn_count = hv_page_offline_check(mem->start_pfn,
654                                                   mem->nr_pages);
655                 if (pfn_count <= dm_device.num_pages_onlined) {
656                         dm_device.num_pages_onlined -= pfn_count;
657                 } else {
658                         /*
659                          * We're offlining more pages than we managed to online.
660                          * This is unexpected. In any case don't let
661                          * num_pages_onlined wrap around zero.
662                          */
663                         WARN_ON_ONCE(1);
664                         dm_device.num_pages_onlined = 0;
665                 }
666                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
667                 break;
668         case MEM_GOING_ONLINE:
669         case MEM_GOING_OFFLINE:
670         case MEM_CANCEL_OFFLINE:
671                 break;
672         }
673         return NOTIFY_OK;
674 }
675
676 static struct notifier_block hv_memory_nb = {
677         .notifier_call = hv_memory_notifier,
678         .priority = 0
679 };
680
681 /* Check if the particular page is backed and can be onlined and online it. */
682 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
683 {
684         if (!has_pfn_is_backed(has, page_to_pfn(pg)))
685                 return;
686
687         /* This frame is currently backed; online the page. */
688         __online_page_set_limits(pg);
689         __online_page_increment_counters(pg);
690         __online_page_free(pg);
691
692         lockdep_assert_held(&dm_device.ha_lock);
693         dm_device.num_pages_onlined++;
694 }
695
696 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
697                                 unsigned long start_pfn, unsigned long size)
698 {
699         int i;
700
701         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
702         for (i = 0; i < size; i++)
703                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
704 }
705
706 static void hv_mem_hot_add(unsigned long start, unsigned long size,
707                                 unsigned long pfn_count,
708                                 struct hv_hotadd_state *has)
709 {
710         int ret = 0;
711         int i, nid;
712         unsigned long start_pfn;
713         unsigned long processed_pfn;
714         unsigned long total_pfn = pfn_count;
715         unsigned long flags;
716
717         for (i = 0; i < (size/HA_CHUNK); i++) {
718                 start_pfn = start + (i * HA_CHUNK);
719
720                 spin_lock_irqsave(&dm_device.ha_lock, flags);
721                 has->ha_end_pfn +=  HA_CHUNK;
722
723                 if (total_pfn > HA_CHUNK) {
724                         processed_pfn = HA_CHUNK;
725                         total_pfn -= HA_CHUNK;
726                 } else {
727                         processed_pfn = total_pfn;
728                         total_pfn = 0;
729                 }
730
731                 has->covered_end_pfn +=  processed_pfn;
732                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
733
734                 init_completion(&dm_device.ol_waitevent);
735                 dm_device.ha_waiting = !memhp_auto_online;
736
737                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
739                                 (HA_CHUNK << PAGE_SHIFT));
740
741                 if (ret) {
742                         pr_err("hot_add memory failed error is %d\n", ret);
743                         if (ret == -EEXIST) {
744                                 /*
745                                  * This error indicates that the error
746                                  * is not a transient failure. This is the
747                                  * case where the guest's physical address map
748                                  * precludes hot adding memory. Stop all further
749                                  * memory hot-add.
750                                  */
751                                 do_hot_add = false;
752                         }
753                         spin_lock_irqsave(&dm_device.ha_lock, flags);
754                         has->ha_end_pfn -= HA_CHUNK;
755                         has->covered_end_pfn -=  processed_pfn;
756                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
757                         break;
758                 }
759
760                 /*
761                  * Wait for the memory block to be onlined when memory onlining
762                  * is done outside of kernel (memhp_auto_online). Since the hot
763                  * add has succeeded, it is ok to proceed even if the pages in
764                  * the hot added region have not been "onlined" within the
765                  * allowed time.
766                  */
767                 if (dm_device.ha_waiting)
768                         wait_for_completion_timeout(&dm_device.ol_waitevent,
769                                                     5*HZ);
770                 post_status(&dm_device);
771         }
772 }
773
774 static void hv_online_page(struct page *pg)
775 {
776         struct hv_hotadd_state *has;
777         unsigned long flags;
778         unsigned long pfn = page_to_pfn(pg);
779
780         spin_lock_irqsave(&dm_device.ha_lock, flags);
781         list_for_each_entry(has, &dm_device.ha_region_list, list) {
782                 /* The page belongs to a different HAS. */
783                 if ((pfn < has->start_pfn) || (pfn >= has->end_pfn))
784                         continue;
785
786                 hv_page_online_one(has, pg);
787                 break;
788         }
789         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
790 }
791
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
793 {
794         struct hv_hotadd_state *has;
795         struct hv_hotadd_gap *gap;
796         unsigned long residual, new_inc;
797         int ret = 0;
798         unsigned long flags;
799
800         spin_lock_irqsave(&dm_device.ha_lock, flags);
801         list_for_each_entry(has, &dm_device.ha_region_list, list) {
802                 /*
803                  * If the pfn range we are dealing with is not in the current
804                  * "hot add block", move on.
805                  */
806                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
807                         continue;
808
809                 /*
810                  * If the current start pfn is not where the covered_end
811                  * is, create a gap and update covered_end_pfn.
812                  */
813                 if (has->covered_end_pfn != start_pfn) {
814                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
815                         if (!gap) {
816                                 ret = -ENOMEM;
817                                 break;
818                         }
819
820                         INIT_LIST_HEAD(&gap->list);
821                         gap->start_pfn = has->covered_end_pfn;
822                         gap->end_pfn = start_pfn;
823                         list_add_tail(&gap->list, &has->gap_list);
824
825                         has->covered_end_pfn = start_pfn;
826                 }
827
828                 /*
829                  * If the current hot add-request extends beyond
830                  * our current limit; extend it.
831                  */
832                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
833                         residual = (start_pfn + pfn_cnt - has->end_pfn);
834                         /*
835                          * Extend the region by multiples of HA_CHUNK.
836                          */
837                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838                         if (residual % HA_CHUNK)
839                                 new_inc += HA_CHUNK;
840
841                         has->end_pfn += new_inc;
842                 }
843
844                 ret = 1;
845                 break;
846         }
847         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
848
849         return ret;
850 }
851
852 static unsigned long handle_pg_range(unsigned long pg_start,
853                                         unsigned long pg_count)
854 {
855         unsigned long start_pfn = pg_start;
856         unsigned long pfn_cnt = pg_count;
857         unsigned long size;
858         struct hv_hotadd_state *has;
859         unsigned long pgs_ol = 0;
860         unsigned long old_covered_state;
861         unsigned long res = 0, flags;
862
863         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
864                 pg_start);
865
866         spin_lock_irqsave(&dm_device.ha_lock, flags);
867         list_for_each_entry(has, &dm_device.ha_region_list, list) {
868                 /*
869                  * If the pfn range we are dealing with is not in the current
870                  * "hot add block", move on.
871                  */
872                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
873                         continue;
874
875                 old_covered_state = has->covered_end_pfn;
876
877                 if (start_pfn < has->ha_end_pfn) {
878                         /*
879                          * This is the case where we are backing pages
880                          * in an already hot added region. Bring
881                          * these pages online first.
882                          */
883                         pgs_ol = has->ha_end_pfn - start_pfn;
884                         if (pgs_ol > pfn_cnt)
885                                 pgs_ol = pfn_cnt;
886
887                         has->covered_end_pfn +=  pgs_ol;
888                         pfn_cnt -= pgs_ol;
889                         /*
890                          * Check if the corresponding memory block is already
891                          * online by checking its last previously backed page.
892                          * In case it is we need to bring rest (which was not
893                          * backed previously) online too.
894                          */
895                         if (start_pfn > has->start_pfn &&
896                             !PageReserved(pfn_to_page(start_pfn - 1)))
897                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
898
899                 }
900
901                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
902                         /*
903                          * We have some residual hot add range
904                          * that needs to be hot added; hot add
905                          * it now. Hot add a multiple of
906                          * of HA_CHUNK that fully covers the pages
907                          * we have.
908                          */
909                         size = (has->end_pfn - has->ha_end_pfn);
910                         if (pfn_cnt <= size) {
911                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
912                                 if (pfn_cnt % HA_CHUNK)
913                                         size += HA_CHUNK;
914                         } else {
915                                 pfn_cnt = size;
916                         }
917                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
918                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
919                         spin_lock_irqsave(&dm_device.ha_lock, flags);
920                 }
921                 /*
922                  * If we managed to online any pages that were given to us,
923                  * we declare success.
924                  */
925                 res = has->covered_end_pfn - old_covered_state;
926                 break;
927         }
928         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
929
930         return res;
931 }
932
933 static unsigned long process_hot_add(unsigned long pg_start,
934                                         unsigned long pfn_cnt,
935                                         unsigned long rg_start,
936                                         unsigned long rg_size)
937 {
938         struct hv_hotadd_state *ha_region = NULL;
939         int covered;
940         unsigned long flags;
941
942         if (pfn_cnt == 0)
943                 return 0;
944
945         if (!dm_device.host_specified_ha_region) {
946                 covered = pfn_covered(pg_start, pfn_cnt);
947                 if (covered < 0)
948                         return 0;
949
950                 if (covered)
951                         goto do_pg_range;
952         }
953
954         /*
955          * If the host has specified a hot-add range; deal with it first.
956          */
957
958         if (rg_size != 0) {
959                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
960                 if (!ha_region)
961                         return 0;
962
963                 INIT_LIST_HEAD(&ha_region->list);
964                 INIT_LIST_HEAD(&ha_region->gap_list);
965
966                 ha_region->start_pfn = rg_start;
967                 ha_region->ha_end_pfn = rg_start;
968                 ha_region->covered_start_pfn = pg_start;
969                 ha_region->covered_end_pfn = pg_start;
970                 ha_region->end_pfn = rg_start + rg_size;
971
972                 spin_lock_irqsave(&dm_device.ha_lock, flags);
973                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
974                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
975         }
976
977 do_pg_range:
978         /*
979          * Process the page range specified; bringing them
980          * online if possible.
981          */
982         return handle_pg_range(pg_start, pfn_cnt);
983 }
984
985 #endif
986
987 static void hot_add_req(struct work_struct *dummy)
988 {
989         struct dm_hot_add_response resp;
990 #ifdef CONFIG_MEMORY_HOTPLUG
991         unsigned long pg_start, pfn_cnt;
992         unsigned long rg_start, rg_sz;
993 #endif
994         struct hv_dynmem_device *dm = &dm_device;
995
996         memset(&resp, 0, sizeof(struct dm_hot_add_response));
997         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
998         resp.hdr.size = sizeof(struct dm_hot_add_response);
999
1000 #ifdef CONFIG_MEMORY_HOTPLUG
1001         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1002         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1003
1004         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1005         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1006
1007         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1008                 unsigned long region_size;
1009                 unsigned long region_start;
1010
1011                 /*
1012                  * The host has not specified the hot-add region.
1013                  * Based on the hot-add page range being specified,
1014                  * compute a hot-add region that can cover the pages
1015                  * that need to be hot-added while ensuring the alignment
1016                  * and size requirements of Linux as it relates to hot-add.
1017                  */
1018                 region_start = pg_start;
1019                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1020                 if (pfn_cnt % HA_CHUNK)
1021                         region_size += HA_CHUNK;
1022
1023                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1024
1025                 rg_start = region_start;
1026                 rg_sz = region_size;
1027         }
1028
1029         if (do_hot_add)
1030                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1031                                                 rg_start, rg_sz);
1032
1033         dm->num_pages_added += resp.page_count;
1034 #endif
1035         /*
1036          * The result field of the response structure has the
1037          * following semantics:
1038          *
1039          * 1. If all or some pages hot-added: Guest should return success.
1040          *
1041          * 2. If no pages could be hot-added:
1042          *
1043          * If the guest returns success, then the host
1044          * will not attempt any further hot-add operations. This
1045          * signifies a permanent failure.
1046          *
1047          * If the guest returns failure, then this failure will be
1048          * treated as a transient failure and the host may retry the
1049          * hot-add operation after some delay.
1050          */
1051         if (resp.page_count > 0)
1052                 resp.result = 1;
1053         else if (!do_hot_add)
1054                 resp.result = 1;
1055         else
1056                 resp.result = 0;
1057
1058         if (!do_hot_add || (resp.page_count == 0))
1059                 pr_err("Memory hot add failed\n");
1060
1061         dm->state = DM_INITIALIZED;
1062         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1063         vmbus_sendpacket(dm->dev->channel, &resp,
1064                         sizeof(struct dm_hot_add_response),
1065                         (unsigned long)NULL,
1066                         VM_PKT_DATA_INBAND, 0);
1067 }
1068
1069 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1070 {
1071         struct dm_info_header *info_hdr;
1072
1073         info_hdr = (struct dm_info_header *)msg->info;
1074
1075         switch (info_hdr->type) {
1076         case INFO_TYPE_MAX_PAGE_CNT:
1077                 if (info_hdr->data_size == sizeof(__u64)) {
1078                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1079
1080                         pr_info("Max. dynamic memory size: %llu MB\n",
1081                                 (*max_page_count) >> (20 - PAGE_SHIFT));
1082                 }
1083
1084                 break;
1085         default:
1086                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1087         }
1088 }
1089
1090 static unsigned long compute_balloon_floor(void)
1091 {
1092         unsigned long min_pages;
1093         unsigned long nr_pages = totalram_pages();
1094 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1095         /* Simple continuous piecewiese linear function:
1096          *  max MiB -> min MiB  gradient
1097          *       0         0
1098          *      16        16
1099          *      32        24
1100          *     128        72    (1/2)
1101          *     512       168    (1/4)
1102          *    2048       360    (1/8)
1103          *    8192       744    (1/16)
1104          *   32768      1512    (1/32)
1105          */
1106         if (nr_pages < MB2PAGES(128))
1107                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1108         else if (nr_pages < MB2PAGES(512))
1109                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1110         else if (nr_pages < MB2PAGES(2048))
1111                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1112         else if (nr_pages < MB2PAGES(8192))
1113                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1114         else
1115                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1116 #undef MB2PAGES
1117         return min_pages;
1118 }
1119
1120 /*
1121  * Post our status as it relates memory pressure to the
1122  * host. Host expects the guests to post this status
1123  * periodically at 1 second intervals.
1124  *
1125  * The metrics specified in this protocol are very Windows
1126  * specific and so we cook up numbers here to convey our memory
1127  * pressure.
1128  */
1129
1130 static void post_status(struct hv_dynmem_device *dm)
1131 {
1132         struct dm_status status;
1133         unsigned long now = jiffies;
1134         unsigned long last_post = last_post_time;
1135
1136         if (pressure_report_delay > 0) {
1137                 --pressure_report_delay;
1138                 return;
1139         }
1140
1141         if (!time_after(now, (last_post_time + HZ)))
1142                 return;
1143
1144         memset(&status, 0, sizeof(struct dm_status));
1145         status.hdr.type = DM_STATUS_REPORT;
1146         status.hdr.size = sizeof(struct dm_status);
1147         status.hdr.trans_id = atomic_inc_return(&trans_id);
1148
1149         /*
1150          * The host expects the guest to report free and committed memory.
1151          * Furthermore, the host expects the pressure information to include
1152          * the ballooned out pages. For a given amount of memory that we are
1153          * managing we need to compute a floor below which we should not
1154          * balloon. Compute this and add it to the pressure report.
1155          * We also need to report all offline pages (num_pages_added -
1156          * num_pages_onlined) as committed to the host, otherwise it can try
1157          * asking us to balloon them out.
1158          */
1159         status.num_avail = si_mem_available();
1160         status.num_committed = vm_memory_committed() +
1161                 dm->num_pages_ballooned +
1162                 (dm->num_pages_added > dm->num_pages_onlined ?
1163                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1164                 compute_balloon_floor();
1165
1166         trace_balloon_status(status.num_avail, status.num_committed,
1167                              vm_memory_committed(), dm->num_pages_ballooned,
1168                              dm->num_pages_added, dm->num_pages_onlined);
1169         /*
1170          * If our transaction ID is no longer current, just don't
1171          * send the status. This can happen if we were interrupted
1172          * after we picked our transaction ID.
1173          */
1174         if (status.hdr.trans_id != atomic_read(&trans_id))
1175                 return;
1176
1177         /*
1178          * If the last post time that we sampled has changed,
1179          * we have raced, don't post the status.
1180          */
1181         if (last_post != last_post_time)
1182                 return;
1183
1184         last_post_time = jiffies;
1185         vmbus_sendpacket(dm->dev->channel, &status,
1186                                 sizeof(struct dm_status),
1187                                 (unsigned long)NULL,
1188                                 VM_PKT_DATA_INBAND, 0);
1189
1190 }
1191
1192 static void free_balloon_pages(struct hv_dynmem_device *dm,
1193                          union dm_mem_page_range *range_array)
1194 {
1195         int num_pages = range_array->finfo.page_cnt;
1196         __u64 start_frame = range_array->finfo.start_page;
1197         struct page *pg;
1198         int i;
1199
1200         for (i = 0; i < num_pages; i++) {
1201                 pg = pfn_to_page(i + start_frame);
1202                 __free_page(pg);
1203                 dm->num_pages_ballooned--;
1204         }
1205 }
1206
1207
1208
1209 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1210                                         unsigned int num_pages,
1211                                         struct dm_balloon_response *bl_resp,
1212                                         int alloc_unit)
1213 {
1214         unsigned int i = 0;
1215         struct page *pg;
1216
1217         if (num_pages < alloc_unit)
1218                 return 0;
1219
1220         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1221                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1222                         PAGE_SIZE)
1223                         return i * alloc_unit;
1224
1225                 /*
1226                  * We execute this code in a thread context. Furthermore,
1227                  * we don't want the kernel to try too hard.
1228                  */
1229                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1230                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1231                                 get_order(alloc_unit << PAGE_SHIFT));
1232
1233                 if (!pg)
1234                         return i * alloc_unit;
1235
1236                 dm->num_pages_ballooned += alloc_unit;
1237
1238                 /*
1239                  * If we allocatted 2M pages; split them so we
1240                  * can free them in any order we get.
1241                  */
1242
1243                 if (alloc_unit != 1)
1244                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1245
1246                 bl_resp->range_count++;
1247                 bl_resp->range_array[i].finfo.start_page =
1248                         page_to_pfn(pg);
1249                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1250                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1251
1252         }
1253
1254         return num_pages;
1255 }
1256
1257 static void balloon_up(struct work_struct *dummy)
1258 {
1259         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1260         unsigned int num_ballooned = 0;
1261         struct dm_balloon_response *bl_resp;
1262         int alloc_unit;
1263         int ret;
1264         bool done = false;
1265         int i;
1266         long avail_pages;
1267         unsigned long floor;
1268
1269         /* The host balloons pages in 2M granularity. */
1270         WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1271
1272         /*
1273          * We will attempt 2M allocations. However, if we fail to
1274          * allocate 2M chunks, we will go back to 4k allocations.
1275          */
1276         alloc_unit = 512;
1277
1278         avail_pages = si_mem_available();
1279         floor = compute_balloon_floor();
1280
1281         /* Refuse to balloon below the floor, keep the 2M granularity. */
1282         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1283                 pr_warn("Balloon request will be partially fulfilled. %s\n",
1284                         avail_pages < num_pages ? "Not enough memory." :
1285                         "Balloon floor reached.");
1286
1287                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1288                 num_pages -= num_pages % PAGES_IN_2M;
1289         }
1290
1291         while (!done) {
1292                 bl_resp = (struct dm_balloon_response *)send_buffer;
1293                 memset(send_buffer, 0, PAGE_SIZE);
1294                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1295                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1296                 bl_resp->more_pages = 1;
1297
1298                 num_pages -= num_ballooned;
1299                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1300                                                     bl_resp, alloc_unit);
1301
1302                 if (alloc_unit != 1 && num_ballooned == 0) {
1303                         alloc_unit = 1;
1304                         continue;
1305                 }
1306
1307                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1308                         pr_debug("Ballooned %u out of %u requested pages.\n",
1309                                 num_pages, dm_device.balloon_wrk.num_pages);
1310
1311                         bl_resp->more_pages = 0;
1312                         done = true;
1313                         dm_device.state = DM_INITIALIZED;
1314                 }
1315
1316                 /*
1317                  * We are pushing a lot of data through the channel;
1318                  * deal with transient failures caused because of the
1319                  * lack of space in the ring buffer.
1320                  */
1321
1322                 do {
1323                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1324                         ret = vmbus_sendpacket(dm_device.dev->channel,
1325                                                 bl_resp,
1326                                                 bl_resp->hdr.size,
1327                                                 (unsigned long)NULL,
1328                                                 VM_PKT_DATA_INBAND, 0);
1329
1330                         if (ret == -EAGAIN)
1331                                 msleep(20);
1332                         post_status(&dm_device);
1333                 } while (ret == -EAGAIN);
1334
1335                 if (ret) {
1336                         /*
1337                          * Free up the memory we allocatted.
1338                          */
1339                         pr_err("Balloon response failed\n");
1340
1341                         for (i = 0; i < bl_resp->range_count; i++)
1342                                 free_balloon_pages(&dm_device,
1343                                                  &bl_resp->range_array[i]);
1344
1345                         done = true;
1346                 }
1347         }
1348
1349 }
1350
1351 static void balloon_down(struct hv_dynmem_device *dm,
1352                         struct dm_unballoon_request *req)
1353 {
1354         union dm_mem_page_range *range_array = req->range_array;
1355         int range_count = req->range_count;
1356         struct dm_unballoon_response resp;
1357         int i;
1358         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1359
1360         for (i = 0; i < range_count; i++) {
1361                 free_balloon_pages(dm, &range_array[i]);
1362                 complete(&dm_device.config_event);
1363         }
1364
1365         pr_debug("Freed %u ballooned pages.\n",
1366                 prev_pages_ballooned - dm->num_pages_ballooned);
1367
1368         if (req->more_pages == 1)
1369                 return;
1370
1371         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1372         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1373         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1374         resp.hdr.size = sizeof(struct dm_unballoon_response);
1375
1376         vmbus_sendpacket(dm_device.dev->channel, &resp,
1377                                 sizeof(struct dm_unballoon_response),
1378                                 (unsigned long)NULL,
1379                                 VM_PKT_DATA_INBAND, 0);
1380
1381         dm->state = DM_INITIALIZED;
1382 }
1383
1384 static void balloon_onchannelcallback(void *context);
1385
1386 static int dm_thread_func(void *dm_dev)
1387 {
1388         struct hv_dynmem_device *dm = dm_dev;
1389
1390         while (!kthread_should_stop()) {
1391                 wait_for_completion_interruptible_timeout(
1392                                                 &dm_device.config_event, 1*HZ);
1393                 /*
1394                  * The host expects us to post information on the memory
1395                  * pressure every second.
1396                  */
1397                 reinit_completion(&dm_device.config_event);
1398                 post_status(dm);
1399         }
1400
1401         return 0;
1402 }
1403
1404
1405 static void version_resp(struct hv_dynmem_device *dm,
1406                         struct dm_version_response *vresp)
1407 {
1408         struct dm_version_request version_req;
1409         int ret;
1410
1411         if (vresp->is_accepted) {
1412                 /*
1413                  * We are done; wakeup the
1414                  * context waiting for version
1415                  * negotiation.
1416                  */
1417                 complete(&dm->host_event);
1418                 return;
1419         }
1420         /*
1421          * If there are more versions to try, continue
1422          * with negotiations; if not
1423          * shutdown the service since we are not able
1424          * to negotiate a suitable version number
1425          * with the host.
1426          */
1427         if (dm->next_version == 0)
1428                 goto version_error;
1429
1430         memset(&version_req, 0, sizeof(struct dm_version_request));
1431         version_req.hdr.type = DM_VERSION_REQUEST;
1432         version_req.hdr.size = sizeof(struct dm_version_request);
1433         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1434         version_req.version.version = dm->next_version;
1435         dm->version = version_req.version.version;
1436
1437         /*
1438          * Set the next version to try in case current version fails.
1439          * Win7 protocol ought to be the last one to try.
1440          */
1441         switch (version_req.version.version) {
1442         case DYNMEM_PROTOCOL_VERSION_WIN8:
1443                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1444                 version_req.is_last_attempt = 0;
1445                 break;
1446         default:
1447                 dm->next_version = 0;
1448                 version_req.is_last_attempt = 1;
1449         }
1450
1451         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1452                                 sizeof(struct dm_version_request),
1453                                 (unsigned long)NULL,
1454                                 VM_PKT_DATA_INBAND, 0);
1455
1456         if (ret)
1457                 goto version_error;
1458
1459         return;
1460
1461 version_error:
1462         dm->state = DM_INIT_ERROR;
1463         complete(&dm->host_event);
1464 }
1465
1466 static void cap_resp(struct hv_dynmem_device *dm,
1467                         struct dm_capabilities_resp_msg *cap_resp)
1468 {
1469         if (!cap_resp->is_accepted) {
1470                 pr_err("Capabilities not accepted by host\n");
1471                 dm->state = DM_INIT_ERROR;
1472         }
1473         complete(&dm->host_event);
1474 }
1475
1476 static void balloon_onchannelcallback(void *context)
1477 {
1478         struct hv_device *dev = context;
1479         u32 recvlen;
1480         u64 requestid;
1481         struct dm_message *dm_msg;
1482         struct dm_header *dm_hdr;
1483         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1484         struct dm_balloon *bal_msg;
1485         struct dm_hot_add *ha_msg;
1486         union dm_mem_page_range *ha_pg_range;
1487         union dm_mem_page_range *ha_region;
1488
1489         memset(recv_buffer, 0, sizeof(recv_buffer));
1490         vmbus_recvpacket(dev->channel, recv_buffer,
1491                          PAGE_SIZE, &recvlen, &requestid);
1492
1493         if (recvlen > 0) {
1494                 dm_msg = (struct dm_message *)recv_buffer;
1495                 dm_hdr = &dm_msg->hdr;
1496
1497                 switch (dm_hdr->type) {
1498                 case DM_VERSION_RESPONSE:
1499                         version_resp(dm,
1500                                  (struct dm_version_response *)dm_msg);
1501                         break;
1502
1503                 case DM_CAPABILITIES_RESPONSE:
1504                         cap_resp(dm,
1505                                  (struct dm_capabilities_resp_msg *)dm_msg);
1506                         break;
1507
1508                 case DM_BALLOON_REQUEST:
1509                         if (dm->state == DM_BALLOON_UP)
1510                                 pr_warn("Currently ballooning\n");
1511                         bal_msg = (struct dm_balloon *)recv_buffer;
1512                         dm->state = DM_BALLOON_UP;
1513                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1514                         schedule_work(&dm_device.balloon_wrk.wrk);
1515                         break;
1516
1517                 case DM_UNBALLOON_REQUEST:
1518                         dm->state = DM_BALLOON_DOWN;
1519                         balloon_down(dm,
1520                                  (struct dm_unballoon_request *)recv_buffer);
1521                         break;
1522
1523                 case DM_MEM_HOT_ADD_REQUEST:
1524                         if (dm->state == DM_HOT_ADD)
1525                                 pr_warn("Currently hot-adding\n");
1526                         dm->state = DM_HOT_ADD;
1527                         ha_msg = (struct dm_hot_add *)recv_buffer;
1528                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1529                                 /*
1530                                  * This is a normal hot-add request specifying
1531                                  * hot-add memory.
1532                                  */
1533                                 dm->host_specified_ha_region = false;
1534                                 ha_pg_range = &ha_msg->range;
1535                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1536                                 dm->ha_wrk.ha_region_range.page_range = 0;
1537                         } else {
1538                                 /*
1539                                  * Host is specifying that we first hot-add
1540                                  * a region and then partially populate this
1541                                  * region.
1542                                  */
1543                                 dm->host_specified_ha_region = true;
1544                                 ha_pg_range = &ha_msg->range;
1545                                 ha_region = &ha_pg_range[1];
1546                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1547                                 dm->ha_wrk.ha_region_range = *ha_region;
1548                         }
1549                         schedule_work(&dm_device.ha_wrk.wrk);
1550                         break;
1551
1552                 case DM_INFO_MESSAGE:
1553                         process_info(dm, (struct dm_info_msg *)dm_msg);
1554                         break;
1555
1556                 default:
1557                         pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1558
1559                 }
1560         }
1561
1562 }
1563
1564 static int balloon_probe(struct hv_device *dev,
1565                         const struct hv_vmbus_device_id *dev_id)
1566 {
1567         int ret;
1568         unsigned long t;
1569         struct dm_version_request version_req;
1570         struct dm_capabilities cap_msg;
1571
1572 #ifdef CONFIG_MEMORY_HOTPLUG
1573         do_hot_add = hot_add;
1574 #else
1575         do_hot_add = false;
1576 #endif
1577
1578         /*
1579          * First allocate a send buffer.
1580          */
1581
1582         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1583         if (!send_buffer)
1584                 return -ENOMEM;
1585
1586         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1587                         balloon_onchannelcallback, dev);
1588
1589         if (ret)
1590                 goto probe_error0;
1591
1592         dm_device.dev = dev;
1593         dm_device.state = DM_INITIALIZING;
1594         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1595         init_completion(&dm_device.host_event);
1596         init_completion(&dm_device.config_event);
1597         INIT_LIST_HEAD(&dm_device.ha_region_list);
1598         spin_lock_init(&dm_device.ha_lock);
1599         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1600         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1601         dm_device.host_specified_ha_region = false;
1602
1603         dm_device.thread =
1604                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1605         if (IS_ERR(dm_device.thread)) {
1606                 ret = PTR_ERR(dm_device.thread);
1607                 goto probe_error1;
1608         }
1609
1610 #ifdef CONFIG_MEMORY_HOTPLUG
1611         set_online_page_callback(&hv_online_page);
1612         register_memory_notifier(&hv_memory_nb);
1613 #endif
1614
1615         hv_set_drvdata(dev, &dm_device);
1616         /*
1617          * Initiate the hand shake with the host and negotiate
1618          * a version that the host can support. We start with the
1619          * highest version number and go down if the host cannot
1620          * support it.
1621          */
1622         memset(&version_req, 0, sizeof(struct dm_version_request));
1623         version_req.hdr.type = DM_VERSION_REQUEST;
1624         version_req.hdr.size = sizeof(struct dm_version_request);
1625         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1626         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1627         version_req.is_last_attempt = 0;
1628         dm_device.version = version_req.version.version;
1629
1630         ret = vmbus_sendpacket(dev->channel, &version_req,
1631                                 sizeof(struct dm_version_request),
1632                                 (unsigned long)NULL,
1633                                 VM_PKT_DATA_INBAND, 0);
1634         if (ret)
1635                 goto probe_error2;
1636
1637         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1638         if (t == 0) {
1639                 ret = -ETIMEDOUT;
1640                 goto probe_error2;
1641         }
1642
1643         /*
1644          * If we could not negotiate a compatible version with the host
1645          * fail the probe function.
1646          */
1647         if (dm_device.state == DM_INIT_ERROR) {
1648                 ret = -ETIMEDOUT;
1649                 goto probe_error2;
1650         }
1651
1652         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1653                 DYNMEM_MAJOR_VERSION(dm_device.version),
1654                 DYNMEM_MINOR_VERSION(dm_device.version));
1655
1656         /*
1657          * Now submit our capabilities to the host.
1658          */
1659         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1660         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1661         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1662         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1663
1664         cap_msg.caps.cap_bits.balloon = 1;
1665         cap_msg.caps.cap_bits.hot_add = 1;
1666
1667         /*
1668          * Specify our alignment requirements as it relates
1669          * memory hot-add. Specify 128MB alignment.
1670          */
1671         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1672
1673         /*
1674          * Currently the host does not use these
1675          * values and we set them to what is done in the
1676          * Windows driver.
1677          */
1678         cap_msg.min_page_cnt = 0;
1679         cap_msg.max_page_number = -1;
1680
1681         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1682                                 sizeof(struct dm_capabilities),
1683                                 (unsigned long)NULL,
1684                                 VM_PKT_DATA_INBAND, 0);
1685         if (ret)
1686                 goto probe_error2;
1687
1688         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1689         if (t == 0) {
1690                 ret = -ETIMEDOUT;
1691                 goto probe_error2;
1692         }
1693
1694         /*
1695          * If the host does not like our capabilities,
1696          * fail the probe function.
1697          */
1698         if (dm_device.state == DM_INIT_ERROR) {
1699                 ret = -ETIMEDOUT;
1700                 goto probe_error2;
1701         }
1702
1703         dm_device.state = DM_INITIALIZED;
1704         last_post_time = jiffies;
1705
1706         return 0;
1707
1708 probe_error2:
1709 #ifdef CONFIG_MEMORY_HOTPLUG
1710         restore_online_page_callback(&hv_online_page);
1711 #endif
1712         kthread_stop(dm_device.thread);
1713
1714 probe_error1:
1715         vmbus_close(dev->channel);
1716 probe_error0:
1717         kfree(send_buffer);
1718         return ret;
1719 }
1720
1721 static int balloon_remove(struct hv_device *dev)
1722 {
1723         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1724         struct hv_hotadd_state *has, *tmp;
1725         struct hv_hotadd_gap *gap, *tmp_gap;
1726         unsigned long flags;
1727
1728         if (dm->num_pages_ballooned != 0)
1729                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1730
1731         cancel_work_sync(&dm->balloon_wrk.wrk);
1732         cancel_work_sync(&dm->ha_wrk.wrk);
1733
1734         vmbus_close(dev->channel);
1735         kthread_stop(dm->thread);
1736         kfree(send_buffer);
1737 #ifdef CONFIG_MEMORY_HOTPLUG
1738         restore_online_page_callback(&hv_online_page);
1739         unregister_memory_notifier(&hv_memory_nb);
1740 #endif
1741         spin_lock_irqsave(&dm_device.ha_lock, flags);
1742         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1743                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1744                         list_del(&gap->list);
1745                         kfree(gap);
1746                 }
1747                 list_del(&has->list);
1748                 kfree(has);
1749         }
1750         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1751
1752         return 0;
1753 }
1754
1755 static const struct hv_vmbus_device_id id_table[] = {
1756         /* Dynamic Memory Class ID */
1757         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1758         { HV_DM_GUID, },
1759         { },
1760 };
1761
1762 MODULE_DEVICE_TABLE(vmbus, id_table);
1763
1764 static  struct hv_driver balloon_drv = {
1765         .name = "hv_balloon",
1766         .id_table = id_table,
1767         .probe =  balloon_probe,
1768         .remove =  balloon_remove,
1769         .driver = {
1770                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1771         },
1772 };
1773
1774 static int __init init_balloon_drv(void)
1775 {
1776
1777         return vmbus_driver_register(&balloon_drv);
1778 }
1779
1780 module_init(init_balloon_drv);
1781
1782 MODULE_DESCRIPTION("Hyper-V Balloon");
1783 MODULE_LICENSE("GPL");