Merge tag 'wberr-v4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44
45 struct vc4_crtc {
46         struct drm_crtc base;
47         const struct vc4_crtc_data *data;
48         void __iomem *regs;
49
50         /* Timestamp at start of vblank irq - unaffected by lock delays. */
51         ktime_t t_vblank;
52
53         /* Which HVS channel we're using for our CRTC. */
54         int channel;
55
56         u8 lut_r[256];
57         u8 lut_g[256];
58         u8 lut_b[256];
59         /* Size in pixels of the COB memory allocated to this CRTC. */
60         u32 cob_size;
61
62         struct drm_pending_vblank_event *event;
63 };
64
65 struct vc4_crtc_state {
66         struct drm_crtc_state base;
67         /* Dlist area for this CRTC configuration. */
68         struct drm_mm_node mm;
69 };
70
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74         return (struct vc4_crtc *)crtc;
75 }
76
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80         return (struct vc4_crtc_state *)crtc_state;
81 }
82
83 struct vc4_crtc_data {
84         /* Which channel of the HVS this pixelvalve sources from. */
85         int hvs_channel;
86
87         enum vc4_encoder_type encoder_types[4];
88 };
89
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95         u32 reg;
96         const char *name;
97 } crtc_regs[] = {
98         CRTC_REG(PV_CONTROL),
99         CRTC_REG(PV_V_CONTROL),
100         CRTC_REG(PV_VSYNCD_EVEN),
101         CRTC_REG(PV_HORZA),
102         CRTC_REG(PV_HORZB),
103         CRTC_REG(PV_VERTA),
104         CRTC_REG(PV_VERTB),
105         CRTC_REG(PV_VERTA_EVEN),
106         CRTC_REG(PV_VERTB_EVEN),
107         CRTC_REG(PV_INTEN),
108         CRTC_REG(PV_INTSTAT),
109         CRTC_REG(PV_STAT),
110         CRTC_REG(PV_HACT_ACT),
111 };
112
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115         int i;
116
117         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118                 DRM_INFO("0x%04x (%s): 0x%08x\n",
119                          crtc_regs[i].reg, crtc_regs[i].name,
120                          CRTC_READ(crtc_regs[i].reg));
121         }
122 }
123
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127         struct drm_info_node *node = (struct drm_info_node *)m->private;
128         struct drm_device *dev = node->minor->dev;
129         int crtc_index = (uintptr_t)node->info_ent->data;
130         struct drm_crtc *crtc;
131         struct vc4_crtc *vc4_crtc;
132         int i;
133
134         i = 0;
135         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136                 if (i == crtc_index)
137                         break;
138                 i++;
139         }
140         if (!crtc)
141                 return 0;
142         vc4_crtc = to_vc4_crtc(crtc);
143
144         for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145                 seq_printf(m, "%s (0x%04x): 0x%08x\n",
146                            crtc_regs[i].name, crtc_regs[i].reg,
147                            CRTC_READ(crtc_regs[i].reg));
148         }
149
150         return 0;
151 }
152 #endif
153
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155                              bool in_vblank_irq, int *vpos, int *hpos,
156                              ktime_t *stime, ktime_t *etime,
157                              const struct drm_display_mode *mode)
158 {
159         struct vc4_dev *vc4 = to_vc4_dev(dev);
160         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162         u32 val;
163         int fifo_lines;
164         int vblank_lines;
165         bool ret = false;
166
167         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168
169         /* Get optional system timestamp before query. */
170         if (stime)
171                 *stime = ktime_get();
172
173         /*
174          * Read vertical scanline which is currently composed for our
175          * pixelvalve by the HVS, and also the scaler status.
176          */
177         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178
179         /* Get optional system timestamp after query. */
180         if (etime)
181                 *etime = ktime_get();
182
183         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184
185         /* Vertical position of hvs composed scanline. */
186         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187         *hpos = 0;
188
189         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190                 *vpos /= 2;
191
192                 /* Use hpos to correct for field offset in interlaced mode. */
193                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194                         *hpos += mode->crtc_htotal / 2;
195         }
196
197         /* This is the offset we need for translating hvs -> pv scanout pos. */
198         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199
200         if (fifo_lines > 0)
201                 ret = true;
202
203         /* HVS more than fifo_lines into frame for compositing? */
204         if (*vpos > fifo_lines) {
205                 /*
206                  * We are in active scanout and can get some meaningful results
207                  * from HVS. The actual PV scanout can not trail behind more
208                  * than fifo_lines as that is the fifo's capacity. Assume that
209                  * in active scanout the HVS and PV work in lockstep wrt. HVS
210                  * refilling the fifo and PV consuming from the fifo, ie.
211                  * whenever the PV consumes and frees up a scanline in the
212                  * fifo, the HVS will immediately refill it, therefore
213                  * incrementing vpos. Therefore we choose HVS read position -
214                  * fifo size in scanlines as a estimate of the real scanout
215                  * position of the PV.
216                  */
217                 *vpos -= fifo_lines + 1;
218
219                 return ret;
220         }
221
222         /*
223          * Less: This happens when we are in vblank and the HVS, after getting
224          * the VSTART restart signal from the PV, just started refilling its
225          * fifo with new lines from the top-most lines of the new framebuffers.
226          * The PV does not scan out in vblank, so does not remove lines from
227          * the fifo, so the fifo will be full quickly and the HVS has to pause.
228          * We can't get meaningful readings wrt. scanline position of the PV
229          * and need to make things up in a approximative but consistent way.
230          */
231         vblank_lines = mode->vtotal - mode->vdisplay;
232
233         if (in_vblank_irq) {
234                 /*
235                  * Assume the irq handler got called close to first
236                  * line of vblank, so PV has about a full vblank
237                  * scanlines to go, and as a base timestamp use the
238                  * one taken at entry into vblank irq handler, so it
239                  * is not affected by random delays due to lock
240                  * contention on event_lock or vblank_time lock in
241                  * the core.
242                  */
243                 *vpos = -vblank_lines;
244
245                 if (stime)
246                         *stime = vc4_crtc->t_vblank;
247                 if (etime)
248                         *etime = vc4_crtc->t_vblank;
249
250                 /*
251                  * If the HVS fifo is not yet full then we know for certain
252                  * we are at the very beginning of vblank, as the hvs just
253                  * started refilling, and the stime and etime timestamps
254                  * truly correspond to start of vblank.
255                  *
256                  * Unfortunately there's no way to report this to upper levels
257                  * and make it more useful.
258                  */
259         } else {
260                 /*
261                  * No clue where we are inside vblank. Return a vpos of zero,
262                  * which will cause calling code to just return the etime
263                  * timestamp uncorrected. At least this is no worse than the
264                  * standard fallback.
265                  */
266                 *vpos = 0;
267         }
268
269         return ret;
270 }
271
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
273 {
274         drm_crtc_cleanup(crtc);
275 }
276
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
279 {
280         struct drm_device *dev = crtc->dev;
281         struct vc4_dev *vc4 = to_vc4_dev(dev);
282         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283         u32 i;
284
285         /* The LUT memory is laid out with each HVS channel in order,
286          * each of which takes 256 writes for R, 256 for G, then 256
287          * for B.
288          */
289         HVS_WRITE(SCALER_GAMADDR,
290                   SCALER_GAMADDR_AUTOINC |
291                   (vc4_crtc->channel * 3 * crtc->gamma_size));
292
293         for (i = 0; i < crtc->gamma_size; i++)
294                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295         for (i = 0; i < crtc->gamma_size; i++)
296                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297         for (i = 0; i < crtc->gamma_size; i++)
298                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299 }
300
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303                    uint32_t size,
304                    struct drm_modeset_acquire_ctx *ctx)
305 {
306         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307         u32 i;
308
309         for (i = 0; i < size; i++) {
310                 vc4_crtc->lut_r[i] = r[i] >> 8;
311                 vc4_crtc->lut_g[i] = g[i] >> 8;
312                 vc4_crtc->lut_b[i] = b[i] >> 8;
313         }
314
315         vc4_crtc_lut_load(crtc);
316
317         return 0;
318 }
319
320 static u32 vc4_get_fifo_full_level(u32 format)
321 {
322         static const u32 fifo_len_bytes = 64;
323         static const u32 hvs_latency_pix = 6;
324
325         switch (format) {
326         case PV_CONTROL_FORMAT_DSIV_16:
327         case PV_CONTROL_FORMAT_DSIC_16:
328                 return fifo_len_bytes - 2 * hvs_latency_pix;
329         case PV_CONTROL_FORMAT_DSIV_18:
330                 return fifo_len_bytes - 14;
331         case PV_CONTROL_FORMAT_24:
332         case PV_CONTROL_FORMAT_DSIV_24:
333         default:
334                 return fifo_len_bytes - 3 * hvs_latency_pix;
335         }
336 }
337
338 /*
339  * Returns the encoder attached to the CRTC.
340  *
341  * VC4 can only scan out to one encoder at a time, while the DRM core
342  * allows drivers to push pixels to more than one encoder from the
343  * same CRTC.
344  */
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 {
347         struct drm_connector *connector;
348         struct drm_connector_list_iter conn_iter;
349
350         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351         drm_for_each_connector_iter(connector, &conn_iter) {
352                 if (connector->state->crtc == crtc) {
353                         drm_connector_list_iter_end(&conn_iter);
354                         return connector->encoder;
355                 }
356         }
357         drm_connector_list_iter_end(&conn_iter);
358
359         return NULL;
360 }
361
362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
363 {
364         struct drm_device *dev = crtc->dev;
365         struct vc4_dev *vc4 = to_vc4_dev(dev);
366         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369         struct drm_crtc_state *state = crtc->state;
370         struct drm_display_mode *mode = &state->adjusted_mode;
371         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376         bool debug_dump_regs = false;
377
378         if (debug_dump_regs) {
379                 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380                 vc4_crtc_dump_regs(vc4_crtc);
381         }
382
383         /* Reset the PV fifo. */
384         CRTC_WRITE(PV_CONTROL, 0);
385         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386         CRTC_WRITE(PV_CONTROL, 0);
387
388         CRTC_WRITE(PV_HORZA,
389                    VC4_SET_FIELD((mode->htotal -
390                                   mode->hsync_end) * pixel_rep,
391                                  PV_HORZA_HBP) |
392                    VC4_SET_FIELD((mode->hsync_end -
393                                   mode->hsync_start) * pixel_rep,
394                                  PV_HORZA_HSYNC));
395         CRTC_WRITE(PV_HORZB,
396                    VC4_SET_FIELD((mode->hsync_start -
397                                   mode->hdisplay) * pixel_rep,
398                                  PV_HORZB_HFP) |
399                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
400
401         CRTC_WRITE(PV_VERTA,
402                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403                                  PV_VERTA_VBP) |
404                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405                                  PV_VERTA_VSYNC));
406         CRTC_WRITE(PV_VERTB,
407                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408                                  PV_VERTB_VFP) |
409                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
410
411         if (interlace) {
412                 CRTC_WRITE(PV_VERTA_EVEN,
413                            VC4_SET_FIELD(mode->crtc_vtotal -
414                                          mode->crtc_vsync_end - 1,
415                                          PV_VERTA_VBP) |
416                            VC4_SET_FIELD(mode->crtc_vsync_end -
417                                          mode->crtc_vsync_start,
418                                          PV_VERTA_VSYNC));
419                 CRTC_WRITE(PV_VERTB_EVEN,
420                            VC4_SET_FIELD(mode->crtc_vsync_start -
421                                          mode->crtc_vdisplay,
422                                          PV_VERTB_VFP) |
423                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
424
425                 /* We set up first field even mode for HDMI.  VEC's
426                  * NTSC mode would want first field odd instead, once
427                  * we support it (to do so, set ODD_FIRST and put the
428                  * delay in VSYNCD_EVEN instead).
429                  */
430                 CRTC_WRITE(PV_V_CONTROL,
431                            PV_VCONTROL_CONTINUOUS |
432                            (is_dsi ? PV_VCONTROL_DSI : 0) |
433                            PV_VCONTROL_INTERLACE |
434                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435                                          PV_VCONTROL_ODD_DELAY));
436                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437         } else {
438                 CRTC_WRITE(PV_V_CONTROL,
439                            PV_VCONTROL_CONTINUOUS |
440                            (is_dsi ? PV_VCONTROL_DSI : 0));
441         }
442
443         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
444
445         CRTC_WRITE(PV_CONTROL,
446                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448                                  PV_CONTROL_FIFO_LEVEL) |
449                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450                    PV_CONTROL_CLR_AT_START |
451                    PV_CONTROL_TRIGGER_UNDERFLOW |
452                    PV_CONTROL_WAIT_HSTART |
453                    VC4_SET_FIELD(vc4_encoder->clock_select,
454                                  PV_CONTROL_CLK_SELECT) |
455                    PV_CONTROL_FIFO_CLR |
456                    PV_CONTROL_EN);
457
458         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459                   SCALER_DISPBKGND_AUTOHS |
460                   SCALER_DISPBKGND_GAMMA |
461                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462
463         /* Reload the LUT, since the SRAMs would have been disabled if
464          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465          */
466         vc4_crtc_lut_load(crtc);
467
468         if (debug_dump_regs) {
469                 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470                 vc4_crtc_dump_regs(vc4_crtc);
471         }
472 }
473
474 static void require_hvs_enabled(struct drm_device *dev)
475 {
476         struct vc4_dev *vc4 = to_vc4_dev(dev);
477
478         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479                      SCALER_DISPCTRL_ENABLE);
480 }
481
482 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
483                                     struct drm_crtc_state *old_state)
484 {
485         struct drm_device *dev = crtc->dev;
486         struct vc4_dev *vc4 = to_vc4_dev(dev);
487         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
488         u32 chan = vc4_crtc->channel;
489         int ret;
490         require_hvs_enabled(dev);
491
492         /* Disable vblank irq handling before crtc is disabled. */
493         drm_crtc_vblank_off(crtc);
494
495         CRTC_WRITE(PV_V_CONTROL,
496                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
497         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
498         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
499
500         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
501             SCALER_DISPCTRLX_ENABLE) {
502                 HVS_WRITE(SCALER_DISPCTRLX(chan),
503                           SCALER_DISPCTRLX_RESET);
504
505                 /* While the docs say that reset is self-clearing, it
506                  * seems it doesn't actually.
507                  */
508                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
509         }
510
511         /* Once we leave, the scaler should be disabled and its fifo empty. */
512
513         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
514
515         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
516                                    SCALER_DISPSTATX_MODE) !=
517                      SCALER_DISPSTATX_MODE_DISABLED);
518
519         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
520                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
521                      SCALER_DISPSTATX_EMPTY);
522
523         /*
524          * Make sure we issue a vblank event after disabling the CRTC if
525          * someone was waiting it.
526          */
527         if (crtc->state->event) {
528                 unsigned long flags;
529
530                 spin_lock_irqsave(&dev->event_lock, flags);
531                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
532                 crtc->state->event = NULL;
533                 spin_unlock_irqrestore(&dev->event_lock, flags);
534         }
535 }
536
537 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
538 {
539         struct drm_device *dev = crtc->dev;
540         struct vc4_dev *vc4 = to_vc4_dev(dev);
541         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
542         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
543
544         if (crtc->state->event) {
545                 unsigned long flags;
546
547                 crtc->state->event->pipe = drm_crtc_index(crtc);
548
549                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
550
551                 spin_lock_irqsave(&dev->event_lock, flags);
552                 vc4_crtc->event = crtc->state->event;
553                 crtc->state->event = NULL;
554
555                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
556                           vc4_state->mm.start);
557
558                 spin_unlock_irqrestore(&dev->event_lock, flags);
559         } else {
560                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
561                           vc4_state->mm.start);
562         }
563 }
564
565 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
566                                    struct drm_crtc_state *old_state)
567 {
568         struct drm_device *dev = crtc->dev;
569         struct vc4_dev *vc4 = to_vc4_dev(dev);
570         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
571         struct drm_crtc_state *state = crtc->state;
572         struct drm_display_mode *mode = &state->adjusted_mode;
573
574         require_hvs_enabled(dev);
575
576         /* Enable vblank irq handling before crtc is started otherwise
577          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
578          */
579         drm_crtc_vblank_on(crtc);
580         vc4_crtc_update_dlist(crtc);
581
582         /* Turn on the scaler, which will wait for vstart to start
583          * compositing.
584          */
585         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
586                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
587                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
588                   SCALER_DISPCTRLX_ENABLE);
589
590         /* Turn on the pixel valve, which will emit the vstart signal. */
591         CRTC_WRITE(PV_V_CONTROL,
592                    CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
593 }
594
595 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
596                                                 const struct drm_display_mode *mode)
597 {
598         /* Do not allow doublescan modes from user space */
599         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
600                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
601                               crtc->base.id);
602                 return MODE_NO_DBLESCAN;
603         }
604
605         return MODE_OK;
606 }
607
608 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
609                                  struct drm_crtc_state *state)
610 {
611         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
612         struct drm_device *dev = crtc->dev;
613         struct vc4_dev *vc4 = to_vc4_dev(dev);
614         struct drm_plane *plane;
615         unsigned long flags;
616         const struct drm_plane_state *plane_state;
617         u32 dlist_count = 0;
618         int ret;
619
620         /* The pixelvalve can only feed one encoder (and encoders are
621          * 1:1 with connectors.)
622          */
623         if (hweight32(state->connector_mask) > 1)
624                 return -EINVAL;
625
626         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
627                 dlist_count += vc4_plane_dlist_size(plane_state);
628
629         dlist_count++; /* Account for SCALER_CTL0_END. */
630
631         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
632         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
633                                  dlist_count);
634         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
635         if (ret)
636                 return ret;
637
638         return 0;
639 }
640
641 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
642                                   struct drm_crtc_state *old_state)
643 {
644         struct drm_device *dev = crtc->dev;
645         struct vc4_dev *vc4 = to_vc4_dev(dev);
646         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
647         struct drm_plane *plane;
648         bool debug_dump_regs = false;
649         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
650         u32 __iomem *dlist_next = dlist_start;
651
652         if (debug_dump_regs) {
653                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
654                 vc4_hvs_dump_state(dev);
655         }
656
657         /* Copy all the active planes' dlist contents to the hardware dlist. */
658         drm_atomic_crtc_for_each_plane(plane, crtc) {
659                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
660         }
661
662         writel(SCALER_CTL0_END, dlist_next);
663         dlist_next++;
664
665         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
666
667         /* Only update DISPLIST if the CRTC was already running and is not
668          * being disabled.
669          * vc4_crtc_enable() takes care of updating the dlist just after
670          * re-enabling VBLANK interrupts and before enabling the engine.
671          * If the CRTC is being disabled, there's no point in updating this
672          * information.
673          */
674         if (crtc->state->active && old_state->active)
675                 vc4_crtc_update_dlist(crtc);
676
677         if (debug_dump_regs) {
678                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
679                 vc4_hvs_dump_state(dev);
680         }
681 }
682
683 static int vc4_enable_vblank(struct drm_crtc *crtc)
684 {
685         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
686
687         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
688
689         return 0;
690 }
691
692 static void vc4_disable_vblank(struct drm_crtc *crtc)
693 {
694         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
695
696         CRTC_WRITE(PV_INTEN, 0);
697 }
698
699 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
700 {
701         struct drm_crtc *crtc = &vc4_crtc->base;
702         struct drm_device *dev = crtc->dev;
703         struct vc4_dev *vc4 = to_vc4_dev(dev);
704         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
705         u32 chan = vc4_crtc->channel;
706         unsigned long flags;
707
708         spin_lock_irqsave(&dev->event_lock, flags);
709         if (vc4_crtc->event &&
710             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
711                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
712                 vc4_crtc->event = NULL;
713                 drm_crtc_vblank_put(crtc);
714         }
715         spin_unlock_irqrestore(&dev->event_lock, flags);
716 }
717
718 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
719 {
720         struct vc4_crtc *vc4_crtc = data;
721         u32 stat = CRTC_READ(PV_INTSTAT);
722         irqreturn_t ret = IRQ_NONE;
723
724         if (stat & PV_INT_VFP_START) {
725                 vc4_crtc->t_vblank = ktime_get();
726                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
727                 drm_crtc_handle_vblank(&vc4_crtc->base);
728                 vc4_crtc_handle_page_flip(vc4_crtc);
729                 ret = IRQ_HANDLED;
730         }
731
732         return ret;
733 }
734
735 struct vc4_async_flip_state {
736         struct drm_crtc *crtc;
737         struct drm_framebuffer *fb;
738         struct drm_pending_vblank_event *event;
739
740         struct vc4_seqno_cb cb;
741 };
742
743 /* Called when the V3D execution for the BO being flipped to is done, so that
744  * we can actually update the plane's address to point to it.
745  */
746 static void
747 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
748 {
749         struct vc4_async_flip_state *flip_state =
750                 container_of(cb, struct vc4_async_flip_state, cb);
751         struct drm_crtc *crtc = flip_state->crtc;
752         struct drm_device *dev = crtc->dev;
753         struct vc4_dev *vc4 = to_vc4_dev(dev);
754         struct drm_plane *plane = crtc->primary;
755
756         vc4_plane_async_set_fb(plane, flip_state->fb);
757         if (flip_state->event) {
758                 unsigned long flags;
759
760                 spin_lock_irqsave(&dev->event_lock, flags);
761                 drm_crtc_send_vblank_event(crtc, flip_state->event);
762                 spin_unlock_irqrestore(&dev->event_lock, flags);
763         }
764
765         drm_crtc_vblank_put(crtc);
766         drm_framebuffer_put(flip_state->fb);
767         kfree(flip_state);
768
769         up(&vc4->async_modeset);
770 }
771
772 /* Implements async (non-vblank-synced) page flips.
773  *
774  * The page flip ioctl needs to return immediately, so we grab the
775  * modeset semaphore on the pipe, and queue the address update for
776  * when V3D is done with the BO being flipped to.
777  */
778 static int vc4_async_page_flip(struct drm_crtc *crtc,
779                                struct drm_framebuffer *fb,
780                                struct drm_pending_vblank_event *event,
781                                uint32_t flags)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct vc4_dev *vc4 = to_vc4_dev(dev);
785         struct drm_plane *plane = crtc->primary;
786         int ret = 0;
787         struct vc4_async_flip_state *flip_state;
788         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
789         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
790
791         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
792         if (!flip_state)
793                 return -ENOMEM;
794
795         drm_framebuffer_get(fb);
796         flip_state->fb = fb;
797         flip_state->crtc = crtc;
798         flip_state->event = event;
799
800         /* Make sure all other async modesetes have landed. */
801         ret = down_interruptible(&vc4->async_modeset);
802         if (ret) {
803                 drm_framebuffer_put(fb);
804                 kfree(flip_state);
805                 return ret;
806         }
807
808         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
809
810         /* Immediately update the plane's legacy fb pointer, so that later
811          * modeset prep sees the state that will be present when the semaphore
812          * is released.
813          */
814         drm_atomic_set_fb_for_plane(plane->state, fb);
815         plane->fb = fb;
816
817         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
818                            vc4_async_page_flip_complete);
819
820         /* Driver takes ownership of state on successful async commit. */
821         return 0;
822 }
823
824 static int vc4_page_flip(struct drm_crtc *crtc,
825                          struct drm_framebuffer *fb,
826                          struct drm_pending_vblank_event *event,
827                          uint32_t flags,
828                          struct drm_modeset_acquire_ctx *ctx)
829 {
830         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
831                 return vc4_async_page_flip(crtc, fb, event, flags);
832         else
833                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
834 }
835
836 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
837 {
838         struct vc4_crtc_state *vc4_state;
839
840         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
841         if (!vc4_state)
842                 return NULL;
843
844         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
845         return &vc4_state->base;
846 }
847
848 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
849                                    struct drm_crtc_state *state)
850 {
851         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
852         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
853
854         if (vc4_state->mm.allocated) {
855                 unsigned long flags;
856
857                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
858                 drm_mm_remove_node(&vc4_state->mm);
859                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
860
861         }
862
863         drm_atomic_helper_crtc_destroy_state(crtc, state);
864 }
865
866 static void
867 vc4_crtc_reset(struct drm_crtc *crtc)
868 {
869         if (crtc->state)
870                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
871
872         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
873         if (crtc->state)
874                 crtc->state->crtc = crtc;
875 }
876
877 static const struct drm_crtc_funcs vc4_crtc_funcs = {
878         .set_config = drm_atomic_helper_set_config,
879         .destroy = vc4_crtc_destroy,
880         .page_flip = vc4_page_flip,
881         .set_property = NULL,
882         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
883         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
884         .reset = vc4_crtc_reset,
885         .atomic_duplicate_state = vc4_crtc_duplicate_state,
886         .atomic_destroy_state = vc4_crtc_destroy_state,
887         .gamma_set = vc4_crtc_gamma_set,
888         .enable_vblank = vc4_enable_vblank,
889         .disable_vblank = vc4_disable_vblank,
890 };
891
892 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
893         .mode_set_nofb = vc4_crtc_mode_set_nofb,
894         .mode_valid = vc4_crtc_mode_valid,
895         .atomic_check = vc4_crtc_atomic_check,
896         .atomic_flush = vc4_crtc_atomic_flush,
897         .atomic_enable = vc4_crtc_atomic_enable,
898         .atomic_disable = vc4_crtc_atomic_disable,
899 };
900
901 static const struct vc4_crtc_data pv0_data = {
902         .hvs_channel = 0,
903         .encoder_types = {
904                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
905                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
906         },
907 };
908
909 static const struct vc4_crtc_data pv1_data = {
910         .hvs_channel = 2,
911         .encoder_types = {
912                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
913                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
914         },
915 };
916
917 static const struct vc4_crtc_data pv2_data = {
918         .hvs_channel = 1,
919         .encoder_types = {
920                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
921                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
922         },
923 };
924
925 static const struct of_device_id vc4_crtc_dt_match[] = {
926         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
927         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
928         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
929         {}
930 };
931
932 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
933                                         struct drm_crtc *crtc)
934 {
935         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
936         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
937         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
938         struct drm_encoder *encoder;
939
940         drm_for_each_encoder(encoder, drm) {
941                 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
942                 int i;
943
944                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
945                         if (vc4_encoder->type == encoder_types[i]) {
946                                 vc4_encoder->clock_select = i;
947                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
948                                 break;
949                         }
950                 }
951         }
952 }
953
954 static void
955 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
956 {
957         struct drm_device *drm = vc4_crtc->base.dev;
958         struct vc4_dev *vc4 = to_vc4_dev(drm);
959         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
960         /* Top/base are supposed to be 4-pixel aligned, but the
961          * Raspberry Pi firmware fills the low bits (which are
962          * presumably ignored).
963          */
964         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
965         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
966
967         vc4_crtc->cob_size = top - base + 4;
968 }
969
970 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
971 {
972         struct platform_device *pdev = to_platform_device(dev);
973         struct drm_device *drm = dev_get_drvdata(master);
974         struct vc4_crtc *vc4_crtc;
975         struct drm_crtc *crtc;
976         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
977         const struct of_device_id *match;
978         int ret, i;
979
980         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
981         if (!vc4_crtc)
982                 return -ENOMEM;
983         crtc = &vc4_crtc->base;
984
985         match = of_match_device(vc4_crtc_dt_match, dev);
986         if (!match)
987                 return -ENODEV;
988         vc4_crtc->data = match->data;
989
990         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
991         if (IS_ERR(vc4_crtc->regs))
992                 return PTR_ERR(vc4_crtc->regs);
993
994         /* For now, we create just the primary and the legacy cursor
995          * planes.  We should be able to stack more planes on easily,
996          * but to do that we would need to compute the bandwidth
997          * requirement of the plane configuration, and reject ones
998          * that will take too much.
999          */
1000         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1001         if (IS_ERR(primary_plane)) {
1002                 dev_err(dev, "failed to construct primary plane\n");
1003                 ret = PTR_ERR(primary_plane);
1004                 goto err;
1005         }
1006
1007         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1008                                   &vc4_crtc_funcs, NULL);
1009         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1010         primary_plane->crtc = crtc;
1011         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1012         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1013
1014         /* Set up some arbitrary number of planes.  We're not limited
1015          * by a set number of physical registers, just the space in
1016          * the HVS (16k) and how small an plane can be (28 bytes).
1017          * However, each plane we set up takes up some memory, and
1018          * increases the cost of looping over planes, which atomic
1019          * modesetting does quite a bit.  As a result, we pick a
1020          * modest number of planes to expose, that should hopefully
1021          * still cover any sane usecase.
1022          */
1023         for (i = 0; i < 8; i++) {
1024                 struct drm_plane *plane =
1025                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1026
1027                 if (IS_ERR(plane))
1028                         continue;
1029
1030                 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1031         }
1032
1033         /* Set up the legacy cursor after overlay initialization,
1034          * since we overlay planes on the CRTC in the order they were
1035          * initialized.
1036          */
1037         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1038         if (!IS_ERR(cursor_plane)) {
1039                 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1040                 cursor_plane->crtc = crtc;
1041                 crtc->cursor = cursor_plane;
1042         }
1043
1044         vc4_crtc_get_cob_allocation(vc4_crtc);
1045
1046         CRTC_WRITE(PV_INTEN, 0);
1047         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1048         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1049                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1050         if (ret)
1051                 goto err_destroy_planes;
1052
1053         vc4_set_crtc_possible_masks(drm, crtc);
1054
1055         for (i = 0; i < crtc->gamma_size; i++) {
1056                 vc4_crtc->lut_r[i] = i;
1057                 vc4_crtc->lut_g[i] = i;
1058                 vc4_crtc->lut_b[i] = i;
1059         }
1060
1061         platform_set_drvdata(pdev, vc4_crtc);
1062
1063         return 0;
1064
1065 err_destroy_planes:
1066         list_for_each_entry_safe(destroy_plane, temp,
1067                                  &drm->mode_config.plane_list, head) {
1068                 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1069                     destroy_plane->funcs->destroy(destroy_plane);
1070         }
1071 err:
1072         return ret;
1073 }
1074
1075 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1076                             void *data)
1077 {
1078         struct platform_device *pdev = to_platform_device(dev);
1079         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1080
1081         vc4_crtc_destroy(&vc4_crtc->base);
1082
1083         CRTC_WRITE(PV_INTEN, 0);
1084
1085         platform_set_drvdata(pdev, NULL);
1086 }
1087
1088 static const struct component_ops vc4_crtc_ops = {
1089         .bind   = vc4_crtc_bind,
1090         .unbind = vc4_crtc_unbind,
1091 };
1092
1093 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1094 {
1095         return component_add(&pdev->dev, &vc4_crtc_ops);
1096 }
1097
1098 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1099 {
1100         component_del(&pdev->dev, &vc4_crtc_ops);
1101         return 0;
1102 }
1103
1104 struct platform_driver vc4_crtc_driver = {
1105         .probe = vc4_crtc_dev_probe,
1106         .remove = vc4_crtc_dev_remove,
1107         .driver = {
1108                 .name = "vc4_crtc",
1109                 .of_match_table = vc4_crtc_dt_match,
1110         },
1111 };