Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33 #include <linux/vgaarb.h>
34 #include <drm/i915_powerwell.h>
35 #include <linux/pm_runtime.h>
36
37 /**
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
59  * framebuffer contents in-memory, aiming at reducing the required bandwidth
60  * during in-memory transfers and, therefore, reduce the power packet.
61  *
62  * The benefits of FBC are mostly visible with solid backgrounds and
63  * variation-less patterns.
64  *
65  * FBC-related functionality can be enabled by the means of the
66  * i915.i915_enable_fbc parameter
67  */
68
69 static void i8xx_disable_fbc(struct drm_device *dev)
70 {
71         struct drm_i915_private *dev_priv = dev->dev_private;
72         u32 fbc_ctl;
73
74         /* Disable compression */
75         fbc_ctl = I915_READ(FBC_CONTROL);
76         if ((fbc_ctl & FBC_CTL_EN) == 0)
77                 return;
78
79         fbc_ctl &= ~FBC_CTL_EN;
80         I915_WRITE(FBC_CONTROL, fbc_ctl);
81
82         /* Wait for compressing bit to clear */
83         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
84                 DRM_DEBUG_KMS("FBC idle timed out\n");
85                 return;
86         }
87
88         DRM_DEBUG_KMS("disabled FBC\n");
89 }
90
91 static void i8xx_enable_fbc(struct drm_crtc *crtc)
92 {
93         struct drm_device *dev = crtc->dev;
94         struct drm_i915_private *dev_priv = dev->dev_private;
95         struct drm_framebuffer *fb = crtc->primary->fb;
96         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
97         struct drm_i915_gem_object *obj = intel_fb->obj;
98         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
99         int cfb_pitch;
100         int i;
101         u32 fbc_ctl;
102
103         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
104         if (fb->pitches[0] < cfb_pitch)
105                 cfb_pitch = fb->pitches[0];
106
107         /* FBC_CTL wants 32B or 64B units */
108         if (IS_GEN2(dev))
109                 cfb_pitch = (cfb_pitch / 32) - 1;
110         else
111                 cfb_pitch = (cfb_pitch / 64) - 1;
112
113         /* Clear old tags */
114         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
115                 I915_WRITE(FBC_TAG + (i * 4), 0);
116
117         if (IS_GEN4(dev)) {
118                 u32 fbc_ctl2;
119
120                 /* Set it up... */
121                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
122                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
123                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
124                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
125         }
126
127         /* enable it... */
128         fbc_ctl = I915_READ(FBC_CONTROL);
129         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
130         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
131         if (IS_I945GM(dev))
132                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
133         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
134         fbc_ctl |= obj->fence_reg;
135         I915_WRITE(FBC_CONTROL, fbc_ctl);
136
137         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
138                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
139 }
140
141 static bool i8xx_fbc_enabled(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
146 }
147
148 static void g4x_enable_fbc(struct drm_crtc *crtc)
149 {
150         struct drm_device *dev = crtc->dev;
151         struct drm_i915_private *dev_priv = dev->dev_private;
152         struct drm_framebuffer *fb = crtc->primary->fb;
153         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
154         struct drm_i915_gem_object *obj = intel_fb->obj;
155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
156         u32 dpfc_ctl;
157
158         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
159         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
160                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
161         else
162                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
163         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
164
165         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
166
167         /* enable it... */
168         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
169
170         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
171 }
172
173 static void g4x_disable_fbc(struct drm_device *dev)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         u32 dpfc_ctl;
177
178         /* Disable compression */
179         dpfc_ctl = I915_READ(DPFC_CONTROL);
180         if (dpfc_ctl & DPFC_CTL_EN) {
181                 dpfc_ctl &= ~DPFC_CTL_EN;
182                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
183
184                 DRM_DEBUG_KMS("disabled FBC\n");
185         }
186 }
187
188 static bool g4x_fbc_enabled(struct drm_device *dev)
189 {
190         struct drm_i915_private *dev_priv = dev->dev_private;
191
192         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
193 }
194
195 static void sandybridge_blit_fbc_update(struct drm_device *dev)
196 {
197         struct drm_i915_private *dev_priv = dev->dev_private;
198         u32 blt_ecoskpd;
199
200         /* Make sure blitter notifies FBC of writes */
201
202         /* Blitter is part of Media powerwell on VLV. No impact of
203          * his param in other platforms for now */
204         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
205
206         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
207         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
208                 GEN6_BLITTER_LOCK_SHIFT;
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
211         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
212         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
213                          GEN6_BLITTER_LOCK_SHIFT);
214         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
215         POSTING_READ(GEN6_BLITTER_ECOSKPD);
216
217         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
218 }
219
220 static void ironlake_enable_fbc(struct drm_crtc *crtc)
221 {
222         struct drm_device *dev = crtc->dev;
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct drm_framebuffer *fb = crtc->primary->fb;
225         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
226         struct drm_i915_gem_object *obj = intel_fb->obj;
227         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
228         u32 dpfc_ctl;
229
230         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
231         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
232                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
233         else
234                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
235         dpfc_ctl |= DPFC_CTL_FENCE_EN;
236         if (IS_GEN5(dev))
237                 dpfc_ctl |= obj->fence_reg;
238
239         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
240         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
241         /* enable it... */
242         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
243
244         if (IS_GEN6(dev)) {
245                 I915_WRITE(SNB_DPFC_CTL_SA,
246                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
247                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
248                 sandybridge_blit_fbc_update(dev);
249         }
250
251         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
252 }
253
254 static void ironlake_disable_fbc(struct drm_device *dev)
255 {
256         struct drm_i915_private *dev_priv = dev->dev_private;
257         u32 dpfc_ctl;
258
259         /* Disable compression */
260         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
261         if (dpfc_ctl & DPFC_CTL_EN) {
262                 dpfc_ctl &= ~DPFC_CTL_EN;
263                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
264
265                 DRM_DEBUG_KMS("disabled FBC\n");
266         }
267 }
268
269 static bool ironlake_fbc_enabled(struct drm_device *dev)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
274 }
275
276 static void gen7_enable_fbc(struct drm_crtc *crtc)
277 {
278         struct drm_device *dev = crtc->dev;
279         struct drm_i915_private *dev_priv = dev->dev_private;
280         struct drm_framebuffer *fb = crtc->primary->fb;
281         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
282         struct drm_i915_gem_object *obj = intel_fb->obj;
283         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
284         u32 dpfc_ctl;
285
286         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
287         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
288                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
289         else
290                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
291         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
292
293         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
294
295         if (IS_IVYBRIDGE(dev)) {
296                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
297                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
298                            I915_READ(ILK_DISPLAY_CHICKEN1) |
299                            ILK_FBCQ_DIS);
300         } else {
301                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
302                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
303                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
304                            HSW_FBCQ_DIS);
305         }
306
307         I915_WRITE(SNB_DPFC_CTL_SA,
308                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
309         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
310
311         sandybridge_blit_fbc_update(dev);
312
313         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
314 }
315
316 bool intel_fbc_enabled(struct drm_device *dev)
317 {
318         struct drm_i915_private *dev_priv = dev->dev_private;
319
320         if (!dev_priv->display.fbc_enabled)
321                 return false;
322
323         return dev_priv->display.fbc_enabled(dev);
324 }
325
326 static void intel_fbc_work_fn(struct work_struct *__work)
327 {
328         struct intel_fbc_work *work =
329                 container_of(to_delayed_work(__work),
330                              struct intel_fbc_work, work);
331         struct drm_device *dev = work->crtc->dev;
332         struct drm_i915_private *dev_priv = dev->dev_private;
333
334         mutex_lock(&dev->struct_mutex);
335         if (work == dev_priv->fbc.fbc_work) {
336                 /* Double check that we haven't switched fb without cancelling
337                  * the prior work.
338                  */
339                 if (work->crtc->primary->fb == work->fb) {
340                         dev_priv->display.enable_fbc(work->crtc);
341
342                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
343                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
344                         dev_priv->fbc.y = work->crtc->y;
345                 }
346
347                 dev_priv->fbc.fbc_work = NULL;
348         }
349         mutex_unlock(&dev->struct_mutex);
350
351         kfree(work);
352 }
353
354 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
355 {
356         if (dev_priv->fbc.fbc_work == NULL)
357                 return;
358
359         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
360
361         /* Synchronisation is provided by struct_mutex and checking of
362          * dev_priv->fbc.fbc_work, so we can perform the cancellation
363          * entirely asynchronously.
364          */
365         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
366                 /* tasklet was killed before being run, clean up */
367                 kfree(dev_priv->fbc.fbc_work);
368
369         /* Mark the work as no longer wanted so that if it does
370          * wake-up (because the work was already running and waiting
371          * for our mutex), it will discover that is no longer
372          * necessary to run.
373          */
374         dev_priv->fbc.fbc_work = NULL;
375 }
376
377 static void intel_enable_fbc(struct drm_crtc *crtc)
378 {
379         struct intel_fbc_work *work;
380         struct drm_device *dev = crtc->dev;
381         struct drm_i915_private *dev_priv = dev->dev_private;
382
383         if (!dev_priv->display.enable_fbc)
384                 return;
385
386         intel_cancel_fbc_work(dev_priv);
387
388         work = kzalloc(sizeof(*work), GFP_KERNEL);
389         if (work == NULL) {
390                 DRM_ERROR("Failed to allocate FBC work structure\n");
391                 dev_priv->display.enable_fbc(crtc);
392                 return;
393         }
394
395         work->crtc = crtc;
396         work->fb = crtc->primary->fb;
397         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
398
399         dev_priv->fbc.fbc_work = work;
400
401         /* Delay the actual enabling to let pageflipping cease and the
402          * display to settle before starting the compression. Note that
403          * this delay also serves a second purpose: it allows for a
404          * vblank to pass after disabling the FBC before we attempt
405          * to modify the control registers.
406          *
407          * A more complicated solution would involve tracking vblanks
408          * following the termination of the page-flipping sequence
409          * and indeed performing the enable as a co-routine and not
410          * waiting synchronously upon the vblank.
411          *
412          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
413          */
414         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
415 }
416
417 void intel_disable_fbc(struct drm_device *dev)
418 {
419         struct drm_i915_private *dev_priv = dev->dev_private;
420
421         intel_cancel_fbc_work(dev_priv);
422
423         if (!dev_priv->display.disable_fbc)
424                 return;
425
426         dev_priv->display.disable_fbc(dev);
427         dev_priv->fbc.plane = -1;
428 }
429
430 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
431                               enum no_fbc_reason reason)
432 {
433         if (dev_priv->fbc.no_fbc_reason == reason)
434                 return false;
435
436         dev_priv->fbc.no_fbc_reason = reason;
437         return true;
438 }
439
440 /**
441  * intel_update_fbc - enable/disable FBC as needed
442  * @dev: the drm_device
443  *
444  * Set up the framebuffer compression hardware at mode set time.  We
445  * enable it if possible:
446  *   - plane A only (on pre-965)
447  *   - no pixel mulitply/line duplication
448  *   - no alpha buffer discard
449  *   - no dual wide
450  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
451  *
452  * We can't assume that any compression will take place (worst case),
453  * so the compressed buffer has to be the same size as the uncompressed
454  * one.  It also must reside (along with the line length buffer) in
455  * stolen memory.
456  *
457  * We need to enable/disable FBC on a global basis.
458  */
459 void intel_update_fbc(struct drm_device *dev)
460 {
461         struct drm_i915_private *dev_priv = dev->dev_private;
462         struct drm_crtc *crtc = NULL, *tmp_crtc;
463         struct intel_crtc *intel_crtc;
464         struct drm_framebuffer *fb;
465         struct intel_framebuffer *intel_fb;
466         struct drm_i915_gem_object *obj;
467         const struct drm_display_mode *adjusted_mode;
468         unsigned int max_width, max_height;
469
470         if (!HAS_FBC(dev)) {
471                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
472                 return;
473         }
474
475         if (!i915.powersave) {
476                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
477                         DRM_DEBUG_KMS("fbc disabled per module param\n");
478                 return;
479         }
480
481         /*
482          * If FBC is already on, we just have to verify that we can
483          * keep it that way...
484          * Need to disable if:
485          *   - more than one pipe is active
486          *   - changing FBC params (stride, fence, mode)
487          *   - new fb is too large to fit in compressed buffer
488          *   - going to an unsupported config (interlace, pixel multiply, etc.)
489          */
490         for_each_crtc(dev, tmp_crtc) {
491                 if (intel_crtc_active(tmp_crtc) &&
492                     to_intel_crtc(tmp_crtc)->primary_enabled) {
493                         if (crtc) {
494                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
495                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
496                                 goto out_disable;
497                         }
498                         crtc = tmp_crtc;
499                 }
500         }
501
502         if (!crtc || crtc->primary->fb == NULL) {
503                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
504                         DRM_DEBUG_KMS("no output, disabling\n");
505                 goto out_disable;
506         }
507
508         intel_crtc = to_intel_crtc(crtc);
509         fb = crtc->primary->fb;
510         intel_fb = to_intel_framebuffer(fb);
511         obj = intel_fb->obj;
512         adjusted_mode = &intel_crtc->config.adjusted_mode;
513
514         if (i915.enable_fbc < 0) {
515                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
516                         DRM_DEBUG_KMS("disabled per chip default\n");
517                 goto out_disable;
518         }
519         if (!i915.enable_fbc) {
520                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
521                         DRM_DEBUG_KMS("fbc disabled per module param\n");
522                 goto out_disable;
523         }
524         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
525             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
526                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
527                         DRM_DEBUG_KMS("mode incompatible with compression, "
528                                       "disabling\n");
529                 goto out_disable;
530         }
531
532         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
533                 max_width = 4096;
534                 max_height = 2048;
535         } else {
536                 max_width = 2048;
537                 max_height = 1536;
538         }
539         if (intel_crtc->config.pipe_src_w > max_width ||
540             intel_crtc->config.pipe_src_h > max_height) {
541                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
542                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
543                 goto out_disable;
544         }
545         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
546             intel_crtc->plane != PLANE_A) {
547                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
548                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
549                 goto out_disable;
550         }
551
552         /* The use of a CPU fence is mandatory in order to detect writes
553          * by the CPU to the scanout and trigger updates to the FBC.
554          */
555         if (obj->tiling_mode != I915_TILING_X ||
556             obj->fence_reg == I915_FENCE_REG_NONE) {
557                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
558                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
559                 goto out_disable;
560         }
561
562         /* If the kernel debugger is active, always disable compression */
563         if (in_dbg_master())
564                 goto out_disable;
565
566         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
567                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
568                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
569                 goto out_disable;
570         }
571
572         /* If the scanout has not changed, don't modify the FBC settings.
573          * Note that we make the fundamental assumption that the fb->obj
574          * cannot be unpinned (and have its GTT offset and fence revoked)
575          * without first being decoupled from the scanout and FBC disabled.
576          */
577         if (dev_priv->fbc.plane == intel_crtc->plane &&
578             dev_priv->fbc.fb_id == fb->base.id &&
579             dev_priv->fbc.y == crtc->y)
580                 return;
581
582         if (intel_fbc_enabled(dev)) {
583                 /* We update FBC along two paths, after changing fb/crtc
584                  * configuration (modeswitching) and after page-flipping
585                  * finishes. For the latter, we know that not only did
586                  * we disable the FBC at the start of the page-flip
587                  * sequence, but also more than one vblank has passed.
588                  *
589                  * For the former case of modeswitching, it is possible
590                  * to switch between two FBC valid configurations
591                  * instantaneously so we do need to disable the FBC
592                  * before we can modify its control registers. We also
593                  * have to wait for the next vblank for that to take
594                  * effect. However, since we delay enabling FBC we can
595                  * assume that a vblank has passed since disabling and
596                  * that we can safely alter the registers in the deferred
597                  * callback.
598                  *
599                  * In the scenario that we go from a valid to invalid
600                  * and then back to valid FBC configuration we have
601                  * no strict enforcement that a vblank occurred since
602                  * disabling the FBC. However, along all current pipe
603                  * disabling paths we do need to wait for a vblank at
604                  * some point. And we wait before enabling FBC anyway.
605                  */
606                 DRM_DEBUG_KMS("disabling active FBC for update\n");
607                 intel_disable_fbc(dev);
608         }
609
610         intel_enable_fbc(crtc);
611         dev_priv->fbc.no_fbc_reason = FBC_OK;
612         return;
613
614 out_disable:
615         /* Multiple disables should be harmless */
616         if (intel_fbc_enabled(dev)) {
617                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
618                 intel_disable_fbc(dev);
619         }
620         i915_gem_stolen_cleanup_compression(dev);
621 }
622
623 static void i915_pineview_get_mem_freq(struct drm_device *dev)
624 {
625         struct drm_i915_private *dev_priv = dev->dev_private;
626         u32 tmp;
627
628         tmp = I915_READ(CLKCFG);
629
630         switch (tmp & CLKCFG_FSB_MASK) {
631         case CLKCFG_FSB_533:
632                 dev_priv->fsb_freq = 533; /* 133*4 */
633                 break;
634         case CLKCFG_FSB_800:
635                 dev_priv->fsb_freq = 800; /* 200*4 */
636                 break;
637         case CLKCFG_FSB_667:
638                 dev_priv->fsb_freq =  667; /* 167*4 */
639                 break;
640         case CLKCFG_FSB_400:
641                 dev_priv->fsb_freq = 400; /* 100*4 */
642                 break;
643         }
644
645         switch (tmp & CLKCFG_MEM_MASK) {
646         case CLKCFG_MEM_533:
647                 dev_priv->mem_freq = 533;
648                 break;
649         case CLKCFG_MEM_667:
650                 dev_priv->mem_freq = 667;
651                 break;
652         case CLKCFG_MEM_800:
653                 dev_priv->mem_freq = 800;
654                 break;
655         }
656
657         /* detect pineview DDR3 setting */
658         tmp = I915_READ(CSHRDDR3CTL);
659         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
660 }
661
662 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
663 {
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         u16 ddrpll, csipll;
666
667         ddrpll = I915_READ16(DDRMPLL1);
668         csipll = I915_READ16(CSIPLL0);
669
670         switch (ddrpll & 0xff) {
671         case 0xc:
672                 dev_priv->mem_freq = 800;
673                 break;
674         case 0x10:
675                 dev_priv->mem_freq = 1066;
676                 break;
677         case 0x14:
678                 dev_priv->mem_freq = 1333;
679                 break;
680         case 0x18:
681                 dev_priv->mem_freq = 1600;
682                 break;
683         default:
684                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
685                                  ddrpll & 0xff);
686                 dev_priv->mem_freq = 0;
687                 break;
688         }
689
690         dev_priv->ips.r_t = dev_priv->mem_freq;
691
692         switch (csipll & 0x3ff) {
693         case 0x00c:
694                 dev_priv->fsb_freq = 3200;
695                 break;
696         case 0x00e:
697                 dev_priv->fsb_freq = 3733;
698                 break;
699         case 0x010:
700                 dev_priv->fsb_freq = 4266;
701                 break;
702         case 0x012:
703                 dev_priv->fsb_freq = 4800;
704                 break;
705         case 0x014:
706                 dev_priv->fsb_freq = 5333;
707                 break;
708         case 0x016:
709                 dev_priv->fsb_freq = 5866;
710                 break;
711         case 0x018:
712                 dev_priv->fsb_freq = 6400;
713                 break;
714         default:
715                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
716                                  csipll & 0x3ff);
717                 dev_priv->fsb_freq = 0;
718                 break;
719         }
720
721         if (dev_priv->fsb_freq == 3200) {
722                 dev_priv->ips.c_m = 0;
723         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
724                 dev_priv->ips.c_m = 1;
725         } else {
726                 dev_priv->ips.c_m = 2;
727         }
728 }
729
730 static const struct cxsr_latency cxsr_latency_table[] = {
731         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
732         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
733         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
734         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
735         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
736
737         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
738         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
739         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
740         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
741         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
742
743         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
744         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
745         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
746         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
747         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
748
749         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
750         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
751         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
752         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
753         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
754
755         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
756         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
757         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
758         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
759         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
760
761         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
762         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
763         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
764         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
765         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
766 };
767
768 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
769                                                          int is_ddr3,
770                                                          int fsb,
771                                                          int mem)
772 {
773         const struct cxsr_latency *latency;
774         int i;
775
776         if (fsb == 0 || mem == 0)
777                 return NULL;
778
779         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
780                 latency = &cxsr_latency_table[i];
781                 if (is_desktop == latency->is_desktop &&
782                     is_ddr3 == latency->is_ddr3 &&
783                     fsb == latency->fsb_freq && mem == latency->mem_freq)
784                         return latency;
785         }
786
787         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
788
789         return NULL;
790 }
791
792 static void pineview_disable_cxsr(struct drm_device *dev)
793 {
794         struct drm_i915_private *dev_priv = dev->dev_private;
795
796         /* deactivate cxsr */
797         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
798 }
799
800 /*
801  * Latency for FIFO fetches is dependent on several factors:
802  *   - memory configuration (speed, channels)
803  *   - chipset
804  *   - current MCH state
805  * It can be fairly high in some situations, so here we assume a fairly
806  * pessimal value.  It's a tradeoff between extra memory fetches (if we
807  * set this value too high, the FIFO will fetch frequently to stay full)
808  * and power consumption (set it too low to save power and we might see
809  * FIFO underruns and display "flicker").
810  *
811  * A value of 5us seems to be a good balance; safe for very low end
812  * platforms but not overly aggressive on lower latency configs.
813  */
814 static const int latency_ns = 5000;
815
816 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
817 {
818         struct drm_i915_private *dev_priv = dev->dev_private;
819         uint32_t dsparb = I915_READ(DSPARB);
820         int size;
821
822         size = dsparb & 0x7f;
823         if (plane)
824                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
825
826         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
827                       plane ? "B" : "A", size);
828
829         return size;
830 }
831
832 static int i830_get_fifo_size(struct drm_device *dev, int plane)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         uint32_t dsparb = I915_READ(DSPARB);
836         int size;
837
838         size = dsparb & 0x1ff;
839         if (plane)
840                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
841         size >>= 1; /* Convert to cachelines */
842
843         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
844                       plane ? "B" : "A", size);
845
846         return size;
847 }
848
849 static int i845_get_fifo_size(struct drm_device *dev, int plane)
850 {
851         struct drm_i915_private *dev_priv = dev->dev_private;
852         uint32_t dsparb = I915_READ(DSPARB);
853         int size;
854
855         size = dsparb & 0x7f;
856         size >>= 2; /* Convert to cachelines */
857
858         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
859                       plane ? "B" : "A",
860                       size);
861
862         return size;
863 }
864
865 /* Pineview has different values for various configs */
866 static const struct intel_watermark_params pineview_display_wm = {
867         PINEVIEW_DISPLAY_FIFO,
868         PINEVIEW_MAX_WM,
869         PINEVIEW_DFT_WM,
870         PINEVIEW_GUARD_WM,
871         PINEVIEW_FIFO_LINE_SIZE
872 };
873 static const struct intel_watermark_params pineview_display_hplloff_wm = {
874         PINEVIEW_DISPLAY_FIFO,
875         PINEVIEW_MAX_WM,
876         PINEVIEW_DFT_HPLLOFF_WM,
877         PINEVIEW_GUARD_WM,
878         PINEVIEW_FIFO_LINE_SIZE
879 };
880 static const struct intel_watermark_params pineview_cursor_wm = {
881         PINEVIEW_CURSOR_FIFO,
882         PINEVIEW_CURSOR_MAX_WM,
883         PINEVIEW_CURSOR_DFT_WM,
884         PINEVIEW_CURSOR_GUARD_WM,
885         PINEVIEW_FIFO_LINE_SIZE,
886 };
887 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
888         PINEVIEW_CURSOR_FIFO,
889         PINEVIEW_CURSOR_MAX_WM,
890         PINEVIEW_CURSOR_DFT_WM,
891         PINEVIEW_CURSOR_GUARD_WM,
892         PINEVIEW_FIFO_LINE_SIZE
893 };
894 static const struct intel_watermark_params g4x_wm_info = {
895         G4X_FIFO_SIZE,
896         G4X_MAX_WM,
897         G4X_MAX_WM,
898         2,
899         G4X_FIFO_LINE_SIZE,
900 };
901 static const struct intel_watermark_params g4x_cursor_wm_info = {
902         I965_CURSOR_FIFO,
903         I965_CURSOR_MAX_WM,
904         I965_CURSOR_DFT_WM,
905         2,
906         G4X_FIFO_LINE_SIZE,
907 };
908 static const struct intel_watermark_params valleyview_wm_info = {
909         VALLEYVIEW_FIFO_SIZE,
910         VALLEYVIEW_MAX_WM,
911         VALLEYVIEW_MAX_WM,
912         2,
913         G4X_FIFO_LINE_SIZE,
914 };
915 static const struct intel_watermark_params valleyview_cursor_wm_info = {
916         I965_CURSOR_FIFO,
917         VALLEYVIEW_CURSOR_MAX_WM,
918         I965_CURSOR_DFT_WM,
919         2,
920         G4X_FIFO_LINE_SIZE,
921 };
922 static const struct intel_watermark_params i965_cursor_wm_info = {
923         I965_CURSOR_FIFO,
924         I965_CURSOR_MAX_WM,
925         I965_CURSOR_DFT_WM,
926         2,
927         I915_FIFO_LINE_SIZE,
928 };
929 static const struct intel_watermark_params i945_wm_info = {
930         I945_FIFO_SIZE,
931         I915_MAX_WM,
932         1,
933         2,
934         I915_FIFO_LINE_SIZE
935 };
936 static const struct intel_watermark_params i915_wm_info = {
937         I915_FIFO_SIZE,
938         I915_MAX_WM,
939         1,
940         2,
941         I915_FIFO_LINE_SIZE
942 };
943 static const struct intel_watermark_params i830_wm_info = {
944         I855GM_FIFO_SIZE,
945         I915_MAX_WM,
946         1,
947         2,
948         I830_FIFO_LINE_SIZE
949 };
950 static const struct intel_watermark_params i845_wm_info = {
951         I830_FIFO_SIZE,
952         I915_MAX_WM,
953         1,
954         2,
955         I830_FIFO_LINE_SIZE
956 };
957
958 /**
959  * intel_calculate_wm - calculate watermark level
960  * @clock_in_khz: pixel clock
961  * @wm: chip FIFO params
962  * @pixel_size: display pixel size
963  * @latency_ns: memory latency for the platform
964  *
965  * Calculate the watermark level (the level at which the display plane will
966  * start fetching from memory again).  Each chip has a different display
967  * FIFO size and allocation, so the caller needs to figure that out and pass
968  * in the correct intel_watermark_params structure.
969  *
970  * As the pixel clock runs, the FIFO will be drained at a rate that depends
971  * on the pixel size.  When it reaches the watermark level, it'll start
972  * fetching FIFO line sized based chunks from memory until the FIFO fills
973  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
974  * will occur, and a display engine hang could result.
975  */
976 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
977                                         const struct intel_watermark_params *wm,
978                                         int fifo_size,
979                                         int pixel_size,
980                                         unsigned long latency_ns)
981 {
982         long entries_required, wm_size;
983
984         /*
985          * Note: we need to make sure we don't overflow for various clock &
986          * latency values.
987          * clocks go from a few thousand to several hundred thousand.
988          * latency is usually a few thousand
989          */
990         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
991                 1000;
992         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
993
994         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
995
996         wm_size = fifo_size - (entries_required + wm->guard_size);
997
998         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
999
1000         /* Don't promote wm_size to unsigned... */
1001         if (wm_size > (long)wm->max_wm)
1002                 wm_size = wm->max_wm;
1003         if (wm_size <= 0)
1004                 wm_size = wm->default_wm;
1005         return wm_size;
1006 }
1007
1008 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1009 {
1010         struct drm_crtc *crtc, *enabled = NULL;
1011
1012         for_each_crtc(dev, crtc) {
1013                 if (intel_crtc_active(crtc)) {
1014                         if (enabled)
1015                                 return NULL;
1016                         enabled = crtc;
1017                 }
1018         }
1019
1020         return enabled;
1021 }
1022
1023 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1024 {
1025         struct drm_device *dev = unused_crtc->dev;
1026         struct drm_i915_private *dev_priv = dev->dev_private;
1027         struct drm_crtc *crtc;
1028         const struct cxsr_latency *latency;
1029         u32 reg;
1030         unsigned long wm;
1031
1032         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1033                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1034         if (!latency) {
1035                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1036                 pineview_disable_cxsr(dev);
1037                 return;
1038         }
1039
1040         crtc = single_enabled_crtc(dev);
1041         if (crtc) {
1042                 const struct drm_display_mode *adjusted_mode;
1043                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1044                 int clock;
1045
1046                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1047                 clock = adjusted_mode->crtc_clock;
1048
1049                 /* Display SR */
1050                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1051                                         pineview_display_wm.fifo_size,
1052                                         pixel_size, latency->display_sr);
1053                 reg = I915_READ(DSPFW1);
1054                 reg &= ~DSPFW_SR_MASK;
1055                 reg |= wm << DSPFW_SR_SHIFT;
1056                 I915_WRITE(DSPFW1, reg);
1057                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1058
1059                 /* cursor SR */
1060                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1061                                         pineview_display_wm.fifo_size,
1062                                         pixel_size, latency->cursor_sr);
1063                 reg = I915_READ(DSPFW3);
1064                 reg &= ~DSPFW_CURSOR_SR_MASK;
1065                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1066                 I915_WRITE(DSPFW3, reg);
1067
1068                 /* Display HPLL off SR */
1069                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1070                                         pineview_display_hplloff_wm.fifo_size,
1071                                         pixel_size, latency->display_hpll_disable);
1072                 reg = I915_READ(DSPFW3);
1073                 reg &= ~DSPFW_HPLL_SR_MASK;
1074                 reg |= wm & DSPFW_HPLL_SR_MASK;
1075                 I915_WRITE(DSPFW3, reg);
1076
1077                 /* cursor HPLL off SR */
1078                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1079                                         pineview_display_hplloff_wm.fifo_size,
1080                                         pixel_size, latency->cursor_hpll_disable);
1081                 reg = I915_READ(DSPFW3);
1082                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1083                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1084                 I915_WRITE(DSPFW3, reg);
1085                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1086
1087                 /* activate cxsr */
1088                 I915_WRITE(DSPFW3,
1089                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1090                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1091         } else {
1092                 pineview_disable_cxsr(dev);
1093                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1094         }
1095 }
1096
1097 static bool g4x_compute_wm0(struct drm_device *dev,
1098                             int plane,
1099                             const struct intel_watermark_params *display,
1100                             int display_latency_ns,
1101                             const struct intel_watermark_params *cursor,
1102                             int cursor_latency_ns,
1103                             int *plane_wm,
1104                             int *cursor_wm)
1105 {
1106         struct drm_crtc *crtc;
1107         const struct drm_display_mode *adjusted_mode;
1108         int htotal, hdisplay, clock, pixel_size;
1109         int line_time_us, line_count;
1110         int entries, tlb_miss;
1111
1112         crtc = intel_get_crtc_for_plane(dev, plane);
1113         if (!intel_crtc_active(crtc)) {
1114                 *cursor_wm = cursor->guard_size;
1115                 *plane_wm = display->guard_size;
1116                 return false;
1117         }
1118
1119         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1120         clock = adjusted_mode->crtc_clock;
1121         htotal = adjusted_mode->crtc_htotal;
1122         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1123         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1124
1125         /* Use the small buffer method to calculate plane watermark */
1126         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1127         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1128         if (tlb_miss > 0)
1129                 entries += tlb_miss;
1130         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1131         *plane_wm = entries + display->guard_size;
1132         if (*plane_wm > (int)display->max_wm)
1133                 *plane_wm = display->max_wm;
1134
1135         /* Use the large buffer method to calculate cursor watermark */
1136         line_time_us = max(htotal * 1000 / clock, 1);
1137         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1138         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1139         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1140         if (tlb_miss > 0)
1141                 entries += tlb_miss;
1142         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1143         *cursor_wm = entries + cursor->guard_size;
1144         if (*cursor_wm > (int)cursor->max_wm)
1145                 *cursor_wm = (int)cursor->max_wm;
1146
1147         return true;
1148 }
1149
1150 /*
1151  * Check the wm result.
1152  *
1153  * If any calculated watermark values is larger than the maximum value that
1154  * can be programmed into the associated watermark register, that watermark
1155  * must be disabled.
1156  */
1157 static bool g4x_check_srwm(struct drm_device *dev,
1158                            int display_wm, int cursor_wm,
1159                            const struct intel_watermark_params *display,
1160                            const struct intel_watermark_params *cursor)
1161 {
1162         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1163                       display_wm, cursor_wm);
1164
1165         if (display_wm > display->max_wm) {
1166                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1167                               display_wm, display->max_wm);
1168                 return false;
1169         }
1170
1171         if (cursor_wm > cursor->max_wm) {
1172                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1173                               cursor_wm, cursor->max_wm);
1174                 return false;
1175         }
1176
1177         if (!(display_wm || cursor_wm)) {
1178                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1179                 return false;
1180         }
1181
1182         return true;
1183 }
1184
1185 static bool g4x_compute_srwm(struct drm_device *dev,
1186                              int plane,
1187                              int latency_ns,
1188                              const struct intel_watermark_params *display,
1189                              const struct intel_watermark_params *cursor,
1190                              int *display_wm, int *cursor_wm)
1191 {
1192         struct drm_crtc *crtc;
1193         const struct drm_display_mode *adjusted_mode;
1194         int hdisplay, htotal, pixel_size, clock;
1195         unsigned long line_time_us;
1196         int line_count, line_size;
1197         int small, large;
1198         int entries;
1199
1200         if (!latency_ns) {
1201                 *display_wm = *cursor_wm = 0;
1202                 return false;
1203         }
1204
1205         crtc = intel_get_crtc_for_plane(dev, plane);
1206         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1207         clock = adjusted_mode->crtc_clock;
1208         htotal = adjusted_mode->crtc_htotal;
1209         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1210         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1211
1212         line_time_us = max(htotal * 1000 / clock, 1);
1213         line_count = (latency_ns / line_time_us + 1000) / 1000;
1214         line_size = hdisplay * pixel_size;
1215
1216         /* Use the minimum of the small and large buffer method for primary */
1217         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1218         large = line_count * line_size;
1219
1220         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1221         *display_wm = entries + display->guard_size;
1222
1223         /* calculate the self-refresh watermark for display cursor */
1224         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1225         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1226         *cursor_wm = entries + cursor->guard_size;
1227
1228         return g4x_check_srwm(dev,
1229                               *display_wm, *cursor_wm,
1230                               display, cursor);
1231 }
1232
1233 static bool vlv_compute_drain_latency(struct drm_device *dev,
1234                                      int plane,
1235                                      int *plane_prec_mult,
1236                                      int *plane_dl,
1237                                      int *cursor_prec_mult,
1238                                      int *cursor_dl)
1239 {
1240         struct drm_crtc *crtc;
1241         int clock, pixel_size;
1242         int entries;
1243
1244         crtc = intel_get_crtc_for_plane(dev, plane);
1245         if (!intel_crtc_active(crtc))
1246                 return false;
1247
1248         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1249         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1250
1251         entries = (clock / 1000) * pixel_size;
1252         *plane_prec_mult = (entries > 256) ?
1253                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1254         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1255                                                      pixel_size);
1256
1257         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1258         *cursor_prec_mult = (entries > 256) ?
1259                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1260         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1261
1262         return true;
1263 }
1264
1265 /*
1266  * Update drain latency registers of memory arbiter
1267  *
1268  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1269  * to be programmed. Each plane has a drain latency multiplier and a drain
1270  * latency value.
1271  */
1272
1273 static void vlv_update_drain_latency(struct drm_device *dev)
1274 {
1275         struct drm_i915_private *dev_priv = dev->dev_private;
1276         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1277         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1278         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1279                                                         either 16 or 32 */
1280
1281         /* For plane A, Cursor A */
1282         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1283                                       &cursor_prec_mult, &cursora_dl)) {
1284                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1285                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1286                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1287                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1288
1289                 I915_WRITE(VLV_DDL1, cursora_prec |
1290                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1291                                 planea_prec | planea_dl);
1292         }
1293
1294         /* For plane B, Cursor B */
1295         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1296                                       &cursor_prec_mult, &cursorb_dl)) {
1297                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1298                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1299                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1300                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1301
1302                 I915_WRITE(VLV_DDL2, cursorb_prec |
1303                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1304                                 planeb_prec | planeb_dl);
1305         }
1306 }
1307
1308 #define single_plane_enabled(mask) is_power_of_2(mask)
1309
1310 static void valleyview_update_wm(struct drm_crtc *crtc)
1311 {
1312         struct drm_device *dev = crtc->dev;
1313         static const int sr_latency_ns = 12000;
1314         struct drm_i915_private *dev_priv = dev->dev_private;
1315         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1316         int plane_sr, cursor_sr;
1317         int ignore_plane_sr, ignore_cursor_sr;
1318         unsigned int enabled = 0;
1319
1320         vlv_update_drain_latency(dev);
1321
1322         if (g4x_compute_wm0(dev, PIPE_A,
1323                             &valleyview_wm_info, latency_ns,
1324                             &valleyview_cursor_wm_info, latency_ns,
1325                             &planea_wm, &cursora_wm))
1326                 enabled |= 1 << PIPE_A;
1327
1328         if (g4x_compute_wm0(dev, PIPE_B,
1329                             &valleyview_wm_info, latency_ns,
1330                             &valleyview_cursor_wm_info, latency_ns,
1331                             &planeb_wm, &cursorb_wm))
1332                 enabled |= 1 << PIPE_B;
1333
1334         if (single_plane_enabled(enabled) &&
1335             g4x_compute_srwm(dev, ffs(enabled) - 1,
1336                              sr_latency_ns,
1337                              &valleyview_wm_info,
1338                              &valleyview_cursor_wm_info,
1339                              &plane_sr, &ignore_cursor_sr) &&
1340             g4x_compute_srwm(dev, ffs(enabled) - 1,
1341                              2*sr_latency_ns,
1342                              &valleyview_wm_info,
1343                              &valleyview_cursor_wm_info,
1344                              &ignore_plane_sr, &cursor_sr)) {
1345                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1346         } else {
1347                 I915_WRITE(FW_BLC_SELF_VLV,
1348                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1349                 plane_sr = cursor_sr = 0;
1350         }
1351
1352         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1353                       planea_wm, cursora_wm,
1354                       planeb_wm, cursorb_wm,
1355                       plane_sr, cursor_sr);
1356
1357         I915_WRITE(DSPFW1,
1358                    (plane_sr << DSPFW_SR_SHIFT) |
1359                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1360                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1361                    planea_wm);
1362         I915_WRITE(DSPFW2,
1363                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1364                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1365         I915_WRITE(DSPFW3,
1366                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1367                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1368 }
1369
1370 static void g4x_update_wm(struct drm_crtc *crtc)
1371 {
1372         struct drm_device *dev = crtc->dev;
1373         static const int sr_latency_ns = 12000;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1376         int plane_sr, cursor_sr;
1377         unsigned int enabled = 0;
1378
1379         if (g4x_compute_wm0(dev, PIPE_A,
1380                             &g4x_wm_info, latency_ns,
1381                             &g4x_cursor_wm_info, latency_ns,
1382                             &planea_wm, &cursora_wm))
1383                 enabled |= 1 << PIPE_A;
1384
1385         if (g4x_compute_wm0(dev, PIPE_B,
1386                             &g4x_wm_info, latency_ns,
1387                             &g4x_cursor_wm_info, latency_ns,
1388                             &planeb_wm, &cursorb_wm))
1389                 enabled |= 1 << PIPE_B;
1390
1391         if (single_plane_enabled(enabled) &&
1392             g4x_compute_srwm(dev, ffs(enabled) - 1,
1393                              sr_latency_ns,
1394                              &g4x_wm_info,
1395                              &g4x_cursor_wm_info,
1396                              &plane_sr, &cursor_sr)) {
1397                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1398         } else {
1399                 I915_WRITE(FW_BLC_SELF,
1400                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1401                 plane_sr = cursor_sr = 0;
1402         }
1403
1404         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1405                       planea_wm, cursora_wm,
1406                       planeb_wm, cursorb_wm,
1407                       plane_sr, cursor_sr);
1408
1409         I915_WRITE(DSPFW1,
1410                    (plane_sr << DSPFW_SR_SHIFT) |
1411                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1412                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1413                    planea_wm);
1414         I915_WRITE(DSPFW2,
1415                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1416                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1417         /* HPLL off in SR has some issues on G4x... disable it */
1418         I915_WRITE(DSPFW3,
1419                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1420                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1421 }
1422
1423 static void i965_update_wm(struct drm_crtc *unused_crtc)
1424 {
1425         struct drm_device *dev = unused_crtc->dev;
1426         struct drm_i915_private *dev_priv = dev->dev_private;
1427         struct drm_crtc *crtc;
1428         int srwm = 1;
1429         int cursor_sr = 16;
1430
1431         /* Calc sr entries for one plane configs */
1432         crtc = single_enabled_crtc(dev);
1433         if (crtc) {
1434                 /* self-refresh has much higher latency */
1435                 static const int sr_latency_ns = 12000;
1436                 const struct drm_display_mode *adjusted_mode =
1437                         &to_intel_crtc(crtc)->config.adjusted_mode;
1438                 int clock = adjusted_mode->crtc_clock;
1439                 int htotal = adjusted_mode->crtc_htotal;
1440                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1441                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1442                 unsigned long line_time_us;
1443                 int entries;
1444
1445                 line_time_us = max(htotal * 1000 / clock, 1);
1446
1447                 /* Use ns/us then divide to preserve precision */
1448                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449                         pixel_size * hdisplay;
1450                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451                 srwm = I965_FIFO_SIZE - entries;
1452                 if (srwm < 0)
1453                         srwm = 1;
1454                 srwm &= 0x1ff;
1455                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456                               entries, srwm);
1457
1458                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1460                 entries = DIV_ROUND_UP(entries,
1461                                           i965_cursor_wm_info.cacheline_size);
1462                 cursor_sr = i965_cursor_wm_info.fifo_size -
1463                         (entries + i965_cursor_wm_info.guard_size);
1464
1465                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1466                         cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469                               "cursor %d\n", srwm, cursor_sr);
1470
1471                 if (IS_CRESTLINE(dev))
1472                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1473         } else {
1474                 /* Turn off self refresh if both pipes are enabled */
1475                 if (IS_CRESTLINE(dev))
1476                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1477                                    & ~FW_BLC_SELF_EN);
1478         }
1479
1480         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1481                       srwm);
1482
1483         /* 965 has limitations... */
1484         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1485                    (8 << 16) | (8 << 8) | (8 << 0));
1486         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1487         /* update cursor SR watermark */
1488         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1489 }
1490
1491 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1492 {
1493         struct drm_device *dev = unused_crtc->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         const struct intel_watermark_params *wm_info;
1496         uint32_t fwater_lo;
1497         uint32_t fwater_hi;
1498         int cwm, srwm = 1;
1499         int fifo_size;
1500         int planea_wm, planeb_wm;
1501         struct drm_crtc *crtc, *enabled = NULL;
1502
1503         if (IS_I945GM(dev))
1504                 wm_info = &i945_wm_info;
1505         else if (!IS_GEN2(dev))
1506                 wm_info = &i915_wm_info;
1507         else
1508                 wm_info = &i830_wm_info;
1509
1510         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1511         crtc = intel_get_crtc_for_plane(dev, 0);
1512         if (intel_crtc_active(crtc)) {
1513                 const struct drm_display_mode *adjusted_mode;
1514                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1515                 if (IS_GEN2(dev))
1516                         cpp = 4;
1517
1518                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1519                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1520                                                wm_info, fifo_size, cpp,
1521                                                latency_ns);
1522                 enabled = crtc;
1523         } else
1524                 planea_wm = fifo_size - wm_info->guard_size;
1525
1526         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1527         crtc = intel_get_crtc_for_plane(dev, 1);
1528         if (intel_crtc_active(crtc)) {
1529                 const struct drm_display_mode *adjusted_mode;
1530                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1531                 if (IS_GEN2(dev))
1532                         cpp = 4;
1533
1534                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1535                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1536                                                wm_info, fifo_size, cpp,
1537                                                latency_ns);
1538                 if (enabled == NULL)
1539                         enabled = crtc;
1540                 else
1541                         enabled = NULL;
1542         } else
1543                 planeb_wm = fifo_size - wm_info->guard_size;
1544
1545         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1546
1547         if (IS_I915GM(dev) && enabled) {
1548                 struct intel_framebuffer *fb;
1549
1550                 fb = to_intel_framebuffer(enabled->primary->fb);
1551
1552                 /* self-refresh seems busted with untiled */
1553                 if (fb->obj->tiling_mode == I915_TILING_NONE)
1554                         enabled = NULL;
1555         }
1556
1557         /*
1558          * Overlay gets an aggressive default since video jitter is bad.
1559          */
1560         cwm = 2;
1561
1562         /* Play safe and disable self-refresh before adjusting watermarks. */
1563         if (IS_I945G(dev) || IS_I945GM(dev))
1564                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1565         else if (IS_I915GM(dev))
1566                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_SELF_EN));
1567
1568         /* Calc sr entries for one plane configs */
1569         if (HAS_FW_BLC(dev) && enabled) {
1570                 /* self-refresh has much higher latency */
1571                 static const int sr_latency_ns = 6000;
1572                 const struct drm_display_mode *adjusted_mode =
1573                         &to_intel_crtc(enabled)->config.adjusted_mode;
1574                 int clock = adjusted_mode->crtc_clock;
1575                 int htotal = adjusted_mode->crtc_htotal;
1576                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1577                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1578                 unsigned long line_time_us;
1579                 int entries;
1580
1581                 line_time_us = max(htotal * 1000 / clock, 1);
1582
1583                 /* Use ns/us then divide to preserve precision */
1584                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1585                         pixel_size * hdisplay;
1586                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1587                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1588                 srwm = wm_info->fifo_size - entries;
1589                 if (srwm < 0)
1590                         srwm = 1;
1591
1592                 if (IS_I945G(dev) || IS_I945GM(dev))
1593                         I915_WRITE(FW_BLC_SELF,
1594                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1595                 else if (IS_I915GM(dev))
1596                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1597         }
1598
1599         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1600                       planea_wm, planeb_wm, cwm, srwm);
1601
1602         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1603         fwater_hi = (cwm & 0x1f);
1604
1605         /* Set request length to 8 cachelines per fetch */
1606         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1607         fwater_hi = fwater_hi | (1 << 8);
1608
1609         I915_WRITE(FW_BLC, fwater_lo);
1610         I915_WRITE(FW_BLC2, fwater_hi);
1611
1612         if (HAS_FW_BLC(dev)) {
1613                 if (enabled) {
1614                         if (IS_I945G(dev) || IS_I945GM(dev))
1615                                 I915_WRITE(FW_BLC_SELF,
1616                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1617                         else if (IS_I915GM(dev))
1618                                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_SELF_EN));
1619                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1620                 } else
1621                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1622         }
1623 }
1624
1625 static void i845_update_wm(struct drm_crtc *unused_crtc)
1626 {
1627         struct drm_device *dev = unused_crtc->dev;
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629         struct drm_crtc *crtc;
1630         const struct drm_display_mode *adjusted_mode;
1631         uint32_t fwater_lo;
1632         int planea_wm;
1633
1634         crtc = single_enabled_crtc(dev);
1635         if (crtc == NULL)
1636                 return;
1637
1638         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1639         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1640                                        &i845_wm_info,
1641                                        dev_priv->display.get_fifo_size(dev, 0),
1642                                        4, latency_ns);
1643         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1644         fwater_lo |= (3<<8) | planea_wm;
1645
1646         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1647
1648         I915_WRITE(FW_BLC, fwater_lo);
1649 }
1650
1651 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1652                                     struct drm_crtc *crtc)
1653 {
1654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1655         uint32_t pixel_rate;
1656
1657         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1658
1659         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660          * adjust the pixel_rate here. */
1661
1662         if (intel_crtc->config.pch_pfit.enabled) {
1663                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1665
1666                 pipe_w = intel_crtc->config.pipe_src_w;
1667                 pipe_h = intel_crtc->config.pipe_src_h;
1668                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1669                 pfit_h = pfit_size & 0xFFFF;
1670                 if (pipe_w < pfit_w)
1671                         pipe_w = pfit_w;
1672                 if (pipe_h < pfit_h)
1673                         pipe_h = pfit_h;
1674
1675                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1676                                      pfit_w * pfit_h);
1677         }
1678
1679         return pixel_rate;
1680 }
1681
1682 /* latency must be in 0.1us units. */
1683 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1684                                uint32_t latency)
1685 {
1686         uint64_t ret;
1687
1688         if (WARN(latency == 0, "Latency value missing\n"))
1689                 return UINT_MAX;
1690
1691         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1692         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1693
1694         return ret;
1695 }
1696
1697 /* latency must be in 0.1us units. */
1698 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1699                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1700                                uint32_t latency)
1701 {
1702         uint32_t ret;
1703
1704         if (WARN(latency == 0, "Latency value missing\n"))
1705                 return UINT_MAX;
1706
1707         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1708         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1709         ret = DIV_ROUND_UP(ret, 64) + 2;
1710         return ret;
1711 }
1712
1713 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1714                            uint8_t bytes_per_pixel)
1715 {
1716         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1717 }
1718
1719 struct ilk_pipe_wm_parameters {
1720         bool active;
1721         uint32_t pipe_htotal;
1722         uint32_t pixel_rate;
1723         struct intel_plane_wm_parameters pri;
1724         struct intel_plane_wm_parameters spr;
1725         struct intel_plane_wm_parameters cur;
1726 };
1727
1728 struct ilk_wm_maximums {
1729         uint16_t pri;
1730         uint16_t spr;
1731         uint16_t cur;
1732         uint16_t fbc;
1733 };
1734
1735 /* used in computing the new watermarks state */
1736 struct intel_wm_config {
1737         unsigned int num_pipes_active;
1738         bool sprites_enabled;
1739         bool sprites_scaled;
1740 };
1741
1742 /*
1743  * For both WM_PIPE and WM_LP.
1744  * mem_value must be in 0.1us units.
1745  */
1746 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1747                                    uint32_t mem_value,
1748                                    bool is_lp)
1749 {
1750         uint32_t method1, method2;
1751
1752         if (!params->active || !params->pri.enabled)
1753                 return 0;
1754
1755         method1 = ilk_wm_method1(params->pixel_rate,
1756                                  params->pri.bytes_per_pixel,
1757                                  mem_value);
1758
1759         if (!is_lp)
1760                 return method1;
1761
1762         method2 = ilk_wm_method2(params->pixel_rate,
1763                                  params->pipe_htotal,
1764                                  params->pri.horiz_pixels,
1765                                  params->pri.bytes_per_pixel,
1766                                  mem_value);
1767
1768         return min(method1, method2);
1769 }
1770
1771 /*
1772  * For both WM_PIPE and WM_LP.
1773  * mem_value must be in 0.1us units.
1774  */
1775 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1776                                    uint32_t mem_value)
1777 {
1778         uint32_t method1, method2;
1779
1780         if (!params->active || !params->spr.enabled)
1781                 return 0;
1782
1783         method1 = ilk_wm_method1(params->pixel_rate,
1784                                  params->spr.bytes_per_pixel,
1785                                  mem_value);
1786         method2 = ilk_wm_method2(params->pixel_rate,
1787                                  params->pipe_htotal,
1788                                  params->spr.horiz_pixels,
1789                                  params->spr.bytes_per_pixel,
1790                                  mem_value);
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1799                                    uint32_t mem_value)
1800 {
1801         if (!params->active || !params->cur.enabled)
1802                 return 0;
1803
1804         return ilk_wm_method2(params->pixel_rate,
1805                               params->pipe_htotal,
1806                               params->cur.horiz_pixels,
1807                               params->cur.bytes_per_pixel,
1808                               mem_value);
1809 }
1810
1811 /* Only for WM_LP. */
1812 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1813                                    uint32_t pri_val)
1814 {
1815         if (!params->active || !params->pri.enabled)
1816                 return 0;
1817
1818         return ilk_wm_fbc(pri_val,
1819                           params->pri.horiz_pixels,
1820                           params->pri.bytes_per_pixel);
1821 }
1822
1823 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1824 {
1825         if (INTEL_INFO(dev)->gen >= 8)
1826                 return 3072;
1827         else if (INTEL_INFO(dev)->gen >= 7)
1828                 return 768;
1829         else
1830                 return 512;
1831 }
1832
1833 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1834                                          int level, bool is_sprite)
1835 {
1836         if (INTEL_INFO(dev)->gen >= 8)
1837                 /* BDW primary/sprite plane watermarks */
1838                 return level == 0 ? 255 : 2047;
1839         else if (INTEL_INFO(dev)->gen >= 7)
1840                 /* IVB/HSW primary/sprite plane watermarks */
1841                 return level == 0 ? 127 : 1023;
1842         else if (!is_sprite)
1843                 /* ILK/SNB primary plane watermarks */
1844                 return level == 0 ? 127 : 511;
1845         else
1846                 /* ILK/SNB sprite plane watermarks */
1847                 return level == 0 ? 63 : 255;
1848 }
1849
1850 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1851                                           int level)
1852 {
1853         if (INTEL_INFO(dev)->gen >= 7)
1854                 return level == 0 ? 63 : 255;
1855         else
1856                 return level == 0 ? 31 : 63;
1857 }
1858
1859 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1860 {
1861         if (INTEL_INFO(dev)->gen >= 8)
1862                 return 31;
1863         else
1864                 return 15;
1865 }
1866
1867 /* Calculate the maximum primary/sprite plane watermark */
1868 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1869                                      int level,
1870                                      const struct intel_wm_config *config,
1871                                      enum intel_ddb_partitioning ddb_partitioning,
1872                                      bool is_sprite)
1873 {
1874         unsigned int fifo_size = ilk_display_fifo_size(dev);
1875
1876         /* if sprites aren't enabled, sprites get nothing */
1877         if (is_sprite && !config->sprites_enabled)
1878                 return 0;
1879
1880         /* HSW allows LP1+ watermarks even with multiple pipes */
1881         if (level == 0 || config->num_pipes_active > 1) {
1882                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1883
1884                 /*
1885                  * For some reason the non self refresh
1886                  * FIFO size is only half of the self
1887                  * refresh FIFO size on ILK/SNB.
1888                  */
1889                 if (INTEL_INFO(dev)->gen <= 6)
1890                         fifo_size /= 2;
1891         }
1892
1893         if (config->sprites_enabled) {
1894                 /* level 0 is always calculated with 1:1 split */
1895                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1896                         if (is_sprite)
1897                                 fifo_size *= 5;
1898                         fifo_size /= 6;
1899                 } else {
1900                         fifo_size /= 2;
1901                 }
1902         }
1903
1904         /* clamp to max that the registers can hold */
1905         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1906 }
1907
1908 /* Calculate the maximum cursor plane watermark */
1909 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1910                                       int level,
1911                                       const struct intel_wm_config *config)
1912 {
1913         /* HSW LP1+ watermarks w/ multiple pipes */
1914         if (level > 0 && config->num_pipes_active > 1)
1915                 return 64;
1916
1917         /* otherwise just report max that registers can hold */
1918         return ilk_cursor_wm_reg_max(dev, level);
1919 }
1920
1921 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1922                                     int level,
1923                                     const struct intel_wm_config *config,
1924                                     enum intel_ddb_partitioning ddb_partitioning,
1925                                     struct ilk_wm_maximums *max)
1926 {
1927         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1928         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1929         max->cur = ilk_cursor_wm_max(dev, level, config);
1930         max->fbc = ilk_fbc_wm_reg_max(dev);
1931 }
1932
1933 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1934                                         int level,
1935                                         struct ilk_wm_maximums *max)
1936 {
1937         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1938         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1939         max->cur = ilk_cursor_wm_reg_max(dev, level);
1940         max->fbc = ilk_fbc_wm_reg_max(dev);
1941 }
1942
1943 static bool ilk_validate_wm_level(int level,
1944                                   const struct ilk_wm_maximums *max,
1945                                   struct intel_wm_level *result)
1946 {
1947         bool ret;
1948
1949         /* already determined to be invalid? */
1950         if (!result->enable)
1951                 return false;
1952
1953         result->enable = result->pri_val <= max->pri &&
1954                          result->spr_val <= max->spr &&
1955                          result->cur_val <= max->cur;
1956
1957         ret = result->enable;
1958
1959         /*
1960          * HACK until we can pre-compute everything,
1961          * and thus fail gracefully if LP0 watermarks
1962          * are exceeded...
1963          */
1964         if (level == 0 && !result->enable) {
1965                 if (result->pri_val > max->pri)
1966                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1967                                       level, result->pri_val, max->pri);
1968                 if (result->spr_val > max->spr)
1969                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1970                                       level, result->spr_val, max->spr);
1971                 if (result->cur_val > max->cur)
1972                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1973                                       level, result->cur_val, max->cur);
1974
1975                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1976                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1977                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1978                 result->enable = true;
1979         }
1980
1981         return ret;
1982 }
1983
1984 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1985                                  int level,
1986                                  const struct ilk_pipe_wm_parameters *p,
1987                                  struct intel_wm_level *result)
1988 {
1989         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1990         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1991         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1992
1993         /* WM1+ latency values stored in 0.5us units */
1994         if (level > 0) {
1995                 pri_latency *= 5;
1996                 spr_latency *= 5;
1997                 cur_latency *= 5;
1998         }
1999
2000         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2001         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2002         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2003         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2004         result->enable = true;
2005 }
2006
2007 static uint32_t
2008 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2009 {
2010         struct drm_i915_private *dev_priv = dev->dev_private;
2011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2012         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2013         u32 linetime, ips_linetime;
2014
2015         if (!intel_crtc_active(crtc))
2016                 return 0;
2017
2018         /* The WM are computed with base on how long it takes to fill a single
2019          * row at the given clock rate, multiplied by 8.
2020          * */
2021         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2022                                      mode->crtc_clock);
2023         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2024                                          intel_ddi_get_cdclk_freq(dev_priv));
2025
2026         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2027                PIPE_WM_LINETIME_TIME(linetime);
2028 }
2029
2030 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2031 {
2032         struct drm_i915_private *dev_priv = dev->dev_private;
2033
2034         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2035                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2036
2037                 wm[0] = (sskpd >> 56) & 0xFF;
2038                 if (wm[0] == 0)
2039                         wm[0] = sskpd & 0xF;
2040                 wm[1] = (sskpd >> 4) & 0xFF;
2041                 wm[2] = (sskpd >> 12) & 0xFF;
2042                 wm[3] = (sskpd >> 20) & 0x1FF;
2043                 wm[4] = (sskpd >> 32) & 0x1FF;
2044         } else if (INTEL_INFO(dev)->gen >= 6) {
2045                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2046
2047                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2048                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2049                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2050                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2051         } else if (INTEL_INFO(dev)->gen >= 5) {
2052                 uint32_t mltr = I915_READ(MLTR_ILK);
2053
2054                 /* ILK primary LP0 latency is 700 ns */
2055                 wm[0] = 7;
2056                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2057                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2058         }
2059 }
2060
2061 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2062 {
2063         /* ILK sprite LP0 latency is 1300 ns */
2064         if (INTEL_INFO(dev)->gen == 5)
2065                 wm[0] = 13;
2066 }
2067
2068 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2069 {
2070         /* ILK cursor LP0 latency is 1300 ns */
2071         if (INTEL_INFO(dev)->gen == 5)
2072                 wm[0] = 13;
2073
2074         /* WaDoubleCursorLP3Latency:ivb */
2075         if (IS_IVYBRIDGE(dev))
2076                 wm[3] *= 2;
2077 }
2078
2079 int ilk_wm_max_level(const struct drm_device *dev)
2080 {
2081         /* how many WM levels are we expecting */
2082         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2083                 return 4;
2084         else if (INTEL_INFO(dev)->gen >= 6)
2085                 return 3;
2086         else
2087                 return 2;
2088 }
2089
2090 static void intel_print_wm_latency(struct drm_device *dev,
2091                                    const char *name,
2092                                    const uint16_t wm[5])
2093 {
2094         int level, max_level = ilk_wm_max_level(dev);
2095
2096         for (level = 0; level <= max_level; level++) {
2097                 unsigned int latency = wm[level];
2098
2099                 if (latency == 0) {
2100                         DRM_ERROR("%s WM%d latency not provided\n",
2101                                   name, level);
2102                         continue;
2103                 }
2104
2105                 /* WM1+ latency values in 0.5us units */
2106                 if (level > 0)
2107                         latency *= 5;
2108
2109                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2110                               name, level, wm[level],
2111                               latency / 10, latency % 10);
2112         }
2113 }
2114
2115 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2116                                     uint16_t wm[5], uint16_t min)
2117 {
2118         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2119
2120         if (wm[0] >= min)
2121                 return false;
2122
2123         wm[0] = max(wm[0], min);
2124         for (level = 1; level <= max_level; level++)
2125                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2126
2127         return true;
2128 }
2129
2130 static void snb_wm_latency_quirk(struct drm_device *dev)
2131 {
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         bool changed;
2134
2135         /*
2136          * The BIOS provided WM memory latency values are often
2137          * inadequate for high resolution displays. Adjust them.
2138          */
2139         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2140                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2141                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2142
2143         if (!changed)
2144                 return;
2145
2146         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2147         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2148         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2149         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2150 }
2151
2152 static void ilk_setup_wm_latency(struct drm_device *dev)
2153 {
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155
2156         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2157
2158         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2159                sizeof(dev_priv->wm.pri_latency));
2160         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2161                sizeof(dev_priv->wm.pri_latency));
2162
2163         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2164         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2165
2166         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2167         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2168         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2169
2170         if (IS_GEN6(dev))
2171                 snb_wm_latency_quirk(dev);
2172 }
2173
2174 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2175                                       struct ilk_pipe_wm_parameters *p)
2176 {
2177         struct drm_device *dev = crtc->dev;
2178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2179         enum pipe pipe = intel_crtc->pipe;
2180         struct drm_plane *plane;
2181
2182         if (!intel_crtc_active(crtc))
2183                 return;
2184
2185         p->active = true;
2186         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2187         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2188         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2189         p->cur.bytes_per_pixel = 4;
2190         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2191         p->cur.horiz_pixels = intel_crtc->cursor_width;
2192         /* TODO: for now, assume primary and cursor planes are always enabled. */
2193         p->pri.enabled = true;
2194         p->cur.enabled = true;
2195
2196         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2197                 struct intel_plane *intel_plane = to_intel_plane(plane);
2198
2199                 if (intel_plane->pipe == pipe) {
2200                         p->spr = intel_plane->wm;
2201                         break;
2202                 }
2203         }
2204 }
2205
2206 static void ilk_compute_wm_config(struct drm_device *dev,
2207                                   struct intel_wm_config *config)
2208 {
2209         struct intel_crtc *intel_crtc;
2210
2211         /* Compute the currently _active_ config */
2212         for_each_intel_crtc(dev, intel_crtc) {
2213                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2214
2215                 if (!wm->pipe_enabled)
2216                         continue;
2217
2218                 config->sprites_enabled |= wm->sprites_enabled;
2219                 config->sprites_scaled |= wm->sprites_scaled;
2220                 config->num_pipes_active++;
2221         }
2222 }
2223
2224 /* Compute new watermarks for the pipe */
2225 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2226                                   const struct ilk_pipe_wm_parameters *params,
2227                                   struct intel_pipe_wm *pipe_wm)
2228 {
2229         struct drm_device *dev = crtc->dev;
2230         const struct drm_i915_private *dev_priv = dev->dev_private;
2231         int level, max_level = ilk_wm_max_level(dev);
2232         /* LP0 watermark maximums depend on this pipe alone */
2233         struct intel_wm_config config = {
2234                 .num_pipes_active = 1,
2235                 .sprites_enabled = params->spr.enabled,
2236                 .sprites_scaled = params->spr.scaled,
2237         };
2238         struct ilk_wm_maximums max;
2239
2240         pipe_wm->pipe_enabled = params->active;
2241         pipe_wm->sprites_enabled = params->spr.enabled;
2242         pipe_wm->sprites_scaled = params->spr.scaled;
2243
2244         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2245         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2246                 max_level = 1;
2247
2248         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2249         if (params->spr.scaled)
2250                 max_level = 0;
2251
2252         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2253
2254         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2255                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2256
2257         /* LP0 watermarks always use 1/2 DDB partitioning */
2258         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2259
2260         /* At least LP0 must be valid */
2261         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2262                 return false;
2263
2264         ilk_compute_wm_reg_maximums(dev, 1, &max);
2265
2266         for (level = 1; level <= max_level; level++) {
2267                 struct intel_wm_level wm = {};
2268
2269                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2270
2271                 /*
2272                  * Disable any watermark level that exceeds the
2273                  * register maximums since such watermarks are
2274                  * always invalid.
2275                  */
2276                 if (!ilk_validate_wm_level(level, &max, &wm))
2277                         break;
2278
2279                 pipe_wm->wm[level] = wm;
2280         }
2281
2282         return true;
2283 }
2284
2285 /*
2286  * Merge the watermarks from all active pipes for a specific level.
2287  */
2288 static void ilk_merge_wm_level(struct drm_device *dev,
2289                                int level,
2290                                struct intel_wm_level *ret_wm)
2291 {
2292         const struct intel_crtc *intel_crtc;
2293
2294         ret_wm->enable = true;
2295
2296         for_each_intel_crtc(dev, intel_crtc) {
2297                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2298                 const struct intel_wm_level *wm = &active->wm[level];
2299
2300                 if (!active->pipe_enabled)
2301                         continue;
2302
2303                 /*
2304                  * The watermark values may have been used in the past,
2305                  * so we must maintain them in the registers for some
2306                  * time even if the level is now disabled.
2307                  */
2308                 if (!wm->enable)
2309                         ret_wm->enable = false;
2310
2311                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2312                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2313                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2314                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2315         }
2316 }
2317
2318 /*
2319  * Merge all low power watermarks for all active pipes.
2320  */
2321 static void ilk_wm_merge(struct drm_device *dev,
2322                          const struct intel_wm_config *config,
2323                          const struct ilk_wm_maximums *max,
2324                          struct intel_pipe_wm *merged)
2325 {
2326         int level, max_level = ilk_wm_max_level(dev);
2327         int last_enabled_level = max_level;
2328
2329         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2330         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2331             config->num_pipes_active > 1)
2332                 return;
2333
2334         /* ILK: FBC WM must be disabled always */
2335         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2336
2337         /* merge each WM1+ level */
2338         for (level = 1; level <= max_level; level++) {
2339                 struct intel_wm_level *wm = &merged->wm[level];
2340
2341                 ilk_merge_wm_level(dev, level, wm);
2342
2343                 if (level > last_enabled_level)
2344                         wm->enable = false;
2345                 else if (!ilk_validate_wm_level(level, max, wm))
2346                         /* make sure all following levels get disabled */
2347                         last_enabled_level = level - 1;
2348
2349                 /*
2350                  * The spec says it is preferred to disable
2351                  * FBC WMs instead of disabling a WM level.
2352                  */
2353                 if (wm->fbc_val > max->fbc) {
2354                         if (wm->enable)
2355                                 merged->fbc_wm_enabled = false;
2356                         wm->fbc_val = 0;
2357                 }
2358         }
2359
2360         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2361         /*
2362          * FIXME this is racy. FBC might get enabled later.
2363          * What we should check here is whether FBC can be
2364          * enabled sometime later.
2365          */
2366         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2367                 for (level = 2; level <= max_level; level++) {
2368                         struct intel_wm_level *wm = &merged->wm[level];
2369
2370                         wm->enable = false;
2371                 }
2372         }
2373 }
2374
2375 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2376 {
2377         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2378         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2379 }
2380
2381 /* The value we need to program into the WM_LPx latency field */
2382 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2383 {
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385
2386         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2387                 return 2 * level;
2388         else
2389                 return dev_priv->wm.pri_latency[level];
2390 }
2391
2392 static void ilk_compute_wm_results(struct drm_device *dev,
2393                                    const struct intel_pipe_wm *merged,
2394                                    enum intel_ddb_partitioning partitioning,
2395                                    struct ilk_wm_values *results)
2396 {
2397         struct intel_crtc *intel_crtc;
2398         int level, wm_lp;
2399
2400         results->enable_fbc_wm = merged->fbc_wm_enabled;
2401         results->partitioning = partitioning;
2402
2403         /* LP1+ register values */
2404         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2405                 const struct intel_wm_level *r;
2406
2407                 level = ilk_wm_lp_to_level(wm_lp, merged);
2408
2409                 r = &merged->wm[level];
2410
2411                 /*
2412                  * Maintain the watermark values even if the level is
2413                  * disabled. Doing otherwise could cause underruns.
2414                  */
2415                 results->wm_lp[wm_lp - 1] =
2416                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2417                         (r->pri_val << WM1_LP_SR_SHIFT) |
2418                         r->cur_val;
2419
2420                 if (r->enable)
2421                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2422
2423                 if (INTEL_INFO(dev)->gen >= 8)
2424                         results->wm_lp[wm_lp - 1] |=
2425                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2426                 else
2427                         results->wm_lp[wm_lp - 1] |=
2428                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2429
2430                 /*
2431                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2432                  * level is disabled. Doing otherwise could cause underruns.
2433                  */
2434                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2435                         WARN_ON(wm_lp != 1);
2436                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2437                 } else
2438                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2439         }
2440
2441         /* LP0 register values */
2442         for_each_intel_crtc(dev, intel_crtc) {
2443                 enum pipe pipe = intel_crtc->pipe;
2444                 const struct intel_wm_level *r =
2445                         &intel_crtc->wm.active.wm[0];
2446
2447                 if (WARN_ON(!r->enable))
2448                         continue;
2449
2450                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2451
2452                 results->wm_pipe[pipe] =
2453                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2454                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2455                         r->cur_val;
2456         }
2457 }
2458
2459 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2460  * case both are at the same level. Prefer r1 in case they're the same. */
2461 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2462                                                   struct intel_pipe_wm *r1,
2463                                                   struct intel_pipe_wm *r2)
2464 {
2465         int level, max_level = ilk_wm_max_level(dev);
2466         int level1 = 0, level2 = 0;
2467
2468         for (level = 1; level <= max_level; level++) {
2469                 if (r1->wm[level].enable)
2470                         level1 = level;
2471                 if (r2->wm[level].enable)
2472                         level2 = level;
2473         }
2474
2475         if (level1 == level2) {
2476                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2477                         return r2;
2478                 else
2479                         return r1;
2480         } else if (level1 > level2) {
2481                 return r1;
2482         } else {
2483                 return r2;
2484         }
2485 }
2486
2487 /* dirty bits used to track which watermarks need changes */
2488 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2489 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2490 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2491 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2492 #define WM_DIRTY_FBC (1 << 24)
2493 #define WM_DIRTY_DDB (1 << 25)
2494
2495 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2496                                          const struct ilk_wm_values *old,
2497                                          const struct ilk_wm_values *new)
2498 {
2499         unsigned int dirty = 0;
2500         enum pipe pipe;
2501         int wm_lp;
2502
2503         for_each_pipe(pipe) {
2504                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2505                         dirty |= WM_DIRTY_LINETIME(pipe);
2506                         /* Must disable LP1+ watermarks too */
2507                         dirty |= WM_DIRTY_LP_ALL;
2508                 }
2509
2510                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2511                         dirty |= WM_DIRTY_PIPE(pipe);
2512                         /* Must disable LP1+ watermarks too */
2513                         dirty |= WM_DIRTY_LP_ALL;
2514                 }
2515         }
2516
2517         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2518                 dirty |= WM_DIRTY_FBC;
2519                 /* Must disable LP1+ watermarks too */
2520                 dirty |= WM_DIRTY_LP_ALL;
2521         }
2522
2523         if (old->partitioning != new->partitioning) {
2524                 dirty |= WM_DIRTY_DDB;
2525                 /* Must disable LP1+ watermarks too */
2526                 dirty |= WM_DIRTY_LP_ALL;
2527         }
2528
2529         /* LP1+ watermarks already deemed dirty, no need to continue */
2530         if (dirty & WM_DIRTY_LP_ALL)
2531                 return dirty;
2532
2533         /* Find the lowest numbered LP1+ watermark in need of an update... */
2534         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2535                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2536                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2537                         break;
2538         }
2539
2540         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2541         for (; wm_lp <= 3; wm_lp++)
2542                 dirty |= WM_DIRTY_LP(wm_lp);
2543
2544         return dirty;
2545 }
2546
2547 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2548                                unsigned int dirty)
2549 {
2550         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2551         bool changed = false;
2552
2553         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2554                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2555                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2556                 changed = true;
2557         }
2558         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2559                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2560                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2561                 changed = true;
2562         }
2563         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2564                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2565                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2566                 changed = true;
2567         }
2568
2569         /*
2570          * Don't touch WM1S_LP_EN here.
2571          * Doing so could cause underruns.
2572          */
2573
2574         return changed;
2575 }
2576
2577 /*
2578  * The spec says we shouldn't write when we don't need, because every write
2579  * causes WMs to be re-evaluated, expending some power.
2580  */
2581 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2582                                 struct ilk_wm_values *results)
2583 {
2584         struct drm_device *dev = dev_priv->dev;
2585         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2586         unsigned int dirty;
2587         uint32_t val;
2588
2589         dirty = ilk_compute_wm_dirty(dev, previous, results);
2590         if (!dirty)
2591                 return;
2592
2593         _ilk_disable_lp_wm(dev_priv, dirty);
2594
2595         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2596                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2597         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2598                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2599         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2600                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2601
2602         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2603                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2604         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2605                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2606         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2607                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2608
2609         if (dirty & WM_DIRTY_DDB) {
2610                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2611                         val = I915_READ(WM_MISC);
2612                         if (results->partitioning == INTEL_DDB_PART_1_2)
2613                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2614                         else
2615                                 val |= WM_MISC_DATA_PARTITION_5_6;
2616                         I915_WRITE(WM_MISC, val);
2617                 } else {
2618                         val = I915_READ(DISP_ARB_CTL2);
2619                         if (results->partitioning == INTEL_DDB_PART_1_2)
2620                                 val &= ~DISP_DATA_PARTITION_5_6;
2621                         else
2622                                 val |= DISP_DATA_PARTITION_5_6;
2623                         I915_WRITE(DISP_ARB_CTL2, val);
2624                 }
2625         }
2626
2627         if (dirty & WM_DIRTY_FBC) {
2628                 val = I915_READ(DISP_ARB_CTL);
2629                 if (results->enable_fbc_wm)
2630                         val &= ~DISP_FBC_WM_DIS;
2631                 else
2632                         val |= DISP_FBC_WM_DIS;
2633                 I915_WRITE(DISP_ARB_CTL, val);
2634         }
2635
2636         if (dirty & WM_DIRTY_LP(1) &&
2637             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2638                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2639
2640         if (INTEL_INFO(dev)->gen >= 7) {
2641                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2642                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2643                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2644                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2645         }
2646
2647         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2648                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2649         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2650                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2651         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2652                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2653
2654         dev_priv->wm.hw = *results;
2655 }
2656
2657 static bool ilk_disable_lp_wm(struct drm_device *dev)
2658 {
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660
2661         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2662 }
2663
2664 static void ilk_update_wm(struct drm_crtc *crtc)
2665 {
2666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667         struct drm_device *dev = crtc->dev;
2668         struct drm_i915_private *dev_priv = dev->dev_private;
2669         struct ilk_wm_maximums max;
2670         struct ilk_pipe_wm_parameters params = {};
2671         struct ilk_wm_values results = {};
2672         enum intel_ddb_partitioning partitioning;
2673         struct intel_pipe_wm pipe_wm = {};
2674         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2675         struct intel_wm_config config = {};
2676
2677         ilk_compute_wm_parameters(crtc, &params);
2678
2679         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2680
2681         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2682                 return;
2683
2684         intel_crtc->wm.active = pipe_wm;
2685
2686         ilk_compute_wm_config(dev, &config);
2687
2688         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2689         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2690
2691         /* 5/6 split only in single pipe config on IVB+ */
2692         if (INTEL_INFO(dev)->gen >= 7 &&
2693             config.num_pipes_active == 1 && config.sprites_enabled) {
2694                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2695                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2696
2697                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2698         } else {
2699                 best_lp_wm = &lp_wm_1_2;
2700         }
2701
2702         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2703                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2704
2705         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2706
2707         ilk_write_wm_values(dev_priv, &results);
2708 }
2709
2710 static void ilk_update_sprite_wm(struct drm_plane *plane,
2711                                      struct drm_crtc *crtc,
2712                                      uint32_t sprite_width, int pixel_size,
2713                                      bool enabled, bool scaled)
2714 {
2715         struct drm_device *dev = plane->dev;
2716         struct intel_plane *intel_plane = to_intel_plane(plane);
2717
2718         intel_plane->wm.enabled = enabled;
2719         intel_plane->wm.scaled = scaled;
2720         intel_plane->wm.horiz_pixels = sprite_width;
2721         intel_plane->wm.bytes_per_pixel = pixel_size;
2722
2723         /*
2724          * IVB workaround: must disable low power watermarks for at least
2725          * one frame before enabling scaling.  LP watermarks can be re-enabled
2726          * when scaling is disabled.
2727          *
2728          * WaCxSRDisabledForSpriteScaling:ivb
2729          */
2730         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2731                 intel_wait_for_vblank(dev, intel_plane->pipe);
2732
2733         ilk_update_wm(crtc);
2734 }
2735
2736 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2737 {
2738         struct drm_device *dev = crtc->dev;
2739         struct drm_i915_private *dev_priv = dev->dev_private;
2740         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2742         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2743         enum pipe pipe = intel_crtc->pipe;
2744         static const unsigned int wm0_pipe_reg[] = {
2745                 [PIPE_A] = WM0_PIPEA_ILK,
2746                 [PIPE_B] = WM0_PIPEB_ILK,
2747                 [PIPE_C] = WM0_PIPEC_IVB,
2748         };
2749
2750         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2751         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2752                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2753
2754         active->pipe_enabled = intel_crtc_active(crtc);
2755
2756         if (active->pipe_enabled) {
2757                 u32 tmp = hw->wm_pipe[pipe];
2758
2759                 /*
2760                  * For active pipes LP0 watermark is marked as
2761                  * enabled, and LP1+ watermaks as disabled since
2762                  * we can't really reverse compute them in case
2763                  * multiple pipes are active.
2764                  */
2765                 active->wm[0].enable = true;
2766                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2767                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2768                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2769                 active->linetime = hw->wm_linetime[pipe];
2770         } else {
2771                 int level, max_level = ilk_wm_max_level(dev);
2772
2773                 /*
2774                  * For inactive pipes, all watermark levels
2775                  * should be marked as enabled but zeroed,
2776                  * which is what we'd compute them to.
2777                  */
2778                 for (level = 0; level <= max_level; level++)
2779                         active->wm[level].enable = true;
2780         }
2781 }
2782
2783 void ilk_wm_get_hw_state(struct drm_device *dev)
2784 {
2785         struct drm_i915_private *dev_priv = dev->dev_private;
2786         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2787         struct drm_crtc *crtc;
2788
2789         for_each_crtc(dev, crtc)
2790                 ilk_pipe_wm_get_hw_state(crtc);
2791
2792         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2793         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2794         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2795
2796         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2797         if (INTEL_INFO(dev)->gen >= 7) {
2798                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2799                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2800         }
2801
2802         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2803                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2804                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2805         else if (IS_IVYBRIDGE(dev))
2806                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2807                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2808
2809         hw->enable_fbc_wm =
2810                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2811 }
2812
2813 /**
2814  * intel_update_watermarks - update FIFO watermark values based on current modes
2815  *
2816  * Calculate watermark values for the various WM regs based on current mode
2817  * and plane configuration.
2818  *
2819  * There are several cases to deal with here:
2820  *   - normal (i.e. non-self-refresh)
2821  *   - self-refresh (SR) mode
2822  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2823  *   - lines are small relative to FIFO size (buffer can hold more than 2
2824  *     lines), so need to account for TLB latency
2825  *
2826  *   The normal calculation is:
2827  *     watermark = dotclock * bytes per pixel * latency
2828  *   where latency is platform & configuration dependent (we assume pessimal
2829  *   values here).
2830  *
2831  *   The SR calculation is:
2832  *     watermark = (trunc(latency/line time)+1) * surface width *
2833  *       bytes per pixel
2834  *   where
2835  *     line time = htotal / dotclock
2836  *     surface width = hdisplay for normal plane and 64 for cursor
2837  *   and latency is assumed to be high, as above.
2838  *
2839  * The final value programmed to the register should always be rounded up,
2840  * and include an extra 2 entries to account for clock crossings.
2841  *
2842  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2843  * to set the non-SR watermarks to 8.
2844  */
2845 void intel_update_watermarks(struct drm_crtc *crtc)
2846 {
2847         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2848
2849         if (dev_priv->display.update_wm)
2850                 dev_priv->display.update_wm(crtc);
2851 }
2852
2853 void intel_update_sprite_watermarks(struct drm_plane *plane,
2854                                     struct drm_crtc *crtc,
2855                                     uint32_t sprite_width, int pixel_size,
2856                                     bool enabled, bool scaled)
2857 {
2858         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2859
2860         if (dev_priv->display.update_sprite_wm)
2861                 dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
2862                                                    pixel_size, enabled, scaled);
2863 }
2864
2865 static struct drm_i915_gem_object *
2866 intel_alloc_context_page(struct drm_device *dev)
2867 {
2868         struct drm_i915_gem_object *ctx;
2869         int ret;
2870
2871         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2872
2873         ctx = i915_gem_alloc_object(dev, 4096);
2874         if (!ctx) {
2875                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2876                 return NULL;
2877         }
2878
2879         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2880         if (ret) {
2881                 DRM_ERROR("failed to pin power context: %d\n", ret);
2882                 goto err_unref;
2883         }
2884
2885         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2886         if (ret) {
2887                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2888                 goto err_unpin;
2889         }
2890
2891         return ctx;
2892
2893 err_unpin:
2894         i915_gem_object_ggtt_unpin(ctx);
2895 err_unref:
2896         drm_gem_object_unreference(&ctx->base);
2897         return NULL;
2898 }
2899
2900 /**
2901  * Lock protecting IPS related data structures
2902  */
2903 DEFINE_SPINLOCK(mchdev_lock);
2904
2905 /* Global for IPS driver to get at the current i915 device. Protected by
2906  * mchdev_lock. */
2907 static struct drm_i915_private *i915_mch_dev;
2908
2909 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2910 {
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         u16 rgvswctl;
2913
2914         assert_spin_locked(&mchdev_lock);
2915
2916         rgvswctl = I915_READ16(MEMSWCTL);
2917         if (rgvswctl & MEMCTL_CMD_STS) {
2918                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2919                 return false; /* still busy with another command */
2920         }
2921
2922         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2923                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2924         I915_WRITE16(MEMSWCTL, rgvswctl);
2925         POSTING_READ16(MEMSWCTL);
2926
2927         rgvswctl |= MEMCTL_CMD_STS;
2928         I915_WRITE16(MEMSWCTL, rgvswctl);
2929
2930         return true;
2931 }
2932
2933 static void ironlake_enable_drps(struct drm_device *dev)
2934 {
2935         struct drm_i915_private *dev_priv = dev->dev_private;
2936         u32 rgvmodectl = I915_READ(MEMMODECTL);
2937         u8 fmax, fmin, fstart, vstart;
2938
2939         spin_lock_irq(&mchdev_lock);
2940
2941         /* Enable temp reporting */
2942         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2943         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2944
2945         /* 100ms RC evaluation intervals */
2946         I915_WRITE(RCUPEI, 100000);
2947         I915_WRITE(RCDNEI, 100000);
2948
2949         /* Set max/min thresholds to 90ms and 80ms respectively */
2950         I915_WRITE(RCBMAXAVG, 90000);
2951         I915_WRITE(RCBMINAVG, 80000);
2952
2953         I915_WRITE(MEMIHYST, 1);
2954
2955         /* Set up min, max, and cur for interrupt handling */
2956         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2957         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2958         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2959                 MEMMODE_FSTART_SHIFT;
2960
2961         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2962                 PXVFREQ_PX_SHIFT;
2963
2964         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2965         dev_priv->ips.fstart = fstart;
2966
2967         dev_priv->ips.max_delay = fstart;
2968         dev_priv->ips.min_delay = fmin;
2969         dev_priv->ips.cur_delay = fstart;
2970
2971         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2972                          fmax, fmin, fstart);
2973
2974         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2975
2976         /*
2977          * Interrupts will be enabled in ironlake_irq_postinstall
2978          */
2979
2980         I915_WRITE(VIDSTART, vstart);
2981         POSTING_READ(VIDSTART);
2982
2983         rgvmodectl |= MEMMODE_SWMODE_EN;
2984         I915_WRITE(MEMMODECTL, rgvmodectl);
2985
2986         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2987                 DRM_ERROR("stuck trying to change perf mode\n");
2988         mdelay(1);
2989
2990         ironlake_set_drps(dev, fstart);
2991
2992         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2993                 I915_READ(0x112e0);
2994         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2995         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2996         getrawmonotonic(&dev_priv->ips.last_time2);
2997
2998         spin_unlock_irq(&mchdev_lock);
2999 }
3000
3001 static void ironlake_disable_drps(struct drm_device *dev)
3002 {
3003         struct drm_i915_private *dev_priv = dev->dev_private;
3004         u16 rgvswctl;
3005
3006         spin_lock_irq(&mchdev_lock);
3007
3008         rgvswctl = I915_READ16(MEMSWCTL);
3009
3010         /* Ack interrupts, disable EFC interrupt */
3011         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3012         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3013         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3014         I915_WRITE(DEIIR, DE_PCU_EVENT);
3015         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3016
3017         /* Go back to the starting frequency */
3018         ironlake_set_drps(dev, dev_priv->ips.fstart);
3019         mdelay(1);
3020         rgvswctl |= MEMCTL_CMD_STS;
3021         I915_WRITE(MEMSWCTL, rgvswctl);
3022         mdelay(1);
3023
3024         spin_unlock_irq(&mchdev_lock);
3025 }
3026
3027 /* There's a funny hw issue where the hw returns all 0 when reading from
3028  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3029  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3030  * all limits and the gpu stuck at whatever frequency it is at atm).
3031  */
3032 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3033 {
3034         u32 limits;
3035
3036         /* Only set the down limit when we've reached the lowest level to avoid
3037          * getting more interrupts, otherwise leave this clear. This prevents a
3038          * race in the hw when coming out of rc6: There's a tiny window where
3039          * the hw runs at the minimal clock before selecting the desired
3040          * frequency, if the down threshold expires in that window we will not
3041          * receive a down interrupt. */
3042         limits = dev_priv->rps.max_freq_softlimit << 24;
3043         if (val <= dev_priv->rps.min_freq_softlimit)
3044                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3045
3046         return limits;
3047 }
3048
3049 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3050 {
3051         int new_power;
3052
3053         new_power = dev_priv->rps.power;
3054         switch (dev_priv->rps.power) {
3055         case LOW_POWER:
3056                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3057                         new_power = BETWEEN;
3058                 break;
3059
3060         case BETWEEN:
3061                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3062                         new_power = LOW_POWER;
3063                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3064                         new_power = HIGH_POWER;
3065                 break;
3066
3067         case HIGH_POWER:
3068                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3069                         new_power = BETWEEN;
3070                 break;
3071         }
3072         /* Max/min bins are special */
3073         if (val == dev_priv->rps.min_freq_softlimit)
3074                 new_power = LOW_POWER;
3075         if (val == dev_priv->rps.max_freq_softlimit)
3076                 new_power = HIGH_POWER;
3077         if (new_power == dev_priv->rps.power)
3078                 return;
3079
3080         /* Note the units here are not exactly 1us, but 1280ns. */
3081         switch (new_power) {
3082         case LOW_POWER:
3083                 /* Upclock if more than 95% busy over 16ms */
3084                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3085                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3086
3087                 /* Downclock if less than 85% busy over 32ms */
3088                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3089                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3090
3091                 I915_WRITE(GEN6_RP_CONTROL,
3092                            GEN6_RP_MEDIA_TURBO |
3093                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3094                            GEN6_RP_MEDIA_IS_GFX |
3095                            GEN6_RP_ENABLE |
3096                            GEN6_RP_UP_BUSY_AVG |
3097                            GEN6_RP_DOWN_IDLE_AVG);
3098                 break;
3099
3100         case BETWEEN:
3101                 /* Upclock if more than 90% busy over 13ms */
3102                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3103                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3104
3105                 /* Downclock if less than 75% busy over 32ms */
3106                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3107                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3108
3109                 I915_WRITE(GEN6_RP_CONTROL,
3110                            GEN6_RP_MEDIA_TURBO |
3111                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3112                            GEN6_RP_MEDIA_IS_GFX |
3113                            GEN6_RP_ENABLE |
3114                            GEN6_RP_UP_BUSY_AVG |
3115                            GEN6_RP_DOWN_IDLE_AVG);
3116                 break;
3117
3118         case HIGH_POWER:
3119                 /* Upclock if more than 85% busy over 10ms */
3120                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3121                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3122
3123                 /* Downclock if less than 60% busy over 32ms */
3124                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3125                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3126
3127                 I915_WRITE(GEN6_RP_CONTROL,
3128                            GEN6_RP_MEDIA_TURBO |
3129                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3130                            GEN6_RP_MEDIA_IS_GFX |
3131                            GEN6_RP_ENABLE |
3132                            GEN6_RP_UP_BUSY_AVG |
3133                            GEN6_RP_DOWN_IDLE_AVG);
3134                 break;
3135         }
3136
3137         dev_priv->rps.power = new_power;
3138         dev_priv->rps.last_adj = 0;
3139 }
3140
3141 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3142 {
3143         u32 mask = 0;
3144
3145         if (val > dev_priv->rps.min_freq_softlimit)
3146                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3147         if (val < dev_priv->rps.max_freq_softlimit)
3148                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3149
3150         /* IVB and SNB hard hangs on looping batchbuffer
3151          * if GEN6_PM_UP_EI_EXPIRED is masked.
3152          */
3153         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3154                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3155
3156         if (IS_GEN8(dev_priv->dev))
3157                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3158
3159         return ~mask;
3160 }
3161
3162 /* gen6_set_rps is called to update the frequency request, but should also be
3163  * called when the range (min_delay and max_delay) is modified so that we can
3164  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3165 void gen6_set_rps(struct drm_device *dev, u8 val)
3166 {
3167         struct drm_i915_private *dev_priv = dev->dev_private;
3168
3169         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3170         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3171         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3172
3173         /* min/max delay may still have been modified so be sure to
3174          * write the limits value.
3175          */
3176         if (val != dev_priv->rps.cur_freq) {
3177                 gen6_set_rps_thresholds(dev_priv, val);
3178
3179                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3180                         I915_WRITE(GEN6_RPNSWREQ,
3181                                    HSW_FREQUENCY(val));
3182                 else
3183                         I915_WRITE(GEN6_RPNSWREQ,
3184                                    GEN6_FREQUENCY(val) |
3185                                    GEN6_OFFSET(0) |
3186                                    GEN6_AGGRESSIVE_TURBO);
3187         }
3188
3189         /* Make sure we continue to get interrupts
3190          * until we hit the minimum or maximum frequencies.
3191          */
3192         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3193         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3194
3195         POSTING_READ(GEN6_RPNSWREQ);
3196
3197         dev_priv->rps.cur_freq = val;
3198         trace_intel_gpu_freq_change(val * 50);
3199 }
3200
3201 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3202  *
3203  * * If Gfx is Idle, then
3204  * 1. Mask Turbo interrupts
3205  * 2. Bring up Gfx clock
3206  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3207  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3208  * 5. Unmask Turbo interrupts
3209 */
3210 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3211 {
3212         struct drm_device *dev = dev_priv->dev;
3213
3214         /* Latest VLV doesn't need to force the gfx clock */
3215         if (dev->pdev->revision >= 0xd) {
3216                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3217                 return;
3218         }
3219
3220         /*
3221          * When we are idle.  Drop to min voltage state.
3222          */
3223
3224         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3225                 return;
3226
3227         /* Mask turbo interrupt so that they will not come in between */
3228         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3229
3230         vlv_force_gfx_clock(dev_priv, true);
3231
3232         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3233
3234         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3235                                         dev_priv->rps.min_freq_softlimit);
3236
3237         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3238                                 & GENFREQSTATUS) == 0, 5))
3239                 DRM_ERROR("timed out waiting for Punit\n");
3240
3241         vlv_force_gfx_clock(dev_priv, false);
3242
3243         I915_WRITE(GEN6_PMINTRMSK,
3244                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3245 }
3246
3247 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3248 {
3249         struct drm_device *dev = dev_priv->dev;
3250
3251         mutex_lock(&dev_priv->rps.hw_lock);
3252         if (dev_priv->rps.enabled) {
3253                 if (IS_VALLEYVIEW(dev))
3254                         vlv_set_rps_idle(dev_priv);
3255                 else
3256                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3257                 dev_priv->rps.last_adj = 0;
3258         }
3259         mutex_unlock(&dev_priv->rps.hw_lock);
3260 }
3261
3262 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3263 {
3264         struct drm_device *dev = dev_priv->dev;
3265
3266         mutex_lock(&dev_priv->rps.hw_lock);
3267         if (dev_priv->rps.enabled) {
3268                 if (IS_VALLEYVIEW(dev))
3269                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3270                 else
3271                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3272                 dev_priv->rps.last_adj = 0;
3273         }
3274         mutex_unlock(&dev_priv->rps.hw_lock);
3275 }
3276
3277 void valleyview_set_rps(struct drm_device *dev, u8 val)
3278 {
3279         struct drm_i915_private *dev_priv = dev->dev_private;
3280
3281         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3282         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3283         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3284
3285         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3286                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3287                          dev_priv->rps.cur_freq,
3288                          vlv_gpu_freq(dev_priv, val), val);
3289
3290         if (val != dev_priv->rps.cur_freq)
3291                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3292
3293         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3294
3295         dev_priv->rps.cur_freq = val;
3296         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3297 }
3298
3299 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3300 {
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302
3303         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3304         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3305                                    ~dev_priv->pm_rps_events);
3306         /* Complete PM interrupt masking here doesn't race with the rps work
3307          * item again unmasking PM interrupts because that is using a different
3308          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3309          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3310          * gen8_enable_rps will clean up. */
3311
3312         spin_lock_irq(&dev_priv->irq_lock);
3313         dev_priv->rps.pm_iir = 0;
3314         spin_unlock_irq(&dev_priv->irq_lock);
3315
3316         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3317 }
3318
3319 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3320 {
3321         struct drm_i915_private *dev_priv = dev->dev_private;
3322
3323         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3324         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3325                                 ~dev_priv->pm_rps_events);
3326         /* Complete PM interrupt masking here doesn't race with the rps work
3327          * item again unmasking PM interrupts because that is using a different
3328          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3329          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3330
3331         spin_lock_irq(&dev_priv->irq_lock);
3332         dev_priv->rps.pm_iir = 0;
3333         spin_unlock_irq(&dev_priv->irq_lock);
3334
3335         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3336 }
3337
3338 static void gen6_disable_rps(struct drm_device *dev)
3339 {
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341
3342         I915_WRITE(GEN6_RC_CONTROL, 0);
3343         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3344
3345         if (IS_BROADWELL(dev))
3346                 gen8_disable_rps_interrupts(dev);
3347         else
3348                 gen6_disable_rps_interrupts(dev);
3349 }
3350
3351 static void valleyview_disable_rps(struct drm_device *dev)
3352 {
3353         struct drm_i915_private *dev_priv = dev->dev_private;
3354
3355         I915_WRITE(GEN6_RC_CONTROL, 0);
3356
3357         gen6_disable_rps_interrupts(dev);
3358 }
3359
3360 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3361 {
3362         if (IS_VALLEYVIEW(dev)) {
3363                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3364                         mode = GEN6_RC_CTL_RC6_ENABLE;
3365                 else
3366                         mode = 0;
3367         }
3368         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3369                  (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3370                  (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3371                  (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3372 }
3373
3374 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3375 {
3376         /* No RC6 before Ironlake */
3377         if (INTEL_INFO(dev)->gen < 5)
3378                 return 0;
3379
3380         /* RC6 is only on Ironlake mobile not on desktop */
3381         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3382                 return 0;
3383
3384         /* Respect the kernel parameter if it is set */
3385         if (enable_rc6 >= 0) {
3386                 int mask;
3387
3388                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3389                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3390                                INTEL_RC6pp_ENABLE;
3391                 else
3392                         mask = INTEL_RC6_ENABLE;
3393
3394                 if ((enable_rc6 & mask) != enable_rc6)
3395                         DRM_INFO("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3396                                  enable_rc6 & mask, enable_rc6, mask);
3397
3398                 return enable_rc6 & mask;
3399         }
3400
3401         /* Disable RC6 on Ironlake */
3402         if (INTEL_INFO(dev)->gen == 5)
3403                 return 0;
3404
3405         if (IS_IVYBRIDGE(dev))
3406                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3407
3408         return INTEL_RC6_ENABLE;
3409 }
3410
3411 int intel_enable_rc6(const struct drm_device *dev)
3412 {
3413         return i915.enable_rc6;
3414 }
3415
3416 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3417 {
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419
3420         spin_lock_irq(&dev_priv->irq_lock);
3421         WARN_ON(dev_priv->rps.pm_iir);
3422         bdw_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3423         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3424         spin_unlock_irq(&dev_priv->irq_lock);
3425 }
3426
3427 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3428 {
3429         struct drm_i915_private *dev_priv = dev->dev_private;
3430
3431         spin_lock_irq(&dev_priv->irq_lock);
3432         WARN_ON(dev_priv->rps.pm_iir);
3433         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3434         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3435         spin_unlock_irq(&dev_priv->irq_lock);
3436 }
3437
3438 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3439 {
3440         /* All of these values are in units of 50MHz */
3441         dev_priv->rps.cur_freq          = 0;
3442         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3443         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3444         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3445         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3446         /* XXX: only BYT has a special efficient freq */
3447         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3448         /* hw_max = RP0 until we check for overclocking */
3449         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3450
3451         /* Preserve min/max settings in case of re-init */
3452         if (dev_priv->rps.max_freq_softlimit == 0)
3453                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3454
3455         if (dev_priv->rps.min_freq_softlimit == 0)
3456                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3457 }
3458
3459 static void gen8_enable_rps(struct drm_device *dev)
3460 {
3461         struct drm_i915_private *dev_priv = dev->dev_private;
3462         struct intel_engine_cs *ring;
3463         uint32_t rc6_mask = 0, rp_state_cap;
3464         int unused;
3465
3466         /* 1a: Software RC state - RC0 */
3467         I915_WRITE(GEN6_RC_STATE, 0);
3468
3469         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3470          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3471         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3472
3473         /* 2a: Disable RC states. */
3474         I915_WRITE(GEN6_RC_CONTROL, 0);
3475
3476         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3477         parse_rp_state_cap(dev_priv, rp_state_cap);
3478
3479         /* 2b: Program RC6 thresholds.*/
3480         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3481         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3482         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3483         for_each_ring(ring, dev_priv, unused)
3484                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3485         I915_WRITE(GEN6_RC_SLEEP, 0);
3486         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3487
3488         /* 3: Enable RC6 */
3489         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3490                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3491         intel_print_rc6_info(dev, rc6_mask);
3492         I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3493                                     GEN6_RC_CTL_EI_MODE(1) |
3494                                     rc6_mask);
3495
3496         /* 4 Program defaults and thresholds for RPS*/
3497         I915_WRITE(GEN6_RPNSWREQ,
3498                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3499         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3500                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3501         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3502         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3503
3504         /* Docs recommend 900MHz, and 300 MHz respectively */
3505         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3506                    dev_priv->rps.max_freq_softlimit << 24 |
3507                    dev_priv->rps.min_freq_softlimit << 16);
3508
3509         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3510         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3511         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3512         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3513
3514         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3515
3516         /* 5: Enable RPS */
3517         I915_WRITE(GEN6_RP_CONTROL,
3518                    GEN6_RP_MEDIA_TURBO |
3519                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3520                    GEN6_RP_MEDIA_IS_GFX |
3521                    GEN6_RP_ENABLE |
3522                    GEN6_RP_UP_BUSY_AVG |
3523                    GEN6_RP_DOWN_IDLE_AVG);
3524
3525         /* 6: Ring frequency + overclocking (our driver does this later */
3526
3527         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3528
3529         gen8_enable_rps_interrupts(dev);
3530
3531         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3532 }
3533
3534 static void gen6_enable_rps(struct drm_device *dev)
3535 {
3536         struct drm_i915_private *dev_priv = dev->dev_private;
3537         struct intel_engine_cs *ring;
3538         u32 rp_state_cap;
3539         u32 gt_perf_status;
3540         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3541         u32 gtfifodbg;
3542         int rc6_mode;
3543         int i, ret;
3544
3545         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3546
3547         /* Here begins a magic sequence of register writes to enable
3548          * auto-downclocking.
3549          *
3550          * Perhaps there might be some value in exposing these to
3551          * userspace...
3552          */
3553         I915_WRITE(GEN6_RC_STATE, 0);
3554
3555         /* Clear the DBG now so we don't confuse earlier errors */
3556         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3557                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3558                 I915_WRITE(GTFIFODBG, gtfifodbg);
3559         }
3560
3561         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3562
3563         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3564         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3565
3566         parse_rp_state_cap(dev_priv, rp_state_cap);
3567
3568         /* disable the counters and set deterministic thresholds */
3569         I915_WRITE(GEN6_RC_CONTROL, 0);
3570
3571         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3572         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3573         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3574         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3575         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3576
3577         for_each_ring(ring, dev_priv, i)
3578                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3579
3580         I915_WRITE(GEN6_RC_SLEEP, 0);
3581         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3582         if (IS_IVYBRIDGE(dev))
3583                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3584         else
3585                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3586         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3587         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3588
3589         /* Check if we are enabling RC6 */
3590         rc6_mode = intel_enable_rc6(dev_priv->dev);
3591         if (rc6_mode & INTEL_RC6_ENABLE)
3592                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3593
3594         /* We don't use those on Haswell */
3595         if (!IS_HASWELL(dev)) {
3596                 if (rc6_mode & INTEL_RC6p_ENABLE)
3597                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3598
3599                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3600                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3601         }
3602
3603         intel_print_rc6_info(dev, rc6_mask);
3604
3605         I915_WRITE(GEN6_RC_CONTROL,
3606                    rc6_mask |
3607                    GEN6_RC_CTL_EI_MODE(1) |
3608                    GEN6_RC_CTL_HW_ENABLE);
3609
3610         /* Power down if completely idle for over 50ms */
3611         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3612         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3613
3614         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3615         if (ret)
3616                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3617
3618         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3619         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3620                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3621                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3622                                  (pcu_mbox & 0xff) * 50);
3623                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3624         }
3625
3626         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3627         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3628
3629         gen6_enable_rps_interrupts(dev);
3630
3631         rc6vids = 0;
3632         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3633         if (IS_GEN6(dev) && ret) {
3634                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3635         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3636                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3637                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3638                 rc6vids &= 0xffff00;
3639                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3640                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3641                 if (ret)
3642                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3643         }
3644
3645         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3646 }
3647
3648 static void __gen6_update_ring_freq(struct drm_device *dev)
3649 {
3650         struct drm_i915_private *dev_priv = dev->dev_private;
3651         int min_freq = 15;
3652         unsigned int gpu_freq;
3653         unsigned int max_ia_freq, min_ring_freq;
3654         int scaling_factor = 180;
3655         struct cpufreq_policy *policy;
3656
3657         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3658
3659         policy = cpufreq_cpu_get(0);
3660         if (policy) {
3661                 max_ia_freq = policy->cpuinfo.max_freq;
3662                 cpufreq_cpu_put(policy);
3663         } else {
3664                 /*
3665                  * Default to measured freq if none found, PCU will ensure we
3666                  * don't go over
3667                  */
3668                 max_ia_freq = tsc_khz;
3669         }
3670
3671         /* Convert from kHz to MHz */
3672         max_ia_freq /= 1000;
3673
3674         min_ring_freq = I915_READ(DCLK) & 0xf;
3675         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3676         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3677
3678         /*
3679          * For each potential GPU frequency, load a ring frequency we'd like
3680          * to use for memory access.  We do this by specifying the IA frequency
3681          * the PCU should use as a reference to determine the ring frequency.
3682          */
3683         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3684              gpu_freq--) {
3685                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3686                 unsigned int ia_freq = 0, ring_freq = 0;
3687
3688                 if (INTEL_INFO(dev)->gen >= 8) {
3689                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3690                         ring_freq = max(min_ring_freq, gpu_freq);
3691                 } else if (IS_HASWELL(dev)) {
3692                         ring_freq = mult_frac(gpu_freq, 5, 4);
3693                         ring_freq = max(min_ring_freq, ring_freq);
3694                         /* leave ia_freq as the default, chosen by cpufreq */
3695                 } else {
3696                         /* On older processors, there is no separate ring
3697                          * clock domain, so in order to boost the bandwidth
3698                          * of the ring, we need to upclock the CPU (ia_freq).
3699                          *
3700                          * For GPU frequencies less than 750MHz,
3701                          * just use the lowest ring freq.
3702                          */
3703                         if (gpu_freq < min_freq)
3704                                 ia_freq = 800;
3705                         else
3706                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3707                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3708                 }
3709
3710                 sandybridge_pcode_write(dev_priv,
3711                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3712                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3713                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3714                                         gpu_freq);
3715         }
3716 }
3717
3718 void gen6_update_ring_freq(struct drm_device *dev)
3719 {
3720         struct drm_i915_private *dev_priv = dev->dev_private;
3721
3722         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3723                 return;
3724
3725         mutex_lock(&dev_priv->rps.hw_lock);
3726         __gen6_update_ring_freq(dev);
3727         mutex_unlock(&dev_priv->rps.hw_lock);
3728 }
3729
3730 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3731 {
3732         u32 val, rp0;
3733
3734         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3735
3736         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3737         /* Clamp to max */
3738         rp0 = min_t(u32, rp0, 0xea);
3739
3740         return rp0;
3741 }
3742
3743 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3744 {
3745         u32 val, rpe;
3746
3747         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3748         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3749         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3750         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3751
3752         return rpe;
3753 }
3754
3755 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3756 {
3757         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3758 }
3759
3760 /* Check that the pctx buffer wasn't move under us. */
3761 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3762 {
3763         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3764
3765         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3766                              dev_priv->vlv_pctx->stolen->start);
3767 }
3768
3769 static void valleyview_setup_pctx(struct drm_device *dev)
3770 {
3771         struct drm_i915_private *dev_priv = dev->dev_private;
3772         struct drm_i915_gem_object *pctx;
3773         unsigned long pctx_paddr;
3774         u32 pcbr;
3775         int pctx_size = 24*1024;
3776
3777         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3778
3779         pcbr = I915_READ(VLV_PCBR);
3780         if (pcbr) {
3781                 /* BIOS set it up already, grab the pre-alloc'd space */
3782                 int pcbr_offset;
3783
3784                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3785                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3786                                                                       pcbr_offset,
3787                                                                       I915_GTT_OFFSET_NONE,
3788                                                                       pctx_size);
3789                 goto out;
3790         }
3791
3792         /*
3793          * From the Gunit register HAS:
3794          * The Gfx driver is expected to program this register and ensure
3795          * proper allocation within Gfx stolen memory.  For example, this
3796          * register should be programmed such than the PCBR range does not
3797          * overlap with other ranges, such as the frame buffer, protected
3798          * memory, or any other relevant ranges.
3799          */
3800         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3801         if (!pctx) {
3802                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3803                 return;
3804         }
3805
3806         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3807         I915_WRITE(VLV_PCBR, pctx_paddr);
3808
3809 out:
3810         dev_priv->vlv_pctx = pctx;
3811 }
3812
3813 static void valleyview_cleanup_pctx(struct drm_device *dev)
3814 {
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816
3817         if (WARN_ON(!dev_priv->vlv_pctx))
3818                 return;
3819
3820         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3821         dev_priv->vlv_pctx = NULL;
3822 }
3823
3824 static void valleyview_init_gt_powersave(struct drm_device *dev)
3825 {
3826         struct drm_i915_private *dev_priv = dev->dev_private;
3827
3828         valleyview_setup_pctx(dev);
3829
3830         mutex_lock(&dev_priv->rps.hw_lock);
3831
3832         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3833         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3834         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3835                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3836                          dev_priv->rps.max_freq);
3837
3838         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3839         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3840                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3841                          dev_priv->rps.efficient_freq);
3842
3843         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
3844         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3845                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
3846                          dev_priv->rps.min_freq);
3847
3848         /* Preserve min/max settings in case of re-init */
3849         if (dev_priv->rps.max_freq_softlimit == 0)
3850                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3851
3852         if (dev_priv->rps.min_freq_softlimit == 0)
3853                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3854
3855         mutex_unlock(&dev_priv->rps.hw_lock);
3856 }
3857
3858 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
3859 {
3860         valleyview_cleanup_pctx(dev);
3861 }
3862
3863 static void valleyview_enable_rps(struct drm_device *dev)
3864 {
3865         struct drm_i915_private *dev_priv = dev->dev_private;
3866         struct intel_engine_cs *ring;
3867         u32 gtfifodbg, val, rc6_mode = 0;
3868         int i;
3869
3870         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3871
3872         valleyview_check_pctx(dev_priv);
3873
3874         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3875                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
3876                                  gtfifodbg);
3877                 I915_WRITE(GTFIFODBG, gtfifodbg);
3878         }
3879
3880         /* If VLV, Forcewake all wells, else re-direct to regular path */
3881         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3882
3883         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3884         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3885         I915_WRITE(GEN6_RP_UP_EI, 66000);
3886         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3887
3888         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3889
3890         I915_WRITE(GEN6_RP_CONTROL,
3891                    GEN6_RP_MEDIA_TURBO |
3892                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3893                    GEN6_RP_MEDIA_IS_GFX |
3894                    GEN6_RP_ENABLE |
3895                    GEN6_RP_UP_BUSY_AVG |
3896                    GEN6_RP_DOWN_IDLE_CONT);
3897
3898         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3899         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3900         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3901
3902         for_each_ring(ring, dev_priv, i)
3903                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3904
3905         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
3906
3907         /* allows RC6 residency counter to work */
3908         I915_WRITE(VLV_COUNTER_CONTROL,
3909                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
3910                                       VLV_MEDIA_RC6_COUNT_EN |
3911                                       VLV_RENDER_RC6_COUNT_EN));
3912         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3913                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
3914
3915         intel_print_rc6_info(dev, rc6_mode);
3916
3917         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
3918
3919         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3920
3921         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3922         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3923
3924         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
3925         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3926                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3927                          dev_priv->rps.cur_freq);
3928
3929         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3930                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3931                          dev_priv->rps.efficient_freq);
3932
3933         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
3934
3935         gen6_enable_rps_interrupts(dev);
3936
3937         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3938 }
3939
3940 void ironlake_teardown_rc6(struct drm_device *dev)
3941 {
3942         struct drm_i915_private *dev_priv = dev->dev_private;
3943
3944         if (dev_priv->ips.renderctx) {
3945                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
3946                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3947                 dev_priv->ips.renderctx = NULL;
3948         }
3949
3950         if (dev_priv->ips.pwrctx) {
3951                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
3952                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3953                 dev_priv->ips.pwrctx = NULL;
3954         }
3955 }
3956
3957 static void ironlake_disable_rc6(struct drm_device *dev)
3958 {
3959         struct drm_i915_private *dev_priv = dev->dev_private;
3960
3961         if (I915_READ(PWRCTXA)) {
3962                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3963                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3964                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3965                          50);
3966
3967                 I915_WRITE(PWRCTXA, 0);
3968                 POSTING_READ(PWRCTXA);
3969
3970                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3971                 POSTING_READ(RSTDBYCTL);
3972         }
3973 }
3974
3975 static int ironlake_setup_rc6(struct drm_device *dev)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979         if (dev_priv->ips.renderctx == NULL)
3980                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3981         if (!dev_priv->ips.renderctx)
3982                 return -ENOMEM;
3983
3984         if (dev_priv->ips.pwrctx == NULL)
3985                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3986         if (!dev_priv->ips.pwrctx) {
3987                 ironlake_teardown_rc6(dev);
3988                 return -ENOMEM;
3989         }
3990
3991         return 0;
3992 }
3993
3994 static void ironlake_enable_rc6(struct drm_device *dev)
3995 {
3996         struct drm_i915_private *dev_priv = dev->dev_private;
3997         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
3998         bool was_interruptible;
3999         int ret;
4000
4001         /* rc6 disabled by default due to repeated reports of hanging during
4002          * boot and resume.
4003          */
4004         if (!intel_enable_rc6(dev))
4005                 return;
4006
4007         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4008
4009         ret = ironlake_setup_rc6(dev);
4010         if (ret)
4011                 return;
4012
4013         was_interruptible = dev_priv->mm.interruptible;
4014         dev_priv->mm.interruptible = false;
4015
4016         /*
4017          * GPU can automatically power down the render unit if given a page
4018          * to save state.
4019          */
4020         ret = intel_ring_begin(ring, 6);
4021         if (ret) {
4022                 ironlake_teardown_rc6(dev);
4023                 dev_priv->mm.interruptible = was_interruptible;
4024                 return;
4025         }
4026
4027         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4028         intel_ring_emit(ring, MI_SET_CONTEXT);
4029         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4030                         MI_MM_SPACE_GTT |
4031                         MI_SAVE_EXT_STATE_EN |
4032                         MI_RESTORE_EXT_STATE_EN |
4033                         MI_RESTORE_INHIBIT);
4034         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4035         intel_ring_emit(ring, MI_NOOP);
4036         intel_ring_emit(ring, MI_FLUSH);
4037         intel_ring_advance(ring);
4038
4039         /*
4040          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4041          * does an implicit flush, combined with MI_FLUSH above, it should be
4042          * safe to assume that renderctx is valid
4043          */
4044         ret = intel_ring_idle(ring);
4045         dev_priv->mm.interruptible = was_interruptible;
4046         if (ret) {
4047                 DRM_ERROR("failed to enable ironlake power savings\n");
4048                 ironlake_teardown_rc6(dev);
4049                 return;
4050         }
4051
4052         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4053         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4054
4055         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4056 }
4057
4058 static unsigned long intel_pxfreq(u32 vidfreq)
4059 {
4060         unsigned long freq;
4061         int div = (vidfreq & 0x3f0000) >> 16;
4062         int post = (vidfreq & 0x3000) >> 12;
4063         int pre = (vidfreq & 0x7);
4064
4065         if (!pre)
4066                 return 0;
4067
4068         freq = ((div * 133333) / ((1<<post) * pre));
4069
4070         return freq;
4071 }
4072
4073 static const struct cparams {
4074         u16 i;
4075         u16 t;
4076         u16 m;
4077         u16 c;
4078 } cparams[] = {
4079         { 1, 1333, 301, 28664 },
4080         { 1, 1066, 294, 24460 },
4081         { 1, 800, 294, 25192 },
4082         { 0, 1333, 276, 27605 },
4083         { 0, 1066, 276, 27605 },
4084         { 0, 800, 231, 23784 },
4085 };
4086
4087 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4088 {
4089         u64 total_count, diff, ret;
4090         u32 count1, count2, count3, m = 0, c = 0;
4091         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4092         int i;
4093
4094         assert_spin_locked(&mchdev_lock);
4095
4096         diff1 = now - dev_priv->ips.last_time1;
4097
4098         /* Prevent division-by-zero if we are asking too fast.
4099          * Also, we don't get interesting results if we are polling
4100          * faster than once in 10ms, so just return the saved value
4101          * in such cases.
4102          */
4103         if (diff1 <= 10)
4104                 return dev_priv->ips.chipset_power;
4105
4106         count1 = I915_READ(DMIEC);
4107         count2 = I915_READ(DDREC);
4108         count3 = I915_READ(CSIEC);
4109
4110         total_count = count1 + count2 + count3;
4111
4112         /* FIXME: handle per-counter overflow */
4113         if (total_count < dev_priv->ips.last_count1) {
4114                 diff = ~0UL - dev_priv->ips.last_count1;
4115                 diff += total_count;
4116         } else {
4117                 diff = total_count - dev_priv->ips.last_count1;
4118         }
4119
4120         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4121                 if (cparams[i].i == dev_priv->ips.c_m &&
4122                     cparams[i].t == dev_priv->ips.r_t) {
4123                         m = cparams[i].m;
4124                         c = cparams[i].c;
4125                         break;
4126                 }
4127         }
4128
4129         diff = div_u64(diff, diff1);
4130         ret = ((m * diff) + c);
4131         ret = div_u64(ret, 10);
4132
4133         dev_priv->ips.last_count1 = total_count;
4134         dev_priv->ips.last_time1 = now;
4135
4136         dev_priv->ips.chipset_power = ret;
4137
4138         return ret;
4139 }
4140
4141 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4142 {
4143         struct drm_device *dev = dev_priv->dev;
4144         unsigned long val;
4145
4146         if (INTEL_INFO(dev)->gen != 5)
4147                 return 0;
4148
4149         spin_lock_irq(&mchdev_lock);
4150
4151         val = __i915_chipset_val(dev_priv);
4152
4153         spin_unlock_irq(&mchdev_lock);
4154
4155         return val;
4156 }
4157
4158 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4159 {
4160         unsigned long m, x, b;
4161         u32 tsfs;
4162
4163         tsfs = I915_READ(TSFS);
4164
4165         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4166         x = I915_READ8(TR1);
4167
4168         b = tsfs & TSFS_INTR_MASK;
4169
4170         return ((m * x) / 127) - b;
4171 }
4172
4173 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4174 {
4175         struct drm_device *dev = dev_priv->dev;
4176         static const struct v_table {
4177                 u16 vd; /* in .1 mil */
4178                 u16 vm; /* in .1 mil */
4179         } v_table[] = {
4180                 { 0, 0, },
4181                 { 375, 0, },
4182                 { 500, 0, },
4183                 { 625, 0, },
4184                 { 750, 0, },
4185                 { 875, 0, },
4186                 { 1000, 0, },
4187                 { 1125, 0, },
4188                 { 4125, 3000, },
4189                 { 4125, 3000, },
4190                 { 4125, 3000, },
4191                 { 4125, 3000, },
4192                 { 4125, 3000, },
4193                 { 4125, 3000, },
4194                 { 4125, 3000, },
4195                 { 4125, 3000, },
4196                 { 4125, 3000, },
4197                 { 4125, 3000, },
4198                 { 4125, 3000, },
4199                 { 4125, 3000, },
4200                 { 4125, 3000, },
4201                 { 4125, 3000, },
4202                 { 4125, 3000, },
4203                 { 4125, 3000, },
4204                 { 4125, 3000, },
4205                 { 4125, 3000, },
4206                 { 4125, 3000, },
4207                 { 4125, 3000, },
4208                 { 4125, 3000, },
4209                 { 4125, 3000, },
4210                 { 4125, 3000, },
4211                 { 4125, 3000, },
4212                 { 4250, 3125, },
4213                 { 4375, 3250, },
4214                 { 4500, 3375, },
4215                 { 4625, 3500, },
4216                 { 4750, 3625, },
4217                 { 4875, 3750, },
4218                 { 5000, 3875, },
4219                 { 5125, 4000, },
4220                 { 5250, 4125, },
4221                 { 5375, 4250, },
4222                 { 5500, 4375, },
4223                 { 5625, 4500, },
4224                 { 5750, 4625, },
4225                 { 5875, 4750, },
4226                 { 6000, 4875, },
4227                 { 6125, 5000, },
4228                 { 6250, 5125, },
4229                 { 6375, 5250, },
4230                 { 6500, 5375, },
4231                 { 6625, 5500, },
4232                 { 6750, 5625, },
4233                 { 6875, 5750, },
4234                 { 7000, 5875, },
4235                 { 7125, 6000, },
4236                 { 7250, 6125, },
4237                 { 7375, 6250, },
4238                 { 7500, 6375, },
4239                 { 7625, 6500, },
4240                 { 7750, 6625, },
4241                 { 7875, 6750, },
4242                 { 8000, 6875, },
4243                 { 8125, 7000, },
4244                 { 8250, 7125, },
4245                 { 8375, 7250, },
4246                 { 8500, 7375, },
4247                 { 8625, 7500, },
4248                 { 8750, 7625, },
4249                 { 8875, 7750, },
4250                 { 9000, 7875, },
4251                 { 9125, 8000, },
4252                 { 9250, 8125, },
4253                 { 9375, 8250, },
4254                 { 9500, 8375, },
4255                 { 9625, 8500, },
4256                 { 9750, 8625, },
4257                 { 9875, 8750, },
4258                 { 10000, 8875, },
4259                 { 10125, 9000, },
4260                 { 10250, 9125, },
4261                 { 10375, 9250, },
4262                 { 10500, 9375, },
4263                 { 10625, 9500, },
4264                 { 10750, 9625, },
4265                 { 10875, 9750, },
4266                 { 11000, 9875, },
4267                 { 11125, 10000, },
4268                 { 11250, 10125, },
4269                 { 11375, 10250, },
4270                 { 11500, 10375, },
4271                 { 11625, 10500, },
4272                 { 11750, 10625, },
4273                 { 11875, 10750, },
4274                 { 12000, 10875, },
4275                 { 12125, 11000, },
4276                 { 12250, 11125, },
4277                 { 12375, 11250, },
4278                 { 12500, 11375, },
4279                 { 12625, 11500, },
4280                 { 12750, 11625, },
4281                 { 12875, 11750, },
4282                 { 13000, 11875, },
4283                 { 13125, 12000, },
4284                 { 13250, 12125, },
4285                 { 13375, 12250, },
4286                 { 13500, 12375, },
4287                 { 13625, 12500, },
4288                 { 13750, 12625, },
4289                 { 13875, 12750, },
4290                 { 14000, 12875, },
4291                 { 14125, 13000, },
4292                 { 14250, 13125, },
4293                 { 14375, 13250, },
4294                 { 14500, 13375, },
4295                 { 14625, 13500, },
4296                 { 14750, 13625, },
4297                 { 14875, 13750, },
4298                 { 15000, 13875, },
4299                 { 15125, 14000, },
4300                 { 15250, 14125, },
4301                 { 15375, 14250, },
4302                 { 15500, 14375, },
4303                 { 15625, 14500, },
4304                 { 15750, 14625, },
4305                 { 15875, 14750, },
4306                 { 16000, 14875, },
4307                 { 16125, 15000, },
4308         };
4309         if (INTEL_INFO(dev)->is_mobile)
4310                 return v_table[pxvid].vm;
4311         else
4312                 return v_table[pxvid].vd;
4313 }
4314
4315 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4316 {
4317         struct timespec now, diff1;
4318         u64 diff;
4319         unsigned long diffms;
4320         u32 count;
4321
4322         assert_spin_locked(&mchdev_lock);
4323
4324         getrawmonotonic(&now);
4325         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4326
4327         /* Don't divide by 0 */
4328         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4329         if (!diffms)
4330                 return;
4331
4332         count = I915_READ(GFXEC);
4333
4334         if (count < dev_priv->ips.last_count2) {
4335                 diff = ~0UL - dev_priv->ips.last_count2;
4336                 diff += count;
4337         } else {
4338                 diff = count - dev_priv->ips.last_count2;
4339         }
4340
4341         dev_priv->ips.last_count2 = count;
4342         dev_priv->ips.last_time2 = now;
4343
4344         /* More magic constants... */
4345         diff = diff * 1181;
4346         diff = div_u64(diff, diffms * 10);
4347         dev_priv->ips.gfx_power = diff;
4348 }
4349
4350 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4351 {
4352         struct drm_device *dev = dev_priv->dev;
4353
4354         if (INTEL_INFO(dev)->gen != 5)
4355                 return;
4356
4357         spin_lock_irq(&mchdev_lock);
4358
4359         __i915_update_gfx_val(dev_priv);
4360
4361         spin_unlock_irq(&mchdev_lock);
4362 }
4363
4364 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4365 {
4366         unsigned long t, corr, state1, corr2, state2;
4367         u32 pxvid, ext_v;
4368
4369         assert_spin_locked(&mchdev_lock);
4370
4371         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4372         pxvid = (pxvid >> 24) & 0x7f;
4373         ext_v = pvid_to_extvid(dev_priv, pxvid);
4374
4375         state1 = ext_v;
4376
4377         t = i915_mch_val(dev_priv);
4378
4379         /* Revel in the empirically derived constants */
4380
4381         /* Correction factor in 1/100000 units */
4382         if (t > 80)
4383                 corr = ((t * 2349) + 135940);
4384         else if (t >= 50)
4385                 corr = ((t * 964) + 29317);
4386         else /* < 50 */
4387                 corr = ((t * 301) + 1004);
4388
4389         corr = corr * ((150142 * state1) / 10000 - 78642);
4390         corr /= 100000;
4391         corr2 = (corr * dev_priv->ips.corr);
4392
4393         state2 = (corr2 * state1) / 10000;
4394         state2 /= 100; /* convert to mW */
4395
4396         __i915_update_gfx_val(dev_priv);
4397
4398         return dev_priv->ips.gfx_power + state2;
4399 }
4400
4401 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4402 {
4403         struct drm_device *dev = dev_priv->dev;
4404         unsigned long val;
4405
4406         if (INTEL_INFO(dev)->gen != 5)
4407                 return 0;
4408
4409         spin_lock_irq(&mchdev_lock);
4410
4411         val = __i915_gfx_val(dev_priv);
4412
4413         spin_unlock_irq(&mchdev_lock);
4414
4415         return val;
4416 }
4417
4418 /**
4419  * i915_read_mch_val - return value for IPS use
4420  *
4421  * Calculate and return a value for the IPS driver to use when deciding whether
4422  * we have thermal and power headroom to increase CPU or GPU power budget.
4423  */
4424 unsigned long i915_read_mch_val(void)
4425 {
4426         struct drm_i915_private *dev_priv;
4427         unsigned long chipset_val, graphics_val, ret = 0;
4428
4429         spin_lock_irq(&mchdev_lock);
4430         if (!i915_mch_dev)
4431                 goto out_unlock;
4432         dev_priv = i915_mch_dev;
4433
4434         chipset_val = __i915_chipset_val(dev_priv);
4435         graphics_val = __i915_gfx_val(dev_priv);
4436
4437         ret = chipset_val + graphics_val;
4438
4439 out_unlock:
4440         spin_unlock_irq(&mchdev_lock);
4441
4442         return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(i915_read_mch_val);
4445
4446 /**
4447  * i915_gpu_raise - raise GPU frequency limit
4448  *
4449  * Raise the limit; IPS indicates we have thermal headroom.
4450  */
4451 bool i915_gpu_raise(void)
4452 {
4453         struct drm_i915_private *dev_priv;
4454         bool ret = true;
4455
4456         spin_lock_irq(&mchdev_lock);
4457         if (!i915_mch_dev) {
4458                 ret = false;
4459                 goto out_unlock;
4460         }
4461         dev_priv = i915_mch_dev;
4462
4463         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4464                 dev_priv->ips.max_delay--;
4465
4466 out_unlock:
4467         spin_unlock_irq(&mchdev_lock);
4468
4469         return ret;
4470 }
4471 EXPORT_SYMBOL_GPL(i915_gpu_raise);
4472
4473 /**
4474  * i915_gpu_lower - lower GPU frequency limit
4475  *
4476  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4477  * frequency maximum.
4478  */
4479 bool i915_gpu_lower(void)
4480 {
4481         struct drm_i915_private *dev_priv;
4482         bool ret = true;
4483
4484         spin_lock_irq(&mchdev_lock);
4485         if (!i915_mch_dev) {
4486                 ret = false;
4487                 goto out_unlock;
4488         }
4489         dev_priv = i915_mch_dev;
4490
4491         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4492                 dev_priv->ips.max_delay++;
4493
4494 out_unlock:
4495         spin_unlock_irq(&mchdev_lock);
4496
4497         return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(i915_gpu_lower);
4500
4501 /**
4502  * i915_gpu_busy - indicate GPU business to IPS
4503  *
4504  * Tell the IPS driver whether or not the GPU is busy.
4505  */
4506 bool i915_gpu_busy(void)
4507 {
4508         struct drm_i915_private *dev_priv;
4509         struct intel_engine_cs *ring;
4510         bool ret = false;
4511         int i;
4512
4513         spin_lock_irq(&mchdev_lock);
4514         if (!i915_mch_dev)
4515                 goto out_unlock;
4516         dev_priv = i915_mch_dev;
4517
4518         for_each_ring(ring, dev_priv, i)
4519                 ret |= !list_empty(&ring->request_list);
4520
4521 out_unlock:
4522         spin_unlock_irq(&mchdev_lock);
4523
4524         return ret;
4525 }
4526 EXPORT_SYMBOL_GPL(i915_gpu_busy);
4527
4528 /**
4529  * i915_gpu_turbo_disable - disable graphics turbo
4530  *
4531  * Disable graphics turbo by resetting the max frequency and setting the
4532  * current frequency to the default.
4533  */
4534 bool i915_gpu_turbo_disable(void)
4535 {
4536         struct drm_i915_private *dev_priv;
4537         bool ret = true;
4538
4539         spin_lock_irq(&mchdev_lock);
4540         if (!i915_mch_dev) {
4541                 ret = false;
4542                 goto out_unlock;
4543         }
4544         dev_priv = i915_mch_dev;
4545
4546         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4547
4548         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4549                 ret = false;
4550
4551 out_unlock:
4552         spin_unlock_irq(&mchdev_lock);
4553
4554         return ret;
4555 }
4556 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
4557
4558 /**
4559  * Tells the intel_ips driver that the i915 driver is now loaded, if
4560  * IPS got loaded first.
4561  *
4562  * This awkward dance is so that neither module has to depend on the
4563  * other in order for IPS to do the appropriate communication of
4564  * GPU turbo limits to i915.
4565  */
4566 static void
4567 ips_ping_for_i915_load(void)
4568 {
4569         void (*link)(void);
4570
4571         link = symbol_get(ips_link_to_i915_driver);
4572         if (link) {
4573                 link();
4574                 symbol_put(ips_link_to_i915_driver);
4575         }
4576 }
4577
4578 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4579 {
4580         /* We only register the i915 ips part with intel-ips once everything is
4581          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4582         spin_lock_irq(&mchdev_lock);
4583         i915_mch_dev = dev_priv;
4584         spin_unlock_irq(&mchdev_lock);
4585
4586         ips_ping_for_i915_load();
4587 }
4588
4589 void intel_gpu_ips_teardown(void)
4590 {
4591         spin_lock_irq(&mchdev_lock);
4592         i915_mch_dev = NULL;
4593         spin_unlock_irq(&mchdev_lock);
4594 }
4595
4596 static void intel_init_emon(struct drm_device *dev)
4597 {
4598         struct drm_i915_private *dev_priv = dev->dev_private;
4599         u32 lcfuse;
4600         u8 pxw[16];
4601         int i;
4602
4603         /* Disable to program */
4604         I915_WRITE(ECR, 0);
4605         POSTING_READ(ECR);
4606
4607         /* Program energy weights for various events */
4608         I915_WRITE(SDEW, 0x15040d00);
4609         I915_WRITE(CSIEW0, 0x007f0000);
4610         I915_WRITE(CSIEW1, 0x1e220004);
4611         I915_WRITE(CSIEW2, 0x04000004);
4612
4613         for (i = 0; i < 5; i++)
4614                 I915_WRITE(PEW + (i * 4), 0);
4615         for (i = 0; i < 3; i++)
4616                 I915_WRITE(DEW + (i * 4), 0);
4617
4618         /* Program P-state weights to account for frequency power adjustment */
4619         for (i = 0; i < 16; i++) {
4620                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4621                 unsigned long freq = intel_pxfreq(pxvidfreq);
4622                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4623                         PXVFREQ_PX_SHIFT;
4624                 unsigned long val;
4625
4626                 val = vid * vid;
4627                 val *= (freq / 1000);
4628                 val *= 255;
4629                 val /= (127*127*900);
4630                 if (val > 0xff)
4631                         DRM_ERROR("bad pxval: %ld\n", val);
4632                 pxw[i] = val;
4633         }
4634         /* Render standby states get 0 weight */
4635         pxw[14] = 0;
4636         pxw[15] = 0;
4637
4638         for (i = 0; i < 4; i++) {
4639                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4640                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4641                 I915_WRITE(PXW + (i * 4), val);
4642         }
4643
4644         /* Adjust magic regs to magic values (more experimental results) */
4645         I915_WRITE(OGW0, 0);
4646         I915_WRITE(OGW1, 0);
4647         I915_WRITE(EG0, 0x00007f00);
4648         I915_WRITE(EG1, 0x0000000e);
4649         I915_WRITE(EG2, 0x000e0000);
4650         I915_WRITE(EG3, 0x68000300);
4651         I915_WRITE(EG4, 0x42000000);
4652         I915_WRITE(EG5, 0x00140031);
4653         I915_WRITE(EG6, 0);
4654         I915_WRITE(EG7, 0);
4655
4656         for (i = 0; i < 8; i++)
4657                 I915_WRITE(PXWL + (i * 4), 0);
4658
4659         /* Enable PMON + select events */
4660         I915_WRITE(ECR, 0x80000019);
4661
4662         lcfuse = I915_READ(LCFUSE02);
4663
4664         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4665 }
4666
4667 void intel_init_gt_powersave(struct drm_device *dev)
4668 {
4669         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4670
4671         if (IS_VALLEYVIEW(dev))
4672                 valleyview_init_gt_powersave(dev);
4673 }
4674
4675 void intel_cleanup_gt_powersave(struct drm_device *dev)
4676 {
4677         if (IS_VALLEYVIEW(dev))
4678                 valleyview_cleanup_gt_powersave(dev);
4679 }
4680
4681 void intel_disable_gt_powersave(struct drm_device *dev)
4682 {
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684
4685         /* Interrupts should be disabled already to avoid re-arming. */
4686         WARN_ON(dev->irq_enabled);
4687
4688         if (IS_IRONLAKE_M(dev)) {
4689                 ironlake_disable_drps(dev);
4690                 ironlake_disable_rc6(dev);
4691         } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4692                 if (cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work))
4693                         intel_runtime_pm_put(dev_priv);
4694
4695                 cancel_work_sync(&dev_priv->rps.work);
4696                 mutex_lock(&dev_priv->rps.hw_lock);
4697                 if (IS_VALLEYVIEW(dev))
4698                         valleyview_disable_rps(dev);
4699                 else
4700                         gen6_disable_rps(dev);
4701                 dev_priv->rps.enabled = false;
4702                 mutex_unlock(&dev_priv->rps.hw_lock);
4703         }
4704 }
4705
4706 static void intel_gen6_powersave_work(struct work_struct *work)
4707 {
4708         struct drm_i915_private *dev_priv =
4709                 container_of(work, struct drm_i915_private,
4710                              rps.delayed_resume_work.work);
4711         struct drm_device *dev = dev_priv->dev;
4712
4713         mutex_lock(&dev_priv->rps.hw_lock);
4714
4715         if (IS_VALLEYVIEW(dev)) {
4716                 valleyview_enable_rps(dev);
4717         } else if (IS_BROADWELL(dev)) {
4718                 gen8_enable_rps(dev);
4719                 __gen6_update_ring_freq(dev);
4720         } else {
4721                 gen6_enable_rps(dev);
4722                 __gen6_update_ring_freq(dev);
4723         }
4724         dev_priv->rps.enabled = true;
4725         mutex_unlock(&dev_priv->rps.hw_lock);
4726
4727         intel_runtime_pm_put(dev_priv);
4728 }
4729
4730 void intel_enable_gt_powersave(struct drm_device *dev)
4731 {
4732         struct drm_i915_private *dev_priv = dev->dev_private;
4733
4734         if (IS_IRONLAKE_M(dev)) {
4735                 mutex_lock(&dev->struct_mutex);
4736                 ironlake_enable_drps(dev);
4737                 ironlake_enable_rc6(dev);
4738                 intel_init_emon(dev);
4739                 mutex_unlock(&dev->struct_mutex);
4740         } else if (IS_GEN6(dev) || IS_GEN7(dev) || IS_BROADWELL(dev)) {
4741                 /*
4742                  * PCU communication is slow and this doesn't need to be
4743                  * done at any specific time, so do this out of our fast path
4744                  * to make resume and init faster.
4745                  *
4746                  * We depend on the HW RC6 power context save/restore
4747                  * mechanism when entering D3 through runtime PM suspend. So
4748                  * disable RPM until RPS/RC6 is properly setup. We can only
4749                  * get here via the driver load/system resume/runtime resume
4750                  * paths, so the _noresume version is enough (and in case of
4751                  * runtime resume it's necessary).
4752                  */
4753                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4754                                            round_jiffies_up_relative(HZ)))
4755                         intel_runtime_pm_get_noresume(dev_priv);
4756         }
4757 }
4758
4759 void intel_reset_gt_powersave(struct drm_device *dev)
4760 {
4761         struct drm_i915_private *dev_priv = dev->dev_private;
4762
4763         dev_priv->rps.enabled = false;
4764         intel_enable_gt_powersave(dev);
4765 }
4766
4767 static void ibx_init_clock_gating(struct drm_device *dev)
4768 {
4769         struct drm_i915_private *dev_priv = dev->dev_private;
4770
4771         /*
4772          * On Ibex Peak and Cougar Point, we need to disable clock
4773          * gating for the panel power sequencer or it will fail to
4774          * start up when no ports are active.
4775          */
4776         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4777 }
4778
4779 static void g4x_disable_trickle_feed(struct drm_device *dev)
4780 {
4781         struct drm_i915_private *dev_priv = dev->dev_private;
4782         int pipe;
4783
4784         for_each_pipe(pipe) {
4785                 I915_WRITE(DSPCNTR(pipe),
4786                            I915_READ(DSPCNTR(pipe)) |
4787                            DISPPLANE_TRICKLE_FEED_DISABLE);
4788                 intel_flush_primary_plane(dev_priv, pipe);
4789         }
4790 }
4791
4792 static void ilk_init_lp_watermarks(struct drm_device *dev)
4793 {
4794         struct drm_i915_private *dev_priv = dev->dev_private;
4795
4796         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
4797         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
4798         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
4799
4800         /*
4801          * Don't touch WM1S_LP_EN here.
4802          * Doing so could cause underruns.
4803          */
4804 }
4805
4806 static void ironlake_init_clock_gating(struct drm_device *dev)
4807 {
4808         struct drm_i915_private *dev_priv = dev->dev_private;
4809         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4810
4811         /*
4812          * Required for FBC
4813          * WaFbcDisableDpfcClockGating:ilk
4814          */
4815         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4816                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4817                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4818
4819         I915_WRITE(PCH_3DCGDIS0,
4820                    MARIUNIT_CLOCK_GATE_DISABLE |
4821                    SVSMUNIT_CLOCK_GATE_DISABLE);
4822         I915_WRITE(PCH_3DCGDIS1,
4823                    VFMUNIT_CLOCK_GATE_DISABLE);
4824
4825         /*
4826          * According to the spec the following bits should be set in
4827          * order to enable memory self-refresh
4828          * The bit 22/21 of 0x42004
4829          * The bit 5 of 0x42020
4830          * The bit 15 of 0x45000
4831          */
4832         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4833                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4834                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4835         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4836         I915_WRITE(DISP_ARB_CTL,
4837                    (I915_READ(DISP_ARB_CTL) |
4838                     DISP_FBC_WM_DIS));
4839
4840         ilk_init_lp_watermarks(dev);
4841
4842         /*
4843          * Based on the document from hardware guys the following bits
4844          * should be set unconditionally in order to enable FBC.
4845          * The bit 22 of 0x42000
4846          * The bit 22 of 0x42004
4847          * The bit 7,8,9 of 0x42020.
4848          */
4849         if (IS_IRONLAKE_M(dev)) {
4850                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
4851                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4852                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4853                            ILK_FBCQ_DIS);
4854                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4855                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4856                            ILK_DPARB_GATE);
4857         }
4858
4859         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4860
4861         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4862                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4863                    ILK_ELPIN_409_SELECT);
4864         I915_WRITE(_3D_CHICKEN2,
4865                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4866                    _3D_CHICKEN2_WM_READ_PIPELINED);
4867
4868         /* WaDisableRenderCachePipelinedFlush:ilk */
4869         I915_WRITE(CACHE_MODE_0,
4870                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4871
4872         /* WaDisable_RenderCache_OperationalFlush:ilk */
4873         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4874
4875         g4x_disable_trickle_feed(dev);
4876
4877         ibx_init_clock_gating(dev);
4878 }
4879
4880 static void cpt_init_clock_gating(struct drm_device *dev)
4881 {
4882         struct drm_i915_private *dev_priv = dev->dev_private;
4883         int pipe;
4884         uint32_t val;
4885
4886         /*
4887          * On Ibex Peak and Cougar Point, we need to disable clock
4888          * gating for the panel power sequencer or it will fail to
4889          * start up when no ports are active.
4890          */
4891         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
4892                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
4893                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
4894         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4895                    DPLS_EDP_PPS_FIX_DIS);
4896         /* The below fixes the weird display corruption, a few pixels shifted
4897          * downward, on (only) LVDS of some HP laptops with IVY.
4898          */
4899         for_each_pipe(pipe) {
4900                 val = I915_READ(TRANS_CHICKEN2(pipe));
4901                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4902                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4903                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4904                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4905                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4906                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4907                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4908                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4909         }
4910         /* WADP0ClockGatingDisable */
4911         for_each_pipe(pipe) {
4912                 I915_WRITE(TRANS_CHICKEN1(pipe),
4913                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4914         }
4915 }
4916
4917 static void gen6_check_mch_setup(struct drm_device *dev)
4918 {
4919         struct drm_i915_private *dev_priv = dev->dev_private;
4920         uint32_t tmp;
4921
4922         tmp = I915_READ(MCH_SSKPD);
4923         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4924                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4925                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4926                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4927         }
4928 }
4929
4930 static void gen6_init_clock_gating(struct drm_device *dev)
4931 {
4932         struct drm_i915_private *dev_priv = dev->dev_private;
4933         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4934
4935         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4936
4937         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4938                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4939                    ILK_ELPIN_409_SELECT);
4940
4941         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4942         I915_WRITE(_3D_CHICKEN,
4943                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4944
4945         /* WaSetupGtModeTdRowDispatch:snb */
4946         if (IS_SNB_GT1(dev))
4947                 I915_WRITE(GEN6_GT_MODE,
4948                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4949
4950         /* WaDisable_RenderCache_OperationalFlush:snb */
4951         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
4952
4953         /*
4954          * BSpec recoomends 8x4 when MSAA is used,
4955          * however in practice 16x4 seems fastest.
4956          *
4957          * Note that PS/WM thread counts depend on the WIZ hashing
4958          * disable bit, which we don't touch here, but it's good
4959          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
4960          */
4961         I915_WRITE(GEN6_GT_MODE,
4962                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
4963
4964         ilk_init_lp_watermarks(dev);
4965
4966         I915_WRITE(CACHE_MODE_0,
4967                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4968
4969         I915_WRITE(GEN6_UCGCTL1,
4970                    I915_READ(GEN6_UCGCTL1) |
4971                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4972                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4973
4974         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4975          * gating disable must be set.  Failure to set it results in
4976          * flickering pixels due to Z write ordering failures after
4977          * some amount of runtime in the Mesa "fire" demo, and Unigine
4978          * Sanctuary and Tropics, and apparently anything else with
4979          * alpha test or pixel discard.
4980          *
4981          * According to the spec, bit 11 (RCCUNIT) must also be set,
4982          * but we didn't debug actual testcases to find it out.
4983          *
4984          * WaDisableRCCUnitClockGating:snb
4985          * WaDisableRCPBUnitClockGating:snb
4986          */
4987         I915_WRITE(GEN6_UCGCTL2,
4988                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4989                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4990
4991         /* WaStripsFansDisableFastClipPerformanceFix:snb */
4992         I915_WRITE(_3D_CHICKEN3,
4993                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
4994
4995         /*
4996          * Bspec says:
4997          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
4998          * 3DSTATE_SF number of SF output attributes is more than 16."
4999          */
5000         I915_WRITE(_3D_CHICKEN3,
5001                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5002
5003         /*
5004          * According to the spec the following bits should be
5005          * set in order to enable memory self-refresh and fbc:
5006          * The bit21 and bit22 of 0x42000
5007          * The bit21 and bit22 of 0x42004
5008          * The bit5 and bit7 of 0x42020
5009          * The bit14 of 0x70180
5010          * The bit14 of 0x71180
5011          *
5012          * WaFbcAsynchFlipDisableFbcQueue:snb
5013          */
5014         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5015                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5016                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5017         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5018                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5019                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5020         I915_WRITE(ILK_DSPCLK_GATE_D,
5021                    I915_READ(ILK_DSPCLK_GATE_D) |
5022                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5023                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5024
5025         g4x_disable_trickle_feed(dev);
5026
5027         cpt_init_clock_gating(dev);
5028
5029         gen6_check_mch_setup(dev);
5030 }
5031
5032 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5033 {
5034         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5035
5036         /*
5037          * WaVSThreadDispatchOverride:ivb,vlv
5038          *
5039          * This actually overrides the dispatch
5040          * mode for all thread types.
5041          */
5042         reg &= ~GEN7_FF_SCHED_MASK;
5043         reg |= GEN7_FF_TS_SCHED_HW;
5044         reg |= GEN7_FF_VS_SCHED_HW;
5045         reg |= GEN7_FF_DS_SCHED_HW;
5046
5047         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5048 }
5049
5050 static void lpt_init_clock_gating(struct drm_device *dev)
5051 {
5052         struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054         /*
5055          * TODO: this bit should only be enabled when really needed, then
5056          * disabled when not needed anymore in order to save power.
5057          */
5058         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5059                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5060                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5061                            PCH_LP_PARTITION_LEVEL_DISABLE);
5062
5063         /* WADPOClockGatingDisable:hsw */
5064         I915_WRITE(_TRANSA_CHICKEN1,
5065                    I915_READ(_TRANSA_CHICKEN1) |
5066                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5067 }
5068
5069 static void lpt_suspend_hw(struct drm_device *dev)
5070 {
5071         struct drm_i915_private *dev_priv = dev->dev_private;
5072
5073         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5074                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5075
5076                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5077                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5078         }
5079 }
5080
5081 static void gen8_init_clock_gating(struct drm_device *dev)
5082 {
5083         struct drm_i915_private *dev_priv = dev->dev_private;
5084         enum pipe pipe;
5085
5086         I915_WRITE(WM3_LP_ILK, 0);
5087         I915_WRITE(WM2_LP_ILK, 0);
5088         I915_WRITE(WM1_LP_ILK, 0);
5089
5090         /* FIXME(BDW): Check all the w/a, some might only apply to
5091          * pre-production hw. */
5092
5093         /* WaDisablePartialInstShootdown:bdw */
5094         I915_WRITE(GEN8_ROW_CHICKEN,
5095                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5096
5097         /* WaDisableThreadStallDopClockGating:bdw */
5098         /* FIXME: Unclear whether we really need this on production bdw. */
5099         I915_WRITE(GEN8_ROW_CHICKEN,
5100                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5101
5102         /*
5103          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5104          * pre-production hardware
5105          */
5106         I915_WRITE(HALF_SLICE_CHICKEN3,
5107                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5108         I915_WRITE(HALF_SLICE_CHICKEN3,
5109                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5110         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5111
5112         I915_WRITE(_3D_CHICKEN3,
5113                    _3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2));
5114
5115         I915_WRITE(COMMON_SLICE_CHICKEN2,
5116                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5117
5118         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5119                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5120
5121         /* WaDisableDopClockGating:bdw May not be needed for production */
5122         I915_WRITE(GEN7_ROW_CHICKEN2,
5123                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5124
5125         /* WaSwitchSolVfFArbitrationPriority:bdw */
5126         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5127
5128         /* WaPsrDPAMaskVBlankInSRD:bdw */
5129         I915_WRITE(CHICKEN_PAR1_1,
5130                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5131
5132         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5133         for_each_pipe(pipe) {
5134                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5135                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5136                            BDW_DPRS_MASK_VBLANK_SRD);
5137         }
5138
5139         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5140          * workaround for for a possible hang in the unlikely event a TLB
5141          * invalidation occurs during a PSD flush.
5142          */
5143         I915_WRITE(HDC_CHICKEN0,
5144                    I915_READ(HDC_CHICKEN0) |
5145                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5146
5147         /* WaVSRefCountFullforceMissDisable:bdw */
5148         /* WaDSRefCountFullforceMissDisable:bdw */
5149         I915_WRITE(GEN7_FF_THREAD_MODE,
5150                    I915_READ(GEN7_FF_THREAD_MODE) &
5151                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5152
5153         /*
5154          * BSpec recommends 8x4 when MSAA is used,
5155          * however in practice 16x4 seems fastest.
5156          *
5157          * Note that PS/WM thread counts depend on the WIZ hashing
5158          * disable bit, which we don't touch here, but it's good
5159          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5160          */
5161         I915_WRITE(GEN7_GT_MODE,
5162                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5163
5164         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5165                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5166
5167         /* WaDisableSDEUnitClockGating:bdw */
5168         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5169                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5170
5171         /* Wa4x4STCOptimizationDisable:bdw */
5172         I915_WRITE(CACHE_MODE_1,
5173                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5174 }
5175
5176 static void haswell_init_clock_gating(struct drm_device *dev)
5177 {
5178         struct drm_i915_private *dev_priv = dev->dev_private;
5179
5180         ilk_init_lp_watermarks(dev);
5181
5182         /* L3 caching of data atomics doesn't work -- disable it. */
5183         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5184         I915_WRITE(HSW_ROW_CHICKEN3,
5185                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5186
5187         /* This is required by WaCatErrorRejectionIssue:hsw */
5188         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5189                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5190                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5191
5192         /* WaVSRefCountFullforceMissDisable:hsw */
5193         I915_WRITE(GEN7_FF_THREAD_MODE,
5194                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5195
5196         /* WaDisable_RenderCache_OperationalFlush:hsw */
5197         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5198
5199         /* enable HiZ Raw Stall Optimization */
5200         I915_WRITE(CACHE_MODE_0_GEN7,
5201                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5202
5203         /* WaDisable4x2SubspanOptimization:hsw */
5204         I915_WRITE(CACHE_MODE_1,
5205                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5206
5207         /*
5208          * BSpec recommends 8x4 when MSAA is used,
5209          * however in practice 16x4 seems fastest.
5210          *
5211          * Note that PS/WM thread counts depend on the WIZ hashing
5212          * disable bit, which we don't touch here, but it's good
5213          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5214          */
5215         I915_WRITE(GEN7_GT_MODE,
5216                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5217
5218         /* WaSwitchSolVfFArbitrationPriority:hsw */
5219         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5220
5221         /* WaRsPkgCStateDisplayPMReq:hsw */
5222         I915_WRITE(CHICKEN_PAR1_1,
5223                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5224
5225         lpt_init_clock_gating(dev);
5226 }
5227
5228 static void ivybridge_init_clock_gating(struct drm_device *dev)
5229 {
5230         struct drm_i915_private *dev_priv = dev->dev_private;
5231         uint32_t snpcr;
5232
5233         ilk_init_lp_watermarks(dev);
5234
5235         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5236
5237         /* WaDisableEarlyCull:ivb */
5238         I915_WRITE(_3D_CHICKEN3,
5239                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5240
5241         /* WaDisableBackToBackFlipFix:ivb */
5242         I915_WRITE(IVB_CHICKEN3,
5243                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5244                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5245
5246         /* WaDisablePSDDualDispatchEnable:ivb */
5247         if (IS_IVB_GT1(dev))
5248                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5249                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5250
5251         /* WaDisable_RenderCache_OperationalFlush:ivb */
5252         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5253
5254         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5255         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5256                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5257
5258         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5259         I915_WRITE(GEN7_L3CNTLREG1,
5260                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5261         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5262                    GEN7_WA_L3_CHICKEN_MODE);
5263         if (IS_IVB_GT1(dev))
5264                 I915_WRITE(GEN7_ROW_CHICKEN2,
5265                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5266         else {
5267                 /* must write both registers */
5268                 I915_WRITE(GEN7_ROW_CHICKEN2,
5269                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5270                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5271                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5272         }
5273
5274         /* WaForceL3Serialization:ivb */
5275         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5276                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5277
5278         /*
5279          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5280          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5281          */
5282         I915_WRITE(GEN6_UCGCTL2,
5283                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5284
5285         /* This is required by WaCatErrorRejectionIssue:ivb */
5286         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5287                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5288                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5289
5290         g4x_disable_trickle_feed(dev);
5291
5292         gen7_setup_fixed_func_scheduler(dev_priv);
5293
5294         if (0) { /* causes HiZ corruption on ivb:gt1 */
5295                 /* enable HiZ Raw Stall Optimization */
5296                 I915_WRITE(CACHE_MODE_0_GEN7,
5297                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5298         }
5299
5300         /* WaDisable4x2SubspanOptimization:ivb */
5301         I915_WRITE(CACHE_MODE_1,
5302                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5303
5304         /*
5305          * BSpec recommends 8x4 when MSAA is used,
5306          * however in practice 16x4 seems fastest.
5307          *
5308          * Note that PS/WM thread counts depend on the WIZ hashing
5309          * disable bit, which we don't touch here, but it's good
5310          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5311          */
5312         I915_WRITE(GEN7_GT_MODE,
5313                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5314
5315         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5316         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5317         snpcr |= GEN6_MBC_SNPCR_MED;
5318         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5319
5320         if (!HAS_PCH_NOP(dev))
5321                 cpt_init_clock_gating(dev);
5322
5323         gen6_check_mch_setup(dev);
5324 }
5325
5326 static void valleyview_init_clock_gating(struct drm_device *dev)
5327 {
5328         struct drm_i915_private *dev_priv = dev->dev_private;
5329         u32 val;
5330
5331         mutex_lock(&dev_priv->rps.hw_lock);
5332         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5333         mutex_unlock(&dev_priv->rps.hw_lock);
5334         switch ((val >> 6) & 3) {
5335         case 0:
5336         case 1:
5337                 dev_priv->mem_freq = 800;
5338                 break;
5339         case 2:
5340                 dev_priv->mem_freq = 1066;
5341                 break;
5342         case 3:
5343                 dev_priv->mem_freq = 1333;
5344                 break;
5345         }
5346         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5347
5348         dev_priv->vlv_cdclk_freq = valleyview_cur_cdclk(dev_priv);
5349         DRM_DEBUG_DRIVER("Current CD clock rate: %d MHz",
5350                          dev_priv->vlv_cdclk_freq);
5351
5352         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5353
5354         /* WaDisableEarlyCull:vlv */
5355         I915_WRITE(_3D_CHICKEN3,
5356                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5357
5358         /* WaDisableBackToBackFlipFix:vlv */
5359         I915_WRITE(IVB_CHICKEN3,
5360                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5361                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5362
5363         /* WaPsdDispatchEnable:vlv */
5364         /* WaDisablePSDDualDispatchEnable:vlv */
5365         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5366                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5367                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5368
5369         /* WaDisable_RenderCache_OperationalFlush:vlv */
5370         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5371
5372         /* WaForceL3Serialization:vlv */
5373         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5374                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5375
5376         /* WaDisableDopClockGating:vlv */
5377         I915_WRITE(GEN7_ROW_CHICKEN2,
5378                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5379
5380         /* This is required by WaCatErrorRejectionIssue:vlv */
5381         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5382                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5383                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5384
5385         gen7_setup_fixed_func_scheduler(dev_priv);
5386
5387         /*
5388          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5389          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5390          */
5391         I915_WRITE(GEN6_UCGCTL2,
5392                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5393
5394         /* WaDisableL3Bank2xClockGate:vlv
5395          * Disabling L3 clock gating- MMIO 940c[25] = 1
5396          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5397         I915_WRITE(GEN7_UCGCTL4,
5398                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5399
5400         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5401
5402         /*
5403          * BSpec says this must be set, even though
5404          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5405          */
5406         I915_WRITE(CACHE_MODE_1,
5407                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5408
5409         /*
5410          * WaIncreaseL3CreditsForVLVB0:vlv
5411          * This is the hardware default actually.
5412          */
5413         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5414
5415         /*
5416          * WaDisableVLVClockGating_VBIIssue:vlv
5417          * Disable clock gating on th GCFG unit to prevent a delay
5418          * in the reporting of vblank events.
5419          */
5420         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5421 }
5422
5423 static void cherryview_init_clock_gating(struct drm_device *dev)
5424 {
5425         struct drm_i915_private *dev_priv = dev->dev_private;
5426
5427         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5428
5429         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5430
5431         /* WaDisablePartialInstShootdown:chv */
5432         I915_WRITE(GEN8_ROW_CHICKEN,
5433                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5434
5435         /* WaDisableThreadStallDopClockGating:chv */
5436         I915_WRITE(GEN8_ROW_CHICKEN,
5437                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5438
5439         /* WaVSRefCountFullforceMissDisable:chv */
5440         /* WaDSRefCountFullforceMissDisable:chv */
5441         I915_WRITE(GEN7_FF_THREAD_MODE,
5442                    I915_READ(GEN7_FF_THREAD_MODE) &
5443                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5444
5445         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5446         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5447                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5448
5449         /* WaDisableCSUnitClockGating:chv */
5450         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5451                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5452
5453         /* WaDisableSDEUnitClockGating:chv */
5454         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5455                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5456
5457         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5458         I915_WRITE(HALF_SLICE_CHICKEN3,
5459                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5460
5461         /* WaDisableGunitClockGating:chv (pre-production hw) */
5462         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5463                    GINT_DIS);
5464
5465         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5466         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5467                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5468
5469         /* WaDisableDopClockGating:chv (pre-production hw) */
5470         I915_WRITE(GEN7_ROW_CHICKEN2,
5471                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5472         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5473                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5474 }
5475
5476 static void g4x_init_clock_gating(struct drm_device *dev)
5477 {
5478         struct drm_i915_private *dev_priv = dev->dev_private;
5479         uint32_t dspclk_gate;
5480
5481         I915_WRITE(RENCLK_GATE_D1, 0);
5482         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5483                    GS_UNIT_CLOCK_GATE_DISABLE |
5484                    CL_UNIT_CLOCK_GATE_DISABLE);
5485         I915_WRITE(RAMCLK_GATE_D, 0);
5486         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5487                 OVRUNIT_CLOCK_GATE_DISABLE |
5488                 OVCUNIT_CLOCK_GATE_DISABLE;
5489         if (IS_GM45(dev))
5490                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5491         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5492
5493         /* WaDisableRenderCachePipelinedFlush */
5494         I915_WRITE(CACHE_MODE_0,
5495                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5496
5497         /* WaDisable_RenderCache_OperationalFlush:g4x */
5498         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5499
5500         g4x_disable_trickle_feed(dev);
5501 }
5502
5503 static void crestline_init_clock_gating(struct drm_device *dev)
5504 {
5505         struct drm_i915_private *dev_priv = dev->dev_private;
5506
5507         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5508         I915_WRITE(RENCLK_GATE_D2, 0);
5509         I915_WRITE(DSPCLK_GATE_D, 0);
5510         I915_WRITE(RAMCLK_GATE_D, 0);
5511         I915_WRITE16(DEUC, 0);
5512         I915_WRITE(MI_ARB_STATE,
5513                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5514
5515         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5516         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5517 }
5518
5519 static void broadwater_init_clock_gating(struct drm_device *dev)
5520 {
5521         struct drm_i915_private *dev_priv = dev->dev_private;
5522
5523         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5524                    I965_RCC_CLOCK_GATE_DISABLE |
5525                    I965_RCPB_CLOCK_GATE_DISABLE |
5526                    I965_ISC_CLOCK_GATE_DISABLE |
5527                    I965_FBC_CLOCK_GATE_DISABLE);
5528         I915_WRITE(RENCLK_GATE_D2, 0);
5529         I915_WRITE(MI_ARB_STATE,
5530                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5531
5532         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5533         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5534 }
5535
5536 static void gen3_init_clock_gating(struct drm_device *dev)
5537 {
5538         struct drm_i915_private *dev_priv = dev->dev_private;
5539         u32 dstate = I915_READ(D_STATE);
5540
5541         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5542                 DSTATE_DOT_CLOCK_GATING;
5543         I915_WRITE(D_STATE, dstate);
5544
5545         if (IS_PINEVIEW(dev))
5546                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5547
5548         /* IIR "flip pending" means done if this bit is set */
5549         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5550
5551         /* interrupts should cause a wake up from C3 */
5552         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5553
5554         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5555         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5556 }
5557
5558 static void i85x_init_clock_gating(struct drm_device *dev)
5559 {
5560         struct drm_i915_private *dev_priv = dev->dev_private;
5561
5562         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5563
5564         /* interrupts should cause a wake up from C3 */
5565         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5566                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5567 }
5568
5569 static void i830_init_clock_gating(struct drm_device *dev)
5570 {
5571         struct drm_i915_private *dev_priv = dev->dev_private;
5572
5573         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5574 }
5575
5576 void intel_init_clock_gating(struct drm_device *dev)
5577 {
5578         struct drm_i915_private *dev_priv = dev->dev_private;
5579
5580         dev_priv->display.init_clock_gating(dev);
5581 }
5582
5583 void intel_suspend_hw(struct drm_device *dev)
5584 {
5585         if (HAS_PCH_LPT(dev))
5586                 lpt_suspend_hw(dev);
5587 }
5588
5589 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5590         for (i = 0;                                                     \
5591              i < (power_domains)->power_well_count &&                   \
5592                  ((power_well) = &(power_domains)->power_wells[i]);     \
5593              i++)                                                       \
5594                 if ((power_well)->domains & (domain_mask))
5595
5596 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5597         for (i = (power_domains)->power_well_count - 1;                  \
5598              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5599              i--)                                                        \
5600                 if ((power_well)->domains & (domain_mask))
5601
5602 /**
5603  * We should only use the power well if we explicitly asked the hardware to
5604  * enable it, so check if it's enabled and also check if we've requested it to
5605  * be enabled.
5606  */
5607 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5608                                    struct i915_power_well *power_well)
5609 {
5610         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5611                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5612 }
5613
5614 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5615                                           enum intel_display_power_domain domain)
5616 {
5617         struct i915_power_domains *power_domains;
5618         struct i915_power_well *power_well;
5619         bool is_enabled;
5620         int i;
5621
5622         if (dev_priv->pm.suspended)
5623                 return false;
5624
5625         power_domains = &dev_priv->power_domains;
5626
5627         is_enabled = true;
5628
5629         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5630                 if (power_well->always_on)
5631                         continue;
5632
5633                 if (!power_well->hw_enabled) {
5634                         is_enabled = false;
5635                         break;
5636                 }
5637         }
5638
5639         return is_enabled;
5640 }
5641
5642 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5643                                  enum intel_display_power_domain domain)
5644 {
5645         struct i915_power_domains *power_domains;
5646         bool ret;
5647
5648         power_domains = &dev_priv->power_domains;
5649
5650         mutex_lock(&power_domains->lock);
5651         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5652         mutex_unlock(&power_domains->lock);
5653
5654         return ret;
5655 }
5656
5657 /*
5658  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5659  * when not needed anymore. We have 4 registers that can request the power well
5660  * to be enabled, and it will only be disabled if none of the registers is
5661  * requesting it to be enabled.
5662  */
5663 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
5664 {
5665         struct drm_device *dev = dev_priv->dev;
5666         unsigned long irqflags;
5667
5668         /*
5669          * After we re-enable the power well, if we touch VGA register 0x3d5
5670          * we'll get unclaimed register interrupts. This stops after we write
5671          * anything to the VGA MSR register. The vgacon module uses this
5672          * register all the time, so if we unbind our driver and, as a
5673          * consequence, bind vgacon, we'll get stuck in an infinite loop at
5674          * console_unlock(). So make here we touch the VGA MSR register, making
5675          * sure vgacon can keep working normally without triggering interrupts
5676          * and error messages.
5677          */
5678         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
5679         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
5680         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
5681
5682         if (IS_BROADWELL(dev)) {
5683                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5684                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_B),
5685                            dev_priv->de_irq_mask[PIPE_B]);
5686                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_B),
5687                            ~dev_priv->de_irq_mask[PIPE_B] |
5688                            GEN8_PIPE_VBLANK);
5689                 I915_WRITE(GEN8_DE_PIPE_IMR(PIPE_C),
5690                            dev_priv->de_irq_mask[PIPE_C]);
5691                 I915_WRITE(GEN8_DE_PIPE_IER(PIPE_C),
5692                            ~dev_priv->de_irq_mask[PIPE_C] |
5693                            GEN8_PIPE_VBLANK);
5694                 POSTING_READ(GEN8_DE_PIPE_IER(PIPE_C));
5695                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5696         }
5697 }
5698
5699 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
5700                                struct i915_power_well *power_well, bool enable)
5701 {
5702         bool is_enabled, enable_requested;
5703         uint32_t tmp;
5704
5705         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5706         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
5707         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
5708
5709         if (enable) {
5710                 if (!enable_requested)
5711                         I915_WRITE(HSW_PWR_WELL_DRIVER,
5712                                    HSW_PWR_WELL_ENABLE_REQUEST);
5713
5714                 if (!is_enabled) {
5715                         DRM_DEBUG_KMS("Enabling power well\n");
5716                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5717                                       HSW_PWR_WELL_STATE_ENABLED), 20))
5718                                 DRM_ERROR("Timeout enabling power well\n");
5719                 }
5720
5721                 hsw_power_well_post_enable(dev_priv);
5722         } else {
5723                 if (enable_requested) {
5724                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5725                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5726                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5727                 }
5728         }
5729 }
5730
5731 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
5732                                    struct i915_power_well *power_well)
5733 {
5734         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
5735
5736         /*
5737          * We're taking over the BIOS, so clear any requests made by it since
5738          * the driver is in charge now.
5739          */
5740         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
5741                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5742 }
5743
5744 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
5745                                   struct i915_power_well *power_well)
5746 {
5747         hsw_set_power_well(dev_priv, power_well, true);
5748 }
5749
5750 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
5751                                    struct i915_power_well *power_well)
5752 {
5753         hsw_set_power_well(dev_priv, power_well, false);
5754 }
5755
5756 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
5757                                            struct i915_power_well *power_well)
5758 {
5759 }
5760
5761 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
5762                                              struct i915_power_well *power_well)
5763 {
5764         return true;
5765 }
5766
5767 void __vlv_set_power_well(struct drm_i915_private *dev_priv,
5768                           enum punit_power_well power_well_id, bool enable)
5769 {
5770         struct drm_device *dev = dev_priv->dev;
5771         u32 mask;
5772         u32 state;
5773         u32 ctrl;
5774         enum pipe pipe;
5775
5776         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC) {
5777                 if (enable) {
5778                         /*
5779                          * Enable the CRI clock source so we can get at the
5780                          * display and the reference clock for VGA
5781                          * hotplug / manual detection.
5782                          */
5783                         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
5784                                    DPLL_REFA_CLK_ENABLE_VLV |
5785                                    DPLL_INTEGRATED_CRI_CLK_VLV);
5786                         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
5787                 } else {
5788                         for_each_pipe(pipe)
5789                                 assert_pll_disabled(dev_priv, pipe);
5790                         /* Assert common reset */
5791                         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) &
5792                                    ~DPIO_CMNRST);
5793                 }
5794         }
5795
5796         mask = PUNIT_PWRGT_MASK(power_well_id);
5797         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
5798                          PUNIT_PWRGT_PWR_GATE(power_well_id);
5799
5800         mutex_lock(&dev_priv->rps.hw_lock);
5801
5802 #define COND \
5803         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
5804
5805         if (COND)
5806                 goto out;
5807
5808         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
5809         ctrl &= ~mask;
5810         ctrl |= state;
5811         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
5812
5813         if (wait_for(COND, 100))
5814                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
5815                           state,
5816                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
5817
5818 #undef COND
5819
5820 out:
5821         mutex_unlock(&dev_priv->rps.hw_lock);
5822
5823         /*
5824          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
5825          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
5826          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
5827          *   b. The other bits such as sfr settings / modesel may all
5828          *      be set to 0.
5829          *
5830          * This should only be done on init and resume from S3 with
5831          * both PLLs disabled, or we risk losing DPIO and PLL
5832          * synchronization.
5833          */
5834         if (power_well_id == PUNIT_POWER_WELL_DPIO_CMN_BC && enable)
5835                 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
5836 }
5837
5838 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
5839                                struct i915_power_well *power_well, bool enable)
5840 {
5841         enum punit_power_well power_well_id = power_well->data;
5842
5843         __vlv_set_power_well(dev_priv, power_well_id, enable);
5844 }
5845
5846 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
5847                                    struct i915_power_well *power_well)
5848 {
5849         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
5850 }
5851
5852 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
5853                                   struct i915_power_well *power_well)
5854 {
5855         vlv_set_power_well(dev_priv, power_well, true);
5856 }
5857
5858 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
5859                                    struct i915_power_well *power_well)
5860 {
5861         vlv_set_power_well(dev_priv, power_well, false);
5862 }
5863
5864 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
5865                                    struct i915_power_well *power_well)
5866 {
5867         int power_well_id = power_well->data;
5868         bool enabled = false;
5869         u32 mask;
5870         u32 state;
5871         u32 ctrl;
5872
5873         mask = PUNIT_PWRGT_MASK(power_well_id);
5874         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
5875
5876         mutex_lock(&dev_priv->rps.hw_lock);
5877
5878         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
5879         /*
5880          * We only ever set the power-on and power-gate states, anything
5881          * else is unexpected.
5882          */
5883         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
5884                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
5885         if (state == ctrl)
5886                 enabled = true;
5887
5888         /*
5889          * A transient state at this point would mean some unexpected party
5890          * is poking at the power controls too.
5891          */
5892         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
5893         WARN_ON(ctrl != state);
5894
5895         mutex_unlock(&dev_priv->rps.hw_lock);
5896
5897         return enabled;
5898 }
5899
5900 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
5901                                           struct i915_power_well *power_well)
5902 {
5903         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5904
5905         vlv_set_power_well(dev_priv, power_well, true);
5906
5907         spin_lock_irq(&dev_priv->irq_lock);
5908         valleyview_enable_display_irqs(dev_priv);
5909         spin_unlock_irq(&dev_priv->irq_lock);
5910
5911         /*
5912          * During driver initialization/resume we can avoid restoring the
5913          * part of the HW/SW state that will be inited anyway explicitly.
5914          */
5915         if (dev_priv->power_domains.initializing)
5916                 return;
5917
5918         intel_hpd_init(dev_priv->dev);
5919
5920         i915_redisable_vga_power_on(dev_priv->dev);
5921 }
5922
5923 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
5924                                            struct i915_power_well *power_well)
5925 {
5926         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
5927
5928         spin_lock_irq(&dev_priv->irq_lock);
5929         valleyview_disable_display_irqs(dev_priv);
5930         spin_unlock_irq(&dev_priv->irq_lock);
5931
5932         vlv_set_power_well(dev_priv, power_well, false);
5933 }
5934
5935 static void check_power_well_state(struct drm_i915_private *dev_priv,
5936                                    struct i915_power_well *power_well)
5937 {
5938         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
5939
5940         if (power_well->always_on || !i915.disable_power_well) {
5941                 if (!enabled)
5942                         goto mismatch;
5943
5944                 return;
5945         }
5946
5947         if (enabled != (power_well->count > 0))
5948                 goto mismatch;
5949
5950         return;
5951
5952 mismatch:
5953         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
5954                   power_well->name, power_well->always_on, enabled,
5955                   power_well->count, i915.disable_power_well);
5956 }
5957
5958 void intel_display_power_get(struct drm_i915_private *dev_priv,
5959                              enum intel_display_power_domain domain)
5960 {
5961         struct i915_power_domains *power_domains;
5962         struct i915_power_well *power_well;
5963         int i;
5964
5965         intel_runtime_pm_get(dev_priv);
5966
5967         power_domains = &dev_priv->power_domains;
5968
5969         mutex_lock(&power_domains->lock);
5970
5971         for_each_power_well(i, power_well, BIT(domain), power_domains) {
5972                 if (!power_well->count++) {
5973                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
5974                         power_well->ops->enable(dev_priv, power_well);
5975                         power_well->hw_enabled = true;
5976                 }
5977
5978                 check_power_well_state(dev_priv, power_well);
5979         }
5980
5981         power_domains->domain_use_count[domain]++;
5982
5983         mutex_unlock(&power_domains->lock);
5984 }
5985
5986 void intel_display_power_put(struct drm_i915_private *dev_priv,
5987                              enum intel_display_power_domain domain)
5988 {
5989         struct i915_power_domains *power_domains;
5990         struct i915_power_well *power_well;
5991         int i;
5992
5993         power_domains = &dev_priv->power_domains;
5994
5995         mutex_lock(&power_domains->lock);
5996
5997         WARN_ON(!power_domains->domain_use_count[domain]);
5998         power_domains->domain_use_count[domain]--;
5999
6000         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6001                 WARN_ON(!power_well->count);
6002
6003                 if (!--power_well->count && i915.disable_power_well) {
6004                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6005                         power_well->hw_enabled = false;
6006                         power_well->ops->disable(dev_priv, power_well);
6007                 }
6008
6009                 check_power_well_state(dev_priv, power_well);
6010         }
6011
6012         mutex_unlock(&power_domains->lock);
6013
6014         intel_runtime_pm_put(dev_priv);
6015 }
6016
6017 static struct i915_power_domains *hsw_pwr;
6018
6019 /* Display audio driver power well request */
6020 int i915_request_power_well(void)
6021 {
6022         struct drm_i915_private *dev_priv;
6023
6024         if (!hsw_pwr)
6025                 return -ENODEV;
6026
6027         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6028                                 power_domains);
6029         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6030         return 0;
6031 }
6032 EXPORT_SYMBOL_GPL(i915_request_power_well);
6033
6034 /* Display audio driver power well release */
6035 int i915_release_power_well(void)
6036 {
6037         struct drm_i915_private *dev_priv;
6038
6039         if (!hsw_pwr)
6040                 return -ENODEV;
6041
6042         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6043                                 power_domains);
6044         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6045         return 0;
6046 }
6047 EXPORT_SYMBOL_GPL(i915_release_power_well);
6048
6049 /*
6050  * Private interface for the audio driver to get CDCLK in kHz.
6051  *
6052  * Caller must request power well using i915_request_power_well() prior to
6053  * making the call.
6054  */
6055 int i915_get_cdclk_freq(void)
6056 {
6057         struct drm_i915_private *dev_priv;
6058
6059         if (!hsw_pwr)
6060                 return -ENODEV;
6061
6062         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6063                                 power_domains);
6064
6065         return intel_ddi_get_cdclk_freq(dev_priv);
6066 }
6067 EXPORT_SYMBOL_GPL(i915_get_cdclk_freq);
6068
6069
6070 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6071
6072 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6073         BIT(POWER_DOMAIN_PIPE_A) |                      \
6074         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6075         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6076         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6077         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6078         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6079         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6080         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6081         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6082         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6083         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6084         BIT(POWER_DOMAIN_INIT))
6085 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6086         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6087         BIT(POWER_DOMAIN_INIT))
6088
6089 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6090         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6091         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6092 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6093         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6094         BIT(POWER_DOMAIN_INIT))
6095
6096 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6097 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6098
6099 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6100         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6101         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6102         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6103         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6104         BIT(POWER_DOMAIN_PORT_CRT) |            \
6105         BIT(POWER_DOMAIN_INIT))
6106
6107 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6108         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6109         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6110         BIT(POWER_DOMAIN_INIT))
6111
6112 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6113         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6114         BIT(POWER_DOMAIN_INIT))
6115
6116 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6117         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6118         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6119         BIT(POWER_DOMAIN_INIT))
6120
6121 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6122         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6123         BIT(POWER_DOMAIN_INIT))
6124
6125 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6126         .sync_hw = i9xx_always_on_power_well_noop,
6127         .enable = i9xx_always_on_power_well_noop,
6128         .disable = i9xx_always_on_power_well_noop,
6129         .is_enabled = i9xx_always_on_power_well_enabled,
6130 };
6131
6132 static struct i915_power_well i9xx_always_on_power_well[] = {
6133         {
6134                 .name = "always-on",
6135                 .always_on = 1,
6136                 .domains = POWER_DOMAIN_MASK,
6137                 .ops = &i9xx_always_on_power_well_ops,
6138         },
6139 };
6140
6141 static const struct i915_power_well_ops hsw_power_well_ops = {
6142         .sync_hw = hsw_power_well_sync_hw,
6143         .enable = hsw_power_well_enable,
6144         .disable = hsw_power_well_disable,
6145         .is_enabled = hsw_power_well_enabled,
6146 };
6147
6148 static struct i915_power_well hsw_power_wells[] = {
6149         {
6150                 .name = "always-on",
6151                 .always_on = 1,
6152                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6153                 .ops = &i9xx_always_on_power_well_ops,
6154         },
6155         {
6156                 .name = "display",
6157                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6158                 .ops = &hsw_power_well_ops,
6159         },
6160 };
6161
6162 static struct i915_power_well bdw_power_wells[] = {
6163         {
6164                 .name = "always-on",
6165                 .always_on = 1,
6166                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6167                 .ops = &i9xx_always_on_power_well_ops,
6168         },
6169         {
6170                 .name = "display",
6171                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6172                 .ops = &hsw_power_well_ops,
6173         },
6174 };
6175
6176 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6177         .sync_hw = vlv_power_well_sync_hw,
6178         .enable = vlv_display_power_well_enable,
6179         .disable = vlv_display_power_well_disable,
6180         .is_enabled = vlv_power_well_enabled,
6181 };
6182
6183 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6184         .sync_hw = vlv_power_well_sync_hw,
6185         .enable = vlv_power_well_enable,
6186         .disable = vlv_power_well_disable,
6187         .is_enabled = vlv_power_well_enabled,
6188 };
6189
6190 static struct i915_power_well vlv_power_wells[] = {
6191         {
6192                 .name = "always-on",
6193                 .always_on = 1,
6194                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6195                 .ops = &i9xx_always_on_power_well_ops,
6196         },
6197         {
6198                 .name = "display",
6199                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6200                 .data = PUNIT_POWER_WELL_DISP2D,
6201                 .ops = &vlv_display_power_well_ops,
6202         },
6203         {
6204                 .name = "dpio-tx-b-01",
6205                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6206                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6207                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6208                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6209                 .ops = &vlv_dpio_power_well_ops,
6210                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6211         },
6212         {
6213                 .name = "dpio-tx-b-23",
6214                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6215                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6216                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6217                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6218                 .ops = &vlv_dpio_power_well_ops,
6219                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6220         },
6221         {
6222                 .name = "dpio-tx-c-01",
6223                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6224                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6225                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6226                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6227                 .ops = &vlv_dpio_power_well_ops,
6228                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6229         },
6230         {
6231                 .name = "dpio-tx-c-23",
6232                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6233                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6234                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6235                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6236                 .ops = &vlv_dpio_power_well_ops,
6237                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6238         },
6239         {
6240                 .name = "dpio-common",
6241                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6242                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6243                 .ops = &vlv_dpio_power_well_ops,
6244         },
6245 };
6246
6247 #define set_power_wells(power_domains, __power_wells) ({                \
6248         (power_domains)->power_wells = (__power_wells);                 \
6249         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6250 })
6251
6252 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6253 {
6254         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6255
6256         mutex_init(&power_domains->lock);
6257
6258         /*
6259          * The enabling order will be from lower to higher indexed wells,
6260          * the disabling order is reversed.
6261          */
6262         if (IS_HASWELL(dev_priv->dev)) {
6263                 set_power_wells(power_domains, hsw_power_wells);
6264                 hsw_pwr = power_domains;
6265         } else if (IS_BROADWELL(dev_priv->dev)) {
6266                 set_power_wells(power_domains, bdw_power_wells);
6267                 hsw_pwr = power_domains;
6268         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6269                 set_power_wells(power_domains, vlv_power_wells);
6270         } else {
6271                 set_power_wells(power_domains, i9xx_always_on_power_well);
6272         }
6273
6274         return 0;
6275 }
6276
6277 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6278 {
6279         hsw_pwr = NULL;
6280 }
6281
6282 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6283 {
6284         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6285         struct i915_power_well *power_well;
6286         int i;
6287
6288         mutex_lock(&power_domains->lock);
6289         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6290                 power_well->ops->sync_hw(dev_priv, power_well);
6291                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6292                                                                      power_well);
6293         }
6294         mutex_unlock(&power_domains->lock);
6295 }
6296
6297 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6298 {
6299         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6300
6301         power_domains->initializing = true;
6302         /* For now, we need the power well to be always enabled. */
6303         intel_display_set_init_power(dev_priv, true);
6304         intel_power_domains_resume(dev_priv);
6305         power_domains->initializing = false;
6306 }
6307
6308 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6309 {
6310         intel_runtime_pm_get(dev_priv);
6311 }
6312
6313 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6314 {
6315         intel_runtime_pm_put(dev_priv);
6316 }
6317
6318 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6319 {
6320         struct drm_device *dev = dev_priv->dev;
6321         struct device *device = &dev->pdev->dev;
6322
6323         if (!HAS_RUNTIME_PM(dev))
6324                 return;
6325
6326         pm_runtime_get_sync(device);
6327         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6328 }
6329
6330 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6331 {
6332         struct drm_device *dev = dev_priv->dev;
6333         struct device *device = &dev->pdev->dev;
6334
6335         if (!HAS_RUNTIME_PM(dev))
6336                 return;
6337
6338         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6339         pm_runtime_get_noresume(device);
6340 }
6341
6342 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6343 {
6344         struct drm_device *dev = dev_priv->dev;
6345         struct device *device = &dev->pdev->dev;
6346
6347         if (!HAS_RUNTIME_PM(dev))
6348                 return;
6349
6350         pm_runtime_mark_last_busy(device);
6351         pm_runtime_put_autosuspend(device);
6352 }
6353
6354 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6355 {
6356         struct drm_device *dev = dev_priv->dev;
6357         struct device *device = &dev->pdev->dev;
6358
6359         if (!HAS_RUNTIME_PM(dev))
6360                 return;
6361
6362         pm_runtime_set_active(device);
6363
6364         /*
6365          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6366          * requirement.
6367          */
6368         if (!intel_enable_rc6(dev)) {
6369                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6370                 return;
6371         }
6372
6373         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6374         pm_runtime_mark_last_busy(device);
6375         pm_runtime_use_autosuspend(device);
6376
6377         pm_runtime_put_autosuspend(device);
6378 }
6379
6380 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6381 {
6382         struct drm_device *dev = dev_priv->dev;
6383         struct device *device = &dev->pdev->dev;
6384
6385         if (!HAS_RUNTIME_PM(dev))
6386                 return;
6387
6388         if (!intel_enable_rc6(dev))
6389                 return;
6390
6391         /* Make sure we're not suspended first. */
6392         pm_runtime_get_sync(device);
6393         pm_runtime_disable(device);
6394 }
6395
6396 /* Set up chip specific power management-related functions */
6397 void intel_init_pm(struct drm_device *dev)
6398 {
6399         struct drm_i915_private *dev_priv = dev->dev_private;
6400
6401         if (HAS_FBC(dev)) {
6402                 if (INTEL_INFO(dev)->gen >= 7) {
6403                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6404                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6405                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6406                 } else if (INTEL_INFO(dev)->gen >= 5) {
6407                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6408                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6409                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6410                 } else if (IS_GM45(dev)) {
6411                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6412                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6413                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6414                 } else {
6415                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6416                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6417                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6418
6419                         /* This value was pulled out of someone's hat */
6420                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6421                 }
6422         }
6423
6424         /* For cxsr */
6425         if (IS_PINEVIEW(dev))
6426                 i915_pineview_get_mem_freq(dev);
6427         else if (IS_GEN5(dev))
6428                 i915_ironlake_get_mem_freq(dev);
6429
6430         /* For FIFO watermark updates */
6431         if (HAS_PCH_SPLIT(dev)) {
6432                 ilk_setup_wm_latency(dev);
6433
6434                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6435                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6436                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6437                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6438                         dev_priv->display.update_wm = ilk_update_wm;
6439                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6440                 } else {
6441                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6442                                       "Disable CxSR\n");
6443                 }
6444
6445                 if (IS_GEN5(dev))
6446                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6447                 else if (IS_GEN6(dev))
6448                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6449                 else if (IS_IVYBRIDGE(dev))
6450                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6451                 else if (IS_HASWELL(dev))
6452                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6453                 else if (INTEL_INFO(dev)->gen == 8)
6454                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6455         } else if (IS_CHERRYVIEW(dev)) {
6456                 dev_priv->display.update_wm = valleyview_update_wm;
6457                 dev_priv->display.init_clock_gating =
6458                         cherryview_init_clock_gating;
6459         } else if (IS_VALLEYVIEW(dev)) {
6460                 dev_priv->display.update_wm = valleyview_update_wm;
6461                 dev_priv->display.init_clock_gating =
6462                         valleyview_init_clock_gating;
6463         } else if (IS_PINEVIEW(dev)) {
6464                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6465                                             dev_priv->is_ddr3,
6466                                             dev_priv->fsb_freq,
6467                                             dev_priv->mem_freq)) {
6468                         DRM_INFO("failed to find known CxSR latency "
6469                                  "(found ddr%s fsb freq %d, mem freq %d), "
6470                                  "disabling CxSR\n",
6471                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6472                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6473                         /* Disable CxSR and never update its watermark again */
6474                         pineview_disable_cxsr(dev);
6475                         dev_priv->display.update_wm = NULL;
6476                 } else
6477                         dev_priv->display.update_wm = pineview_update_wm;
6478                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6479         } else if (IS_G4X(dev)) {
6480                 dev_priv->display.update_wm = g4x_update_wm;
6481                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6482         } else if (IS_GEN4(dev)) {
6483                 dev_priv->display.update_wm = i965_update_wm;
6484                 if (IS_CRESTLINE(dev))
6485                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6486                 else if (IS_BROADWATER(dev))
6487                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6488         } else if (IS_GEN3(dev)) {
6489                 dev_priv->display.update_wm = i9xx_update_wm;
6490                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6491                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6492         } else if (IS_GEN2(dev)) {
6493                 if (INTEL_INFO(dev)->num_pipes == 1) {
6494                         dev_priv->display.update_wm = i845_update_wm;
6495                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6496                 } else {
6497                         dev_priv->display.update_wm = i9xx_update_wm;
6498                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6499                 }
6500
6501                 if (IS_I85X(dev) || IS_I865G(dev))
6502                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6503                 else
6504                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6505         } else {
6506                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6507         }
6508 }
6509
6510 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6511 {
6512         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6513
6514         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6515                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6516                 return -EAGAIN;
6517         }
6518
6519         I915_WRITE(GEN6_PCODE_DATA, *val);
6520         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6521
6522         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6523                      500)) {
6524                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6525                 return -ETIMEDOUT;
6526         }
6527
6528         *val = I915_READ(GEN6_PCODE_DATA);
6529         I915_WRITE(GEN6_PCODE_DATA, 0);
6530
6531         return 0;
6532 }
6533
6534 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6535 {
6536         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6537
6538         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6539                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6540                 return -EAGAIN;
6541         }
6542
6543         I915_WRITE(GEN6_PCODE_DATA, val);
6544         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6545
6546         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6547                      500)) {
6548                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6549                 return -ETIMEDOUT;
6550         }
6551
6552         I915_WRITE(GEN6_PCODE_DATA, 0);
6553
6554         return 0;
6555 }
6556
6557 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6558 {
6559         int div;
6560
6561         /* 4 x czclk */
6562         switch (dev_priv->mem_freq) {
6563         case 800:
6564                 div = 10;
6565                 break;
6566         case 1066:
6567                 div = 12;
6568                 break;
6569         case 1333:
6570                 div = 16;
6571                 break;
6572         default:
6573                 return -1;
6574         }
6575
6576         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6577 }
6578
6579 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6580 {
6581         int mul;
6582
6583         /* 4 x czclk */
6584         switch (dev_priv->mem_freq) {
6585         case 800:
6586                 mul = 10;
6587                 break;
6588         case 1066:
6589                 mul = 12;
6590                 break;
6591         case 1333:
6592                 mul = 16;
6593                 break;
6594         default:
6595                 return -1;
6596         }
6597
6598         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
6599 }
6600
6601 void intel_pm_setup(struct drm_device *dev)
6602 {
6603         struct drm_i915_private *dev_priv = dev->dev_private;
6604
6605         mutex_init(&dev_priv->rps.hw_lock);
6606
6607         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6608                           intel_gen6_powersave_work);
6609
6610         dev_priv->pm.suspended = false;
6611         dev_priv->pm.irqs_disabled = false;
6612 }