9936b15d0bf1fc076e0c942aef54796e3fe93344
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/component.h>
23 #include <linux/platform_device.h>
24
25 #include <drm/drm_atomic_helper.h>
26
27 #include "vc4_drv.h"
28 #include "vc4_regs.h"
29
30 static const struct debugfs_reg32 hvs_regs[] = {
31         VC4_REG32(SCALER_DISPCTRL),
32         VC4_REG32(SCALER_DISPSTAT),
33         VC4_REG32(SCALER_DISPID),
34         VC4_REG32(SCALER_DISPECTRL),
35         VC4_REG32(SCALER_DISPPROF),
36         VC4_REG32(SCALER_DISPDITHER),
37         VC4_REG32(SCALER_DISPEOLN),
38         VC4_REG32(SCALER_DISPLIST0),
39         VC4_REG32(SCALER_DISPLIST1),
40         VC4_REG32(SCALER_DISPLIST2),
41         VC4_REG32(SCALER_DISPLSTAT),
42         VC4_REG32(SCALER_DISPLACT0),
43         VC4_REG32(SCALER_DISPLACT1),
44         VC4_REG32(SCALER_DISPLACT2),
45         VC4_REG32(SCALER_DISPCTRL0),
46         VC4_REG32(SCALER_DISPBKGND0),
47         VC4_REG32(SCALER_DISPSTAT0),
48         VC4_REG32(SCALER_DISPBASE0),
49         VC4_REG32(SCALER_DISPCTRL1),
50         VC4_REG32(SCALER_DISPBKGND1),
51         VC4_REG32(SCALER_DISPSTAT1),
52         VC4_REG32(SCALER_DISPBASE1),
53         VC4_REG32(SCALER_DISPCTRL2),
54         VC4_REG32(SCALER_DISPBKGND2),
55         VC4_REG32(SCALER_DISPSTAT2),
56         VC4_REG32(SCALER_DISPBASE2),
57         VC4_REG32(SCALER_DISPALPHA2),
58         VC4_REG32(SCALER_OLEDOFFS),
59         VC4_REG32(SCALER_OLEDCOEF0),
60         VC4_REG32(SCALER_OLEDCOEF1),
61         VC4_REG32(SCALER_OLEDCOEF2),
62 };
63
64 void vc4_hvs_dump_state(struct drm_device *dev)
65 {
66         struct vc4_dev *vc4 = to_vc4_dev(dev);
67         struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
68         int i;
69
70         drm_print_regset32(&p, &vc4->hvs->regset);
71
72         DRM_INFO("HVS ctx:\n");
73         for (i = 0; i < 64; i += 4) {
74                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
75                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
76                          readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
77                          readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
78                          readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
79                          readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
80         }
81 }
82
83 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
84 {
85         struct drm_info_node *node = m->private;
86         struct drm_device *dev = node->minor->dev;
87         struct vc4_dev *vc4 = to_vc4_dev(dev);
88         struct drm_printer p = drm_seq_file_printer(m);
89
90         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
91
92         return 0;
93 }
94
95 /* The filter kernel is composed of dwords each containing 3 9-bit
96  * signed integers packed next to each other.
97  */
98 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
99 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
100         ((((c0) & 0x1ff) << 0) |                                \
101          (((c1) & 0x1ff) << 9) |                                \
102          (((c2) & 0x1ff) << 18))
103
104 /* The whole filter kernel is arranged as the coefficients 0-16 going
105  * up, then a pad, then 17-31 going down and reversed within the
106  * dwords.  This means that a linear phase kernel (where it's
107  * symmetrical at the boundary between 15 and 16) has the last 5
108  * dwords matching the first 5, but reversed.
109  */
110 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
111                                 c9, c10, c11, c12, c13, c14, c15)       \
112         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
113          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
114          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
115          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
116          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
117          VC4_PPF_FILTER_WORD(c15, c15, 0)}
118
119 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
120 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
121
122 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
123  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
124  */
125 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
126         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
127                                 50, 82, 119, 155, 187, 213, 227);
128
129 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
130                                         struct drm_mm_node *space,
131                                         const u32 *kernel)
132 {
133         int ret, i;
134         u32 __iomem *dst_kernel;
135
136         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
137         if (ret) {
138                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
139                           ret);
140                 return ret;
141         }
142
143         dst_kernel = hvs->dlist + space->start;
144
145         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
146                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
147                         writel(kernel[i], &dst_kernel[i]);
148                 else {
149                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
150                                &dst_kernel[i]);
151                 }
152         }
153
154         return 0;
155 }
156
157 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
161
162         dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
163
164         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
165 }
166
167 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
168 {
169         struct vc4_dev *vc4 = to_vc4_dev(dev);
170         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
171
172         dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
173
174         HVS_WRITE(SCALER_DISPSTAT,
175                   SCALER_DISPSTAT_EUFLOW(channel));
176         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
177 }
178
179 static void vc4_hvs_report_underrun(struct drm_device *dev)
180 {
181         struct vc4_dev *vc4 = to_vc4_dev(dev);
182
183         atomic_inc(&vc4->underrun);
184         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
185 }
186
187 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
188 {
189         struct drm_device *dev = data;
190         struct vc4_dev *vc4 = to_vc4_dev(dev);
191         irqreturn_t irqret = IRQ_NONE;
192         int channel;
193         u32 control;
194         u32 status;
195
196         status = HVS_READ(SCALER_DISPSTAT);
197         control = HVS_READ(SCALER_DISPCTRL);
198
199         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
200                 /* Interrupt masking is not always honored, so check it here. */
201                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
202                     control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
203                         vc4_hvs_mask_underrun(dev, channel);
204                         vc4_hvs_report_underrun(dev);
205
206                         irqret = IRQ_HANDLED;
207                 }
208         }
209
210         /* Clear every per-channel interrupt flag. */
211         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
212                                    SCALER_DISPSTAT_IRQMASK(1) |
213                                    SCALER_DISPSTAT_IRQMASK(2));
214
215         return irqret;
216 }
217
218 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
219 {
220         struct platform_device *pdev = to_platform_device(dev);
221         struct drm_device *drm = dev_get_drvdata(master);
222         struct vc4_dev *vc4 = drm->dev_private;
223         struct vc4_hvs *hvs = NULL;
224         int ret;
225         u32 dispctrl;
226
227         hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
228         if (!hvs)
229                 return -ENOMEM;
230
231         hvs->pdev = pdev;
232
233         hvs->regs = vc4_ioremap_regs(pdev, 0);
234         if (IS_ERR(hvs->regs))
235                 return PTR_ERR(hvs->regs);
236
237         hvs->regset.base = hvs->regs;
238         hvs->regset.regs = hvs_regs;
239         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
240
241         hvs->dlist = hvs->regs + SCALER_DLIST_START;
242
243         spin_lock_init(&hvs->mm_lock);
244
245         /* Set up the HVS display list memory manager.  We never
246          * overwrite the setup from the bootloader (just 128b out of
247          * our 16K), since we don't want to scramble the screen when
248          * transitioning from the firmware's boot setup to runtime.
249          */
250         drm_mm_init(&hvs->dlist_mm,
251                     HVS_BOOTLOADER_DLIST_END,
252                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
253
254         /* Set up the HVS LBM memory manager.  We could have some more
255          * complicated data structure that allowed reuse of LBM areas
256          * between planes when they don't overlap on the screen, but
257          * for now we just allocate globally.
258          */
259         drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
260
261         /* Upload filter kernels.  We only have the one for now, so we
262          * keep it around for the lifetime of the driver.
263          */
264         ret = vc4_hvs_upload_linear_kernel(hvs,
265                                            &hvs->mitchell_netravali_filter,
266                                            mitchell_netravali_1_3_1_3_kernel);
267         if (ret)
268                 return ret;
269
270         vc4->hvs = hvs;
271
272         dispctrl = HVS_READ(SCALER_DISPCTRL);
273
274         dispctrl |= SCALER_DISPCTRL_ENABLE;
275         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
276                     SCALER_DISPCTRL_DISPEIRQ(1) |
277                     SCALER_DISPCTRL_DISPEIRQ(2);
278
279         /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
280          * be unused.
281          */
282         dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
283         dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
284                       SCALER_DISPCTRL_SLVWREIRQ |
285                       SCALER_DISPCTRL_SLVRDEIRQ |
286                       SCALER_DISPCTRL_DSPEIEOF(0) |
287                       SCALER_DISPCTRL_DSPEIEOF(1) |
288                       SCALER_DISPCTRL_DSPEIEOF(2) |
289                       SCALER_DISPCTRL_DSPEIEOLN(0) |
290                       SCALER_DISPCTRL_DSPEIEOLN(1) |
291                       SCALER_DISPCTRL_DSPEIEOLN(2) |
292                       SCALER_DISPCTRL_DSPEISLUR(0) |
293                       SCALER_DISPCTRL_DSPEISLUR(1) |
294                       SCALER_DISPCTRL_DSPEISLUR(2) |
295                       SCALER_DISPCTRL_SCLEIRQ);
296         dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
297
298         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
299
300         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
301                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
302         if (ret)
303                 return ret;
304
305         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
306         vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
307                              NULL);
308
309         return 0;
310 }
311
312 static void vc4_hvs_unbind(struct device *dev, struct device *master,
313                            void *data)
314 {
315         struct drm_device *drm = dev_get_drvdata(master);
316         struct vc4_dev *vc4 = drm->dev_private;
317
318         if (vc4->hvs->mitchell_netravali_filter.allocated)
319                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
320
321         drm_mm_takedown(&vc4->hvs->dlist_mm);
322         drm_mm_takedown(&vc4->hvs->lbm_mm);
323
324         vc4->hvs = NULL;
325 }
326
327 static const struct component_ops vc4_hvs_ops = {
328         .bind   = vc4_hvs_bind,
329         .unbind = vc4_hvs_unbind,
330 };
331
332 static int vc4_hvs_dev_probe(struct platform_device *pdev)
333 {
334         return component_add(&pdev->dev, &vc4_hvs_ops);
335 }
336
337 static int vc4_hvs_dev_remove(struct platform_device *pdev)
338 {
339         component_del(&pdev->dev, &vc4_hvs_ops);
340         return 0;
341 }
342
343 static const struct of_device_id vc4_hvs_dt_match[] = {
344         { .compatible = "brcm,bcm2835-hvs" },
345         {}
346 };
347
348 struct platform_driver vc4_hvs_driver = {
349         .probe = vc4_hvs_dev_probe,
350         .remove = vc4_hvs_dev_remove,
351         .driver = {
352                 .name = "vc4_hvs",
353                 .of_match_table = vc4_hvs_dt_match,
354         },
355 };