Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vc4 / vc4_gem.c
1 /*
2  * Copyright © 2014 Broadcom
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/device.h>
28 #include <linux/io.h>
29 #include <linux/sched/signal.h>
30
31 #include "uapi/drm/vc4_drm.h"
32 #include "vc4_drv.h"
33 #include "vc4_regs.h"
34 #include "vc4_trace.h"
35
36 static void
37 vc4_queue_hangcheck(struct drm_device *dev)
38 {
39         struct vc4_dev *vc4 = to_vc4_dev(dev);
40
41         mod_timer(&vc4->hangcheck.timer,
42                   round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43 }
44
45 struct vc4_hang_state {
46         struct drm_vc4_get_hang_state user_state;
47
48         u32 bo_count;
49         struct drm_gem_object **bo;
50 };
51
52 static void
53 vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54 {
55         unsigned int i;
56
57         for (i = 0; i < state->user_state.bo_count; i++)
58                 drm_gem_object_put_unlocked(state->bo[i]);
59
60         kfree(state);
61 }
62
63 int
64 vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65                          struct drm_file *file_priv)
66 {
67         struct drm_vc4_get_hang_state *get_state = data;
68         struct drm_vc4_get_hang_state_bo *bo_state;
69         struct vc4_hang_state *kernel_state;
70         struct drm_vc4_get_hang_state *state;
71         struct vc4_dev *vc4 = to_vc4_dev(dev);
72         unsigned long irqflags;
73         u32 i;
74         int ret = 0;
75
76         spin_lock_irqsave(&vc4->job_lock, irqflags);
77         kernel_state = vc4->hang_state;
78         if (!kernel_state) {
79                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80                 return -ENOENT;
81         }
82         state = &kernel_state->user_state;
83
84         /* If the user's array isn't big enough, just return the
85          * required array size.
86          */
87         if (get_state->bo_count < state->bo_count) {
88                 get_state->bo_count = state->bo_count;
89                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90                 return 0;
91         }
92
93         vc4->hang_state = NULL;
94         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95
96         /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97         state->bo = get_state->bo;
98         memcpy(get_state, state, sizeof(*state));
99
100         bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101         if (!bo_state) {
102                 ret = -ENOMEM;
103                 goto err_free;
104         }
105
106         for (i = 0; i < state->bo_count; i++) {
107                 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108                 u32 handle;
109
110                 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111                                             &handle);
112
113                 if (ret) {
114                         state->bo_count = i;
115                         goto err_delete_handle;
116                 }
117                 bo_state[i].handle = handle;
118                 bo_state[i].paddr = vc4_bo->base.paddr;
119                 bo_state[i].size = vc4_bo->base.base.size;
120         }
121
122         if (copy_to_user(u64_to_user_ptr(get_state->bo),
123                          bo_state,
124                          state->bo_count * sizeof(*bo_state)))
125                 ret = -EFAULT;
126
127 err_delete_handle:
128         if (ret) {
129                 for (i = 0; i < state->bo_count; i++)
130                         drm_gem_handle_delete(file_priv, bo_state[i].handle);
131         }
132
133 err_free:
134         vc4_free_hang_state(dev, kernel_state);
135         kfree(bo_state);
136
137         return ret;
138 }
139
140 static void
141 vc4_save_hang_state(struct drm_device *dev)
142 {
143         struct vc4_dev *vc4 = to_vc4_dev(dev);
144         struct drm_vc4_get_hang_state *state;
145         struct vc4_hang_state *kernel_state;
146         struct vc4_exec_info *exec[2];
147         struct vc4_bo *bo;
148         unsigned long irqflags;
149         unsigned int i, j, unref_list_count, prev_idx;
150
151         kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
152         if (!kernel_state)
153                 return;
154
155         state = &kernel_state->user_state;
156
157         spin_lock_irqsave(&vc4->job_lock, irqflags);
158         exec[0] = vc4_first_bin_job(vc4);
159         exec[1] = vc4_first_render_job(vc4);
160         if (!exec[0] && !exec[1]) {
161                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
162                 return;
163         }
164
165         /* Get the bos from both binner and renderer into hang state. */
166         state->bo_count = 0;
167         for (i = 0; i < 2; i++) {
168                 if (!exec[i])
169                         continue;
170
171                 unref_list_count = 0;
172                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
173                         unref_list_count++;
174                 state->bo_count += exec[i]->bo_count + unref_list_count;
175         }
176
177         kernel_state->bo = kcalloc(state->bo_count,
178                                    sizeof(*kernel_state->bo), GFP_ATOMIC);
179
180         if (!kernel_state->bo) {
181                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
182                 return;
183         }
184
185         prev_idx = 0;
186         for (i = 0; i < 2; i++) {
187                 if (!exec[i])
188                         continue;
189
190                 for (j = 0; j < exec[i]->bo_count; j++) {
191                         bo = to_vc4_bo(&exec[i]->bo[j]->base);
192
193                         /* Retain BOs just in case they were marked purgeable.
194                          * This prevents the BO from being purged before
195                          * someone had a chance to dump the hang state.
196                          */
197                         WARN_ON(!refcount_read(&bo->usecnt));
198                         refcount_inc(&bo->usecnt);
199                         drm_gem_object_get(&exec[i]->bo[j]->base);
200                         kernel_state->bo[j + prev_idx] = &exec[i]->bo[j]->base;
201                 }
202
203                 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
204                         /* No need to retain BOs coming from the ->unref_list
205                          * because they are naturally unpurgeable.
206                          */
207                         drm_gem_object_get(&bo->base.base);
208                         kernel_state->bo[j + prev_idx] = &bo->base.base;
209                         j++;
210                 }
211                 prev_idx = j + 1;
212         }
213
214         if (exec[0])
215                 state->start_bin = exec[0]->ct0ca;
216         if (exec[1])
217                 state->start_render = exec[1]->ct1ca;
218
219         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
220
221         state->ct0ca = V3D_READ(V3D_CTNCA(0));
222         state->ct0ea = V3D_READ(V3D_CTNEA(0));
223
224         state->ct1ca = V3D_READ(V3D_CTNCA(1));
225         state->ct1ea = V3D_READ(V3D_CTNEA(1));
226
227         state->ct0cs = V3D_READ(V3D_CTNCS(0));
228         state->ct1cs = V3D_READ(V3D_CTNCS(1));
229
230         state->ct0ra0 = V3D_READ(V3D_CT00RA0);
231         state->ct1ra0 = V3D_READ(V3D_CT01RA0);
232
233         state->bpca = V3D_READ(V3D_BPCA);
234         state->bpcs = V3D_READ(V3D_BPCS);
235         state->bpoa = V3D_READ(V3D_BPOA);
236         state->bpos = V3D_READ(V3D_BPOS);
237
238         state->vpmbase = V3D_READ(V3D_VPMBASE);
239
240         state->dbge = V3D_READ(V3D_DBGE);
241         state->fdbgo = V3D_READ(V3D_FDBGO);
242         state->fdbgb = V3D_READ(V3D_FDBGB);
243         state->fdbgr = V3D_READ(V3D_FDBGR);
244         state->fdbgs = V3D_READ(V3D_FDBGS);
245         state->errstat = V3D_READ(V3D_ERRSTAT);
246
247         /* We need to turn purgeable BOs into unpurgeable ones so that
248          * userspace has a chance to dump the hang state before the kernel
249          * decides to purge those BOs.
250          * Note that BO consistency at dump time cannot be guaranteed. For
251          * example, if the owner of these BOs decides to re-use them or mark
252          * them purgeable again there's nothing we can do to prevent it.
253          */
254         for (i = 0; i < kernel_state->user_state.bo_count; i++) {
255                 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
256
257                 if (bo->madv == __VC4_MADV_NOTSUPP)
258                         continue;
259
260                 mutex_lock(&bo->madv_lock);
261                 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
262                         bo->madv = VC4_MADV_WILLNEED;
263                 refcount_dec(&bo->usecnt);
264                 mutex_unlock(&bo->madv_lock);
265         }
266
267         spin_lock_irqsave(&vc4->job_lock, irqflags);
268         if (vc4->hang_state) {
269                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
270                 vc4_free_hang_state(dev, kernel_state);
271         } else {
272                 vc4->hang_state = kernel_state;
273                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
274         }
275 }
276
277 static void
278 vc4_reset(struct drm_device *dev)
279 {
280         struct vc4_dev *vc4 = to_vc4_dev(dev);
281
282         DRM_INFO("Resetting GPU.\n");
283
284         mutex_lock(&vc4->power_lock);
285         if (vc4->power_refcount) {
286                 /* Power the device off and back on the by dropping the
287                  * reference on runtime PM.
288                  */
289                 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
290                 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
291         }
292         mutex_unlock(&vc4->power_lock);
293
294         vc4_irq_reset(dev);
295
296         /* Rearm the hangcheck -- another job might have been waiting
297          * for our hung one to get kicked off, and vc4_irq_reset()
298          * would have started it.
299          */
300         vc4_queue_hangcheck(dev);
301 }
302
303 static void
304 vc4_reset_work(struct work_struct *work)
305 {
306         struct vc4_dev *vc4 =
307                 container_of(work, struct vc4_dev, hangcheck.reset_work);
308
309         vc4_save_hang_state(vc4->dev);
310
311         vc4_reset(vc4->dev);
312 }
313
314 static void
315 vc4_hangcheck_elapsed(struct timer_list *t)
316 {
317         struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
318         struct drm_device *dev = vc4->dev;
319         uint32_t ct0ca, ct1ca;
320         unsigned long irqflags;
321         struct vc4_exec_info *bin_exec, *render_exec;
322
323         spin_lock_irqsave(&vc4->job_lock, irqflags);
324
325         bin_exec = vc4_first_bin_job(vc4);
326         render_exec = vc4_first_render_job(vc4);
327
328         /* If idle, we can stop watching for hangs. */
329         if (!bin_exec && !render_exec) {
330                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
331                 return;
332         }
333
334         ct0ca = V3D_READ(V3D_CTNCA(0));
335         ct1ca = V3D_READ(V3D_CTNCA(1));
336
337         /* If we've made any progress in execution, rearm the timer
338          * and wait.
339          */
340         if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
341             (render_exec && ct1ca != render_exec->last_ct1ca)) {
342                 if (bin_exec)
343                         bin_exec->last_ct0ca = ct0ca;
344                 if (render_exec)
345                         render_exec->last_ct1ca = ct1ca;
346                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
347                 vc4_queue_hangcheck(dev);
348                 return;
349         }
350
351         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
352
353         /* We've gone too long with no progress, reset.  This has to
354          * be done from a work struct, since resetting can sleep and
355          * this timer hook isn't allowed to.
356          */
357         schedule_work(&vc4->hangcheck.reset_work);
358 }
359
360 static void
361 submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
362 {
363         struct vc4_dev *vc4 = to_vc4_dev(dev);
364
365         /* Set the current and end address of the control list.
366          * Writing the end register is what starts the job.
367          */
368         V3D_WRITE(V3D_CTNCA(thread), start);
369         V3D_WRITE(V3D_CTNEA(thread), end);
370 }
371
372 int
373 vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
374                    bool interruptible)
375 {
376         struct vc4_dev *vc4 = to_vc4_dev(dev);
377         int ret = 0;
378         unsigned long timeout_expire;
379         DEFINE_WAIT(wait);
380
381         if (vc4->finished_seqno >= seqno)
382                 return 0;
383
384         if (timeout_ns == 0)
385                 return -ETIME;
386
387         timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
388
389         trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
390         for (;;) {
391                 prepare_to_wait(&vc4->job_wait_queue, &wait,
392                                 interruptible ? TASK_INTERRUPTIBLE :
393                                 TASK_UNINTERRUPTIBLE);
394
395                 if (interruptible && signal_pending(current)) {
396                         ret = -ERESTARTSYS;
397                         break;
398                 }
399
400                 if (vc4->finished_seqno >= seqno)
401                         break;
402
403                 if (timeout_ns != ~0ull) {
404                         if (time_after_eq(jiffies, timeout_expire)) {
405                                 ret = -ETIME;
406                                 break;
407                         }
408                         schedule_timeout(timeout_expire - jiffies);
409                 } else {
410                         schedule();
411                 }
412         }
413
414         finish_wait(&vc4->job_wait_queue, &wait);
415         trace_vc4_wait_for_seqno_end(dev, seqno);
416
417         return ret;
418 }
419
420 static void
421 vc4_flush_caches(struct drm_device *dev)
422 {
423         struct vc4_dev *vc4 = to_vc4_dev(dev);
424
425         /* Flush the GPU L2 caches.  These caches sit on top of system
426          * L3 (the 128kb or so shared with the CPU), and are
427          * non-allocating in the L3.
428          */
429         V3D_WRITE(V3D_L2CACTL,
430                   V3D_L2CACTL_L2CCLR);
431
432         V3D_WRITE(V3D_SLCACTL,
433                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
434                   VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
435                   VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
436                   VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
437 }
438
439 /* Sets the registers for the next job to be actually be executed in
440  * the hardware.
441  *
442  * The job_lock should be held during this.
443  */
444 void
445 vc4_submit_next_bin_job(struct drm_device *dev)
446 {
447         struct vc4_dev *vc4 = to_vc4_dev(dev);
448         struct vc4_exec_info *exec;
449
450 again:
451         exec = vc4_first_bin_job(vc4);
452         if (!exec)
453                 return;
454
455         vc4_flush_caches(dev);
456
457         /* Either put the job in the binner if it uses the binner, or
458          * immediately move it to the to-be-rendered queue.
459          */
460         if (exec->ct0ca != exec->ct0ea) {
461                 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
462         } else {
463                 vc4_move_job_to_render(dev, exec);
464                 goto again;
465         }
466 }
467
468 void
469 vc4_submit_next_render_job(struct drm_device *dev)
470 {
471         struct vc4_dev *vc4 = to_vc4_dev(dev);
472         struct vc4_exec_info *exec = vc4_first_render_job(vc4);
473
474         if (!exec)
475                 return;
476
477         submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
478 }
479
480 void
481 vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
482 {
483         struct vc4_dev *vc4 = to_vc4_dev(dev);
484         bool was_empty = list_empty(&vc4->render_job_list);
485
486         list_move_tail(&exec->head, &vc4->render_job_list);
487         if (was_empty)
488                 vc4_submit_next_render_job(dev);
489 }
490
491 static void
492 vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
493 {
494         struct vc4_bo *bo;
495         unsigned i;
496
497         for (i = 0; i < exec->bo_count; i++) {
498                 bo = to_vc4_bo(&exec->bo[i]->base);
499                 bo->seqno = seqno;
500
501                 reservation_object_add_shared_fence(bo->resv, exec->fence);
502         }
503
504         list_for_each_entry(bo, &exec->unref_list, unref_head) {
505                 bo->seqno = seqno;
506         }
507
508         for (i = 0; i < exec->rcl_write_bo_count; i++) {
509                 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
510                 bo->write_seqno = seqno;
511
512                 reservation_object_add_excl_fence(bo->resv, exec->fence);
513         }
514 }
515
516 static void
517 vc4_unlock_bo_reservations(struct drm_device *dev,
518                            struct vc4_exec_info *exec,
519                            struct ww_acquire_ctx *acquire_ctx)
520 {
521         int i;
522
523         for (i = 0; i < exec->bo_count; i++) {
524                 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
525
526                 ww_mutex_unlock(&bo->resv->lock);
527         }
528
529         ww_acquire_fini(acquire_ctx);
530 }
531
532 /* Takes the reservation lock on all the BOs being referenced, so that
533  * at queue submit time we can update the reservations.
534  *
535  * We don't lock the RCL the tile alloc/state BOs, or overflow memory
536  * (all of which are on exec->unref_list).  They're entirely private
537  * to vc4, so we don't attach dma-buf fences to them.
538  */
539 static int
540 vc4_lock_bo_reservations(struct drm_device *dev,
541                          struct vc4_exec_info *exec,
542                          struct ww_acquire_ctx *acquire_ctx)
543 {
544         int contended_lock = -1;
545         int i, ret;
546         struct vc4_bo *bo;
547
548         ww_acquire_init(acquire_ctx, &reservation_ww_class);
549
550 retry:
551         if (contended_lock != -1) {
552                 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
553                 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
554                                                        acquire_ctx);
555                 if (ret) {
556                         ww_acquire_done(acquire_ctx);
557                         return ret;
558                 }
559         }
560
561         for (i = 0; i < exec->bo_count; i++) {
562                 if (i == contended_lock)
563                         continue;
564
565                 bo = to_vc4_bo(&exec->bo[i]->base);
566
567                 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
568                 if (ret) {
569                         int j;
570
571                         for (j = 0; j < i; j++) {
572                                 bo = to_vc4_bo(&exec->bo[j]->base);
573                                 ww_mutex_unlock(&bo->resv->lock);
574                         }
575
576                         if (contended_lock != -1 && contended_lock >= i) {
577                                 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
578
579                                 ww_mutex_unlock(&bo->resv->lock);
580                         }
581
582                         if (ret == -EDEADLK) {
583                                 contended_lock = i;
584                                 goto retry;
585                         }
586
587                         ww_acquire_done(acquire_ctx);
588                         return ret;
589                 }
590         }
591
592         ww_acquire_done(acquire_ctx);
593
594         /* Reserve space for our shared (read-only) fence references,
595          * before we commit the CL to the hardware.
596          */
597         for (i = 0; i < exec->bo_count; i++) {
598                 bo = to_vc4_bo(&exec->bo[i]->base);
599
600                 ret = reservation_object_reserve_shared(bo->resv);
601                 if (ret) {
602                         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
603                         return ret;
604                 }
605         }
606
607         return 0;
608 }
609
610 /* Queues a struct vc4_exec_info for execution.  If no job is
611  * currently executing, then submits it.
612  *
613  * Unlike most GPUs, our hardware only handles one command list at a
614  * time.  To queue multiple jobs at once, we'd need to edit the
615  * previous command list to have a jump to the new one at the end, and
616  * then bump the end address.  That's a change for a later date,
617  * though.
618  */
619 static int
620 vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
621                  struct ww_acquire_ctx *acquire_ctx)
622 {
623         struct vc4_dev *vc4 = to_vc4_dev(dev);
624         uint64_t seqno;
625         unsigned long irqflags;
626         struct vc4_fence *fence;
627
628         fence = kzalloc(sizeof(*fence), GFP_KERNEL);
629         if (!fence)
630                 return -ENOMEM;
631         fence->dev = dev;
632
633         spin_lock_irqsave(&vc4->job_lock, irqflags);
634
635         seqno = ++vc4->emit_seqno;
636         exec->seqno = seqno;
637
638         dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
639                        vc4->dma_fence_context, exec->seqno);
640         fence->seqno = exec->seqno;
641         exec->fence = &fence->base;
642
643         vc4_update_bo_seqnos(exec, seqno);
644
645         vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
646
647         list_add_tail(&exec->head, &vc4->bin_job_list);
648
649         /* If no job was executing, kick ours off.  Otherwise, it'll
650          * get started when the previous job's flush done interrupt
651          * occurs.
652          */
653         if (vc4_first_bin_job(vc4) == exec) {
654                 vc4_submit_next_bin_job(dev);
655                 vc4_queue_hangcheck(dev);
656         }
657
658         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
659
660         return 0;
661 }
662
663 /**
664  * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
665  * referenced by the job.
666  * @dev: DRM device
667  * @file_priv: DRM file for this fd
668  * @exec: V3D job being set up
669  *
670  * The command validator needs to reference BOs by their index within
671  * the submitted job's BO list.  This does the validation of the job's
672  * BO list and reference counting for the lifetime of the job.
673  */
674 static int
675 vc4_cl_lookup_bos(struct drm_device *dev,
676                   struct drm_file *file_priv,
677                   struct vc4_exec_info *exec)
678 {
679         struct drm_vc4_submit_cl *args = exec->args;
680         uint32_t *handles;
681         int ret = 0;
682         int i;
683
684         exec->bo_count = args->bo_handle_count;
685
686         if (!exec->bo_count) {
687                 /* See comment on bo_index for why we have to check
688                  * this.
689                  */
690                 DRM_DEBUG("Rendering requires BOs to validate\n");
691                 return -EINVAL;
692         }
693
694         exec->bo = kvmalloc_array(exec->bo_count,
695                                     sizeof(struct drm_gem_cma_object *),
696                                     GFP_KERNEL | __GFP_ZERO);
697         if (!exec->bo) {
698                 DRM_ERROR("Failed to allocate validated BO pointers\n");
699                 return -ENOMEM;
700         }
701
702         handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
703         if (!handles) {
704                 ret = -ENOMEM;
705                 DRM_ERROR("Failed to allocate incoming GEM handles\n");
706                 goto fail;
707         }
708
709         if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
710                            exec->bo_count * sizeof(uint32_t))) {
711                 ret = -EFAULT;
712                 DRM_ERROR("Failed to copy in GEM handles\n");
713                 goto fail;
714         }
715
716         spin_lock(&file_priv->table_lock);
717         for (i = 0; i < exec->bo_count; i++) {
718                 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
719                                                      handles[i]);
720                 if (!bo) {
721                         DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
722                                   i, handles[i]);
723                         ret = -EINVAL;
724                         break;
725                 }
726
727                 drm_gem_object_get(bo);
728                 exec->bo[i] = (struct drm_gem_cma_object *)bo;
729         }
730         spin_unlock(&file_priv->table_lock);
731
732         if (ret)
733                 goto fail_put_bo;
734
735         for (i = 0; i < exec->bo_count; i++) {
736                 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
737                 if (ret)
738                         goto fail_dec_usecnt;
739         }
740
741         kvfree(handles);
742         return 0;
743
744 fail_dec_usecnt:
745         /* Decrease usecnt on acquired objects.
746          * We cannot rely on  vc4_complete_exec() to release resources here,
747          * because vc4_complete_exec() has no information about which BO has
748          * had its ->usecnt incremented.
749          * To make things easier we just free everything explicitly and set
750          * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
751          * step.
752          */
753         for (i-- ; i >= 0; i--)
754                 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
755
756 fail_put_bo:
757         /* Release any reference to acquired objects. */
758         for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
759                 drm_gem_object_put_unlocked(&exec->bo[i]->base);
760
761 fail:
762         kvfree(handles);
763         kvfree(exec->bo);
764         exec->bo = NULL;
765         return ret;
766 }
767
768 static int
769 vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
770 {
771         struct drm_vc4_submit_cl *args = exec->args;
772         void *temp = NULL;
773         void *bin;
774         int ret = 0;
775         uint32_t bin_offset = 0;
776         uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
777                                              16);
778         uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
779         uint32_t exec_size = uniforms_offset + args->uniforms_size;
780         uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
781                                           args->shader_rec_count);
782         struct vc4_bo *bo;
783
784         if (shader_rec_offset < args->bin_cl_size ||
785             uniforms_offset < shader_rec_offset ||
786             exec_size < uniforms_offset ||
787             args->shader_rec_count >= (UINT_MAX /
788                                           sizeof(struct vc4_shader_state)) ||
789             temp_size < exec_size) {
790                 DRM_DEBUG("overflow in exec arguments\n");
791                 ret = -EINVAL;
792                 goto fail;
793         }
794
795         /* Allocate space where we'll store the copied in user command lists
796          * and shader records.
797          *
798          * We don't just copy directly into the BOs because we need to
799          * read the contents back for validation, and I think the
800          * bo->vaddr is uncached access.
801          */
802         temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
803         if (!temp) {
804                 DRM_ERROR("Failed to allocate storage for copying "
805                           "in bin/render CLs.\n");
806                 ret = -ENOMEM;
807                 goto fail;
808         }
809         bin = temp + bin_offset;
810         exec->shader_rec_u = temp + shader_rec_offset;
811         exec->uniforms_u = temp + uniforms_offset;
812         exec->shader_state = temp + exec_size;
813         exec->shader_state_size = args->shader_rec_count;
814
815         if (copy_from_user(bin,
816                            u64_to_user_ptr(args->bin_cl),
817                            args->bin_cl_size)) {
818                 ret = -EFAULT;
819                 goto fail;
820         }
821
822         if (copy_from_user(exec->shader_rec_u,
823                            u64_to_user_ptr(args->shader_rec),
824                            args->shader_rec_size)) {
825                 ret = -EFAULT;
826                 goto fail;
827         }
828
829         if (copy_from_user(exec->uniforms_u,
830                            u64_to_user_ptr(args->uniforms),
831                            args->uniforms_size)) {
832                 ret = -EFAULT;
833                 goto fail;
834         }
835
836         bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
837         if (IS_ERR(bo)) {
838                 DRM_ERROR("Couldn't allocate BO for binning\n");
839                 ret = PTR_ERR(bo);
840                 goto fail;
841         }
842         exec->exec_bo = &bo->base;
843
844         list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
845                       &exec->unref_list);
846
847         exec->ct0ca = exec->exec_bo->paddr + bin_offset;
848
849         exec->bin_u = bin;
850
851         exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
852         exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
853         exec->shader_rec_size = args->shader_rec_size;
854
855         exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
856         exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
857         exec->uniforms_size = args->uniforms_size;
858
859         ret = vc4_validate_bin_cl(dev,
860                                   exec->exec_bo->vaddr + bin_offset,
861                                   bin,
862                                   exec);
863         if (ret)
864                 goto fail;
865
866         ret = vc4_validate_shader_recs(dev, exec);
867         if (ret)
868                 goto fail;
869
870         /* Block waiting on any previous rendering into the CS's VBO,
871          * IB, or textures, so that pixels are actually written by the
872          * time we try to read them.
873          */
874         ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
875
876 fail:
877         kvfree(temp);
878         return ret;
879 }
880
881 static void
882 vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
883 {
884         struct vc4_dev *vc4 = to_vc4_dev(dev);
885         unsigned long irqflags;
886         unsigned i;
887
888         /* If we got force-completed because of GPU reset rather than
889          * through our IRQ handler, signal the fence now.
890          */
891         if (exec->fence) {
892                 dma_fence_signal(exec->fence);
893                 dma_fence_put(exec->fence);
894         }
895
896         if (exec->bo) {
897                 for (i = 0; i < exec->bo_count; i++) {
898                         struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
899
900                         vc4_bo_dec_usecnt(bo);
901                         drm_gem_object_put_unlocked(&exec->bo[i]->base);
902                 }
903                 kvfree(exec->bo);
904         }
905
906         while (!list_empty(&exec->unref_list)) {
907                 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
908                                                      struct vc4_bo, unref_head);
909                 list_del(&bo->unref_head);
910                 drm_gem_object_put_unlocked(&bo->base.base);
911         }
912
913         /* Free up the allocation of any bin slots we used. */
914         spin_lock_irqsave(&vc4->job_lock, irqflags);
915         vc4->bin_alloc_used &= ~exec->bin_slots;
916         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
917
918         mutex_lock(&vc4->power_lock);
919         if (--vc4->power_refcount == 0) {
920                 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
921                 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
922         }
923         mutex_unlock(&vc4->power_lock);
924
925         kfree(exec);
926 }
927
928 void
929 vc4_job_handle_completed(struct vc4_dev *vc4)
930 {
931         unsigned long irqflags;
932         struct vc4_seqno_cb *cb, *cb_temp;
933
934         spin_lock_irqsave(&vc4->job_lock, irqflags);
935         while (!list_empty(&vc4->job_done_list)) {
936                 struct vc4_exec_info *exec =
937                         list_first_entry(&vc4->job_done_list,
938                                          struct vc4_exec_info, head);
939                 list_del(&exec->head);
940
941                 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
942                 vc4_complete_exec(vc4->dev, exec);
943                 spin_lock_irqsave(&vc4->job_lock, irqflags);
944         }
945
946         list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
947                 if (cb->seqno <= vc4->finished_seqno) {
948                         list_del_init(&cb->work.entry);
949                         schedule_work(&cb->work);
950                 }
951         }
952
953         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
954 }
955
956 static void vc4_seqno_cb_work(struct work_struct *work)
957 {
958         struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
959
960         cb->func(cb);
961 }
962
963 int vc4_queue_seqno_cb(struct drm_device *dev,
964                        struct vc4_seqno_cb *cb, uint64_t seqno,
965                        void (*func)(struct vc4_seqno_cb *cb))
966 {
967         struct vc4_dev *vc4 = to_vc4_dev(dev);
968         int ret = 0;
969         unsigned long irqflags;
970
971         cb->func = func;
972         INIT_WORK(&cb->work, vc4_seqno_cb_work);
973
974         spin_lock_irqsave(&vc4->job_lock, irqflags);
975         if (seqno > vc4->finished_seqno) {
976                 cb->seqno = seqno;
977                 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
978         } else {
979                 schedule_work(&cb->work);
980         }
981         spin_unlock_irqrestore(&vc4->job_lock, irqflags);
982
983         return ret;
984 }
985
986 /* Scheduled when any job has been completed, this walks the list of
987  * jobs that had completed and unrefs their BOs and frees their exec
988  * structs.
989  */
990 static void
991 vc4_job_done_work(struct work_struct *work)
992 {
993         struct vc4_dev *vc4 =
994                 container_of(work, struct vc4_dev, job_done_work);
995
996         vc4_job_handle_completed(vc4);
997 }
998
999 static int
1000 vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1001                                 uint64_t seqno,
1002                                 uint64_t *timeout_ns)
1003 {
1004         unsigned long start = jiffies;
1005         int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1006
1007         if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1008                 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1009
1010                 if (*timeout_ns >= delta)
1011                         *timeout_ns -= delta;
1012         }
1013
1014         return ret;
1015 }
1016
1017 int
1018 vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1019                      struct drm_file *file_priv)
1020 {
1021         struct drm_vc4_wait_seqno *args = data;
1022
1023         return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1024                                                &args->timeout_ns);
1025 }
1026
1027 int
1028 vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1029                   struct drm_file *file_priv)
1030 {
1031         int ret;
1032         struct drm_vc4_wait_bo *args = data;
1033         struct drm_gem_object *gem_obj;
1034         struct vc4_bo *bo;
1035
1036         if (args->pad != 0)
1037                 return -EINVAL;
1038
1039         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1040         if (!gem_obj) {
1041                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1042                 return -EINVAL;
1043         }
1044         bo = to_vc4_bo(gem_obj);
1045
1046         ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1047                                               &args->timeout_ns);
1048
1049         drm_gem_object_put_unlocked(gem_obj);
1050         return ret;
1051 }
1052
1053 /**
1054  * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1055  * @dev: DRM device
1056  * @data: ioctl argument
1057  * @file_priv: DRM file for this fd
1058  *
1059  * This is the main entrypoint for userspace to submit a 3D frame to
1060  * the GPU.  Userspace provides the binner command list (if
1061  * applicable), and the kernel sets up the render command list to draw
1062  * to the framebuffer described in the ioctl, using the command lists
1063  * that the 3D engine's binner will produce.
1064  */
1065 int
1066 vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1067                     struct drm_file *file_priv)
1068 {
1069         struct vc4_dev *vc4 = to_vc4_dev(dev);
1070         struct drm_vc4_submit_cl *args = data;
1071         struct vc4_exec_info *exec;
1072         struct ww_acquire_ctx acquire_ctx;
1073         int ret = 0;
1074
1075         if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1076                              VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1077                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1078                              VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1079                 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1080                 return -EINVAL;
1081         }
1082
1083         exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1084         if (!exec) {
1085                 DRM_ERROR("malloc failure on exec struct\n");
1086                 return -ENOMEM;
1087         }
1088
1089         mutex_lock(&vc4->power_lock);
1090         if (vc4->power_refcount++ == 0) {
1091                 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1092                 if (ret < 0) {
1093                         mutex_unlock(&vc4->power_lock);
1094                         vc4->power_refcount--;
1095                         kfree(exec);
1096                         return ret;
1097                 }
1098         }
1099         mutex_unlock(&vc4->power_lock);
1100
1101         exec->args = args;
1102         INIT_LIST_HEAD(&exec->unref_list);
1103
1104         ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1105         if (ret)
1106                 goto fail;
1107
1108         if (exec->args->bin_cl_size != 0) {
1109                 ret = vc4_get_bcl(dev, exec);
1110                 if (ret)
1111                         goto fail;
1112         } else {
1113                 exec->ct0ca = 0;
1114                 exec->ct0ea = 0;
1115         }
1116
1117         ret = vc4_get_rcl(dev, exec);
1118         if (ret)
1119                 goto fail;
1120
1121         ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1122         if (ret)
1123                 goto fail;
1124
1125         /* Clear this out of the struct we'll be putting in the queue,
1126          * since it's part of our stack.
1127          */
1128         exec->args = NULL;
1129
1130         ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1131         if (ret)
1132                 goto fail;
1133
1134         /* Return the seqno for our job. */
1135         args->seqno = vc4->emit_seqno;
1136
1137         return 0;
1138
1139 fail:
1140         vc4_complete_exec(vc4->dev, exec);
1141
1142         return ret;
1143 }
1144
1145 void
1146 vc4_gem_init(struct drm_device *dev)
1147 {
1148         struct vc4_dev *vc4 = to_vc4_dev(dev);
1149
1150         vc4->dma_fence_context = dma_fence_context_alloc(1);
1151
1152         INIT_LIST_HEAD(&vc4->bin_job_list);
1153         INIT_LIST_HEAD(&vc4->render_job_list);
1154         INIT_LIST_HEAD(&vc4->job_done_list);
1155         INIT_LIST_HEAD(&vc4->seqno_cb_list);
1156         spin_lock_init(&vc4->job_lock);
1157
1158         INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1159         timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1160
1161         INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1162
1163         mutex_init(&vc4->power_lock);
1164
1165         INIT_LIST_HEAD(&vc4->purgeable.list);
1166         mutex_init(&vc4->purgeable.lock);
1167 }
1168
1169 void
1170 vc4_gem_destroy(struct drm_device *dev)
1171 {
1172         struct vc4_dev *vc4 = to_vc4_dev(dev);
1173
1174         /* Waiting for exec to finish would need to be done before
1175          * unregistering V3D.
1176          */
1177         WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1178
1179         /* V3D should already have disabled its interrupt and cleared
1180          * the overflow allocation registers.  Now free the object.
1181          */
1182         if (vc4->bin_bo) {
1183                 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1184                 vc4->bin_bo = NULL;
1185         }
1186
1187         if (vc4->hang_state)
1188                 vc4_free_hang_state(dev, vc4->hang_state);
1189 }
1190
1191 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1192                           struct drm_file *file_priv)
1193 {
1194         struct drm_vc4_gem_madvise *args = data;
1195         struct drm_gem_object *gem_obj;
1196         struct vc4_bo *bo;
1197         int ret;
1198
1199         switch (args->madv) {
1200         case VC4_MADV_DONTNEED:
1201         case VC4_MADV_WILLNEED:
1202                 break;
1203         default:
1204                 return -EINVAL;
1205         }
1206
1207         if (args->pad != 0)
1208                 return -EINVAL;
1209
1210         gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1211         if (!gem_obj) {
1212                 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1213                 return -ENOENT;
1214         }
1215
1216         bo = to_vc4_bo(gem_obj);
1217
1218         /* Only BOs exposed to userspace can be purged. */
1219         if (bo->madv == __VC4_MADV_NOTSUPP) {
1220                 DRM_DEBUG("madvise not supported on this BO\n");
1221                 ret = -EINVAL;
1222                 goto out_put_gem;
1223         }
1224
1225         /* Not sure it's safe to purge imported BOs. Let's just assume it's
1226          * not until proven otherwise.
1227          */
1228         if (gem_obj->import_attach) {
1229                 DRM_DEBUG("madvise not supported on imported BOs\n");
1230                 ret = -EINVAL;
1231                 goto out_put_gem;
1232         }
1233
1234         mutex_lock(&bo->madv_lock);
1235
1236         if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1237             !refcount_read(&bo->usecnt)) {
1238                 /* If the BO is about to be marked as purgeable, is not used
1239                  * and is not already purgeable or purged, add it to the
1240                  * purgeable list.
1241                  */
1242                 vc4_bo_add_to_purgeable_pool(bo);
1243         } else if (args->madv == VC4_MADV_WILLNEED &&
1244                    bo->madv == VC4_MADV_DONTNEED &&
1245                    !refcount_read(&bo->usecnt)) {
1246                 /* The BO has not been purged yet, just remove it from
1247                  * the purgeable list.
1248                  */
1249                 vc4_bo_remove_from_purgeable_pool(bo);
1250         }
1251
1252         /* Save the purged state. */
1253         args->retained = bo->madv != __VC4_MADV_PURGED;
1254
1255         /* Update internal madv state only if the bo was not purged. */
1256         if (bo->madv != __VC4_MADV_PURGED)
1257                 bo->madv = args->madv;
1258
1259         mutex_unlock(&bo->madv_lock);
1260
1261         ret = 0;
1262
1263 out_put_gem:
1264         drm_gem_object_put_unlocked(gem_obj);
1265
1266         return ret;
1267 }