Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34 #include <drm/drm_atomic_helper.h>
35
36 /**
37  * DOC: RC6
38  *
39  * RC6 is a special power stage which allows the GPU to enter an very
40  * low-voltage mode when idle, using down to 0V while at this stage.  This
41  * stage is entered automatically when the GPU is idle when RC6 support is
42  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
43  *
44  * There are different RC6 modes available in Intel GPU, which differentiate
45  * among each other with the latency required to enter and leave RC6 and
46  * voltage consumed by the GPU in different states.
47  *
48  * The combination of the following flags define which states GPU is allowed
49  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
50  * RC6pp is deepest RC6. Their support by hardware varies according to the
51  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
52  * which brings the most power savings; deeper states save more power, but
53  * require higher latency to switch to and wake up.
54  */
55
56 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
57 {
58         if (HAS_LLC(dev_priv)) {
59                 /*
60                  * WaCompressedResourceDisplayNewHashMode:skl,kbl
61                  * Display WA #0390: skl,kbl
62                  *
63                  * Must match Sampler, Pixel Back End, and Media. See
64                  * WaCompressedResourceSamplerPbeMediaNewHashMode.
65                  */
66                 I915_WRITE(CHICKEN_PAR1_1,
67                            I915_READ(CHICKEN_PAR1_1) |
68                            SKL_DE_COMPRESSED_HASH_MODE);
69         }
70
71         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
72         I915_WRITE(CHICKEN_PAR1_1,
73                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
74
75         /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
76         I915_WRITE(GEN8_CHICKEN_DCPR_1,
77                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
78
79         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
80         /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
81         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
82                    DISP_FBC_WM_DIS |
83                    DISP_FBC_MEMORY_WAKE);
84
85         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
86         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
87                    ILK_DPFC_DISABLE_DUMMY0);
88
89         if (IS_SKYLAKE(dev_priv)) {
90                 /* WaDisableDopClockGating */
91                 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
92                            & ~GEN7_DOP_CLOCK_GATE_ENABLE);
93         }
94 }
95
96 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
97 {
98         gen9_init_clock_gating(dev_priv);
99
100         /* WaDisableSDEUnitClockGating:bxt */
101         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
102                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
103
104         /*
105          * FIXME:
106          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
107          */
108         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
109                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
110
111         /*
112          * Wa: Backlight PWM may stop in the asserted state, causing backlight
113          * to stay fully on.
114          */
115         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
116                    PWM1_GATING_DIS | PWM2_GATING_DIS);
117 }
118
119 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
120 {
121         gen9_init_clock_gating(dev_priv);
122
123         /*
124          * WaDisablePWMClockGating:glk
125          * Backlight PWM may stop in the asserted state, causing backlight
126          * to stay fully on.
127          */
128         I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
129                    PWM1_GATING_DIS | PWM2_GATING_DIS);
130
131         /* WaDDIIOTimeout:glk */
132         if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
133                 u32 val = I915_READ(CHICKEN_MISC_2);
134                 val &= ~(GLK_CL0_PWR_DOWN |
135                          GLK_CL1_PWR_DOWN |
136                          GLK_CL2_PWR_DOWN);
137                 I915_WRITE(CHICKEN_MISC_2, val);
138         }
139
140 }
141
142 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
143 {
144         u32 tmp;
145
146         tmp = I915_READ(CLKCFG);
147
148         switch (tmp & CLKCFG_FSB_MASK) {
149         case CLKCFG_FSB_533:
150                 dev_priv->fsb_freq = 533; /* 133*4 */
151                 break;
152         case CLKCFG_FSB_800:
153                 dev_priv->fsb_freq = 800; /* 200*4 */
154                 break;
155         case CLKCFG_FSB_667:
156                 dev_priv->fsb_freq =  667; /* 167*4 */
157                 break;
158         case CLKCFG_FSB_400:
159                 dev_priv->fsb_freq = 400; /* 100*4 */
160                 break;
161         }
162
163         switch (tmp & CLKCFG_MEM_MASK) {
164         case CLKCFG_MEM_533:
165                 dev_priv->mem_freq = 533;
166                 break;
167         case CLKCFG_MEM_667:
168                 dev_priv->mem_freq = 667;
169                 break;
170         case CLKCFG_MEM_800:
171                 dev_priv->mem_freq = 800;
172                 break;
173         }
174
175         /* detect pineview DDR3 setting */
176         tmp = I915_READ(CSHRDDR3CTL);
177         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
178 }
179
180 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
181 {
182         u16 ddrpll, csipll;
183
184         ddrpll = I915_READ16(DDRMPLL1);
185         csipll = I915_READ16(CSIPLL0);
186
187         switch (ddrpll & 0xff) {
188         case 0xc:
189                 dev_priv->mem_freq = 800;
190                 break;
191         case 0x10:
192                 dev_priv->mem_freq = 1066;
193                 break;
194         case 0x14:
195                 dev_priv->mem_freq = 1333;
196                 break;
197         case 0x18:
198                 dev_priv->mem_freq = 1600;
199                 break;
200         default:
201                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
202                                  ddrpll & 0xff);
203                 dev_priv->mem_freq = 0;
204                 break;
205         }
206
207         dev_priv->ips.r_t = dev_priv->mem_freq;
208
209         switch (csipll & 0x3ff) {
210         case 0x00c:
211                 dev_priv->fsb_freq = 3200;
212                 break;
213         case 0x00e:
214                 dev_priv->fsb_freq = 3733;
215                 break;
216         case 0x010:
217                 dev_priv->fsb_freq = 4266;
218                 break;
219         case 0x012:
220                 dev_priv->fsb_freq = 4800;
221                 break;
222         case 0x014:
223                 dev_priv->fsb_freq = 5333;
224                 break;
225         case 0x016:
226                 dev_priv->fsb_freq = 5866;
227                 break;
228         case 0x018:
229                 dev_priv->fsb_freq = 6400;
230                 break;
231         default:
232                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
233                                  csipll & 0x3ff);
234                 dev_priv->fsb_freq = 0;
235                 break;
236         }
237
238         if (dev_priv->fsb_freq == 3200) {
239                 dev_priv->ips.c_m = 0;
240         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
241                 dev_priv->ips.c_m = 1;
242         } else {
243                 dev_priv->ips.c_m = 2;
244         }
245 }
246
247 static const struct cxsr_latency cxsr_latency_table[] = {
248         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
249         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
250         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
251         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
252         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
253
254         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
255         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
256         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
257         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
258         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
259
260         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
261         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
262         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
263         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
264         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
265
266         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
267         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
268         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
269         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
270         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
271
272         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
273         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
274         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
275         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
276         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
277
278         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
279         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
280         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
281         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
282         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
283 };
284
285 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
286                                                          bool is_ddr3,
287                                                          int fsb,
288                                                          int mem)
289 {
290         const struct cxsr_latency *latency;
291         int i;
292
293         if (fsb == 0 || mem == 0)
294                 return NULL;
295
296         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
297                 latency = &cxsr_latency_table[i];
298                 if (is_desktop == latency->is_desktop &&
299                     is_ddr3 == latency->is_ddr3 &&
300                     fsb == latency->fsb_freq && mem == latency->mem_freq)
301                         return latency;
302         }
303
304         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
305
306         return NULL;
307 }
308
309 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
310 {
311         u32 val;
312
313         mutex_lock(&dev_priv->pcu_lock);
314
315         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
316         if (enable)
317                 val &= ~FORCE_DDR_HIGH_FREQ;
318         else
319                 val |= FORCE_DDR_HIGH_FREQ;
320         val &= ~FORCE_DDR_LOW_FREQ;
321         val |= FORCE_DDR_FREQ_REQ_ACK;
322         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
323
324         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
325                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
326                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
327
328         mutex_unlock(&dev_priv->pcu_lock);
329 }
330
331 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
332 {
333         u32 val;
334
335         mutex_lock(&dev_priv->pcu_lock);
336
337         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
338         if (enable)
339                 val |= DSP_MAXFIFO_PM5_ENABLE;
340         else
341                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
342         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
343
344         mutex_unlock(&dev_priv->pcu_lock);
345 }
346
347 #define FW_WM(value, plane) \
348         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
349
350 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
351 {
352         bool was_enabled;
353         u32 val;
354
355         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
356                 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
357                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
358                 POSTING_READ(FW_BLC_SELF_VLV);
359         } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
360                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
361                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
362                 POSTING_READ(FW_BLC_SELF);
363         } else if (IS_PINEVIEW(dev_priv)) {
364                 val = I915_READ(DSPFW3);
365                 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
366                 if (enable)
367                         val |= PINEVIEW_SELF_REFRESH_EN;
368                 else
369                         val &= ~PINEVIEW_SELF_REFRESH_EN;
370                 I915_WRITE(DSPFW3, val);
371                 POSTING_READ(DSPFW3);
372         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
373                 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
374                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
375                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
376                 I915_WRITE(FW_BLC_SELF, val);
377                 POSTING_READ(FW_BLC_SELF);
378         } else if (IS_I915GM(dev_priv)) {
379                 /*
380                  * FIXME can't find a bit like this for 915G, and
381                  * and yet it does have the related watermark in
382                  * FW_BLC_SELF. What's going on?
383                  */
384                 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
385                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
386                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
387                 I915_WRITE(INSTPM, val);
388                 POSTING_READ(INSTPM);
389         } else {
390                 return false;
391         }
392
393         trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
394
395         DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
396                       enableddisabled(enable),
397                       enableddisabled(was_enabled));
398
399         return was_enabled;
400 }
401
402 /**
403  * intel_set_memory_cxsr - Configure CxSR state
404  * @dev_priv: i915 device
405  * @enable: Allow vs. disallow CxSR
406  *
407  * Allow or disallow the system to enter a special CxSR
408  * (C-state self refresh) state. What typically happens in CxSR mode
409  * is that several display FIFOs may get combined into a single larger
410  * FIFO for a particular plane (so called max FIFO mode) to allow the
411  * system to defer memory fetches longer, and the memory will enter
412  * self refresh.
413  *
414  * Note that enabling CxSR does not guarantee that the system enter
415  * this special mode, nor does it guarantee that the system stays
416  * in that mode once entered. So this just allows/disallows the system
417  * to autonomously utilize the CxSR mode. Other factors such as core
418  * C-states will affect when/if the system actually enters/exits the
419  * CxSR mode.
420  *
421  * Note that on VLV/CHV this actually only controls the max FIFO mode,
422  * and the system is free to enter/exit memory self refresh at any time
423  * even when the use of CxSR has been disallowed.
424  *
425  * While the system is actually in the CxSR/max FIFO mode, some plane
426  * control registers will not get latched on vblank. Thus in order to
427  * guarantee the system will respond to changes in the plane registers
428  * we must always disallow CxSR prior to making changes to those registers.
429  * Unfortunately the system will re-evaluate the CxSR conditions at
430  * frame start which happens after vblank start (which is when the plane
431  * registers would get latched), so we can't proceed with the plane update
432  * during the same frame where we disallowed CxSR.
433  *
434  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
435  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
436  * the hardware w.r.t. HPLL SR when writing to plane registers.
437  * Disallowing just CxSR is sufficient.
438  */
439 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
440 {
441         bool ret;
442
443         mutex_lock(&dev_priv->wm.wm_mutex);
444         ret = _intel_set_memory_cxsr(dev_priv, enable);
445         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
446                 dev_priv->wm.vlv.cxsr = enable;
447         else if (IS_G4X(dev_priv))
448                 dev_priv->wm.g4x.cxsr = enable;
449         mutex_unlock(&dev_priv->wm.wm_mutex);
450
451         return ret;
452 }
453
454 /*
455  * Latency for FIFO fetches is dependent on several factors:
456  *   - memory configuration (speed, channels)
457  *   - chipset
458  *   - current MCH state
459  * It can be fairly high in some situations, so here we assume a fairly
460  * pessimal value.  It's a tradeoff between extra memory fetches (if we
461  * set this value too high, the FIFO will fetch frequently to stay full)
462  * and power consumption (set it too low to save power and we might see
463  * FIFO underruns and display "flicker").
464  *
465  * A value of 5us seems to be a good balance; safe for very low end
466  * platforms but not overly aggressive on lower latency configs.
467  */
468 static const int pessimal_latency_ns = 5000;
469
470 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
471         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
472
473 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
474 {
475         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
476         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
477         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
478         enum pipe pipe = crtc->pipe;
479         int sprite0_start, sprite1_start;
480
481         switch (pipe) {
482                 uint32_t dsparb, dsparb2, dsparb3;
483         case PIPE_A:
484                 dsparb = I915_READ(DSPARB);
485                 dsparb2 = I915_READ(DSPARB2);
486                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
487                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
488                 break;
489         case PIPE_B:
490                 dsparb = I915_READ(DSPARB);
491                 dsparb2 = I915_READ(DSPARB2);
492                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
493                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
494                 break;
495         case PIPE_C:
496                 dsparb2 = I915_READ(DSPARB2);
497                 dsparb3 = I915_READ(DSPARB3);
498                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
499                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
500                 break;
501         default:
502                 MISSING_CASE(pipe);
503                 return;
504         }
505
506         fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
507         fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
508         fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
509         fifo_state->plane[PLANE_CURSOR] = 63;
510 }
511
512 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
513                               enum i9xx_plane_id i9xx_plane)
514 {
515         uint32_t dsparb = I915_READ(DSPARB);
516         int size;
517
518         size = dsparb & 0x7f;
519         if (i9xx_plane == PLANE_B)
520                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
521
522         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
523                       dsparb, plane_name(i9xx_plane), size);
524
525         return size;
526 }
527
528 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
529                               enum i9xx_plane_id i9xx_plane)
530 {
531         uint32_t dsparb = I915_READ(DSPARB);
532         int size;
533
534         size = dsparb & 0x1ff;
535         if (i9xx_plane == PLANE_B)
536                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
537         size >>= 1; /* Convert to cachelines */
538
539         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
540                       dsparb, plane_name(i9xx_plane), size);
541
542         return size;
543 }
544
545 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
546                               enum i9xx_plane_id i9xx_plane)
547 {
548         uint32_t dsparb = I915_READ(DSPARB);
549         int size;
550
551         size = dsparb & 0x7f;
552         size >>= 2; /* Convert to cachelines */
553
554         DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
555                       dsparb, plane_name(i9xx_plane), size);
556
557         return size;
558 }
559
560 /* Pineview has different values for various configs */
561 static const struct intel_watermark_params pineview_display_wm = {
562         .fifo_size = PINEVIEW_DISPLAY_FIFO,
563         .max_wm = PINEVIEW_MAX_WM,
564         .default_wm = PINEVIEW_DFT_WM,
565         .guard_size = PINEVIEW_GUARD_WM,
566         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
567 };
568 static const struct intel_watermark_params pineview_display_hplloff_wm = {
569         .fifo_size = PINEVIEW_DISPLAY_FIFO,
570         .max_wm = PINEVIEW_MAX_WM,
571         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
572         .guard_size = PINEVIEW_GUARD_WM,
573         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
574 };
575 static const struct intel_watermark_params pineview_cursor_wm = {
576         .fifo_size = PINEVIEW_CURSOR_FIFO,
577         .max_wm = PINEVIEW_CURSOR_MAX_WM,
578         .default_wm = PINEVIEW_CURSOR_DFT_WM,
579         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
580         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
581 };
582 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
583         .fifo_size = PINEVIEW_CURSOR_FIFO,
584         .max_wm = PINEVIEW_CURSOR_MAX_WM,
585         .default_wm = PINEVIEW_CURSOR_DFT_WM,
586         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
587         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
588 };
589 static const struct intel_watermark_params i965_cursor_wm_info = {
590         .fifo_size = I965_CURSOR_FIFO,
591         .max_wm = I965_CURSOR_MAX_WM,
592         .default_wm = I965_CURSOR_DFT_WM,
593         .guard_size = 2,
594         .cacheline_size = I915_FIFO_LINE_SIZE,
595 };
596 static const struct intel_watermark_params i945_wm_info = {
597         .fifo_size = I945_FIFO_SIZE,
598         .max_wm = I915_MAX_WM,
599         .default_wm = 1,
600         .guard_size = 2,
601         .cacheline_size = I915_FIFO_LINE_SIZE,
602 };
603 static const struct intel_watermark_params i915_wm_info = {
604         .fifo_size = I915_FIFO_SIZE,
605         .max_wm = I915_MAX_WM,
606         .default_wm = 1,
607         .guard_size = 2,
608         .cacheline_size = I915_FIFO_LINE_SIZE,
609 };
610 static const struct intel_watermark_params i830_a_wm_info = {
611         .fifo_size = I855GM_FIFO_SIZE,
612         .max_wm = I915_MAX_WM,
613         .default_wm = 1,
614         .guard_size = 2,
615         .cacheline_size = I830_FIFO_LINE_SIZE,
616 };
617 static const struct intel_watermark_params i830_bc_wm_info = {
618         .fifo_size = I855GM_FIFO_SIZE,
619         .max_wm = I915_MAX_WM/2,
620         .default_wm = 1,
621         .guard_size = 2,
622         .cacheline_size = I830_FIFO_LINE_SIZE,
623 };
624 static const struct intel_watermark_params i845_wm_info = {
625         .fifo_size = I830_FIFO_SIZE,
626         .max_wm = I915_MAX_WM,
627         .default_wm = 1,
628         .guard_size = 2,
629         .cacheline_size = I830_FIFO_LINE_SIZE,
630 };
631
632 /**
633  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
634  * @pixel_rate: Pipe pixel rate in kHz
635  * @cpp: Plane bytes per pixel
636  * @latency: Memory wakeup latency in 0.1us units
637  *
638  * Compute the watermark using the method 1 or "small buffer"
639  * formula. The caller may additonally add extra cachelines
640  * to account for TLB misses and clock crossings.
641  *
642  * This method is concerned with the short term drain rate
643  * of the FIFO, ie. it does not account for blanking periods
644  * which would effectively reduce the average drain rate across
645  * a longer period. The name "small" refers to the fact the
646  * FIFO is relatively small compared to the amount of data
647  * fetched.
648  *
649  * The FIFO level vs. time graph might look something like:
650  *
651  *   |\   |\
652  *   | \  | \
653  * __---__---__ (- plane active, _ blanking)
654  * -> time
655  *
656  * or perhaps like this:
657  *
658  *   |\|\  |\|\
659  * __----__----__ (- plane active, _ blanking)
660  * -> time
661  *
662  * Returns:
663  * The watermark in bytes
664  */
665 static unsigned int intel_wm_method1(unsigned int pixel_rate,
666                                      unsigned int cpp,
667                                      unsigned int latency)
668 {
669         uint64_t ret;
670
671         ret = (uint64_t) pixel_rate * cpp * latency;
672         ret = DIV_ROUND_UP_ULL(ret, 10000);
673
674         return ret;
675 }
676
677 /**
678  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
679  * @pixel_rate: Pipe pixel rate in kHz
680  * @htotal: Pipe horizontal total
681  * @width: Plane width in pixels
682  * @cpp: Plane bytes per pixel
683  * @latency: Memory wakeup latency in 0.1us units
684  *
685  * Compute the watermark using the method 2 or "large buffer"
686  * formula. The caller may additonally add extra cachelines
687  * to account for TLB misses and clock crossings.
688  *
689  * This method is concerned with the long term drain rate
690  * of the FIFO, ie. it does account for blanking periods
691  * which effectively reduce the average drain rate across
692  * a longer period. The name "large" refers to the fact the
693  * FIFO is relatively large compared to the amount of data
694  * fetched.
695  *
696  * The FIFO level vs. time graph might look something like:
697  *
698  *    |\___       |\___
699  *    |    \___   |    \___
700  *    |        \  |        \
701  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
702  * -> time
703  *
704  * Returns:
705  * The watermark in bytes
706  */
707 static unsigned int intel_wm_method2(unsigned int pixel_rate,
708                                      unsigned int htotal,
709                                      unsigned int width,
710                                      unsigned int cpp,
711                                      unsigned int latency)
712 {
713         unsigned int ret;
714
715         /*
716          * FIXME remove once all users are computing
717          * watermarks in the correct place.
718          */
719         if (WARN_ON_ONCE(htotal == 0))
720                 htotal = 1;
721
722         ret = (latency * pixel_rate) / (htotal * 10000);
723         ret = (ret + 1) * width * cpp;
724
725         return ret;
726 }
727
728 /**
729  * intel_calculate_wm - calculate watermark level
730  * @pixel_rate: pixel clock
731  * @wm: chip FIFO params
732  * @fifo_size: size of the FIFO buffer
733  * @cpp: bytes per pixel
734  * @latency_ns: memory latency for the platform
735  *
736  * Calculate the watermark level (the level at which the display plane will
737  * start fetching from memory again).  Each chip has a different display
738  * FIFO size and allocation, so the caller needs to figure that out and pass
739  * in the correct intel_watermark_params structure.
740  *
741  * As the pixel clock runs, the FIFO will be drained at a rate that depends
742  * on the pixel size.  When it reaches the watermark level, it'll start
743  * fetching FIFO line sized based chunks from memory until the FIFO fills
744  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
745  * will occur, and a display engine hang could result.
746  */
747 static unsigned int intel_calculate_wm(int pixel_rate,
748                                        const struct intel_watermark_params *wm,
749                                        int fifo_size, int cpp,
750                                        unsigned int latency_ns)
751 {
752         int entries, wm_size;
753
754         /*
755          * Note: we need to make sure we don't overflow for various clock &
756          * latency values.
757          * clocks go from a few thousand to several hundred thousand.
758          * latency is usually a few thousand
759          */
760         entries = intel_wm_method1(pixel_rate, cpp,
761                                    latency_ns / 100);
762         entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
763                 wm->guard_size;
764         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
765
766         wm_size = fifo_size - entries;
767         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
768
769         /* Don't promote wm_size to unsigned... */
770         if (wm_size > wm->max_wm)
771                 wm_size = wm->max_wm;
772         if (wm_size <= 0)
773                 wm_size = wm->default_wm;
774
775         /*
776          * Bspec seems to indicate that the value shouldn't be lower than
777          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
778          * Lets go for 8 which is the burst size since certain platforms
779          * already use a hardcoded 8 (which is what the spec says should be
780          * done).
781          */
782         if (wm_size <= 8)
783                 wm_size = 8;
784
785         return wm_size;
786 }
787
788 static bool is_disabling(int old, int new, int threshold)
789 {
790         return old >= threshold && new < threshold;
791 }
792
793 static bool is_enabling(int old, int new, int threshold)
794 {
795         return old < threshold && new >= threshold;
796 }
797
798 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
799 {
800         return dev_priv->wm.max_level + 1;
801 }
802
803 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
804                                    const struct intel_plane_state *plane_state)
805 {
806         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
807
808         /* FIXME check the 'enable' instead */
809         if (!crtc_state->base.active)
810                 return false;
811
812         /*
813          * Treat cursor with fb as always visible since cursor updates
814          * can happen faster than the vrefresh rate, and the current
815          * watermark code doesn't handle that correctly. Cursor updates
816          * which set/clear the fb or change the cursor size are going
817          * to get throttled by intel_legacy_cursor_update() to work
818          * around this problem with the watermark code.
819          */
820         if (plane->id == PLANE_CURSOR)
821                 return plane_state->base.fb != NULL;
822         else
823                 return plane_state->base.visible;
824 }
825
826 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
827 {
828         struct intel_crtc *crtc, *enabled = NULL;
829
830         for_each_intel_crtc(&dev_priv->drm, crtc) {
831                 if (intel_crtc_active(crtc)) {
832                         if (enabled)
833                                 return NULL;
834                         enabled = crtc;
835                 }
836         }
837
838         return enabled;
839 }
840
841 static void pineview_update_wm(struct intel_crtc *unused_crtc)
842 {
843         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
844         struct intel_crtc *crtc;
845         const struct cxsr_latency *latency;
846         u32 reg;
847         unsigned int wm;
848
849         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
850                                          dev_priv->is_ddr3,
851                                          dev_priv->fsb_freq,
852                                          dev_priv->mem_freq);
853         if (!latency) {
854                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
855                 intel_set_memory_cxsr(dev_priv, false);
856                 return;
857         }
858
859         crtc = single_enabled_crtc(dev_priv);
860         if (crtc) {
861                 const struct drm_display_mode *adjusted_mode =
862                         &crtc->config->base.adjusted_mode;
863                 const struct drm_framebuffer *fb =
864                         crtc->base.primary->state->fb;
865                 int cpp = fb->format->cpp[0];
866                 int clock = adjusted_mode->crtc_clock;
867
868                 /* Display SR */
869                 wm = intel_calculate_wm(clock, &pineview_display_wm,
870                                         pineview_display_wm.fifo_size,
871                                         cpp, latency->display_sr);
872                 reg = I915_READ(DSPFW1);
873                 reg &= ~DSPFW_SR_MASK;
874                 reg |= FW_WM(wm, SR);
875                 I915_WRITE(DSPFW1, reg);
876                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
877
878                 /* cursor SR */
879                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
880                                         pineview_display_wm.fifo_size,
881                                         4, latency->cursor_sr);
882                 reg = I915_READ(DSPFW3);
883                 reg &= ~DSPFW_CURSOR_SR_MASK;
884                 reg |= FW_WM(wm, CURSOR_SR);
885                 I915_WRITE(DSPFW3, reg);
886
887                 /* Display HPLL off SR */
888                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
889                                         pineview_display_hplloff_wm.fifo_size,
890                                         cpp, latency->display_hpll_disable);
891                 reg = I915_READ(DSPFW3);
892                 reg &= ~DSPFW_HPLL_SR_MASK;
893                 reg |= FW_WM(wm, HPLL_SR);
894                 I915_WRITE(DSPFW3, reg);
895
896                 /* cursor HPLL off SR */
897                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
898                                         pineview_display_hplloff_wm.fifo_size,
899                                         4, latency->cursor_hpll_disable);
900                 reg = I915_READ(DSPFW3);
901                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
902                 reg |= FW_WM(wm, HPLL_CURSOR);
903                 I915_WRITE(DSPFW3, reg);
904                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
905
906                 intel_set_memory_cxsr(dev_priv, true);
907         } else {
908                 intel_set_memory_cxsr(dev_priv, false);
909         }
910 }
911
912 /*
913  * Documentation says:
914  * "If the line size is small, the TLB fetches can get in the way of the
915  *  data fetches, causing some lag in the pixel data return which is not
916  *  accounted for in the above formulas. The following adjustment only
917  *  needs to be applied if eight whole lines fit in the buffer at once.
918  *  The WM is adjusted upwards by the difference between the FIFO size
919  *  and the size of 8 whole lines. This adjustment is always performed
920  *  in the actual pixel depth regardless of whether FBC is enabled or not."
921  */
922 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
923 {
924         int tlb_miss = fifo_size * 64 - width * cpp * 8;
925
926         return max(0, tlb_miss);
927 }
928
929 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
930                                 const struct g4x_wm_values *wm)
931 {
932         enum pipe pipe;
933
934         for_each_pipe(dev_priv, pipe)
935                 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
936
937         I915_WRITE(DSPFW1,
938                    FW_WM(wm->sr.plane, SR) |
939                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
940                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
941                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
942         I915_WRITE(DSPFW2,
943                    (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
944                    FW_WM(wm->sr.fbc, FBC_SR) |
945                    FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
946                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
947                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
948                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
949         I915_WRITE(DSPFW3,
950                    (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
951                    FW_WM(wm->sr.cursor, CURSOR_SR) |
952                    FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
953                    FW_WM(wm->hpll.plane, HPLL_SR));
954
955         POSTING_READ(DSPFW1);
956 }
957
958 #define FW_WM_VLV(value, plane) \
959         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
960
961 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
962                                 const struct vlv_wm_values *wm)
963 {
964         enum pipe pipe;
965
966         for_each_pipe(dev_priv, pipe) {
967                 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
968
969                 I915_WRITE(VLV_DDL(pipe),
970                            (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
971                            (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
972                            (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
973                            (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
974         }
975
976         /*
977          * Zero the (unused) WM1 watermarks, and also clear all the
978          * high order bits so that there are no out of bounds values
979          * present in the registers during the reprogramming.
980          */
981         I915_WRITE(DSPHOWM, 0);
982         I915_WRITE(DSPHOWM1, 0);
983         I915_WRITE(DSPFW4, 0);
984         I915_WRITE(DSPFW5, 0);
985         I915_WRITE(DSPFW6, 0);
986
987         I915_WRITE(DSPFW1,
988                    FW_WM(wm->sr.plane, SR) |
989                    FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
990                    FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
991                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
992         I915_WRITE(DSPFW2,
993                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
994                    FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
995                    FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
996         I915_WRITE(DSPFW3,
997                    FW_WM(wm->sr.cursor, CURSOR_SR));
998
999         if (IS_CHERRYVIEW(dev_priv)) {
1000                 I915_WRITE(DSPFW7_CHV,
1001                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1002                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1003                 I915_WRITE(DSPFW8_CHV,
1004                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1005                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1006                 I915_WRITE(DSPFW9_CHV,
1007                            FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1008                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1009                 I915_WRITE(DSPHOWM,
1010                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1011                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1012                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1013                            FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1014                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1015                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1016                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1017                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1018                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1019                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1020         } else {
1021                 I915_WRITE(DSPFW7,
1022                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1023                            FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1024                 I915_WRITE(DSPHOWM,
1025                            FW_WM(wm->sr.plane >> 9, SR_HI) |
1026                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1027                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1028                            FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1029                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1030                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1031                            FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1032         }
1033
1034         POSTING_READ(DSPFW1);
1035 }
1036
1037 #undef FW_WM_VLV
1038
1039 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1040 {
1041         /* all latencies in usec */
1042         dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1043         dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1044         dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1045
1046         dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1047 }
1048
1049 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1050 {
1051         /*
1052          * DSPCNTR[13] supposedly controls whether the
1053          * primary plane can use the FIFO space otherwise
1054          * reserved for the sprite plane. It's not 100% clear
1055          * what the actual FIFO size is, but it looks like we
1056          * can happily set both primary and sprite watermarks
1057          * up to 127 cachelines. So that would seem to mean
1058          * that either DSPCNTR[13] doesn't do anything, or that
1059          * the total FIFO is >= 256 cachelines in size. Either
1060          * way, we don't seem to have to worry about this
1061          * repartitioning as the maximum watermark value the
1062          * register can hold for each plane is lower than the
1063          * minimum FIFO size.
1064          */
1065         switch (plane_id) {
1066         case PLANE_CURSOR:
1067                 return 63;
1068         case PLANE_PRIMARY:
1069                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1070         case PLANE_SPRITE0:
1071                 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1072         default:
1073                 MISSING_CASE(plane_id);
1074                 return 0;
1075         }
1076 }
1077
1078 static int g4x_fbc_fifo_size(int level)
1079 {
1080         switch (level) {
1081         case G4X_WM_LEVEL_SR:
1082                 return 7;
1083         case G4X_WM_LEVEL_HPLL:
1084                 return 15;
1085         default:
1086                 MISSING_CASE(level);
1087                 return 0;
1088         }
1089 }
1090
1091 static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1092                                const struct intel_plane_state *plane_state,
1093                                int level)
1094 {
1095         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1096         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1097         const struct drm_display_mode *adjusted_mode =
1098                 &crtc_state->base.adjusted_mode;
1099         unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1100         unsigned int clock, htotal, cpp, width, wm;
1101
1102         if (latency == 0)
1103                 return USHRT_MAX;
1104
1105         if (!intel_wm_plane_visible(crtc_state, plane_state))
1106                 return 0;
1107
1108         /*
1109          * Not 100% sure which way ELK should go here as the
1110          * spec only says CL/CTG should assume 32bpp and BW
1111          * doesn't need to. But as these things followed the
1112          * mobile vs. desktop lines on gen3 as well, let's
1113          * assume ELK doesn't need this.
1114          *
1115          * The spec also fails to list such a restriction for
1116          * the HPLL watermark, which seems a little strange.
1117          * Let's use 32bpp for the HPLL watermark as well.
1118          */
1119         if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1120             level != G4X_WM_LEVEL_NORMAL)
1121                 cpp = 4;
1122         else
1123                 cpp = plane_state->base.fb->format->cpp[0];
1124
1125         clock = adjusted_mode->crtc_clock;
1126         htotal = adjusted_mode->crtc_htotal;
1127
1128         if (plane->id == PLANE_CURSOR)
1129                 width = plane_state->base.crtc_w;
1130         else
1131                 width = drm_rect_width(&plane_state->base.dst);
1132
1133         if (plane->id == PLANE_CURSOR) {
1134                 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1135         } else if (plane->id == PLANE_PRIMARY &&
1136                    level == G4X_WM_LEVEL_NORMAL) {
1137                 wm = intel_wm_method1(clock, cpp, latency);
1138         } else {
1139                 unsigned int small, large;
1140
1141                 small = intel_wm_method1(clock, cpp, latency);
1142                 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1143
1144                 wm = min(small, large);
1145         }
1146
1147         wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1148                               width, cpp);
1149
1150         wm = DIV_ROUND_UP(wm, 64) + 2;
1151
1152         return min_t(unsigned int, wm, USHRT_MAX);
1153 }
1154
1155 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1156                                  int level, enum plane_id plane_id, u16 value)
1157 {
1158         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1159         bool dirty = false;
1160
1161         for (; level < intel_wm_num_levels(dev_priv); level++) {
1162                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1163
1164                 dirty |= raw->plane[plane_id] != value;
1165                 raw->plane[plane_id] = value;
1166         }
1167
1168         return dirty;
1169 }
1170
1171 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1172                                int level, u16 value)
1173 {
1174         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1175         bool dirty = false;
1176
1177         /* NORMAL level doesn't have an FBC watermark */
1178         level = max(level, G4X_WM_LEVEL_SR);
1179
1180         for (; level < intel_wm_num_levels(dev_priv); level++) {
1181                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1182
1183                 dirty |= raw->fbc != value;
1184                 raw->fbc = value;
1185         }
1186
1187         return dirty;
1188 }
1189
1190 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1191                                    const struct intel_plane_state *pstate,
1192                                    uint32_t pri_val);
1193
1194 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1195                                      const struct intel_plane_state *plane_state)
1196 {
1197         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1198         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1199         enum plane_id plane_id = plane->id;
1200         bool dirty = false;
1201         int level;
1202
1203         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1204                 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1205                 if (plane_id == PLANE_PRIMARY)
1206                         dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1207                 goto out;
1208         }
1209
1210         for (level = 0; level < num_levels; level++) {
1211                 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1212                 int wm, max_wm;
1213
1214                 wm = g4x_compute_wm(crtc_state, plane_state, level);
1215                 max_wm = g4x_plane_fifo_size(plane_id, level);
1216
1217                 if (wm > max_wm)
1218                         break;
1219
1220                 dirty |= raw->plane[plane_id] != wm;
1221                 raw->plane[plane_id] = wm;
1222
1223                 if (plane_id != PLANE_PRIMARY ||
1224                     level == G4X_WM_LEVEL_NORMAL)
1225                         continue;
1226
1227                 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1228                                         raw->plane[plane_id]);
1229                 max_wm = g4x_fbc_fifo_size(level);
1230
1231                 /*
1232                  * FBC wm is not mandatory as we
1233                  * can always just disable its use.
1234                  */
1235                 if (wm > max_wm)
1236                         wm = USHRT_MAX;
1237
1238                 dirty |= raw->fbc != wm;
1239                 raw->fbc = wm;
1240         }
1241
1242         /* mark watermarks as invalid */
1243         dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1244
1245         if (plane_id == PLANE_PRIMARY)
1246                 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1247
1248  out:
1249         if (dirty) {
1250                 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1251                               plane->base.name,
1252                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1253                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1254                               crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1255
1256                 if (plane_id == PLANE_PRIMARY)
1257                         DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1258                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1259                                       crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1260         }
1261
1262         return dirty;
1263 }
1264
1265 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1266                                       enum plane_id plane_id, int level)
1267 {
1268         const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1269
1270         return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1271 }
1272
1273 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1274                                      int level)
1275 {
1276         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1277
1278         if (level > dev_priv->wm.max_level)
1279                 return false;
1280
1281         return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1282                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1283                 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1284 }
1285
1286 /* mark all levels starting from 'level' as invalid */
1287 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1288                                struct g4x_wm_state *wm_state, int level)
1289 {
1290         if (level <= G4X_WM_LEVEL_NORMAL) {
1291                 enum plane_id plane_id;
1292
1293                 for_each_plane_id_on_crtc(crtc, plane_id)
1294                         wm_state->wm.plane[plane_id] = USHRT_MAX;
1295         }
1296
1297         if (level <= G4X_WM_LEVEL_SR) {
1298                 wm_state->cxsr = false;
1299                 wm_state->sr.cursor = USHRT_MAX;
1300                 wm_state->sr.plane = USHRT_MAX;
1301                 wm_state->sr.fbc = USHRT_MAX;
1302         }
1303
1304         if (level <= G4X_WM_LEVEL_HPLL) {
1305                 wm_state->hpll_en = false;
1306                 wm_state->hpll.cursor = USHRT_MAX;
1307                 wm_state->hpll.plane = USHRT_MAX;
1308                 wm_state->hpll.fbc = USHRT_MAX;
1309         }
1310 }
1311
1312 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1313 {
1314         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1315         struct intel_atomic_state *state =
1316                 to_intel_atomic_state(crtc_state->base.state);
1317         struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1318         int num_active_planes = hweight32(crtc_state->active_planes &
1319                                           ~BIT(PLANE_CURSOR));
1320         const struct g4x_pipe_wm *raw;
1321         const struct intel_plane_state *old_plane_state;
1322         const struct intel_plane_state *new_plane_state;
1323         struct intel_plane *plane;
1324         enum plane_id plane_id;
1325         int i, level;
1326         unsigned int dirty = 0;
1327
1328         for_each_oldnew_intel_plane_in_state(state, plane,
1329                                              old_plane_state,
1330                                              new_plane_state, i) {
1331                 if (new_plane_state->base.crtc != &crtc->base &&
1332                     old_plane_state->base.crtc != &crtc->base)
1333                         continue;
1334
1335                 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1336                         dirty |= BIT(plane->id);
1337         }
1338
1339         if (!dirty)
1340                 return 0;
1341
1342         level = G4X_WM_LEVEL_NORMAL;
1343         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1344                 goto out;
1345
1346         raw = &crtc_state->wm.g4x.raw[level];
1347         for_each_plane_id_on_crtc(crtc, plane_id)
1348                 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1349
1350         level = G4X_WM_LEVEL_SR;
1351
1352         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1353                 goto out;
1354
1355         raw = &crtc_state->wm.g4x.raw[level];
1356         wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1357         wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1358         wm_state->sr.fbc = raw->fbc;
1359
1360         wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1361
1362         level = G4X_WM_LEVEL_HPLL;
1363
1364         if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1365                 goto out;
1366
1367         raw = &crtc_state->wm.g4x.raw[level];
1368         wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1369         wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1370         wm_state->hpll.fbc = raw->fbc;
1371
1372         wm_state->hpll_en = wm_state->cxsr;
1373
1374         level++;
1375
1376  out:
1377         if (level == G4X_WM_LEVEL_NORMAL)
1378                 return -EINVAL;
1379
1380         /* invalidate the higher levels */
1381         g4x_invalidate_wms(crtc, wm_state, level);
1382
1383         /*
1384          * Determine if the FBC watermark(s) can be used. IF
1385          * this isn't the case we prefer to disable the FBC
1386          ( watermark(s) rather than disable the SR/HPLL
1387          * level(s) entirely.
1388          */
1389         wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1390
1391         if (level >= G4X_WM_LEVEL_SR &&
1392             wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1393                 wm_state->fbc_en = false;
1394         else if (level >= G4X_WM_LEVEL_HPLL &&
1395                  wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1396                 wm_state->fbc_en = false;
1397
1398         return 0;
1399 }
1400
1401 static int g4x_compute_intermediate_wm(struct drm_device *dev,
1402                                        struct intel_crtc *crtc,
1403                                        struct intel_crtc_state *new_crtc_state)
1404 {
1405         struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1406         const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1407         struct intel_atomic_state *intel_state =
1408                 to_intel_atomic_state(new_crtc_state->base.state);
1409         const struct intel_crtc_state *old_crtc_state =
1410                 intel_atomic_get_old_crtc_state(intel_state, crtc);
1411         const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1412         enum plane_id plane_id;
1413
1414         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1415                 *intermediate = *optimal;
1416
1417                 intermediate->cxsr = false;
1418                 intermediate->hpll_en = false;
1419                 goto out;
1420         }
1421
1422         intermediate->cxsr = optimal->cxsr && active->cxsr &&
1423                 !new_crtc_state->disable_cxsr;
1424         intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1425                 !new_crtc_state->disable_cxsr;
1426         intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1427
1428         for_each_plane_id_on_crtc(crtc, plane_id) {
1429                 intermediate->wm.plane[plane_id] =
1430                         max(optimal->wm.plane[plane_id],
1431                             active->wm.plane[plane_id]);
1432
1433                 WARN_ON(intermediate->wm.plane[plane_id] >
1434                         g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1435         }
1436
1437         intermediate->sr.plane = max(optimal->sr.plane,
1438                                      active->sr.plane);
1439         intermediate->sr.cursor = max(optimal->sr.cursor,
1440                                       active->sr.cursor);
1441         intermediate->sr.fbc = max(optimal->sr.fbc,
1442                                    active->sr.fbc);
1443
1444         intermediate->hpll.plane = max(optimal->hpll.plane,
1445                                        active->hpll.plane);
1446         intermediate->hpll.cursor = max(optimal->hpll.cursor,
1447                                         active->hpll.cursor);
1448         intermediate->hpll.fbc = max(optimal->hpll.fbc,
1449                                      active->hpll.fbc);
1450
1451         WARN_ON((intermediate->sr.plane >
1452                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1453                  intermediate->sr.cursor >
1454                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1455                 intermediate->cxsr);
1456         WARN_ON((intermediate->sr.plane >
1457                  g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1458                  intermediate->sr.cursor >
1459                  g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1460                 intermediate->hpll_en);
1461
1462         WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1463                 intermediate->fbc_en && intermediate->cxsr);
1464         WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1465                 intermediate->fbc_en && intermediate->hpll_en);
1466
1467 out:
1468         /*
1469          * If our intermediate WM are identical to the final WM, then we can
1470          * omit the post-vblank programming; only update if it's different.
1471          */
1472         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1473                 new_crtc_state->wm.need_postvbl_update = true;
1474
1475         return 0;
1476 }
1477
1478 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1479                          struct g4x_wm_values *wm)
1480 {
1481         struct intel_crtc *crtc;
1482         int num_active_crtcs = 0;
1483
1484         wm->cxsr = true;
1485         wm->hpll_en = true;
1486         wm->fbc_en = true;
1487
1488         for_each_intel_crtc(&dev_priv->drm, crtc) {
1489                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1490
1491                 if (!crtc->active)
1492                         continue;
1493
1494                 if (!wm_state->cxsr)
1495                         wm->cxsr = false;
1496                 if (!wm_state->hpll_en)
1497                         wm->hpll_en = false;
1498                 if (!wm_state->fbc_en)
1499                         wm->fbc_en = false;
1500
1501                 num_active_crtcs++;
1502         }
1503
1504         if (num_active_crtcs != 1) {
1505                 wm->cxsr = false;
1506                 wm->hpll_en = false;
1507                 wm->fbc_en = false;
1508         }
1509
1510         for_each_intel_crtc(&dev_priv->drm, crtc) {
1511                 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1512                 enum pipe pipe = crtc->pipe;
1513
1514                 wm->pipe[pipe] = wm_state->wm;
1515                 if (crtc->active && wm->cxsr)
1516                         wm->sr = wm_state->sr;
1517                 if (crtc->active && wm->hpll_en)
1518                         wm->hpll = wm_state->hpll;
1519         }
1520 }
1521
1522 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1523 {
1524         struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1525         struct g4x_wm_values new_wm = {};
1526
1527         g4x_merge_wm(dev_priv, &new_wm);
1528
1529         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1530                 return;
1531
1532         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1533                 _intel_set_memory_cxsr(dev_priv, false);
1534
1535         g4x_write_wm_values(dev_priv, &new_wm);
1536
1537         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1538                 _intel_set_memory_cxsr(dev_priv, true);
1539
1540         *old_wm = new_wm;
1541 }
1542
1543 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1544                                    struct intel_crtc_state *crtc_state)
1545 {
1546         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1547         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1548
1549         mutex_lock(&dev_priv->wm.wm_mutex);
1550         crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1551         g4x_program_watermarks(dev_priv);
1552         mutex_unlock(&dev_priv->wm.wm_mutex);
1553 }
1554
1555 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1556                                     struct intel_crtc_state *crtc_state)
1557 {
1558         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1559         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
1560
1561         if (!crtc_state->wm.need_postvbl_update)
1562                 return;
1563
1564         mutex_lock(&dev_priv->wm.wm_mutex);
1565         intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1566         g4x_program_watermarks(dev_priv);
1567         mutex_unlock(&dev_priv->wm.wm_mutex);
1568 }
1569
1570 /* latency must be in 0.1us units. */
1571 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1572                                    unsigned int htotal,
1573                                    unsigned int width,
1574                                    unsigned int cpp,
1575                                    unsigned int latency)
1576 {
1577         unsigned int ret;
1578
1579         ret = intel_wm_method2(pixel_rate, htotal,
1580                                width, cpp, latency);
1581         ret = DIV_ROUND_UP(ret, 64);
1582
1583         return ret;
1584 }
1585
1586 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1587 {
1588         /* all latencies in usec */
1589         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1590
1591         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1592
1593         if (IS_CHERRYVIEW(dev_priv)) {
1594                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1595                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1596
1597                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1598         }
1599 }
1600
1601 static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1602                                      const struct intel_plane_state *plane_state,
1603                                      int level)
1604 {
1605         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1606         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1607         const struct drm_display_mode *adjusted_mode =
1608                 &crtc_state->base.adjusted_mode;
1609         unsigned int clock, htotal, cpp, width, wm;
1610
1611         if (dev_priv->wm.pri_latency[level] == 0)
1612                 return USHRT_MAX;
1613
1614         if (!intel_wm_plane_visible(crtc_state, plane_state))
1615                 return 0;
1616
1617         cpp = plane_state->base.fb->format->cpp[0];
1618         clock = adjusted_mode->crtc_clock;
1619         htotal = adjusted_mode->crtc_htotal;
1620         width = crtc_state->pipe_src_w;
1621
1622         if (plane->id == PLANE_CURSOR) {
1623                 /*
1624                  * FIXME the formula gives values that are
1625                  * too big for the cursor FIFO, and hence we
1626                  * would never be able to use cursors. For
1627                  * now just hardcode the watermark.
1628                  */
1629                 wm = 63;
1630         } else {
1631                 wm = vlv_wm_method2(clock, htotal, width, cpp,
1632                                     dev_priv->wm.pri_latency[level] * 10);
1633         }
1634
1635         return min_t(unsigned int, wm, USHRT_MAX);
1636 }
1637
1638 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1639 {
1640         return (active_planes & (BIT(PLANE_SPRITE0) |
1641                                  BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1642 }
1643
1644 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1645 {
1646         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1647         const struct g4x_pipe_wm *raw =
1648                 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1649         struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1650         unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1651         int num_active_planes = hweight32(active_planes);
1652         const int fifo_size = 511;
1653         int fifo_extra, fifo_left = fifo_size;
1654         int sprite0_fifo_extra = 0;
1655         unsigned int total_rate;
1656         enum plane_id plane_id;
1657
1658         /*
1659          * When enabling sprite0 after sprite1 has already been enabled
1660          * we tend to get an underrun unless sprite0 already has some
1661          * FIFO space allcoated. Hence we always allocate at least one
1662          * cacheline for sprite0 whenever sprite1 is enabled.
1663          *
1664          * All other plane enable sequences appear immune to this problem.
1665          */
1666         if (vlv_need_sprite0_fifo_workaround(active_planes))
1667                 sprite0_fifo_extra = 1;
1668
1669         total_rate = raw->plane[PLANE_PRIMARY] +
1670                 raw->plane[PLANE_SPRITE0] +
1671                 raw->plane[PLANE_SPRITE1] +
1672                 sprite0_fifo_extra;
1673
1674         if (total_rate > fifo_size)
1675                 return -EINVAL;
1676
1677         if (total_rate == 0)
1678                 total_rate = 1;
1679
1680         for_each_plane_id_on_crtc(crtc, plane_id) {
1681                 unsigned int rate;
1682
1683                 if ((active_planes & BIT(plane_id)) == 0) {
1684                         fifo_state->plane[plane_id] = 0;
1685                         continue;
1686                 }
1687
1688                 rate = raw->plane[plane_id];
1689                 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1690                 fifo_left -= fifo_state->plane[plane_id];
1691         }
1692
1693         fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1694         fifo_left -= sprite0_fifo_extra;
1695
1696         fifo_state->plane[PLANE_CURSOR] = 63;
1697
1698         fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1699
1700         /* spread the remainder evenly */
1701         for_each_plane_id_on_crtc(crtc, plane_id) {
1702                 int plane_extra;
1703
1704                 if (fifo_left == 0)
1705                         break;
1706
1707                 if ((active_planes & BIT(plane_id)) == 0)
1708                         continue;
1709
1710                 plane_extra = min(fifo_extra, fifo_left);
1711                 fifo_state->plane[plane_id] += plane_extra;
1712                 fifo_left -= plane_extra;
1713         }
1714
1715         WARN_ON(active_planes != 0 && fifo_left != 0);
1716
1717         /* give it all to the first plane if none are active */
1718         if (active_planes == 0) {
1719                 WARN_ON(fifo_left != fifo_size);
1720                 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1721         }
1722
1723         return 0;
1724 }
1725
1726 /* mark all levels starting from 'level' as invalid */
1727 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1728                                struct vlv_wm_state *wm_state, int level)
1729 {
1730         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1731
1732         for (; level < intel_wm_num_levels(dev_priv); level++) {
1733                 enum plane_id plane_id;
1734
1735                 for_each_plane_id_on_crtc(crtc, plane_id)
1736                         wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1737
1738                 wm_state->sr[level].cursor = USHRT_MAX;
1739                 wm_state->sr[level].plane = USHRT_MAX;
1740         }
1741 }
1742
1743 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1744 {
1745         if (wm > fifo_size)
1746                 return USHRT_MAX;
1747         else
1748                 return fifo_size - wm;
1749 }
1750
1751 /*
1752  * Starting from 'level' set all higher
1753  * levels to 'value' in the "raw" watermarks.
1754  */
1755 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1756                                  int level, enum plane_id plane_id, u16 value)
1757 {
1758         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1759         int num_levels = intel_wm_num_levels(dev_priv);
1760         bool dirty = false;
1761
1762         for (; level < num_levels; level++) {
1763                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1764
1765                 dirty |= raw->plane[plane_id] != value;
1766                 raw->plane[plane_id] = value;
1767         }
1768
1769         return dirty;
1770 }
1771
1772 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1773                                      const struct intel_plane_state *plane_state)
1774 {
1775         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1776         enum plane_id plane_id = plane->id;
1777         int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1778         int level;
1779         bool dirty = false;
1780
1781         if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1782                 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1783                 goto out;
1784         }
1785
1786         for (level = 0; level < num_levels; level++) {
1787                 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1788                 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1789                 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1790
1791                 if (wm > max_wm)
1792                         break;
1793
1794                 dirty |= raw->plane[plane_id] != wm;
1795                 raw->plane[plane_id] = wm;
1796         }
1797
1798         /* mark all higher levels as invalid */
1799         dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1800
1801 out:
1802         if (dirty)
1803                 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1804                               plane->base.name,
1805                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1806                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1807                               crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1808
1809         return dirty;
1810 }
1811
1812 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1813                                       enum plane_id plane_id, int level)
1814 {
1815         const struct g4x_pipe_wm *raw =
1816                 &crtc_state->wm.vlv.raw[level];
1817         const struct vlv_fifo_state *fifo_state =
1818                 &crtc_state->wm.vlv.fifo_state;
1819
1820         return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1821 }
1822
1823 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1824 {
1825         return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1826                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1827                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1828                 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1829 }
1830
1831 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1832 {
1833         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1834         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1835         struct intel_atomic_state *state =
1836                 to_intel_atomic_state(crtc_state->base.state);
1837         struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1838         const struct vlv_fifo_state *fifo_state =
1839                 &crtc_state->wm.vlv.fifo_state;
1840         int num_active_planes = hweight32(crtc_state->active_planes &
1841                                           ~BIT(PLANE_CURSOR));
1842         bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1843         const struct intel_plane_state *old_plane_state;
1844         const struct intel_plane_state *new_plane_state;
1845         struct intel_plane *plane;
1846         enum plane_id plane_id;
1847         int level, ret, i;
1848         unsigned int dirty = 0;
1849
1850         for_each_oldnew_intel_plane_in_state(state, plane,
1851                                              old_plane_state,
1852                                              new_plane_state, i) {
1853                 if (new_plane_state->base.crtc != &crtc->base &&
1854                     old_plane_state->base.crtc != &crtc->base)
1855                         continue;
1856
1857                 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1858                         dirty |= BIT(plane->id);
1859         }
1860
1861         /*
1862          * DSPARB registers may have been reset due to the
1863          * power well being turned off. Make sure we restore
1864          * them to a consistent state even if no primary/sprite
1865          * planes are initially active.
1866          */
1867         if (needs_modeset)
1868                 crtc_state->fifo_changed = true;
1869
1870         if (!dirty)
1871                 return 0;
1872
1873         /* cursor changes don't warrant a FIFO recompute */
1874         if (dirty & ~BIT(PLANE_CURSOR)) {
1875                 const struct intel_crtc_state *old_crtc_state =
1876                         intel_atomic_get_old_crtc_state(state, crtc);
1877                 const struct vlv_fifo_state *old_fifo_state =
1878                         &old_crtc_state->wm.vlv.fifo_state;
1879
1880                 ret = vlv_compute_fifo(crtc_state);
1881                 if (ret)
1882                         return ret;
1883
1884                 if (needs_modeset ||
1885                     memcmp(old_fifo_state, fifo_state,
1886                            sizeof(*fifo_state)) != 0)
1887                         crtc_state->fifo_changed = true;
1888         }
1889
1890         /* initially allow all levels */
1891         wm_state->num_levels = intel_wm_num_levels(dev_priv);
1892         /*
1893          * Note that enabling cxsr with no primary/sprite planes
1894          * enabled can wedge the pipe. Hence we only allow cxsr
1895          * with exactly one enabled primary/sprite plane.
1896          */
1897         wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1898
1899         for (level = 0; level < wm_state->num_levels; level++) {
1900                 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1901                 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1902
1903                 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1904                         break;
1905
1906                 for_each_plane_id_on_crtc(crtc, plane_id) {
1907                         wm_state->wm[level].plane[plane_id] =
1908                                 vlv_invert_wm_value(raw->plane[plane_id],
1909                                                     fifo_state->plane[plane_id]);
1910                 }
1911
1912                 wm_state->sr[level].plane =
1913                         vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1914                                                  raw->plane[PLANE_SPRITE0],
1915                                                  raw->plane[PLANE_SPRITE1]),
1916                                             sr_fifo_size);
1917
1918                 wm_state->sr[level].cursor =
1919                         vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1920                                             63);
1921         }
1922
1923         if (level == 0)
1924                 return -EINVAL;
1925
1926         /* limit to only levels we can actually handle */
1927         wm_state->num_levels = level;
1928
1929         /* invalidate the higher levels */
1930         vlv_invalidate_wms(crtc, wm_state, level);
1931
1932         return 0;
1933 }
1934
1935 #define VLV_FIFO(plane, value) \
1936         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1937
1938 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1939                                    struct intel_crtc_state *crtc_state)
1940 {
1941         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1942         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1943         const struct vlv_fifo_state *fifo_state =
1944                 &crtc_state->wm.vlv.fifo_state;
1945         int sprite0_start, sprite1_start, fifo_size;
1946
1947         if (!crtc_state->fifo_changed)
1948                 return;
1949
1950         sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1951         sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1952         fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1953
1954         WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1955         WARN_ON(fifo_size != 511);
1956
1957         trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1958
1959         /*
1960          * uncore.lock serves a double purpose here. It allows us to
1961          * use the less expensive I915_{READ,WRITE}_FW() functions, and
1962          * it protects the DSPARB registers from getting clobbered by
1963          * parallel updates from multiple pipes.
1964          *
1965          * intel_pipe_update_start() has already disabled interrupts
1966          * for us, so a plain spin_lock() is sufficient here.
1967          */
1968         spin_lock(&dev_priv->uncore.lock);
1969
1970         switch (crtc->pipe) {
1971                 uint32_t dsparb, dsparb2, dsparb3;
1972         case PIPE_A:
1973                 dsparb = I915_READ_FW(DSPARB);
1974                 dsparb2 = I915_READ_FW(DSPARB2);
1975
1976                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1977                             VLV_FIFO(SPRITEB, 0xff));
1978                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1979                            VLV_FIFO(SPRITEB, sprite1_start));
1980
1981                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1982                              VLV_FIFO(SPRITEB_HI, 0x1));
1983                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1984                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1985
1986                 I915_WRITE_FW(DSPARB, dsparb);
1987                 I915_WRITE_FW(DSPARB2, dsparb2);
1988                 break;
1989         case PIPE_B:
1990                 dsparb = I915_READ_FW(DSPARB);
1991                 dsparb2 = I915_READ_FW(DSPARB2);
1992
1993                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1994                             VLV_FIFO(SPRITED, 0xff));
1995                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1996                            VLV_FIFO(SPRITED, sprite1_start));
1997
1998                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1999                              VLV_FIFO(SPRITED_HI, 0xff));
2000                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2001                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2002
2003                 I915_WRITE_FW(DSPARB, dsparb);
2004                 I915_WRITE_FW(DSPARB2, dsparb2);
2005                 break;
2006         case PIPE_C:
2007                 dsparb3 = I915_READ_FW(DSPARB3);
2008                 dsparb2 = I915_READ_FW(DSPARB2);
2009
2010                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2011                              VLV_FIFO(SPRITEF, 0xff));
2012                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2013                             VLV_FIFO(SPRITEF, sprite1_start));
2014
2015                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2016                              VLV_FIFO(SPRITEF_HI, 0xff));
2017                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2018                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2019
2020                 I915_WRITE_FW(DSPARB3, dsparb3);
2021                 I915_WRITE_FW(DSPARB2, dsparb2);
2022                 break;
2023         default:
2024                 break;
2025         }
2026
2027         POSTING_READ_FW(DSPARB);
2028
2029         spin_unlock(&dev_priv->uncore.lock);
2030 }
2031
2032 #undef VLV_FIFO
2033
2034 static int vlv_compute_intermediate_wm(struct drm_device *dev,
2035                                        struct intel_crtc *crtc,
2036                                        struct intel_crtc_state *new_crtc_state)
2037 {
2038         struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2039         const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2040         struct intel_atomic_state *intel_state =
2041                 to_intel_atomic_state(new_crtc_state->base.state);
2042         const struct intel_crtc_state *old_crtc_state =
2043                 intel_atomic_get_old_crtc_state(intel_state, crtc);
2044         const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2045         int level;
2046
2047         if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2048                 *intermediate = *optimal;
2049
2050                 intermediate->cxsr = false;
2051                 goto out;
2052         }
2053
2054         intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2055         intermediate->cxsr = optimal->cxsr && active->cxsr &&
2056                 !new_crtc_state->disable_cxsr;
2057
2058         for (level = 0; level < intermediate->num_levels; level++) {
2059                 enum plane_id plane_id;
2060
2061                 for_each_plane_id_on_crtc(crtc, plane_id) {
2062                         intermediate->wm[level].plane[plane_id] =
2063                                 min(optimal->wm[level].plane[plane_id],
2064                                     active->wm[level].plane[plane_id]);
2065                 }
2066
2067                 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2068                                                     active->sr[level].plane);
2069                 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2070                                                      active->sr[level].cursor);
2071         }
2072
2073         vlv_invalidate_wms(crtc, intermediate, level);
2074
2075 out:
2076         /*
2077          * If our intermediate WM are identical to the final WM, then we can
2078          * omit the post-vblank programming; only update if it's different.
2079          */
2080         if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2081                 new_crtc_state->wm.need_postvbl_update = true;
2082
2083         return 0;
2084 }
2085
2086 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2087                          struct vlv_wm_values *wm)
2088 {
2089         struct intel_crtc *crtc;
2090         int num_active_crtcs = 0;
2091
2092         wm->level = dev_priv->wm.max_level;
2093         wm->cxsr = true;
2094
2095         for_each_intel_crtc(&dev_priv->drm, crtc) {
2096                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2097
2098                 if (!crtc->active)
2099                         continue;
2100
2101                 if (!wm_state->cxsr)
2102                         wm->cxsr = false;
2103
2104                 num_active_crtcs++;
2105                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2106         }
2107
2108         if (num_active_crtcs != 1)
2109                 wm->cxsr = false;
2110
2111         if (num_active_crtcs > 1)
2112                 wm->level = VLV_WM_LEVEL_PM2;
2113
2114         for_each_intel_crtc(&dev_priv->drm, crtc) {
2115                 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116                 enum pipe pipe = crtc->pipe;
2117
2118                 wm->pipe[pipe] = wm_state->wm[wm->level];
2119                 if (crtc->active && wm->cxsr)
2120                         wm->sr = wm_state->sr[wm->level];
2121
2122                 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2123                 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2124                 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2125                 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2126         }
2127 }
2128
2129 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2130 {
2131         struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2132         struct vlv_wm_values new_wm = {};
2133
2134         vlv_merge_wm(dev_priv, &new_wm);
2135
2136         if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2137                 return;
2138
2139         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2140                 chv_set_memory_dvfs(dev_priv, false);
2141
2142         if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2143                 chv_set_memory_pm5(dev_priv, false);
2144
2145         if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2146                 _intel_set_memory_cxsr(dev_priv, false);
2147
2148         vlv_write_wm_values(dev_priv, &new_wm);
2149
2150         if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2151                 _intel_set_memory_cxsr(dev_priv, true);
2152
2153         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2154                 chv_set_memory_pm5(dev_priv, true);
2155
2156         if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2157                 chv_set_memory_dvfs(dev_priv, true);
2158
2159         *old_wm = new_wm;
2160 }
2161
2162 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2163                                    struct intel_crtc_state *crtc_state)
2164 {
2165         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2166         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2167
2168         mutex_lock(&dev_priv->wm.wm_mutex);
2169         crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2170         vlv_program_watermarks(dev_priv);
2171         mutex_unlock(&dev_priv->wm.wm_mutex);
2172 }
2173
2174 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2175                                     struct intel_crtc_state *crtc_state)
2176 {
2177         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2178         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2179
2180         if (!crtc_state->wm.need_postvbl_update)
2181                 return;
2182
2183         mutex_lock(&dev_priv->wm.wm_mutex);
2184         intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2185         vlv_program_watermarks(dev_priv);
2186         mutex_unlock(&dev_priv->wm.wm_mutex);
2187 }
2188
2189 static void i965_update_wm(struct intel_crtc *unused_crtc)
2190 {
2191         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2192         struct intel_crtc *crtc;
2193         int srwm = 1;
2194         int cursor_sr = 16;
2195         bool cxsr_enabled;
2196
2197         /* Calc sr entries for one plane configs */
2198         crtc = single_enabled_crtc(dev_priv);
2199         if (crtc) {
2200                 /* self-refresh has much higher latency */
2201                 static const int sr_latency_ns = 12000;
2202                 const struct drm_display_mode *adjusted_mode =
2203                         &crtc->config->base.adjusted_mode;
2204                 const struct drm_framebuffer *fb =
2205                         crtc->base.primary->state->fb;
2206                 int clock = adjusted_mode->crtc_clock;
2207                 int htotal = adjusted_mode->crtc_htotal;
2208                 int hdisplay = crtc->config->pipe_src_w;
2209                 int cpp = fb->format->cpp[0];
2210                 int entries;
2211
2212                 entries = intel_wm_method2(clock, htotal,
2213                                            hdisplay, cpp, sr_latency_ns / 100);
2214                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2215                 srwm = I965_FIFO_SIZE - entries;
2216                 if (srwm < 0)
2217                         srwm = 1;
2218                 srwm &= 0x1ff;
2219                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2220                               entries, srwm);
2221
2222                 entries = intel_wm_method2(clock, htotal,
2223                                            crtc->base.cursor->state->crtc_w, 4,
2224                                            sr_latency_ns / 100);
2225                 entries = DIV_ROUND_UP(entries,
2226                                        i965_cursor_wm_info.cacheline_size) +
2227                         i965_cursor_wm_info.guard_size;
2228
2229                 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2230                 if (cursor_sr > i965_cursor_wm_info.max_wm)
2231                         cursor_sr = i965_cursor_wm_info.max_wm;
2232
2233                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2234                               "cursor %d\n", srwm, cursor_sr);
2235
2236                 cxsr_enabled = true;
2237         } else {
2238                 cxsr_enabled = false;
2239                 /* Turn off self refresh if both pipes are enabled */
2240                 intel_set_memory_cxsr(dev_priv, false);
2241         }
2242
2243         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2244                       srwm);
2245
2246         /* 965 has limitations... */
2247         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2248                    FW_WM(8, CURSORB) |
2249                    FW_WM(8, PLANEB) |
2250                    FW_WM(8, PLANEA));
2251         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2252                    FW_WM(8, PLANEC_OLD));
2253         /* update cursor SR watermark */
2254         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2255
2256         if (cxsr_enabled)
2257                 intel_set_memory_cxsr(dev_priv, true);
2258 }
2259
2260 #undef FW_WM
2261
2262 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2263 {
2264         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2265         const struct intel_watermark_params *wm_info;
2266         uint32_t fwater_lo;
2267         uint32_t fwater_hi;
2268         int cwm, srwm = 1;
2269         int fifo_size;
2270         int planea_wm, planeb_wm;
2271         struct intel_crtc *crtc, *enabled = NULL;
2272
2273         if (IS_I945GM(dev_priv))
2274                 wm_info = &i945_wm_info;
2275         else if (!IS_GEN2(dev_priv))
2276                 wm_info = &i915_wm_info;
2277         else
2278                 wm_info = &i830_a_wm_info;
2279
2280         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2281         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2282         if (intel_crtc_active(crtc)) {
2283                 const struct drm_display_mode *adjusted_mode =
2284                         &crtc->config->base.adjusted_mode;
2285                 const struct drm_framebuffer *fb =
2286                         crtc->base.primary->state->fb;
2287                 int cpp;
2288
2289                 if (IS_GEN2(dev_priv))
2290                         cpp = 4;
2291                 else
2292                         cpp = fb->format->cpp[0];
2293
2294                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2295                                                wm_info, fifo_size, cpp,
2296                                                pessimal_latency_ns);
2297                 enabled = crtc;
2298         } else {
2299                 planea_wm = fifo_size - wm_info->guard_size;
2300                 if (planea_wm > (long)wm_info->max_wm)
2301                         planea_wm = wm_info->max_wm;
2302         }
2303
2304         if (IS_GEN2(dev_priv))
2305                 wm_info = &i830_bc_wm_info;
2306
2307         fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2308         crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2309         if (intel_crtc_active(crtc)) {
2310                 const struct drm_display_mode *adjusted_mode =
2311                         &crtc->config->base.adjusted_mode;
2312                 const struct drm_framebuffer *fb =
2313                         crtc->base.primary->state->fb;
2314                 int cpp;
2315
2316                 if (IS_GEN2(dev_priv))
2317                         cpp = 4;
2318                 else
2319                         cpp = fb->format->cpp[0];
2320
2321                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2322                                                wm_info, fifo_size, cpp,
2323                                                pessimal_latency_ns);
2324                 if (enabled == NULL)
2325                         enabled = crtc;
2326                 else
2327                         enabled = NULL;
2328         } else {
2329                 planeb_wm = fifo_size - wm_info->guard_size;
2330                 if (planeb_wm > (long)wm_info->max_wm)
2331                         planeb_wm = wm_info->max_wm;
2332         }
2333
2334         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2335
2336         if (IS_I915GM(dev_priv) && enabled) {
2337                 struct drm_i915_gem_object *obj;
2338
2339                 obj = intel_fb_obj(enabled->base.primary->state->fb);
2340
2341                 /* self-refresh seems busted with untiled */
2342                 if (!i915_gem_object_is_tiled(obj))
2343                         enabled = NULL;
2344         }
2345
2346         /*
2347          * Overlay gets an aggressive default since video jitter is bad.
2348          */
2349         cwm = 2;
2350
2351         /* Play safe and disable self-refresh before adjusting watermarks. */
2352         intel_set_memory_cxsr(dev_priv, false);
2353
2354         /* Calc sr entries for one plane configs */
2355         if (HAS_FW_BLC(dev_priv) && enabled) {
2356                 /* self-refresh has much higher latency */
2357                 static const int sr_latency_ns = 6000;
2358                 const struct drm_display_mode *adjusted_mode =
2359                         &enabled->config->base.adjusted_mode;
2360                 const struct drm_framebuffer *fb =
2361                         enabled->base.primary->state->fb;
2362                 int clock = adjusted_mode->crtc_clock;
2363                 int htotal = adjusted_mode->crtc_htotal;
2364                 int hdisplay = enabled->config->pipe_src_w;
2365                 int cpp;
2366                 int entries;
2367
2368                 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2369                         cpp = 4;
2370                 else
2371                         cpp = fb->format->cpp[0];
2372
2373                 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2374                                            sr_latency_ns / 100);
2375                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2376                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2377                 srwm = wm_info->fifo_size - entries;
2378                 if (srwm < 0)
2379                         srwm = 1;
2380
2381                 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2382                         I915_WRITE(FW_BLC_SELF,
2383                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2384                 else
2385                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2386         }
2387
2388         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2389                       planea_wm, planeb_wm, cwm, srwm);
2390
2391         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2392         fwater_hi = (cwm & 0x1f);
2393
2394         /* Set request length to 8 cachelines per fetch */
2395         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2396         fwater_hi = fwater_hi | (1 << 8);
2397
2398         I915_WRITE(FW_BLC, fwater_lo);
2399         I915_WRITE(FW_BLC2, fwater_hi);
2400
2401         if (enabled)
2402                 intel_set_memory_cxsr(dev_priv, true);
2403 }
2404
2405 static void i845_update_wm(struct intel_crtc *unused_crtc)
2406 {
2407         struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2408         struct intel_crtc *crtc;
2409         const struct drm_display_mode *adjusted_mode;
2410         uint32_t fwater_lo;
2411         int planea_wm;
2412
2413         crtc = single_enabled_crtc(dev_priv);
2414         if (crtc == NULL)
2415                 return;
2416
2417         adjusted_mode = &crtc->config->base.adjusted_mode;
2418         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2419                                        &i845_wm_info,
2420                                        dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2421                                        4, pessimal_latency_ns);
2422         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2423         fwater_lo |= (3<<8) | planea_wm;
2424
2425         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2426
2427         I915_WRITE(FW_BLC, fwater_lo);
2428 }
2429
2430 /* latency must be in 0.1us units. */
2431 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2432                                    unsigned int cpp,
2433                                    unsigned int latency)
2434 {
2435         unsigned int ret;
2436
2437         ret = intel_wm_method1(pixel_rate, cpp, latency);
2438         ret = DIV_ROUND_UP(ret, 64) + 2;
2439
2440         return ret;
2441 }
2442
2443 /* latency must be in 0.1us units. */
2444 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2445                                    unsigned int htotal,
2446                                    unsigned int width,
2447                                    unsigned int cpp,
2448                                    unsigned int latency)
2449 {
2450         unsigned int ret;
2451
2452         ret = intel_wm_method2(pixel_rate, htotal,
2453                                width, cpp, latency);
2454         ret = DIV_ROUND_UP(ret, 64) + 2;
2455
2456         return ret;
2457 }
2458
2459 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2460                            uint8_t cpp)
2461 {
2462         /*
2463          * Neither of these should be possible since this function shouldn't be
2464          * called if the CRTC is off or the plane is invisible.  But let's be
2465          * extra paranoid to avoid a potential divide-by-zero if we screw up
2466          * elsewhere in the driver.
2467          */
2468         if (WARN_ON(!cpp))
2469                 return 0;
2470         if (WARN_ON(!horiz_pixels))
2471                 return 0;
2472
2473         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2474 }
2475
2476 struct ilk_wm_maximums {
2477         uint16_t pri;
2478         uint16_t spr;
2479         uint16_t cur;
2480         uint16_t fbc;
2481 };
2482
2483 /*
2484  * For both WM_PIPE and WM_LP.
2485  * mem_value must be in 0.1us units.
2486  */
2487 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
2488                                    const struct intel_plane_state *pstate,
2489                                    uint32_t mem_value,
2490                                    bool is_lp)
2491 {
2492         uint32_t method1, method2;
2493         int cpp;
2494
2495         if (!intel_wm_plane_visible(cstate, pstate))
2496                 return 0;
2497
2498         cpp = pstate->base.fb->format->cpp[0];
2499
2500         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2501
2502         if (!is_lp)
2503                 return method1;
2504
2505         method2 = ilk_wm_method2(cstate->pixel_rate,
2506                                  cstate->base.adjusted_mode.crtc_htotal,
2507                                  drm_rect_width(&pstate->base.dst),
2508                                  cpp, mem_value);
2509
2510         return min(method1, method2);
2511 }
2512
2513 /*
2514  * For both WM_PIPE and WM_LP.
2515  * mem_value must be in 0.1us units.
2516  */
2517 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
2518                                    const struct intel_plane_state *pstate,
2519                                    uint32_t mem_value)
2520 {
2521         uint32_t method1, method2;
2522         int cpp;
2523
2524         if (!intel_wm_plane_visible(cstate, pstate))
2525                 return 0;
2526
2527         cpp = pstate->base.fb->format->cpp[0];
2528
2529         method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
2530         method2 = ilk_wm_method2(cstate->pixel_rate,
2531                                  cstate->base.adjusted_mode.crtc_htotal,
2532                                  drm_rect_width(&pstate->base.dst),
2533                                  cpp, mem_value);
2534         return min(method1, method2);
2535 }
2536
2537 /*
2538  * For both WM_PIPE and WM_LP.
2539  * mem_value must be in 0.1us units.
2540  */
2541 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
2542                                    const struct intel_plane_state *pstate,
2543                                    uint32_t mem_value)
2544 {
2545         int cpp;
2546
2547         if (!intel_wm_plane_visible(cstate, pstate))
2548                 return 0;
2549
2550         cpp = pstate->base.fb->format->cpp[0];
2551
2552         return ilk_wm_method2(cstate->pixel_rate,
2553                               cstate->base.adjusted_mode.crtc_htotal,
2554                               pstate->base.crtc_w, cpp, mem_value);
2555 }
2556
2557 /* Only for WM_LP. */
2558 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
2559                                    const struct intel_plane_state *pstate,
2560                                    uint32_t pri_val)
2561 {
2562         int cpp;
2563
2564         if (!intel_wm_plane_visible(cstate, pstate))
2565                 return 0;
2566
2567         cpp = pstate->base.fb->format->cpp[0];
2568
2569         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
2570 }
2571
2572 static unsigned int
2573 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2574 {
2575         if (INTEL_GEN(dev_priv) >= 8)
2576                 return 3072;
2577         else if (INTEL_GEN(dev_priv) >= 7)
2578                 return 768;
2579         else
2580                 return 512;
2581 }
2582
2583 static unsigned int
2584 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2585                      int level, bool is_sprite)
2586 {
2587         if (INTEL_GEN(dev_priv) >= 8)
2588                 /* BDW primary/sprite plane watermarks */
2589                 return level == 0 ? 255 : 2047;
2590         else if (INTEL_GEN(dev_priv) >= 7)
2591                 /* IVB/HSW primary/sprite plane watermarks */
2592                 return level == 0 ? 127 : 1023;
2593         else if (!is_sprite)
2594                 /* ILK/SNB primary plane watermarks */
2595                 return level == 0 ? 127 : 511;
2596         else
2597                 /* ILK/SNB sprite plane watermarks */
2598                 return level == 0 ? 63 : 255;
2599 }
2600
2601 static unsigned int
2602 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2603 {
2604         if (INTEL_GEN(dev_priv) >= 7)
2605                 return level == 0 ? 63 : 255;
2606         else
2607                 return level == 0 ? 31 : 63;
2608 }
2609
2610 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2611 {
2612         if (INTEL_GEN(dev_priv) >= 8)
2613                 return 31;
2614         else
2615                 return 15;
2616 }
2617
2618 /* Calculate the maximum primary/sprite plane watermark */
2619 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
2620                                      int level,
2621                                      const struct intel_wm_config *config,
2622                                      enum intel_ddb_partitioning ddb_partitioning,
2623                                      bool is_sprite)
2624 {
2625         struct drm_i915_private *dev_priv = to_i915(dev);
2626         unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2627
2628         /* if sprites aren't enabled, sprites get nothing */
2629         if (is_sprite && !config->sprites_enabled)
2630                 return 0;
2631
2632         /* HSW allows LP1+ watermarks even with multiple pipes */
2633         if (level == 0 || config->num_pipes_active > 1) {
2634                 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2635
2636                 /*
2637                  * For some reason the non self refresh
2638                  * FIFO size is only half of the self
2639                  * refresh FIFO size on ILK/SNB.
2640                  */
2641                 if (INTEL_GEN(dev_priv) <= 6)
2642                         fifo_size /= 2;
2643         }
2644
2645         if (config->sprites_enabled) {
2646                 /* level 0 is always calculated with 1:1 split */
2647                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2648                         if (is_sprite)
2649                                 fifo_size *= 5;
2650                         fifo_size /= 6;
2651                 } else {
2652                         fifo_size /= 2;
2653                 }
2654         }
2655
2656         /* clamp to max that the registers can hold */
2657         return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2658 }
2659
2660 /* Calculate the maximum cursor plane watermark */
2661 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
2662                                       int level,
2663                                       const struct intel_wm_config *config)
2664 {
2665         /* HSW LP1+ watermarks w/ multiple pipes */
2666         if (level > 0 && config->num_pipes_active > 1)
2667                 return 64;
2668
2669         /* otherwise just report max that registers can hold */
2670         return ilk_cursor_wm_reg_max(to_i915(dev), level);
2671 }
2672
2673 static void ilk_compute_wm_maximums(const struct drm_device *dev,
2674                                     int level,
2675                                     const struct intel_wm_config *config,
2676                                     enum intel_ddb_partitioning ddb_partitioning,
2677                                     struct ilk_wm_maximums *max)
2678 {
2679         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
2680         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
2681         max->cur = ilk_cursor_wm_max(dev, level, config);
2682         max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
2683 }
2684
2685 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2686                                         int level,
2687                                         struct ilk_wm_maximums *max)
2688 {
2689         max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2690         max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2691         max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2692         max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2693 }
2694
2695 static bool ilk_validate_wm_level(int level,
2696                                   const struct ilk_wm_maximums *max,
2697                                   struct intel_wm_level *result)
2698 {
2699         bool ret;
2700
2701         /* already determined to be invalid? */
2702         if (!result->enable)
2703                 return false;
2704
2705         result->enable = result->pri_val <= max->pri &&
2706                          result->spr_val <= max->spr &&
2707                          result->cur_val <= max->cur;
2708
2709         ret = result->enable;
2710
2711         /*
2712          * HACK until we can pre-compute everything,
2713          * and thus fail gracefully if LP0 watermarks
2714          * are exceeded...
2715          */
2716         if (level == 0 && !result->enable) {
2717                 if (result->pri_val > max->pri)
2718                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2719                                       level, result->pri_val, max->pri);
2720                 if (result->spr_val > max->spr)
2721                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2722                                       level, result->spr_val, max->spr);
2723                 if (result->cur_val > max->cur)
2724                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2725                                       level, result->cur_val, max->cur);
2726
2727                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2728                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2729                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2730                 result->enable = true;
2731         }
2732
2733         return ret;
2734 }
2735
2736 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2737                                  const struct intel_crtc *intel_crtc,
2738                                  int level,
2739                                  struct intel_crtc_state *cstate,
2740                                  const struct intel_plane_state *pristate,
2741                                  const struct intel_plane_state *sprstate,
2742                                  const struct intel_plane_state *curstate,
2743                                  struct intel_wm_level *result)
2744 {
2745         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2746         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2747         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2748
2749         /* WM1+ latency values stored in 0.5us units */
2750         if (level > 0) {
2751                 pri_latency *= 5;
2752                 spr_latency *= 5;
2753                 cur_latency *= 5;
2754         }
2755
2756         if (pristate) {
2757                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2758                                                      pri_latency, level);
2759                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2760         }
2761
2762         if (sprstate)
2763                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2764
2765         if (curstate)
2766                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2767
2768         result->enable = true;
2769 }
2770
2771 static uint32_t
2772 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2773 {
2774         const struct intel_atomic_state *intel_state =
2775                 to_intel_atomic_state(cstate->base.state);
2776         const struct drm_display_mode *adjusted_mode =
2777                 &cstate->base.adjusted_mode;
2778         u32 linetime, ips_linetime;
2779
2780         if (!cstate->base.active)
2781                 return 0;
2782         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2783                 return 0;
2784         if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2785                 return 0;
2786
2787         /* The WM are computed with base on how long it takes to fill a single
2788          * row at the given clock rate, multiplied by 8.
2789          * */
2790         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2791                                      adjusted_mode->crtc_clock);
2792         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2793                                          intel_state->cdclk.logical.cdclk);
2794
2795         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2796                PIPE_WM_LINETIME_TIME(linetime);
2797 }
2798
2799 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2800                                   uint16_t wm[8])
2801 {
2802         if (INTEL_GEN(dev_priv) >= 9) {
2803                 uint32_t val;
2804                 int ret, i;
2805                 int level, max_level = ilk_wm_max_level(dev_priv);
2806
2807                 /* read the first set of memory latencies[0:3] */
2808                 val = 0; /* data0 to be programmed to 0 for first set */
2809                 mutex_lock(&dev_priv->pcu_lock);
2810                 ret = sandybridge_pcode_read(dev_priv,
2811                                              GEN9_PCODE_READ_MEM_LATENCY,
2812                                              &val);
2813                 mutex_unlock(&dev_priv->pcu_lock);
2814
2815                 if (ret) {
2816                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2817                         return;
2818                 }
2819
2820                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2821                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2822                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2823                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2824                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2825                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2826                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2827
2828                 /* read the second set of memory latencies[4:7] */
2829                 val = 1; /* data0 to be programmed to 1 for second set */
2830                 mutex_lock(&dev_priv->pcu_lock);
2831                 ret = sandybridge_pcode_read(dev_priv,
2832                                              GEN9_PCODE_READ_MEM_LATENCY,
2833                                              &val);
2834                 mutex_unlock(&dev_priv->pcu_lock);
2835                 if (ret) {
2836                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2837                         return;
2838                 }
2839
2840                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2841                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2842                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2843                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2844                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2845                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2846                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2847
2848                 /*
2849                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2850                  * need to be disabled. We make sure to sanitize the values out
2851                  * of the punit to satisfy this requirement.
2852                  */
2853                 for (level = 1; level <= max_level; level++) {
2854                         if (wm[level] == 0) {
2855                                 for (i = level + 1; i <= max_level; i++)
2856                                         wm[i] = 0;
2857                                 break;
2858                         }
2859                 }
2860
2861                 /*
2862                  * WaWmMemoryReadLatency:skl+,glk
2863                  *
2864                  * punit doesn't take into account the read latency so we need
2865                  * to add 2us to the various latency levels we retrieve from the
2866                  * punit when level 0 response data us 0us.
2867                  */
2868                 if (wm[0] == 0) {
2869                         wm[0] += 2;
2870                         for (level = 1; level <= max_level; level++) {
2871                                 if (wm[level] == 0)
2872                                         break;
2873                                 wm[level] += 2;
2874                         }
2875                 }
2876
2877         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2878                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2879
2880                 wm[0] = (sskpd >> 56) & 0xFF;
2881                 if (wm[0] == 0)
2882                         wm[0] = sskpd & 0xF;
2883                 wm[1] = (sskpd >> 4) & 0xFF;
2884                 wm[2] = (sskpd >> 12) & 0xFF;
2885                 wm[3] = (sskpd >> 20) & 0x1FF;
2886                 wm[4] = (sskpd >> 32) & 0x1FF;
2887         } else if (INTEL_GEN(dev_priv) >= 6) {
2888                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2889
2890                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2891                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2892                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2893                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2894         } else if (INTEL_GEN(dev_priv) >= 5) {
2895                 uint32_t mltr = I915_READ(MLTR_ILK);
2896
2897                 /* ILK primary LP0 latency is 700 ns */
2898                 wm[0] = 7;
2899                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2900                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2901         } else {
2902                 MISSING_CASE(INTEL_DEVID(dev_priv));
2903         }
2904 }
2905
2906 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2907                                        uint16_t wm[5])
2908 {
2909         /* ILK sprite LP0 latency is 1300 ns */
2910         if (IS_GEN5(dev_priv))
2911                 wm[0] = 13;
2912 }
2913
2914 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2915                                        uint16_t wm[5])
2916 {
2917         /* ILK cursor LP0 latency is 1300 ns */
2918         if (IS_GEN5(dev_priv))
2919                 wm[0] = 13;
2920 }
2921
2922 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2923 {
2924         /* how many WM levels are we expecting */
2925         if (INTEL_GEN(dev_priv) >= 9)
2926                 return 7;
2927         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2928                 return 4;
2929         else if (INTEL_GEN(dev_priv) >= 6)
2930                 return 3;
2931         else
2932                 return 2;
2933 }
2934
2935 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2936                                    const char *name,
2937                                    const uint16_t wm[8])
2938 {
2939         int level, max_level = ilk_wm_max_level(dev_priv);
2940
2941         for (level = 0; level <= max_level; level++) {
2942                 unsigned int latency = wm[level];
2943
2944                 if (latency == 0) {
2945                         DRM_ERROR("%s WM%d latency not provided\n",
2946                                   name, level);
2947                         continue;
2948                 }
2949
2950                 /*
2951                  * - latencies are in us on gen9.
2952                  * - before then, WM1+ latency values are in 0.5us units
2953                  */
2954                 if (INTEL_GEN(dev_priv) >= 9)
2955                         latency *= 10;
2956                 else if (level > 0)
2957                         latency *= 5;
2958
2959                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2960                               name, level, wm[level],
2961                               latency / 10, latency % 10);
2962         }
2963 }
2964
2965 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2966                                     uint16_t wm[5], uint16_t min)
2967 {
2968         int level, max_level = ilk_wm_max_level(dev_priv);
2969
2970         if (wm[0] >= min)
2971                 return false;
2972
2973         wm[0] = max(wm[0], min);
2974         for (level = 1; level <= max_level; level++)
2975                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2976
2977         return true;
2978 }
2979
2980 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
2981 {
2982         bool changed;
2983
2984         /*
2985          * The BIOS provided WM memory latency values are often
2986          * inadequate for high resolution displays. Adjust them.
2987          */
2988         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2989                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2990                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2991
2992         if (!changed)
2993                 return;
2994
2995         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2996         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
2997         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
2998         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
2999 }
3000
3001 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3002 {
3003         intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3004
3005         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3006                sizeof(dev_priv->wm.pri_latency));
3007         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3008                sizeof(dev_priv->wm.pri_latency));
3009
3010         intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3011         intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3012
3013         intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3014         intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3015         intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3016
3017         if (IS_GEN6(dev_priv))
3018                 snb_wm_latency_quirk(dev_priv);
3019 }
3020
3021 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3022 {
3023         intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3024         intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3025 }
3026
3027 static bool ilk_validate_pipe_wm(struct drm_device *dev,
3028                                  struct intel_pipe_wm *pipe_wm)
3029 {
3030         /* LP0 watermark maximums depend on this pipe alone */
3031         const struct intel_wm_config config = {
3032                 .num_pipes_active = 1,
3033                 .sprites_enabled = pipe_wm->sprites_enabled,
3034                 .sprites_scaled = pipe_wm->sprites_scaled,
3035         };
3036         struct ilk_wm_maximums max;
3037
3038         /* LP0 watermarks always use 1/2 DDB partitioning */
3039         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
3040
3041         /* At least LP0 must be valid */
3042         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3043                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3044                 return false;
3045         }
3046
3047         return true;
3048 }
3049
3050 /* Compute new watermarks for the pipe */
3051 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
3052 {
3053         struct drm_atomic_state *state = cstate->base.state;
3054         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3055         struct intel_pipe_wm *pipe_wm;
3056         struct drm_device *dev = state->dev;
3057         const struct drm_i915_private *dev_priv = to_i915(dev);
3058         struct drm_plane *plane;
3059         const struct drm_plane_state *plane_state;
3060         const struct intel_plane_state *pristate = NULL;
3061         const struct intel_plane_state *sprstate = NULL;
3062         const struct intel_plane_state *curstate = NULL;
3063         int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3064         struct ilk_wm_maximums max;
3065
3066         pipe_wm = &cstate->wm.ilk.optimal;
3067
3068         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
3069                 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3070
3071                 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3072                         pristate = ps;
3073                 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3074                         sprstate = ps;
3075                 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3076                         curstate = ps;
3077         }
3078
3079         pipe_wm->pipe_enabled = cstate->base.active;
3080         if (sprstate) {
3081                 pipe_wm->sprites_enabled = sprstate->base.visible;
3082                 pipe_wm->sprites_scaled = sprstate->base.visible &&
3083                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3084                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3085         }
3086
3087         usable_level = max_level;
3088
3089         /* ILK/SNB: LP2+ watermarks only w/o sprites */
3090         if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3091                 usable_level = 1;
3092
3093         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3094         if (pipe_wm->sprites_scaled)
3095                 usable_level = 0;
3096
3097         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3098         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
3099                              pristate, sprstate, curstate, &pipe_wm->wm[0]);
3100
3101         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3102                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
3103
3104         if (!ilk_validate_pipe_wm(dev, pipe_wm))
3105                 return -EINVAL;
3106
3107         ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3108
3109         for (level = 1; level <= usable_level; level++) {
3110                 struct intel_wm_level *wm = &pipe_wm->wm[level];
3111
3112                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
3113                                      pristate, sprstate, curstate, wm);
3114
3115                 /*
3116                  * Disable any watermark level that exceeds the
3117                  * register maximums since such watermarks are
3118                  * always invalid.
3119                  */
3120                 if (!ilk_validate_wm_level(level, &max, wm)) {
3121                         memset(wm, 0, sizeof(*wm));
3122                         break;
3123                 }
3124         }
3125
3126         return 0;
3127 }
3128
3129 /*
3130  * Build a set of 'intermediate' watermark values that satisfy both the old
3131  * state and the new state.  These can be programmed to the hardware
3132  * immediately.
3133  */
3134 static int ilk_compute_intermediate_wm(struct drm_device *dev,
3135                                        struct intel_crtc *intel_crtc,
3136                                        struct intel_crtc_state *newstate)
3137 {
3138         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3139         struct intel_atomic_state *intel_state =
3140                 to_intel_atomic_state(newstate->base.state);
3141         const struct intel_crtc_state *oldstate =
3142                 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3143         const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3144         int level, max_level = ilk_wm_max_level(to_i915(dev));
3145
3146         /*
3147          * Start with the final, target watermarks, then combine with the
3148          * currently active watermarks to get values that are safe both before
3149          * and after the vblank.
3150          */
3151         *a = newstate->wm.ilk.optimal;
3152         if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
3153                 return 0;
3154
3155         a->pipe_enabled |= b->pipe_enabled;
3156         a->sprites_enabled |= b->sprites_enabled;
3157         a->sprites_scaled |= b->sprites_scaled;
3158
3159         for (level = 0; level <= max_level; level++) {
3160                 struct intel_wm_level *a_wm = &a->wm[level];
3161                 const struct intel_wm_level *b_wm = &b->wm[level];
3162
3163                 a_wm->enable &= b_wm->enable;
3164                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3165                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3166                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3167                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3168         }
3169
3170         /*
3171          * We need to make sure that these merged watermark values are
3172          * actually a valid configuration themselves.  If they're not,
3173          * there's no safe way to transition from the old state to
3174          * the new state, so we need to fail the atomic transaction.
3175          */
3176         if (!ilk_validate_pipe_wm(dev, a))
3177                 return -EINVAL;
3178
3179         /*
3180          * If our intermediate WM are identical to the final WM, then we can
3181          * omit the post-vblank programming; only update if it's different.
3182          */
3183         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3184                 newstate->wm.need_postvbl_update = true;
3185
3186         return 0;
3187 }
3188
3189 /*
3190  * Merge the watermarks from all active pipes for a specific level.
3191  */
3192 static void ilk_merge_wm_level(struct drm_device *dev,
3193                                int level,
3194                                struct intel_wm_level *ret_wm)
3195 {
3196         const struct intel_crtc *intel_crtc;
3197
3198         ret_wm->enable = true;
3199
3200         for_each_intel_crtc(dev, intel_crtc) {
3201                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3202                 const struct intel_wm_level *wm = &active->wm[level];
3203
3204                 if (!active->pipe_enabled)
3205                         continue;
3206
3207                 /*
3208                  * The watermark values may have been used in the past,
3209                  * so we must maintain them in the registers for some
3210                  * time even if the level is now disabled.
3211                  */
3212                 if (!wm->enable)
3213                         ret_wm->enable = false;
3214
3215                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3216                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3217                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3218                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3219         }
3220 }
3221
3222 /*
3223  * Merge all low power watermarks for all active pipes.
3224  */
3225 static void ilk_wm_merge(struct drm_device *dev,
3226                          const struct intel_wm_config *config,
3227                          const struct ilk_wm_maximums *max,
3228                          struct intel_pipe_wm *merged)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(dev);
3231         int level, max_level = ilk_wm_max_level(dev_priv);
3232         int last_enabled_level = max_level;
3233
3234         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3235         if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3236             config->num_pipes_active > 1)
3237                 last_enabled_level = 0;
3238
3239         /* ILK: FBC WM must be disabled always */
3240         merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3241
3242         /* merge each WM1+ level */
3243         for (level = 1; level <= max_level; level++) {
3244                 struct intel_wm_level *wm = &merged->wm[level];
3245
3246                 ilk_merge_wm_level(dev, level, wm);
3247
3248                 if (level > last_enabled_level)
3249                         wm->enable = false;
3250                 else if (!ilk_validate_wm_level(level, max, wm))
3251                         /* make sure all following levels get disabled */
3252                         last_enabled_level = level - 1;
3253
3254                 /*
3255                  * The spec says it is preferred to disable
3256                  * FBC WMs instead of disabling a WM level.
3257                  */
3258                 if (wm->fbc_val > max->fbc) {
3259                         if (wm->enable)
3260                                 merged->fbc_wm_enabled = false;
3261                         wm->fbc_val = 0;
3262                 }
3263         }
3264
3265         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3266         /*
3267          * FIXME this is racy. FBC might get enabled later.
3268          * What we should check here is whether FBC can be
3269          * enabled sometime later.
3270          */
3271         if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
3272             intel_fbc_is_active(dev_priv)) {
3273                 for (level = 2; level <= max_level; level++) {
3274                         struct intel_wm_level *wm = &merged->wm[level];
3275
3276                         wm->enable = false;
3277                 }
3278         }
3279 }
3280
3281 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3282 {
3283         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3284         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3285 }
3286
3287 /* The value we need to program into the WM_LPx latency field */
3288 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
3289 {
3290         struct drm_i915_private *dev_priv = to_i915(dev);
3291
3292         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3293                 return 2 * level;
3294         else
3295                 return dev_priv->wm.pri_latency[level];
3296 }
3297
3298 static void ilk_compute_wm_results(struct drm_device *dev,
3299                                    const struct intel_pipe_wm *merged,
3300                                    enum intel_ddb_partitioning partitioning,
3301                                    struct ilk_wm_values *results)
3302 {
3303         struct drm_i915_private *dev_priv = to_i915(dev);
3304         struct intel_crtc *intel_crtc;
3305         int level, wm_lp;
3306
3307         results->enable_fbc_wm = merged->fbc_wm_enabled;
3308         results->partitioning = partitioning;
3309
3310         /* LP1+ register values */
3311         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3312                 const struct intel_wm_level *r;
3313
3314                 level = ilk_wm_lp_to_level(wm_lp, merged);
3315
3316                 r = &merged->wm[level];
3317
3318                 /*
3319                  * Maintain the watermark values even if the level is
3320                  * disabled. Doing otherwise could cause underruns.
3321                  */
3322                 results->wm_lp[wm_lp - 1] =
3323                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
3324                         (r->pri_val << WM1_LP_SR_SHIFT) |
3325                         r->cur_val;
3326
3327                 if (r->enable)
3328                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3329
3330                 if (INTEL_GEN(dev_priv) >= 8)
3331                         results->wm_lp[wm_lp - 1] |=
3332                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3333                 else
3334                         results->wm_lp[wm_lp - 1] |=
3335                                 r->fbc_val << WM1_LP_FBC_SHIFT;
3336
3337                 /*
3338                  * Always set WM1S_LP_EN when spr_val != 0, even if the
3339                  * level is disabled. Doing otherwise could cause underruns.
3340                  */
3341                 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3342                         WARN_ON(wm_lp != 1);
3343                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3344                 } else
3345                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3346         }
3347
3348         /* LP0 register values */
3349         for_each_intel_crtc(dev, intel_crtc) {
3350                 enum pipe pipe = intel_crtc->pipe;
3351                 const struct intel_wm_level *r =
3352                         &intel_crtc->wm.active.ilk.wm[0];
3353
3354                 if (WARN_ON(!r->enable))
3355                         continue;
3356
3357                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3358
3359                 results->wm_pipe[pipe] =
3360                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3361                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3362                         r->cur_val;
3363         }
3364 }
3365
3366 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3367  * case both are at the same level. Prefer r1 in case they're the same. */
3368 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
3369                                                   struct intel_pipe_wm *r1,
3370                                                   struct intel_pipe_wm *r2)
3371 {
3372         int level, max_level = ilk_wm_max_level(to_i915(dev));
3373         int level1 = 0, level2 = 0;
3374
3375         for (level = 1; level <= max_level; level++) {
3376                 if (r1->wm[level].enable)
3377                         level1 = level;
3378                 if (r2->wm[level].enable)
3379                         level2 = level;
3380         }
3381
3382         if (level1 == level2) {
3383                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3384                         return r2;
3385                 else
3386                         return r1;
3387         } else if (level1 > level2) {
3388                 return r1;
3389         } else {
3390                 return r2;
3391         }
3392 }
3393
3394 /* dirty bits used to track which watermarks need changes */
3395 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3396 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3397 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3398 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3399 #define WM_DIRTY_FBC (1 << 24)
3400 #define WM_DIRTY_DDB (1 << 25)
3401
3402 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3403                                          const struct ilk_wm_values *old,
3404                                          const struct ilk_wm_values *new)
3405 {
3406         unsigned int dirty = 0;
3407         enum pipe pipe;
3408         int wm_lp;
3409
3410         for_each_pipe(dev_priv, pipe) {
3411                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3412                         dirty |= WM_DIRTY_LINETIME(pipe);
3413                         /* Must disable LP1+ watermarks too */
3414                         dirty |= WM_DIRTY_LP_ALL;
3415                 }
3416
3417                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3418                         dirty |= WM_DIRTY_PIPE(pipe);
3419                         /* Must disable LP1+ watermarks too */
3420                         dirty |= WM_DIRTY_LP_ALL;
3421                 }
3422         }
3423
3424         if (old->enable_fbc_wm != new->enable_fbc_wm) {
3425                 dirty |= WM_DIRTY_FBC;
3426                 /* Must disable LP1+ watermarks too */
3427                 dirty |= WM_DIRTY_LP_ALL;
3428         }
3429
3430         if (old->partitioning != new->partitioning) {
3431                 dirty |= WM_DIRTY_DDB;
3432                 /* Must disable LP1+ watermarks too */
3433                 dirty |= WM_DIRTY_LP_ALL;
3434         }
3435
3436         /* LP1+ watermarks already deemed dirty, no need to continue */
3437         if (dirty & WM_DIRTY_LP_ALL)
3438                 return dirty;
3439
3440         /* Find the lowest numbered LP1+ watermark in need of an update... */
3441         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3442                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3443                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3444                         break;
3445         }
3446
3447         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3448         for (; wm_lp <= 3; wm_lp++)
3449                 dirty |= WM_DIRTY_LP(wm_lp);
3450
3451         return dirty;
3452 }
3453
3454 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3455                                unsigned int dirty)
3456 {
3457         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3458         bool changed = false;
3459
3460         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3461                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3462                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3463                 changed = true;
3464         }
3465         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3466                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3467                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3468                 changed = true;
3469         }
3470         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3471                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3472                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3473                 changed = true;
3474         }
3475
3476         /*
3477          * Don't touch WM1S_LP_EN here.
3478          * Doing so could cause underruns.
3479          */
3480
3481         return changed;
3482 }
3483
3484 /*
3485  * The spec says we shouldn't write when we don't need, because every write
3486  * causes WMs to be re-evaluated, expending some power.
3487  */
3488 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3489                                 struct ilk_wm_values *results)
3490 {
3491         struct ilk_wm_values *previous = &dev_priv->wm.hw;
3492         unsigned int dirty;
3493         uint32_t val;
3494
3495         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3496         if (!dirty)
3497                 return;
3498
3499         _ilk_disable_lp_wm(dev_priv, dirty);
3500
3501         if (dirty & WM_DIRTY_PIPE(PIPE_A))
3502                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3503         if (dirty & WM_DIRTY_PIPE(PIPE_B))
3504                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3505         if (dirty & WM_DIRTY_PIPE(PIPE_C))
3506                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3507
3508         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3509                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3510         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3511                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3512         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3513                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3514
3515         if (dirty & WM_DIRTY_DDB) {
3516                 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3517                         val = I915_READ(WM_MISC);
3518                         if (results->partitioning == INTEL_DDB_PART_1_2)
3519                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
3520                         else
3521                                 val |= WM_MISC_DATA_PARTITION_5_6;
3522                         I915_WRITE(WM_MISC, val);
3523                 } else {
3524                         val = I915_READ(DISP_ARB_CTL2);
3525                         if (results->partitioning == INTEL_DDB_PART_1_2)
3526                                 val &= ~DISP_DATA_PARTITION_5_6;
3527                         else
3528                                 val |= DISP_DATA_PARTITION_5_6;
3529                         I915_WRITE(DISP_ARB_CTL2, val);
3530                 }
3531         }
3532
3533         if (dirty & WM_DIRTY_FBC) {
3534                 val = I915_READ(DISP_ARB_CTL);
3535                 if (results->enable_fbc_wm)
3536                         val &= ~DISP_FBC_WM_DIS;
3537                 else
3538                         val |= DISP_FBC_WM_DIS;
3539                 I915_WRITE(DISP_ARB_CTL, val);
3540         }
3541
3542         if (dirty & WM_DIRTY_LP(1) &&
3543             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3544                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3545
3546         if (INTEL_GEN(dev_priv) >= 7) {
3547                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3548                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3549                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3550                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3551         }
3552
3553         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3554                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3555         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3556                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3557         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3558                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3559
3560         dev_priv->wm.hw = *results;
3561 }
3562
3563 bool ilk_disable_lp_wm(struct drm_device *dev)
3564 {
3565         struct drm_i915_private *dev_priv = to_i915(dev);
3566
3567         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3568 }
3569
3570 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3571 {
3572         u8 enabled_slices;
3573
3574         /* Slice 1 will always be enabled */
3575         enabled_slices = 1;
3576
3577         /* Gen prior to GEN11 have only one DBuf slice */
3578         if (INTEL_GEN(dev_priv) < 11)
3579                 return enabled_slices;
3580
3581         if (I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3582                 enabled_slices++;
3583
3584         return enabled_slices;
3585 }
3586
3587 /*
3588  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3589  * so assume we'll always need it in order to avoid underruns.
3590  */
3591 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
3592 {
3593         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3594
3595         if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
3596                 return true;
3597
3598         return false;
3599 }
3600
3601 static bool
3602 intel_has_sagv(struct drm_i915_private *dev_priv)
3603 {
3604         if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
3605             IS_CANNONLAKE(dev_priv))
3606                 return true;
3607
3608         if (IS_SKYLAKE(dev_priv) &&
3609             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
3610                 return true;
3611
3612         return false;
3613 }
3614
3615 /*
3616  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3617  * depending on power and performance requirements. The display engine access
3618  * to system memory is blocked during the adjustment time. Because of the
3619  * blocking time, having this enabled can cause full system hangs and/or pipe
3620  * underruns if we don't meet all of the following requirements:
3621  *
3622  *  - <= 1 pipe enabled
3623  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3624  *  - We're not using an interlaced display configuration
3625  */
3626 int
3627 intel_enable_sagv(struct drm_i915_private *dev_priv)
3628 {
3629         int ret;
3630
3631         if (!intel_has_sagv(dev_priv))
3632                 return 0;
3633
3634         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3635                 return 0;
3636
3637         DRM_DEBUG_KMS("Enabling the SAGV\n");
3638         mutex_lock(&dev_priv->pcu_lock);
3639
3640         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3641                                       GEN9_SAGV_ENABLE);
3642
3643         /* We don't need to wait for the SAGV when enabling */
3644         mutex_unlock(&dev_priv->pcu_lock);
3645
3646         /*
3647          * Some skl systems, pre-release machines in particular,
3648          * don't actually have an SAGV.
3649          */
3650         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3651                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3652                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3653                 return 0;
3654         } else if (ret < 0) {
3655                 DRM_ERROR("Failed to enable the SAGV\n");
3656                 return ret;
3657         }
3658
3659         dev_priv->sagv_status = I915_SAGV_ENABLED;
3660         return 0;
3661 }
3662
3663 int
3664 intel_disable_sagv(struct drm_i915_private *dev_priv)
3665 {
3666         int ret;
3667
3668         if (!intel_has_sagv(dev_priv))
3669                 return 0;
3670
3671         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3672                 return 0;
3673
3674         DRM_DEBUG_KMS("Disabling the SAGV\n");
3675         mutex_lock(&dev_priv->pcu_lock);
3676
3677         /* bspec says to keep retrying for at least 1 ms */
3678         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3679                                 GEN9_SAGV_DISABLE,
3680                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3681                                 1);
3682         mutex_unlock(&dev_priv->pcu_lock);
3683
3684         /*
3685          * Some skl systems, pre-release machines in particular,
3686          * don't actually have an SAGV.
3687          */
3688         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3689                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3690                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3691                 return 0;
3692         } else if (ret < 0) {
3693                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
3694                 return ret;
3695         }
3696
3697         dev_priv->sagv_status = I915_SAGV_DISABLED;
3698         return 0;
3699 }
3700
3701 bool intel_can_enable_sagv(struct drm_atomic_state *state)
3702 {
3703         struct drm_device *dev = state->dev;
3704         struct drm_i915_private *dev_priv = to_i915(dev);
3705         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3706         struct intel_crtc *crtc;
3707         struct intel_plane *plane;
3708         struct intel_crtc_state *cstate;
3709         enum pipe pipe;
3710         int level, latency;
3711         int sagv_block_time_us;
3712
3713         if (!intel_has_sagv(dev_priv))
3714                 return false;
3715
3716         if (IS_GEN9(dev_priv))
3717                 sagv_block_time_us = 30;
3718         else if (IS_GEN10(dev_priv))
3719                 sagv_block_time_us = 20;
3720         else
3721                 sagv_block_time_us = 10;
3722
3723         /*
3724          * SKL+ workaround: bspec recommends we disable the SAGV when we have
3725          * more then one pipe enabled
3726          *
3727          * If there are no active CRTCs, no additional checks need be performed
3728          */
3729         if (hweight32(intel_state->active_crtcs) == 0)
3730                 return true;
3731         else if (hweight32(intel_state->active_crtcs) > 1)
3732                 return false;
3733
3734         /* Since we're now guaranteed to only have one active CRTC... */
3735         pipe = ffs(intel_state->active_crtcs) - 1;
3736         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3737         cstate = to_intel_crtc_state(crtc->base.state);
3738
3739         if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3740                 return false;
3741
3742         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3743                 struct skl_plane_wm *wm =
3744                         &cstate->wm.skl.optimal.planes[plane->id];
3745
3746                 /* Skip this plane if it's not enabled */
3747                 if (!wm->wm[0].plane_en)
3748                         continue;
3749
3750                 /* Find the highest enabled wm level for this plane */
3751                 for (level = ilk_wm_max_level(dev_priv);
3752                      !wm->wm[level].plane_en; --level)
3753                      { }
3754
3755                 latency = dev_priv->wm.skl_latency[level];
3756
3757                 if (skl_needs_memory_bw_wa(intel_state) &&
3758                     plane->base.state->fb->modifier ==
3759                     I915_FORMAT_MOD_X_TILED)
3760                         latency += 15;
3761
3762                 /*
3763                  * If any of the planes on this pipe don't enable wm levels that
3764                  * incur memory latencies higher than sagv_block_time_us we
3765                  * can't enable the SAGV.
3766                  */
3767                 if (latency < sagv_block_time_us)
3768                         return false;
3769         }
3770
3771         return true;
3772 }
3773
3774 static unsigned int intel_get_ddb_size(struct drm_i915_private *dev_priv,
3775                                        const struct intel_crtc_state *cstate,
3776                                        const unsigned int total_data_rate,
3777                                        const int num_active,
3778                                        struct skl_ddb_allocation *ddb)
3779 {
3780         const struct drm_display_mode *adjusted_mode;
3781         u64 total_data_bw;
3782         u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3783
3784         WARN_ON(ddb_size == 0);
3785
3786         if (INTEL_GEN(dev_priv) < 11)
3787                 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3788
3789         adjusted_mode = &cstate->base.adjusted_mode;
3790         total_data_bw = (u64)total_data_rate * drm_mode_vrefresh(adjusted_mode);
3791
3792         /*
3793          * 12GB/s is maximum BW supported by single DBuf slice.
3794          */
3795         if (total_data_bw >= GBps(12) || num_active > 1) {
3796                 ddb->enabled_slices = 2;
3797         } else {
3798                 ddb->enabled_slices = 1;
3799                 ddb_size /= 2;
3800         }
3801
3802         return ddb_size;
3803 }
3804
3805 static void
3806 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3807                                    const struct intel_crtc_state *cstate,
3808                                    const unsigned int total_data_rate,
3809                                    struct skl_ddb_allocation *ddb,
3810                                    struct skl_ddb_entry *alloc, /* out */
3811                                    int *num_active /* out */)
3812 {
3813         struct drm_atomic_state *state = cstate->base.state;
3814         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3815         struct drm_i915_private *dev_priv = to_i915(dev);
3816         struct drm_crtc *for_crtc = cstate->base.crtc;
3817         unsigned int pipe_size, ddb_size;
3818         int nth_active_pipe;
3819
3820         if (WARN_ON(!state) || !cstate->base.active) {
3821                 alloc->start = 0;
3822                 alloc->end = 0;
3823                 *num_active = hweight32(dev_priv->active_crtcs);
3824                 return;
3825         }
3826
3827         if (intel_state->active_pipe_changes)
3828                 *num_active = hweight32(intel_state->active_crtcs);
3829         else
3830                 *num_active = hweight32(dev_priv->active_crtcs);
3831
3832         ddb_size = intel_get_ddb_size(dev_priv, cstate, total_data_rate,
3833                                       *num_active, ddb);
3834
3835         /*
3836          * If the state doesn't change the active CRTC's, then there's
3837          * no need to recalculate; the existing pipe allocation limits
3838          * should remain unchanged.  Note that we're safe from racing
3839          * commits since any racing commit that changes the active CRTC
3840          * list would need to grab _all_ crtc locks, including the one
3841          * we currently hold.
3842          */
3843         if (!intel_state->active_pipe_changes) {
3844                 /*
3845                  * alloc may be cleared by clear_intel_crtc_state,
3846                  * copy from old state to be sure
3847                  */
3848                 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3849                 return;
3850         }
3851
3852         nth_active_pipe = hweight32(intel_state->active_crtcs &
3853                                     (drm_crtc_mask(for_crtc) - 1));
3854         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3855         alloc->start = nth_active_pipe * ddb_size / *num_active;
3856         alloc->end = alloc->start + pipe_size;
3857 }
3858
3859 static unsigned int skl_cursor_allocation(int num_active)
3860 {
3861         if (num_active == 1)
3862                 return 32;
3863
3864         return 8;
3865 }
3866
3867 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3868                                        struct skl_ddb_entry *entry, u32 reg)
3869 {
3870         u16 mask;
3871
3872         if (INTEL_GEN(dev_priv) >= 11)
3873                 mask = ICL_DDB_ENTRY_MASK;
3874         else
3875                 mask = SKL_DDB_ENTRY_MASK;
3876         entry->start = reg & mask;
3877         entry->end = (reg >> DDB_ENTRY_END_SHIFT) & mask;
3878
3879         if (entry->end)
3880                 entry->end += 1;
3881 }
3882
3883 static void
3884 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3885                            const enum pipe pipe,
3886                            const enum plane_id plane_id,
3887                            struct skl_ddb_allocation *ddb /* out */)
3888 {
3889         u32 val, val2 = 0;
3890         int fourcc, pixel_format;
3891
3892         /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3893         if (plane_id == PLANE_CURSOR) {
3894                 val = I915_READ(CUR_BUF_CFG(pipe));
3895                 skl_ddb_entry_init_from_hw(dev_priv,
3896                                            &ddb->plane[pipe][plane_id], val);
3897                 return;
3898         }
3899
3900         val = I915_READ(PLANE_CTL(pipe, plane_id));
3901
3902         /* No DDB allocated for disabled planes */
3903         if (!(val & PLANE_CTL_ENABLE))
3904                 return;
3905
3906         pixel_format = val & PLANE_CTL_FORMAT_MASK;
3907         fourcc = skl_format_to_fourcc(pixel_format,
3908                                       val & PLANE_CTL_ORDER_RGBX,
3909                                       val & PLANE_CTL_ALPHA_MASK);
3910
3911         val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
3912         val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
3913
3914         if (fourcc == DRM_FORMAT_NV12) {
3915                 skl_ddb_entry_init_from_hw(dev_priv,
3916                                            &ddb->plane[pipe][plane_id], val2);
3917                 skl_ddb_entry_init_from_hw(dev_priv,
3918                                            &ddb->uv_plane[pipe][plane_id], val);
3919         } else {
3920                 skl_ddb_entry_init_from_hw(dev_priv,
3921                                            &ddb->plane[pipe][plane_id], val);
3922         }
3923 }
3924
3925 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3926                           struct skl_ddb_allocation *ddb /* out */)
3927 {
3928         struct intel_crtc *crtc;
3929
3930         memset(ddb, 0, sizeof(*ddb));
3931
3932         ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
3933
3934         for_each_intel_crtc(&dev_priv->drm, crtc) {
3935                 enum intel_display_power_domain power_domain;
3936                 enum plane_id plane_id;
3937                 enum pipe pipe = crtc->pipe;
3938
3939                 power_domain = POWER_DOMAIN_PIPE(pipe);
3940                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3941                         continue;
3942
3943                 for_each_plane_id_on_crtc(crtc, plane_id)
3944                         skl_ddb_get_hw_plane_state(dev_priv, pipe,
3945                                                    plane_id, ddb);
3946
3947                 intel_display_power_put(dev_priv, power_domain);
3948         }
3949 }
3950
3951 /*
3952  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3953  * The bspec defines downscale amount as:
3954  *
3955  * """
3956  * Horizontal down scale amount = maximum[1, Horizontal source size /
3957  *                                           Horizontal destination size]
3958  * Vertical down scale amount = maximum[1, Vertical source size /
3959  *                                         Vertical destination size]
3960  * Total down scale amount = Horizontal down scale amount *
3961  *                           Vertical down scale amount
3962  * """
3963  *
3964  * Return value is provided in 16.16 fixed point form to retain fractional part.
3965  * Caller should take care of dividing & rounding off the value.
3966  */
3967 static uint_fixed_16_16_t
3968 skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
3969                            const struct intel_plane_state *pstate)
3970 {
3971         struct intel_plane *plane = to_intel_plane(pstate->base.plane);
3972         uint32_t src_w, src_h, dst_w, dst_h;
3973         uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
3974         uint_fixed_16_16_t downscale_h, downscale_w;
3975
3976         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
3977                 return u32_to_fixed16(0);
3978
3979         /* n.b., src is 16.16 fixed point, dst is whole integer */
3980         if (plane->id == PLANE_CURSOR) {
3981                 /*
3982                  * Cursors only support 0/180 degree rotation,
3983                  * hence no need to account for rotation here.
3984                  */
3985                 src_w = pstate->base.src_w >> 16;
3986                 src_h = pstate->base.src_h >> 16;
3987                 dst_w = pstate->base.crtc_w;
3988                 dst_h = pstate->base.crtc_h;
3989         } else {
3990                 /*
3991                  * Src coordinates are already rotated by 270 degrees for
3992                  * the 90/270 degree plane rotation cases (to match the
3993                  * GTT mapping), hence no need to account for rotation here.
3994                  */
3995                 src_w = drm_rect_width(&pstate->base.src) >> 16;
3996                 src_h = drm_rect_height(&pstate->base.src) >> 16;
3997                 dst_w = drm_rect_width(&pstate->base.dst);
3998                 dst_h = drm_rect_height(&pstate->base.dst);
3999         }
4000
4001         fp_w_ratio = div_fixed16(src_w, dst_w);
4002         fp_h_ratio = div_fixed16(src_h, dst_h);
4003         downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4004         downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4005
4006         return mul_fixed16(downscale_w, downscale_h);
4007 }
4008
4009 static uint_fixed_16_16_t
4010 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4011 {
4012         uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4013
4014         if (!crtc_state->base.enable)
4015                 return pipe_downscale;
4016
4017         if (crtc_state->pch_pfit.enabled) {
4018                 uint32_t src_w, src_h, dst_w, dst_h;
4019                 uint32_t pfit_size = crtc_state->pch_pfit.size;
4020                 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4021                 uint_fixed_16_16_t downscale_h, downscale_w;
4022
4023                 src_w = crtc_state->pipe_src_w;
4024                 src_h = crtc_state->pipe_src_h;
4025                 dst_w = pfit_size >> 16;
4026                 dst_h = pfit_size & 0xffff;
4027
4028                 if (!dst_w || !dst_h)
4029                         return pipe_downscale;
4030
4031                 fp_w_ratio = div_fixed16(src_w, dst_w);
4032                 fp_h_ratio = div_fixed16(src_h, dst_h);
4033                 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4034                 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4035
4036                 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4037         }
4038
4039         return pipe_downscale;
4040 }
4041
4042 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4043                                   struct intel_crtc_state *cstate)
4044 {
4045         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4046         struct drm_crtc_state *crtc_state = &cstate->base;
4047         struct drm_atomic_state *state = crtc_state->state;
4048         struct drm_plane *plane;
4049         const struct drm_plane_state *pstate;
4050         struct intel_plane_state *intel_pstate;
4051         int crtc_clock, dotclk;
4052         uint32_t pipe_max_pixel_rate;
4053         uint_fixed_16_16_t pipe_downscale;
4054         uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4055
4056         if (!cstate->base.enable)
4057                 return 0;
4058
4059         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4060                 uint_fixed_16_16_t plane_downscale;
4061                 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4062                 int bpp;
4063
4064                 if (!intel_wm_plane_visible(cstate,
4065                                             to_intel_plane_state(pstate)))
4066                         continue;
4067
4068                 if (WARN_ON(!pstate->fb))
4069                         return -EINVAL;
4070
4071                 intel_pstate = to_intel_plane_state(pstate);
4072                 plane_downscale = skl_plane_downscale_amount(cstate,
4073                                                              intel_pstate);
4074                 bpp = pstate->fb->format->cpp[0] * 8;
4075                 if (bpp == 64)
4076                         plane_downscale = mul_fixed16(plane_downscale,
4077                                                       fp_9_div_8);
4078
4079                 max_downscale = max_fixed16(plane_downscale, max_downscale);
4080         }
4081         pipe_downscale = skl_pipe_downscale_amount(cstate);
4082
4083         pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4084
4085         crtc_clock = crtc_state->adjusted_mode.crtc_clock;
4086         dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4087
4088         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4089                 dotclk *= 2;
4090
4091         pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4092
4093         if (pipe_max_pixel_rate < crtc_clock) {
4094                 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4095                 return -EINVAL;
4096         }
4097
4098         return 0;
4099 }
4100
4101 static unsigned int
4102 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
4103                              const struct drm_plane_state *pstate,
4104                              const int plane)
4105 {
4106         struct intel_plane *intel_plane = to_intel_plane(pstate->plane);
4107         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4108         uint32_t data_rate;
4109         uint32_t width = 0, height = 0;
4110         struct drm_framebuffer *fb;
4111         u32 format;
4112         uint_fixed_16_16_t down_scale_amount;
4113
4114         if (!intel_pstate->base.visible)
4115                 return 0;
4116
4117         fb = pstate->fb;
4118         format = fb->format->format;
4119
4120         if (intel_plane->id == PLANE_CURSOR)
4121                 return 0;
4122         if (plane == 1 && format != DRM_FORMAT_NV12)
4123                 return 0;
4124
4125         /*
4126          * Src coordinates are already rotated by 270 degrees for
4127          * the 90/270 degree plane rotation cases (to match the
4128          * GTT mapping), hence no need to account for rotation here.
4129          */
4130         width = drm_rect_width(&intel_pstate->base.src) >> 16;
4131         height = drm_rect_height(&intel_pstate->base.src) >> 16;
4132
4133         /* UV plane does 1/2 pixel sub-sampling */
4134         if (plane == 1 && format == DRM_FORMAT_NV12) {
4135                 width /= 2;
4136                 height /= 2;
4137         }
4138
4139         data_rate = width * height * fb->format->cpp[plane];
4140
4141         down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
4142
4143         return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4144 }
4145
4146 /*
4147  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
4148  * a 8192x4096@32bpp framebuffer:
4149  *   3 * 4096 * 8192  * 4 < 2^32
4150  */
4151 static unsigned int
4152 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
4153                                  unsigned int *plane_data_rate,
4154                                  unsigned int *uv_plane_data_rate)
4155 {
4156         struct drm_crtc_state *cstate = &intel_cstate->base;
4157         struct drm_atomic_state *state = cstate->state;
4158         struct drm_plane *plane;
4159         const struct drm_plane_state *pstate;
4160         unsigned int total_data_rate = 0;
4161
4162         if (WARN_ON(!state))
4163                 return 0;
4164
4165         /* Calculate and cache data rate for each plane */
4166         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
4167                 enum plane_id plane_id = to_intel_plane(plane)->id;
4168                 unsigned int rate;
4169
4170                 /* packed/y */
4171                 rate = skl_plane_relative_data_rate(intel_cstate,
4172                                                     pstate, 0);
4173                 plane_data_rate[plane_id] = rate;
4174
4175                 total_data_rate += rate;
4176
4177                 /* uv-plane */
4178                 rate = skl_plane_relative_data_rate(intel_cstate,
4179                                                     pstate, 1);
4180                 uv_plane_data_rate[plane_id] = rate;
4181
4182                 total_data_rate += rate;
4183         }
4184
4185         return total_data_rate;
4186 }
4187
4188 static uint16_t
4189 skl_ddb_min_alloc(const struct drm_plane_state *pstate, const int plane)
4190 {
4191         struct drm_framebuffer *fb = pstate->fb;
4192         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
4193         uint32_t src_w, src_h;
4194         uint32_t min_scanlines = 8;
4195         uint8_t plane_bpp;
4196
4197         if (WARN_ON(!fb))
4198                 return 0;
4199
4200         /* For packed formats, and uv-plane, return 0 */
4201         if (plane == 1 && fb->format->format != DRM_FORMAT_NV12)
4202                 return 0;
4203
4204         /* For Non Y-tile return 8-blocks */
4205         if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
4206             fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
4207             fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
4208             fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
4209                 return 8;
4210
4211         /*
4212          * Src coordinates are already rotated by 270 degrees for
4213          * the 90/270 degree plane rotation cases (to match the
4214          * GTT mapping), hence no need to account for rotation here.
4215          */
4216         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
4217         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
4218
4219         /* Halve UV plane width and height for NV12 */
4220         if (plane == 1) {
4221                 src_w /= 2;
4222                 src_h /= 2;
4223         }
4224
4225         plane_bpp = fb->format->cpp[plane];
4226
4227         if (drm_rotation_90_or_270(pstate->rotation)) {
4228                 switch (plane_bpp) {
4229                 case 1:
4230                         min_scanlines = 32;
4231                         break;
4232                 case 2:
4233                         min_scanlines = 16;
4234                         break;
4235                 case 4:
4236                         min_scanlines = 8;
4237                         break;
4238                 case 8:
4239                         min_scanlines = 4;
4240                         break;
4241                 default:
4242                         WARN(1, "Unsupported pixel depth %u for rotation",
4243                              plane_bpp);
4244                         min_scanlines = 32;
4245                 }
4246         }
4247
4248         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
4249 }
4250
4251 static void
4252 skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
4253                  uint16_t *minimum, uint16_t *uv_minimum)
4254 {
4255         const struct drm_plane_state *pstate;
4256         struct drm_plane *plane;
4257
4258         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
4259                 enum plane_id plane_id = to_intel_plane(plane)->id;
4260
4261                 if (plane_id == PLANE_CURSOR)
4262                         continue;
4263
4264                 if (!pstate->visible)
4265                         continue;
4266
4267                 minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
4268                 uv_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
4269         }
4270
4271         minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
4272 }
4273
4274 static int
4275 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
4276                       struct skl_ddb_allocation *ddb /* out */)
4277 {
4278         struct drm_atomic_state *state = cstate->base.state;
4279         struct drm_crtc *crtc = cstate->base.crtc;
4280         struct drm_device *dev = crtc->dev;
4281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4282         enum pipe pipe = intel_crtc->pipe;
4283         struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
4284         uint16_t alloc_size, start;
4285         uint16_t minimum[I915_MAX_PLANES] = {};
4286         uint16_t uv_minimum[I915_MAX_PLANES] = {};
4287         unsigned int total_data_rate;
4288         enum plane_id plane_id;
4289         int num_active;
4290         unsigned int plane_data_rate[I915_MAX_PLANES] = {};
4291         unsigned int uv_plane_data_rate[I915_MAX_PLANES] = {};
4292         uint16_t total_min_blocks = 0;
4293
4294         /* Clear the partitioning for disabled planes. */
4295         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
4296         memset(ddb->uv_plane[pipe], 0, sizeof(ddb->uv_plane[pipe]));
4297
4298         if (WARN_ON(!state))
4299                 return 0;
4300
4301         if (!cstate->base.active) {
4302                 alloc->start = alloc->end = 0;
4303                 return 0;
4304         }
4305
4306         total_data_rate = skl_get_total_relative_data_rate(cstate,
4307                                                            plane_data_rate,
4308                                                            uv_plane_data_rate);
4309         skl_ddb_get_pipe_allocation_limits(dev, cstate, total_data_rate, ddb,
4310                                            alloc, &num_active);
4311         alloc_size = skl_ddb_entry_size(alloc);
4312         if (alloc_size == 0)
4313                 return 0;
4314
4315         skl_ddb_calc_min(cstate, num_active, minimum, uv_minimum);
4316
4317         /*
4318          * 1. Allocate the mininum required blocks for each active plane
4319          * and allocate the cursor, it doesn't require extra allocation
4320          * proportional to the data rate.
4321          */
4322
4323         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4324                 total_min_blocks += minimum[plane_id];
4325                 total_min_blocks += uv_minimum[plane_id];
4326         }
4327
4328         if (total_min_blocks > alloc_size) {
4329                 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4330                 DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
4331                                                         alloc_size);
4332                 return -EINVAL;
4333         }
4334
4335         alloc_size -= total_min_blocks;
4336         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
4337         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
4338
4339         /*
4340          * 2. Distribute the remaining space in proportion to the amount of
4341          * data each plane needs to fetch from memory.
4342          *
4343          * FIXME: we may not allocate every single block here.
4344          */
4345         if (total_data_rate == 0)
4346                 return 0;
4347
4348         start = alloc->start;
4349         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4350                 unsigned int data_rate, uv_data_rate;
4351                 uint16_t plane_blocks, uv_plane_blocks;
4352
4353                 if (plane_id == PLANE_CURSOR)
4354                         continue;
4355
4356                 data_rate = plane_data_rate[plane_id];
4357
4358                 /*
4359                  * allocation for (packed formats) or (uv-plane part of planar format):
4360                  * promote the expression to 64 bits to avoid overflowing, the
4361                  * result is < available as data_rate / total_data_rate < 1
4362                  */
4363                 plane_blocks = minimum[plane_id];
4364                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
4365                                         total_data_rate);
4366
4367                 /* Leave disabled planes at (0,0) */
4368                 if (data_rate) {
4369                         ddb->plane[pipe][plane_id].start = start;
4370                         ddb->plane[pipe][plane_id].end = start + plane_blocks;
4371                 }
4372
4373                 start += plane_blocks;
4374
4375                 /* Allocate DDB for UV plane for planar format/NV12 */
4376                 uv_data_rate = uv_plane_data_rate[plane_id];
4377
4378                 uv_plane_blocks = uv_minimum[plane_id];
4379                 uv_plane_blocks += div_u64((uint64_t)alloc_size * uv_data_rate,
4380                                            total_data_rate);
4381
4382                 if (uv_data_rate) {
4383                         ddb->uv_plane[pipe][plane_id].start = start;
4384                         ddb->uv_plane[pipe][plane_id].end =
4385                                 start + uv_plane_blocks;
4386                 }
4387
4388                 start += uv_plane_blocks;
4389         }
4390
4391         return 0;
4392 }
4393
4394 /*
4395  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4396  * for the read latency) and cpp should always be <= 8, so that
4397  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4398  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4399 */
4400 static uint_fixed_16_16_t
4401 skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
4402                uint8_t cpp, uint32_t latency, uint32_t dbuf_block_size)
4403 {
4404         uint32_t wm_intermediate_val;
4405         uint_fixed_16_16_t ret;
4406
4407         if (latency == 0)
4408                 return FP_16_16_MAX;
4409
4410         wm_intermediate_val = latency * pixel_rate * cpp;
4411         ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4412
4413         if (INTEL_GEN(dev_priv) >= 10)
4414                 ret = add_fixed16_u32(ret, 1);
4415
4416         return ret;
4417 }
4418
4419 static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
4420                         uint32_t pipe_htotal,
4421                         uint32_t latency,
4422                         uint_fixed_16_16_t plane_blocks_per_line)
4423 {
4424         uint32_t wm_intermediate_val;
4425         uint_fixed_16_16_t ret;
4426
4427         if (latency == 0)
4428                 return FP_16_16_MAX;
4429
4430         wm_intermediate_val = latency * pixel_rate;
4431         wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4432                                            pipe_htotal * 1000);
4433         ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4434         return ret;
4435 }
4436
4437 static uint_fixed_16_16_t
4438 intel_get_linetime_us(struct intel_crtc_state *cstate)
4439 {
4440         uint32_t pixel_rate;
4441         uint32_t crtc_htotal;
4442         uint_fixed_16_16_t linetime_us;
4443
4444         if (!cstate->base.active)
4445                 return u32_to_fixed16(0);
4446
4447         pixel_rate = cstate->pixel_rate;
4448
4449         if (WARN_ON(pixel_rate == 0))
4450                 return u32_to_fixed16(0);
4451
4452         crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
4453         linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4454
4455         return linetime_us;
4456 }
4457
4458 static uint32_t
4459 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
4460                               const struct intel_plane_state *pstate)
4461 {
4462         uint64_t adjusted_pixel_rate;
4463         uint_fixed_16_16_t downscale_amount;
4464
4465         /* Shouldn't reach here on disabled planes... */
4466         if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
4467                 return 0;
4468
4469         /*
4470          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4471          * with additional adjustments for plane-specific scaling.
4472          */
4473         adjusted_pixel_rate = cstate->pixel_rate;
4474         downscale_amount = skl_plane_downscale_amount(cstate, pstate);
4475
4476         return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4477                                             downscale_amount);
4478 }
4479
4480 static int
4481 skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
4482                             struct intel_crtc_state *cstate,
4483                             const struct intel_plane_state *intel_pstate,
4484                             struct skl_wm_params *wp, int plane_id)
4485 {
4486         struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
4487         const struct drm_plane_state *pstate = &intel_pstate->base;
4488         const struct drm_framebuffer *fb = pstate->fb;
4489         uint32_t interm_pbpl;
4490         struct intel_atomic_state *state =
4491                 to_intel_atomic_state(cstate->base.state);
4492         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4493
4494         if (!intel_wm_plane_visible(cstate, intel_pstate))
4495                 return 0;
4496
4497         /* only NV12 format has two planes */
4498         if (plane_id == 1 && fb->format->format != DRM_FORMAT_NV12) {
4499                 DRM_DEBUG_KMS("Non NV12 format have single plane\n");
4500                 return -EINVAL;
4501         }
4502
4503         wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
4504                       fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
4505                       fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4506                       fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4507         wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
4508         wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4509                          fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4510         wp->is_planar = fb->format->format == DRM_FORMAT_NV12;
4511
4512         if (plane->id == PLANE_CURSOR) {
4513                 wp->width = intel_pstate->base.crtc_w;
4514         } else {
4515                 /*
4516                  * Src coordinates are already rotated by 270 degrees for
4517                  * the 90/270 degree plane rotation cases (to match the
4518                  * GTT mapping), hence no need to account for rotation here.
4519                  */
4520                 wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
4521         }
4522
4523         if (plane_id == 1 && wp->is_planar)
4524                 wp->width /= 2;
4525
4526         wp->cpp = fb->format->cpp[plane_id];
4527         wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
4528                                                              intel_pstate);
4529
4530         if (INTEL_GEN(dev_priv) >= 11 &&
4531             fb->modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 8)
4532                 wp->dbuf_block_size = 256;
4533         else
4534                 wp->dbuf_block_size = 512;
4535
4536         if (drm_rotation_90_or_270(pstate->rotation)) {
4537
4538                 switch (wp->cpp) {
4539                 case 1:
4540                         wp->y_min_scanlines = 16;
4541                         break;
4542                 case 2:
4543                         wp->y_min_scanlines = 8;
4544                         break;
4545                 case 4:
4546                         wp->y_min_scanlines = 4;
4547                         break;
4548                 default:
4549                         MISSING_CASE(wp->cpp);
4550                         return -EINVAL;
4551                 }
4552         } else {
4553                 wp->y_min_scanlines = 4;
4554         }
4555
4556         if (apply_memory_bw_wa)
4557                 wp->y_min_scanlines *= 2;
4558
4559         wp->plane_bytes_per_line = wp->width * wp->cpp;
4560         if (wp->y_tiled) {
4561                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4562                                            wp->y_min_scanlines,
4563                                            wp->dbuf_block_size);
4564
4565                 if (INTEL_GEN(dev_priv) >= 10)
4566                         interm_pbpl++;
4567
4568                 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4569                                                         wp->y_min_scanlines);
4570         } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
4571                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4572                                            wp->dbuf_block_size);
4573                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4574         } else {
4575                 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4576                                            wp->dbuf_block_size) + 1;
4577                 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4578         }
4579
4580         wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4581                                              wp->plane_blocks_per_line);
4582         wp->linetime_us = fixed16_to_u32_round_up(
4583                                         intel_get_linetime_us(cstate));
4584
4585         return 0;
4586 }
4587
4588 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
4589                                 struct intel_crtc_state *cstate,
4590                                 const struct intel_plane_state *intel_pstate,
4591                                 uint16_t ddb_allocation,
4592                                 int level,
4593                                 const struct skl_wm_params *wp,
4594                                 const struct skl_wm_level *result_prev,
4595                                 struct skl_wm_level *result /* out */)
4596 {
4597         const struct drm_plane_state *pstate = &intel_pstate->base;
4598         uint32_t latency = dev_priv->wm.skl_latency[level];
4599         uint_fixed_16_16_t method1, method2;
4600         uint_fixed_16_16_t selected_result;
4601         uint32_t res_blocks, res_lines;
4602         struct intel_atomic_state *state =
4603                 to_intel_atomic_state(cstate->base.state);
4604         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
4605         uint32_t min_disp_buf_needed;
4606
4607         if (latency == 0 ||
4608             !intel_wm_plane_visible(cstate, intel_pstate)) {
4609                 result->plane_en = false;
4610                 return 0;
4611         }
4612
4613         /* Display WA #1141: kbl,cfl */
4614         if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
4615             IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
4616             dev_priv->ipc_enabled)
4617                 latency += 4;
4618
4619         if (apply_memory_bw_wa && wp->x_tiled)
4620                 latency += 15;
4621
4622         method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4623                                  wp->cpp, latency, wp->dbuf_block_size);
4624         method2 = skl_wm_method2(wp->plane_pixel_rate,
4625                                  cstate->base.adjusted_mode.crtc_htotal,
4626                                  latency,
4627                                  wp->plane_blocks_per_line);
4628
4629         if (wp->y_tiled) {
4630                 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4631         } else {
4632                 if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
4633                      wp->dbuf_block_size < 1) &&
4634                      (wp->plane_bytes_per_line / wp->dbuf_block_size < 1))
4635                         selected_result = method2;
4636                 else if (ddb_allocation >=
4637                          fixed16_to_u32_round_up(wp->plane_blocks_per_line))
4638                         selected_result = min_fixed16(method1, method2);
4639                 else if (latency >= wp->linetime_us)
4640                         selected_result = min_fixed16(method1, method2);
4641                 else
4642                         selected_result = method1;
4643         }
4644
4645         res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4646         res_lines = div_round_up_fixed16(selected_result,
4647                                          wp->plane_blocks_per_line);
4648
4649         /* Display WA #1125: skl,bxt,kbl,glk */
4650         if (level == 0 && wp->rc_surface)
4651                 res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
4652
4653         /* Display WA #1126: skl,bxt,kbl,glk */
4654         if (level >= 1 && level <= 7) {
4655                 if (wp->y_tiled) {
4656                         res_blocks += fixed16_to_u32_round_up(
4657                                                         wp->y_tile_minimum);
4658                         res_lines += wp->y_min_scanlines;
4659                 } else {
4660                         res_blocks++;
4661                 }
4662
4663                 /*
4664                  * Make sure result blocks for higher latency levels are atleast
4665                  * as high as level below the current level.
4666                  * Assumption in DDB algorithm optimization for special cases.
4667                  * Also covers Display WA #1125 for RC.
4668                  */
4669                 if (result_prev->plane_res_b > res_blocks)
4670                         res_blocks = result_prev->plane_res_b;
4671         }
4672
4673         if (INTEL_GEN(dev_priv) >= 11) {
4674                 if (wp->y_tiled) {
4675                         uint32_t extra_lines;
4676                         uint_fixed_16_16_t fp_min_disp_buf_needed;
4677
4678                         if (res_lines % wp->y_min_scanlines == 0)
4679                                 extra_lines = wp->y_min_scanlines;
4680                         else
4681                                 extra_lines = wp->y_min_scanlines * 2 -
4682                                               res_lines % wp->y_min_scanlines;
4683
4684                         fp_min_disp_buf_needed = mul_u32_fixed16(res_lines +
4685                                                 extra_lines,
4686                                                 wp->plane_blocks_per_line);
4687                         min_disp_buf_needed = fixed16_to_u32_round_up(
4688                                                 fp_min_disp_buf_needed);
4689                 } else {
4690                         min_disp_buf_needed = DIV_ROUND_UP(res_blocks * 11, 10);
4691                 }
4692         } else {
4693                 min_disp_buf_needed = res_blocks;
4694         }
4695
4696         if ((level > 0 && res_lines > 31) ||
4697             res_blocks >= ddb_allocation ||
4698             min_disp_buf_needed >= ddb_allocation) {
4699                 result->plane_en = false;
4700
4701                 /*
4702                  * If there are no valid level 0 watermarks, then we can't
4703                  * support this display configuration.
4704                  */
4705                 if (level) {
4706                         return 0;
4707                 } else {
4708                         struct drm_plane *plane = pstate->plane;
4709
4710                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
4711                         DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
4712                                       plane->base.id, plane->name,
4713                                       res_blocks, ddb_allocation, res_lines);
4714                         return -EINVAL;
4715                 }
4716         }
4717
4718         /*
4719          * Display WA #826 (SKL:ALL, BXT:ALL) & #1059 (CNL:A)
4720          * disable wm level 1-7 on NV12 planes
4721          */
4722         if (wp->is_planar && level >= 1 &&
4723             (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
4724              IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))) {
4725                 result->plane_en = false;
4726                 return 0;
4727         }
4728
4729         /* The number of lines are ignored for the level 0 watermark. */
4730         result->plane_res_b = res_blocks;
4731         result->plane_res_l = res_lines;
4732         result->plane_en = true;
4733
4734         return 0;
4735 }
4736
4737 static int
4738 skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
4739                       struct skl_ddb_allocation *ddb,
4740                       struct intel_crtc_state *cstate,
4741                       const struct intel_plane_state *intel_pstate,
4742                       const struct skl_wm_params *wm_params,
4743                       struct skl_plane_wm *wm,
4744                       int plane_id)
4745 {
4746         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4747         struct drm_plane *plane = intel_pstate->base.plane;
4748         struct intel_plane *intel_plane = to_intel_plane(plane);
4749         uint16_t ddb_blocks;
4750         enum pipe pipe = intel_crtc->pipe;
4751         int level, max_level = ilk_wm_max_level(dev_priv);
4752         enum plane_id intel_plane_id = intel_plane->id;
4753         int ret;
4754
4755         if (WARN_ON(!intel_pstate->base.fb))
4756                 return -EINVAL;
4757
4758         ddb_blocks = plane_id ?
4759                      skl_ddb_entry_size(&ddb->uv_plane[pipe][intel_plane_id]) :
4760                      skl_ddb_entry_size(&ddb->plane[pipe][intel_plane_id]);
4761
4762         for (level = 0; level <= max_level; level++) {
4763                 struct skl_wm_level *result = plane_id ? &wm->uv_wm[level] :
4764                                                           &wm->wm[level];
4765                 struct skl_wm_level *result_prev;
4766
4767                 if (level)
4768                         result_prev = plane_id ? &wm->uv_wm[level - 1] :
4769                                                   &wm->wm[level - 1];
4770                 else
4771                         result_prev = plane_id ? &wm->uv_wm[0] : &wm->wm[0];
4772
4773                 ret = skl_compute_plane_wm(dev_priv,
4774                                            cstate,
4775                                            intel_pstate,
4776                                            ddb_blocks,
4777                                            level,
4778                                            wm_params,
4779                                            result_prev,
4780                                            result);
4781                 if (ret)
4782                         return ret;
4783         }
4784
4785         if (intel_pstate->base.fb->format->format == DRM_FORMAT_NV12)
4786                 wm->is_planar = true;
4787
4788         return 0;
4789 }
4790
4791 static uint32_t
4792 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
4793 {
4794         struct drm_atomic_state *state = cstate->base.state;
4795         struct drm_i915_private *dev_priv = to_i915(state->dev);
4796         uint_fixed_16_16_t linetime_us;
4797         uint32_t linetime_wm;
4798
4799         linetime_us = intel_get_linetime_us(cstate);
4800
4801         if (is_fixed16_zero(linetime_us))
4802                 return 0;
4803
4804         linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4805
4806         /* Display WA #1135: bxt:ALL GLK:ALL */
4807         if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
4808             dev_priv->ipc_enabled)
4809                 linetime_wm /= 2;
4810
4811         return linetime_wm;
4812 }
4813
4814 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
4815                                       struct skl_wm_params *wp,
4816                                       struct skl_wm_level *wm_l0,
4817                                       uint16_t ddb_allocation,
4818                                       struct skl_wm_level *trans_wm /* out */)
4819 {
4820         struct drm_device *dev = cstate->base.crtc->dev;
4821         const struct drm_i915_private *dev_priv = to_i915(dev);
4822         uint16_t trans_min, trans_y_tile_min;
4823         const uint16_t trans_amount = 10; /* This is configurable amount */
4824         uint16_t trans_offset_b, res_blocks;
4825
4826         if (!cstate->base.active)
4827                 goto exit;
4828
4829         /* Transition WM are not recommended by HW team for GEN9 */
4830         if (INTEL_GEN(dev_priv) <= 9)
4831                 goto exit;
4832
4833         /* Transition WM don't make any sense if ipc is disabled */
4834         if (!dev_priv->ipc_enabled)
4835                 goto exit;
4836
4837         trans_min = 0;
4838         if (INTEL_GEN(dev_priv) >= 10)
4839                 trans_min = 4;
4840
4841         trans_offset_b = trans_min + trans_amount;
4842
4843         if (wp->y_tiled) {
4844                 trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
4845                                                         wp->y_tile_minimum);
4846                 res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
4847                                 trans_offset_b;
4848         } else {
4849                 res_blocks = wm_l0->plane_res_b + trans_offset_b;
4850
4851                 /* WA BUG:1938466 add one block for non y-tile planes */
4852                 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4853                         res_blocks += 1;
4854
4855         }
4856
4857         res_blocks += 1;
4858
4859         if (res_blocks < ddb_allocation) {
4860                 trans_wm->plane_res_b = res_blocks;
4861                 trans_wm->plane_en = true;
4862                 return;
4863         }
4864
4865 exit:
4866         trans_wm->plane_en = false;
4867 }
4868
4869 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
4870                              struct skl_ddb_allocation *ddb,
4871                              struct skl_pipe_wm *pipe_wm)
4872 {
4873         struct drm_device *dev = cstate->base.crtc->dev;
4874         struct drm_crtc_state *crtc_state = &cstate->base;
4875         const struct drm_i915_private *dev_priv = to_i915(dev);
4876         struct drm_plane *plane;
4877         const struct drm_plane_state *pstate;
4878         struct skl_plane_wm *wm;
4879         int ret;
4880
4881         /*
4882          * We'll only calculate watermarks for planes that are actually
4883          * enabled, so make sure all other planes are set as disabled.
4884          */
4885         memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
4886
4887         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
4888                 const struct intel_plane_state *intel_pstate =
4889                                                 to_intel_plane_state(pstate);
4890                 enum plane_id plane_id = to_intel_plane(plane)->id;
4891                 struct skl_wm_params wm_params;
4892                 enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
4893                 uint16_t ddb_blocks;
4894
4895                 wm = &pipe_wm->planes[plane_id];
4896                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
4897
4898                 ret = skl_compute_plane_wm_params(dev_priv, cstate,
4899                                                   intel_pstate, &wm_params, 0);
4900                 if (ret)
4901                         return ret;
4902
4903                 ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4904                                             intel_pstate, &wm_params, wm, 0);
4905                 if (ret)
4906                         return ret;
4907
4908                 skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
4909                                           ddb_blocks, &wm->trans_wm);
4910
4911                 /* uv plane watermarks must also be validated for NV12/Planar */
4912                 if (wm_params.is_planar) {
4913                         memset(&wm_params, 0, sizeof(struct skl_wm_params));
4914                         wm->is_planar = true;
4915
4916                         ret = skl_compute_plane_wm_params(dev_priv, cstate,
4917                                                           intel_pstate,
4918                                                           &wm_params, 1);
4919                         if (ret)
4920                                 return ret;
4921
4922                         ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
4923                                                     intel_pstate, &wm_params,
4924                                                     wm, 1);
4925                         if (ret)
4926                                 return ret;
4927                 }
4928         }
4929
4930         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
4931
4932         return 0;
4933 }
4934
4935 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
4936                                 i915_reg_t reg,
4937                                 const struct skl_ddb_entry *entry)
4938 {
4939         if (entry->end)
4940                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
4941         else
4942                 I915_WRITE(reg, 0);
4943 }
4944
4945 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
4946                                i915_reg_t reg,
4947                                const struct skl_wm_level *level)
4948 {
4949         uint32_t val = 0;
4950
4951         if (level->plane_en) {
4952                 val |= PLANE_WM_EN;
4953                 val |= level->plane_res_b;
4954                 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
4955         }
4956
4957         I915_WRITE(reg, val);
4958 }
4959
4960 static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
4961                                const struct skl_plane_wm *wm,
4962                                const struct skl_ddb_allocation *ddb,
4963                                enum plane_id plane_id)
4964 {
4965         struct drm_crtc *crtc = &intel_crtc->base;
4966         struct drm_device *dev = crtc->dev;
4967         struct drm_i915_private *dev_priv = to_i915(dev);
4968         int level, max_level = ilk_wm_max_level(dev_priv);
4969         enum pipe pipe = intel_crtc->pipe;
4970
4971         for (level = 0; level <= max_level; level++) {
4972                 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
4973                                    &wm->wm[level]);
4974         }
4975         skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
4976                            &wm->trans_wm);
4977
4978         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4979                             &ddb->plane[pipe][plane_id]);
4980         if (INTEL_GEN(dev_priv) >= 11)
4981                 return skl_ddb_entry_write(dev_priv,
4982                                            PLANE_BUF_CFG(pipe, plane_id),
4983                                            &ddb->plane[pipe][plane_id]);
4984         if (wm->is_planar) {
4985                 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4986                                     &ddb->uv_plane[pipe][plane_id]);
4987                 skl_ddb_entry_write(dev_priv,
4988                                     PLANE_NV12_BUF_CFG(pipe, plane_id),
4989                                     &ddb->plane[pipe][plane_id]);
4990         } else {
4991                 skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
4992                                     &ddb->plane[pipe][plane_id]);
4993                 I915_WRITE(PLANE_NV12_BUF_CFG(pipe, plane_id), 0x0);
4994         }
4995 }
4996
4997 static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
4998                                 const struct skl_plane_wm *wm,
4999                                 const struct skl_ddb_allocation *ddb)
5000 {
5001         struct drm_crtc *crtc = &intel_crtc->base;
5002         struct drm_device *dev = crtc->dev;
5003         struct drm_i915_private *dev_priv = to_i915(dev);
5004         int level, max_level = ilk_wm_max_level(dev_priv);
5005         enum pipe pipe = intel_crtc->pipe;
5006
5007         for (level = 0; level <= max_level; level++) {
5008                 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5009                                    &wm->wm[level]);
5010         }
5011         skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5012
5013         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
5014                             &ddb->plane[pipe][PLANE_CURSOR]);
5015 }
5016
5017 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5018                          const struct skl_wm_level *l2)
5019 {
5020         if (l1->plane_en != l2->plane_en)
5021                 return false;
5022
5023         /* If both planes aren't enabled, the rest shouldn't matter */
5024         if (!l1->plane_en)
5025                 return true;
5026
5027         return (l1->plane_res_l == l2->plane_res_l &&
5028                 l1->plane_res_b == l2->plane_res_b);
5029 }
5030
5031 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5032                                            const struct skl_ddb_entry *b)
5033 {
5034         return a->start < b->end && b->start < a->end;
5035 }
5036
5037 bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
5038                                  const struct skl_ddb_entry **entries,
5039                                  const struct skl_ddb_entry *ddb,
5040                                  int ignore)
5041 {
5042         enum pipe pipe;
5043
5044         for_each_pipe(dev_priv, pipe) {
5045                 if (pipe != ignore && entries[pipe] &&
5046                     skl_ddb_entries_overlap(ddb, entries[pipe]))
5047                         return true;
5048         }
5049
5050         return false;
5051 }
5052
5053 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
5054                               const struct skl_pipe_wm *old_pipe_wm,
5055                               struct skl_pipe_wm *pipe_wm, /* out */
5056                               struct skl_ddb_allocation *ddb, /* out */
5057                               bool *changed /* out */)
5058 {
5059         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
5060         int ret;
5061
5062         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
5063         if (ret)
5064                 return ret;
5065
5066         if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
5067                 *changed = false;
5068         else
5069                 *changed = true;
5070
5071         return 0;
5072 }
5073
5074 static uint32_t
5075 pipes_modified(struct drm_atomic_state *state)
5076 {
5077         struct drm_crtc *crtc;
5078         struct drm_crtc_state *cstate;
5079         uint32_t i, ret = 0;
5080
5081         for_each_new_crtc_in_state(state, crtc, cstate, i)
5082                 ret |= drm_crtc_mask(crtc);
5083
5084         return ret;
5085 }
5086
5087 static int
5088 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
5089 {
5090         struct drm_atomic_state *state = cstate->base.state;
5091         struct drm_device *dev = state->dev;
5092         struct drm_crtc *crtc = cstate->base.crtc;
5093         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5094         struct drm_i915_private *dev_priv = to_i915(dev);
5095         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5096         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5097         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
5098         struct drm_plane_state *plane_state;
5099         struct drm_plane *plane;
5100         enum pipe pipe = intel_crtc->pipe;
5101
5102         drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
5103                 enum plane_id plane_id = to_intel_plane(plane)->id;
5104
5105                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
5106                                         &new_ddb->plane[pipe][plane_id]) &&
5107                     skl_ddb_entry_equal(&cur_ddb->uv_plane[pipe][plane_id],
5108                                         &new_ddb->uv_plane[pipe][plane_id]))
5109                         continue;
5110
5111                 plane_state = drm_atomic_get_plane_state(state, plane);
5112                 if (IS_ERR(plane_state))
5113                         return PTR_ERR(plane_state);
5114         }
5115
5116         return 0;
5117 }
5118
5119 static int
5120 skl_compute_ddb(struct drm_atomic_state *state)
5121 {
5122         const struct drm_i915_private *dev_priv = to_i915(state->dev);
5123         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5124         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
5125         struct intel_crtc *crtc;
5126         struct intel_crtc_state *cstate;
5127         int ret, i;
5128
5129         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5130
5131         for_each_new_intel_crtc_in_state(intel_state, crtc, cstate, i) {
5132                 ret = skl_allocate_pipe_ddb(cstate, ddb);
5133                 if (ret)
5134                         return ret;
5135
5136                 ret = skl_ddb_add_affected_planes(cstate);
5137                 if (ret)
5138                         return ret;
5139         }
5140
5141         return 0;
5142 }
5143
5144 static void
5145 skl_copy_ddb_for_pipe(struct skl_ddb_values *dst,
5146                       struct skl_ddb_values *src,
5147                       enum pipe pipe)
5148 {
5149         memcpy(dst->ddb.uv_plane[pipe], src->ddb.uv_plane[pipe],
5150                sizeof(dst->ddb.uv_plane[pipe]));
5151         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
5152                sizeof(dst->ddb.plane[pipe]));
5153 }
5154
5155 static void
5156 skl_print_wm_changes(const struct drm_atomic_state *state)
5157 {
5158         const struct drm_device *dev = state->dev;
5159         const struct drm_i915_private *dev_priv = to_i915(dev);
5160         const struct intel_atomic_state *intel_state =
5161                 to_intel_atomic_state(state);
5162         const struct drm_crtc *crtc;
5163         const struct drm_crtc_state *cstate;
5164         const struct intel_plane *intel_plane;
5165         const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
5166         const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
5167         int i;
5168
5169         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5170                 const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5171                 enum pipe pipe = intel_crtc->pipe;
5172
5173                 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
5174                         enum plane_id plane_id = intel_plane->id;
5175                         const struct skl_ddb_entry *old, *new;
5176
5177                         old = &old_ddb->plane[pipe][plane_id];
5178                         new = &new_ddb->plane[pipe][plane_id];
5179
5180                         if (skl_ddb_entry_equal(old, new))
5181                                 continue;
5182
5183                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
5184                                          intel_plane->base.base.id,
5185                                          intel_plane->base.name,
5186                                          old->start, old->end,
5187                                          new->start, new->end);
5188                 }
5189         }
5190 }
5191
5192 static int
5193 skl_ddb_add_affected_pipes(struct drm_atomic_state *state, bool *changed)
5194 {
5195         struct drm_device *dev = state->dev;
5196         const struct drm_i915_private *dev_priv = to_i915(dev);
5197         const struct drm_crtc *crtc;
5198         const struct drm_crtc_state *cstate;
5199         struct intel_crtc *intel_crtc;
5200         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5201         uint32_t realloc_pipes = pipes_modified(state);
5202         int ret, i;
5203
5204         /*
5205          * When we distrust bios wm we always need to recompute to set the
5206          * expected DDB allocations for each CRTC.
5207          */
5208         if (dev_priv->wm.distrust_bios_wm)
5209                 (*changed) = true;
5210
5211         /*
5212          * If this transaction isn't actually touching any CRTC's, don't
5213          * bother with watermark calculation.  Note that if we pass this
5214          * test, we're guaranteed to hold at least one CRTC state mutex,
5215          * which means we can safely use values like dev_priv->active_crtcs
5216          * since any racing commits that want to update them would need to
5217          * hold _all_ CRTC state mutexes.
5218          */
5219         for_each_new_crtc_in_state(state, crtc, cstate, i)
5220                 (*changed) = true;
5221
5222         if (!*changed)
5223                 return 0;
5224
5225         /*
5226          * If this is our first atomic update following hardware readout,
5227          * we can't trust the DDB that the BIOS programmed for us.  Let's
5228          * pretend that all pipes switched active status so that we'll
5229          * ensure a full DDB recompute.
5230          */
5231         if (dev_priv->wm.distrust_bios_wm) {
5232                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5233                                        state->acquire_ctx);
5234                 if (ret)
5235                         return ret;
5236
5237                 intel_state->active_pipe_changes = ~0;
5238
5239                 /*
5240                  * We usually only initialize intel_state->active_crtcs if we
5241                  * we're doing a modeset; make sure this field is always
5242                  * initialized during the sanitization process that happens
5243                  * on the first commit too.
5244                  */
5245                 if (!intel_state->modeset)
5246                         intel_state->active_crtcs = dev_priv->active_crtcs;
5247         }
5248
5249         /*
5250          * If the modeset changes which CRTC's are active, we need to
5251          * recompute the DDB allocation for *all* active pipes, even
5252          * those that weren't otherwise being modified in any way by this
5253          * atomic commit.  Due to the shrinking of the per-pipe allocations
5254          * when new active CRTC's are added, it's possible for a pipe that
5255          * we were already using and aren't changing at all here to suddenly
5256          * become invalid if its DDB needs exceeds its new allocation.
5257          *
5258          * Note that if we wind up doing a full DDB recompute, we can't let
5259          * any other display updates race with this transaction, so we need
5260          * to grab the lock on *all* CRTC's.
5261          */
5262         if (intel_state->active_pipe_changes) {
5263                 realloc_pipes = ~0;
5264                 intel_state->wm_results.dirty_pipes = ~0;
5265         }
5266
5267         /*
5268          * We're not recomputing for the pipes not included in the commit, so
5269          * make sure we start with the current state.
5270          */
5271         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
5272                 struct intel_crtc_state *cstate;
5273
5274                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
5275                 if (IS_ERR(cstate))
5276                         return PTR_ERR(cstate);
5277         }
5278
5279         return 0;
5280 }
5281
5282 static int
5283 skl_compute_wm(struct drm_atomic_state *state)
5284 {
5285         struct drm_crtc *crtc;
5286         struct drm_crtc_state *cstate;
5287         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5288         struct skl_ddb_values *results = &intel_state->wm_results;
5289         struct skl_pipe_wm *pipe_wm;
5290         bool changed = false;
5291         int ret, i;
5292
5293         /* Clear all dirty flags */
5294         results->dirty_pipes = 0;
5295
5296         ret = skl_ddb_add_affected_pipes(state, &changed);
5297         if (ret || !changed)
5298                 return ret;
5299
5300         ret = skl_compute_ddb(state);
5301         if (ret)
5302                 return ret;
5303
5304         /*
5305          * Calculate WM's for all pipes that are part of this transaction.
5306          * Note that the DDB allocation above may have added more CRTC's that
5307          * weren't otherwise being modified (and set bits in dirty_pipes) if
5308          * pipe allocations had to change.
5309          *
5310          * FIXME:  Now that we're doing this in the atomic check phase, we
5311          * should allow skl_update_pipe_wm() to return failure in cases where
5312          * no suitable watermark values can be found.
5313          */
5314         for_each_new_crtc_in_state(state, crtc, cstate, i) {
5315                 struct intel_crtc_state *intel_cstate =
5316                         to_intel_crtc_state(cstate);
5317                 const struct skl_pipe_wm *old_pipe_wm =
5318                         &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
5319
5320                 pipe_wm = &intel_cstate->wm.skl.optimal;
5321                 ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
5322                                          &results->ddb, &changed);
5323                 if (ret)
5324                         return ret;
5325
5326                 if (changed)
5327                         results->dirty_pipes |= drm_crtc_mask(crtc);
5328
5329                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
5330                         /* This pipe's WM's did not change */
5331                         continue;
5332
5333                 intel_cstate->update_wm_pre = true;
5334         }
5335
5336         skl_print_wm_changes(state);
5337
5338         return 0;
5339 }
5340
5341 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5342                                       struct intel_crtc_state *cstate)
5343 {
5344         struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
5345         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5346         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
5347         const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5348         enum pipe pipe = crtc->pipe;
5349         enum plane_id plane_id;
5350
5351         if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5352                 return;
5353
5354         I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5355
5356         for_each_plane_id_on_crtc(crtc, plane_id) {
5357                 if (plane_id != PLANE_CURSOR)
5358                         skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
5359                                            ddb, plane_id);
5360                 else
5361                         skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
5362                                             ddb);
5363         }
5364 }
5365
5366 static void skl_initial_wm(struct intel_atomic_state *state,
5367                            struct intel_crtc_state *cstate)
5368 {
5369         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5370         struct drm_device *dev = intel_crtc->base.dev;
5371         struct drm_i915_private *dev_priv = to_i915(dev);
5372         struct skl_ddb_values *results = &state->wm_results;
5373         struct skl_ddb_values *hw_vals = &dev_priv->wm.skl_hw;
5374         enum pipe pipe = intel_crtc->pipe;
5375
5376         if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5377                 return;
5378
5379         mutex_lock(&dev_priv->wm.wm_mutex);
5380
5381         if (cstate->base.active_changed)
5382                 skl_atomic_update_crtc_wm(state, cstate);
5383
5384         skl_copy_ddb_for_pipe(hw_vals, results, pipe);
5385
5386         mutex_unlock(&dev_priv->wm.wm_mutex);
5387 }
5388
5389 static void ilk_compute_wm_config(struct drm_device *dev,
5390                                   struct intel_wm_config *config)
5391 {
5392         struct intel_crtc *crtc;
5393
5394         /* Compute the currently _active_ config */
5395         for_each_intel_crtc(dev, crtc) {
5396                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5397
5398                 if (!wm->pipe_enabled)
5399                         continue;
5400
5401                 config->sprites_enabled |= wm->sprites_enabled;
5402                 config->sprites_scaled |= wm->sprites_scaled;
5403                 config->num_pipes_active++;
5404         }
5405 }
5406
5407 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5408 {
5409         struct drm_device *dev = &dev_priv->drm;
5410         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5411         struct ilk_wm_maximums max;
5412         struct intel_wm_config config = {};
5413         struct ilk_wm_values results = {};
5414         enum intel_ddb_partitioning partitioning;
5415
5416         ilk_compute_wm_config(dev, &config);
5417
5418         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
5419         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
5420
5421         /* 5/6 split only in single pipe config on IVB+ */
5422         if (INTEL_GEN(dev_priv) >= 7 &&
5423             config.num_pipes_active == 1 && config.sprites_enabled) {
5424                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
5425                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
5426
5427                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
5428         } else {
5429                 best_lp_wm = &lp_wm_1_2;
5430         }
5431
5432         partitioning = (best_lp_wm == &lp_wm_1_2) ?
5433                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5434
5435         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
5436
5437         ilk_write_wm_values(dev_priv, &results);
5438 }
5439
5440 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5441                                    struct intel_crtc_state *cstate)
5442 {
5443         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5444         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5445
5446         mutex_lock(&dev_priv->wm.wm_mutex);
5447         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
5448         ilk_program_watermarks(dev_priv);
5449         mutex_unlock(&dev_priv->wm.wm_mutex);
5450 }
5451
5452 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5453                                     struct intel_crtc_state *cstate)
5454 {
5455         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
5456         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
5457
5458         mutex_lock(&dev_priv->wm.wm_mutex);
5459         if (cstate->wm.need_postvbl_update) {
5460                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
5461                 ilk_program_watermarks(dev_priv);
5462         }
5463         mutex_unlock(&dev_priv->wm.wm_mutex);
5464 }
5465
5466 static inline void skl_wm_level_from_reg_val(uint32_t val,
5467                                              struct skl_wm_level *level)
5468 {
5469         level->plane_en = val & PLANE_WM_EN;
5470         level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5471         level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5472                 PLANE_WM_LINES_MASK;
5473 }
5474
5475 void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
5476                               struct skl_pipe_wm *out)
5477 {
5478         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5479         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480         enum pipe pipe = intel_crtc->pipe;
5481         int level, max_level;
5482         enum plane_id plane_id;
5483         uint32_t val;
5484
5485         max_level = ilk_wm_max_level(dev_priv);
5486
5487         for_each_plane_id_on_crtc(intel_crtc, plane_id) {
5488                 struct skl_plane_wm *wm = &out->planes[plane_id];
5489
5490                 for (level = 0; level <= max_level; level++) {
5491                         if (plane_id != PLANE_CURSOR)
5492                                 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5493                         else
5494                                 val = I915_READ(CUR_WM(pipe, level));
5495
5496                         skl_wm_level_from_reg_val(val, &wm->wm[level]);
5497                 }
5498
5499                 if (plane_id != PLANE_CURSOR)
5500                         val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5501                 else
5502                         val = I915_READ(CUR_WM_TRANS(pipe));
5503
5504                 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5505         }
5506
5507         if (!intel_crtc->active)
5508                 return;
5509
5510         out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5511 }
5512
5513 void skl_wm_get_hw_state(struct drm_device *dev)
5514 {
5515         struct drm_i915_private *dev_priv = to_i915(dev);
5516         struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5517         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5518         struct drm_crtc *crtc;
5519         struct intel_crtc *intel_crtc;
5520         struct intel_crtc_state *cstate;
5521
5522         skl_ddb_get_hw_state(dev_priv, ddb);
5523         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5524                 intel_crtc = to_intel_crtc(crtc);
5525                 cstate = to_intel_crtc_state(crtc->state);
5526
5527                 skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
5528
5529                 if (intel_crtc->active)
5530                         hw->dirty_pipes |= drm_crtc_mask(crtc);
5531         }
5532
5533         if (dev_priv->active_crtcs) {
5534                 /* Fully recompute DDB on first atomic commit */
5535                 dev_priv->wm.distrust_bios_wm = true;
5536         } else {
5537                 /*
5538                  * Easy/common case; just sanitize DDB now if everything off
5539                  * Keep dbuf slice info intact
5540                  */
5541                 memset(ddb->plane, 0, sizeof(ddb->plane));
5542                 memset(ddb->uv_plane, 0, sizeof(ddb->uv_plane));
5543         }
5544 }
5545
5546 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
5547 {
5548         struct drm_device *dev = crtc->dev;
5549         struct drm_i915_private *dev_priv = to_i915(dev);
5550         struct ilk_wm_values *hw = &dev_priv->wm.hw;
5551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5552         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
5553         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
5554         enum pipe pipe = intel_crtc->pipe;
5555         static const i915_reg_t wm0_pipe_reg[] = {
5556                 [PIPE_A] = WM0_PIPEA_ILK,
5557                 [PIPE_B] = WM0_PIPEB_ILK,
5558                 [PIPE_C] = WM0_PIPEC_IVB,
5559         };
5560
5561         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5562         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5563                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5564
5565         memset(active, 0, sizeof(*active));
5566
5567         active->pipe_enabled = intel_crtc->active;
5568
5569         if (active->pipe_enabled) {
5570                 u32 tmp = hw->wm_pipe[pipe];
5571
5572                 /*
5573                  * For active pipes LP0 watermark is marked as
5574                  * enabled, and LP1+ watermaks as disabled since
5575                  * we can't really reverse compute them in case
5576                  * multiple pipes are active.
5577                  */
5578                 active->wm[0].enable = true;
5579                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5580                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5581                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5582                 active->linetime = hw->wm_linetime[pipe];
5583         } else {
5584                 int level, max_level = ilk_wm_max_level(dev_priv);
5585
5586                 /*
5587                  * For inactive pipes, all watermark levels
5588                  * should be marked as enabled but zeroed,
5589                  * which is what we'd compute them to.
5590                  */
5591                 for (level = 0; level <= max_level; level++)
5592                         active->wm[level].enable = true;
5593         }
5594
5595         intel_crtc->wm.active.ilk = *active;
5596 }
5597
5598 #define _FW_WM(value, plane) \
5599         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5600 #define _FW_WM_VLV(value, plane) \
5601         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5602
5603 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5604                                struct g4x_wm_values *wm)
5605 {
5606         uint32_t tmp;
5607
5608         tmp = I915_READ(DSPFW1);
5609         wm->sr.plane = _FW_WM(tmp, SR);
5610         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5611         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5612         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5613
5614         tmp = I915_READ(DSPFW2);
5615         wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5616         wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5617         wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5618         wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5619         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5620         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5621
5622         tmp = I915_READ(DSPFW3);
5623         wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5624         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5625         wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5626         wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5627 }
5628
5629 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5630                                struct vlv_wm_values *wm)
5631 {
5632         enum pipe pipe;
5633         uint32_t tmp;
5634
5635         for_each_pipe(dev_priv, pipe) {
5636                 tmp = I915_READ(VLV_DDL(pipe));
5637
5638                 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5639                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5640                 wm->ddl[pipe].plane[PLANE_CURSOR] =
5641                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5642                 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5643                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5644                 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5645                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5646         }
5647
5648         tmp = I915_READ(DSPFW1);
5649         wm->sr.plane = _FW_WM(tmp, SR);
5650         wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5651         wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5652         wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5653
5654         tmp = I915_READ(DSPFW2);
5655         wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5656         wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5657         wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5658
5659         tmp = I915_READ(DSPFW3);
5660         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5661
5662         if (IS_CHERRYVIEW(dev_priv)) {
5663                 tmp = I915_READ(DSPFW7_CHV);
5664                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5665                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5666
5667                 tmp = I915_READ(DSPFW8_CHV);
5668                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5669                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5670
5671                 tmp = I915_READ(DSPFW9_CHV);
5672                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5673                 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5674
5675                 tmp = I915_READ(DSPHOWM);
5676                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5677                 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5678                 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5679                 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5680                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5681                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5682                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5683                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5684                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5685                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5686         } else {
5687                 tmp = I915_READ(DSPFW7);
5688                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5689                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5690
5691                 tmp = I915_READ(DSPHOWM);
5692                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5693                 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5694                 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5695                 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5696                 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5697                 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5698                 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5699         }
5700 }
5701
5702 #undef _FW_WM
5703 #undef _FW_WM_VLV
5704
5705 void g4x_wm_get_hw_state(struct drm_device *dev)
5706 {
5707         struct drm_i915_private *dev_priv = to_i915(dev);
5708         struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5709         struct intel_crtc *crtc;
5710
5711         g4x_read_wm_values(dev_priv, wm);
5712
5713         wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5714
5715         for_each_intel_crtc(dev, crtc) {
5716                 struct intel_crtc_state *crtc_state =
5717                         to_intel_crtc_state(crtc->base.state);
5718                 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5719                 struct g4x_pipe_wm *raw;
5720                 enum pipe pipe = crtc->pipe;
5721                 enum plane_id plane_id;
5722                 int level, max_level;
5723
5724                 active->cxsr = wm->cxsr;
5725                 active->hpll_en = wm->hpll_en;
5726                 active->fbc_en = wm->fbc_en;
5727
5728                 active->sr = wm->sr;
5729                 active->hpll = wm->hpll;
5730
5731                 for_each_plane_id_on_crtc(crtc, plane_id) {
5732                         active->wm.plane[plane_id] =
5733                                 wm->pipe[pipe].plane[plane_id];
5734                 }
5735
5736                 if (wm->cxsr && wm->hpll_en)
5737                         max_level = G4X_WM_LEVEL_HPLL;
5738                 else if (wm->cxsr)
5739                         max_level = G4X_WM_LEVEL_SR;
5740                 else
5741                         max_level = G4X_WM_LEVEL_NORMAL;
5742
5743                 level = G4X_WM_LEVEL_NORMAL;
5744                 raw = &crtc_state->wm.g4x.raw[level];
5745                 for_each_plane_id_on_crtc(crtc, plane_id)
5746                         raw->plane[plane_id] = active->wm.plane[plane_id];
5747
5748                 if (++level > max_level)
5749                         goto out;
5750
5751                 raw = &crtc_state->wm.g4x.raw[level];
5752                 raw->plane[PLANE_PRIMARY] = active->sr.plane;
5753                 raw->plane[PLANE_CURSOR] = active->sr.cursor;
5754                 raw->plane[PLANE_SPRITE0] = 0;
5755                 raw->fbc = active->sr.fbc;
5756
5757                 if (++level > max_level)
5758                         goto out;
5759
5760                 raw = &crtc_state->wm.g4x.raw[level];
5761                 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
5762                 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
5763                 raw->plane[PLANE_SPRITE0] = 0;
5764                 raw->fbc = active->hpll.fbc;
5765
5766         out:
5767                 for_each_plane_id_on_crtc(crtc, plane_id)
5768                         g4x_raw_plane_wm_set(crtc_state, level,
5769                                              plane_id, USHRT_MAX);
5770                 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
5771
5772                 crtc_state->wm.g4x.optimal = *active;
5773                 crtc_state->wm.g4x.intermediate = *active;
5774
5775                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
5776                               pipe_name(pipe),
5777                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5778                               wm->pipe[pipe].plane[PLANE_CURSOR],
5779                               wm->pipe[pipe].plane[PLANE_SPRITE0]);
5780         }
5781
5782         DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
5783                       wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
5784         DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
5785                       wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
5786         DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
5787                       yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
5788 }
5789
5790 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
5791 {
5792         struct intel_plane *plane;
5793         struct intel_crtc *crtc;
5794
5795         mutex_lock(&dev_priv->wm.wm_mutex);
5796
5797         for_each_intel_plane(&dev_priv->drm, plane) {
5798                 struct intel_crtc *crtc =
5799                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5800                 struct intel_crtc_state *crtc_state =
5801                         to_intel_crtc_state(crtc->base.state);
5802                 struct intel_plane_state *plane_state =
5803                         to_intel_plane_state(plane->base.state);
5804                 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
5805                 enum plane_id plane_id = plane->id;
5806                 int level;
5807
5808                 if (plane_state->base.visible)
5809                         continue;
5810
5811                 for (level = 0; level < 3; level++) {
5812                         struct g4x_pipe_wm *raw =
5813                                 &crtc_state->wm.g4x.raw[level];
5814
5815                         raw->plane[plane_id] = 0;
5816                         wm_state->wm.plane[plane_id] = 0;
5817                 }
5818
5819                 if (plane_id == PLANE_PRIMARY) {
5820                         for (level = 0; level < 3; level++) {
5821                                 struct g4x_pipe_wm *raw =
5822                                         &crtc_state->wm.g4x.raw[level];
5823                                 raw->fbc = 0;
5824                         }
5825
5826                         wm_state->sr.fbc = 0;
5827                         wm_state->hpll.fbc = 0;
5828                         wm_state->fbc_en = false;
5829                 }
5830         }
5831
5832         for_each_intel_crtc(&dev_priv->drm, crtc) {
5833                 struct intel_crtc_state *crtc_state =
5834                         to_intel_crtc_state(crtc->base.state);
5835
5836                 crtc_state->wm.g4x.intermediate =
5837                         crtc_state->wm.g4x.optimal;
5838                 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
5839         }
5840
5841         g4x_program_watermarks(dev_priv);
5842
5843         mutex_unlock(&dev_priv->wm.wm_mutex);
5844 }
5845
5846 void vlv_wm_get_hw_state(struct drm_device *dev)
5847 {
5848         struct drm_i915_private *dev_priv = to_i915(dev);
5849         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
5850         struct intel_crtc *crtc;
5851         u32 val;
5852
5853         vlv_read_wm_values(dev_priv, wm);
5854
5855         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
5856         wm->level = VLV_WM_LEVEL_PM2;
5857
5858         if (IS_CHERRYVIEW(dev_priv)) {
5859                 mutex_lock(&dev_priv->pcu_lock);
5860
5861                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5862                 if (val & DSP_MAXFIFO_PM5_ENABLE)
5863                         wm->level = VLV_WM_LEVEL_PM5;
5864
5865                 /*
5866                  * If DDR DVFS is disabled in the BIOS, Punit
5867                  * will never ack the request. So if that happens
5868                  * assume we don't have to enable/disable DDR DVFS
5869                  * dynamically. To test that just set the REQ_ACK
5870                  * bit to poke the Punit, but don't change the
5871                  * HIGH/LOW bits so that we don't actually change
5872                  * the current state.
5873                  */
5874                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5875                 val |= FORCE_DDR_FREQ_REQ_ACK;
5876                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
5877
5878                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
5879                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
5880                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
5881                                       "assuming DDR DVFS is disabled\n");
5882                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
5883                 } else {
5884                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
5885                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
5886                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
5887                 }
5888
5889                 mutex_unlock(&dev_priv->pcu_lock);
5890         }
5891
5892         for_each_intel_crtc(dev, crtc) {
5893                 struct intel_crtc_state *crtc_state =
5894                         to_intel_crtc_state(crtc->base.state);
5895                 struct vlv_wm_state *active = &crtc->wm.active.vlv;
5896                 const struct vlv_fifo_state *fifo_state =
5897                         &crtc_state->wm.vlv.fifo_state;
5898                 enum pipe pipe = crtc->pipe;
5899                 enum plane_id plane_id;
5900                 int level;
5901
5902                 vlv_get_fifo_size(crtc_state);
5903
5904                 active->num_levels = wm->level + 1;
5905                 active->cxsr = wm->cxsr;
5906
5907                 for (level = 0; level < active->num_levels; level++) {
5908                         struct g4x_pipe_wm *raw =
5909                                 &crtc_state->wm.vlv.raw[level];
5910
5911                         active->sr[level].plane = wm->sr.plane;
5912                         active->sr[level].cursor = wm->sr.cursor;
5913
5914                         for_each_plane_id_on_crtc(crtc, plane_id) {
5915                                 active->wm[level].plane[plane_id] =
5916                                         wm->pipe[pipe].plane[plane_id];
5917
5918                                 raw->plane[plane_id] =
5919                                         vlv_invert_wm_value(active->wm[level].plane[plane_id],
5920                                                             fifo_state->plane[plane_id]);
5921                         }
5922                 }
5923
5924                 for_each_plane_id_on_crtc(crtc, plane_id)
5925                         vlv_raw_plane_wm_set(crtc_state, level,
5926                                              plane_id, USHRT_MAX);
5927                 vlv_invalidate_wms(crtc, active, level);
5928
5929                 crtc_state->wm.vlv.optimal = *active;
5930                 crtc_state->wm.vlv.intermediate = *active;
5931
5932                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
5933                               pipe_name(pipe),
5934                               wm->pipe[pipe].plane[PLANE_PRIMARY],
5935                               wm->pipe[pipe].plane[PLANE_CURSOR],
5936                               wm->pipe[pipe].plane[PLANE_SPRITE0],
5937                               wm->pipe[pipe].plane[PLANE_SPRITE1]);
5938         }
5939
5940         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
5941                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
5942 }
5943
5944 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
5945 {
5946         struct intel_plane *plane;
5947         struct intel_crtc *crtc;
5948
5949         mutex_lock(&dev_priv->wm.wm_mutex);
5950
5951         for_each_intel_plane(&dev_priv->drm, plane) {
5952                 struct intel_crtc *crtc =
5953                         intel_get_crtc_for_pipe(dev_priv, plane->pipe);
5954                 struct intel_crtc_state *crtc_state =
5955                         to_intel_crtc_state(crtc->base.state);
5956                 struct intel_plane_state *plane_state =
5957                         to_intel_plane_state(plane->base.state);
5958                 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
5959                 const struct vlv_fifo_state *fifo_state =
5960                         &crtc_state->wm.vlv.fifo_state;
5961                 enum plane_id plane_id = plane->id;
5962                 int level;
5963
5964                 if (plane_state->base.visible)
5965                         continue;
5966
5967                 for (level = 0; level < wm_state->num_levels; level++) {
5968                         struct g4x_pipe_wm *raw =
5969                                 &crtc_state->wm.vlv.raw[level];
5970
5971                         raw->plane[plane_id] = 0;
5972
5973                         wm_state->wm[level].plane[plane_id] =
5974                                 vlv_invert_wm_value(raw->plane[plane_id],
5975                                                     fifo_state->plane[plane_id]);
5976                 }
5977         }
5978
5979         for_each_intel_crtc(&dev_priv->drm, crtc) {
5980                 struct intel_crtc_state *crtc_state =
5981                         to_intel_crtc_state(crtc->base.state);
5982
5983                 crtc_state->wm.vlv.intermediate =
5984                         crtc_state->wm.vlv.optimal;
5985                 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
5986         }
5987
5988         vlv_program_watermarks(dev_priv);
5989
5990         mutex_unlock(&dev_priv->wm.wm_mutex);
5991 }
5992
5993 /*
5994  * FIXME should probably kill this and improve
5995  * the real watermark readout/sanitation instead
5996  */
5997 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
5998 {
5999         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6000         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6001         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6002
6003         /*
6004          * Don't touch WM1S_LP_EN here.
6005          * Doing so could cause underruns.
6006          */
6007 }
6008
6009 void ilk_wm_get_hw_state(struct drm_device *dev)
6010 {
6011         struct drm_i915_private *dev_priv = to_i915(dev);
6012         struct ilk_wm_values *hw = &dev_priv->wm.hw;
6013         struct drm_crtc *crtc;
6014
6015         ilk_init_lp_watermarks(dev_priv);
6016
6017         for_each_crtc(dev, crtc)
6018                 ilk_pipe_wm_get_hw_state(crtc);
6019
6020         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6021         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6022         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6023
6024         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6025         if (INTEL_GEN(dev_priv) >= 7) {
6026                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6027                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6028         }
6029
6030         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6031                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6032                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6033         else if (IS_IVYBRIDGE(dev_priv))
6034                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6035                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6036
6037         hw->enable_fbc_wm =
6038                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6039 }
6040
6041 /**
6042  * intel_update_watermarks - update FIFO watermark values based on current modes
6043  * @crtc: the #intel_crtc on which to compute the WM
6044  *
6045  * Calculate watermark values for the various WM regs based on current mode
6046  * and plane configuration.
6047  *
6048  * There are several cases to deal with here:
6049  *   - normal (i.e. non-self-refresh)
6050  *   - self-refresh (SR) mode
6051  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6052  *   - lines are small relative to FIFO size (buffer can hold more than 2
6053  *     lines), so need to account for TLB latency
6054  *
6055  *   The normal calculation is:
6056  *     watermark = dotclock * bytes per pixel * latency
6057  *   where latency is platform & configuration dependent (we assume pessimal
6058  *   values here).
6059  *
6060  *   The SR calculation is:
6061  *     watermark = (trunc(latency/line time)+1) * surface width *
6062  *       bytes per pixel
6063  *   where
6064  *     line time = htotal / dotclock
6065  *     surface width = hdisplay for normal plane and 64 for cursor
6066  *   and latency is assumed to be high, as above.
6067  *
6068  * The final value programmed to the register should always be rounded up,
6069  * and include an extra 2 entries to account for clock crossings.
6070  *
6071  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6072  * to set the non-SR watermarks to 8.
6073  */
6074 void intel_update_watermarks(struct intel_crtc *crtc)
6075 {
6076         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6077
6078         if (dev_priv->display.update_wm)
6079                 dev_priv->display.update_wm(crtc);
6080 }
6081
6082 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6083 {
6084         u32 val;
6085
6086         /* Display WA #0477 WaDisableIPC: skl */
6087         if (IS_SKYLAKE(dev_priv)) {
6088                 dev_priv->ipc_enabled = false;
6089                 return;
6090         }
6091
6092         val = I915_READ(DISP_ARB_CTL2);
6093
6094         if (dev_priv->ipc_enabled)
6095                 val |= DISP_IPC_ENABLE;
6096         else
6097                 val &= ~DISP_IPC_ENABLE;
6098
6099         I915_WRITE(DISP_ARB_CTL2, val);
6100 }
6101
6102 void intel_init_ipc(struct drm_i915_private *dev_priv)
6103 {
6104         dev_priv->ipc_enabled = false;
6105         if (!HAS_IPC(dev_priv))
6106                 return;
6107
6108         dev_priv->ipc_enabled = true;
6109         intel_enable_ipc(dev_priv);
6110 }
6111
6112 /*
6113  * Lock protecting IPS related data structures
6114  */
6115 DEFINE_SPINLOCK(mchdev_lock);
6116
6117 /* Global for IPS driver to get at the current i915 device. Protected by
6118  * mchdev_lock. */
6119 static struct drm_i915_private *i915_mch_dev;
6120
6121 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
6122 {
6123         u16 rgvswctl;
6124
6125         lockdep_assert_held(&mchdev_lock);
6126
6127         rgvswctl = I915_READ16(MEMSWCTL);
6128         if (rgvswctl & MEMCTL_CMD_STS) {
6129                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6130                 return false; /* still busy with another command */
6131         }
6132
6133         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6134                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6135         I915_WRITE16(MEMSWCTL, rgvswctl);
6136         POSTING_READ16(MEMSWCTL);
6137
6138         rgvswctl |= MEMCTL_CMD_STS;
6139         I915_WRITE16(MEMSWCTL, rgvswctl);
6140
6141         return true;
6142 }
6143
6144 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6145 {
6146         u32 rgvmodectl;
6147         u8 fmax, fmin, fstart, vstart;
6148
6149         spin_lock_irq(&mchdev_lock);
6150
6151         rgvmodectl = I915_READ(MEMMODECTL);
6152
6153         /* Enable temp reporting */
6154         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6155         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6156
6157         /* 100ms RC evaluation intervals */
6158         I915_WRITE(RCUPEI, 100000);
6159         I915_WRITE(RCDNEI, 100000);
6160
6161         /* Set max/min thresholds to 90ms and 80ms respectively */
6162         I915_WRITE(RCBMAXAVG, 90000);
6163         I915_WRITE(RCBMINAVG, 80000);
6164
6165         I915_WRITE(MEMIHYST, 1);
6166
6167         /* Set up min, max, and cur for interrupt handling */
6168         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6169         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6170         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6171                 MEMMODE_FSTART_SHIFT;
6172
6173         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
6174                 PXVFREQ_PX_SHIFT;
6175
6176         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6177         dev_priv->ips.fstart = fstart;
6178
6179         dev_priv->ips.max_delay = fstart;
6180         dev_priv->ips.min_delay = fmin;
6181         dev_priv->ips.cur_delay = fstart;
6182
6183         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6184                          fmax, fmin, fstart);
6185
6186         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6187
6188         /*
6189          * Interrupts will be enabled in ironlake_irq_postinstall
6190          */
6191
6192         I915_WRITE(VIDSTART, vstart);
6193         POSTING_READ(VIDSTART);
6194
6195         rgvmodectl |= MEMMODE_SWMODE_EN;
6196         I915_WRITE(MEMMODECTL, rgvmodectl);
6197
6198         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6199                 DRM_ERROR("stuck trying to change perf mode\n");
6200         mdelay(1);
6201
6202         ironlake_set_drps(dev_priv, fstart);
6203
6204         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
6205                 I915_READ(DDREC) + I915_READ(CSIEC);
6206         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6207         dev_priv->ips.last_count2 = I915_READ(GFXEC);
6208         dev_priv->ips.last_time2 = ktime_get_raw_ns();
6209
6210         spin_unlock_irq(&mchdev_lock);
6211 }
6212
6213 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
6214 {
6215         u16 rgvswctl;
6216
6217         spin_lock_irq(&mchdev_lock);
6218
6219         rgvswctl = I915_READ16(MEMSWCTL);
6220
6221         /* Ack interrupts, disable EFC interrupt */
6222         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6223         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6224         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6225         I915_WRITE(DEIIR, DE_PCU_EVENT);
6226         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6227
6228         /* Go back to the starting frequency */
6229         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
6230         mdelay(1);
6231         rgvswctl |= MEMCTL_CMD_STS;
6232         I915_WRITE(MEMSWCTL, rgvswctl);
6233         mdelay(1);
6234
6235         spin_unlock_irq(&mchdev_lock);
6236 }
6237
6238 /* There's a funny hw issue where the hw returns all 0 when reading from
6239  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6240  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6241  * all limits and the gpu stuck at whatever frequency it is at atm).
6242  */
6243 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6244 {
6245         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6246         u32 limits;
6247
6248         /* Only set the down limit when we've reached the lowest level to avoid
6249          * getting more interrupts, otherwise leave this clear. This prevents a
6250          * race in the hw when coming out of rc6: There's a tiny window where
6251          * the hw runs at the minimal clock before selecting the desired
6252          * frequency, if the down threshold expires in that window we will not
6253          * receive a down interrupt. */
6254         if (INTEL_GEN(dev_priv) >= 9) {
6255                 limits = (rps->max_freq_softlimit) << 23;
6256                 if (val <= rps->min_freq_softlimit)
6257                         limits |= (rps->min_freq_softlimit) << 14;
6258         } else {
6259                 limits = rps->max_freq_softlimit << 24;
6260                 if (val <= rps->min_freq_softlimit)
6261                         limits |= rps->min_freq_softlimit << 16;
6262         }
6263
6264         return limits;
6265 }
6266
6267 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6268 {
6269         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6270         u32 threshold_up = 0, threshold_down = 0; /* in % */
6271         u32 ei_up = 0, ei_down = 0;
6272
6273         lockdep_assert_held(&rps->power.mutex);
6274
6275         if (new_power == rps->power.mode)
6276                 return;
6277
6278         /* Note the units here are not exactly 1us, but 1280ns. */
6279         switch (new_power) {
6280         case LOW_POWER:
6281                 /* Upclock if more than 95% busy over 16ms */
6282                 ei_up = 16000;
6283                 threshold_up = 95;
6284
6285                 /* Downclock if less than 85% busy over 32ms */
6286                 ei_down = 32000;
6287                 threshold_down = 85;
6288                 break;
6289
6290         case BETWEEN:
6291                 /* Upclock if more than 90% busy over 13ms */
6292                 ei_up = 13000;
6293                 threshold_up = 90;
6294
6295                 /* Downclock if less than 75% busy over 32ms */
6296                 ei_down = 32000;
6297                 threshold_down = 75;
6298                 break;
6299
6300         case HIGH_POWER:
6301                 /* Upclock if more than 85% busy over 10ms */
6302                 ei_up = 10000;
6303                 threshold_up = 85;
6304
6305                 /* Downclock if less than 60% busy over 32ms */
6306                 ei_down = 32000;
6307                 threshold_down = 60;
6308                 break;
6309         }
6310
6311         /* When byt can survive without system hang with dynamic
6312          * sw freq adjustments, this restriction can be lifted.
6313          */
6314         if (IS_VALLEYVIEW(dev_priv))
6315                 goto skip_hw_write;
6316
6317         I915_WRITE(GEN6_RP_UP_EI,
6318                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
6319         I915_WRITE(GEN6_RP_UP_THRESHOLD,
6320                    GT_INTERVAL_FROM_US(dev_priv,
6321                                        ei_up * threshold_up / 100));
6322
6323         I915_WRITE(GEN6_RP_DOWN_EI,
6324                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
6325         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6326                    GT_INTERVAL_FROM_US(dev_priv,
6327                                        ei_down * threshold_down / 100));
6328
6329         I915_WRITE(GEN6_RP_CONTROL,
6330                    GEN6_RP_MEDIA_TURBO |
6331                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6332                    GEN6_RP_MEDIA_IS_GFX |
6333                    GEN6_RP_ENABLE |
6334                    GEN6_RP_UP_BUSY_AVG |
6335                    GEN6_RP_DOWN_IDLE_AVG);
6336
6337 skip_hw_write:
6338         rps->power.mode = new_power;
6339         rps->power.up_threshold = threshold_up;
6340         rps->power.down_threshold = threshold_down;
6341 }
6342
6343 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6344 {
6345         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6346         int new_power;
6347
6348         new_power = rps->power.mode;
6349         switch (rps->power.mode) {
6350         case LOW_POWER:
6351                 if (val > rps->efficient_freq + 1 &&
6352                     val > rps->cur_freq)
6353                         new_power = BETWEEN;
6354                 break;
6355
6356         case BETWEEN:
6357                 if (val <= rps->efficient_freq &&
6358                     val < rps->cur_freq)
6359                         new_power = LOW_POWER;
6360                 else if (val >= rps->rp0_freq &&
6361                          val > rps->cur_freq)
6362                         new_power = HIGH_POWER;
6363                 break;
6364
6365         case HIGH_POWER:
6366                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6367                     val < rps->cur_freq)
6368                         new_power = BETWEEN;
6369                 break;
6370         }
6371         /* Max/min bins are special */
6372         if (val <= rps->min_freq_softlimit)
6373                 new_power = LOW_POWER;
6374         if (val >= rps->max_freq_softlimit)
6375                 new_power = HIGH_POWER;
6376
6377         mutex_lock(&rps->power.mutex);
6378         if (rps->power.interactive)
6379                 new_power = HIGH_POWER;
6380         rps_set_power(dev_priv, new_power);
6381         mutex_unlock(&rps->power.mutex);
6382         rps->last_adj = 0;
6383 }
6384
6385 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6386 {
6387         struct intel_rps *rps = &i915->gt_pm.rps;
6388
6389         if (INTEL_GEN(i915) < 6)
6390                 return;
6391
6392         mutex_lock(&rps->power.mutex);
6393         if (interactive) {
6394                 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6395                         rps_set_power(i915, HIGH_POWER);
6396         } else {
6397                 GEM_BUG_ON(!rps->power.interactive);
6398                 rps->power.interactive--;
6399         }
6400         mutex_unlock(&rps->power.mutex);
6401 }
6402
6403 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6404 {
6405         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6406         u32 mask = 0;
6407
6408         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6409         if (val > rps->min_freq_softlimit)
6410                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6411         if (val < rps->max_freq_softlimit)
6412                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6413
6414         mask &= dev_priv->pm_rps_events;
6415
6416         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6417 }
6418
6419 /* gen6_set_rps is called to update the frequency request, but should also be
6420  * called when the range (min_delay and max_delay) is modified so that we can
6421  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
6422 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6423 {
6424         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6425
6426         /* min/max delay may still have been modified so be sure to
6427          * write the limits value.
6428          */
6429         if (val != rps->cur_freq) {
6430                 gen6_set_rps_thresholds(dev_priv, val);
6431
6432                 if (INTEL_GEN(dev_priv) >= 9)
6433                         I915_WRITE(GEN6_RPNSWREQ,
6434                                    GEN9_FREQUENCY(val));
6435                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6436                         I915_WRITE(GEN6_RPNSWREQ,
6437                                    HSW_FREQUENCY(val));
6438                 else
6439                         I915_WRITE(GEN6_RPNSWREQ,
6440                                    GEN6_FREQUENCY(val) |
6441                                    GEN6_OFFSET(0) |
6442                                    GEN6_AGGRESSIVE_TURBO);
6443         }
6444
6445         /* Make sure we continue to get interrupts
6446          * until we hit the minimum or maximum frequencies.
6447          */
6448         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6449         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6450
6451         rps->cur_freq = val;
6452         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6453
6454         return 0;
6455 }
6456
6457 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6458 {
6459         int err;
6460
6461         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6462                       "Odd GPU freq value\n"))
6463                 val &= ~1;
6464
6465         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6466
6467         if (val != dev_priv->gt_pm.rps.cur_freq) {
6468                 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6469                 if (err)
6470                         return err;
6471
6472                 gen6_set_rps_thresholds(dev_priv, val);
6473         }
6474
6475         dev_priv->gt_pm.rps.cur_freq = val;
6476         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6477
6478         return 0;
6479 }
6480
6481 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6482  *
6483  * * If Gfx is Idle, then
6484  * 1. Forcewake Media well.
6485  * 2. Request idle freq.
6486  * 3. Release Forcewake of Media well.
6487 */
6488 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6489 {
6490         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6491         u32 val = rps->idle_freq;
6492         int err;
6493
6494         if (rps->cur_freq <= val)
6495                 return;
6496
6497         /* The punit delays the write of the frequency and voltage until it
6498          * determines the GPU is awake. During normal usage we don't want to
6499          * waste power changing the frequency if the GPU is sleeping (rc6).
6500          * However, the GPU and driver is now idle and we do not want to delay
6501          * switching to minimum voltage (reducing power whilst idle) as we do
6502          * not expect to be woken in the near future and so must flush the
6503          * change by waking the device.
6504          *
6505          * We choose to take the media powerwell (either would do to trick the
6506          * punit into committing the voltage change) as that takes a lot less
6507          * power than the render powerwell.
6508          */
6509         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
6510         err = valleyview_set_rps(dev_priv, val);
6511         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
6512
6513         if (err)
6514                 DRM_ERROR("Failed to set RPS for idle\n");
6515 }
6516
6517 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6518 {
6519         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6520
6521         mutex_lock(&dev_priv->pcu_lock);
6522         if (rps->enabled) {
6523                 u8 freq;
6524
6525                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6526                         gen6_rps_reset_ei(dev_priv);
6527                 I915_WRITE(GEN6_PMINTRMSK,
6528                            gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6529
6530                 gen6_enable_rps_interrupts(dev_priv);
6531
6532                 /* Use the user's desired frequency as a guide, but for better
6533                  * performance, jump directly to RPe as our starting frequency.
6534                  */
6535                 freq = max(rps->cur_freq,
6536                            rps->efficient_freq);
6537
6538                 if (intel_set_rps(dev_priv,
6539                                   clamp(freq,
6540                                         rps->min_freq_softlimit,
6541                                         rps->max_freq_softlimit)))
6542                         DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6543         }
6544         mutex_unlock(&dev_priv->pcu_lock);
6545 }
6546
6547 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6548 {
6549         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6550
6551         /* Flush our bottom-half so that it does not race with us
6552          * setting the idle frequency and so that it is bounded by
6553          * our rpm wakeref. And then disable the interrupts to stop any
6554          * futher RPS reclocking whilst we are asleep.
6555          */
6556         gen6_disable_rps_interrupts(dev_priv);
6557
6558         mutex_lock(&dev_priv->pcu_lock);
6559         if (rps->enabled) {
6560                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6561                         vlv_set_rps_idle(dev_priv);
6562                 else
6563                         gen6_set_rps(dev_priv, rps->idle_freq);
6564                 rps->last_adj = 0;
6565                 I915_WRITE(GEN6_PMINTRMSK,
6566                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6567         }
6568         mutex_unlock(&dev_priv->pcu_lock);
6569 }
6570
6571 void gen6_rps_boost(struct i915_request *rq,
6572                     struct intel_rps_client *rps_client)
6573 {
6574         struct intel_rps *rps = &rq->i915->gt_pm.rps;
6575         unsigned long flags;
6576         bool boost;
6577
6578         /* This is intentionally racy! We peek at the state here, then
6579          * validate inside the RPS worker.
6580          */
6581         if (!rps->enabled)
6582                 return;
6583
6584         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
6585                 return;
6586
6587         /* Serializes with i915_request_retire() */
6588         boost = false;
6589         spin_lock_irqsave(&rq->lock, flags);
6590         if (!rq->waitboost && !dma_fence_is_signaled_locked(&rq->fence)) {
6591                 boost = !atomic_fetch_inc(&rps->num_waiters);
6592                 rq->waitboost = true;
6593         }
6594         spin_unlock_irqrestore(&rq->lock, flags);
6595         if (!boost)
6596                 return;
6597
6598         if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6599                 schedule_work(&rps->work);
6600
6601         atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
6602 }
6603
6604 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6605 {
6606         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6607         int err;
6608
6609         lockdep_assert_held(&dev_priv->pcu_lock);
6610         GEM_BUG_ON(val > rps->max_freq);
6611         GEM_BUG_ON(val < rps->min_freq);
6612
6613         if (!rps->enabled) {
6614                 rps->cur_freq = val;
6615                 return 0;
6616         }
6617
6618         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6619                 err = valleyview_set_rps(dev_priv, val);
6620         else
6621                 err = gen6_set_rps(dev_priv, val);
6622
6623         return err;
6624 }
6625
6626 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6627 {
6628         I915_WRITE(GEN6_RC_CONTROL, 0);
6629         I915_WRITE(GEN9_PG_ENABLE, 0);
6630 }
6631
6632 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6633 {
6634         I915_WRITE(GEN6_RP_CONTROL, 0);
6635 }
6636
6637 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6638 {
6639         I915_WRITE(GEN6_RC_CONTROL, 0);
6640 }
6641
6642 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6643 {
6644         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6645         I915_WRITE(GEN6_RP_CONTROL, 0);
6646 }
6647
6648 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6649 {
6650         I915_WRITE(GEN6_RC_CONTROL, 0);
6651 }
6652
6653 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6654 {
6655         I915_WRITE(GEN6_RP_CONTROL, 0);
6656 }
6657
6658 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6659 {
6660         /* We're doing forcewake before Disabling RC6,
6661          * This what the BIOS expects when going into suspend */
6662         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6663
6664         I915_WRITE(GEN6_RC_CONTROL, 0);
6665
6666         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6667 }
6668
6669 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6670 {
6671         I915_WRITE(GEN6_RP_CONTROL, 0);
6672 }
6673
6674 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6675 {
6676         bool enable_rc6 = true;
6677         unsigned long rc6_ctx_base;
6678         u32 rc_ctl;
6679         int rc_sw_target;
6680
6681         rc_ctl = I915_READ(GEN6_RC_CONTROL);
6682         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6683                        RC_SW_TARGET_STATE_SHIFT;
6684         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6685                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6686                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6687                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6688                          rc_sw_target);
6689
6690         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6691                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6692                 enable_rc6 = false;
6693         }
6694
6695         /*
6696          * The exact context size is not known for BXT, so assume a page size
6697          * for this check.
6698          */
6699         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
6700         if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
6701               (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
6702                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
6703                 enable_rc6 = false;
6704         }
6705
6706         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
6707               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
6708               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
6709               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
6710                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
6711                 enable_rc6 = false;
6712         }
6713
6714         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
6715             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
6716             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
6717                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
6718                 enable_rc6 = false;
6719         }
6720
6721         if (!I915_READ(GEN6_GFXPAUSE)) {
6722                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
6723                 enable_rc6 = false;
6724         }
6725
6726         if (!I915_READ(GEN8_MISC_CTRL0)) {
6727                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
6728                 enable_rc6 = false;
6729         }
6730
6731         return enable_rc6;
6732 }
6733
6734 static bool sanitize_rc6(struct drm_i915_private *i915)
6735 {
6736         struct intel_device_info *info = mkwrite_device_info(i915);
6737
6738         /* Powersaving is controlled by the host when inside a VM */
6739         if (intel_vgpu_active(i915))
6740                 info->has_rc6 = 0;
6741
6742         if (info->has_rc6 &&
6743             IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
6744                 DRM_INFO("RC6 disabled by BIOS\n");
6745                 info->has_rc6 = 0;
6746         }
6747
6748         /*
6749          * We assume that we do not have any deep rc6 levels if we don't have
6750          * have the previous rc6 level supported, i.e. we use HAS_RC6()
6751          * as the initial coarse check for rc6 in general, moving on to
6752          * progressively finer/deeper levels.
6753          */
6754         if (!info->has_rc6 && info->has_rc6p)
6755                 info->has_rc6p = 0;
6756
6757         return info->has_rc6;
6758 }
6759
6760 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
6761 {
6762         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6763
6764         /* All of these values are in units of 50MHz */
6765
6766         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
6767         if (IS_GEN9_LP(dev_priv)) {
6768                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
6769                 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
6770                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6771                 rps->min_freq = (rp_state_cap >>  0) & 0xff;
6772         } else {
6773                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6774                 rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
6775                 rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
6776                 rps->min_freq = (rp_state_cap >> 16) & 0xff;
6777         }
6778         /* hw_max = RP0 until we check for overclocking */
6779         rps->max_freq = rps->rp0_freq;
6780
6781         rps->efficient_freq = rps->rp1_freq;
6782         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
6783             IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6784                 u32 ddcc_status = 0;
6785
6786                 if (sandybridge_pcode_read(dev_priv,
6787                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
6788                                            &ddcc_status) == 0)
6789                         rps->efficient_freq =
6790                                 clamp_t(u8,
6791                                         ((ddcc_status >> 8) & 0xff),
6792                                         rps->min_freq,
6793                                         rps->max_freq);
6794         }
6795
6796         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
6797                 /* Store the frequency values in 16.66 MHZ units, which is
6798                  * the natural hardware unit for SKL
6799                  */
6800                 rps->rp0_freq *= GEN9_FREQ_SCALER;
6801                 rps->rp1_freq *= GEN9_FREQ_SCALER;
6802                 rps->min_freq *= GEN9_FREQ_SCALER;
6803                 rps->max_freq *= GEN9_FREQ_SCALER;
6804                 rps->efficient_freq *= GEN9_FREQ_SCALER;
6805         }
6806 }
6807
6808 static void reset_rps(struct drm_i915_private *dev_priv,
6809                       int (*set)(struct drm_i915_private *, u8))
6810 {
6811         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6812         u8 freq = rps->cur_freq;
6813
6814         /* force a reset */
6815         rps->power.mode = -1;
6816         rps->cur_freq = -1;
6817
6818         if (set(dev_priv, freq))
6819                 DRM_ERROR("Failed to reset RPS to initial values\n");
6820 }
6821
6822 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
6823 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
6824 {
6825         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6826
6827         /* Program defaults and thresholds for RPS */
6828         if (IS_GEN9(dev_priv))
6829                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
6830                         GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
6831
6832         /* 1 second timeout*/
6833         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
6834                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
6835
6836         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
6837
6838         /* Leaning on the below call to gen6_set_rps to program/setup the
6839          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
6840          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
6841         reset_rps(dev_priv, gen6_set_rps);
6842
6843         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6844 }
6845
6846 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
6847 {
6848         struct intel_engine_cs *engine;
6849         enum intel_engine_id id;
6850         u32 rc6_mode;
6851
6852         /* 1a: Software RC state - RC0 */
6853         I915_WRITE(GEN6_RC_STATE, 0);
6854
6855         /* 1b: Get forcewake during program sequence. Although the driver
6856          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6857         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6858
6859         /* 2a: Disable RC states. */
6860         I915_WRITE(GEN6_RC_CONTROL, 0);
6861
6862         /* 2b: Program RC6 thresholds.*/
6863         if (INTEL_GEN(dev_priv) >= 10) {
6864                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
6865                 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
6866         } else if (IS_SKYLAKE(dev_priv)) {
6867                 /*
6868                  * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
6869                  * when CPG is enabled
6870                  */
6871                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
6872         } else {
6873                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
6874         }
6875
6876         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6877         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6878         for_each_engine(engine, dev_priv, id)
6879                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6880
6881         if (HAS_GUC(dev_priv))
6882                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
6883
6884         I915_WRITE(GEN6_RC_SLEEP, 0);
6885
6886         /*
6887          * 2c: Program Coarse Power Gating Policies.
6888          *
6889          * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
6890          * use instead is a more conservative estimate for the maximum time
6891          * it takes us to service a CS interrupt and submit a new ELSP - that
6892          * is the time which the GPU is idle waiting for the CPU to select the
6893          * next request to execute. If the idle hysteresis is less than that
6894          * interrupt service latency, the hardware will automatically gate
6895          * the power well and we will then incur the wake up cost on top of
6896          * the service latency. A similar guide from intel_pstate is that we
6897          * do not want the enable hysteresis to less than the wakeup latency.
6898          *
6899          * igt/gem_exec_nop/sequential provides a rough estimate for the
6900          * service latency, and puts it around 10us for Broadwell (and other
6901          * big core) and around 40us for Broxton (and other low power cores).
6902          * [Note that for legacy ringbuffer submission, this is less than 1us!]
6903          * However, the wakeup latency on Broxton is closer to 100us. To be
6904          * conservative, we have to factor in a context switch on top (due
6905          * to ksoftirqd).
6906          */
6907         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
6908         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
6909
6910         /* 3a: Enable RC6 */
6911         I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
6912
6913         /* WaRsUseTimeoutMode:cnl (pre-prod) */
6914         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
6915                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6916         else
6917                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
6918
6919         I915_WRITE(GEN6_RC_CONTROL,
6920                    GEN6_RC_CTL_HW_ENABLE |
6921                    GEN6_RC_CTL_RC6_ENABLE |
6922                    rc6_mode);
6923
6924         /*
6925          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
6926          * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
6927          */
6928         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
6929                 I915_WRITE(GEN9_PG_ENABLE, 0);
6930         else
6931                 I915_WRITE(GEN9_PG_ENABLE,
6932                            GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
6933
6934         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6935 }
6936
6937 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939         struct intel_engine_cs *engine;
6940         enum intel_engine_id id;
6941
6942         /* 1a: Software RC state - RC0 */
6943         I915_WRITE(GEN6_RC_STATE, 0);
6944
6945         /* 1b: Get forcewake during program sequence. Although the driver
6946          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6947         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6948
6949         /* 2a: Disable RC states. */
6950         I915_WRITE(GEN6_RC_CONTROL, 0);
6951
6952         /* 2b: Program RC6 thresholds.*/
6953         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6954         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6955         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6956         for_each_engine(engine, dev_priv, id)
6957                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6958         I915_WRITE(GEN6_RC_SLEEP, 0);
6959         I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
6960
6961         /* 3: Enable RC6 */
6962
6963         I915_WRITE(GEN6_RC_CONTROL,
6964                    GEN6_RC_CTL_HW_ENABLE |
6965                    GEN7_RC_CTL_TO_MODE |
6966                    GEN6_RC_CTL_RC6_ENABLE);
6967
6968         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6969 }
6970
6971 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
6972 {
6973         struct intel_rps *rps = &dev_priv->gt_pm.rps;
6974
6975         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6976
6977         /* 1 Program defaults and thresholds for RPS*/
6978         I915_WRITE(GEN6_RPNSWREQ,
6979                    HSW_FREQUENCY(rps->rp1_freq));
6980         I915_WRITE(GEN6_RC_VIDEO_FREQ,
6981                    HSW_FREQUENCY(rps->rp1_freq));
6982         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
6983         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
6984
6985         /* Docs recommend 900MHz, and 300 MHz respectively */
6986         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
6987                    rps->max_freq_softlimit << 24 |
6988                    rps->min_freq_softlimit << 16);
6989
6990         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
6991         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
6992         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
6993         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
6994
6995         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6996
6997         /* 2: Enable RPS */
6998         I915_WRITE(GEN6_RP_CONTROL,
6999                    GEN6_RP_MEDIA_TURBO |
7000                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7001                    GEN6_RP_MEDIA_IS_GFX |
7002                    GEN6_RP_ENABLE |
7003                    GEN6_RP_UP_BUSY_AVG |
7004                    GEN6_RP_DOWN_IDLE_AVG);
7005
7006         reset_rps(dev_priv, gen6_set_rps);
7007
7008         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7009 }
7010
7011 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7012 {
7013         struct intel_engine_cs *engine;
7014         enum intel_engine_id id;
7015         u32 rc6vids, rc6_mask;
7016         u32 gtfifodbg;
7017         int ret;
7018
7019         I915_WRITE(GEN6_RC_STATE, 0);
7020
7021         /* Clear the DBG now so we don't confuse earlier errors */
7022         gtfifodbg = I915_READ(GTFIFODBG);
7023         if (gtfifodbg) {
7024                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7025                 I915_WRITE(GTFIFODBG, gtfifodbg);
7026         }
7027
7028         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7029
7030         /* disable the counters and set deterministic thresholds */
7031         I915_WRITE(GEN6_RC_CONTROL, 0);
7032
7033         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7034         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7035         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7036         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7037         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7038
7039         for_each_engine(engine, dev_priv, id)
7040                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7041
7042         I915_WRITE(GEN6_RC_SLEEP, 0);
7043         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7044         if (IS_IVYBRIDGE(dev_priv))
7045                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7046         else
7047                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7048         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7049         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7050
7051         /* We don't use those on Haswell */
7052         rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7053         if (HAS_RC6p(dev_priv))
7054                 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7055         if (HAS_RC6pp(dev_priv))
7056                 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7057         I915_WRITE(GEN6_RC_CONTROL,
7058                    rc6_mask |
7059                    GEN6_RC_CTL_EI_MODE(1) |
7060                    GEN6_RC_CTL_HW_ENABLE);
7061
7062         rc6vids = 0;
7063         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
7064         if (IS_GEN6(dev_priv) && ret) {
7065                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7066         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7067                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7068                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7069                 rc6vids &= 0xffff00;
7070                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7071                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7072                 if (ret)
7073                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7074         }
7075
7076         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7077 }
7078
7079 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7080 {
7081         /* Here begins a magic sequence of register writes to enable
7082          * auto-downclocking.
7083          *
7084          * Perhaps there might be some value in exposing these to
7085          * userspace...
7086          */
7087         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7088
7089         /* Power down if completely idle for over 50ms */
7090         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7091         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7092
7093         reset_rps(dev_priv, gen6_set_rps);
7094
7095         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7096 }
7097
7098 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7099 {
7100         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7101         const int min_freq = 15;
7102         const int scaling_factor = 180;
7103         unsigned int gpu_freq;
7104         unsigned int max_ia_freq, min_ring_freq;
7105         unsigned int max_gpu_freq, min_gpu_freq;
7106         struct cpufreq_policy *policy;
7107
7108         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
7109
7110         if (rps->max_freq <= rps->min_freq)
7111                 return;
7112
7113         policy = cpufreq_cpu_get(0);
7114         if (policy) {
7115                 max_ia_freq = policy->cpuinfo.max_freq;
7116                 cpufreq_cpu_put(policy);
7117         } else {
7118                 /*
7119                  * Default to measured freq if none found, PCU will ensure we
7120                  * don't go over
7121                  */
7122                 max_ia_freq = tsc_khz;
7123         }
7124
7125         /* Convert from kHz to MHz */
7126         max_ia_freq /= 1000;
7127
7128         min_ring_freq = I915_READ(DCLK) & 0xf;
7129         /* convert DDR frequency from units of 266.6MHz to bandwidth */
7130         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7131
7132         min_gpu_freq = rps->min_freq;
7133         max_gpu_freq = rps->max_freq;
7134         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7135                 /* Convert GT frequency to 50 HZ units */
7136                 min_gpu_freq /= GEN9_FREQ_SCALER;
7137                 max_gpu_freq /= GEN9_FREQ_SCALER;
7138         }
7139
7140         /*
7141          * For each potential GPU frequency, load a ring frequency we'd like
7142          * to use for memory access.  We do this by specifying the IA frequency
7143          * the PCU should use as a reference to determine the ring frequency.
7144          */
7145         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7146                 const int diff = max_gpu_freq - gpu_freq;
7147                 unsigned int ia_freq = 0, ring_freq = 0;
7148
7149                 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7150                         /*
7151                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
7152                          * No floor required for ring frequency on SKL.
7153                          */
7154                         ring_freq = gpu_freq;
7155                 } else if (INTEL_GEN(dev_priv) >= 8) {
7156                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
7157                         ring_freq = max(min_ring_freq, gpu_freq);
7158                 } else if (IS_HASWELL(dev_priv)) {
7159                         ring_freq = mult_frac(gpu_freq, 5, 4);
7160                         ring_freq = max(min_ring_freq, ring_freq);
7161                         /* leave ia_freq as the default, chosen by cpufreq */
7162                 } else {
7163                         /* On older processors, there is no separate ring
7164                          * clock domain, so in order to boost the bandwidth
7165                          * of the ring, we need to upclock the CPU (ia_freq).
7166                          *
7167                          * For GPU frequencies less than 750MHz,
7168                          * just use the lowest ring freq.
7169                          */
7170                         if (gpu_freq < min_freq)
7171                                 ia_freq = 800;
7172                         else
7173                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7174                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7175                 }
7176
7177                 sandybridge_pcode_write(dev_priv,
7178                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7179                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7180                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7181                                         gpu_freq);
7182         }
7183 }
7184
7185 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7186 {
7187         u32 val, rp0;
7188
7189         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7190
7191         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
7192         case 8:
7193                 /* (2 * 4) config */
7194                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7195                 break;
7196         case 12:
7197                 /* (2 * 6) config */
7198                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7199                 break;
7200         case 16:
7201                 /* (2 * 8) config */
7202         default:
7203                 /* Setting (2 * 8) Min RP0 for any other combination */
7204                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7205                 break;
7206         }
7207
7208         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7209
7210         return rp0;
7211 }
7212
7213 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7214 {
7215         u32 val, rpe;
7216
7217         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7218         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7219
7220         return rpe;
7221 }
7222
7223 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7224 {
7225         u32 val, rp1;
7226
7227         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7228         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7229
7230         return rp1;
7231 }
7232
7233 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7234 {
7235         u32 val, rpn;
7236
7237         val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7238         rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7239                        FB_GFX_FREQ_FUSE_MASK);
7240
7241         return rpn;
7242 }
7243
7244 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7245 {
7246         u32 val, rp1;
7247
7248         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7249
7250         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7251
7252         return rp1;
7253 }
7254
7255 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7256 {
7257         u32 val, rp0;
7258
7259         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7260
7261         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7262         /* Clamp to max */
7263         rp0 = min_t(u32, rp0, 0xea);
7264
7265         return rp0;
7266 }
7267
7268 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7269 {
7270         u32 val, rpe;
7271
7272         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7273         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7274         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7275         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7276
7277         return rpe;
7278 }
7279
7280 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7281 {
7282         u32 val;
7283
7284         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7285         /*
7286          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7287          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7288          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7289          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7290          * to make sure it matches what Punit accepts.
7291          */
7292         return max_t(u32, val, 0xc0);
7293 }
7294
7295 /* Check that the pctx buffer wasn't move under us. */
7296 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7297 {
7298         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7299
7300         WARN_ON(pctx_addr != dev_priv->dsm.start +
7301                              dev_priv->vlv_pctx->stolen->start);
7302 }
7303
7304
7305 /* Check that the pcbr address is not empty. */
7306 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7307 {
7308         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7309
7310         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7311 }
7312
7313 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7314 {
7315         resource_size_t pctx_paddr, paddr;
7316         resource_size_t pctx_size = 32*1024;
7317         u32 pcbr;
7318
7319         pcbr = I915_READ(VLV_PCBR);
7320         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7321                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7322                 paddr = dev_priv->dsm.end + 1 - pctx_size;
7323                 GEM_BUG_ON(paddr > U32_MAX);
7324
7325                 pctx_paddr = (paddr & (~4095));
7326                 I915_WRITE(VLV_PCBR, pctx_paddr);
7327         }
7328
7329         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7330 }
7331
7332 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7333 {
7334         struct drm_i915_gem_object *pctx;
7335         resource_size_t pctx_paddr;
7336         resource_size_t pctx_size = 24*1024;
7337         u32 pcbr;
7338
7339         pcbr = I915_READ(VLV_PCBR);
7340         if (pcbr) {
7341                 /* BIOS set it up already, grab the pre-alloc'd space */
7342                 resource_size_t pcbr_offset;
7343
7344                 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7345                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7346                                                                       pcbr_offset,
7347                                                                       I915_GTT_OFFSET_NONE,
7348                                                                       pctx_size);
7349                 goto out;
7350         }
7351
7352         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7353
7354         /*
7355          * From the Gunit register HAS:
7356          * The Gfx driver is expected to program this register and ensure
7357          * proper allocation within Gfx stolen memory.  For example, this
7358          * register should be programmed such than the PCBR range does not
7359          * overlap with other ranges, such as the frame buffer, protected
7360          * memory, or any other relevant ranges.
7361          */
7362         pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7363         if (!pctx) {
7364                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7365                 goto out;
7366         }
7367
7368         GEM_BUG_ON(range_overflows_t(u64,
7369                                      dev_priv->dsm.start,
7370                                      pctx->stolen->start,
7371                                      U32_MAX));
7372         pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7373         I915_WRITE(VLV_PCBR, pctx_paddr);
7374
7375 out:
7376         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7377         dev_priv->vlv_pctx = pctx;
7378 }
7379
7380 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7381 {
7382         struct drm_i915_gem_object *pctx;
7383
7384         pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7385         if (pctx)
7386                 i915_gem_object_put(pctx);
7387 }
7388
7389 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7390 {
7391         dev_priv->gt_pm.rps.gpll_ref_freq =
7392                 vlv_get_cck_clock(dev_priv, "GPLL ref",
7393                                   CCK_GPLL_CLOCK_CONTROL,
7394                                   dev_priv->czclk_freq);
7395
7396         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7397                          dev_priv->gt_pm.rps.gpll_ref_freq);
7398 }
7399
7400 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7401 {
7402         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7403         u32 val;
7404
7405         valleyview_setup_pctx(dev_priv);
7406
7407         vlv_init_gpll_ref_freq(dev_priv);
7408
7409         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7410         switch ((val >> 6) & 3) {
7411         case 0:
7412         case 1:
7413                 dev_priv->mem_freq = 800;
7414                 break;
7415         case 2:
7416                 dev_priv->mem_freq = 1066;
7417                 break;
7418         case 3:
7419                 dev_priv->mem_freq = 1333;
7420                 break;
7421         }
7422         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7423
7424         rps->max_freq = valleyview_rps_max_freq(dev_priv);
7425         rps->rp0_freq = rps->max_freq;
7426         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7427                          intel_gpu_freq(dev_priv, rps->max_freq),
7428                          rps->max_freq);
7429
7430         rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7431         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7432                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7433                          rps->efficient_freq);
7434
7435         rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7436         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7437                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7438                          rps->rp1_freq);
7439
7440         rps->min_freq = valleyview_rps_min_freq(dev_priv);
7441         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7442                          intel_gpu_freq(dev_priv, rps->min_freq),
7443                          rps->min_freq);
7444 }
7445
7446 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7447 {
7448         struct intel_rps *rps = &dev_priv->gt_pm.rps;
7449         u32 val;
7450
7451         cherryview_setup_pctx(dev_priv);
7452
7453         vlv_init_gpll_ref_freq(dev_priv);
7454
7455         mutex_lock(&dev_priv->sb_lock);
7456         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7457         mutex_unlock(&dev_priv->sb_lock);
7458
7459         switch ((val >> 2) & 0x7) {
7460         case 3:
7461                 dev_priv->mem_freq = 2000;
7462                 break;
7463         default:
7464                 dev_priv->mem_freq = 1600;
7465                 break;
7466         }
7467         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7468
7469         rps->max_freq = cherryview_rps_max_freq(dev_priv);
7470         rps->rp0_freq = rps->max_freq;
7471         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7472                          intel_gpu_freq(dev_priv, rps->max_freq),
7473                          rps->max_freq);
7474
7475         rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7476         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7477                          intel_gpu_freq(dev_priv, rps->efficient_freq),
7478                          rps->efficient_freq);
7479
7480         rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7481         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7482                          intel_gpu_freq(dev_priv, rps->rp1_freq),
7483                          rps->rp1_freq);
7484
7485         rps->min_freq = cherryview_rps_min_freq(dev_priv);
7486         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7487                          intel_gpu_freq(dev_priv, rps->min_freq),
7488                          rps->min_freq);
7489
7490         WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7491                    rps->min_freq) & 1,
7492                   "Odd GPU freq values\n");
7493 }
7494
7495 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7496 {
7497         valleyview_cleanup_pctx(dev_priv);
7498 }
7499
7500 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7501 {
7502         struct intel_engine_cs *engine;
7503         enum intel_engine_id id;
7504         u32 gtfifodbg, rc6_mode, pcbr;
7505
7506         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7507                                              GT_FIFO_FREE_ENTRIES_CHV);
7508         if (gtfifodbg) {
7509                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7510                                  gtfifodbg);
7511                 I915_WRITE(GTFIFODBG, gtfifodbg);
7512         }
7513
7514         cherryview_check_pctx(dev_priv);
7515
7516         /* 1a & 1b: Get forcewake during program sequence. Although the driver
7517          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7518         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7519
7520         /*  Disable RC states. */
7521         I915_WRITE(GEN6_RC_CONTROL, 0);
7522
7523         /* 2a: Program RC6 thresholds.*/
7524         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7525         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7526         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7527
7528         for_each_engine(engine, dev_priv, id)
7529                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7530         I915_WRITE(GEN6_RC_SLEEP, 0);
7531
7532         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7533         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7534
7535         /* Allows RC6 residency counter to work */
7536         I915_WRITE(VLV_COUNTER_CONTROL,
7537                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7538                                       VLV_MEDIA_RC6_COUNT_EN |
7539                                       VLV_RENDER_RC6_COUNT_EN));
7540
7541         /* For now we assume BIOS is allocating and populating the PCBR  */
7542         pcbr = I915_READ(VLV_PCBR);
7543
7544         /* 3: Enable RC6 */
7545         rc6_mode = 0;
7546         if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7547                 rc6_mode = GEN7_RC_CTL_TO_MODE;
7548         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7549
7550         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7551 }
7552
7553 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7554 {
7555         u32 val;
7556
7557         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7558
7559         /* 1: Program defaults and thresholds for RPS*/
7560         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7561         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7562         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7563         I915_WRITE(GEN6_RP_UP_EI, 66000);
7564         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7565
7566         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7567
7568         /* 2: Enable RPS */
7569         I915_WRITE(GEN6_RP_CONTROL,
7570                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7571                    GEN6_RP_MEDIA_IS_GFX |
7572                    GEN6_RP_ENABLE |
7573                    GEN6_RP_UP_BUSY_AVG |
7574                    GEN6_RP_DOWN_IDLE_AVG);
7575
7576         /* Setting Fixed Bias */
7577         val = VLV_OVERRIDE_EN |
7578                   VLV_SOC_TDP_EN |
7579                   CHV_BIAS_CPU_50_SOC_50;
7580         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7581
7582         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7583
7584         /* RPS code assumes GPLL is used */
7585         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7586
7587         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7588         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7589
7590         reset_rps(dev_priv, valleyview_set_rps);
7591
7592         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7593 }
7594
7595 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7596 {
7597         struct intel_engine_cs *engine;
7598         enum intel_engine_id id;
7599         u32 gtfifodbg;
7600
7601         valleyview_check_pctx(dev_priv);
7602
7603         gtfifodbg = I915_READ(GTFIFODBG);
7604         if (gtfifodbg) {
7605                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7606                                  gtfifodbg);
7607                 I915_WRITE(GTFIFODBG, gtfifodbg);
7608         }
7609
7610         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7611
7612         /*  Disable RC states. */
7613         I915_WRITE(GEN6_RC_CONTROL, 0);
7614
7615         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
7616         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7617         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7618
7619         for_each_engine(engine, dev_priv, id)
7620                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7621
7622         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
7623
7624         /* Allows RC6 residency counter to work */
7625         I915_WRITE(VLV_COUNTER_CONTROL,
7626                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7627                                       VLV_MEDIA_RC0_COUNT_EN |
7628                                       VLV_RENDER_RC0_COUNT_EN |
7629                                       VLV_MEDIA_RC6_COUNT_EN |
7630                                       VLV_RENDER_RC6_COUNT_EN));
7631
7632         I915_WRITE(GEN6_RC_CONTROL,
7633                    GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
7634
7635         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7636 }
7637
7638 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
7639 {
7640         u32 val;
7641
7642         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7643
7644         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7645         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7646         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7647         I915_WRITE(GEN6_RP_UP_EI, 66000);
7648         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7649
7650         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7651
7652         I915_WRITE(GEN6_RP_CONTROL,
7653                    GEN6_RP_MEDIA_TURBO |
7654                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
7655                    GEN6_RP_MEDIA_IS_GFX |
7656                    GEN6_RP_ENABLE |
7657                    GEN6_RP_UP_BUSY_AVG |
7658                    GEN6_RP_DOWN_IDLE_CONT);
7659
7660         /* Setting Fixed Bias */
7661         val = VLV_OVERRIDE_EN |
7662                   VLV_SOC_TDP_EN |
7663                   VLV_BIAS_CPU_125_SOC_875;
7664         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7665
7666         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7667
7668         /* RPS code assumes GPLL is used */
7669         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7670
7671         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7672         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7673
7674         reset_rps(dev_priv, valleyview_set_rps);
7675
7676         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7677 }
7678
7679 static unsigned long intel_pxfreq(u32 vidfreq)
7680 {
7681         unsigned long freq;
7682         int div = (vidfreq & 0x3f0000) >> 16;
7683         int post = (vidfreq & 0x3000) >> 12;
7684         int pre = (vidfreq & 0x7);
7685
7686         if (!pre)
7687                 return 0;
7688
7689         freq = ((div * 133333) / ((1<<post) * pre));
7690
7691         return freq;
7692 }
7693
7694 static const struct cparams {
7695         u16 i;
7696         u16 t;
7697         u16 m;
7698         u16 c;
7699 } cparams[] = {
7700         { 1, 1333, 301, 28664 },
7701         { 1, 1066, 294, 24460 },
7702         { 1, 800, 294, 25192 },
7703         { 0, 1333, 276, 27605 },
7704         { 0, 1066, 276, 27605 },
7705         { 0, 800, 231, 23784 },
7706 };
7707
7708 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
7709 {
7710         u64 total_count, diff, ret;
7711         u32 count1, count2, count3, m = 0, c = 0;
7712         unsigned long now = jiffies_to_msecs(jiffies), diff1;
7713         int i;
7714
7715         lockdep_assert_held(&mchdev_lock);
7716
7717         diff1 = now - dev_priv->ips.last_time1;
7718
7719         /* Prevent division-by-zero if we are asking too fast.
7720          * Also, we don't get interesting results if we are polling
7721          * faster than once in 10ms, so just return the saved value
7722          * in such cases.
7723          */
7724         if (diff1 <= 10)
7725                 return dev_priv->ips.chipset_power;
7726
7727         count1 = I915_READ(DMIEC);
7728         count2 = I915_READ(DDREC);
7729         count3 = I915_READ(CSIEC);
7730
7731         total_count = count1 + count2 + count3;
7732
7733         /* FIXME: handle per-counter overflow */
7734         if (total_count < dev_priv->ips.last_count1) {
7735                 diff = ~0UL - dev_priv->ips.last_count1;
7736                 diff += total_count;
7737         } else {
7738                 diff = total_count - dev_priv->ips.last_count1;
7739         }
7740
7741         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
7742                 if (cparams[i].i == dev_priv->ips.c_m &&
7743                     cparams[i].t == dev_priv->ips.r_t) {
7744                         m = cparams[i].m;
7745                         c = cparams[i].c;
7746                         break;
7747                 }
7748         }
7749
7750         diff = div_u64(diff, diff1);
7751         ret = ((m * diff) + c);
7752         ret = div_u64(ret, 10);
7753
7754         dev_priv->ips.last_count1 = total_count;
7755         dev_priv->ips.last_time1 = now;
7756
7757         dev_priv->ips.chipset_power = ret;
7758
7759         return ret;
7760 }
7761
7762 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
7763 {
7764         unsigned long val;
7765
7766         if (!IS_GEN5(dev_priv))
7767                 return 0;
7768
7769         spin_lock_irq(&mchdev_lock);
7770
7771         val = __i915_chipset_val(dev_priv);
7772
7773         spin_unlock_irq(&mchdev_lock);
7774
7775         return val;
7776 }
7777
7778 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
7779 {
7780         unsigned long m, x, b;
7781         u32 tsfs;
7782
7783         tsfs = I915_READ(TSFS);
7784
7785         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
7786         x = I915_READ8(TR1);
7787
7788         b = tsfs & TSFS_INTR_MASK;
7789
7790         return ((m * x) / 127) - b;
7791 }
7792
7793 static int _pxvid_to_vd(u8 pxvid)
7794 {
7795         if (pxvid == 0)
7796                 return 0;
7797
7798         if (pxvid >= 8 && pxvid < 31)
7799                 pxvid = 31;
7800
7801         return (pxvid + 2) * 125;
7802 }
7803
7804 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
7805 {
7806         const int vd = _pxvid_to_vd(pxvid);
7807         const int vm = vd - 1125;
7808
7809         if (INTEL_INFO(dev_priv)->is_mobile)
7810                 return vm > 0 ? vm : 0;
7811
7812         return vd;
7813 }
7814
7815 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
7816 {
7817         u64 now, diff, diffms;
7818         u32 count;
7819
7820         lockdep_assert_held(&mchdev_lock);
7821
7822         now = ktime_get_raw_ns();
7823         diffms = now - dev_priv->ips.last_time2;
7824         do_div(diffms, NSEC_PER_MSEC);
7825
7826         /* Don't divide by 0 */
7827         if (!diffms)
7828                 return;
7829
7830         count = I915_READ(GFXEC);
7831
7832         if (count < dev_priv->ips.last_count2) {
7833                 diff = ~0UL - dev_priv->ips.last_count2;
7834                 diff += count;
7835         } else {
7836                 diff = count - dev_priv->ips.last_count2;
7837         }
7838
7839         dev_priv->ips.last_count2 = count;
7840         dev_priv->ips.last_time2 = now;
7841
7842         /* More magic constants... */
7843         diff = diff * 1181;
7844         diff = div_u64(diff, diffms * 10);
7845         dev_priv->ips.gfx_power = diff;
7846 }
7847
7848 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
7849 {
7850         if (!IS_GEN5(dev_priv))
7851                 return;
7852
7853         spin_lock_irq(&mchdev_lock);
7854
7855         __i915_update_gfx_val(dev_priv);
7856
7857         spin_unlock_irq(&mchdev_lock);
7858 }
7859
7860 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
7861 {
7862         unsigned long t, corr, state1, corr2, state2;
7863         u32 pxvid, ext_v;
7864
7865         lockdep_assert_held(&mchdev_lock);
7866
7867         pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
7868         pxvid = (pxvid >> 24) & 0x7f;
7869         ext_v = pvid_to_extvid(dev_priv, pxvid);
7870
7871         state1 = ext_v;
7872
7873         t = i915_mch_val(dev_priv);
7874
7875         /* Revel in the empirically derived constants */
7876
7877         /* Correction factor in 1/100000 units */
7878         if (t > 80)
7879                 corr = ((t * 2349) + 135940);
7880         else if (t >= 50)
7881                 corr = ((t * 964) + 29317);
7882         else /* < 50 */
7883                 corr = ((t * 301) + 1004);
7884
7885         corr = corr * ((150142 * state1) / 10000 - 78642);
7886         corr /= 100000;
7887         corr2 = (corr * dev_priv->ips.corr);
7888
7889         state2 = (corr2 * state1) / 10000;
7890         state2 /= 100; /* convert to mW */
7891
7892         __i915_update_gfx_val(dev_priv);
7893
7894         return dev_priv->ips.gfx_power + state2;
7895 }
7896
7897 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
7898 {
7899         unsigned long val;
7900
7901         if (!IS_GEN5(dev_priv))
7902                 return 0;
7903
7904         spin_lock_irq(&mchdev_lock);
7905
7906         val = __i915_gfx_val(dev_priv);
7907
7908         spin_unlock_irq(&mchdev_lock);
7909
7910         return val;
7911 }
7912
7913 /**
7914  * i915_read_mch_val - return value for IPS use
7915  *
7916  * Calculate and return a value for the IPS driver to use when deciding whether
7917  * we have thermal and power headroom to increase CPU or GPU power budget.
7918  */
7919 unsigned long i915_read_mch_val(void)
7920 {
7921         struct drm_i915_private *dev_priv;
7922         unsigned long chipset_val, graphics_val, ret = 0;
7923
7924         spin_lock_irq(&mchdev_lock);
7925         if (!i915_mch_dev)
7926                 goto out_unlock;
7927         dev_priv = i915_mch_dev;
7928
7929         chipset_val = __i915_chipset_val(dev_priv);
7930         graphics_val = __i915_gfx_val(dev_priv);
7931
7932         ret = chipset_val + graphics_val;
7933
7934 out_unlock:
7935         spin_unlock_irq(&mchdev_lock);
7936
7937         return ret;
7938 }
7939 EXPORT_SYMBOL_GPL(i915_read_mch_val);
7940
7941 /**
7942  * i915_gpu_raise - raise GPU frequency limit
7943  *
7944  * Raise the limit; IPS indicates we have thermal headroom.
7945  */
7946 bool i915_gpu_raise(void)
7947 {
7948         struct drm_i915_private *dev_priv;
7949         bool ret = true;
7950
7951         spin_lock_irq(&mchdev_lock);
7952         if (!i915_mch_dev) {
7953                 ret = false;
7954                 goto out_unlock;
7955         }
7956         dev_priv = i915_mch_dev;
7957
7958         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
7959                 dev_priv->ips.max_delay--;
7960
7961 out_unlock:
7962         spin_unlock_irq(&mchdev_lock);
7963
7964         return ret;
7965 }
7966 EXPORT_SYMBOL_GPL(i915_gpu_raise);
7967
7968 /**
7969  * i915_gpu_lower - lower GPU frequency limit
7970  *
7971  * IPS indicates we're close to a thermal limit, so throttle back the GPU
7972  * frequency maximum.
7973  */
7974 bool i915_gpu_lower(void)
7975 {
7976         struct drm_i915_private *dev_priv;
7977         bool ret = true;
7978
7979         spin_lock_irq(&mchdev_lock);
7980         if (!i915_mch_dev) {
7981                 ret = false;
7982                 goto out_unlock;
7983         }
7984         dev_priv = i915_mch_dev;
7985
7986         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
7987                 dev_priv->ips.max_delay++;
7988
7989 out_unlock:
7990         spin_unlock_irq(&mchdev_lock);
7991
7992         return ret;
7993 }
7994 EXPORT_SYMBOL_GPL(i915_gpu_lower);
7995
7996 /**
7997  * i915_gpu_busy - indicate GPU business to IPS
7998  *
7999  * Tell the IPS driver whether or not the GPU is busy.
8000  */
8001 bool i915_gpu_busy(void)
8002 {
8003         bool ret = false;
8004
8005         spin_lock_irq(&mchdev_lock);
8006         if (i915_mch_dev)
8007                 ret = i915_mch_dev->gt.awake;
8008         spin_unlock_irq(&mchdev_lock);
8009
8010         return ret;
8011 }
8012 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8013
8014 /**
8015  * i915_gpu_turbo_disable - disable graphics turbo
8016  *
8017  * Disable graphics turbo by resetting the max frequency and setting the
8018  * current frequency to the default.
8019  */
8020 bool i915_gpu_turbo_disable(void)
8021 {
8022         struct drm_i915_private *dev_priv;
8023         bool ret = true;
8024
8025         spin_lock_irq(&mchdev_lock);
8026         if (!i915_mch_dev) {
8027                 ret = false;
8028                 goto out_unlock;
8029         }
8030         dev_priv = i915_mch_dev;
8031
8032         dev_priv->ips.max_delay = dev_priv->ips.fstart;
8033
8034         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
8035                 ret = false;
8036
8037 out_unlock:
8038         spin_unlock_irq(&mchdev_lock);
8039
8040         return ret;
8041 }
8042 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8043
8044 /**
8045  * Tells the intel_ips driver that the i915 driver is now loaded, if
8046  * IPS got loaded first.
8047  *
8048  * This awkward dance is so that neither module has to depend on the
8049  * other in order for IPS to do the appropriate communication of
8050  * GPU turbo limits to i915.
8051  */
8052 static void
8053 ips_ping_for_i915_load(void)
8054 {
8055         void (*link)(void);
8056
8057         link = symbol_get(ips_link_to_i915_driver);
8058         if (link) {
8059                 link();
8060                 symbol_put(ips_link_to_i915_driver);
8061         }
8062 }
8063
8064 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8065 {
8066         /* We only register the i915 ips part with intel-ips once everything is
8067          * set up, to avoid intel-ips sneaking in and reading bogus values. */
8068         spin_lock_irq(&mchdev_lock);
8069         i915_mch_dev = dev_priv;
8070         spin_unlock_irq(&mchdev_lock);
8071
8072         ips_ping_for_i915_load();
8073 }
8074
8075 void intel_gpu_ips_teardown(void)
8076 {
8077         spin_lock_irq(&mchdev_lock);
8078         i915_mch_dev = NULL;
8079         spin_unlock_irq(&mchdev_lock);
8080 }
8081
8082 static void intel_init_emon(struct drm_i915_private *dev_priv)
8083 {
8084         u32 lcfuse;
8085         u8 pxw[16];
8086         int i;
8087
8088         /* Disable to program */
8089         I915_WRITE(ECR, 0);
8090         POSTING_READ(ECR);
8091
8092         /* Program energy weights for various events */
8093         I915_WRITE(SDEW, 0x15040d00);
8094         I915_WRITE(CSIEW0, 0x007f0000);
8095         I915_WRITE(CSIEW1, 0x1e220004);
8096         I915_WRITE(CSIEW2, 0x04000004);
8097
8098         for (i = 0; i < 5; i++)
8099                 I915_WRITE(PEW(i), 0);
8100         for (i = 0; i < 3; i++)
8101                 I915_WRITE(DEW(i), 0);
8102
8103         /* Program P-state weights to account for frequency power adjustment */
8104         for (i = 0; i < 16; i++) {
8105                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8106                 unsigned long freq = intel_pxfreq(pxvidfreq);
8107                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8108                         PXVFREQ_PX_SHIFT;
8109                 unsigned long val;
8110
8111                 val = vid * vid;
8112                 val *= (freq / 1000);
8113                 val *= 255;
8114                 val /= (127*127*900);
8115                 if (val > 0xff)
8116                         DRM_ERROR("bad pxval: %ld\n", val);
8117                 pxw[i] = val;
8118         }
8119         /* Render standby states get 0 weight */
8120         pxw[14] = 0;
8121         pxw[15] = 0;
8122
8123         for (i = 0; i < 4; i++) {
8124                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8125                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8126                 I915_WRITE(PXW(i), val);
8127         }
8128
8129         /* Adjust magic regs to magic values (more experimental results) */
8130         I915_WRITE(OGW0, 0);
8131         I915_WRITE(OGW1, 0);
8132         I915_WRITE(EG0, 0x00007f00);
8133         I915_WRITE(EG1, 0x0000000e);
8134         I915_WRITE(EG2, 0x000e0000);
8135         I915_WRITE(EG3, 0x68000300);
8136         I915_WRITE(EG4, 0x42000000);
8137         I915_WRITE(EG5, 0x00140031);
8138         I915_WRITE(EG6, 0);
8139         I915_WRITE(EG7, 0);
8140
8141         for (i = 0; i < 8; i++)
8142                 I915_WRITE(PXWL(i), 0);
8143
8144         /* Enable PMON + select events */
8145         I915_WRITE(ECR, 0x80000019);
8146
8147         lcfuse = I915_READ(LCFUSE02);
8148
8149         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8150 }
8151
8152 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8153 {
8154         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8155
8156         /*
8157          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8158          * requirement.
8159          */
8160         if (!sanitize_rc6(dev_priv)) {
8161                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8162                 intel_runtime_pm_get(dev_priv);
8163         }
8164
8165         mutex_lock(&dev_priv->pcu_lock);
8166
8167         /* Initialize RPS limits (for userspace) */
8168         if (IS_CHERRYVIEW(dev_priv))
8169                 cherryview_init_gt_powersave(dev_priv);
8170         else if (IS_VALLEYVIEW(dev_priv))
8171                 valleyview_init_gt_powersave(dev_priv);
8172         else if (INTEL_GEN(dev_priv) >= 6)
8173                 gen6_init_rps_frequencies(dev_priv);
8174
8175         /* Derive initial user preferences/limits from the hardware limits */
8176         rps->idle_freq = rps->min_freq;
8177         rps->cur_freq = rps->idle_freq;
8178
8179         rps->max_freq_softlimit = rps->max_freq;
8180         rps->min_freq_softlimit = rps->min_freq;
8181
8182         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
8183                 rps->min_freq_softlimit =
8184                         max_t(int,
8185                               rps->efficient_freq,
8186                               intel_freq_opcode(dev_priv, 450));
8187
8188         /* After setting max-softlimit, find the overclock max freq */
8189         if (IS_GEN6(dev_priv) ||
8190             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8191                 u32 params = 0;
8192
8193                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
8194                 if (params & BIT(31)) { /* OC supported */
8195                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8196                                          (rps->max_freq & 0xff) * 50,
8197                                          (params & 0xff) * 50);
8198                         rps->max_freq = params & 0xff;
8199                 }
8200         }
8201
8202         /* Finally allow us to boost to max by default */
8203         rps->boost_freq = rps->max_freq;
8204
8205         mutex_unlock(&dev_priv->pcu_lock);
8206 }
8207
8208 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8209 {
8210         if (IS_VALLEYVIEW(dev_priv))
8211                 valleyview_cleanup_gt_powersave(dev_priv);
8212
8213         if (!HAS_RC6(dev_priv))
8214                 intel_runtime_pm_put(dev_priv);
8215 }
8216
8217 /**
8218  * intel_suspend_gt_powersave - suspend PM work and helper threads
8219  * @dev_priv: i915 device
8220  *
8221  * We don't want to disable RC6 or other features here, we just want
8222  * to make sure any work we've queued has finished and won't bother
8223  * us while we're suspended.
8224  */
8225 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
8226 {
8227         if (INTEL_GEN(dev_priv) < 6)
8228                 return;
8229
8230         /* gen6_rps_idle() will be called later to disable interrupts */
8231 }
8232
8233 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8234 {
8235         dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8236         dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8237         intel_disable_gt_powersave(dev_priv);
8238
8239         if (INTEL_GEN(dev_priv) >= 11)
8240                 gen11_reset_rps_interrupts(dev_priv);
8241         else
8242                 gen6_reset_rps_interrupts(dev_priv);
8243 }
8244
8245 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8246 {
8247         lockdep_assert_held(&i915->pcu_lock);
8248
8249         if (!i915->gt_pm.llc_pstate.enabled)
8250                 return;
8251
8252         /* Currently there is no HW configuration to be done to disable. */
8253
8254         i915->gt_pm.llc_pstate.enabled = false;
8255 }
8256
8257 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8258 {
8259         lockdep_assert_held(&dev_priv->pcu_lock);
8260
8261         if (!dev_priv->gt_pm.rc6.enabled)
8262                 return;
8263
8264         if (INTEL_GEN(dev_priv) >= 9)
8265                 gen9_disable_rc6(dev_priv);
8266         else if (IS_CHERRYVIEW(dev_priv))
8267                 cherryview_disable_rc6(dev_priv);
8268         else if (IS_VALLEYVIEW(dev_priv))
8269                 valleyview_disable_rc6(dev_priv);
8270         else if (INTEL_GEN(dev_priv) >= 6)
8271                 gen6_disable_rc6(dev_priv);
8272
8273         dev_priv->gt_pm.rc6.enabled = false;
8274 }
8275
8276 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8277 {
8278         lockdep_assert_held(&dev_priv->pcu_lock);
8279
8280         if (!dev_priv->gt_pm.rps.enabled)
8281                 return;
8282
8283         if (INTEL_GEN(dev_priv) >= 9)
8284                 gen9_disable_rps(dev_priv);
8285         else if (IS_CHERRYVIEW(dev_priv))
8286                 cherryview_disable_rps(dev_priv);
8287         else if (IS_VALLEYVIEW(dev_priv))
8288                 valleyview_disable_rps(dev_priv);
8289         else if (INTEL_GEN(dev_priv) >= 6)
8290                 gen6_disable_rps(dev_priv);
8291         else if (IS_IRONLAKE_M(dev_priv))
8292                 ironlake_disable_drps(dev_priv);
8293
8294         dev_priv->gt_pm.rps.enabled = false;
8295 }
8296
8297 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8298 {
8299         mutex_lock(&dev_priv->pcu_lock);
8300
8301         intel_disable_rc6(dev_priv);
8302         intel_disable_rps(dev_priv);
8303         if (HAS_LLC(dev_priv))
8304                 intel_disable_llc_pstate(dev_priv);
8305
8306         mutex_unlock(&dev_priv->pcu_lock);
8307 }
8308
8309 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8310 {
8311         lockdep_assert_held(&i915->pcu_lock);
8312
8313         if (i915->gt_pm.llc_pstate.enabled)
8314                 return;
8315
8316         gen6_update_ring_freq(i915);
8317
8318         i915->gt_pm.llc_pstate.enabled = true;
8319 }
8320
8321 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8322 {
8323         lockdep_assert_held(&dev_priv->pcu_lock);
8324
8325         if (dev_priv->gt_pm.rc6.enabled)
8326                 return;
8327
8328         if (IS_CHERRYVIEW(dev_priv))
8329                 cherryview_enable_rc6(dev_priv);
8330         else if (IS_VALLEYVIEW(dev_priv))
8331                 valleyview_enable_rc6(dev_priv);
8332         else if (INTEL_GEN(dev_priv) >= 9)
8333                 gen9_enable_rc6(dev_priv);
8334         else if (IS_BROADWELL(dev_priv))
8335                 gen8_enable_rc6(dev_priv);
8336         else if (INTEL_GEN(dev_priv) >= 6)
8337                 gen6_enable_rc6(dev_priv);
8338
8339         dev_priv->gt_pm.rc6.enabled = true;
8340 }
8341
8342 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8343 {
8344         struct intel_rps *rps = &dev_priv->gt_pm.rps;
8345
8346         lockdep_assert_held(&dev_priv->pcu_lock);
8347
8348         if (rps->enabled)
8349                 return;
8350
8351         if (IS_CHERRYVIEW(dev_priv)) {
8352                 cherryview_enable_rps(dev_priv);
8353         } else if (IS_VALLEYVIEW(dev_priv)) {
8354                 valleyview_enable_rps(dev_priv);
8355         } else if (INTEL_GEN(dev_priv) >= 9) {
8356                 gen9_enable_rps(dev_priv);
8357         } else if (IS_BROADWELL(dev_priv)) {
8358                 gen8_enable_rps(dev_priv);
8359         } else if (INTEL_GEN(dev_priv) >= 6) {
8360                 gen6_enable_rps(dev_priv);
8361         } else if (IS_IRONLAKE_M(dev_priv)) {
8362                 ironlake_enable_drps(dev_priv);
8363                 intel_init_emon(dev_priv);
8364         }
8365
8366         WARN_ON(rps->max_freq < rps->min_freq);
8367         WARN_ON(rps->idle_freq > rps->max_freq);
8368
8369         WARN_ON(rps->efficient_freq < rps->min_freq);
8370         WARN_ON(rps->efficient_freq > rps->max_freq);
8371
8372         rps->enabled = true;
8373 }
8374
8375 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8376 {
8377         /* Powersaving is controlled by the host when inside a VM */
8378         if (intel_vgpu_active(dev_priv))
8379                 return;
8380
8381         mutex_lock(&dev_priv->pcu_lock);
8382
8383         if (HAS_RC6(dev_priv))
8384                 intel_enable_rc6(dev_priv);
8385         intel_enable_rps(dev_priv);
8386         if (HAS_LLC(dev_priv))
8387                 intel_enable_llc_pstate(dev_priv);
8388
8389         mutex_unlock(&dev_priv->pcu_lock);
8390 }
8391
8392 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8393 {
8394         /*
8395          * On Ibex Peak and Cougar Point, we need to disable clock
8396          * gating for the panel power sequencer or it will fail to
8397          * start up when no ports are active.
8398          */
8399         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8400 }
8401
8402 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8403 {
8404         enum pipe pipe;
8405
8406         for_each_pipe(dev_priv, pipe) {
8407                 I915_WRITE(DSPCNTR(pipe),
8408                            I915_READ(DSPCNTR(pipe)) |
8409                            DISPPLANE_TRICKLE_FEED_DISABLE);
8410
8411                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8412                 POSTING_READ(DSPSURF(pipe));
8413         }
8414 }
8415
8416 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8417 {
8418         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8419
8420         /*
8421          * Required for FBC
8422          * WaFbcDisableDpfcClockGating:ilk
8423          */
8424         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8425                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8426                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8427
8428         I915_WRITE(PCH_3DCGDIS0,
8429                    MARIUNIT_CLOCK_GATE_DISABLE |
8430                    SVSMUNIT_CLOCK_GATE_DISABLE);
8431         I915_WRITE(PCH_3DCGDIS1,
8432                    VFMUNIT_CLOCK_GATE_DISABLE);
8433
8434         /*
8435          * According to the spec the following bits should be set in
8436          * order to enable memory self-refresh
8437          * The bit 22/21 of 0x42004
8438          * The bit 5 of 0x42020
8439          * The bit 15 of 0x45000
8440          */
8441         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8442                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8443                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8444         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8445         I915_WRITE(DISP_ARB_CTL,
8446                    (I915_READ(DISP_ARB_CTL) |
8447                     DISP_FBC_WM_DIS));
8448
8449         /*
8450          * Based on the document from hardware guys the following bits
8451          * should be set unconditionally in order to enable FBC.
8452          * The bit 22 of 0x42000
8453          * The bit 22 of 0x42004
8454          * The bit 7,8,9 of 0x42020.
8455          */
8456         if (IS_IRONLAKE_M(dev_priv)) {
8457                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8458                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8459                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8460                            ILK_FBCQ_DIS);
8461                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8462                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8463                            ILK_DPARB_GATE);
8464         }
8465
8466         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8467
8468         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8469                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8470                    ILK_ELPIN_409_SELECT);
8471         I915_WRITE(_3D_CHICKEN2,
8472                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8473                    _3D_CHICKEN2_WM_READ_PIPELINED);
8474
8475         /* WaDisableRenderCachePipelinedFlush:ilk */
8476         I915_WRITE(CACHE_MODE_0,
8477                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8478
8479         /* WaDisable_RenderCache_OperationalFlush:ilk */
8480         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8481
8482         g4x_disable_trickle_feed(dev_priv);
8483
8484         ibx_init_clock_gating(dev_priv);
8485 }
8486
8487 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8488 {
8489         int pipe;
8490         uint32_t val;
8491
8492         /*
8493          * On Ibex Peak and Cougar Point, we need to disable clock
8494          * gating for the panel power sequencer or it will fail to
8495          * start up when no ports are active.
8496          */
8497         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8498                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8499                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
8500         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8501                    DPLS_EDP_PPS_FIX_DIS);
8502         /* The below fixes the weird display corruption, a few pixels shifted
8503          * downward, on (only) LVDS of some HP laptops with IVY.
8504          */
8505         for_each_pipe(dev_priv, pipe) {
8506                 val = I915_READ(TRANS_CHICKEN2(pipe));
8507                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8508                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8509                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
8510                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8511                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
8512                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
8513                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
8514                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
8515         }
8516         /* WADP0ClockGatingDisable */
8517         for_each_pipe(dev_priv, pipe) {
8518                 I915_WRITE(TRANS_CHICKEN1(pipe),
8519                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8520         }
8521 }
8522
8523 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
8524 {
8525         uint32_t tmp;
8526
8527         tmp = I915_READ(MCH_SSKPD);
8528         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
8529                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
8530                               tmp);
8531 }
8532
8533 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
8534 {
8535         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8536
8537         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8538
8539         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8540                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8541                    ILK_ELPIN_409_SELECT);
8542
8543         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
8544         I915_WRITE(_3D_CHICKEN,
8545                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
8546
8547         /* WaDisable_RenderCache_OperationalFlush:snb */
8548         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8549
8550         /*
8551          * BSpec recoomends 8x4 when MSAA is used,
8552          * however in practice 16x4 seems fastest.
8553          *
8554          * Note that PS/WM thread counts depend on the WIZ hashing
8555          * disable bit, which we don't touch here, but it's good
8556          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8557          */
8558         I915_WRITE(GEN6_GT_MODE,
8559                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8560
8561         I915_WRITE(CACHE_MODE_0,
8562                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
8563
8564         I915_WRITE(GEN6_UCGCTL1,
8565                    I915_READ(GEN6_UCGCTL1) |
8566                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
8567                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
8568
8569         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8570          * gating disable must be set.  Failure to set it results in
8571          * flickering pixels due to Z write ordering failures after
8572          * some amount of runtime in the Mesa "fire" demo, and Unigine
8573          * Sanctuary and Tropics, and apparently anything else with
8574          * alpha test or pixel discard.
8575          *
8576          * According to the spec, bit 11 (RCCUNIT) must also be set,
8577          * but we didn't debug actual testcases to find it out.
8578          *
8579          * WaDisableRCCUnitClockGating:snb
8580          * WaDisableRCPBUnitClockGating:snb
8581          */
8582         I915_WRITE(GEN6_UCGCTL2,
8583                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8584                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8585
8586         /* WaStripsFansDisableFastClipPerformanceFix:snb */
8587         I915_WRITE(_3D_CHICKEN3,
8588                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
8589
8590         /*
8591          * Bspec says:
8592          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
8593          * 3DSTATE_SF number of SF output attributes is more than 16."
8594          */
8595         I915_WRITE(_3D_CHICKEN3,
8596                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
8597
8598         /*
8599          * According to the spec the following bits should be
8600          * set in order to enable memory self-refresh and fbc:
8601          * The bit21 and bit22 of 0x42000
8602          * The bit21 and bit22 of 0x42004
8603          * The bit5 and bit7 of 0x42020
8604          * The bit14 of 0x70180
8605          * The bit14 of 0x71180
8606          *
8607          * WaFbcAsynchFlipDisableFbcQueue:snb
8608          */
8609         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8610                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8611                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8612         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8613                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8614                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8615         I915_WRITE(ILK_DSPCLK_GATE_D,
8616                    I915_READ(ILK_DSPCLK_GATE_D) |
8617                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
8618                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
8619
8620         g4x_disable_trickle_feed(dev_priv);
8621
8622         cpt_init_clock_gating(dev_priv);
8623
8624         gen6_check_mch_setup(dev_priv);
8625 }
8626
8627 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
8628 {
8629         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
8630
8631         /*
8632          * WaVSThreadDispatchOverride:ivb,vlv
8633          *
8634          * This actually overrides the dispatch
8635          * mode for all thread types.
8636          */
8637         reg &= ~GEN7_FF_SCHED_MASK;
8638         reg |= GEN7_FF_TS_SCHED_HW;
8639         reg |= GEN7_FF_VS_SCHED_HW;
8640         reg |= GEN7_FF_DS_SCHED_HW;
8641
8642         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
8643 }
8644
8645 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
8646 {
8647         /*
8648          * TODO: this bit should only be enabled when really needed, then
8649          * disabled when not needed anymore in order to save power.
8650          */
8651         if (HAS_PCH_LPT_LP(dev_priv))
8652                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
8653                            I915_READ(SOUTH_DSPCLK_GATE_D) |
8654                            PCH_LP_PARTITION_LEVEL_DISABLE);
8655
8656         /* WADPOClockGatingDisable:hsw */
8657         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
8658                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
8659                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
8660 }
8661
8662 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
8663 {
8664         if (HAS_PCH_LPT_LP(dev_priv)) {
8665                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
8666
8667                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8668                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8669         }
8670 }
8671
8672 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
8673                                    int general_prio_credits,
8674                                    int high_prio_credits)
8675 {
8676         u32 misccpctl;
8677         u32 val;
8678
8679         /* WaTempDisableDOPClkGating:bdw */
8680         misccpctl = I915_READ(GEN7_MISCCPCTL);
8681         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
8682
8683         val = I915_READ(GEN8_L3SQCREG1);
8684         val &= ~L3_PRIO_CREDITS_MASK;
8685         val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
8686         val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
8687         I915_WRITE(GEN8_L3SQCREG1, val);
8688
8689         /*
8690          * Wait at least 100 clocks before re-enabling clock gating.
8691          * See the definition of L3SQCREG1 in BSpec.
8692          */
8693         POSTING_READ(GEN8_L3SQCREG1);
8694         udelay(1);
8695         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
8696 }
8697
8698 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
8699 {
8700         /* This is not an Wa. Enable to reduce Sampler power */
8701         I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
8702                    I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
8703 }
8704
8705 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
8706 {
8707         if (!HAS_PCH_CNP(dev_priv))
8708                 return;
8709
8710         /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
8711         I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
8712                    CNP_PWM_CGE_GATING_DISABLE);
8713 }
8714
8715 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
8716 {
8717         u32 val;
8718         cnp_init_clock_gating(dev_priv);
8719
8720         /* This is not an Wa. Enable for better image quality */
8721         I915_WRITE(_3D_CHICKEN3,
8722                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
8723
8724         /* WaEnableChickenDCPR:cnl */
8725         I915_WRITE(GEN8_CHICKEN_DCPR_1,
8726                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
8727
8728         /* WaFbcWakeMemOn:cnl */
8729         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
8730                    DISP_FBC_MEMORY_WAKE);
8731
8732         val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
8733         /* ReadHitWriteOnlyDisable:cnl */
8734         val |= RCCUNIT_CLKGATE_DIS;
8735         /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
8736         if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
8737                 val |= SARBUNIT_CLKGATE_DIS;
8738         I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
8739
8740         /* Wa_2201832410:cnl */
8741         val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
8742         val |= GWUNIT_CLKGATE_DIS;
8743         I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
8744
8745         /* WaDisableVFclkgate:cnl */
8746         /* WaVFUnitClockGatingDisable:cnl */
8747         val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
8748         val |= VFUNIT_CLKGATE_DIS;
8749         I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
8750 }
8751
8752 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
8753 {
8754         cnp_init_clock_gating(dev_priv);
8755         gen9_init_clock_gating(dev_priv);
8756
8757         /* WaFbcNukeOnHostModify:cfl */
8758         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8759                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8760 }
8761
8762 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
8763 {
8764         gen9_init_clock_gating(dev_priv);
8765
8766         /* WaDisableSDEUnitClockGating:kbl */
8767         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8768                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8769                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8770
8771         /* WaDisableGamClockGating:kbl */
8772         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
8773                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
8774                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
8775
8776         /* WaFbcNukeOnHostModify:kbl */
8777         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8778                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8779 }
8780
8781 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
8782 {
8783         gen9_init_clock_gating(dev_priv);
8784
8785         /* WAC6entrylatency:skl */
8786         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
8787                    FBC_LLC_FULLY_OPEN);
8788
8789         /* WaFbcNukeOnHostModify:skl */
8790         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
8791                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
8792 }
8793
8794 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
8795 {
8796         /* The GTT cache must be disabled if the system is using 2M pages. */
8797         bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
8798                                                  I915_GTT_PAGE_SIZE_2M);
8799         enum pipe pipe;
8800
8801         /* WaSwitchSolVfFArbitrationPriority:bdw */
8802         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8803
8804         /* WaPsrDPAMaskVBlankInSRD:bdw */
8805         I915_WRITE(CHICKEN_PAR1_1,
8806                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
8807
8808         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
8809         for_each_pipe(dev_priv, pipe) {
8810                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
8811                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
8812                            BDW_DPRS_MASK_VBLANK_SRD);
8813         }
8814
8815         /* WaVSRefCountFullforceMissDisable:bdw */
8816         /* WaDSRefCountFullforceMissDisable:bdw */
8817         I915_WRITE(GEN7_FF_THREAD_MODE,
8818                    I915_READ(GEN7_FF_THREAD_MODE) &
8819                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
8820
8821         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
8822                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
8823
8824         /* WaDisableSDEUnitClockGating:bdw */
8825         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
8826                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
8827
8828         /* WaProgramL3SqcReg1Default:bdw */
8829         gen8_set_l3sqc_credits(dev_priv, 30, 2);
8830
8831         /* WaGttCachingOffByDefault:bdw */
8832         I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
8833
8834         /* WaKVMNotificationOnConfigChange:bdw */
8835         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
8836                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
8837
8838         lpt_init_clock_gating(dev_priv);
8839
8840         /* WaDisableDopClockGating:bdw
8841          *
8842          * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
8843          * clock gating.
8844          */
8845         I915_WRITE(GEN6_UCGCTL1,
8846                    I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
8847 }
8848
8849 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
8850 {
8851         /* L3 caching of data atomics doesn't work -- disable it. */
8852         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
8853         I915_WRITE(HSW_ROW_CHICKEN3,
8854                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
8855
8856         /* This is required by WaCatErrorRejectionIssue:hsw */
8857         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8858                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8859                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8860
8861         /* WaVSRefCountFullforceMissDisable:hsw */
8862         I915_WRITE(GEN7_FF_THREAD_MODE,
8863                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
8864
8865         /* WaDisable_RenderCache_OperationalFlush:hsw */
8866         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8867
8868         /* enable HiZ Raw Stall Optimization */
8869         I915_WRITE(CACHE_MODE_0_GEN7,
8870                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8871
8872         /* WaDisable4x2SubspanOptimization:hsw */
8873         I915_WRITE(CACHE_MODE_1,
8874                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8875
8876         /*
8877          * BSpec recommends 8x4 when MSAA is used,
8878          * however in practice 16x4 seems fastest.
8879          *
8880          * Note that PS/WM thread counts depend on the WIZ hashing
8881          * disable bit, which we don't touch here, but it's good
8882          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8883          */
8884         I915_WRITE(GEN7_GT_MODE,
8885                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8886
8887         /* WaSampleCChickenBitEnable:hsw */
8888         I915_WRITE(HALF_SLICE_CHICKEN3,
8889                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
8890
8891         /* WaSwitchSolVfFArbitrationPriority:hsw */
8892         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
8893
8894         lpt_init_clock_gating(dev_priv);
8895 }
8896
8897 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
8898 {
8899         uint32_t snpcr;
8900
8901         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
8902
8903         /* WaDisableEarlyCull:ivb */
8904         I915_WRITE(_3D_CHICKEN3,
8905                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8906
8907         /* WaDisableBackToBackFlipFix:ivb */
8908         I915_WRITE(IVB_CHICKEN3,
8909                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8910                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8911
8912         /* WaDisablePSDDualDispatchEnable:ivb */
8913         if (IS_IVB_GT1(dev_priv))
8914                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
8915                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
8916
8917         /* WaDisable_RenderCache_OperationalFlush:ivb */
8918         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8919
8920         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
8921         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8922                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8923
8924         /* WaApplyL3ControlAndL3ChickenMode:ivb */
8925         I915_WRITE(GEN7_L3CNTLREG1,
8926                         GEN7_WA_FOR_GEN7_L3_CONTROL);
8927         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8928                    GEN7_WA_L3_CHICKEN_MODE);
8929         if (IS_IVB_GT1(dev_priv))
8930                 I915_WRITE(GEN7_ROW_CHICKEN2,
8931                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8932         else {
8933                 /* must write both registers */
8934                 I915_WRITE(GEN7_ROW_CHICKEN2,
8935                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8936                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
8937                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
8938         }
8939
8940         /* WaForceL3Serialization:ivb */
8941         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
8942                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
8943
8944         /*
8945          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8946          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
8947          */
8948         I915_WRITE(GEN6_UCGCTL2,
8949                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8950
8951         /* This is required by WaCatErrorRejectionIssue:ivb */
8952         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8953                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8954                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8955
8956         g4x_disable_trickle_feed(dev_priv);
8957
8958         gen7_setup_fixed_func_scheduler(dev_priv);
8959
8960         if (0) { /* causes HiZ corruption on ivb:gt1 */
8961                 /* enable HiZ Raw Stall Optimization */
8962                 I915_WRITE(CACHE_MODE_0_GEN7,
8963                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
8964         }
8965
8966         /* WaDisable4x2SubspanOptimization:ivb */
8967         I915_WRITE(CACHE_MODE_1,
8968                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
8969
8970         /*
8971          * BSpec recommends 8x4 when MSAA is used,
8972          * however in practice 16x4 seems fastest.
8973          *
8974          * Note that PS/WM thread counts depend on the WIZ hashing
8975          * disable bit, which we don't touch here, but it's good
8976          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
8977          */
8978         I915_WRITE(GEN7_GT_MODE,
8979                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
8980
8981         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
8982         snpcr &= ~GEN6_MBC_SNPCR_MASK;
8983         snpcr |= GEN6_MBC_SNPCR_MED;
8984         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
8985
8986         if (!HAS_PCH_NOP(dev_priv))
8987                 cpt_init_clock_gating(dev_priv);
8988
8989         gen6_check_mch_setup(dev_priv);
8990 }
8991
8992 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
8993 {
8994         /* WaDisableEarlyCull:vlv */
8995         I915_WRITE(_3D_CHICKEN3,
8996                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
8997
8998         /* WaDisableBackToBackFlipFix:vlv */
8999         I915_WRITE(IVB_CHICKEN3,
9000                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9001                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
9002
9003         /* WaPsdDispatchEnable:vlv */
9004         /* WaDisablePSDDualDispatchEnable:vlv */
9005         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9006                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9007                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9008
9009         /* WaDisable_RenderCache_OperationalFlush:vlv */
9010         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9011
9012         /* WaForceL3Serialization:vlv */
9013         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9014                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9015
9016         /* WaDisableDopClockGating:vlv */
9017         I915_WRITE(GEN7_ROW_CHICKEN2,
9018                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9019
9020         /* This is required by WaCatErrorRejectionIssue:vlv */
9021         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9022                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9023                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9024
9025         gen7_setup_fixed_func_scheduler(dev_priv);
9026
9027         /*
9028          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9029          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9030          */
9031         I915_WRITE(GEN6_UCGCTL2,
9032                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9033
9034         /* WaDisableL3Bank2xClockGate:vlv
9035          * Disabling L3 clock gating- MMIO 940c[25] = 1
9036          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9037         I915_WRITE(GEN7_UCGCTL4,
9038                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9039
9040         /*
9041          * BSpec says this must be set, even though
9042          * WaDisable4x2SubspanOptimization isn't listed for VLV.
9043          */
9044         I915_WRITE(CACHE_MODE_1,
9045                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9046
9047         /*
9048          * BSpec recommends 8x4 when MSAA is used,
9049          * however in practice 16x4 seems fastest.
9050          *
9051          * Note that PS/WM thread counts depend on the WIZ hashing
9052          * disable bit, which we don't touch here, but it's good
9053          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9054          */
9055         I915_WRITE(GEN7_GT_MODE,
9056                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9057
9058         /*
9059          * WaIncreaseL3CreditsForVLVB0:vlv
9060          * This is the hardware default actually.
9061          */
9062         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9063
9064         /*
9065          * WaDisableVLVClockGating_VBIIssue:vlv
9066          * Disable clock gating on th GCFG unit to prevent a delay
9067          * in the reporting of vblank events.
9068          */
9069         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9070 }
9071
9072 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9073 {
9074         /* WaVSRefCountFullforceMissDisable:chv */
9075         /* WaDSRefCountFullforceMissDisable:chv */
9076         I915_WRITE(GEN7_FF_THREAD_MODE,
9077                    I915_READ(GEN7_FF_THREAD_MODE) &
9078                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9079
9080         /* WaDisableSemaphoreAndSyncFlipWait:chv */
9081         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9082                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9083
9084         /* WaDisableCSUnitClockGating:chv */
9085         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9086                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9087
9088         /* WaDisableSDEUnitClockGating:chv */
9089         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9090                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9091
9092         /*
9093          * WaProgramL3SqcReg1Default:chv
9094          * See gfxspecs/Related Documents/Performance Guide/
9095          * LSQC Setting Recommendations.
9096          */
9097         gen8_set_l3sqc_credits(dev_priv, 38, 2);
9098
9099         /*
9100          * GTT cache may not work with big pages, so if those
9101          * are ever enabled GTT cache may need to be disabled.
9102          */
9103         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
9104 }
9105
9106 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9107 {
9108         uint32_t dspclk_gate;
9109
9110         I915_WRITE(RENCLK_GATE_D1, 0);
9111         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9112                    GS_UNIT_CLOCK_GATE_DISABLE |
9113                    CL_UNIT_CLOCK_GATE_DISABLE);
9114         I915_WRITE(RAMCLK_GATE_D, 0);
9115         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9116                 OVRUNIT_CLOCK_GATE_DISABLE |
9117                 OVCUNIT_CLOCK_GATE_DISABLE;
9118         if (IS_GM45(dev_priv))
9119                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9120         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9121
9122         /* WaDisableRenderCachePipelinedFlush */
9123         I915_WRITE(CACHE_MODE_0,
9124                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9125
9126         /* WaDisable_RenderCache_OperationalFlush:g4x */
9127         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9128
9129         g4x_disable_trickle_feed(dev_priv);
9130 }
9131
9132 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9133 {
9134         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9135         I915_WRITE(RENCLK_GATE_D2, 0);
9136         I915_WRITE(DSPCLK_GATE_D, 0);
9137         I915_WRITE(RAMCLK_GATE_D, 0);
9138         I915_WRITE16(DEUC, 0);
9139         I915_WRITE(MI_ARB_STATE,
9140                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9141
9142         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9143         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9144 }
9145
9146 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9147 {
9148         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9149                    I965_RCC_CLOCK_GATE_DISABLE |
9150                    I965_RCPB_CLOCK_GATE_DISABLE |
9151                    I965_ISC_CLOCK_GATE_DISABLE |
9152                    I965_FBC_CLOCK_GATE_DISABLE);
9153         I915_WRITE(RENCLK_GATE_D2, 0);
9154         I915_WRITE(MI_ARB_STATE,
9155                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9156
9157         /* WaDisable_RenderCache_OperationalFlush:gen4 */
9158         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9159 }
9160
9161 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9162 {
9163         u32 dstate = I915_READ(D_STATE);
9164
9165         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9166                 DSTATE_DOT_CLOCK_GATING;
9167         I915_WRITE(D_STATE, dstate);
9168
9169         if (IS_PINEVIEW(dev_priv))
9170                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9171
9172         /* IIR "flip pending" means done if this bit is set */
9173         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9174
9175         /* interrupts should cause a wake up from C3 */
9176         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9177
9178         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9179         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9180
9181         I915_WRITE(MI_ARB_STATE,
9182                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9183 }
9184
9185 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9186 {
9187         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9188
9189         /* interrupts should cause a wake up from C3 */
9190         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9191                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9192
9193         I915_WRITE(MEM_MODE,
9194                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9195 }
9196
9197 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9198 {
9199         I915_WRITE(MEM_MODE,
9200                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9201                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9202 }
9203
9204 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9205 {
9206         dev_priv->display.init_clock_gating(dev_priv);
9207 }
9208
9209 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9210 {
9211         if (HAS_PCH_LPT(dev_priv))
9212                 lpt_suspend_hw(dev_priv);
9213 }
9214
9215 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9216 {
9217         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9218 }
9219
9220 /**
9221  * intel_init_clock_gating_hooks - setup the clock gating hooks
9222  * @dev_priv: device private
9223  *
9224  * Setup the hooks that configure which clocks of a given platform can be
9225  * gated and also apply various GT and display specific workarounds for these
9226  * platforms. Note that some GT specific workarounds are applied separately
9227  * when GPU contexts or batchbuffers start their execution.
9228  */
9229 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9230 {
9231         if (IS_ICELAKE(dev_priv))
9232                 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9233         else if (IS_CANNONLAKE(dev_priv))
9234                 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9235         else if (IS_COFFEELAKE(dev_priv))
9236                 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9237         else if (IS_SKYLAKE(dev_priv))
9238                 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9239         else if (IS_KABYLAKE(dev_priv))
9240                 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9241         else if (IS_BROXTON(dev_priv))
9242                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9243         else if (IS_GEMINILAKE(dev_priv))
9244                 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9245         else if (IS_BROADWELL(dev_priv))
9246                 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9247         else if (IS_CHERRYVIEW(dev_priv))
9248                 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9249         else if (IS_HASWELL(dev_priv))
9250                 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9251         else if (IS_IVYBRIDGE(dev_priv))
9252                 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9253         else if (IS_VALLEYVIEW(dev_priv))
9254                 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9255         else if (IS_GEN6(dev_priv))
9256                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9257         else if (IS_GEN5(dev_priv))
9258                 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9259         else if (IS_G4X(dev_priv))
9260                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9261         else if (IS_I965GM(dev_priv))
9262                 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9263         else if (IS_I965G(dev_priv))
9264                 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9265         else if (IS_GEN3(dev_priv))
9266                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9267         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9268                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9269         else if (IS_GEN2(dev_priv))
9270                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9271         else {
9272                 MISSING_CASE(INTEL_DEVID(dev_priv));
9273                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9274         }
9275 }
9276
9277 /* Set up chip specific power management-related functions */
9278 void intel_init_pm(struct drm_i915_private *dev_priv)
9279 {
9280         intel_fbc_init(dev_priv);
9281
9282         /* For cxsr */
9283         if (IS_PINEVIEW(dev_priv))
9284                 i915_pineview_get_mem_freq(dev_priv);
9285         else if (IS_GEN5(dev_priv))
9286                 i915_ironlake_get_mem_freq(dev_priv);
9287
9288         /* For FIFO watermark updates */
9289         if (INTEL_GEN(dev_priv) >= 9) {
9290                 skl_setup_wm_latency(dev_priv);
9291                 dev_priv->display.initial_watermarks = skl_initial_wm;
9292                 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9293                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9294         } else if (HAS_PCH_SPLIT(dev_priv)) {
9295                 ilk_setup_wm_latency(dev_priv);
9296
9297                 if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
9298                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9299                     (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
9300                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9301                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9302                         dev_priv->display.compute_intermediate_wm =
9303                                 ilk_compute_intermediate_wm;
9304                         dev_priv->display.initial_watermarks =
9305                                 ilk_initial_watermarks;
9306                         dev_priv->display.optimize_watermarks =
9307                                 ilk_optimize_watermarks;
9308                 } else {
9309                         DRM_DEBUG_KMS("Failed to read display plane latency. "
9310                                       "Disable CxSR\n");
9311                 }
9312         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9313                 vlv_setup_wm_latency(dev_priv);
9314                 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9315                 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9316                 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9317                 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9318                 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9319         } else if (IS_G4X(dev_priv)) {
9320                 g4x_setup_wm_latency(dev_priv);
9321                 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9322                 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9323                 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9324                 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9325         } else if (IS_PINEVIEW(dev_priv)) {
9326                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
9327                                             dev_priv->is_ddr3,
9328                                             dev_priv->fsb_freq,
9329                                             dev_priv->mem_freq)) {
9330                         DRM_INFO("failed to find known CxSR latency "
9331                                  "(found ddr%s fsb freq %d, mem freq %d), "
9332                                  "disabling CxSR\n",
9333                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
9334                                  dev_priv->fsb_freq, dev_priv->mem_freq);
9335                         /* Disable CxSR and never update its watermark again */
9336                         intel_set_memory_cxsr(dev_priv, false);
9337                         dev_priv->display.update_wm = NULL;
9338                 } else
9339                         dev_priv->display.update_wm = pineview_update_wm;
9340         } else if (IS_GEN4(dev_priv)) {
9341                 dev_priv->display.update_wm = i965_update_wm;
9342         } else if (IS_GEN3(dev_priv)) {
9343                 dev_priv->display.update_wm = i9xx_update_wm;
9344                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9345         } else if (IS_GEN2(dev_priv)) {
9346                 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9347                         dev_priv->display.update_wm = i845_update_wm;
9348                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
9349                 } else {
9350                         dev_priv->display.update_wm = i9xx_update_wm;
9351                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
9352                 }
9353         } else {
9354                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9355         }
9356 }
9357
9358 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
9359 {
9360         uint32_t flags =
9361                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9362
9363         switch (flags) {
9364         case GEN6_PCODE_SUCCESS:
9365                 return 0;
9366         case GEN6_PCODE_UNIMPLEMENTED_CMD:
9367                 return -ENODEV;
9368         case GEN6_PCODE_ILLEGAL_CMD:
9369                 return -ENXIO;
9370         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9371         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9372                 return -EOVERFLOW;
9373         case GEN6_PCODE_TIMEOUT:
9374                 return -ETIMEDOUT;
9375         default:
9376                 MISSING_CASE(flags);
9377                 return 0;
9378         }
9379 }
9380
9381 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
9382 {
9383         uint32_t flags =
9384                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
9385
9386         switch (flags) {
9387         case GEN6_PCODE_SUCCESS:
9388                 return 0;
9389         case GEN6_PCODE_ILLEGAL_CMD:
9390                 return -ENXIO;
9391         case GEN7_PCODE_TIMEOUT:
9392                 return -ETIMEDOUT;
9393         case GEN7_PCODE_ILLEGAL_DATA:
9394                 return -EINVAL;
9395         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
9396                 return -EOVERFLOW;
9397         default:
9398                 MISSING_CASE(flags);
9399                 return 0;
9400         }
9401 }
9402
9403 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
9404 {
9405         int status;
9406
9407         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9408
9409         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9410          * use te fw I915_READ variants to reduce the amount of work
9411          * required when reading/writing.
9412          */
9413
9414         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9415                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
9416                                  mbox, __builtin_return_address(0));
9417                 return -EAGAIN;
9418         }
9419
9420         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
9421         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9422         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9423
9424         if (__intel_wait_for_register_fw(dev_priv,
9425                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9426                                          500, 0, NULL)) {
9427                 DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
9428                           mbox, __builtin_return_address(0));
9429                 return -ETIMEDOUT;
9430         }
9431
9432         *val = I915_READ_FW(GEN6_PCODE_DATA);
9433         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9434
9435         if (INTEL_GEN(dev_priv) > 6)
9436                 status = gen7_check_mailbox_status(dev_priv);
9437         else
9438                 status = gen6_check_mailbox_status(dev_priv);
9439
9440         if (status) {
9441                 DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
9442                                  mbox, __builtin_return_address(0), status);
9443                 return status;
9444         }
9445
9446         return 0;
9447 }
9448
9449 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv,
9450                                     u32 mbox, u32 val,
9451                                     int fast_timeout_us, int slow_timeout_ms)
9452 {
9453         int status;
9454
9455         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9456
9457         /* GEN6_PCODE_* are outside of the forcewake domain, we can
9458          * use te fw I915_READ variants to reduce the amount of work
9459          * required when reading/writing.
9460          */
9461
9462         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
9463                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
9464                                  val, mbox, __builtin_return_address(0));
9465                 return -EAGAIN;
9466         }
9467
9468         I915_WRITE_FW(GEN6_PCODE_DATA, val);
9469         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
9470         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
9471
9472         if (__intel_wait_for_register_fw(dev_priv,
9473                                          GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
9474                                          fast_timeout_us, slow_timeout_ms,
9475                                          NULL)) {
9476                 DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
9477                           val, mbox, __builtin_return_address(0));
9478                 return -ETIMEDOUT;
9479         }
9480
9481         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
9482
9483         if (INTEL_GEN(dev_priv) > 6)
9484                 status = gen7_check_mailbox_status(dev_priv);
9485         else
9486                 status = gen6_check_mailbox_status(dev_priv);
9487
9488         if (status) {
9489                 DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
9490                                  val, mbox, __builtin_return_address(0), status);
9491                 return status;
9492         }
9493
9494         return 0;
9495 }
9496
9497 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
9498                                   u32 request, u32 reply_mask, u32 reply,
9499                                   u32 *status)
9500 {
9501         u32 val = request;
9502
9503         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
9504
9505         return *status || ((val & reply_mask) == reply);
9506 }
9507
9508 /**
9509  * skl_pcode_request - send PCODE request until acknowledgment
9510  * @dev_priv: device private
9511  * @mbox: PCODE mailbox ID the request is targeted for
9512  * @request: request ID
9513  * @reply_mask: mask used to check for request acknowledgment
9514  * @reply: value used to check for request acknowledgment
9515  * @timeout_base_ms: timeout for polling with preemption enabled
9516  *
9517  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
9518  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
9519  * The request is acknowledged once the PCODE reply dword equals @reply after
9520  * applying @reply_mask. Polling is first attempted with preemption enabled
9521  * for @timeout_base_ms and if this times out for another 50 ms with
9522  * preemption disabled.
9523  *
9524  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
9525  * other error as reported by PCODE.
9526  */
9527 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
9528                       u32 reply_mask, u32 reply, int timeout_base_ms)
9529 {
9530         u32 status;
9531         int ret;
9532
9533         WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
9534
9535 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
9536                                    &status)
9537
9538         /*
9539          * Prime the PCODE by doing a request first. Normally it guarantees
9540          * that a subsequent request, at most @timeout_base_ms later, succeeds.
9541          * _wait_for() doesn't guarantee when its passed condition is evaluated
9542          * first, so send the first request explicitly.
9543          */
9544         if (COND) {
9545                 ret = 0;
9546                 goto out;
9547         }
9548         ret = _wait_for(COND, timeout_base_ms * 1000, 10, 10);
9549         if (!ret)
9550                 goto out;
9551
9552         /*
9553          * The above can time out if the number of requests was low (2 in the
9554          * worst case) _and_ PCODE was busy for some reason even after a
9555          * (queued) request and @timeout_base_ms delay. As a workaround retry
9556          * the poll with preemption disabled to maximize the number of
9557          * requests. Increase the timeout from @timeout_base_ms to 50ms to
9558          * account for interrupts that could reduce the number of these
9559          * requests, and for any quirks of the PCODE firmware that delays
9560          * the request completion.
9561          */
9562         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
9563         WARN_ON_ONCE(timeout_base_ms > 3);
9564         preempt_disable();
9565         ret = wait_for_atomic(COND, 50);
9566         preempt_enable();
9567
9568 out:
9569         return ret ? ret : status;
9570 #undef COND
9571 }
9572
9573 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9574 {
9575         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9576
9577         /*
9578          * N = val - 0xb7
9579          * Slow = Fast = GPLL ref * N
9580          */
9581         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9582 }
9583
9584 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9585 {
9586         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9587
9588         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9589 }
9590
9591 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9592 {
9593         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9594
9595         /*
9596          * N = val / 2
9597          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9598          */
9599         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9600 }
9601
9602 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9603 {
9604         struct intel_rps *rps = &dev_priv->gt_pm.rps;
9605
9606         /* CHV needs even values */
9607         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9608 }
9609
9610 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9611 {
9612         if (INTEL_GEN(dev_priv) >= 9)
9613                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9614                                          GEN9_FREQ_SCALER);
9615         else if (IS_CHERRYVIEW(dev_priv))
9616                 return chv_gpu_freq(dev_priv, val);
9617         else if (IS_VALLEYVIEW(dev_priv))
9618                 return byt_gpu_freq(dev_priv, val);
9619         else
9620                 return val * GT_FREQUENCY_MULTIPLIER;
9621 }
9622
9623 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9624 {
9625         if (INTEL_GEN(dev_priv) >= 9)
9626                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9627                                          GT_FREQUENCY_MULTIPLIER);
9628         else if (IS_CHERRYVIEW(dev_priv))
9629                 return chv_freq_opcode(dev_priv, val);
9630         else if (IS_VALLEYVIEW(dev_priv))
9631                 return byt_freq_opcode(dev_priv, val);
9632         else
9633                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9634 }
9635
9636 void intel_pm_setup(struct drm_i915_private *dev_priv)
9637 {
9638         mutex_init(&dev_priv->pcu_lock);
9639         mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9640
9641         atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9642
9643         dev_priv->runtime_pm.suspended = false;
9644         atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9645 }
9646
9647 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9648                              const i915_reg_t reg)
9649 {
9650         u32 lower, upper, tmp;
9651         int loop = 2;
9652
9653         /*
9654          * The register accessed do not need forcewake. We borrow
9655          * uncore lock to prevent concurrent access to range reg.
9656          */
9657         lockdep_assert_held(&dev_priv->uncore.lock);
9658
9659         /*
9660          * vlv and chv residency counters are 40 bits in width.
9661          * With a control bit, we can choose between upper or lower
9662          * 32bit window into this counter.
9663          *
9664          * Although we always use the counter in high-range mode elsewhere,
9665          * userspace may attempt to read the value before rc6 is initialised,
9666          * before we have set the default VLV_COUNTER_CONTROL value. So always
9667          * set the high bit to be safe.
9668          */
9669         I915_WRITE_FW(VLV_COUNTER_CONTROL,
9670                       _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9671         upper = I915_READ_FW(reg);
9672         do {
9673                 tmp = upper;
9674
9675                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9676                               _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9677                 lower = I915_READ_FW(reg);
9678
9679                 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9680                               _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9681                 upper = I915_READ_FW(reg);
9682         } while (upper != tmp && --loop);
9683
9684         /*
9685          * Everywhere else we always use VLV_COUNTER_CONTROL with the
9686          * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9687          * now.
9688          */
9689
9690         return lower | (u64)upper << 8;
9691 }
9692
9693 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9694                            const i915_reg_t reg)
9695 {
9696         u64 time_hw, prev_hw, overflow_hw;
9697         unsigned int fw_domains;
9698         unsigned long flags;
9699         unsigned int i;
9700         u32 mul, div;
9701
9702         if (!HAS_RC6(dev_priv))
9703                 return 0;
9704
9705         /*
9706          * Store previous hw counter values for counter wrap-around handling.
9707          *
9708          * There are only four interesting registers and they live next to each
9709          * other so we can use the relative address, compared to the smallest
9710          * one as the index into driver storage.
9711          */
9712         i = (i915_mmio_reg_offset(reg) -
9713              i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9714         if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9715                 return 0;
9716
9717         fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg, FW_REG_READ);
9718
9719         spin_lock_irqsave(&dev_priv->uncore.lock, flags);
9720         intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
9721
9722         /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9723         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9724                 mul = 1000000;
9725                 div = dev_priv->czclk_freq;
9726                 overflow_hw = BIT_ULL(40);
9727                 time_hw = vlv_residency_raw(dev_priv, reg);
9728         } else {
9729                 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
9730                 if (IS_GEN9_LP(dev_priv)) {
9731                         mul = 10000;
9732                         div = 12;
9733                 } else {
9734                         mul = 1280;
9735                         div = 1;
9736                 }
9737
9738                 overflow_hw = BIT_ULL(32);
9739                 time_hw = I915_READ_FW(reg);
9740         }
9741
9742         /*
9743          * Counter wrap handling.
9744          *
9745          * But relying on a sufficient frequency of queries otherwise counters
9746          * can still wrap.
9747          */
9748         prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
9749         dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
9750
9751         /* RC6 delta from last sample. */
9752         if (time_hw >= prev_hw)
9753                 time_hw -= prev_hw;
9754         else
9755                 time_hw += overflow_hw - prev_hw;
9756
9757         /* Add delta to RC6 extended raw driver copy. */
9758         time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
9759         dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
9760
9761         intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
9762         spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
9763
9764         return mul_u64_u32_div(time_hw, mul, div);
9765 }
9766
9767 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
9768 {
9769         u32 cagf;
9770
9771         if (INTEL_GEN(dev_priv) >= 9)
9772                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
9773         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
9774                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
9775         else
9776                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
9777
9778         return  cagf;
9779 }