Merge tag 'fixes-for-v3.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53         .name = "bo_count",
54         .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59         int i;
60
61         for (i = 0; i <= TTM_PL_PRIV5; i++)
62                 if (flags & (1 << i)) {
63                         *mem_type = i;
64                         return 0;
65                 }
66         return -EINVAL;
67 }
68
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73         pr_err("    has_type: %d\n", man->has_type);
74         pr_err("    use_type: %d\n", man->use_type);
75         pr_err("    flags: 0x%08X\n", man->flags);
76         pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77         pr_err("    size: %llu\n", man->size);
78         pr_err("    available_caching: 0x%08X\n", man->available_caching);
79         pr_err("    default_caching: 0x%08X\n", man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90                bo, bo->mem.num_pages, bo->mem.size >> 10,
91                bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 pr_err("  placement[%d]=0x%08X (%d)\n",
98                        i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140         size_t acc_size = bo->acc_size;
141
142         BUG_ON(atomic_read(&bo->list_kref.refcount));
143         BUG_ON(atomic_read(&bo->kref.refcount));
144         BUG_ON(atomic_read(&bo->cpu_writers));
145         BUG_ON(bo->sync_obj != NULL);
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->destroy)
154                 bo->destroy(bo);
155         else {
156                 kfree(bo);
157         }
158         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163         if (interruptible) {
164                 return wait_event_interruptible(bo->event_queue,
165                                                atomic_read(&bo->reserved) == 0);
166         } else {
167                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168                 return 0;
169         }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175         struct ttm_bo_device *bdev = bo->bdev;
176         struct ttm_mem_type_manager *man;
177
178         BUG_ON(!atomic_read(&bo->reserved));
179
180         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182                 BUG_ON(!list_empty(&bo->lru));
183
184                 man = &bdev->man[bo->mem.mem_type];
185                 list_add_tail(&bo->lru, &man->lru);
186                 kref_get(&bo->list_kref);
187
188                 if (bo->ttm != NULL) {
189                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
190                         kref_get(&bo->list_kref);
191                 }
192         }
193 }
194
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197         int put_count = 0;
198
199         if (!list_empty(&bo->swap)) {
200                 list_del_init(&bo->swap);
201                 ++put_count;
202         }
203         if (!list_empty(&bo->lru)) {
204                 list_del_init(&bo->lru);
205                 ++put_count;
206         }
207
208         /*
209          * TODO: Add a driver hook to delete from
210          * driver-specific LRU's here.
211          */
212
213         return put_count;
214 }
215
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217                           bool interruptible,
218                           bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220         struct ttm_bo_global *glob = bo->glob;
221         int ret;
222
223         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224                 /**
225                  * Deadlock avoidance for multi-bo reserving.
226                  */
227                 if (use_sequence && bo->seq_valid) {
228                         /**
229                          * We've already reserved this one.
230                          */
231                         if (unlikely(sequence == bo->val_seq))
232                                 return -EDEADLK;
233                         /**
234                          * Already reserved by a thread that will not back
235                          * off for us. We need to back off.
236                          */
237                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
238                                 return -EAGAIN;
239                 }
240
241                 if (no_wait)
242                         return -EBUSY;
243
244                 spin_unlock(&glob->lru_lock);
245                 ret = ttm_bo_wait_unreserved(bo, interruptible);
246                 spin_lock(&glob->lru_lock);
247
248                 if (unlikely(ret))
249                         return ret;
250         }
251
252         if (use_sequence) {
253                 /**
254                  * Wake up waiters that may need to recheck for deadlock,
255                  * if we decreased the sequence number.
256                  */
257                 if (unlikely((bo->val_seq - sequence < (1 << 31))
258                              || !bo->seq_valid))
259                         wake_up_all(&bo->event_queue);
260
261                 bo->val_seq = sequence;
262                 bo->seq_valid = true;
263         } else {
264                 bo->seq_valid = false;
265         }
266
267         return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273         BUG();
274 }
275
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277                          bool never_free)
278 {
279         kref_sub(&bo->list_kref, count,
280                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284                    bool interruptible,
285                    bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287         struct ttm_bo_global *glob = bo->glob;
288         int put_count = 0;
289         int ret;
290
291         spin_lock(&glob->lru_lock);
292         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293                                     sequence);
294         if (likely(ret == 0))
295                 put_count = ttm_bo_del_from_lru(bo);
296         spin_unlock(&glob->lru_lock);
297
298         ttm_bo_list_ref_sub(bo, put_count, true);
299
300         return ret;
301 }
302
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305         ttm_bo_add_to_lru(bo);
306         atomic_set(&bo->reserved, 0);
307         wake_up_all(&bo->event_queue);
308 }
309
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312         struct ttm_bo_global *glob = bo->glob;
313
314         spin_lock(&glob->lru_lock);
315         ttm_bo_unreserve_locked(bo);
316         spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319
320 /*
321  * Call bo->mutex locked.
322  */
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325         struct ttm_bo_device *bdev = bo->bdev;
326         struct ttm_bo_global *glob = bo->glob;
327         int ret = 0;
328         uint32_t page_flags = 0;
329
330         TTM_ASSERT_LOCKED(&bo->mutex);
331         bo->ttm = NULL;
332
333         if (bdev->need_dma32)
334                 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336         switch (bo->type) {
337         case ttm_bo_type_device:
338                 if (zero_alloc)
339                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340         case ttm_bo_type_kernel:
341                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342                                                       page_flags, glob->dummy_read_page);
343                 if (unlikely(bo->ttm == NULL))
344                         ret = -ENOMEM;
345                 break;
346         case ttm_bo_type_sg:
347                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
348                                                       page_flags | TTM_PAGE_FLAG_SG,
349                                                       glob->dummy_read_page);
350                 if (unlikely(bo->ttm == NULL)) {
351                         ret = -ENOMEM;
352                         break;
353                 }
354                 bo->ttm->sg = bo->sg;
355                 break;
356         default:
357                 pr_err("Illegal buffer object type\n");
358                 ret = -EINVAL;
359                 break;
360         }
361
362         return ret;
363 }
364
365 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
366                                   struct ttm_mem_reg *mem,
367                                   bool evict, bool interruptible,
368                                   bool no_wait_reserve, bool no_wait_gpu)
369 {
370         struct ttm_bo_device *bdev = bo->bdev;
371         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
372         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
373         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
374         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
375         int ret = 0;
376
377         if (old_is_pci || new_is_pci ||
378             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
379                 ret = ttm_mem_io_lock(old_man, true);
380                 if (unlikely(ret != 0))
381                         goto out_err;
382                 ttm_bo_unmap_virtual_locked(bo);
383                 ttm_mem_io_unlock(old_man);
384         }
385
386         /*
387          * Create and bind a ttm if required.
388          */
389
390         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
391                 if (bo->ttm == NULL) {
392                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
393                         ret = ttm_bo_add_ttm(bo, zero);
394                         if (ret)
395                                 goto out_err;
396                 }
397
398                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399                 if (ret)
400                         goto out_err;
401
402                 if (mem->mem_type != TTM_PL_SYSTEM) {
403                         ret = ttm_tt_bind(bo->ttm, mem);
404                         if (ret)
405                                 goto out_err;
406                 }
407
408                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409                         if (bdev->driver->move_notify)
410                                 bdev->driver->move_notify(bo, mem);
411                         bo->mem = *mem;
412                         mem->mm_node = NULL;
413                         goto moved;
414                 }
415         }
416
417         if (bdev->driver->move_notify)
418                 bdev->driver->move_notify(bo, mem);
419
420         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423         else if (bdev->driver->move)
424                 ret = bdev->driver->move(bo, evict, interruptible,
425                                          no_wait_reserve, no_wait_gpu, mem);
426         else
427                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428
429         if (ret) {
430                 if (bdev->driver->move_notify) {
431                         struct ttm_mem_reg tmp_mem = *mem;
432                         *mem = bo->mem;
433                         bo->mem = tmp_mem;
434                         bdev->driver->move_notify(bo, mem);
435                         bo->mem = *mem;
436                 }
437
438                 goto out_err;
439         }
440
441 moved:
442         if (bo->evicted) {
443                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
444                 if (ret)
445                         pr_err("Can not flush read caches\n");
446                 bo->evicted = false;
447         }
448
449         if (bo->mem.mm_node) {
450                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
451                     bdev->man[bo->mem.mem_type].gpu_offset;
452                 bo->cur_placement = bo->mem.placement;
453         } else
454                 bo->offset = 0;
455
456         return 0;
457
458 out_err:
459         new_man = &bdev->man[bo->mem.mem_type];
460         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
461                 ttm_tt_unbind(bo->ttm);
462                 ttm_tt_destroy(bo->ttm);
463                 bo->ttm = NULL;
464         }
465
466         return ret;
467 }
468
469 /**
470  * Call bo::reserved.
471  * Will release GPU memory type usage on destruction.
472  * This is the place to put in driver specific hooks to release
473  * driver private resources.
474  * Will release the bo::reserved lock.
475  */
476
477 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
478 {
479         if (bo->bdev->driver->move_notify)
480                 bo->bdev->driver->move_notify(bo, NULL);
481
482         if (bo->ttm) {
483                 ttm_tt_unbind(bo->ttm);
484                 ttm_tt_destroy(bo->ttm);
485                 bo->ttm = NULL;
486         }
487         ttm_bo_mem_put(bo, &bo->mem);
488
489         atomic_set(&bo->reserved, 0);
490
491         /*
492          * Make processes trying to reserve really pick it up.
493          */
494         smp_mb__after_atomic_dec();
495         wake_up_all(&bo->event_queue);
496 }
497
498 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
499 {
500         struct ttm_bo_device *bdev = bo->bdev;
501         struct ttm_bo_global *glob = bo->glob;
502         struct ttm_bo_driver *driver;
503         void *sync_obj = NULL;
504         void *sync_obj_arg;
505         int put_count;
506         int ret;
507
508         spin_lock(&bdev->fence_lock);
509         (void) ttm_bo_wait(bo, false, false, true);
510         if (!bo->sync_obj) {
511
512                 spin_lock(&glob->lru_lock);
513
514                 /**
515                  * Lock inversion between bo:reserve and bdev::fence_lock here,
516                  * but that's OK, since we're only trylocking.
517                  */
518
519                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
520
521                 if (unlikely(ret == -EBUSY))
522                         goto queue;
523
524                 spin_unlock(&bdev->fence_lock);
525                 put_count = ttm_bo_del_from_lru(bo);
526
527                 spin_unlock(&glob->lru_lock);
528                 ttm_bo_cleanup_memtype_use(bo);
529
530                 ttm_bo_list_ref_sub(bo, put_count, true);
531
532                 return;
533         } else {
534                 spin_lock(&glob->lru_lock);
535         }
536 queue:
537         driver = bdev->driver;
538         if (bo->sync_obj)
539                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
540         sync_obj_arg = bo->sync_obj_arg;
541
542         kref_get(&bo->list_kref);
543         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
544         spin_unlock(&glob->lru_lock);
545         spin_unlock(&bdev->fence_lock);
546
547         if (sync_obj) {
548                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
549                 driver->sync_obj_unref(&sync_obj);
550         }
551         schedule_delayed_work(&bdev->wq,
552                               ((HZ / 100) < 1) ? 1 : HZ / 100);
553 }
554
555 /**
556  * function ttm_bo_cleanup_refs
557  * If bo idle, remove from delayed- and lru lists, and unref.
558  * If not idle, do nothing.
559  *
560  * @interruptible         Any sleeps should occur interruptibly.
561  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
562  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
563  */
564
565 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
566                                bool interruptible,
567                                bool no_wait_reserve,
568                                bool no_wait_gpu)
569 {
570         struct ttm_bo_device *bdev = bo->bdev;
571         struct ttm_bo_global *glob = bo->glob;
572         int put_count;
573         int ret = 0;
574
575 retry:
576         spin_lock(&bdev->fence_lock);
577         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
578         spin_unlock(&bdev->fence_lock);
579
580         if (unlikely(ret != 0))
581                 return ret;
582
583 retry_reserve:
584         spin_lock(&glob->lru_lock);
585
586         if (unlikely(list_empty(&bo->ddestroy))) {
587                 spin_unlock(&glob->lru_lock);
588                 return 0;
589         }
590
591         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
592
593         if (unlikely(ret == -EBUSY)) {
594                 spin_unlock(&glob->lru_lock);
595                 if (likely(!no_wait_reserve))
596                         ret = ttm_bo_wait_unreserved(bo, interruptible);
597                 if (unlikely(ret != 0))
598                         return ret;
599
600                 goto retry_reserve;
601         }
602
603         BUG_ON(ret != 0);
604
605         /**
606          * We can re-check for sync object without taking
607          * the bo::lock since setting the sync object requires
608          * also bo::reserved. A busy object at this point may
609          * be caused by another thread recently starting an accelerated
610          * eviction.
611          */
612
613         if (unlikely(bo->sync_obj)) {
614                 atomic_set(&bo->reserved, 0);
615                 wake_up_all(&bo->event_queue);
616                 spin_unlock(&glob->lru_lock);
617                 goto retry;
618         }
619
620         put_count = ttm_bo_del_from_lru(bo);
621         list_del_init(&bo->ddestroy);
622         ++put_count;
623
624         spin_unlock(&glob->lru_lock);
625         ttm_bo_cleanup_memtype_use(bo);
626
627         ttm_bo_list_ref_sub(bo, put_count, true);
628
629         return 0;
630 }
631
632 /**
633  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
634  * encountered buffers.
635  */
636
637 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
638 {
639         struct ttm_bo_global *glob = bdev->glob;
640         struct ttm_buffer_object *entry = NULL;
641         int ret = 0;
642
643         spin_lock(&glob->lru_lock);
644         if (list_empty(&bdev->ddestroy))
645                 goto out_unlock;
646
647         entry = list_first_entry(&bdev->ddestroy,
648                 struct ttm_buffer_object, ddestroy);
649         kref_get(&entry->list_kref);
650
651         for (;;) {
652                 struct ttm_buffer_object *nentry = NULL;
653
654                 if (entry->ddestroy.next != &bdev->ddestroy) {
655                         nentry = list_first_entry(&entry->ddestroy,
656                                 struct ttm_buffer_object, ddestroy);
657                         kref_get(&nentry->list_kref);
658                 }
659
660                 spin_unlock(&glob->lru_lock);
661                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
662                                           !remove_all);
663                 kref_put(&entry->list_kref, ttm_bo_release_list);
664                 entry = nentry;
665
666                 if (ret || !entry)
667                         goto out;
668
669                 spin_lock(&glob->lru_lock);
670                 if (list_empty(&entry->ddestroy))
671                         break;
672         }
673
674 out_unlock:
675         spin_unlock(&glob->lru_lock);
676 out:
677         if (entry)
678                 kref_put(&entry->list_kref, ttm_bo_release_list);
679         return ret;
680 }
681
682 static void ttm_bo_delayed_workqueue(struct work_struct *work)
683 {
684         struct ttm_bo_device *bdev =
685             container_of(work, struct ttm_bo_device, wq.work);
686
687         if (ttm_bo_delayed_delete(bdev, false)) {
688                 schedule_delayed_work(&bdev->wq,
689                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
690         }
691 }
692
693 static void ttm_bo_release(struct kref *kref)
694 {
695         struct ttm_buffer_object *bo =
696             container_of(kref, struct ttm_buffer_object, kref);
697         struct ttm_bo_device *bdev = bo->bdev;
698         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
699
700         if (likely(bo->vm_node != NULL)) {
701                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
702                 drm_mm_put_block(bo->vm_node);
703                 bo->vm_node = NULL;
704         }
705         write_unlock(&bdev->vm_lock);
706         ttm_mem_io_lock(man, false);
707         ttm_mem_io_free_vm(bo);
708         ttm_mem_io_unlock(man);
709         ttm_bo_cleanup_refs_or_queue(bo);
710         kref_put(&bo->list_kref, ttm_bo_release_list);
711         write_lock(&bdev->vm_lock);
712 }
713
714 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
715 {
716         struct ttm_buffer_object *bo = *p_bo;
717         struct ttm_bo_device *bdev = bo->bdev;
718
719         *p_bo = NULL;
720         write_lock(&bdev->vm_lock);
721         kref_put(&bo->kref, ttm_bo_release);
722         write_unlock(&bdev->vm_lock);
723 }
724 EXPORT_SYMBOL(ttm_bo_unref);
725
726 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
727 {
728         return cancel_delayed_work_sync(&bdev->wq);
729 }
730 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
731
732 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
733 {
734         if (resched)
735                 schedule_delayed_work(&bdev->wq,
736                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
737 }
738 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
739
740 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
741                         bool no_wait_reserve, bool no_wait_gpu)
742 {
743         struct ttm_bo_device *bdev = bo->bdev;
744         struct ttm_mem_reg evict_mem;
745         struct ttm_placement placement;
746         int ret = 0;
747
748         spin_lock(&bdev->fence_lock);
749         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
750         spin_unlock(&bdev->fence_lock);
751
752         if (unlikely(ret != 0)) {
753                 if (ret != -ERESTARTSYS) {
754                         pr_err("Failed to expire sync object before buffer eviction\n");
755                 }
756                 goto out;
757         }
758
759         BUG_ON(!atomic_read(&bo->reserved));
760
761         evict_mem = bo->mem;
762         evict_mem.mm_node = NULL;
763         evict_mem.bus.io_reserved_vm = false;
764         evict_mem.bus.io_reserved_count = 0;
765
766         placement.fpfn = 0;
767         placement.lpfn = 0;
768         placement.num_placement = 0;
769         placement.num_busy_placement = 0;
770         bdev->driver->evict_flags(bo, &placement);
771         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
772                                 no_wait_reserve, no_wait_gpu);
773         if (ret) {
774                 if (ret != -ERESTARTSYS) {
775                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
776                                bo);
777                         ttm_bo_mem_space_debug(bo, &placement);
778                 }
779                 goto out;
780         }
781
782         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
783                                      no_wait_reserve, no_wait_gpu);
784         if (ret) {
785                 if (ret != -ERESTARTSYS)
786                         pr_err("Buffer eviction failed\n");
787                 ttm_bo_mem_put(bo, &evict_mem);
788                 goto out;
789         }
790         bo->evicted = true;
791 out:
792         return ret;
793 }
794
795 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
796                                 uint32_t mem_type,
797                                 bool interruptible, bool no_wait_reserve,
798                                 bool no_wait_gpu)
799 {
800         struct ttm_bo_global *glob = bdev->glob;
801         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
802         struct ttm_buffer_object *bo;
803         int ret, put_count = 0;
804
805 retry:
806         spin_lock(&glob->lru_lock);
807         if (list_empty(&man->lru)) {
808                 spin_unlock(&glob->lru_lock);
809                 return -EBUSY;
810         }
811
812         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
813         kref_get(&bo->list_kref);
814
815         if (!list_empty(&bo->ddestroy)) {
816                 spin_unlock(&glob->lru_lock);
817                 ret = ttm_bo_cleanup_refs(bo, interruptible,
818                                           no_wait_reserve, no_wait_gpu);
819                 kref_put(&bo->list_kref, ttm_bo_release_list);
820
821                 return ret;
822         }
823
824         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
825
826         if (unlikely(ret == -EBUSY)) {
827                 spin_unlock(&glob->lru_lock);
828                 if (likely(!no_wait_reserve))
829                         ret = ttm_bo_wait_unreserved(bo, interruptible);
830
831                 kref_put(&bo->list_kref, ttm_bo_release_list);
832
833                 /**
834                  * We *need* to retry after releasing the lru lock.
835                  */
836
837                 if (unlikely(ret != 0))
838                         return ret;
839                 goto retry;
840         }
841
842         put_count = ttm_bo_del_from_lru(bo);
843         spin_unlock(&glob->lru_lock);
844
845         BUG_ON(ret != 0);
846
847         ttm_bo_list_ref_sub(bo, put_count, true);
848
849         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
850         ttm_bo_unreserve(bo);
851
852         kref_put(&bo->list_kref, ttm_bo_release_list);
853         return ret;
854 }
855
856 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
857 {
858         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
859
860         if (mem->mm_node)
861                 (*man->func->put_node)(man, mem);
862 }
863 EXPORT_SYMBOL(ttm_bo_mem_put);
864
865 /**
866  * Repeatedly evict memory from the LRU for @mem_type until we create enough
867  * space, or we've evicted everything and there isn't enough space.
868  */
869 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
870                                         uint32_t mem_type,
871                                         struct ttm_placement *placement,
872                                         struct ttm_mem_reg *mem,
873                                         bool interruptible,
874                                         bool no_wait_reserve,
875                                         bool no_wait_gpu)
876 {
877         struct ttm_bo_device *bdev = bo->bdev;
878         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
879         int ret;
880
881         do {
882                 ret = (*man->func->get_node)(man, bo, placement, mem);
883                 if (unlikely(ret != 0))
884                         return ret;
885                 if (mem->mm_node)
886                         break;
887                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
888                                                 no_wait_reserve, no_wait_gpu);
889                 if (unlikely(ret != 0))
890                         return ret;
891         } while (1);
892         if (mem->mm_node == NULL)
893                 return -ENOMEM;
894         mem->mem_type = mem_type;
895         return 0;
896 }
897
898 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
899                                       uint32_t cur_placement,
900                                       uint32_t proposed_placement)
901 {
902         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
903         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
904
905         /**
906          * Keep current caching if possible.
907          */
908
909         if ((cur_placement & caching) != 0)
910                 result |= (cur_placement & caching);
911         else if ((man->default_caching & caching) != 0)
912                 result |= man->default_caching;
913         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
914                 result |= TTM_PL_FLAG_CACHED;
915         else if ((TTM_PL_FLAG_WC & caching) != 0)
916                 result |= TTM_PL_FLAG_WC;
917         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
918                 result |= TTM_PL_FLAG_UNCACHED;
919
920         return result;
921 }
922
923 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
924                                  uint32_t mem_type,
925                                  uint32_t proposed_placement,
926                                  uint32_t *masked_placement)
927 {
928         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
929
930         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
931                 return false;
932
933         if ((proposed_placement & man->available_caching) == 0)
934                 return false;
935
936         cur_flags |= (proposed_placement & man->available_caching);
937
938         *masked_placement = cur_flags;
939         return true;
940 }
941
942 /**
943  * Creates space for memory region @mem according to its type.
944  *
945  * This function first searches for free space in compatible memory types in
946  * the priority order defined by the driver.  If free space isn't found, then
947  * ttm_bo_mem_force_space is attempted in priority order to evict and find
948  * space.
949  */
950 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
951                         struct ttm_placement *placement,
952                         struct ttm_mem_reg *mem,
953                         bool interruptible, bool no_wait_reserve,
954                         bool no_wait_gpu)
955 {
956         struct ttm_bo_device *bdev = bo->bdev;
957         struct ttm_mem_type_manager *man;
958         uint32_t mem_type = TTM_PL_SYSTEM;
959         uint32_t cur_flags = 0;
960         bool type_found = false;
961         bool type_ok = false;
962         bool has_erestartsys = false;
963         int i, ret;
964
965         mem->mm_node = NULL;
966         for (i = 0; i < placement->num_placement; ++i) {
967                 ret = ttm_mem_type_from_flags(placement->placement[i],
968                                                 &mem_type);
969                 if (ret)
970                         return ret;
971                 man = &bdev->man[mem_type];
972
973                 type_ok = ttm_bo_mt_compatible(man,
974                                                 mem_type,
975                                                 placement->placement[i],
976                                                 &cur_flags);
977
978                 if (!type_ok)
979                         continue;
980
981                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
982                                                   cur_flags);
983                 /*
984                  * Use the access and other non-mapping-related flag bits from
985                  * the memory placement flags to the current flags
986                  */
987                 ttm_flag_masked(&cur_flags, placement->placement[i],
988                                 ~TTM_PL_MASK_MEMTYPE);
989
990                 if (mem_type == TTM_PL_SYSTEM)
991                         break;
992
993                 if (man->has_type && man->use_type) {
994                         type_found = true;
995                         ret = (*man->func->get_node)(man, bo, placement, mem);
996                         if (unlikely(ret))
997                                 return ret;
998                 }
999                 if (mem->mm_node)
1000                         break;
1001         }
1002
1003         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1004                 mem->mem_type = mem_type;
1005                 mem->placement = cur_flags;
1006                 return 0;
1007         }
1008
1009         if (!type_found)
1010                 return -EINVAL;
1011
1012         for (i = 0; i < placement->num_busy_placement; ++i) {
1013                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1014                                                 &mem_type);
1015                 if (ret)
1016                         return ret;
1017                 man = &bdev->man[mem_type];
1018                 if (!man->has_type)
1019                         continue;
1020                 if (!ttm_bo_mt_compatible(man,
1021                                                 mem_type,
1022                                                 placement->busy_placement[i],
1023                                                 &cur_flags))
1024                         continue;
1025
1026                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1027                                                   cur_flags);
1028                 /*
1029                  * Use the access and other non-mapping-related flag bits from
1030                  * the memory placement flags to the current flags
1031                  */
1032                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1033                                 ~TTM_PL_MASK_MEMTYPE);
1034
1035
1036                 if (mem_type == TTM_PL_SYSTEM) {
1037                         mem->mem_type = mem_type;
1038                         mem->placement = cur_flags;
1039                         mem->mm_node = NULL;
1040                         return 0;
1041                 }
1042
1043                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1044                                                 interruptible, no_wait_reserve, no_wait_gpu);
1045                 if (ret == 0 && mem->mm_node) {
1046                         mem->placement = cur_flags;
1047                         return 0;
1048                 }
1049                 if (ret == -ERESTARTSYS)
1050                         has_erestartsys = true;
1051         }
1052         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1053         return ret;
1054 }
1055 EXPORT_SYMBOL(ttm_bo_mem_space);
1056
1057 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1058 {
1059         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1060                 return -EBUSY;
1061
1062         return wait_event_interruptible(bo->event_queue,
1063                                         atomic_read(&bo->cpu_writers) == 0);
1064 }
1065 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1066
1067 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1068                         struct ttm_placement *placement,
1069                         bool interruptible, bool no_wait_reserve,
1070                         bool no_wait_gpu)
1071 {
1072         int ret = 0;
1073         struct ttm_mem_reg mem;
1074         struct ttm_bo_device *bdev = bo->bdev;
1075
1076         BUG_ON(!atomic_read(&bo->reserved));
1077
1078         /*
1079          * FIXME: It's possible to pipeline buffer moves.
1080          * Have the driver move function wait for idle when necessary,
1081          * instead of doing it here.
1082          */
1083         spin_lock(&bdev->fence_lock);
1084         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1085         spin_unlock(&bdev->fence_lock);
1086         if (ret)
1087                 return ret;
1088         mem.num_pages = bo->num_pages;
1089         mem.size = mem.num_pages << PAGE_SHIFT;
1090         mem.page_alignment = bo->mem.page_alignment;
1091         mem.bus.io_reserved_vm = false;
1092         mem.bus.io_reserved_count = 0;
1093         /*
1094          * Determine where to move the buffer.
1095          */
1096         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1097         if (ret)
1098                 goto out_unlock;
1099         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1100 out_unlock:
1101         if (ret && mem.mm_node)
1102                 ttm_bo_mem_put(bo, &mem);
1103         return ret;
1104 }
1105
1106 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1107                              struct ttm_mem_reg *mem)
1108 {
1109         int i;
1110
1111         if (mem->mm_node && placement->lpfn != 0 &&
1112             (mem->start < placement->fpfn ||
1113              mem->start + mem->num_pages > placement->lpfn))
1114                 return -1;
1115
1116         for (i = 0; i < placement->num_placement; i++) {
1117                 if ((placement->placement[i] & mem->placement &
1118                         TTM_PL_MASK_CACHING) &&
1119                         (placement->placement[i] & mem->placement &
1120                         TTM_PL_MASK_MEM))
1121                         return i;
1122         }
1123         return -1;
1124 }
1125
1126 int ttm_bo_validate(struct ttm_buffer_object *bo,
1127                         struct ttm_placement *placement,
1128                         bool interruptible, bool no_wait_reserve,
1129                         bool no_wait_gpu)
1130 {
1131         int ret;
1132
1133         BUG_ON(!atomic_read(&bo->reserved));
1134         /* Check that range is valid */
1135         if (placement->lpfn || placement->fpfn)
1136                 if (placement->fpfn > placement->lpfn ||
1137                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1138                         return -EINVAL;
1139         /*
1140          * Check whether we need to move buffer.
1141          */
1142         ret = ttm_bo_mem_compat(placement, &bo->mem);
1143         if (ret < 0) {
1144                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1145                 if (ret)
1146                         return ret;
1147         } else {
1148                 /*
1149                  * Use the access and other non-mapping-related flag bits from
1150                  * the compatible memory placement flags to the active flags
1151                  */
1152                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1153                                 ~TTM_PL_MASK_MEMTYPE);
1154         }
1155         /*
1156          * We might need to add a TTM.
1157          */
1158         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1159                 ret = ttm_bo_add_ttm(bo, true);
1160                 if (ret)
1161                         return ret;
1162         }
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(ttm_bo_validate);
1166
1167 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1168                                 struct ttm_placement *placement)
1169 {
1170         BUG_ON((placement->fpfn || placement->lpfn) &&
1171                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1172
1173         return 0;
1174 }
1175
1176 int ttm_bo_init(struct ttm_bo_device *bdev,
1177                 struct ttm_buffer_object *bo,
1178                 unsigned long size,
1179                 enum ttm_bo_type type,
1180                 struct ttm_placement *placement,
1181                 uint32_t page_alignment,
1182                 unsigned long buffer_start,
1183                 bool interruptible,
1184                 struct file *persistent_swap_storage,
1185                 size_t acc_size,
1186                 struct sg_table *sg,
1187                 void (*destroy) (struct ttm_buffer_object *))
1188 {
1189         int ret = 0;
1190         unsigned long num_pages;
1191         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1192
1193         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1194         if (ret) {
1195                 pr_err("Out of kernel memory\n");
1196                 if (destroy)
1197                         (*destroy)(bo);
1198                 else
1199                         kfree(bo);
1200                 return -ENOMEM;
1201         }
1202
1203         size += buffer_start & ~PAGE_MASK;
1204         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1205         if (num_pages == 0) {
1206                 pr_err("Illegal buffer object size\n");
1207                 if (destroy)
1208                         (*destroy)(bo);
1209                 else
1210                         kfree(bo);
1211                 ttm_mem_global_free(mem_glob, acc_size);
1212                 return -EINVAL;
1213         }
1214         bo->destroy = destroy;
1215
1216         kref_init(&bo->kref);
1217         kref_init(&bo->list_kref);
1218         atomic_set(&bo->cpu_writers, 0);
1219         atomic_set(&bo->reserved, 1);
1220         init_waitqueue_head(&bo->event_queue);
1221         INIT_LIST_HEAD(&bo->lru);
1222         INIT_LIST_HEAD(&bo->ddestroy);
1223         INIT_LIST_HEAD(&bo->swap);
1224         INIT_LIST_HEAD(&bo->io_reserve_lru);
1225         bo->bdev = bdev;
1226         bo->glob = bdev->glob;
1227         bo->type = type;
1228         bo->num_pages = num_pages;
1229         bo->mem.size = num_pages << PAGE_SHIFT;
1230         bo->mem.mem_type = TTM_PL_SYSTEM;
1231         bo->mem.num_pages = bo->num_pages;
1232         bo->mem.mm_node = NULL;
1233         bo->mem.page_alignment = page_alignment;
1234         bo->mem.bus.io_reserved_vm = false;
1235         bo->mem.bus.io_reserved_count = 0;
1236         bo->buffer_start = buffer_start & PAGE_MASK;
1237         bo->priv_flags = 0;
1238         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1239         bo->seq_valid = false;
1240         bo->persistent_swap_storage = persistent_swap_storage;
1241         bo->acc_size = acc_size;
1242         bo->sg = sg;
1243         atomic_inc(&bo->glob->bo_count);
1244
1245         ret = ttm_bo_check_placement(bo, placement);
1246         if (unlikely(ret != 0))
1247                 goto out_err;
1248
1249         /*
1250          * For ttm_bo_type_device buffers, allocate
1251          * address space from the device.
1252          */
1253         if (bo->type == ttm_bo_type_device ||
1254             bo->type == ttm_bo_type_sg) {
1255                 ret = ttm_bo_setup_vm(bo);
1256                 if (ret)
1257                         goto out_err;
1258         }
1259
1260         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1261         if (ret)
1262                 goto out_err;
1263
1264         ttm_bo_unreserve(bo);
1265         return 0;
1266
1267 out_err:
1268         ttm_bo_unreserve(bo);
1269         ttm_bo_unref(&bo);
1270
1271         return ret;
1272 }
1273 EXPORT_SYMBOL(ttm_bo_init);
1274
1275 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1276                        unsigned long bo_size,
1277                        unsigned struct_size)
1278 {
1279         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1280         size_t size = 0;
1281
1282         size += ttm_round_pot(struct_size);
1283         size += PAGE_ALIGN(npages * sizeof(void *));
1284         size += ttm_round_pot(sizeof(struct ttm_tt));
1285         return size;
1286 }
1287 EXPORT_SYMBOL(ttm_bo_acc_size);
1288
1289 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1290                            unsigned long bo_size,
1291                            unsigned struct_size)
1292 {
1293         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1294         size_t size = 0;
1295
1296         size += ttm_round_pot(struct_size);
1297         size += PAGE_ALIGN(npages * sizeof(void *));
1298         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1299         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1300         return size;
1301 }
1302 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1303
1304 int ttm_bo_create(struct ttm_bo_device *bdev,
1305                         unsigned long size,
1306                         enum ttm_bo_type type,
1307                         struct ttm_placement *placement,
1308                         uint32_t page_alignment,
1309                         unsigned long buffer_start,
1310                         bool interruptible,
1311                         struct file *persistent_swap_storage,
1312                         struct ttm_buffer_object **p_bo)
1313 {
1314         struct ttm_buffer_object *bo;
1315         size_t acc_size;
1316         int ret;
1317
1318         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1319         if (unlikely(bo == NULL))
1320                 return -ENOMEM;
1321
1322         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1323         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1324                                 buffer_start, interruptible,
1325                           persistent_swap_storage, acc_size, NULL, NULL);
1326         if (likely(ret == 0))
1327                 *p_bo = bo;
1328
1329         return ret;
1330 }
1331 EXPORT_SYMBOL(ttm_bo_create);
1332
1333 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1334                                         unsigned mem_type, bool allow_errors)
1335 {
1336         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1337         struct ttm_bo_global *glob = bdev->glob;
1338         int ret;
1339
1340         /*
1341          * Can't use standard list traversal since we're unlocking.
1342          */
1343
1344         spin_lock(&glob->lru_lock);
1345         while (!list_empty(&man->lru)) {
1346                 spin_unlock(&glob->lru_lock);
1347                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1348                 if (ret) {
1349                         if (allow_errors) {
1350                                 return ret;
1351                         } else {
1352                                 pr_err("Cleanup eviction failed\n");
1353                         }
1354                 }
1355                 spin_lock(&glob->lru_lock);
1356         }
1357         spin_unlock(&glob->lru_lock);
1358         return 0;
1359 }
1360
1361 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1362 {
1363         struct ttm_mem_type_manager *man;
1364         int ret = -EINVAL;
1365
1366         if (mem_type >= TTM_NUM_MEM_TYPES) {
1367                 pr_err("Illegal memory type %d\n", mem_type);
1368                 return ret;
1369         }
1370         man = &bdev->man[mem_type];
1371
1372         if (!man->has_type) {
1373                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1374                        mem_type);
1375                 return ret;
1376         }
1377
1378         man->use_type = false;
1379         man->has_type = false;
1380
1381         ret = 0;
1382         if (mem_type > 0) {
1383                 ttm_bo_force_list_clean(bdev, mem_type, false);
1384
1385                 ret = (*man->func->takedown)(man);
1386         }
1387
1388         return ret;
1389 }
1390 EXPORT_SYMBOL(ttm_bo_clean_mm);
1391
1392 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1393 {
1394         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1395
1396         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1397                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1398                 return -EINVAL;
1399         }
1400
1401         if (!man->has_type) {
1402                 pr_err("Memory type %u has not been initialized\n", mem_type);
1403                 return 0;
1404         }
1405
1406         return ttm_bo_force_list_clean(bdev, mem_type, true);
1407 }
1408 EXPORT_SYMBOL(ttm_bo_evict_mm);
1409
1410 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1411                         unsigned long p_size)
1412 {
1413         int ret = -EINVAL;
1414         struct ttm_mem_type_manager *man;
1415
1416         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1417         man = &bdev->man[type];
1418         BUG_ON(man->has_type);
1419         man->io_reserve_fastpath = true;
1420         man->use_io_reserve_lru = false;
1421         mutex_init(&man->io_reserve_mutex);
1422         INIT_LIST_HEAD(&man->io_reserve_lru);
1423
1424         ret = bdev->driver->init_mem_type(bdev, type, man);
1425         if (ret)
1426                 return ret;
1427         man->bdev = bdev;
1428
1429         ret = 0;
1430         if (type != TTM_PL_SYSTEM) {
1431                 ret = (*man->func->init)(man, p_size);
1432                 if (ret)
1433                         return ret;
1434         }
1435         man->has_type = true;
1436         man->use_type = true;
1437         man->size = p_size;
1438
1439         INIT_LIST_HEAD(&man->lru);
1440
1441         return 0;
1442 }
1443 EXPORT_SYMBOL(ttm_bo_init_mm);
1444
1445 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1446 {
1447         struct ttm_bo_global *glob =
1448                 container_of(kobj, struct ttm_bo_global, kobj);
1449
1450         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1451         __free_page(glob->dummy_read_page);
1452         kfree(glob);
1453 }
1454
1455 void ttm_bo_global_release(struct drm_global_reference *ref)
1456 {
1457         struct ttm_bo_global *glob = ref->object;
1458
1459         kobject_del(&glob->kobj);
1460         kobject_put(&glob->kobj);
1461 }
1462 EXPORT_SYMBOL(ttm_bo_global_release);
1463
1464 int ttm_bo_global_init(struct drm_global_reference *ref)
1465 {
1466         struct ttm_bo_global_ref *bo_ref =
1467                 container_of(ref, struct ttm_bo_global_ref, ref);
1468         struct ttm_bo_global *glob = ref->object;
1469         int ret;
1470
1471         mutex_init(&glob->device_list_mutex);
1472         spin_lock_init(&glob->lru_lock);
1473         glob->mem_glob = bo_ref->mem_glob;
1474         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1475
1476         if (unlikely(glob->dummy_read_page == NULL)) {
1477                 ret = -ENOMEM;
1478                 goto out_no_drp;
1479         }
1480
1481         INIT_LIST_HEAD(&glob->swap_lru);
1482         INIT_LIST_HEAD(&glob->device_list);
1483
1484         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1485         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1486         if (unlikely(ret != 0)) {
1487                 pr_err("Could not register buffer object swapout\n");
1488                 goto out_no_shrink;
1489         }
1490
1491         atomic_set(&glob->bo_count, 0);
1492
1493         ret = kobject_init_and_add(
1494                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1495         if (unlikely(ret != 0))
1496                 kobject_put(&glob->kobj);
1497         return ret;
1498 out_no_shrink:
1499         __free_page(glob->dummy_read_page);
1500 out_no_drp:
1501         kfree(glob);
1502         return ret;
1503 }
1504 EXPORT_SYMBOL(ttm_bo_global_init);
1505
1506
1507 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1508 {
1509         int ret = 0;
1510         unsigned i = TTM_NUM_MEM_TYPES;
1511         struct ttm_mem_type_manager *man;
1512         struct ttm_bo_global *glob = bdev->glob;
1513
1514         while (i--) {
1515                 man = &bdev->man[i];
1516                 if (man->has_type) {
1517                         man->use_type = false;
1518                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1519                                 ret = -EBUSY;
1520                                 pr_err("DRM memory manager type %d is not clean\n",
1521                                        i);
1522                         }
1523                         man->has_type = false;
1524                 }
1525         }
1526
1527         mutex_lock(&glob->device_list_mutex);
1528         list_del(&bdev->device_list);
1529         mutex_unlock(&glob->device_list_mutex);
1530
1531         cancel_delayed_work_sync(&bdev->wq);
1532
1533         while (ttm_bo_delayed_delete(bdev, true))
1534                 ;
1535
1536         spin_lock(&glob->lru_lock);
1537         if (list_empty(&bdev->ddestroy))
1538                 TTM_DEBUG("Delayed destroy list was clean\n");
1539
1540         if (list_empty(&bdev->man[0].lru))
1541                 TTM_DEBUG("Swap list was clean\n");
1542         spin_unlock(&glob->lru_lock);
1543
1544         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1545         write_lock(&bdev->vm_lock);
1546         drm_mm_takedown(&bdev->addr_space_mm);
1547         write_unlock(&bdev->vm_lock);
1548
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(ttm_bo_device_release);
1552
1553 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1554                        struct ttm_bo_global *glob,
1555                        struct ttm_bo_driver *driver,
1556                        uint64_t file_page_offset,
1557                        bool need_dma32)
1558 {
1559         int ret = -EINVAL;
1560
1561         rwlock_init(&bdev->vm_lock);
1562         bdev->driver = driver;
1563
1564         memset(bdev->man, 0, sizeof(bdev->man));
1565
1566         /*
1567          * Initialize the system memory buffer type.
1568          * Other types need to be driver / IOCTL initialized.
1569          */
1570         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1571         if (unlikely(ret != 0))
1572                 goto out_no_sys;
1573
1574         bdev->addr_space_rb = RB_ROOT;
1575         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1576         if (unlikely(ret != 0))
1577                 goto out_no_addr_mm;
1578
1579         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1580         bdev->nice_mode = true;
1581         INIT_LIST_HEAD(&bdev->ddestroy);
1582         bdev->dev_mapping = NULL;
1583         bdev->glob = glob;
1584         bdev->need_dma32 = need_dma32;
1585         bdev->val_seq = 0;
1586         spin_lock_init(&bdev->fence_lock);
1587         mutex_lock(&glob->device_list_mutex);
1588         list_add_tail(&bdev->device_list, &glob->device_list);
1589         mutex_unlock(&glob->device_list_mutex);
1590
1591         return 0;
1592 out_no_addr_mm:
1593         ttm_bo_clean_mm(bdev, 0);
1594 out_no_sys:
1595         return ret;
1596 }
1597 EXPORT_SYMBOL(ttm_bo_device_init);
1598
1599 /*
1600  * buffer object vm functions.
1601  */
1602
1603 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1604 {
1605         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1606
1607         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1608                 if (mem->mem_type == TTM_PL_SYSTEM)
1609                         return false;
1610
1611                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1612                         return false;
1613
1614                 if (mem->placement & TTM_PL_FLAG_CACHED)
1615                         return false;
1616         }
1617         return true;
1618 }
1619
1620 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1621 {
1622         struct ttm_bo_device *bdev = bo->bdev;
1623         loff_t offset = (loff_t) bo->addr_space_offset;
1624         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1625
1626         if (!bdev->dev_mapping)
1627                 return;
1628         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1629         ttm_mem_io_free_vm(bo);
1630 }
1631
1632 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1633 {
1634         struct ttm_bo_device *bdev = bo->bdev;
1635         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1636
1637         ttm_mem_io_lock(man, false);
1638         ttm_bo_unmap_virtual_locked(bo);
1639         ttm_mem_io_unlock(man);
1640 }
1641
1642
1643 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1644
1645 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1646 {
1647         struct ttm_bo_device *bdev = bo->bdev;
1648         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1649         struct rb_node *parent = NULL;
1650         struct ttm_buffer_object *cur_bo;
1651         unsigned long offset = bo->vm_node->start;
1652         unsigned long cur_offset;
1653
1654         while (*cur) {
1655                 parent = *cur;
1656                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1657                 cur_offset = cur_bo->vm_node->start;
1658                 if (offset < cur_offset)
1659                         cur = &parent->rb_left;
1660                 else if (offset > cur_offset)
1661                         cur = &parent->rb_right;
1662                 else
1663                         BUG();
1664         }
1665
1666         rb_link_node(&bo->vm_rb, parent, cur);
1667         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1668 }
1669
1670 /**
1671  * ttm_bo_setup_vm:
1672  *
1673  * @bo: the buffer to allocate address space for
1674  *
1675  * Allocate address space in the drm device so that applications
1676  * can mmap the buffer and access the contents. This only
1677  * applies to ttm_bo_type_device objects as others are not
1678  * placed in the drm device address space.
1679  */
1680
1681 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1682 {
1683         struct ttm_bo_device *bdev = bo->bdev;
1684         int ret;
1685
1686 retry_pre_get:
1687         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1688         if (unlikely(ret != 0))
1689                 return ret;
1690
1691         write_lock(&bdev->vm_lock);
1692         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1693                                          bo->mem.num_pages, 0, 0);
1694
1695         if (unlikely(bo->vm_node == NULL)) {
1696                 ret = -ENOMEM;
1697                 goto out_unlock;
1698         }
1699
1700         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1701                                               bo->mem.num_pages, 0);
1702
1703         if (unlikely(bo->vm_node == NULL)) {
1704                 write_unlock(&bdev->vm_lock);
1705                 goto retry_pre_get;
1706         }
1707
1708         ttm_bo_vm_insert_rb(bo);
1709         write_unlock(&bdev->vm_lock);
1710         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1711
1712         return 0;
1713 out_unlock:
1714         write_unlock(&bdev->vm_lock);
1715         return ret;
1716 }
1717
1718 int ttm_bo_wait(struct ttm_buffer_object *bo,
1719                 bool lazy, bool interruptible, bool no_wait)
1720 {
1721         struct ttm_bo_driver *driver = bo->bdev->driver;
1722         struct ttm_bo_device *bdev = bo->bdev;
1723         void *sync_obj;
1724         void *sync_obj_arg;
1725         int ret = 0;
1726
1727         if (likely(bo->sync_obj == NULL))
1728                 return 0;
1729
1730         while (bo->sync_obj) {
1731
1732                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1733                         void *tmp_obj = bo->sync_obj;
1734                         bo->sync_obj = NULL;
1735                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1736                         spin_unlock(&bdev->fence_lock);
1737                         driver->sync_obj_unref(&tmp_obj);
1738                         spin_lock(&bdev->fence_lock);
1739                         continue;
1740                 }
1741
1742                 if (no_wait)
1743                         return -EBUSY;
1744
1745                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1746                 sync_obj_arg = bo->sync_obj_arg;
1747                 spin_unlock(&bdev->fence_lock);
1748                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1749                                             lazy, interruptible);
1750                 if (unlikely(ret != 0)) {
1751                         driver->sync_obj_unref(&sync_obj);
1752                         spin_lock(&bdev->fence_lock);
1753                         return ret;
1754                 }
1755                 spin_lock(&bdev->fence_lock);
1756                 if (likely(bo->sync_obj == sync_obj &&
1757                            bo->sync_obj_arg == sync_obj_arg)) {
1758                         void *tmp_obj = bo->sync_obj;
1759                         bo->sync_obj = NULL;
1760                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1761                                   &bo->priv_flags);
1762                         spin_unlock(&bdev->fence_lock);
1763                         driver->sync_obj_unref(&sync_obj);
1764                         driver->sync_obj_unref(&tmp_obj);
1765                         spin_lock(&bdev->fence_lock);
1766                 } else {
1767                         spin_unlock(&bdev->fence_lock);
1768                         driver->sync_obj_unref(&sync_obj);
1769                         spin_lock(&bdev->fence_lock);
1770                 }
1771         }
1772         return 0;
1773 }
1774 EXPORT_SYMBOL(ttm_bo_wait);
1775
1776 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1777 {
1778         struct ttm_bo_device *bdev = bo->bdev;
1779         int ret = 0;
1780
1781         /*
1782          * Using ttm_bo_reserve makes sure the lru lists are updated.
1783          */
1784
1785         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1786         if (unlikely(ret != 0))
1787                 return ret;
1788         spin_lock(&bdev->fence_lock);
1789         ret = ttm_bo_wait(bo, false, true, no_wait);
1790         spin_unlock(&bdev->fence_lock);
1791         if (likely(ret == 0))
1792                 atomic_inc(&bo->cpu_writers);
1793         ttm_bo_unreserve(bo);
1794         return ret;
1795 }
1796 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1797
1798 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1799 {
1800         if (atomic_dec_and_test(&bo->cpu_writers))
1801                 wake_up_all(&bo->event_queue);
1802 }
1803 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1804
1805 /**
1806  * A buffer object shrink method that tries to swap out the first
1807  * buffer object on the bo_global::swap_lru list.
1808  */
1809
1810 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1811 {
1812         struct ttm_bo_global *glob =
1813             container_of(shrink, struct ttm_bo_global, shrink);
1814         struct ttm_buffer_object *bo;
1815         int ret = -EBUSY;
1816         int put_count;
1817         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1818
1819         spin_lock(&glob->lru_lock);
1820         while (ret == -EBUSY) {
1821                 if (unlikely(list_empty(&glob->swap_lru))) {
1822                         spin_unlock(&glob->lru_lock);
1823                         return -EBUSY;
1824                 }
1825
1826                 bo = list_first_entry(&glob->swap_lru,
1827                                       struct ttm_buffer_object, swap);
1828                 kref_get(&bo->list_kref);
1829
1830                 if (!list_empty(&bo->ddestroy)) {
1831                         spin_unlock(&glob->lru_lock);
1832                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1833                         kref_put(&bo->list_kref, ttm_bo_release_list);
1834                         spin_lock(&glob->lru_lock);
1835                         continue;
1836                 }
1837
1838                 /**
1839                  * Reserve buffer. Since we unlock while sleeping, we need
1840                  * to re-check that nobody removed us from the swap-list while
1841                  * we slept.
1842                  */
1843
1844                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1845                 if (unlikely(ret == -EBUSY)) {
1846                         spin_unlock(&glob->lru_lock);
1847                         ttm_bo_wait_unreserved(bo, false);
1848                         kref_put(&bo->list_kref, ttm_bo_release_list);
1849                         spin_lock(&glob->lru_lock);
1850                 }
1851         }
1852
1853         BUG_ON(ret != 0);
1854         put_count = ttm_bo_del_from_lru(bo);
1855         spin_unlock(&glob->lru_lock);
1856
1857         ttm_bo_list_ref_sub(bo, put_count, true);
1858
1859         /**
1860          * Wait for GPU, then move to system cached.
1861          */
1862
1863         spin_lock(&bo->bdev->fence_lock);
1864         ret = ttm_bo_wait(bo, false, false, false);
1865         spin_unlock(&bo->bdev->fence_lock);
1866
1867         if (unlikely(ret != 0))
1868                 goto out;
1869
1870         if ((bo->mem.placement & swap_placement) != swap_placement) {
1871                 struct ttm_mem_reg evict_mem;
1872
1873                 evict_mem = bo->mem;
1874                 evict_mem.mm_node = NULL;
1875                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1876                 evict_mem.mem_type = TTM_PL_SYSTEM;
1877
1878                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1879                                              false, false, false);
1880                 if (unlikely(ret != 0))
1881                         goto out;
1882         }
1883
1884         ttm_bo_unmap_virtual(bo);
1885
1886         /**
1887          * Swap out. Buffer will be swapped in again as soon as
1888          * anyone tries to access a ttm page.
1889          */
1890
1891         if (bo->bdev->driver->swap_notify)
1892                 bo->bdev->driver->swap_notify(bo);
1893
1894         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1895 out:
1896
1897         /**
1898          *
1899          * Unreserve without putting on LRU to avoid swapping out an
1900          * already swapped buffer.
1901          */
1902
1903         atomic_set(&bo->reserved, 0);
1904         wake_up_all(&bo->event_queue);
1905         kref_put(&bo->list_kref, ttm_bo_release_list);
1906         return ret;
1907 }
1908
1909 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1910 {
1911         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1912                 ;
1913 }
1914 EXPORT_SYMBOL(ttm_bo_swapout_all);