Merge tag 'drm-intel-next-2016-08-08' of git://anongit.freedesktop.org/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78
79         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81                    ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = to_i915(dev);
87
88         gen9_init_clock_gating(dev);
89
90         /* WaDisableSDEUnitClockGating:bxt */
91         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94         /*
95          * FIXME:
96          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97          */
98         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101         /*
102          * Wa: Backlight PWM may stop in the asserted state, causing backlight
103          * to stay fully on.
104          */
105         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107                            PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = to_i915(dev);
113         u32 tmp;
114
115         tmp = I915_READ(CLKCFG);
116
117         switch (tmp & CLKCFG_FSB_MASK) {
118         case CLKCFG_FSB_533:
119                 dev_priv->fsb_freq = 533; /* 133*4 */
120                 break;
121         case CLKCFG_FSB_800:
122                 dev_priv->fsb_freq = 800; /* 200*4 */
123                 break;
124         case CLKCFG_FSB_667:
125                 dev_priv->fsb_freq =  667; /* 167*4 */
126                 break;
127         case CLKCFG_FSB_400:
128                 dev_priv->fsb_freq = 400; /* 100*4 */
129                 break;
130         }
131
132         switch (tmp & CLKCFG_MEM_MASK) {
133         case CLKCFG_MEM_533:
134                 dev_priv->mem_freq = 533;
135                 break;
136         case CLKCFG_MEM_667:
137                 dev_priv->mem_freq = 667;
138                 break;
139         case CLKCFG_MEM_800:
140                 dev_priv->mem_freq = 800;
141                 break;
142         }
143
144         /* detect pineview DDR3 setting */
145         tmp = I915_READ(CSHRDDR3CTL);
146         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         u16 ddrpll, csipll;
153
154         ddrpll = I915_READ16(DDRMPLL1);
155         csipll = I915_READ16(CSIPLL0);
156
157         switch (ddrpll & 0xff) {
158         case 0xc:
159                 dev_priv->mem_freq = 800;
160                 break;
161         case 0x10:
162                 dev_priv->mem_freq = 1066;
163                 break;
164         case 0x14:
165                 dev_priv->mem_freq = 1333;
166                 break;
167         case 0x18:
168                 dev_priv->mem_freq = 1600;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172                                  ddrpll & 0xff);
173                 dev_priv->mem_freq = 0;
174                 break;
175         }
176
177         dev_priv->ips.r_t = dev_priv->mem_freq;
178
179         switch (csipll & 0x3ff) {
180         case 0x00c:
181                 dev_priv->fsb_freq = 3200;
182                 break;
183         case 0x00e:
184                 dev_priv->fsb_freq = 3733;
185                 break;
186         case 0x010:
187                 dev_priv->fsb_freq = 4266;
188                 break;
189         case 0x012:
190                 dev_priv->fsb_freq = 4800;
191                 break;
192         case 0x014:
193                 dev_priv->fsb_freq = 5333;
194                 break;
195         case 0x016:
196                 dev_priv->fsb_freq = 5866;
197                 break;
198         case 0x018:
199                 dev_priv->fsb_freq = 6400;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203                                  csipll & 0x3ff);
204                 dev_priv->fsb_freq = 0;
205                 break;
206         }
207
208         if (dev_priv->fsb_freq == 3200) {
209                 dev_priv->ips.c_m = 0;
210         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211                 dev_priv->ips.c_m = 1;
212         } else {
213                 dev_priv->ips.c_m = 2;
214         }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223
224         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229
230         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235
236         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241
242         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247
248         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256                                                          int is_ddr3,
257                                                          int fsb,
258                                                          int mem)
259 {
260         const struct cxsr_latency *latency;
261         int i;
262
263         if (fsb == 0 || mem == 0)
264                 return NULL;
265
266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267                 latency = &cxsr_latency_table[i];
268                 if (is_desktop == latency->is_desktop &&
269                     is_ddr3 == latency->is_ddr3 &&
270                     fsb == latency->fsb_freq && mem == latency->mem_freq)
271                         return latency;
272         }
273
274         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276         return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281         u32 val;
282
283         mutex_lock(&dev_priv->rps.hw_lock);
284
285         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286         if (enable)
287                 val &= ~FORCE_DDR_HIGH_FREQ;
288         else
289                 val |= FORCE_DDR_HIGH_FREQ;
290         val &= ~FORCE_DDR_LOW_FREQ;
291         val |= FORCE_DDR_FREQ_REQ_ACK;
292         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298         mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303         u32 val;
304
305         mutex_lock(&dev_priv->rps.hw_lock);
306
307         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308         if (enable)
309                 val |= DSP_MAXFIFO_PM5_ENABLE;
310         else
311                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314         mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322         struct drm_device *dev = &dev_priv->drm;
323         u32 val;
324
325         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327                 POSTING_READ(FW_BLC_SELF_VLV);
328                 dev_priv->wm.vlv.cxsr = enable;
329         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_PINEVIEW(dev)) {
333                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340                 I915_WRITE(FW_BLC_SELF, val);
341                 POSTING_READ(FW_BLC_SELF);
342         } else if (IS_I915GM(dev)) {
343                 /*
344                  * FIXME can't find a bit like this for 915G, and
345                  * and yet it does have the related watermark in
346                  * FW_BLC_SELF. What's going on?
347                  */
348                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
349                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
350                 I915_WRITE(INSTPM, val);
351                 POSTING_READ(INSTPM);
352         } else {
353                 return;
354         }
355
356         DRM_DEBUG_KMS("memory self-refresh is %s\n",
357                       enable ? "enabled" : "disabled");
358 }
359
360
361 /*
362  * Latency for FIFO fetches is dependent on several factors:
363  *   - memory configuration (speed, channels)
364  *   - chipset
365  *   - current MCH state
366  * It can be fairly high in some situations, so here we assume a fairly
367  * pessimal value.  It's a tradeoff between extra memory fetches (if we
368  * set this value too high, the FIFO will fetch frequently to stay full)
369  * and power consumption (set it too low to save power and we might see
370  * FIFO underruns and display "flicker").
371  *
372  * A value of 5us seems to be a good balance; safe for very low end
373  * platforms but not overly aggressive on lower latency configs.
374  */
375 static const int pessimal_latency_ns = 5000;
376
377 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
378         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
379
380 static int vlv_get_fifo_size(struct drm_device *dev,
381                               enum pipe pipe, int plane)
382 {
383         struct drm_i915_private *dev_priv = to_i915(dev);
384         int sprite0_start, sprite1_start, size;
385
386         switch (pipe) {
387                 uint32_t dsparb, dsparb2, dsparb3;
388         case PIPE_A:
389                 dsparb = I915_READ(DSPARB);
390                 dsparb2 = I915_READ(DSPARB2);
391                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
392                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
393                 break;
394         case PIPE_B:
395                 dsparb = I915_READ(DSPARB);
396                 dsparb2 = I915_READ(DSPARB2);
397                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
398                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
399                 break;
400         case PIPE_C:
401                 dsparb2 = I915_READ(DSPARB2);
402                 dsparb3 = I915_READ(DSPARB3);
403                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
404                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
405                 break;
406         default:
407                 return 0;
408         }
409
410         switch (plane) {
411         case 0:
412                 size = sprite0_start;
413                 break;
414         case 1:
415                 size = sprite1_start - sprite0_start;
416                 break;
417         case 2:
418                 size = 512 - 1 - sprite1_start;
419                 break;
420         default:
421                 return 0;
422         }
423
424         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
425                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
426                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
427                       size);
428
429         return size;
430 }
431
432 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433 {
434         struct drm_i915_private *dev_priv = to_i915(dev);
435         uint32_t dsparb = I915_READ(DSPARB);
436         int size;
437
438         size = dsparb & 0x7f;
439         if (plane)
440                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
441
442         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
443                       plane ? "B" : "A", size);
444
445         return size;
446 }
447
448 static int i830_get_fifo_size(struct drm_device *dev, int plane)
449 {
450         struct drm_i915_private *dev_priv = to_i915(dev);
451         uint32_t dsparb = I915_READ(DSPARB);
452         int size;
453
454         size = dsparb & 0x1ff;
455         if (plane)
456                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
457         size >>= 1; /* Convert to cachelines */
458
459         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460                       plane ? "B" : "A", size);
461
462         return size;
463 }
464
465 static int i845_get_fifo_size(struct drm_device *dev, int plane)
466 {
467         struct drm_i915_private *dev_priv = to_i915(dev);
468         uint32_t dsparb = I915_READ(DSPARB);
469         int size;
470
471         size = dsparb & 0x7f;
472         size >>= 2; /* Convert to cachelines */
473
474         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
475                       plane ? "B" : "A",
476                       size);
477
478         return size;
479 }
480
481 /* Pineview has different values for various configs */
482 static const struct intel_watermark_params pineview_display_wm = {
483         .fifo_size = PINEVIEW_DISPLAY_FIFO,
484         .max_wm = PINEVIEW_MAX_WM,
485         .default_wm = PINEVIEW_DFT_WM,
486         .guard_size = PINEVIEW_GUARD_WM,
487         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_display_hplloff_wm = {
490         .fifo_size = PINEVIEW_DISPLAY_FIFO,
491         .max_wm = PINEVIEW_MAX_WM,
492         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
493         .guard_size = PINEVIEW_GUARD_WM,
494         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_wm = {
497         .fifo_size = PINEVIEW_CURSOR_FIFO,
498         .max_wm = PINEVIEW_CURSOR_MAX_WM,
499         .default_wm = PINEVIEW_CURSOR_DFT_WM,
500         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
501         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504         .fifo_size = PINEVIEW_CURSOR_FIFO,
505         .max_wm = PINEVIEW_CURSOR_MAX_WM,
506         .default_wm = PINEVIEW_CURSOR_DFT_WM,
507         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
508         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_wm_info = {
511         .fifo_size = G4X_FIFO_SIZE,
512         .max_wm = G4X_MAX_WM,
513         .default_wm = G4X_MAX_WM,
514         .guard_size = 2,
515         .cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params g4x_cursor_wm_info = {
518         .fifo_size = I965_CURSOR_FIFO,
519         .max_wm = I965_CURSOR_MAX_WM,
520         .default_wm = I965_CURSOR_DFT_WM,
521         .guard_size = 2,
522         .cacheline_size = G4X_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i965_cursor_wm_info = {
525         .fifo_size = I965_CURSOR_FIFO,
526         .max_wm = I965_CURSOR_MAX_WM,
527         .default_wm = I965_CURSOR_DFT_WM,
528         .guard_size = 2,
529         .cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i945_wm_info = {
532         .fifo_size = I945_FIFO_SIZE,
533         .max_wm = I915_MAX_WM,
534         .default_wm = 1,
535         .guard_size = 2,
536         .cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i915_wm_info = {
539         .fifo_size = I915_FIFO_SIZE,
540         .max_wm = I915_MAX_WM,
541         .default_wm = 1,
542         .guard_size = 2,
543         .cacheline_size = I915_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_a_wm_info = {
546         .fifo_size = I855GM_FIFO_SIZE,
547         .max_wm = I915_MAX_WM,
548         .default_wm = 1,
549         .guard_size = 2,
550         .cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i830_bc_wm_info = {
553         .fifo_size = I855GM_FIFO_SIZE,
554         .max_wm = I915_MAX_WM/2,
555         .default_wm = 1,
556         .guard_size = 2,
557         .cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559 static const struct intel_watermark_params i845_wm_info = {
560         .fifo_size = I830_FIFO_SIZE,
561         .max_wm = I915_MAX_WM,
562         .default_wm = 1,
563         .guard_size = 2,
564         .cacheline_size = I830_FIFO_LINE_SIZE,
565 };
566
567 /**
568  * intel_calculate_wm - calculate watermark level
569  * @clock_in_khz: pixel clock
570  * @wm: chip FIFO params
571  * @cpp: bytes per pixel
572  * @latency_ns: memory latency for the platform
573  *
574  * Calculate the watermark level (the level at which the display plane will
575  * start fetching from memory again).  Each chip has a different display
576  * FIFO size and allocation, so the caller needs to figure that out and pass
577  * in the correct intel_watermark_params structure.
578  *
579  * As the pixel clock runs, the FIFO will be drained at a rate that depends
580  * on the pixel size.  When it reaches the watermark level, it'll start
581  * fetching FIFO line sized based chunks from memory until the FIFO fills
582  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
583  * will occur, and a display engine hang could result.
584  */
585 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
586                                         const struct intel_watermark_params *wm,
587                                         int fifo_size, int cpp,
588                                         unsigned long latency_ns)
589 {
590         long entries_required, wm_size;
591
592         /*
593          * Note: we need to make sure we don't overflow for various clock &
594          * latency values.
595          * clocks go from a few thousand to several hundred thousand.
596          * latency is usually a few thousand
597          */
598         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599                 1000;
600         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
601
602         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
603
604         wm_size = fifo_size - (entries_required + wm->guard_size);
605
606         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
607
608         /* Don't promote wm_size to unsigned... */
609         if (wm_size > (long)wm->max_wm)
610                 wm_size = wm->max_wm;
611         if (wm_size <= 0)
612                 wm_size = wm->default_wm;
613
614         /*
615          * Bspec seems to indicate that the value shouldn't be lower than
616          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
617          * Lets go for 8 which is the burst size since certain platforms
618          * already use a hardcoded 8 (which is what the spec says should be
619          * done).
620          */
621         if (wm_size <= 8)
622                 wm_size = 8;
623
624         return wm_size;
625 }
626
627 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
628 {
629         struct drm_crtc *crtc, *enabled = NULL;
630
631         for_each_crtc(dev, crtc) {
632                 if (intel_crtc_active(crtc)) {
633                         if (enabled)
634                                 return NULL;
635                         enabled = crtc;
636                 }
637         }
638
639         return enabled;
640 }
641
642 static void pineview_update_wm(struct drm_crtc *unused_crtc)
643 {
644         struct drm_device *dev = unused_crtc->dev;
645         struct drm_i915_private *dev_priv = to_i915(dev);
646         struct drm_crtc *crtc;
647         const struct cxsr_latency *latency;
648         u32 reg;
649         unsigned long wm;
650
651         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
652                                          dev_priv->fsb_freq, dev_priv->mem_freq);
653         if (!latency) {
654                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655                 intel_set_memory_cxsr(dev_priv, false);
656                 return;
657         }
658
659         crtc = single_enabled_crtc(dev);
660         if (crtc) {
661                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663                 int clock = adjusted_mode->crtc_clock;
664
665                 /* Display SR */
666                 wm = intel_calculate_wm(clock, &pineview_display_wm,
667                                         pineview_display_wm.fifo_size,
668                                         cpp, latency->display_sr);
669                 reg = I915_READ(DSPFW1);
670                 reg &= ~DSPFW_SR_MASK;
671                 reg |= FW_WM(wm, SR);
672                 I915_WRITE(DSPFW1, reg);
673                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
674
675                 /* cursor SR */
676                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
677                                         pineview_display_wm.fifo_size,
678                                         cpp, latency->cursor_sr);
679                 reg = I915_READ(DSPFW3);
680                 reg &= ~DSPFW_CURSOR_SR_MASK;
681                 reg |= FW_WM(wm, CURSOR_SR);
682                 I915_WRITE(DSPFW3, reg);
683
684                 /* Display HPLL off SR */
685                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
686                                         pineview_display_hplloff_wm.fifo_size,
687                                         cpp, latency->display_hpll_disable);
688                 reg = I915_READ(DSPFW3);
689                 reg &= ~DSPFW_HPLL_SR_MASK;
690                 reg |= FW_WM(wm, HPLL_SR);
691                 I915_WRITE(DSPFW3, reg);
692
693                 /* cursor HPLL off SR */
694                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
695                                         pineview_display_hplloff_wm.fifo_size,
696                                         cpp, latency->cursor_hpll_disable);
697                 reg = I915_READ(DSPFW3);
698                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
699                 reg |= FW_WM(wm, HPLL_CURSOR);
700                 I915_WRITE(DSPFW3, reg);
701                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
702
703                 intel_set_memory_cxsr(dev_priv, true);
704         } else {
705                 intel_set_memory_cxsr(dev_priv, false);
706         }
707 }
708
709 static bool g4x_compute_wm0(struct drm_device *dev,
710                             int plane,
711                             const struct intel_watermark_params *display,
712                             int display_latency_ns,
713                             const struct intel_watermark_params *cursor,
714                             int cursor_latency_ns,
715                             int *plane_wm,
716                             int *cursor_wm)
717 {
718         struct drm_crtc *crtc;
719         const struct drm_display_mode *adjusted_mode;
720         int htotal, hdisplay, clock, cpp;
721         int line_time_us, line_count;
722         int entries, tlb_miss;
723
724         crtc = intel_get_crtc_for_plane(dev, plane);
725         if (!intel_crtc_active(crtc)) {
726                 *cursor_wm = cursor->guard_size;
727                 *plane_wm = display->guard_size;
728                 return false;
729         }
730
731         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732         clock = adjusted_mode->crtc_clock;
733         htotal = adjusted_mode->crtc_htotal;
734         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736
737         /* Use the small buffer method to calculate plane watermark */
738         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
740         if (tlb_miss > 0)
741                 entries += tlb_miss;
742         entries = DIV_ROUND_UP(entries, display->cacheline_size);
743         *plane_wm = entries + display->guard_size;
744         if (*plane_wm > (int)display->max_wm)
745                 *plane_wm = display->max_wm;
746
747         /* Use the large buffer method to calculate cursor watermark */
748         line_time_us = max(htotal * 1000 / clock, 1);
749         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750         entries = line_count * crtc->cursor->state->crtc_w * cpp;
751         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
752         if (tlb_miss > 0)
753                 entries += tlb_miss;
754         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
755         *cursor_wm = entries + cursor->guard_size;
756         if (*cursor_wm > (int)cursor->max_wm)
757                 *cursor_wm = (int)cursor->max_wm;
758
759         return true;
760 }
761
762 /*
763  * Check the wm result.
764  *
765  * If any calculated watermark values is larger than the maximum value that
766  * can be programmed into the associated watermark register, that watermark
767  * must be disabled.
768  */
769 static bool g4x_check_srwm(struct drm_device *dev,
770                            int display_wm, int cursor_wm,
771                            const struct intel_watermark_params *display,
772                            const struct intel_watermark_params *cursor)
773 {
774         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
775                       display_wm, cursor_wm);
776
777         if (display_wm > display->max_wm) {
778                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
779                               display_wm, display->max_wm);
780                 return false;
781         }
782
783         if (cursor_wm > cursor->max_wm) {
784                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
785                               cursor_wm, cursor->max_wm);
786                 return false;
787         }
788
789         if (!(display_wm || cursor_wm)) {
790                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
791                 return false;
792         }
793
794         return true;
795 }
796
797 static bool g4x_compute_srwm(struct drm_device *dev,
798                              int plane,
799                              int latency_ns,
800                              const struct intel_watermark_params *display,
801                              const struct intel_watermark_params *cursor,
802                              int *display_wm, int *cursor_wm)
803 {
804         struct drm_crtc *crtc;
805         const struct drm_display_mode *adjusted_mode;
806         int hdisplay, htotal, cpp, clock;
807         unsigned long line_time_us;
808         int line_count, line_size;
809         int small, large;
810         int entries;
811
812         if (!latency_ns) {
813                 *display_wm = *cursor_wm = 0;
814                 return false;
815         }
816
817         crtc = intel_get_crtc_for_plane(dev, plane);
818         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819         clock = adjusted_mode->crtc_clock;
820         htotal = adjusted_mode->crtc_htotal;
821         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823
824         line_time_us = max(htotal * 1000 / clock, 1);
825         line_count = (latency_ns / line_time_us + 1000) / 1000;
826         line_size = hdisplay * cpp;
827
828         /* Use the minimum of the small and large buffer method for primary */
829         small = ((clock * cpp / 1000) * latency_ns) / 1000;
830         large = line_count * line_size;
831
832         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
833         *display_wm = entries + display->guard_size;
834
835         /* calculate the self-refresh watermark for display cursor */
836         entries = line_count * cpp * crtc->cursor->state->crtc_w;
837         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
838         *cursor_wm = entries + cursor->guard_size;
839
840         return g4x_check_srwm(dev,
841                               *display_wm, *cursor_wm,
842                               display, cursor);
843 }
844
845 #define FW_WM_VLV(value, plane) \
846         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
847
848 static void vlv_write_wm_values(struct intel_crtc *crtc,
849                                 const struct vlv_wm_values *wm)
850 {
851         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
852         enum pipe pipe = crtc->pipe;
853
854         I915_WRITE(VLV_DDL(pipe),
855                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
856                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
857                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
858                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
859
860         I915_WRITE(DSPFW1,
861                    FW_WM(wm->sr.plane, SR) |
862                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
863                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
864                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865         I915_WRITE(DSPFW2,
866                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
867                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
868                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869         I915_WRITE(DSPFW3,
870                    FW_WM(wm->sr.cursor, CURSOR_SR));
871
872         if (IS_CHERRYVIEW(dev_priv)) {
873                 I915_WRITE(DSPFW7_CHV,
874                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876                 I915_WRITE(DSPFW8_CHV,
877                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
878                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879                 I915_WRITE(DSPFW9_CHV,
880                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
881                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882                 I915_WRITE(DSPHOWM,
883                            FW_WM(wm->sr.plane >> 9, SR_HI) |
884                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
885                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
886                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
887                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
888                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
889                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
890                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
891                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
892                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893         } else {
894                 I915_WRITE(DSPFW7,
895                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
896                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897                 I915_WRITE(DSPHOWM,
898                            FW_WM(wm->sr.plane >> 9, SR_HI) |
899                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
900                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
901                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
902                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
903                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
904                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905         }
906
907         /* zero (unused) WM1 watermarks */
908         I915_WRITE(DSPFW4, 0);
909         I915_WRITE(DSPFW5, 0);
910         I915_WRITE(DSPFW6, 0);
911         I915_WRITE(DSPHOWM1, 0);
912
913         POSTING_READ(DSPFW1);
914 }
915
916 #undef FW_WM_VLV
917
918 enum vlv_wm_level {
919         VLV_WM_LEVEL_PM2,
920         VLV_WM_LEVEL_PM5,
921         VLV_WM_LEVEL_DDR_DVFS,
922 };
923
924 /* latency must be in 0.1us units. */
925 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
926                                    unsigned int pipe_htotal,
927                                    unsigned int horiz_pixels,
928                                    unsigned int cpp,
929                                    unsigned int latency)
930 {
931         unsigned int ret;
932
933         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934         ret = (ret + 1) * horiz_pixels * cpp;
935         ret = DIV_ROUND_UP(ret, 64);
936
937         return ret;
938 }
939
940 static void vlv_setup_wm_latency(struct drm_device *dev)
941 {
942         struct drm_i915_private *dev_priv = to_i915(dev);
943
944         /* all latencies in usec */
945         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
946
947         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
948
949         if (IS_CHERRYVIEW(dev_priv)) {
950                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
951                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952
953                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954         }
955 }
956
957 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
958                                      struct intel_crtc *crtc,
959                                      const struct intel_plane_state *state,
960                                      int level)
961 {
962         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963         int clock, htotal, cpp, width, wm;
964
965         if (dev_priv->wm.pri_latency[level] == 0)
966                 return USHRT_MAX;
967
968         if (!state->base.visible)
969                 return 0;
970
971         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972         clock = crtc->config->base.adjusted_mode.crtc_clock;
973         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
974         width = crtc->config->pipe_src_w;
975         if (WARN_ON(htotal == 0))
976                 htotal = 1;
977
978         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
979                 /*
980                  * FIXME the formula gives values that are
981                  * too big for the cursor FIFO, and hence we
982                  * would never be able to use cursors. For
983                  * now just hardcode the watermark.
984                  */
985                 wm = 63;
986         } else {
987                 wm = vlv_wm_method2(clock, htotal, width, cpp,
988                                     dev_priv->wm.pri_latency[level] * 10);
989         }
990
991         return min_t(int, wm, USHRT_MAX);
992 }
993
994 static void vlv_compute_fifo(struct intel_crtc *crtc)
995 {
996         struct drm_device *dev = crtc->base.dev;
997         struct vlv_wm_state *wm_state = &crtc->wm_state;
998         struct intel_plane *plane;
999         unsigned int total_rate = 0;
1000         const int fifo_size = 512 - 1;
1001         int fifo_extra, fifo_left = fifo_size;
1002
1003         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1004                 struct intel_plane_state *state =
1005                         to_intel_plane_state(plane->base.state);
1006
1007                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1008                         continue;
1009
1010                 if (state->base.visible) {
1011                         wm_state->num_active_planes++;
1012                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1013                 }
1014         }
1015
1016         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1017                 struct intel_plane_state *state =
1018                         to_intel_plane_state(plane->base.state);
1019                 unsigned int rate;
1020
1021                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1022                         plane->wm.fifo_size = 63;
1023                         continue;
1024                 }
1025
1026                 if (!state->base.visible) {
1027                         plane->wm.fifo_size = 0;
1028                         continue;
1029                 }
1030
1031                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1032                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1033                 fifo_left -= plane->wm.fifo_size;
1034         }
1035
1036         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1037
1038         /* spread the remainder evenly */
1039         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040                 int plane_extra;
1041
1042                 if (fifo_left == 0)
1043                         break;
1044
1045                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1046                         continue;
1047
1048                 /* give it all to the first plane if none are active */
1049                 if (plane->wm.fifo_size == 0 &&
1050                     wm_state->num_active_planes)
1051                         continue;
1052
1053                 plane_extra = min(fifo_extra, fifo_left);
1054                 plane->wm.fifo_size += plane_extra;
1055                 fifo_left -= plane_extra;
1056         }
1057
1058         WARN_ON(fifo_left != 0);
1059 }
1060
1061 static void vlv_invert_wms(struct intel_crtc *crtc)
1062 {
1063         struct vlv_wm_state *wm_state = &crtc->wm_state;
1064         int level;
1065
1066         for (level = 0; level < wm_state->num_levels; level++) {
1067                 struct drm_device *dev = crtc->base.dev;
1068                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1069                 struct intel_plane *plane;
1070
1071                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1072                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1073
1074                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075                         switch (plane->base.type) {
1076                                 int sprite;
1077                         case DRM_PLANE_TYPE_CURSOR:
1078                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1079                                         wm_state->wm[level].cursor;
1080                                 break;
1081                         case DRM_PLANE_TYPE_PRIMARY:
1082                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1083                                         wm_state->wm[level].primary;
1084                                 break;
1085                         case DRM_PLANE_TYPE_OVERLAY:
1086                                 sprite = plane->plane;
1087                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1088                                         wm_state->wm[level].sprite[sprite];
1089                                 break;
1090                         }
1091                 }
1092         }
1093 }
1094
1095 static void vlv_compute_wm(struct intel_crtc *crtc)
1096 {
1097         struct drm_device *dev = crtc->base.dev;
1098         struct vlv_wm_state *wm_state = &crtc->wm_state;
1099         struct intel_plane *plane;
1100         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1101         int level;
1102
1103         memset(wm_state, 0, sizeof(*wm_state));
1104
1105         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107
1108         wm_state->num_active_planes = 0;
1109
1110         vlv_compute_fifo(crtc);
1111
1112         if (wm_state->num_active_planes != 1)
1113                 wm_state->cxsr = false;
1114
1115         if (wm_state->cxsr) {
1116                 for (level = 0; level < wm_state->num_levels; level++) {
1117                         wm_state->sr[level].plane = sr_fifo_size;
1118                         wm_state->sr[level].cursor = 63;
1119                 }
1120         }
1121
1122         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123                 struct intel_plane_state *state =
1124                         to_intel_plane_state(plane->base.state);
1125
1126                 if (!state->base.visible)
1127                         continue;
1128
1129                 /* normal watermarks */
1130                 for (level = 0; level < wm_state->num_levels; level++) {
1131                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1132                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1133
1134                         /* hack */
1135                         if (WARN_ON(level == 0 && wm > max_wm))
1136                                 wm = max_wm;
1137
1138                         if (wm > plane->wm.fifo_size)
1139                                 break;
1140
1141                         switch (plane->base.type) {
1142                                 int sprite;
1143                         case DRM_PLANE_TYPE_CURSOR:
1144                                 wm_state->wm[level].cursor = wm;
1145                                 break;
1146                         case DRM_PLANE_TYPE_PRIMARY:
1147                                 wm_state->wm[level].primary = wm;
1148                                 break;
1149                         case DRM_PLANE_TYPE_OVERLAY:
1150                                 sprite = plane->plane;
1151                                 wm_state->wm[level].sprite[sprite] = wm;
1152                                 break;
1153                         }
1154                 }
1155
1156                 wm_state->num_levels = level;
1157
1158                 if (!wm_state->cxsr)
1159                         continue;
1160
1161                 /* maxfifo watermarks */
1162                 switch (plane->base.type) {
1163                         int sprite, level;
1164                 case DRM_PLANE_TYPE_CURSOR:
1165                         for (level = 0; level < wm_state->num_levels; level++)
1166                                 wm_state->sr[level].cursor =
1167                                         wm_state->wm[level].cursor;
1168                         break;
1169                 case DRM_PLANE_TYPE_PRIMARY:
1170                         for (level = 0; level < wm_state->num_levels; level++)
1171                                 wm_state->sr[level].plane =
1172                                         min(wm_state->sr[level].plane,
1173                                             wm_state->wm[level].primary);
1174                         break;
1175                 case DRM_PLANE_TYPE_OVERLAY:
1176                         sprite = plane->plane;
1177                         for (level = 0; level < wm_state->num_levels; level++)
1178                                 wm_state->sr[level].plane =
1179                                         min(wm_state->sr[level].plane,
1180                                             wm_state->wm[level].sprite[sprite]);
1181                         break;
1182                 }
1183         }
1184
1185         /* clear any (partially) filled invalid levels */
1186         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1188                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1189         }
1190
1191         vlv_invert_wms(crtc);
1192 }
1193
1194 #define VLV_FIFO(plane, value) \
1195         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1196
1197 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1198 {
1199         struct drm_device *dev = crtc->base.dev;
1200         struct drm_i915_private *dev_priv = to_i915(dev);
1201         struct intel_plane *plane;
1202         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1203
1204         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1205                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1206                         WARN_ON(plane->wm.fifo_size != 63);
1207                         continue;
1208                 }
1209
1210                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1211                         sprite0_start = plane->wm.fifo_size;
1212                 else if (plane->plane == 0)
1213                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1214                 else
1215                         fifo_size = sprite1_start + plane->wm.fifo_size;
1216         }
1217
1218         WARN_ON(fifo_size != 512 - 1);
1219
1220         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1221                       pipe_name(crtc->pipe), sprite0_start,
1222                       sprite1_start, fifo_size);
1223
1224         switch (crtc->pipe) {
1225                 uint32_t dsparb, dsparb2, dsparb3;
1226         case PIPE_A:
1227                 dsparb = I915_READ(DSPARB);
1228                 dsparb2 = I915_READ(DSPARB2);
1229
1230                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1231                             VLV_FIFO(SPRITEB, 0xff));
1232                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1233                            VLV_FIFO(SPRITEB, sprite1_start));
1234
1235                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1236                              VLV_FIFO(SPRITEB_HI, 0x1));
1237                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1238                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1239
1240                 I915_WRITE(DSPARB, dsparb);
1241                 I915_WRITE(DSPARB2, dsparb2);
1242                 break;
1243         case PIPE_B:
1244                 dsparb = I915_READ(DSPARB);
1245                 dsparb2 = I915_READ(DSPARB2);
1246
1247                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1248                             VLV_FIFO(SPRITED, 0xff));
1249                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1250                            VLV_FIFO(SPRITED, sprite1_start));
1251
1252                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1253                              VLV_FIFO(SPRITED_HI, 0xff));
1254                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1255                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1256
1257                 I915_WRITE(DSPARB, dsparb);
1258                 I915_WRITE(DSPARB2, dsparb2);
1259                 break;
1260         case PIPE_C:
1261                 dsparb3 = I915_READ(DSPARB3);
1262                 dsparb2 = I915_READ(DSPARB2);
1263
1264                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1265                              VLV_FIFO(SPRITEF, 0xff));
1266                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1267                             VLV_FIFO(SPRITEF, sprite1_start));
1268
1269                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1270                              VLV_FIFO(SPRITEF_HI, 0xff));
1271                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1272                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1273
1274                 I915_WRITE(DSPARB3, dsparb3);
1275                 I915_WRITE(DSPARB2, dsparb2);
1276                 break;
1277         default:
1278                 break;
1279         }
1280 }
1281
1282 #undef VLV_FIFO
1283
1284 static void vlv_merge_wm(struct drm_device *dev,
1285                          struct vlv_wm_values *wm)
1286 {
1287         struct intel_crtc *crtc;
1288         int num_active_crtcs = 0;
1289
1290         wm->level = to_i915(dev)->wm.max_level;
1291         wm->cxsr = true;
1292
1293         for_each_intel_crtc(dev, crtc) {
1294                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1295
1296                 if (!crtc->active)
1297                         continue;
1298
1299                 if (!wm_state->cxsr)
1300                         wm->cxsr = false;
1301
1302                 num_active_crtcs++;
1303                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1304         }
1305
1306         if (num_active_crtcs != 1)
1307                 wm->cxsr = false;
1308
1309         if (num_active_crtcs > 1)
1310                 wm->level = VLV_WM_LEVEL_PM2;
1311
1312         for_each_intel_crtc(dev, crtc) {
1313                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1314                 enum pipe pipe = crtc->pipe;
1315
1316                 if (!crtc->active)
1317                         continue;
1318
1319                 wm->pipe[pipe] = wm_state->wm[wm->level];
1320                 if (wm->cxsr)
1321                         wm->sr = wm_state->sr[wm->level];
1322
1323                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1324                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1325                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1326                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1327         }
1328 }
1329
1330 static void vlv_update_wm(struct drm_crtc *crtc)
1331 {
1332         struct drm_device *dev = crtc->dev;
1333         struct drm_i915_private *dev_priv = to_i915(dev);
1334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1335         enum pipe pipe = intel_crtc->pipe;
1336         struct vlv_wm_values wm = {};
1337
1338         vlv_compute_wm(intel_crtc);
1339         vlv_merge_wm(dev, &wm);
1340
1341         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1342                 /* FIXME should be part of crtc atomic commit */
1343                 vlv_pipe_set_fifo_size(intel_crtc);
1344                 return;
1345         }
1346
1347         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1348             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1349                 chv_set_memory_dvfs(dev_priv, false);
1350
1351         if (wm.level < VLV_WM_LEVEL_PM5 &&
1352             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1353                 chv_set_memory_pm5(dev_priv, false);
1354
1355         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356                 intel_set_memory_cxsr(dev_priv, false);
1357
1358         /* FIXME should be part of crtc atomic commit */
1359         vlv_pipe_set_fifo_size(intel_crtc);
1360
1361         vlv_write_wm_values(intel_crtc, &wm);
1362
1363         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1364                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1365                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1366                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1367                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1368
1369         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370                 intel_set_memory_cxsr(dev_priv, true);
1371
1372         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1373             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1374                 chv_set_memory_pm5(dev_priv, true);
1375
1376         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1377             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1378                 chv_set_memory_dvfs(dev_priv, true);
1379
1380         dev_priv->wm.vlv = wm;
1381 }
1382
1383 #define single_plane_enabled(mask) is_power_of_2(mask)
1384
1385 static void g4x_update_wm(struct drm_crtc *crtc)
1386 {
1387         struct drm_device *dev = crtc->dev;
1388         static const int sr_latency_ns = 12000;
1389         struct drm_i915_private *dev_priv = to_i915(dev);
1390         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1391         int plane_sr, cursor_sr;
1392         unsigned int enabled = 0;
1393         bool cxsr_enabled;
1394
1395         if (g4x_compute_wm0(dev, PIPE_A,
1396                             &g4x_wm_info, pessimal_latency_ns,
1397                             &g4x_cursor_wm_info, pessimal_latency_ns,
1398                             &planea_wm, &cursora_wm))
1399                 enabled |= 1 << PIPE_A;
1400
1401         if (g4x_compute_wm0(dev, PIPE_B,
1402                             &g4x_wm_info, pessimal_latency_ns,
1403                             &g4x_cursor_wm_info, pessimal_latency_ns,
1404                             &planeb_wm, &cursorb_wm))
1405                 enabled |= 1 << PIPE_B;
1406
1407         if (single_plane_enabled(enabled) &&
1408             g4x_compute_srwm(dev, ffs(enabled) - 1,
1409                              sr_latency_ns,
1410                              &g4x_wm_info,
1411                              &g4x_cursor_wm_info,
1412                              &plane_sr, &cursor_sr)) {
1413                 cxsr_enabled = true;
1414         } else {
1415                 cxsr_enabled = false;
1416                 intel_set_memory_cxsr(dev_priv, false);
1417                 plane_sr = cursor_sr = 0;
1418         }
1419
1420         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1421                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422                       planea_wm, cursora_wm,
1423                       planeb_wm, cursorb_wm,
1424                       plane_sr, cursor_sr);
1425
1426         I915_WRITE(DSPFW1,
1427                    FW_WM(plane_sr, SR) |
1428                    FW_WM(cursorb_wm, CURSORB) |
1429                    FW_WM(planeb_wm, PLANEB) |
1430                    FW_WM(planea_wm, PLANEA));
1431         I915_WRITE(DSPFW2,
1432                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433                    FW_WM(cursora_wm, CURSORA));
1434         /* HPLL off in SR has some issues on G4x... disable it */
1435         I915_WRITE(DSPFW3,
1436                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437                    FW_WM(cursor_sr, CURSOR_SR));
1438
1439         if (cxsr_enabled)
1440                 intel_set_memory_cxsr(dev_priv, true);
1441 }
1442
1443 static void i965_update_wm(struct drm_crtc *unused_crtc)
1444 {
1445         struct drm_device *dev = unused_crtc->dev;
1446         struct drm_i915_private *dev_priv = to_i915(dev);
1447         struct drm_crtc *crtc;
1448         int srwm = 1;
1449         int cursor_sr = 16;
1450         bool cxsr_enabled;
1451
1452         /* Calc sr entries for one plane configs */
1453         crtc = single_enabled_crtc(dev);
1454         if (crtc) {
1455                 /* self-refresh has much higher latency */
1456                 static const int sr_latency_ns = 12000;
1457                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458                 int clock = adjusted_mode->crtc_clock;
1459                 int htotal = adjusted_mode->crtc_htotal;
1460                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462                 unsigned long line_time_us;
1463                 int entries;
1464
1465                 line_time_us = max(htotal * 1000 / clock, 1);
1466
1467                 /* Use ns/us then divide to preserve precision */
1468                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469                         cpp * hdisplay;
1470                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1471                 srwm = I965_FIFO_SIZE - entries;
1472                 if (srwm < 0)
1473                         srwm = 1;
1474                 srwm &= 0x1ff;
1475                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1476                               entries, srwm);
1477
1478                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479                         cpp * crtc->cursor->state->crtc_w;
1480                 entries = DIV_ROUND_UP(entries,
1481                                           i965_cursor_wm_info.cacheline_size);
1482                 cursor_sr = i965_cursor_wm_info.fifo_size -
1483                         (entries + i965_cursor_wm_info.guard_size);
1484
1485                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1486                         cursor_sr = i965_cursor_wm_info.max_wm;
1487
1488                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1489                               "cursor %d\n", srwm, cursor_sr);
1490
1491                 cxsr_enabled = true;
1492         } else {
1493                 cxsr_enabled = false;
1494                 /* Turn off self refresh if both pipes are enabled */
1495                 intel_set_memory_cxsr(dev_priv, false);
1496         }
1497
1498         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1499                       srwm);
1500
1501         /* 965 has limitations... */
1502         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1503                    FW_WM(8, CURSORB) |
1504                    FW_WM(8, PLANEB) |
1505                    FW_WM(8, PLANEA));
1506         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1507                    FW_WM(8, PLANEC_OLD));
1508         /* update cursor SR watermark */
1509         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510
1511         if (cxsr_enabled)
1512                 intel_set_memory_cxsr(dev_priv, true);
1513 }
1514
1515 #undef FW_WM
1516
1517 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518 {
1519         struct drm_device *dev = unused_crtc->dev;
1520         struct drm_i915_private *dev_priv = to_i915(dev);
1521         const struct intel_watermark_params *wm_info;
1522         uint32_t fwater_lo;
1523         uint32_t fwater_hi;
1524         int cwm, srwm = 1;
1525         int fifo_size;
1526         int planea_wm, planeb_wm;
1527         struct drm_crtc *crtc, *enabled = NULL;
1528
1529         if (IS_I945GM(dev))
1530                 wm_info = &i945_wm_info;
1531         else if (!IS_GEN2(dev))
1532                 wm_info = &i915_wm_info;
1533         else
1534                 wm_info = &i830_a_wm_info;
1535
1536         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1537         crtc = intel_get_crtc_for_plane(dev, 0);
1538         if (intel_crtc_active(crtc)) {
1539                 const struct drm_display_mode *adjusted_mode;
1540                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541                 if (IS_GEN2(dev))
1542                         cpp = 4;
1543
1544                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546                                                wm_info, fifo_size, cpp,
1547                                                pessimal_latency_ns);
1548                 enabled = crtc;
1549         } else {
1550                 planea_wm = fifo_size - wm_info->guard_size;
1551                 if (planea_wm > (long)wm_info->max_wm)
1552                         planea_wm = wm_info->max_wm;
1553         }
1554
1555         if (IS_GEN2(dev))
1556                 wm_info = &i830_bc_wm_info;
1557
1558         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1559         crtc = intel_get_crtc_for_plane(dev, 1);
1560         if (intel_crtc_active(crtc)) {
1561                 const struct drm_display_mode *adjusted_mode;
1562                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563                 if (IS_GEN2(dev))
1564                         cpp = 4;
1565
1566                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568                                                wm_info, fifo_size, cpp,
1569                                                pessimal_latency_ns);
1570                 if (enabled == NULL)
1571                         enabled = crtc;
1572                 else
1573                         enabled = NULL;
1574         } else {
1575                 planeb_wm = fifo_size - wm_info->guard_size;
1576                 if (planeb_wm > (long)wm_info->max_wm)
1577                         planeb_wm = wm_info->max_wm;
1578         }
1579
1580         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582         if (IS_I915GM(dev) && enabled) {
1583                 struct drm_i915_gem_object *obj;
1584
1585                 obj = intel_fb_obj(enabled->primary->state->fb);
1586
1587                 /* self-refresh seems busted with untiled */
1588                 if (!i915_gem_object_is_tiled(obj))
1589                         enabled = NULL;
1590         }
1591
1592         /*
1593          * Overlay gets an aggressive default since video jitter is bad.
1594          */
1595         cwm = 2;
1596
1597         /* Play safe and disable self-refresh before adjusting watermarks. */
1598         intel_set_memory_cxsr(dev_priv, false);
1599
1600         /* Calc sr entries for one plane configs */
1601         if (HAS_FW_BLC(dev) && enabled) {
1602                 /* self-refresh has much higher latency */
1603                 static const int sr_latency_ns = 6000;
1604                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605                 int clock = adjusted_mode->crtc_clock;
1606                 int htotal = adjusted_mode->crtc_htotal;
1607                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609                 unsigned long line_time_us;
1610                 int entries;
1611
1612                 if (IS_I915GM(dev) || IS_I945GM(dev))
1613                         cpp = 4;
1614
1615                 line_time_us = max(htotal * 1000 / clock, 1);
1616
1617                 /* Use ns/us then divide to preserve precision */
1618                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619                         cpp * hdisplay;
1620                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1621                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1622                 srwm = wm_info->fifo_size - entries;
1623                 if (srwm < 0)
1624                         srwm = 1;
1625
1626                 if (IS_I945G(dev) || IS_I945GM(dev))
1627                         I915_WRITE(FW_BLC_SELF,
1628                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629                 else
1630                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1631         }
1632
1633         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1634                       planea_wm, planeb_wm, cwm, srwm);
1635
1636         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1637         fwater_hi = (cwm & 0x1f);
1638
1639         /* Set request length to 8 cachelines per fetch */
1640         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1641         fwater_hi = fwater_hi | (1 << 8);
1642
1643         I915_WRITE(FW_BLC, fwater_lo);
1644         I915_WRITE(FW_BLC2, fwater_hi);
1645
1646         if (enabled)
1647                 intel_set_memory_cxsr(dev_priv, true);
1648 }
1649
1650 static void i845_update_wm(struct drm_crtc *unused_crtc)
1651 {
1652         struct drm_device *dev = unused_crtc->dev;
1653         struct drm_i915_private *dev_priv = to_i915(dev);
1654         struct drm_crtc *crtc;
1655         const struct drm_display_mode *adjusted_mode;
1656         uint32_t fwater_lo;
1657         int planea_wm;
1658
1659         crtc = single_enabled_crtc(dev);
1660         if (crtc == NULL)
1661                 return;
1662
1663         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665                                        &i845_wm_info,
1666                                        dev_priv->display.get_fifo_size(dev, 0),
1667                                        4, pessimal_latency_ns);
1668         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1669         fwater_lo |= (3<<8) | planea_wm;
1670
1671         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1672
1673         I915_WRITE(FW_BLC, fwater_lo);
1674 }
1675
1676 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677 {
1678         uint32_t pixel_rate;
1679
1680         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681
1682         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1683          * adjust the pixel_rate here. */
1684
1685         if (pipe_config->pch_pfit.enabled) {
1686                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1688
1689                 pipe_w = pipe_config->pipe_src_w;
1690                 pipe_h = pipe_config->pipe_src_h;
1691
1692                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1693                 pfit_h = pfit_size & 0xFFFF;
1694                 if (pipe_w < pfit_w)
1695                         pipe_w = pfit_w;
1696                 if (pipe_h < pfit_h)
1697                         pipe_h = pfit_h;
1698
1699                 if (WARN_ON(!pfit_w || !pfit_h))
1700                         return pixel_rate;
1701
1702                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703                                      pfit_w * pfit_h);
1704         }
1705
1706         return pixel_rate;
1707 }
1708
1709 /* latency must be in 0.1us units. */
1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 {
1712         uint64_t ret;
1713
1714         if (WARN(latency == 0, "Latency value missing\n"))
1715                 return UINT_MAX;
1716
1717         ret = (uint64_t) pixel_rate * cpp * latency;
1718         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1719
1720         return ret;
1721 }
1722
1723 /* latency must be in 0.1us units. */
1724 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725                                uint32_t horiz_pixels, uint8_t cpp,
1726                                uint32_t latency)
1727 {
1728         uint32_t ret;
1729
1730         if (WARN(latency == 0, "Latency value missing\n"))
1731                 return UINT_MAX;
1732         if (WARN_ON(!pipe_htotal))
1733                 return UINT_MAX;
1734
1735         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736         ret = (ret + 1) * horiz_pixels * cpp;
1737         ret = DIV_ROUND_UP(ret, 64) + 2;
1738         return ret;
1739 }
1740
1741 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742                            uint8_t cpp)
1743 {
1744         /*
1745          * Neither of these should be possible since this function shouldn't be
1746          * called if the CRTC is off or the plane is invisible.  But let's be
1747          * extra paranoid to avoid a potential divide-by-zero if we screw up
1748          * elsewhere in the driver.
1749          */
1750         if (WARN_ON(!cpp))
1751                 return 0;
1752         if (WARN_ON(!horiz_pixels))
1753                 return 0;
1754
1755         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 }
1757
1758 struct ilk_wm_maximums {
1759         uint16_t pri;
1760         uint16_t spr;
1761         uint16_t cur;
1762         uint16_t fbc;
1763 };
1764
1765 /*
1766  * For both WM_PIPE and WM_LP.
1767  * mem_value must be in 0.1us units.
1768  */
1769 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770                                    const struct intel_plane_state *pstate,
1771                                    uint32_t mem_value,
1772                                    bool is_lp)
1773 {
1774         int cpp = pstate->base.fb ?
1775                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776         uint32_t method1, method2;
1777
1778         if (!cstate->base.active || !pstate->base.visible)
1779                 return 0;
1780
1781         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782
1783         if (!is_lp)
1784                 return method1;
1785
1786         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787                                  cstate->base.adjusted_mode.crtc_htotal,
1788                                  drm_rect_width(&pstate->base.dst),
1789                                  cpp, mem_value);
1790
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799                                    const struct intel_plane_state *pstate,
1800                                    uint32_t mem_value)
1801 {
1802         int cpp = pstate->base.fb ?
1803                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804         uint32_t method1, method2;
1805
1806         if (!cstate->base.active || !pstate->base.visible)
1807                 return 0;
1808
1809         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1811                                  cstate->base.adjusted_mode.crtc_htotal,
1812                                  drm_rect_width(&pstate->base.dst),
1813                                  cpp, mem_value);
1814         return min(method1, method2);
1815 }
1816
1817 /*
1818  * For both WM_PIPE and WM_LP.
1819  * mem_value must be in 0.1us units.
1820  */
1821 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822                                    const struct intel_plane_state *pstate,
1823                                    uint32_t mem_value)
1824 {
1825         /*
1826          * We treat the cursor plane as always-on for the purposes of watermark
1827          * calculation.  Until we have two-stage watermark programming merged,
1828          * this is necessary to avoid flickering.
1829          */
1830         int cpp = 4;
1831         int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832
1833         if (!cstate->base.active)
1834                 return 0;
1835
1836         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1837                               cstate->base.adjusted_mode.crtc_htotal,
1838                               width, cpp, mem_value);
1839 }
1840
1841 /* Only for WM_LP. */
1842 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843                                    const struct intel_plane_state *pstate,
1844                                    uint32_t pri_val)
1845 {
1846         int cpp = pstate->base.fb ?
1847                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848
1849         if (!cstate->base.active || !pstate->base.visible)
1850                 return 0;
1851
1852         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 }
1854
1855 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1856 {
1857         if (INTEL_INFO(dev)->gen >= 8)
1858                 return 3072;
1859         else if (INTEL_INFO(dev)->gen >= 7)
1860                 return 768;
1861         else
1862                 return 512;
1863 }
1864
1865 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1866                                          int level, bool is_sprite)
1867 {
1868         if (INTEL_INFO(dev)->gen >= 8)
1869                 /* BDW primary/sprite plane watermarks */
1870                 return level == 0 ? 255 : 2047;
1871         else if (INTEL_INFO(dev)->gen >= 7)
1872                 /* IVB/HSW primary/sprite plane watermarks */
1873                 return level == 0 ? 127 : 1023;
1874         else if (!is_sprite)
1875                 /* ILK/SNB primary plane watermarks */
1876                 return level == 0 ? 127 : 511;
1877         else
1878                 /* ILK/SNB sprite plane watermarks */
1879                 return level == 0 ? 63 : 255;
1880 }
1881
1882 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1883                                           int level)
1884 {
1885         if (INTEL_INFO(dev)->gen >= 7)
1886                 return level == 0 ? 63 : 255;
1887         else
1888                 return level == 0 ? 31 : 63;
1889 }
1890
1891 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1892 {
1893         if (INTEL_INFO(dev)->gen >= 8)
1894                 return 31;
1895         else
1896                 return 15;
1897 }
1898
1899 /* Calculate the maximum primary/sprite plane watermark */
1900 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1901                                      int level,
1902                                      const struct intel_wm_config *config,
1903                                      enum intel_ddb_partitioning ddb_partitioning,
1904                                      bool is_sprite)
1905 {
1906         unsigned int fifo_size = ilk_display_fifo_size(dev);
1907
1908         /* if sprites aren't enabled, sprites get nothing */
1909         if (is_sprite && !config->sprites_enabled)
1910                 return 0;
1911
1912         /* HSW allows LP1+ watermarks even with multiple pipes */
1913         if (level == 0 || config->num_pipes_active > 1) {
1914                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1915
1916                 /*
1917                  * For some reason the non self refresh
1918                  * FIFO size is only half of the self
1919                  * refresh FIFO size on ILK/SNB.
1920                  */
1921                 if (INTEL_INFO(dev)->gen <= 6)
1922                         fifo_size /= 2;
1923         }
1924
1925         if (config->sprites_enabled) {
1926                 /* level 0 is always calculated with 1:1 split */
1927                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1928                         if (is_sprite)
1929                                 fifo_size *= 5;
1930                         fifo_size /= 6;
1931                 } else {
1932                         fifo_size /= 2;
1933                 }
1934         }
1935
1936         /* clamp to max that the registers can hold */
1937         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 }
1939
1940 /* Calculate the maximum cursor plane watermark */
1941 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942                                       int level,
1943                                       const struct intel_wm_config *config)
1944 {
1945         /* HSW LP1+ watermarks w/ multiple pipes */
1946         if (level > 0 && config->num_pipes_active > 1)
1947                 return 64;
1948
1949         /* otherwise just report max that registers can hold */
1950         return ilk_cursor_wm_reg_max(dev, level);
1951 }
1952
1953 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954                                     int level,
1955                                     const struct intel_wm_config *config,
1956                                     enum intel_ddb_partitioning ddb_partitioning,
1957                                     struct ilk_wm_maximums *max)
1958 {
1959         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1960         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1961         max->cur = ilk_cursor_wm_max(dev, level, config);
1962         max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964
1965 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1966                                         int level,
1967                                         struct ilk_wm_maximums *max)
1968 {
1969         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1970         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1971         max->cur = ilk_cursor_wm_reg_max(dev, level);
1972         max->fbc = ilk_fbc_wm_reg_max(dev);
1973 }
1974
1975 static bool ilk_validate_wm_level(int level,
1976                                   const struct ilk_wm_maximums *max,
1977                                   struct intel_wm_level *result)
1978 {
1979         bool ret;
1980
1981         /* already determined to be invalid? */
1982         if (!result->enable)
1983                 return false;
1984
1985         result->enable = result->pri_val <= max->pri &&
1986                          result->spr_val <= max->spr &&
1987                          result->cur_val <= max->cur;
1988
1989         ret = result->enable;
1990
1991         /*
1992          * HACK until we can pre-compute everything,
1993          * and thus fail gracefully if LP0 watermarks
1994          * are exceeded...
1995          */
1996         if (level == 0 && !result->enable) {
1997                 if (result->pri_val > max->pri)
1998                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1999                                       level, result->pri_val, max->pri);
2000                 if (result->spr_val > max->spr)
2001                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2002                                       level, result->spr_val, max->spr);
2003                 if (result->cur_val > max->cur)
2004                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2005                                       level, result->cur_val, max->cur);
2006
2007                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2008                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2009                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2010                 result->enable = true;
2011         }
2012
2013         return ret;
2014 }
2015
2016 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017                                  const struct intel_crtc *intel_crtc,
2018                                  int level,
2019                                  struct intel_crtc_state *cstate,
2020                                  struct intel_plane_state *pristate,
2021                                  struct intel_plane_state *sprstate,
2022                                  struct intel_plane_state *curstate,
2023                                  struct intel_wm_level *result)
2024 {
2025         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2028
2029         /* WM1+ latency values stored in 0.5us units */
2030         if (level > 0) {
2031                 pri_latency *= 5;
2032                 spr_latency *= 5;
2033                 cur_latency *= 5;
2034         }
2035
2036         if (pristate) {
2037                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2038                                                      pri_latency, level);
2039                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2040         }
2041
2042         if (sprstate)
2043                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2044
2045         if (curstate)
2046                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2047
2048         result->enable = true;
2049 }
2050
2051 static uint32_t
2052 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053 {
2054         const struct intel_atomic_state *intel_state =
2055                 to_intel_atomic_state(cstate->base.state);
2056         const struct drm_display_mode *adjusted_mode =
2057                 &cstate->base.adjusted_mode;
2058         u32 linetime, ips_linetime;
2059
2060         if (!cstate->base.active)
2061                 return 0;
2062         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2063                 return 0;
2064         if (WARN_ON(intel_state->cdclk == 0))
2065                 return 0;
2066
2067         /* The WM are computed with base on how long it takes to fill a single
2068          * row at the given clock rate, multiplied by 8.
2069          * */
2070         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2071                                      adjusted_mode->crtc_clock);
2072         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073                                          intel_state->cdclk);
2074
2075         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2076                PIPE_WM_LINETIME_TIME(linetime);
2077 }
2078
2079 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080 {
2081         struct drm_i915_private *dev_priv = to_i915(dev);
2082
2083         if (IS_GEN9(dev)) {
2084                 uint32_t val;
2085                 int ret, i;
2086                 int level, max_level = ilk_wm_max_level(dev);
2087
2088                 /* read the first set of memory latencies[0:3] */
2089                 val = 0; /* data0 to be programmed to 0 for first set */
2090                 mutex_lock(&dev_priv->rps.hw_lock);
2091                 ret = sandybridge_pcode_read(dev_priv,
2092                                              GEN9_PCODE_READ_MEM_LATENCY,
2093                                              &val);
2094                 mutex_unlock(&dev_priv->rps.hw_lock);
2095
2096                 if (ret) {
2097                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2098                         return;
2099                 }
2100
2101                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2102                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2103                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2104                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2105                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2106                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2107                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2108
2109                 /* read the second set of memory latencies[4:7] */
2110                 val = 1; /* data0 to be programmed to 1 for second set */
2111                 mutex_lock(&dev_priv->rps.hw_lock);
2112                 ret = sandybridge_pcode_read(dev_priv,
2113                                              GEN9_PCODE_READ_MEM_LATENCY,
2114                                              &val);
2115                 mutex_unlock(&dev_priv->rps.hw_lock);
2116                 if (ret) {
2117                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2118                         return;
2119                 }
2120
2121                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2122                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2123                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2124                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2125                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2126                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2127                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2128
2129                 /*
2130                  * WaWmMemoryReadLatency:skl
2131                  *
2132                  * punit doesn't take into account the read latency so we need
2133                  * to add 2us to the various latency levels we retrieve from
2134                  * the punit.
2135                  *   - W0 is a bit special in that it's the only level that
2136                  *   can't be disabled if we want to have display working, so
2137                  *   we always add 2us there.
2138                  *   - For levels >=1, punit returns 0us latency when they are
2139                  *   disabled, so we respect that and don't add 2us then
2140                  *
2141                  * Additionally, if a level n (n > 1) has a 0us latency, all
2142                  * levels m (m >= n) need to be disabled. We make sure to
2143                  * sanitize the values out of the punit to satisfy this
2144                  * requirement.
2145                  */
2146                 wm[0] += 2;
2147                 for (level = 1; level <= max_level; level++)
2148                         if (wm[level] != 0)
2149                                 wm[level] += 2;
2150                         else {
2151                                 for (i = level + 1; i <= max_level; i++)
2152                                         wm[i] = 0;
2153
2154                                 break;
2155                         }
2156         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2157                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2158
2159                 wm[0] = (sskpd >> 56) & 0xFF;
2160                 if (wm[0] == 0)
2161                         wm[0] = sskpd & 0xF;
2162                 wm[1] = (sskpd >> 4) & 0xFF;
2163                 wm[2] = (sskpd >> 12) & 0xFF;
2164                 wm[3] = (sskpd >> 20) & 0x1FF;
2165                 wm[4] = (sskpd >> 32) & 0x1FF;
2166         } else if (INTEL_INFO(dev)->gen >= 6) {
2167                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2168
2169                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2170                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2171                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2172                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2173         } else if (INTEL_INFO(dev)->gen >= 5) {
2174                 uint32_t mltr = I915_READ(MLTR_ILK);
2175
2176                 /* ILK primary LP0 latency is 700 ns */
2177                 wm[0] = 7;
2178                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2179                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2180         }
2181 }
2182
2183 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2184 {
2185         /* ILK sprite LP0 latency is 1300 ns */
2186         if (IS_GEN5(dev))
2187                 wm[0] = 13;
2188 }
2189
2190 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2191 {
2192         /* ILK cursor LP0 latency is 1300 ns */
2193         if (IS_GEN5(dev))
2194                 wm[0] = 13;
2195
2196         /* WaDoubleCursorLP3Latency:ivb */
2197         if (IS_IVYBRIDGE(dev))
2198                 wm[3] *= 2;
2199 }
2200
2201 int ilk_wm_max_level(const struct drm_device *dev)
2202 {
2203         /* how many WM levels are we expecting */
2204         if (INTEL_INFO(dev)->gen >= 9)
2205                 return 7;
2206         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2207                 return 4;
2208         else if (INTEL_INFO(dev)->gen >= 6)
2209                 return 3;
2210         else
2211                 return 2;
2212 }
2213
2214 static void intel_print_wm_latency(struct drm_device *dev,
2215                                    const char *name,
2216                                    const uint16_t wm[8])
2217 {
2218         int level, max_level = ilk_wm_max_level(dev);
2219
2220         for (level = 0; level <= max_level; level++) {
2221                 unsigned int latency = wm[level];
2222
2223                 if (latency == 0) {
2224                         DRM_ERROR("%s WM%d latency not provided\n",
2225                                   name, level);
2226                         continue;
2227                 }
2228
2229                 /*
2230                  * - latencies are in us on gen9.
2231                  * - before then, WM1+ latency values are in 0.5us units
2232                  */
2233                 if (IS_GEN9(dev))
2234                         latency *= 10;
2235                 else if (level > 0)
2236                         latency *= 5;
2237
2238                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2239                               name, level, wm[level],
2240                               latency / 10, latency % 10);
2241         }
2242 }
2243
2244 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2245                                     uint16_t wm[5], uint16_t min)
2246 {
2247         int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2248
2249         if (wm[0] >= min)
2250                 return false;
2251
2252         wm[0] = max(wm[0], min);
2253         for (level = 1; level <= max_level; level++)
2254                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2255
2256         return true;
2257 }
2258
2259 static void snb_wm_latency_quirk(struct drm_device *dev)
2260 {
2261         struct drm_i915_private *dev_priv = to_i915(dev);
2262         bool changed;
2263
2264         /*
2265          * The BIOS provided WM memory latency values are often
2266          * inadequate for high resolution displays. Adjust them.
2267          */
2268         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2269                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2270                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2271
2272         if (!changed)
2273                 return;
2274
2275         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2276         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2277         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2278         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2279 }
2280
2281 static void ilk_setup_wm_latency(struct drm_device *dev)
2282 {
2283         struct drm_i915_private *dev_priv = to_i915(dev);
2284
2285         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2286
2287         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2288                sizeof(dev_priv->wm.pri_latency));
2289         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2290                sizeof(dev_priv->wm.pri_latency));
2291
2292         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2293         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2294
2295         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2296         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2297         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2298
2299         if (IS_GEN6(dev))
2300                 snb_wm_latency_quirk(dev);
2301 }
2302
2303 static void skl_setup_wm_latency(struct drm_device *dev)
2304 {
2305         struct drm_i915_private *dev_priv = to_i915(dev);
2306
2307         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2308         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2309 }
2310
2311 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2312                                  struct intel_pipe_wm *pipe_wm)
2313 {
2314         /* LP0 watermark maximums depend on this pipe alone */
2315         const struct intel_wm_config config = {
2316                 .num_pipes_active = 1,
2317                 .sprites_enabled = pipe_wm->sprites_enabled,
2318                 .sprites_scaled = pipe_wm->sprites_scaled,
2319         };
2320         struct ilk_wm_maximums max;
2321
2322         /* LP0 watermarks always use 1/2 DDB partitioning */
2323         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2324
2325         /* At least LP0 must be valid */
2326         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2327                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2328                 return false;
2329         }
2330
2331         return true;
2332 }
2333
2334 /* Compute new watermarks for the pipe */
2335 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2336 {
2337         struct drm_atomic_state *state = cstate->base.state;
2338         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2339         struct intel_pipe_wm *pipe_wm;
2340         struct drm_device *dev = state->dev;
2341         const struct drm_i915_private *dev_priv = to_i915(dev);
2342         struct intel_plane *intel_plane;
2343         struct intel_plane_state *pristate = NULL;
2344         struct intel_plane_state *sprstate = NULL;
2345         struct intel_plane_state *curstate = NULL;
2346         int level, max_level = ilk_wm_max_level(dev), usable_level;
2347         struct ilk_wm_maximums max;
2348
2349         pipe_wm = &cstate->wm.ilk.optimal;
2350
2351         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2352                 struct intel_plane_state *ps;
2353
2354                 ps = intel_atomic_get_existing_plane_state(state,
2355                                                            intel_plane);
2356                 if (!ps)
2357                         continue;
2358
2359                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2360                         pristate = ps;
2361                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2362                         sprstate = ps;
2363                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2364                         curstate = ps;
2365         }
2366
2367         pipe_wm->pipe_enabled = cstate->base.active;
2368         if (sprstate) {
2369                 pipe_wm->sprites_enabled = sprstate->base.visible;
2370                 pipe_wm->sprites_scaled = sprstate->base.visible &&
2371                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2372                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2373         }
2374
2375         usable_level = max_level;
2376
2377         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2378         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2379                 usable_level = 1;
2380
2381         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2382         if (pipe_wm->sprites_scaled)
2383                 usable_level = 0;
2384
2385         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2386                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2387
2388         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2389         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2390
2391         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2392                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2393
2394         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2395                 return -EINVAL;
2396
2397         ilk_compute_wm_reg_maximums(dev, 1, &max);
2398
2399         for (level = 1; level <= max_level; level++) {
2400                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2401
2402                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2403                                      pristate, sprstate, curstate, wm);
2404
2405                 /*
2406                  * Disable any watermark level that exceeds the
2407                  * register maximums since such watermarks are
2408                  * always invalid.
2409                  */
2410                 if (level > usable_level)
2411                         continue;
2412
2413                 if (ilk_validate_wm_level(level, &max, wm))
2414                         pipe_wm->wm[level] = *wm;
2415                 else
2416                         usable_level = level;
2417         }
2418
2419         return 0;
2420 }
2421
2422 /*
2423  * Build a set of 'intermediate' watermark values that satisfy both the old
2424  * state and the new state.  These can be programmed to the hardware
2425  * immediately.
2426  */
2427 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2428                                        struct intel_crtc *intel_crtc,
2429                                        struct intel_crtc_state *newstate)
2430 {
2431         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2432         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2433         int level, max_level = ilk_wm_max_level(dev);
2434
2435         /*
2436          * Start with the final, target watermarks, then combine with the
2437          * currently active watermarks to get values that are safe both before
2438          * and after the vblank.
2439          */
2440         *a = newstate->wm.ilk.optimal;
2441         a->pipe_enabled |= b->pipe_enabled;
2442         a->sprites_enabled |= b->sprites_enabled;
2443         a->sprites_scaled |= b->sprites_scaled;
2444
2445         for (level = 0; level <= max_level; level++) {
2446                 struct intel_wm_level *a_wm = &a->wm[level];
2447                 const struct intel_wm_level *b_wm = &b->wm[level];
2448
2449                 a_wm->enable &= b_wm->enable;
2450                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2451                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2452                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2453                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2454         }
2455
2456         /*
2457          * We need to make sure that these merged watermark values are
2458          * actually a valid configuration themselves.  If they're not,
2459          * there's no safe way to transition from the old state to
2460          * the new state, so we need to fail the atomic transaction.
2461          */
2462         if (!ilk_validate_pipe_wm(dev, a))
2463                 return -EINVAL;
2464
2465         /*
2466          * If our intermediate WM are identical to the final WM, then we can
2467          * omit the post-vblank programming; only update if it's different.
2468          */
2469         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2470                 newstate->wm.need_postvbl_update = false;
2471
2472         return 0;
2473 }
2474
2475 /*
2476  * Merge the watermarks from all active pipes for a specific level.
2477  */
2478 static void ilk_merge_wm_level(struct drm_device *dev,
2479                                int level,
2480                                struct intel_wm_level *ret_wm)
2481 {
2482         const struct intel_crtc *intel_crtc;
2483
2484         ret_wm->enable = true;
2485
2486         for_each_intel_crtc(dev, intel_crtc) {
2487                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2488                 const struct intel_wm_level *wm = &active->wm[level];
2489
2490                 if (!active->pipe_enabled)
2491                         continue;
2492
2493                 /*
2494                  * The watermark values may have been used in the past,
2495                  * so we must maintain them in the registers for some
2496                  * time even if the level is now disabled.
2497                  */
2498                 if (!wm->enable)
2499                         ret_wm->enable = false;
2500
2501                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2502                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2503                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2504                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2505         }
2506 }
2507
2508 /*
2509  * Merge all low power watermarks for all active pipes.
2510  */
2511 static void ilk_wm_merge(struct drm_device *dev,
2512                          const struct intel_wm_config *config,
2513                          const struct ilk_wm_maximums *max,
2514                          struct intel_pipe_wm *merged)
2515 {
2516         struct drm_i915_private *dev_priv = to_i915(dev);
2517         int level, max_level = ilk_wm_max_level(dev);
2518         int last_enabled_level = max_level;
2519
2520         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2521         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2522             config->num_pipes_active > 1)
2523                 last_enabled_level = 0;
2524
2525         /* ILK: FBC WM must be disabled always */
2526         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2527
2528         /* merge each WM1+ level */
2529         for (level = 1; level <= max_level; level++) {
2530                 struct intel_wm_level *wm = &merged->wm[level];
2531
2532                 ilk_merge_wm_level(dev, level, wm);
2533
2534                 if (level > last_enabled_level)
2535                         wm->enable = false;
2536                 else if (!ilk_validate_wm_level(level, max, wm))
2537                         /* make sure all following levels get disabled */
2538                         last_enabled_level = level - 1;
2539
2540                 /*
2541                  * The spec says it is preferred to disable
2542                  * FBC WMs instead of disabling a WM level.
2543                  */
2544                 if (wm->fbc_val > max->fbc) {
2545                         if (wm->enable)
2546                                 merged->fbc_wm_enabled = false;
2547                         wm->fbc_val = 0;
2548                 }
2549         }
2550
2551         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2552         /*
2553          * FIXME this is racy. FBC might get enabled later.
2554          * What we should check here is whether FBC can be
2555          * enabled sometime later.
2556          */
2557         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2558             intel_fbc_is_active(dev_priv)) {
2559                 for (level = 2; level <= max_level; level++) {
2560                         struct intel_wm_level *wm = &merged->wm[level];
2561
2562                         wm->enable = false;
2563                 }
2564         }
2565 }
2566
2567 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2568 {
2569         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2570         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2571 }
2572
2573 /* The value we need to program into the WM_LPx latency field */
2574 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2575 {
2576         struct drm_i915_private *dev_priv = to_i915(dev);
2577
2578         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2579                 return 2 * level;
2580         else
2581                 return dev_priv->wm.pri_latency[level];
2582 }
2583
2584 static void ilk_compute_wm_results(struct drm_device *dev,
2585                                    const struct intel_pipe_wm *merged,
2586                                    enum intel_ddb_partitioning partitioning,
2587                                    struct ilk_wm_values *results)
2588 {
2589         struct intel_crtc *intel_crtc;
2590         int level, wm_lp;
2591
2592         results->enable_fbc_wm = merged->fbc_wm_enabled;
2593         results->partitioning = partitioning;
2594
2595         /* LP1+ register values */
2596         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2597                 const struct intel_wm_level *r;
2598
2599                 level = ilk_wm_lp_to_level(wm_lp, merged);
2600
2601                 r = &merged->wm[level];
2602
2603                 /*
2604                  * Maintain the watermark values even if the level is
2605                  * disabled. Doing otherwise could cause underruns.
2606                  */
2607                 results->wm_lp[wm_lp - 1] =
2608                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2609                         (r->pri_val << WM1_LP_SR_SHIFT) |
2610                         r->cur_val;
2611
2612                 if (r->enable)
2613                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2614
2615                 if (INTEL_INFO(dev)->gen >= 8)
2616                         results->wm_lp[wm_lp - 1] |=
2617                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2618                 else
2619                         results->wm_lp[wm_lp - 1] |=
2620                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2621
2622                 /*
2623                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2624                  * level is disabled. Doing otherwise could cause underruns.
2625                  */
2626                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2627                         WARN_ON(wm_lp != 1);
2628                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2629                 } else
2630                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2631         }
2632
2633         /* LP0 register values */
2634         for_each_intel_crtc(dev, intel_crtc) {
2635                 enum pipe pipe = intel_crtc->pipe;
2636                 const struct intel_wm_level *r =
2637                         &intel_crtc->wm.active.ilk.wm[0];
2638
2639                 if (WARN_ON(!r->enable))
2640                         continue;
2641
2642                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2643
2644                 results->wm_pipe[pipe] =
2645                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2646                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2647                         r->cur_val;
2648         }
2649 }
2650
2651 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2652  * case both are at the same level. Prefer r1 in case they're the same. */
2653 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2654                                                   struct intel_pipe_wm *r1,
2655                                                   struct intel_pipe_wm *r2)
2656 {
2657         int level, max_level = ilk_wm_max_level(dev);
2658         int level1 = 0, level2 = 0;
2659
2660         for (level = 1; level <= max_level; level++) {
2661                 if (r1->wm[level].enable)
2662                         level1 = level;
2663                 if (r2->wm[level].enable)
2664                         level2 = level;
2665         }
2666
2667         if (level1 == level2) {
2668                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2669                         return r2;
2670                 else
2671                         return r1;
2672         } else if (level1 > level2) {
2673                 return r1;
2674         } else {
2675                 return r2;
2676         }
2677 }
2678
2679 /* dirty bits used to track which watermarks need changes */
2680 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2681 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2682 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2683 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2684 #define WM_DIRTY_FBC (1 << 24)
2685 #define WM_DIRTY_DDB (1 << 25)
2686
2687 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2688                                          const struct ilk_wm_values *old,
2689                                          const struct ilk_wm_values *new)
2690 {
2691         unsigned int dirty = 0;
2692         enum pipe pipe;
2693         int wm_lp;
2694
2695         for_each_pipe(dev_priv, pipe) {
2696                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2697                         dirty |= WM_DIRTY_LINETIME(pipe);
2698                         /* Must disable LP1+ watermarks too */
2699                         dirty |= WM_DIRTY_LP_ALL;
2700                 }
2701
2702                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2703                         dirty |= WM_DIRTY_PIPE(pipe);
2704                         /* Must disable LP1+ watermarks too */
2705                         dirty |= WM_DIRTY_LP_ALL;
2706                 }
2707         }
2708
2709         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2710                 dirty |= WM_DIRTY_FBC;
2711                 /* Must disable LP1+ watermarks too */
2712                 dirty |= WM_DIRTY_LP_ALL;
2713         }
2714
2715         if (old->partitioning != new->partitioning) {
2716                 dirty |= WM_DIRTY_DDB;
2717                 /* Must disable LP1+ watermarks too */
2718                 dirty |= WM_DIRTY_LP_ALL;
2719         }
2720
2721         /* LP1+ watermarks already deemed dirty, no need to continue */
2722         if (dirty & WM_DIRTY_LP_ALL)
2723                 return dirty;
2724
2725         /* Find the lowest numbered LP1+ watermark in need of an update... */
2726         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2727                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2728                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2729                         break;
2730         }
2731
2732         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2733         for (; wm_lp <= 3; wm_lp++)
2734                 dirty |= WM_DIRTY_LP(wm_lp);
2735
2736         return dirty;
2737 }
2738
2739 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2740                                unsigned int dirty)
2741 {
2742         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2743         bool changed = false;
2744
2745         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2746                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2747                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2748                 changed = true;
2749         }
2750         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2751                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2752                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2753                 changed = true;
2754         }
2755         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2756                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2757                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2758                 changed = true;
2759         }
2760
2761         /*
2762          * Don't touch WM1S_LP_EN here.
2763          * Doing so could cause underruns.
2764          */
2765
2766         return changed;
2767 }
2768
2769 /*
2770  * The spec says we shouldn't write when we don't need, because every write
2771  * causes WMs to be re-evaluated, expending some power.
2772  */
2773 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2774                                 struct ilk_wm_values *results)
2775 {
2776         struct drm_device *dev = &dev_priv->drm;
2777         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2778         unsigned int dirty;
2779         uint32_t val;
2780
2781         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2782         if (!dirty)
2783                 return;
2784
2785         _ilk_disable_lp_wm(dev_priv, dirty);
2786
2787         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2788                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2789         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2790                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2791         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2792                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2793
2794         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2795                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2796         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2797                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2798         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2799                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2800
2801         if (dirty & WM_DIRTY_DDB) {
2802                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2803                         val = I915_READ(WM_MISC);
2804                         if (results->partitioning == INTEL_DDB_PART_1_2)
2805                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2806                         else
2807                                 val |= WM_MISC_DATA_PARTITION_5_6;
2808                         I915_WRITE(WM_MISC, val);
2809                 } else {
2810                         val = I915_READ(DISP_ARB_CTL2);
2811                         if (results->partitioning == INTEL_DDB_PART_1_2)
2812                                 val &= ~DISP_DATA_PARTITION_5_6;
2813                         else
2814                                 val |= DISP_DATA_PARTITION_5_6;
2815                         I915_WRITE(DISP_ARB_CTL2, val);
2816                 }
2817         }
2818
2819         if (dirty & WM_DIRTY_FBC) {
2820                 val = I915_READ(DISP_ARB_CTL);
2821                 if (results->enable_fbc_wm)
2822                         val &= ~DISP_FBC_WM_DIS;
2823                 else
2824                         val |= DISP_FBC_WM_DIS;
2825                 I915_WRITE(DISP_ARB_CTL, val);
2826         }
2827
2828         if (dirty & WM_DIRTY_LP(1) &&
2829             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2830                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2831
2832         if (INTEL_INFO(dev)->gen >= 7) {
2833                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2834                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2835                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2836                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2837         }
2838
2839         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2840                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2841         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2842                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2843         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2844                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2845
2846         dev_priv->wm.hw = *results;
2847 }
2848
2849 bool ilk_disable_lp_wm(struct drm_device *dev)
2850 {
2851         struct drm_i915_private *dev_priv = to_i915(dev);
2852
2853         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2854 }
2855
2856 /*
2857  * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2858  * different active planes.
2859  */
2860
2861 #define SKL_DDB_SIZE            896     /* in blocks */
2862 #define BXT_DDB_SIZE            512
2863
2864 /*
2865  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2866  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2867  * other universal planes are in indices 1..n.  Note that this may leave unused
2868  * indices between the top "sprite" plane and the cursor.
2869  */
2870 static int
2871 skl_wm_plane_id(const struct intel_plane *plane)
2872 {
2873         switch (plane->base.type) {
2874         case DRM_PLANE_TYPE_PRIMARY:
2875                 return 0;
2876         case DRM_PLANE_TYPE_CURSOR:
2877                 return PLANE_CURSOR;
2878         case DRM_PLANE_TYPE_OVERLAY:
2879                 return plane->plane + 1;
2880         default:
2881                 MISSING_CASE(plane->base.type);
2882                 return plane->plane;
2883         }
2884 }
2885
2886 static void
2887 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2888                                    const struct intel_crtc_state *cstate,
2889                                    struct skl_ddb_entry *alloc, /* out */
2890                                    int *num_active /* out */)
2891 {
2892         struct drm_atomic_state *state = cstate->base.state;
2893         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
2894         struct drm_i915_private *dev_priv = to_i915(dev);
2895         struct drm_crtc *for_crtc = cstate->base.crtc;
2896         unsigned int pipe_size, ddb_size;
2897         int nth_active_pipe;
2898         int pipe = to_intel_crtc(for_crtc)->pipe;
2899
2900         if (WARN_ON(!state) || !cstate->base.active) {
2901                 alloc->start = 0;
2902                 alloc->end = 0;
2903                 *num_active = hweight32(dev_priv->active_crtcs);
2904                 return;
2905         }
2906
2907         if (intel_state->active_pipe_changes)
2908                 *num_active = hweight32(intel_state->active_crtcs);
2909         else
2910                 *num_active = hweight32(dev_priv->active_crtcs);
2911
2912         if (IS_BROXTON(dev))
2913                 ddb_size = BXT_DDB_SIZE;
2914         else
2915                 ddb_size = SKL_DDB_SIZE;
2916
2917         ddb_size -= 4; /* 4 blocks for bypass path allocation */
2918
2919         /*
2920          * If the state doesn't change the active CRTC's, then there's
2921          * no need to recalculate; the existing pipe allocation limits
2922          * should remain unchanged.  Note that we're safe from racing
2923          * commits since any racing commit that changes the active CRTC
2924          * list would need to grab _all_ crtc locks, including the one
2925          * we currently hold.
2926          */
2927         if (!intel_state->active_pipe_changes) {
2928                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
2929                 return;
2930         }
2931
2932         nth_active_pipe = hweight32(intel_state->active_crtcs &
2933                                     (drm_crtc_mask(for_crtc) - 1));
2934         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
2935         alloc->start = nth_active_pipe * ddb_size / *num_active;
2936         alloc->end = alloc->start + pipe_size;
2937 }
2938
2939 static unsigned int skl_cursor_allocation(int num_active)
2940 {
2941         if (num_active == 1)
2942                 return 32;
2943
2944         return 8;
2945 }
2946
2947 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2948 {
2949         entry->start = reg & 0x3ff;
2950         entry->end = (reg >> 16) & 0x3ff;
2951         if (entry->end)
2952                 entry->end += 1;
2953 }
2954
2955 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2956                           struct skl_ddb_allocation *ddb /* out */)
2957 {
2958         enum pipe pipe;
2959         int plane;
2960         u32 val;
2961
2962         memset(ddb, 0, sizeof(*ddb));
2963
2964         for_each_pipe(dev_priv, pipe) {
2965                 enum intel_display_power_domain power_domain;
2966
2967                 power_domain = POWER_DOMAIN_PIPE(pipe);
2968                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2969                         continue;
2970
2971                 for_each_plane(dev_priv, pipe, plane) {
2972                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2973                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2974                                                    val);
2975                 }
2976
2977                 val = I915_READ(CUR_BUF_CFG(pipe));
2978                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2979                                            val);
2980
2981                 intel_display_power_put(dev_priv, power_domain);
2982         }
2983 }
2984
2985 /*
2986  * Determines the downscale amount of a plane for the purposes of watermark calculations.
2987  * The bspec defines downscale amount as:
2988  *
2989  * """
2990  * Horizontal down scale amount = maximum[1, Horizontal source size /
2991  *                                           Horizontal destination size]
2992  * Vertical down scale amount = maximum[1, Vertical source size /
2993  *                                         Vertical destination size]
2994  * Total down scale amount = Horizontal down scale amount *
2995  *                           Vertical down scale amount
2996  * """
2997  *
2998  * Return value is provided in 16.16 fixed point form to retain fractional part.
2999  * Caller should take care of dividing & rounding off the value.
3000  */
3001 static uint32_t
3002 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3003 {
3004         uint32_t downscale_h, downscale_w;
3005         uint32_t src_w, src_h, dst_w, dst_h;
3006
3007         if (WARN_ON(!pstate->base.visible))
3008                 return DRM_PLANE_HELPER_NO_SCALING;
3009
3010         /* n.b., src is 16.16 fixed point, dst is whole integer */
3011         src_w = drm_rect_width(&pstate->base.src);
3012         src_h = drm_rect_height(&pstate->base.src);
3013         dst_w = drm_rect_width(&pstate->base.dst);
3014         dst_h = drm_rect_height(&pstate->base.dst);
3015         if (intel_rotation_90_or_270(pstate->base.rotation))
3016                 swap(dst_w, dst_h);
3017
3018         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3019         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3020
3021         /* Provide result in 16.16 fixed point */
3022         return (uint64_t)downscale_w * downscale_h >> 16;
3023 }
3024
3025 static unsigned int
3026 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3027                              const struct drm_plane_state *pstate,
3028                              int y)
3029 {
3030         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3031         struct drm_framebuffer *fb = pstate->fb;
3032         uint32_t down_scale_amount, data_rate;
3033         uint32_t width = 0, height = 0;
3034         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3035
3036         if (!intel_pstate->base.visible)
3037                 return 0;
3038         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3039                 return 0;
3040         if (y && format != DRM_FORMAT_NV12)
3041                 return 0;
3042
3043         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3044         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3045
3046         if (intel_rotation_90_or_270(pstate->rotation))
3047                 swap(width, height);
3048
3049         /* for planar format */
3050         if (format == DRM_FORMAT_NV12) {
3051                 if (y)  /* y-plane data rate */
3052                         data_rate = width * height *
3053                                 drm_format_plane_cpp(format, 0);
3054                 else    /* uv-plane data rate */
3055                         data_rate = (width / 2) * (height / 2) *
3056                                 drm_format_plane_cpp(format, 1);
3057         } else {
3058                 /* for packed formats */
3059                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3060         }
3061
3062         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3063
3064         return (uint64_t)data_rate * down_scale_amount >> 16;
3065 }
3066
3067 /*
3068  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3069  * a 8192x4096@32bpp framebuffer:
3070  *   3 * 4096 * 8192  * 4 < 2^32
3071  */
3072 static unsigned int
3073 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3074 {
3075         struct drm_crtc_state *cstate = &intel_cstate->base;
3076         struct drm_atomic_state *state = cstate->state;
3077         struct drm_crtc *crtc = cstate->crtc;
3078         struct drm_device *dev = crtc->dev;
3079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3080         const struct drm_plane *plane;
3081         const struct intel_plane *intel_plane;
3082         struct drm_plane_state *pstate;
3083         unsigned int rate, total_data_rate = 0;
3084         int id;
3085         int i;
3086
3087         if (WARN_ON(!state))
3088                 return 0;
3089
3090         /* Calculate and cache data rate for each plane */
3091         for_each_plane_in_state(state, plane, pstate, i) {
3092                 id = skl_wm_plane_id(to_intel_plane(plane));
3093                 intel_plane = to_intel_plane(plane);
3094
3095                 if (intel_plane->pipe != intel_crtc->pipe)
3096                         continue;
3097
3098                 /* packed/uv */
3099                 rate = skl_plane_relative_data_rate(intel_cstate,
3100                                                     pstate, 0);
3101                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3102
3103                 /* y-plane */
3104                 rate = skl_plane_relative_data_rate(intel_cstate,
3105                                                     pstate, 1);
3106                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3107         }
3108
3109         /* Calculate CRTC's total data rate from cached values */
3110         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3111                 int id = skl_wm_plane_id(intel_plane);
3112
3113                 /* packed/uv */
3114                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3115                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3116         }
3117
3118         WARN_ON(cstate->plane_mask && total_data_rate == 0);
3119
3120         return total_data_rate;
3121 }
3122
3123 static uint16_t
3124 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3125                   const int y)
3126 {
3127         struct drm_framebuffer *fb = pstate->fb;
3128         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3129         uint32_t src_w, src_h;
3130         uint32_t min_scanlines = 8;
3131         uint8_t plane_bpp;
3132
3133         if (WARN_ON(!fb))
3134                 return 0;
3135
3136         /* For packed formats, no y-plane, return 0 */
3137         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3138                 return 0;
3139
3140         /* For Non Y-tile return 8-blocks */
3141         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3142             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3143                 return 8;
3144
3145         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3146         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3147
3148         if (intel_rotation_90_or_270(pstate->rotation))
3149                 swap(src_w, src_h);
3150
3151         /* Halve UV plane width and height for NV12 */
3152         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3153                 src_w /= 2;
3154                 src_h /= 2;
3155         }
3156
3157         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3158                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3159         else
3160                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3161
3162         if (intel_rotation_90_or_270(pstate->rotation)) {
3163                 switch (plane_bpp) {
3164                 case 1:
3165                         min_scanlines = 32;
3166                         break;
3167                 case 2:
3168                         min_scanlines = 16;
3169                         break;
3170                 case 4:
3171                         min_scanlines = 8;
3172                         break;
3173                 case 8:
3174                         min_scanlines = 4;
3175                         break;
3176                 default:
3177                         WARN(1, "Unsupported pixel depth %u for rotation",
3178                              plane_bpp);
3179                         min_scanlines = 32;
3180                 }
3181         }
3182
3183         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3184 }
3185
3186 static int
3187 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3188                       struct skl_ddb_allocation *ddb /* out */)
3189 {
3190         struct drm_atomic_state *state = cstate->base.state;
3191         struct drm_crtc *crtc = cstate->base.crtc;
3192         struct drm_device *dev = crtc->dev;
3193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3194         struct intel_plane *intel_plane;
3195         struct drm_plane *plane;
3196         struct drm_plane_state *pstate;
3197         enum pipe pipe = intel_crtc->pipe;
3198         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3199         uint16_t alloc_size, start, cursor_blocks;
3200         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3201         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3202         unsigned int total_data_rate;
3203         int num_active;
3204         int id, i;
3205
3206         if (WARN_ON(!state))
3207                 return 0;
3208
3209         if (!cstate->base.active) {
3210                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3211                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3212                 memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3213                 return 0;
3214         }
3215
3216         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3217         alloc_size = skl_ddb_entry_size(alloc);
3218         if (alloc_size == 0) {
3219                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3220                 return 0;
3221         }
3222
3223         cursor_blocks = skl_cursor_allocation(num_active);
3224         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3225         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3226
3227         alloc_size -= cursor_blocks;
3228
3229         /* 1. Allocate the mininum required blocks for each active plane */
3230         for_each_plane_in_state(state, plane, pstate, i) {
3231                 intel_plane = to_intel_plane(plane);
3232                 id = skl_wm_plane_id(intel_plane);
3233
3234                 if (intel_plane->pipe != pipe)
3235                         continue;
3236
3237                 if (!to_intel_plane_state(pstate)->base.visible) {
3238                         minimum[id] = 0;
3239                         y_minimum[id] = 0;
3240                         continue;
3241                 }
3242                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3243                         minimum[id] = 0;
3244                         y_minimum[id] = 0;
3245                         continue;
3246                 }
3247
3248                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3249                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3250         }
3251
3252         for (i = 0; i < PLANE_CURSOR; i++) {
3253                 alloc_size -= minimum[i];
3254                 alloc_size -= y_minimum[i];
3255         }
3256
3257         /*
3258          * 2. Distribute the remaining space in proportion to the amount of
3259          * data each plane needs to fetch from memory.
3260          *
3261          * FIXME: we may not allocate every single block here.
3262          */
3263         total_data_rate = skl_get_total_relative_data_rate(cstate);
3264         if (total_data_rate == 0)
3265                 return 0;
3266
3267         start = alloc->start;
3268         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3269                 unsigned int data_rate, y_data_rate;
3270                 uint16_t plane_blocks, y_plane_blocks = 0;
3271                 int id = skl_wm_plane_id(intel_plane);
3272
3273                 data_rate = cstate->wm.skl.plane_data_rate[id];
3274
3275                 /*
3276                  * allocation for (packed formats) or (uv-plane part of planar format):
3277                  * promote the expression to 64 bits to avoid overflowing, the
3278                  * result is < available as data_rate / total_data_rate < 1
3279                  */
3280                 plane_blocks = minimum[id];
3281                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3282                                         total_data_rate);
3283
3284                 /* Leave disabled planes at (0,0) */
3285                 if (data_rate) {
3286                         ddb->plane[pipe][id].start = start;
3287                         ddb->plane[pipe][id].end = start + plane_blocks;
3288                 }
3289
3290                 start += plane_blocks;
3291
3292                 /*
3293                  * allocation for y_plane part of planar format:
3294                  */
3295                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3296
3297                 y_plane_blocks = y_minimum[id];
3298                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3299                                         total_data_rate);
3300
3301                 if (y_data_rate) {
3302                         ddb->y_plane[pipe][id].start = start;
3303                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3304                 }
3305
3306                 start += y_plane_blocks;
3307         }
3308
3309         return 0;
3310 }
3311
3312 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3313 {
3314         /* TODO: Take into account the scalers once we support them */
3315         return config->base.adjusted_mode.crtc_clock;
3316 }
3317
3318 /*
3319  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3320  * for the read latency) and cpp should always be <= 8, so that
3321  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3322  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3323 */
3324 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3325 {
3326         uint32_t wm_intermediate_val, ret;
3327
3328         if (latency == 0)
3329                 return UINT_MAX;
3330
3331         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3332         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3333
3334         return ret;
3335 }
3336
3337 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3338                                uint32_t horiz_pixels, uint8_t cpp,
3339                                uint64_t tiling, uint32_t latency)
3340 {
3341         uint32_t ret;
3342         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3343         uint32_t wm_intermediate_val;
3344
3345         if (latency == 0)
3346                 return UINT_MAX;
3347
3348         plane_bytes_per_line = horiz_pixels * cpp;
3349
3350         if (tiling == I915_FORMAT_MOD_Y_TILED ||
3351             tiling == I915_FORMAT_MOD_Yf_TILED) {
3352                 plane_bytes_per_line *= 4;
3353                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3354                 plane_blocks_per_line /= 4;
3355         } else if (tiling == DRM_FORMAT_MOD_NONE) {
3356                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512) + 1;
3357         } else {
3358                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3359         }
3360
3361         wm_intermediate_val = latency * pixel_rate;
3362         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3363                                 plane_blocks_per_line;
3364
3365         return ret;
3366 }
3367
3368 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3369                                               struct intel_plane_state *pstate)
3370 {
3371         uint64_t adjusted_pixel_rate;
3372         uint64_t downscale_amount;
3373         uint64_t pixel_rate;
3374
3375         /* Shouldn't reach here on disabled planes... */
3376         if (WARN_ON(!pstate->base.visible))
3377                 return 0;
3378
3379         /*
3380          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3381          * with additional adjustments for plane-specific scaling.
3382          */
3383         adjusted_pixel_rate = skl_pipe_pixel_rate(cstate);
3384         downscale_amount = skl_plane_downscale_amount(pstate);
3385
3386         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3387         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3388
3389         return pixel_rate;
3390 }
3391
3392 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3393                                 struct intel_crtc_state *cstate,
3394                                 struct intel_plane_state *intel_pstate,
3395                                 uint16_t ddb_allocation,
3396                                 int level,
3397                                 uint16_t *out_blocks, /* out */
3398                                 uint8_t *out_lines, /* out */
3399                                 bool *enabled /* out */)
3400 {
3401         struct drm_plane_state *pstate = &intel_pstate->base;
3402         struct drm_framebuffer *fb = pstate->fb;
3403         uint32_t latency = dev_priv->wm.skl_latency[level];
3404         uint32_t method1, method2;
3405         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3406         uint32_t res_blocks, res_lines;
3407         uint32_t selected_result;
3408         uint8_t cpp;
3409         uint32_t width = 0, height = 0;
3410         uint32_t plane_pixel_rate;
3411
3412         if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3413                 *enabled = false;
3414                 return 0;
3415         }
3416
3417         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3418         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3419
3420         if (intel_rotation_90_or_270(pstate->rotation))
3421                 swap(width, height);
3422
3423         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3424         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3425
3426         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3427         method2 = skl_wm_method2(plane_pixel_rate,
3428                                  cstate->base.adjusted_mode.crtc_htotal,
3429                                  width,
3430                                  cpp,
3431                                  fb->modifier[0],
3432                                  latency);
3433
3434         plane_bytes_per_line = width * cpp;
3435         plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3436
3437         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3438             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3439                 uint32_t min_scanlines = 4;
3440                 uint32_t y_tile_minimum;
3441                 if (intel_rotation_90_or_270(pstate->rotation)) {
3442                         int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3443                                 drm_format_plane_cpp(fb->pixel_format, 1) :
3444                                 drm_format_plane_cpp(fb->pixel_format, 0);
3445
3446                         switch (cpp) {
3447                         case 1:
3448                                 min_scanlines = 16;
3449                                 break;
3450                         case 2:
3451                                 min_scanlines = 8;
3452                                 break;
3453                         case 8:
3454                                 WARN(1, "Unsupported pixel depth for rotation");
3455                         }
3456                 }
3457                 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3458                 selected_result = max(method2, y_tile_minimum);
3459         } else {
3460                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3461                         selected_result = min(method1, method2);
3462                 else
3463                         selected_result = method1;
3464         }
3465
3466         res_blocks = selected_result + 1;
3467         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3468
3469         if (level >= 1 && level <= 7) {
3470                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3471                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3472                         res_lines += 4;
3473                 else
3474                         res_blocks++;
3475         }
3476
3477         if (res_blocks >= ddb_allocation || res_lines > 31) {
3478                 *enabled = false;
3479
3480                 /*
3481                  * If there are no valid level 0 watermarks, then we can't
3482                  * support this display configuration.
3483                  */
3484                 if (level) {
3485                         return 0;
3486                 } else {
3487                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3488                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3489                                       to_intel_crtc(cstate->base.crtc)->pipe,
3490                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3491                                       res_blocks, ddb_allocation, res_lines);
3492
3493                         return -EINVAL;
3494                 }
3495         }
3496
3497         *out_blocks = res_blocks;
3498         *out_lines = res_lines;
3499         *enabled = true;
3500
3501         return 0;
3502 }
3503
3504 static int
3505 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3506                      struct skl_ddb_allocation *ddb,
3507                      struct intel_crtc_state *cstate,
3508                      int level,
3509                      struct skl_wm_level *result)
3510 {
3511         struct drm_atomic_state *state = cstate->base.state;
3512         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3513         struct drm_plane *plane;
3514         struct intel_plane *intel_plane;
3515         struct intel_plane_state *intel_pstate;
3516         uint16_t ddb_blocks;
3517         enum pipe pipe = intel_crtc->pipe;
3518         int ret;
3519
3520         /*
3521          * We'll only calculate watermarks for planes that are actually
3522          * enabled, so make sure all other planes are set as disabled.
3523          */
3524         memset(result, 0, sizeof(*result));
3525
3526         for_each_intel_plane_mask(&dev_priv->drm,
3527                                   intel_plane,
3528                                   cstate->base.plane_mask) {
3529                 int i = skl_wm_plane_id(intel_plane);
3530
3531                 plane = &intel_plane->base;
3532                 intel_pstate = NULL;
3533                 if (state)
3534                         intel_pstate =
3535                                 intel_atomic_get_existing_plane_state(state,
3536                                                                       intel_plane);
3537
3538                 /*
3539                  * Note: If we start supporting multiple pending atomic commits
3540                  * against the same planes/CRTC's in the future, plane->state
3541                  * will no longer be the correct pre-state to use for the
3542                  * calculations here and we'll need to change where we get the
3543                  * 'unchanged' plane data from.
3544                  *
3545                  * For now this is fine because we only allow one queued commit
3546                  * against a CRTC.  Even if the plane isn't modified by this
3547                  * transaction and we don't have a plane lock, we still have
3548                  * the CRTC's lock, so we know that no other transactions are
3549                  * racing with us to update it.
3550                  */
3551                 if (!intel_pstate)
3552                         intel_pstate = to_intel_plane_state(plane->state);
3553
3554                 WARN_ON(!intel_pstate->base.fb);
3555
3556                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3557
3558                 ret = skl_compute_plane_wm(dev_priv,
3559                                            cstate,
3560                                            intel_pstate,
3561                                            ddb_blocks,
3562                                            level,
3563                                            &result->plane_res_b[i],
3564                                            &result->plane_res_l[i],
3565                                            &result->plane_en[i]);
3566                 if (ret)
3567                         return ret;
3568         }
3569
3570         return 0;
3571 }
3572
3573 static uint32_t
3574 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3575 {
3576         if (!cstate->base.active)
3577                 return 0;
3578
3579         if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3580                 return 0;
3581
3582         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3583                             skl_pipe_pixel_rate(cstate));
3584 }
3585
3586 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3587                                       struct skl_wm_level *trans_wm /* out */)
3588 {
3589         struct drm_crtc *crtc = cstate->base.crtc;
3590         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3591         struct intel_plane *intel_plane;
3592
3593         if (!cstate->base.active)
3594                 return;
3595
3596         /* Until we know more, just disable transition WMs */
3597         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3598                 int i = skl_wm_plane_id(intel_plane);
3599
3600                 trans_wm->plane_en[i] = false;
3601         }
3602 }
3603
3604 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3605                              struct skl_ddb_allocation *ddb,
3606                              struct skl_pipe_wm *pipe_wm)
3607 {
3608         struct drm_device *dev = cstate->base.crtc->dev;
3609         const struct drm_i915_private *dev_priv = to_i915(dev);
3610         int level, max_level = ilk_wm_max_level(dev);
3611         int ret;
3612
3613         for (level = 0; level <= max_level; level++) {
3614                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3615                                            level, &pipe_wm->wm[level]);
3616                 if (ret)
3617                         return ret;
3618         }
3619         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3620
3621         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3622
3623         return 0;
3624 }
3625
3626 static void skl_compute_wm_results(struct drm_device *dev,
3627                                    struct skl_pipe_wm *p_wm,
3628                                    struct skl_wm_values *r,
3629                                    struct intel_crtc *intel_crtc)
3630 {
3631         int level, max_level = ilk_wm_max_level(dev);
3632         enum pipe pipe = intel_crtc->pipe;
3633         uint32_t temp;
3634         int i;
3635
3636         for (level = 0; level <= max_level; level++) {
3637                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3638                         temp = 0;
3639
3640                         temp |= p_wm->wm[level].plane_res_l[i] <<
3641                                         PLANE_WM_LINES_SHIFT;
3642                         temp |= p_wm->wm[level].plane_res_b[i];
3643                         if (p_wm->wm[level].plane_en[i])
3644                                 temp |= PLANE_WM_EN;
3645
3646                         r->plane[pipe][i][level] = temp;
3647                 }
3648
3649                 temp = 0;
3650
3651                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3652                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3653
3654                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3655                         temp |= PLANE_WM_EN;
3656
3657                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3658
3659         }
3660
3661         /* transition WMs */
3662         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3663                 temp = 0;
3664                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3665                 temp |= p_wm->trans_wm.plane_res_b[i];
3666                 if (p_wm->trans_wm.plane_en[i])
3667                         temp |= PLANE_WM_EN;
3668
3669                 r->plane_trans[pipe][i] = temp;
3670         }
3671
3672         temp = 0;
3673         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3674         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3675         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3676                 temp |= PLANE_WM_EN;
3677
3678         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3679
3680         r->wm_linetime[pipe] = p_wm->linetime;
3681 }
3682
3683 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3684                                 i915_reg_t reg,
3685                                 const struct skl_ddb_entry *entry)
3686 {
3687         if (entry->end)
3688                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3689         else
3690                 I915_WRITE(reg, 0);
3691 }
3692
3693 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3694                                 const struct skl_wm_values *new)
3695 {
3696         struct drm_device *dev = &dev_priv->drm;
3697         struct intel_crtc *crtc;
3698
3699         for_each_intel_crtc(dev, crtc) {
3700                 int i, level, max_level = ilk_wm_max_level(dev);
3701                 enum pipe pipe = crtc->pipe;
3702
3703                 if ((new->dirty_pipes & drm_crtc_mask(&crtc->base)) == 0)
3704                         continue;
3705                 if (!crtc->active)
3706                         continue;
3707
3708                 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3709
3710                 for (level = 0; level <= max_level; level++) {
3711                         for (i = 0; i < intel_num_planes(crtc); i++)
3712                                 I915_WRITE(PLANE_WM(pipe, i, level),
3713                                            new->plane[pipe][i][level]);
3714                         I915_WRITE(CUR_WM(pipe, level),
3715                                    new->plane[pipe][PLANE_CURSOR][level]);
3716                 }
3717                 for (i = 0; i < intel_num_planes(crtc); i++)
3718                         I915_WRITE(PLANE_WM_TRANS(pipe, i),
3719                                    new->plane_trans[pipe][i]);
3720                 I915_WRITE(CUR_WM_TRANS(pipe),
3721                            new->plane_trans[pipe][PLANE_CURSOR]);
3722
3723                 for (i = 0; i < intel_num_planes(crtc); i++) {
3724                         skl_ddb_entry_write(dev_priv,
3725                                             PLANE_BUF_CFG(pipe, i),
3726                                             &new->ddb.plane[pipe][i]);
3727                         skl_ddb_entry_write(dev_priv,
3728                                             PLANE_NV12_BUF_CFG(pipe, i),
3729                                             &new->ddb.y_plane[pipe][i]);
3730                 }
3731
3732                 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3733                                     &new->ddb.plane[pipe][PLANE_CURSOR]);
3734         }
3735 }
3736
3737 /*
3738  * When setting up a new DDB allocation arrangement, we need to correctly
3739  * sequence the times at which the new allocations for the pipes are taken into
3740  * account or we'll have pipes fetching from space previously allocated to
3741  * another pipe.
3742  *
3743  * Roughly the sequence looks like:
3744  *  1. re-allocate the pipe(s) with the allocation being reduced and not
3745  *     overlapping with a previous light-up pipe (another way to put it is:
3746  *     pipes with their new allocation strickly included into their old ones).
3747  *  2. re-allocate the other pipes that get their allocation reduced
3748  *  3. allocate the pipes having their allocation increased
3749  *
3750  * Steps 1. and 2. are here to take care of the following case:
3751  * - Initially DDB looks like this:
3752  *     |   B    |   C    |
3753  * - enable pipe A.
3754  * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3755  *   allocation
3756  *     |  A  |  B  |  C  |
3757  *
3758  * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3759  */
3760
3761 static void
3762 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3763 {
3764         int plane;
3765
3766         DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3767
3768         for_each_plane(dev_priv, pipe, plane) {
3769                 I915_WRITE(PLANE_SURF(pipe, plane),
3770                            I915_READ(PLANE_SURF(pipe, plane)));
3771         }
3772         I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3773 }
3774
3775 static bool
3776 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3777                             const struct skl_ddb_allocation *new,
3778                             enum pipe pipe)
3779 {
3780         uint16_t old_size, new_size;
3781
3782         old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3783         new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3784
3785         return old_size != new_size &&
3786                new->pipe[pipe].start >= old->pipe[pipe].start &&
3787                new->pipe[pipe].end <= old->pipe[pipe].end;
3788 }
3789
3790 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3791                                 struct skl_wm_values *new_values)
3792 {
3793         struct drm_device *dev = &dev_priv->drm;
3794         struct skl_ddb_allocation *cur_ddb, *new_ddb;
3795         bool reallocated[I915_MAX_PIPES] = {};
3796         struct intel_crtc *crtc;
3797         enum pipe pipe;
3798
3799         new_ddb = &new_values->ddb;
3800         cur_ddb = &dev_priv->wm.skl_hw.ddb;
3801
3802         /*
3803          * First pass: flush the pipes with the new allocation contained into
3804          * the old space.
3805          *
3806          * We'll wait for the vblank on those pipes to ensure we can safely
3807          * re-allocate the freed space without this pipe fetching from it.
3808          */
3809         for_each_intel_crtc(dev, crtc) {
3810                 if (!crtc->active)
3811                         continue;
3812
3813                 pipe = crtc->pipe;
3814
3815                 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3816                         continue;
3817
3818                 skl_wm_flush_pipe(dev_priv, pipe, 1);
3819                 intel_wait_for_vblank(dev, pipe);
3820
3821                 reallocated[pipe] = true;
3822         }
3823
3824
3825         /*
3826          * Second pass: flush the pipes that are having their allocation
3827          * reduced, but overlapping with a previous allocation.
3828          *
3829          * Here as well we need to wait for the vblank to make sure the freed
3830          * space is not used anymore.
3831          */
3832         for_each_intel_crtc(dev, crtc) {
3833                 if (!crtc->active)
3834                         continue;
3835
3836                 pipe = crtc->pipe;
3837
3838                 if (reallocated[pipe])
3839                         continue;
3840
3841                 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3842                     skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3843                         skl_wm_flush_pipe(dev_priv, pipe, 2);
3844                         intel_wait_for_vblank(dev, pipe);
3845                         reallocated[pipe] = true;
3846                 }
3847         }
3848
3849         /*
3850          * Third pass: flush the pipes that got more space allocated.
3851          *
3852          * We don't need to actively wait for the update here, next vblank
3853          * will just get more DDB space with the correct WM values.
3854          */
3855         for_each_intel_crtc(dev, crtc) {
3856                 if (!crtc->active)
3857                         continue;
3858
3859                 pipe = crtc->pipe;
3860
3861                 /*
3862                  * At this point, only the pipes more space than before are
3863                  * left to re-allocate.
3864                  */
3865                 if (reallocated[pipe])
3866                         continue;
3867
3868                 skl_wm_flush_pipe(dev_priv, pipe, 3);
3869         }
3870 }
3871
3872 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3873                               struct skl_ddb_allocation *ddb, /* out */
3874                               struct skl_pipe_wm *pipe_wm, /* out */
3875                               bool *changed /* out */)
3876 {
3877         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3878         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3879         int ret;
3880
3881         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3882         if (ret)
3883                 return ret;
3884
3885         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3886                 *changed = false;
3887         else
3888                 *changed = true;
3889
3890         return 0;
3891 }
3892
3893 static uint32_t
3894 pipes_modified(struct drm_atomic_state *state)
3895 {
3896         struct drm_crtc *crtc;
3897         struct drm_crtc_state *cstate;
3898         uint32_t i, ret = 0;
3899
3900         for_each_crtc_in_state(state, crtc, cstate, i)
3901                 ret |= drm_crtc_mask(crtc);
3902
3903         return ret;
3904 }
3905
3906 static int
3907 skl_compute_ddb(struct drm_atomic_state *state)
3908 {
3909         struct drm_device *dev = state->dev;
3910         struct drm_i915_private *dev_priv = to_i915(dev);
3911         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3912         struct intel_crtc *intel_crtc;
3913         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
3914         uint32_t realloc_pipes = pipes_modified(state);
3915         int ret;
3916
3917         /*
3918          * If this is our first atomic update following hardware readout,
3919          * we can't trust the DDB that the BIOS programmed for us.  Let's
3920          * pretend that all pipes switched active status so that we'll
3921          * ensure a full DDB recompute.
3922          */
3923         if (dev_priv->wm.distrust_bios_wm)
3924                 intel_state->active_pipe_changes = ~0;
3925
3926         /*
3927          * If the modeset changes which CRTC's are active, we need to
3928          * recompute the DDB allocation for *all* active pipes, even
3929          * those that weren't otherwise being modified in any way by this
3930          * atomic commit.  Due to the shrinking of the per-pipe allocations
3931          * when new active CRTC's are added, it's possible for a pipe that
3932          * we were already using and aren't changing at all here to suddenly
3933          * become invalid if its DDB needs exceeds its new allocation.
3934          *
3935          * Note that if we wind up doing a full DDB recompute, we can't let
3936          * any other display updates race with this transaction, so we need
3937          * to grab the lock on *all* CRTC's.
3938          */
3939         if (intel_state->active_pipe_changes) {
3940                 realloc_pipes = ~0;
3941                 intel_state->wm_results.dirty_pipes = ~0;
3942         }
3943
3944         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
3945                 struct intel_crtc_state *cstate;
3946
3947                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
3948                 if (IS_ERR(cstate))
3949                         return PTR_ERR(cstate);
3950
3951                 ret = skl_allocate_pipe_ddb(cstate, ddb);
3952                 if (ret)
3953                         return ret;
3954         }
3955
3956         return 0;
3957 }
3958
3959 static int
3960 skl_compute_wm(struct drm_atomic_state *state)
3961 {
3962         struct drm_crtc *crtc;
3963         struct drm_crtc_state *cstate;
3964         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3965         struct skl_wm_values *results = &intel_state->wm_results;
3966         struct skl_pipe_wm *pipe_wm;
3967         bool changed = false;
3968         int ret, i;
3969
3970         /*
3971          * If this transaction isn't actually touching any CRTC's, don't
3972          * bother with watermark calculation.  Note that if we pass this
3973          * test, we're guaranteed to hold at least one CRTC state mutex,
3974          * which means we can safely use values like dev_priv->active_crtcs
3975          * since any racing commits that want to update them would need to
3976          * hold _all_ CRTC state mutexes.
3977          */
3978         for_each_crtc_in_state(state, crtc, cstate, i)
3979                 changed = true;
3980         if (!changed)
3981                 return 0;
3982
3983         /* Clear all dirty flags */
3984         results->dirty_pipes = 0;
3985
3986         ret = skl_compute_ddb(state);
3987         if (ret)
3988                 return ret;
3989
3990         /*
3991          * Calculate WM's for all pipes that are part of this transaction.
3992          * Note that the DDB allocation above may have added more CRTC's that
3993          * weren't otherwise being modified (and set bits in dirty_pipes) if
3994          * pipe allocations had to change.
3995          *
3996          * FIXME:  Now that we're doing this in the atomic check phase, we
3997          * should allow skl_update_pipe_wm() to return failure in cases where
3998          * no suitable watermark values can be found.
3999          */
4000         for_each_crtc_in_state(state, crtc, cstate, i) {
4001                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4002                 struct intel_crtc_state *intel_cstate =
4003                         to_intel_crtc_state(cstate);
4004
4005                 pipe_wm = &intel_cstate->wm.skl.optimal;
4006                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4007                                          &changed);
4008                 if (ret)
4009                         return ret;
4010
4011                 if (changed)
4012                         results->dirty_pipes |= drm_crtc_mask(crtc);
4013
4014                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4015                         /* This pipe's WM's did not change */
4016                         continue;
4017
4018                 intel_cstate->update_wm_pre = true;
4019                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4020         }
4021
4022         return 0;
4023 }
4024
4025 static void skl_update_wm(struct drm_crtc *crtc)
4026 {
4027         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4028         struct drm_device *dev = crtc->dev;
4029         struct drm_i915_private *dev_priv = to_i915(dev);
4030         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4031         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4032         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4033
4034         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4035                 return;
4036
4037         intel_crtc->wm.active.skl = *pipe_wm;
4038
4039         mutex_lock(&dev_priv->wm.wm_mutex);
4040
4041         skl_write_wm_values(dev_priv, results);
4042         skl_flush_wm_values(dev_priv, results);
4043
4044         /* store the new configuration */
4045         dev_priv->wm.skl_hw = *results;
4046
4047         mutex_unlock(&dev_priv->wm.wm_mutex);
4048 }
4049
4050 static void ilk_compute_wm_config(struct drm_device *dev,
4051                                   struct intel_wm_config *config)
4052 {
4053         struct intel_crtc *crtc;
4054
4055         /* Compute the currently _active_ config */
4056         for_each_intel_crtc(dev, crtc) {
4057                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4058
4059                 if (!wm->pipe_enabled)
4060                         continue;
4061
4062                 config->sprites_enabled |= wm->sprites_enabled;
4063                 config->sprites_scaled |= wm->sprites_scaled;
4064                 config->num_pipes_active++;
4065         }
4066 }
4067
4068 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4069 {
4070         struct drm_device *dev = &dev_priv->drm;
4071         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4072         struct ilk_wm_maximums max;
4073         struct intel_wm_config config = {};
4074         struct ilk_wm_values results = {};
4075         enum intel_ddb_partitioning partitioning;
4076
4077         ilk_compute_wm_config(dev, &config);
4078
4079         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4080         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4081
4082         /* 5/6 split only in single pipe config on IVB+ */
4083         if (INTEL_INFO(dev)->gen >= 7 &&
4084             config.num_pipes_active == 1 && config.sprites_enabled) {
4085                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4086                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4087
4088                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4089         } else {
4090                 best_lp_wm = &lp_wm_1_2;
4091         }
4092
4093         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4094                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4095
4096         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4097
4098         ilk_write_wm_values(dev_priv, &results);
4099 }
4100
4101 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4102 {
4103         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4104         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4105
4106         mutex_lock(&dev_priv->wm.wm_mutex);
4107         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4108         ilk_program_watermarks(dev_priv);
4109         mutex_unlock(&dev_priv->wm.wm_mutex);
4110 }
4111
4112 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4113 {
4114         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4115         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4116
4117         mutex_lock(&dev_priv->wm.wm_mutex);
4118         if (cstate->wm.need_postvbl_update) {
4119                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4120                 ilk_program_watermarks(dev_priv);
4121         }
4122         mutex_unlock(&dev_priv->wm.wm_mutex);
4123 }
4124
4125 static void skl_pipe_wm_active_state(uint32_t val,
4126                                      struct skl_pipe_wm *active,
4127                                      bool is_transwm,
4128                                      bool is_cursor,
4129                                      int i,
4130                                      int level)
4131 {
4132         bool is_enabled = (val & PLANE_WM_EN) != 0;
4133
4134         if (!is_transwm) {
4135                 if (!is_cursor) {
4136                         active->wm[level].plane_en[i] = is_enabled;
4137                         active->wm[level].plane_res_b[i] =
4138                                         val & PLANE_WM_BLOCKS_MASK;
4139                         active->wm[level].plane_res_l[i] =
4140                                         (val >> PLANE_WM_LINES_SHIFT) &
4141                                                 PLANE_WM_LINES_MASK;
4142                 } else {
4143                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4144                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4145                                         val & PLANE_WM_BLOCKS_MASK;
4146                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4147                                         (val >> PLANE_WM_LINES_SHIFT) &
4148                                                 PLANE_WM_LINES_MASK;
4149                 }
4150         } else {
4151                 if (!is_cursor) {
4152                         active->trans_wm.plane_en[i] = is_enabled;
4153                         active->trans_wm.plane_res_b[i] =
4154                                         val & PLANE_WM_BLOCKS_MASK;
4155                         active->trans_wm.plane_res_l[i] =
4156                                         (val >> PLANE_WM_LINES_SHIFT) &
4157                                                 PLANE_WM_LINES_MASK;
4158                 } else {
4159                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4160                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4161                                         val & PLANE_WM_BLOCKS_MASK;
4162                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4163                                         (val >> PLANE_WM_LINES_SHIFT) &
4164                                                 PLANE_WM_LINES_MASK;
4165                 }
4166         }
4167 }
4168
4169 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4170 {
4171         struct drm_device *dev = crtc->dev;
4172         struct drm_i915_private *dev_priv = to_i915(dev);
4173         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4174         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4175         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4176         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4177         enum pipe pipe = intel_crtc->pipe;
4178         int level, i, max_level;
4179         uint32_t temp;
4180
4181         max_level = ilk_wm_max_level(dev);
4182
4183         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4184
4185         for (level = 0; level <= max_level; level++) {
4186                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4187                         hw->plane[pipe][i][level] =
4188                                         I915_READ(PLANE_WM(pipe, i, level));
4189                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4190         }
4191
4192         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4193                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4194         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4195
4196         if (!intel_crtc->active)
4197                 return;
4198
4199         hw->dirty_pipes |= drm_crtc_mask(crtc);
4200
4201         active->linetime = hw->wm_linetime[pipe];
4202
4203         for (level = 0; level <= max_level; level++) {
4204                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4205                         temp = hw->plane[pipe][i][level];
4206                         skl_pipe_wm_active_state(temp, active, false,
4207                                                 false, i, level);
4208                 }
4209                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4210                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4211         }
4212
4213         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4214                 temp = hw->plane_trans[pipe][i];
4215                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4216         }
4217
4218         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4219         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4220
4221         intel_crtc->wm.active.skl = *active;
4222 }
4223
4224 void skl_wm_get_hw_state(struct drm_device *dev)
4225 {
4226         struct drm_i915_private *dev_priv = to_i915(dev);
4227         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4228         struct drm_crtc *crtc;
4229
4230         skl_ddb_get_hw_state(dev_priv, ddb);
4231         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4232                 skl_pipe_wm_get_hw_state(crtc);
4233
4234         if (dev_priv->active_crtcs) {
4235                 /* Fully recompute DDB on first atomic commit */
4236                 dev_priv->wm.distrust_bios_wm = true;
4237         } else {
4238                 /* Easy/common case; just sanitize DDB now if everything off */
4239                 memset(ddb, 0, sizeof(*ddb));
4240         }
4241 }
4242
4243 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4244 {
4245         struct drm_device *dev = crtc->dev;
4246         struct drm_i915_private *dev_priv = to_i915(dev);
4247         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4248         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4249         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4250         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4251         enum pipe pipe = intel_crtc->pipe;
4252         static const i915_reg_t wm0_pipe_reg[] = {
4253                 [PIPE_A] = WM0_PIPEA_ILK,
4254                 [PIPE_B] = WM0_PIPEB_ILK,
4255                 [PIPE_C] = WM0_PIPEC_IVB,
4256         };
4257
4258         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4259         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4260                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4261
4262         memset(active, 0, sizeof(*active));
4263
4264         active->pipe_enabled = intel_crtc->active;
4265
4266         if (active->pipe_enabled) {
4267                 u32 tmp = hw->wm_pipe[pipe];
4268
4269                 /*
4270                  * For active pipes LP0 watermark is marked as
4271                  * enabled, and LP1+ watermaks as disabled since
4272                  * we can't really reverse compute them in case
4273                  * multiple pipes are active.
4274                  */
4275                 active->wm[0].enable = true;
4276                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4277                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4278                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4279                 active->linetime = hw->wm_linetime[pipe];
4280         } else {
4281                 int level, max_level = ilk_wm_max_level(dev);
4282
4283                 /*
4284                  * For inactive pipes, all watermark levels
4285                  * should be marked as enabled but zeroed,
4286                  * which is what we'd compute them to.
4287                  */
4288                 for (level = 0; level <= max_level; level++)
4289                         active->wm[level].enable = true;
4290         }
4291
4292         intel_crtc->wm.active.ilk = *active;
4293 }
4294
4295 #define _FW_WM(value, plane) \
4296         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4297 #define _FW_WM_VLV(value, plane) \
4298         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4299
4300 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4301                                struct vlv_wm_values *wm)
4302 {
4303         enum pipe pipe;
4304         uint32_t tmp;
4305
4306         for_each_pipe(dev_priv, pipe) {
4307                 tmp = I915_READ(VLV_DDL(pipe));
4308
4309                 wm->ddl[pipe].primary =
4310                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4311                 wm->ddl[pipe].cursor =
4312                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4313                 wm->ddl[pipe].sprite[0] =
4314                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4315                 wm->ddl[pipe].sprite[1] =
4316                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4317         }
4318
4319         tmp = I915_READ(DSPFW1);
4320         wm->sr.plane = _FW_WM(tmp, SR);
4321         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4322         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4323         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4324
4325         tmp = I915_READ(DSPFW2);
4326         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4327         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4328         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4329
4330         tmp = I915_READ(DSPFW3);
4331         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4332
4333         if (IS_CHERRYVIEW(dev_priv)) {
4334                 tmp = I915_READ(DSPFW7_CHV);
4335                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4336                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4337
4338                 tmp = I915_READ(DSPFW8_CHV);
4339                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4340                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4341
4342                 tmp = I915_READ(DSPFW9_CHV);
4343                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4344                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4345
4346                 tmp = I915_READ(DSPHOWM);
4347                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4348                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4349                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4350                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4351                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4352                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4353                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4354                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4355                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4356                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4357         } else {
4358                 tmp = I915_READ(DSPFW7);
4359                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4360                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4361
4362                 tmp = I915_READ(DSPHOWM);
4363                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4364                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4365                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4366                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4367                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4368                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4369                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4370         }
4371 }
4372
4373 #undef _FW_WM
4374 #undef _FW_WM_VLV
4375
4376 void vlv_wm_get_hw_state(struct drm_device *dev)
4377 {
4378         struct drm_i915_private *dev_priv = to_i915(dev);
4379         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4380         struct intel_plane *plane;
4381         enum pipe pipe;
4382         u32 val;
4383
4384         vlv_read_wm_values(dev_priv, wm);
4385
4386         for_each_intel_plane(dev, plane) {
4387                 switch (plane->base.type) {
4388                         int sprite;
4389                 case DRM_PLANE_TYPE_CURSOR:
4390                         plane->wm.fifo_size = 63;
4391                         break;
4392                 case DRM_PLANE_TYPE_PRIMARY:
4393                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4394                         break;
4395                 case DRM_PLANE_TYPE_OVERLAY:
4396                         sprite = plane->plane;
4397                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4398                         break;
4399                 }
4400         }
4401
4402         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4403         wm->level = VLV_WM_LEVEL_PM2;
4404
4405         if (IS_CHERRYVIEW(dev_priv)) {
4406                 mutex_lock(&dev_priv->rps.hw_lock);
4407
4408                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4409                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4410                         wm->level = VLV_WM_LEVEL_PM5;
4411
4412                 /*
4413                  * If DDR DVFS is disabled in the BIOS, Punit
4414                  * will never ack the request. So if that happens
4415                  * assume we don't have to enable/disable DDR DVFS
4416                  * dynamically. To test that just set the REQ_ACK
4417                  * bit to poke the Punit, but don't change the
4418                  * HIGH/LOW bits so that we don't actually change
4419                  * the current state.
4420                  */
4421                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4422                 val |= FORCE_DDR_FREQ_REQ_ACK;
4423                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4424
4425                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4426                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4427                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4428                                       "assuming DDR DVFS is disabled\n");
4429                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4430                 } else {
4431                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4432                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4433                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4434                 }
4435
4436                 mutex_unlock(&dev_priv->rps.hw_lock);
4437         }
4438
4439         for_each_pipe(dev_priv, pipe)
4440                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4441                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4442                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4443
4444         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4445                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4446 }
4447
4448 void ilk_wm_get_hw_state(struct drm_device *dev)
4449 {
4450         struct drm_i915_private *dev_priv = to_i915(dev);
4451         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4452         struct drm_crtc *crtc;
4453
4454         for_each_crtc(dev, crtc)
4455                 ilk_pipe_wm_get_hw_state(crtc);
4456
4457         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4458         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4459         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4460
4461         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4462         if (INTEL_INFO(dev)->gen >= 7) {
4463                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4464                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4465         }
4466
4467         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4468                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4469                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4470         else if (IS_IVYBRIDGE(dev))
4471                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4472                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4473
4474         hw->enable_fbc_wm =
4475                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4476 }
4477
4478 /**
4479  * intel_update_watermarks - update FIFO watermark values based on current modes
4480  *
4481  * Calculate watermark values for the various WM regs based on current mode
4482  * and plane configuration.
4483  *
4484  * There are several cases to deal with here:
4485  *   - normal (i.e. non-self-refresh)
4486  *   - self-refresh (SR) mode
4487  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4488  *   - lines are small relative to FIFO size (buffer can hold more than 2
4489  *     lines), so need to account for TLB latency
4490  *
4491  *   The normal calculation is:
4492  *     watermark = dotclock * bytes per pixel * latency
4493  *   where latency is platform & configuration dependent (we assume pessimal
4494  *   values here).
4495  *
4496  *   The SR calculation is:
4497  *     watermark = (trunc(latency/line time)+1) * surface width *
4498  *       bytes per pixel
4499  *   where
4500  *     line time = htotal / dotclock
4501  *     surface width = hdisplay for normal plane and 64 for cursor
4502  *   and latency is assumed to be high, as above.
4503  *
4504  * The final value programmed to the register should always be rounded up,
4505  * and include an extra 2 entries to account for clock crossings.
4506  *
4507  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4508  * to set the non-SR watermarks to 8.
4509  */
4510 void intel_update_watermarks(struct drm_crtc *crtc)
4511 {
4512         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4513
4514         if (dev_priv->display.update_wm)
4515                 dev_priv->display.update_wm(crtc);
4516 }
4517
4518 /*
4519  * Lock protecting IPS related data structures
4520  */
4521 DEFINE_SPINLOCK(mchdev_lock);
4522
4523 /* Global for IPS driver to get at the current i915 device. Protected by
4524  * mchdev_lock. */
4525 static struct drm_i915_private *i915_mch_dev;
4526
4527 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4528 {
4529         u16 rgvswctl;
4530
4531         assert_spin_locked(&mchdev_lock);
4532
4533         rgvswctl = I915_READ16(MEMSWCTL);
4534         if (rgvswctl & MEMCTL_CMD_STS) {
4535                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4536                 return false; /* still busy with another command */
4537         }
4538
4539         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4540                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4541         I915_WRITE16(MEMSWCTL, rgvswctl);
4542         POSTING_READ16(MEMSWCTL);
4543
4544         rgvswctl |= MEMCTL_CMD_STS;
4545         I915_WRITE16(MEMSWCTL, rgvswctl);
4546
4547         return true;
4548 }
4549
4550 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4551 {
4552         u32 rgvmodectl;
4553         u8 fmax, fmin, fstart, vstart;
4554
4555         spin_lock_irq(&mchdev_lock);
4556
4557         rgvmodectl = I915_READ(MEMMODECTL);
4558
4559         /* Enable temp reporting */
4560         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4561         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4562
4563         /* 100ms RC evaluation intervals */
4564         I915_WRITE(RCUPEI, 100000);
4565         I915_WRITE(RCDNEI, 100000);
4566
4567         /* Set max/min thresholds to 90ms and 80ms respectively */
4568         I915_WRITE(RCBMAXAVG, 90000);
4569         I915_WRITE(RCBMINAVG, 80000);
4570
4571         I915_WRITE(MEMIHYST, 1);
4572
4573         /* Set up min, max, and cur for interrupt handling */
4574         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4575         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4576         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4577                 MEMMODE_FSTART_SHIFT;
4578
4579         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4580                 PXVFREQ_PX_SHIFT;
4581
4582         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4583         dev_priv->ips.fstart = fstart;
4584
4585         dev_priv->ips.max_delay = fstart;
4586         dev_priv->ips.min_delay = fmin;
4587         dev_priv->ips.cur_delay = fstart;
4588
4589         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4590                          fmax, fmin, fstart);
4591
4592         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4593
4594         /*
4595          * Interrupts will be enabled in ironlake_irq_postinstall
4596          */
4597
4598         I915_WRITE(VIDSTART, vstart);
4599         POSTING_READ(VIDSTART);
4600
4601         rgvmodectl |= MEMMODE_SWMODE_EN;
4602         I915_WRITE(MEMMODECTL, rgvmodectl);
4603
4604         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4605                 DRM_ERROR("stuck trying to change perf mode\n");
4606         mdelay(1);
4607
4608         ironlake_set_drps(dev_priv, fstart);
4609
4610         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4611                 I915_READ(DDREC) + I915_READ(CSIEC);
4612         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4613         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4614         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4615
4616         spin_unlock_irq(&mchdev_lock);
4617 }
4618
4619 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4620 {
4621         u16 rgvswctl;
4622
4623         spin_lock_irq(&mchdev_lock);
4624
4625         rgvswctl = I915_READ16(MEMSWCTL);
4626
4627         /* Ack interrupts, disable EFC interrupt */
4628         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4629         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4630         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4631         I915_WRITE(DEIIR, DE_PCU_EVENT);
4632         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4633
4634         /* Go back to the starting frequency */
4635         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4636         mdelay(1);
4637         rgvswctl |= MEMCTL_CMD_STS;
4638         I915_WRITE(MEMSWCTL, rgvswctl);
4639         mdelay(1);
4640
4641         spin_unlock_irq(&mchdev_lock);
4642 }
4643
4644 /* There's a funny hw issue where the hw returns all 0 when reading from
4645  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4646  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4647  * all limits and the gpu stuck at whatever frequency it is at atm).
4648  */
4649 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4650 {
4651         u32 limits;
4652
4653         /* Only set the down limit when we've reached the lowest level to avoid
4654          * getting more interrupts, otherwise leave this clear. This prevents a
4655          * race in the hw when coming out of rc6: There's a tiny window where
4656          * the hw runs at the minimal clock before selecting the desired
4657          * frequency, if the down threshold expires in that window we will not
4658          * receive a down interrupt. */
4659         if (IS_GEN9(dev_priv)) {
4660                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4661                 if (val <= dev_priv->rps.min_freq_softlimit)
4662                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4663         } else {
4664                 limits = dev_priv->rps.max_freq_softlimit << 24;
4665                 if (val <= dev_priv->rps.min_freq_softlimit)
4666                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4667         }
4668
4669         return limits;
4670 }
4671
4672 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4673 {
4674         int new_power;
4675         u32 threshold_up = 0, threshold_down = 0; /* in % */
4676         u32 ei_up = 0, ei_down = 0;
4677
4678         new_power = dev_priv->rps.power;
4679         switch (dev_priv->rps.power) {
4680         case LOW_POWER:
4681                 if (val > dev_priv->rps.efficient_freq + 1 &&
4682                     val > dev_priv->rps.cur_freq)
4683                         new_power = BETWEEN;
4684                 break;
4685
4686         case BETWEEN:
4687                 if (val <= dev_priv->rps.efficient_freq &&
4688                     val < dev_priv->rps.cur_freq)
4689                         new_power = LOW_POWER;
4690                 else if (val >= dev_priv->rps.rp0_freq &&
4691                          val > dev_priv->rps.cur_freq)
4692                         new_power = HIGH_POWER;
4693                 break;
4694
4695         case HIGH_POWER:
4696                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4697                     val < dev_priv->rps.cur_freq)
4698                         new_power = BETWEEN;
4699                 break;
4700         }
4701         /* Max/min bins are special */
4702         if (val <= dev_priv->rps.min_freq_softlimit)
4703                 new_power = LOW_POWER;
4704         if (val >= dev_priv->rps.max_freq_softlimit)
4705                 new_power = HIGH_POWER;
4706         if (new_power == dev_priv->rps.power)
4707                 return;
4708
4709         /* Note the units here are not exactly 1us, but 1280ns. */
4710         switch (new_power) {
4711         case LOW_POWER:
4712                 /* Upclock if more than 95% busy over 16ms */
4713                 ei_up = 16000;
4714                 threshold_up = 95;
4715
4716                 /* Downclock if less than 85% busy over 32ms */
4717                 ei_down = 32000;
4718                 threshold_down = 85;
4719                 break;
4720
4721         case BETWEEN:
4722                 /* Upclock if more than 90% busy over 13ms */
4723                 ei_up = 13000;
4724                 threshold_up = 90;
4725
4726                 /* Downclock if less than 75% busy over 32ms */
4727                 ei_down = 32000;
4728                 threshold_down = 75;
4729                 break;
4730
4731         case HIGH_POWER:
4732                 /* Upclock if more than 85% busy over 10ms */
4733                 ei_up = 10000;
4734                 threshold_up = 85;
4735
4736                 /* Downclock if less than 60% busy over 32ms */
4737                 ei_down = 32000;
4738                 threshold_down = 60;
4739                 break;
4740         }
4741
4742         I915_WRITE(GEN6_RP_UP_EI,
4743                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4744         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4745                    GT_INTERVAL_FROM_US(dev_priv,
4746                                        ei_up * threshold_up / 100));
4747
4748         I915_WRITE(GEN6_RP_DOWN_EI,
4749                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4750         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4751                    GT_INTERVAL_FROM_US(dev_priv,
4752                                        ei_down * threshold_down / 100));
4753
4754         I915_WRITE(GEN6_RP_CONTROL,
4755                    GEN6_RP_MEDIA_TURBO |
4756                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4757                    GEN6_RP_MEDIA_IS_GFX |
4758                    GEN6_RP_ENABLE |
4759                    GEN6_RP_UP_BUSY_AVG |
4760                    GEN6_RP_DOWN_IDLE_AVG);
4761
4762         dev_priv->rps.power = new_power;
4763         dev_priv->rps.up_threshold = threshold_up;
4764         dev_priv->rps.down_threshold = threshold_down;
4765         dev_priv->rps.last_adj = 0;
4766 }
4767
4768 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4769 {
4770         u32 mask = 0;
4771
4772         if (val > dev_priv->rps.min_freq_softlimit)
4773                 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4774         if (val < dev_priv->rps.max_freq_softlimit)
4775                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4776
4777         mask &= dev_priv->pm_rps_events;
4778
4779         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4780 }
4781
4782 /* gen6_set_rps is called to update the frequency request, but should also be
4783  * called when the range (min_delay and max_delay) is modified so that we can
4784  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4785 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4786 {
4787         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4788         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4789                 return;
4790
4791         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4792         WARN_ON(val > dev_priv->rps.max_freq);
4793         WARN_ON(val < dev_priv->rps.min_freq);
4794
4795         /* min/max delay may still have been modified so be sure to
4796          * write the limits value.
4797          */
4798         if (val != dev_priv->rps.cur_freq) {
4799                 gen6_set_rps_thresholds(dev_priv, val);
4800
4801                 if (IS_GEN9(dev_priv))
4802                         I915_WRITE(GEN6_RPNSWREQ,
4803                                    GEN9_FREQUENCY(val));
4804                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4805                         I915_WRITE(GEN6_RPNSWREQ,
4806                                    HSW_FREQUENCY(val));
4807                 else
4808                         I915_WRITE(GEN6_RPNSWREQ,
4809                                    GEN6_FREQUENCY(val) |
4810                                    GEN6_OFFSET(0) |
4811                                    GEN6_AGGRESSIVE_TURBO);
4812         }
4813
4814         /* Make sure we continue to get interrupts
4815          * until we hit the minimum or maximum frequencies.
4816          */
4817         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4818         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4819
4820         POSTING_READ(GEN6_RPNSWREQ);
4821
4822         dev_priv->rps.cur_freq = val;
4823         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4824 }
4825
4826 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
4827 {
4828         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4829         WARN_ON(val > dev_priv->rps.max_freq);
4830         WARN_ON(val < dev_priv->rps.min_freq);
4831
4832         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
4833                       "Odd GPU freq value\n"))
4834                 val &= ~1;
4835
4836         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4837
4838         if (val != dev_priv->rps.cur_freq) {
4839                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4840                 if (!IS_CHERRYVIEW(dev_priv))
4841                         gen6_set_rps_thresholds(dev_priv, val);
4842         }
4843
4844         dev_priv->rps.cur_freq = val;
4845         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4846 }
4847
4848 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4849  *
4850  * * If Gfx is Idle, then
4851  * 1. Forcewake Media well.
4852  * 2. Request idle freq.
4853  * 3. Release Forcewake of Media well.
4854 */
4855 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4856 {
4857         u32 val = dev_priv->rps.idle_freq;
4858
4859         if (dev_priv->rps.cur_freq <= val)
4860                 return;
4861
4862         /* Wake up the media well, as that takes a lot less
4863          * power than the Render well. */
4864         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4865         valleyview_set_rps(dev_priv, val);
4866         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4867 }
4868
4869 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4870 {
4871         mutex_lock(&dev_priv->rps.hw_lock);
4872         if (dev_priv->rps.enabled) {
4873                 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4874                         gen6_rps_reset_ei(dev_priv);
4875                 I915_WRITE(GEN6_PMINTRMSK,
4876                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4877
4878                 gen6_enable_rps_interrupts(dev_priv);
4879
4880                 /* Ensure we start at the user's desired frequency */
4881                 intel_set_rps(dev_priv,
4882                               clamp(dev_priv->rps.cur_freq,
4883                                     dev_priv->rps.min_freq_softlimit,
4884                                     dev_priv->rps.max_freq_softlimit));
4885         }
4886         mutex_unlock(&dev_priv->rps.hw_lock);
4887 }
4888
4889 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4890 {
4891         /* Flush our bottom-half so that it does not race with us
4892          * setting the idle frequency and so that it is bounded by
4893          * our rpm wakeref. And then disable the interrupts to stop any
4894          * futher RPS reclocking whilst we are asleep.
4895          */
4896         gen6_disable_rps_interrupts(dev_priv);
4897
4898         mutex_lock(&dev_priv->rps.hw_lock);
4899         if (dev_priv->rps.enabled) {
4900                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4901                         vlv_set_rps_idle(dev_priv);
4902                 else
4903                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
4904                 dev_priv->rps.last_adj = 0;
4905                 I915_WRITE(GEN6_PMINTRMSK,
4906                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4907         }
4908         mutex_unlock(&dev_priv->rps.hw_lock);
4909
4910         spin_lock(&dev_priv->rps.client_lock);
4911         while (!list_empty(&dev_priv->rps.clients))
4912                 list_del_init(dev_priv->rps.clients.next);
4913         spin_unlock(&dev_priv->rps.client_lock);
4914 }
4915
4916 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4917                     struct intel_rps_client *rps,
4918                     unsigned long submitted)
4919 {
4920         /* This is intentionally racy! We peek at the state here, then
4921          * validate inside the RPS worker.
4922          */
4923         if (!(dev_priv->gt.awake &&
4924               dev_priv->rps.enabled &&
4925               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
4926                 return;
4927
4928         /* Force a RPS boost (and don't count it against the client) if
4929          * the GPU is severely congested.
4930          */
4931         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4932                 rps = NULL;
4933
4934         spin_lock(&dev_priv->rps.client_lock);
4935         if (rps == NULL || list_empty(&rps->link)) {
4936                 spin_lock_irq(&dev_priv->irq_lock);
4937                 if (dev_priv->rps.interrupts_enabled) {
4938                         dev_priv->rps.client_boost = true;
4939                         schedule_work(&dev_priv->rps.work);
4940                 }
4941                 spin_unlock_irq(&dev_priv->irq_lock);
4942
4943                 if (rps != NULL) {
4944                         list_add(&rps->link, &dev_priv->rps.clients);
4945                         rps->boosts++;
4946                 } else
4947                         dev_priv->rps.boosts++;
4948         }
4949         spin_unlock(&dev_priv->rps.client_lock);
4950 }
4951
4952 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
4953 {
4954         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4955                 valleyview_set_rps(dev_priv, val);
4956         else
4957                 gen6_set_rps(dev_priv, val);
4958 }
4959
4960 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
4961 {
4962         I915_WRITE(GEN6_RC_CONTROL, 0);
4963         I915_WRITE(GEN9_PG_ENABLE, 0);
4964 }
4965
4966 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
4967 {
4968         I915_WRITE(GEN6_RP_CONTROL, 0);
4969 }
4970
4971 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
4972 {
4973         I915_WRITE(GEN6_RC_CONTROL, 0);
4974         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4975         I915_WRITE(GEN6_RP_CONTROL, 0);
4976 }
4977
4978 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
4979 {
4980         I915_WRITE(GEN6_RC_CONTROL, 0);
4981 }
4982
4983 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
4984 {
4985         /* we're doing forcewake before Disabling RC6,
4986          * This what the BIOS expects when going into suspend */
4987         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4988
4989         I915_WRITE(GEN6_RC_CONTROL, 0);
4990
4991         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4992 }
4993
4994 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
4995 {
4996         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4997                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4998                         mode = GEN6_RC_CTL_RC6_ENABLE;
4999                 else
5000                         mode = 0;
5001         }
5002         if (HAS_RC6p(dev_priv))
5003                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5004                                  "RC6 %s RC6p %s RC6pp %s\n",
5005                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5006                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5007                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5008
5009         else
5010                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5011                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5012 }
5013
5014 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5015 {
5016         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5017         bool enable_rc6 = true;
5018         unsigned long rc6_ctx_base;
5019         u32 rc_ctl;
5020         int rc_sw_target;
5021
5022         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5023         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5024                        RC_SW_TARGET_STATE_SHIFT;
5025         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5026                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5027                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5028                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5029                          rc_sw_target);
5030
5031         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5032                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5033                 enable_rc6 = false;
5034         }
5035
5036         /*
5037          * The exact context size is not known for BXT, so assume a page size
5038          * for this check.
5039          */
5040         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5041         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5042               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5043                                         ggtt->stolen_reserved_size))) {
5044                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5045                 enable_rc6 = false;
5046         }
5047
5048         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5049               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5050               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5051               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5052                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5053                 enable_rc6 = false;
5054         }
5055
5056         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5057             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5058             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5059                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5060                 enable_rc6 = false;
5061         }
5062
5063         if (!I915_READ(GEN6_GFXPAUSE)) {
5064                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5065                 enable_rc6 = false;
5066         }
5067
5068         if (!I915_READ(GEN8_MISC_CTRL0)) {
5069                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5070                 enable_rc6 = false;
5071         }
5072
5073         return enable_rc6;
5074 }
5075
5076 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5077 {
5078         /* No RC6 before Ironlake and code is gone for ilk. */
5079         if (INTEL_INFO(dev_priv)->gen < 6)
5080                 return 0;
5081
5082         if (!enable_rc6)
5083                 return 0;
5084
5085         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5086                 DRM_INFO("RC6 disabled by BIOS\n");
5087                 return 0;
5088         }
5089
5090         /* Respect the kernel parameter if it is set */
5091         if (enable_rc6 >= 0) {
5092                 int mask;
5093
5094                 if (HAS_RC6p(dev_priv))
5095                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5096                                INTEL_RC6pp_ENABLE;
5097                 else
5098                         mask = INTEL_RC6_ENABLE;
5099
5100                 if ((enable_rc6 & mask) != enable_rc6)
5101                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5102                                          "(requested %d, valid %d)\n",
5103                                          enable_rc6 & mask, enable_rc6, mask);
5104
5105                 return enable_rc6 & mask;
5106         }
5107
5108         if (IS_IVYBRIDGE(dev_priv))
5109                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5110
5111         return INTEL_RC6_ENABLE;
5112 }
5113
5114 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5115 {
5116         /* All of these values are in units of 50MHz */
5117
5118         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5119         if (IS_BROXTON(dev_priv)) {
5120                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5121                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5122                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5123                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5124         } else {
5125                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5126                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5127                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5128                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5129         }
5130         /* hw_max = RP0 until we check for overclocking */
5131         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5132
5133         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5134         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5135             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5136                 u32 ddcc_status = 0;
5137
5138                 if (sandybridge_pcode_read(dev_priv,
5139                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5140                                            &ddcc_status) == 0)
5141                         dev_priv->rps.efficient_freq =
5142                                 clamp_t(u8,
5143                                         ((ddcc_status >> 8) & 0xff),
5144                                         dev_priv->rps.min_freq,
5145                                         dev_priv->rps.max_freq);
5146         }
5147
5148         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5149                 /* Store the frequency values in 16.66 MHZ units, which is
5150                  * the natural hardware unit for SKL
5151                  */
5152                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5153                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5154                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5155                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5156                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5157         }
5158 }
5159
5160 static void reset_rps(struct drm_i915_private *dev_priv,
5161                       void (*set)(struct drm_i915_private *, u8))
5162 {
5163         u8 freq = dev_priv->rps.cur_freq;
5164
5165         /* force a reset */
5166         dev_priv->rps.power = -1;
5167         dev_priv->rps.cur_freq = -1;
5168
5169         set(dev_priv, freq);
5170 }
5171
5172 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5173 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5174 {
5175         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5176
5177         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5178         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5179                 /*
5180                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5181                  * clear out the Control register just to avoid inconsitency
5182                  * with debugfs interface, which will show  Turbo as enabled
5183                  * only and that is not expected by the User after adding the
5184                  * WaGsvDisableTurbo. Apart from this there is no problem even
5185                  * if the Turbo is left enabled in the Control register, as the
5186                  * Up/Down interrupts would remain masked.
5187                  */
5188                 gen9_disable_rps(dev_priv);
5189                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5190                 return;
5191         }
5192
5193         /* Program defaults and thresholds for RPS*/
5194         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5195                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5196
5197         /* 1 second timeout*/
5198         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5199                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5200
5201         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5202
5203         /* Leaning on the below call to gen6_set_rps to program/setup the
5204          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5205          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5206         reset_rps(dev_priv, gen6_set_rps);
5207
5208         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5209 }
5210
5211 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5212 {
5213         struct intel_engine_cs *engine;
5214         uint32_t rc6_mask = 0;
5215
5216         /* 1a: Software RC state - RC0 */
5217         I915_WRITE(GEN6_RC_STATE, 0);
5218
5219         /* 1b: Get forcewake during program sequence. Although the driver
5220          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5221         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5222
5223         /* 2a: Disable RC states. */
5224         I915_WRITE(GEN6_RC_CONTROL, 0);
5225
5226         /* 2b: Program RC6 thresholds.*/
5227
5228         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5229         if (IS_SKYLAKE(dev_priv))
5230                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5231         else
5232                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5233         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5234         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5235         for_each_engine(engine, dev_priv)
5236                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5237
5238         if (HAS_GUC(dev_priv))
5239                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5240
5241         I915_WRITE(GEN6_RC_SLEEP, 0);
5242
5243         /* 2c: Program Coarse Power Gating Policies. */
5244         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5245         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5246
5247         /* 3a: Enable RC6 */
5248         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5249                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5250         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5251         /* WaRsUseTimeoutMode */
5252         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5253             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5254                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5255                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5256                            GEN7_RC_CTL_TO_MODE |
5257                            rc6_mask);
5258         } else {
5259                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5260                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5261                            GEN6_RC_CTL_EI_MODE(1) |
5262                            rc6_mask);
5263         }
5264
5265         /*
5266          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5267          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5268          */
5269         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5270                 I915_WRITE(GEN9_PG_ENABLE, 0);
5271         else
5272                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5273                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5274
5275         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5276 }
5277
5278 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5279 {
5280         struct intel_engine_cs *engine;
5281         uint32_t rc6_mask = 0;
5282
5283         /* 1a: Software RC state - RC0 */
5284         I915_WRITE(GEN6_RC_STATE, 0);
5285
5286         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5287          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5288         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5289
5290         /* 2a: Disable RC states. */
5291         I915_WRITE(GEN6_RC_CONTROL, 0);
5292
5293         /* 2b: Program RC6 thresholds.*/
5294         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5295         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5296         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5297         for_each_engine(engine, dev_priv)
5298                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5299         I915_WRITE(GEN6_RC_SLEEP, 0);
5300         if (IS_BROADWELL(dev_priv))
5301                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5302         else
5303                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5304
5305         /* 3: Enable RC6 */
5306         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5307                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5308         intel_print_rc6_info(dev_priv, rc6_mask);
5309         if (IS_BROADWELL(dev_priv))
5310                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5311                                 GEN7_RC_CTL_TO_MODE |
5312                                 rc6_mask);
5313         else
5314                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5315                                 GEN6_RC_CTL_EI_MODE(1) |
5316                                 rc6_mask);
5317
5318         /* 4 Program defaults and thresholds for RPS*/
5319         I915_WRITE(GEN6_RPNSWREQ,
5320                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5321         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5322                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5323         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5324         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5325
5326         /* Docs recommend 900MHz, and 300 MHz respectively */
5327         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5328                    dev_priv->rps.max_freq_softlimit << 24 |
5329                    dev_priv->rps.min_freq_softlimit << 16);
5330
5331         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5332         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5333         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5334         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5335
5336         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5337
5338         /* 5: Enable RPS */
5339         I915_WRITE(GEN6_RP_CONTROL,
5340                    GEN6_RP_MEDIA_TURBO |
5341                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5342                    GEN6_RP_MEDIA_IS_GFX |
5343                    GEN6_RP_ENABLE |
5344                    GEN6_RP_UP_BUSY_AVG |
5345                    GEN6_RP_DOWN_IDLE_AVG);
5346
5347         /* 6: Ring frequency + overclocking (our driver does this later */
5348
5349         reset_rps(dev_priv, gen6_set_rps);
5350
5351         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5352 }
5353
5354 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5355 {
5356         struct intel_engine_cs *engine;
5357         u32 rc6vids, rc6_mask = 0;
5358         u32 gtfifodbg;
5359         int rc6_mode;
5360         int ret;
5361
5362         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5363
5364         /* Here begins a magic sequence of register writes to enable
5365          * auto-downclocking.
5366          *
5367          * Perhaps there might be some value in exposing these to
5368          * userspace...
5369          */
5370         I915_WRITE(GEN6_RC_STATE, 0);
5371
5372         /* Clear the DBG now so we don't confuse earlier errors */
5373         gtfifodbg = I915_READ(GTFIFODBG);
5374         if (gtfifodbg) {
5375                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5376                 I915_WRITE(GTFIFODBG, gtfifodbg);
5377         }
5378
5379         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5380
5381         /* disable the counters and set deterministic thresholds */
5382         I915_WRITE(GEN6_RC_CONTROL, 0);
5383
5384         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5385         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5386         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5387         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5388         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5389
5390         for_each_engine(engine, dev_priv)
5391                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5392
5393         I915_WRITE(GEN6_RC_SLEEP, 0);
5394         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5395         if (IS_IVYBRIDGE(dev_priv))
5396                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5397         else
5398                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5399         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5400         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5401
5402         /* Check if we are enabling RC6 */
5403         rc6_mode = intel_enable_rc6();
5404         if (rc6_mode & INTEL_RC6_ENABLE)
5405                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5406
5407         /* We don't use those on Haswell */
5408         if (!IS_HASWELL(dev_priv)) {
5409                 if (rc6_mode & INTEL_RC6p_ENABLE)
5410                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5411
5412                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5413                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5414         }
5415
5416         intel_print_rc6_info(dev_priv, rc6_mask);
5417
5418         I915_WRITE(GEN6_RC_CONTROL,
5419                    rc6_mask |
5420                    GEN6_RC_CTL_EI_MODE(1) |
5421                    GEN6_RC_CTL_HW_ENABLE);
5422
5423         /* Power down if completely idle for over 50ms */
5424         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5425         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5426
5427         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5428         if (ret)
5429                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5430
5431         reset_rps(dev_priv, gen6_set_rps);
5432
5433         rc6vids = 0;
5434         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5435         if (IS_GEN6(dev_priv) && ret) {
5436                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5437         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5438                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5439                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5440                 rc6vids &= 0xffff00;
5441                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5442                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5443                 if (ret)
5444                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5445         }
5446
5447         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5448 }
5449
5450 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5451 {
5452         int min_freq = 15;
5453         unsigned int gpu_freq;
5454         unsigned int max_ia_freq, min_ring_freq;
5455         unsigned int max_gpu_freq, min_gpu_freq;
5456         int scaling_factor = 180;
5457         struct cpufreq_policy *policy;
5458
5459         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5460
5461         policy = cpufreq_cpu_get(0);
5462         if (policy) {
5463                 max_ia_freq = policy->cpuinfo.max_freq;
5464                 cpufreq_cpu_put(policy);
5465         } else {
5466                 /*
5467                  * Default to measured freq if none found, PCU will ensure we
5468                  * don't go over
5469                  */
5470                 max_ia_freq = tsc_khz;
5471         }
5472
5473         /* Convert from kHz to MHz */
5474         max_ia_freq /= 1000;
5475
5476         min_ring_freq = I915_READ(DCLK) & 0xf;
5477         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5478         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5479
5480         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5481                 /* Convert GT frequency to 50 HZ units */
5482                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5483                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5484         } else {
5485                 min_gpu_freq = dev_priv->rps.min_freq;
5486                 max_gpu_freq = dev_priv->rps.max_freq;
5487         }
5488
5489         /*
5490          * For each potential GPU frequency, load a ring frequency we'd like
5491          * to use for memory access.  We do this by specifying the IA frequency
5492          * the PCU should use as a reference to determine the ring frequency.
5493          */
5494         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5495                 int diff = max_gpu_freq - gpu_freq;
5496                 unsigned int ia_freq = 0, ring_freq = 0;
5497
5498                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5499                         /*
5500                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5501                          * No floor required for ring frequency on SKL.
5502                          */
5503                         ring_freq = gpu_freq;
5504                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5505                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5506                         ring_freq = max(min_ring_freq, gpu_freq);
5507                 } else if (IS_HASWELL(dev_priv)) {
5508                         ring_freq = mult_frac(gpu_freq, 5, 4);
5509                         ring_freq = max(min_ring_freq, ring_freq);
5510                         /* leave ia_freq as the default, chosen by cpufreq */
5511                 } else {
5512                         /* On older processors, there is no separate ring
5513                          * clock domain, so in order to boost the bandwidth
5514                          * of the ring, we need to upclock the CPU (ia_freq).
5515                          *
5516                          * For GPU frequencies less than 750MHz,
5517                          * just use the lowest ring freq.
5518                          */
5519                         if (gpu_freq < min_freq)
5520                                 ia_freq = 800;
5521                         else
5522                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5523                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5524                 }
5525
5526                 sandybridge_pcode_write(dev_priv,
5527                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5528                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5529                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5530                                         gpu_freq);
5531         }
5532 }
5533
5534 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5535 {
5536         u32 val, rp0;
5537
5538         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5539
5540         switch (INTEL_INFO(dev_priv)->eu_total) {
5541         case 8:
5542                 /* (2 * 4) config */
5543                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5544                 break;
5545         case 12:
5546                 /* (2 * 6) config */
5547                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5548                 break;
5549         case 16:
5550                 /* (2 * 8) config */
5551         default:
5552                 /* Setting (2 * 8) Min RP0 for any other combination */
5553                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5554                 break;
5555         }
5556
5557         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5558
5559         return rp0;
5560 }
5561
5562 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5563 {
5564         u32 val, rpe;
5565
5566         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5567         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5568
5569         return rpe;
5570 }
5571
5572 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5573 {
5574         u32 val, rp1;
5575
5576         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5577         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5578
5579         return rp1;
5580 }
5581
5582 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5583 {
5584         u32 val, rp1;
5585
5586         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5587
5588         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5589
5590         return rp1;
5591 }
5592
5593 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5594 {
5595         u32 val, rp0;
5596
5597         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5598
5599         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5600         /* Clamp to max */
5601         rp0 = min_t(u32, rp0, 0xea);
5602
5603         return rp0;
5604 }
5605
5606 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5607 {
5608         u32 val, rpe;
5609
5610         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5611         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5612         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5613         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5614
5615         return rpe;
5616 }
5617
5618 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5619 {
5620         u32 val;
5621
5622         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5623         /*
5624          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5625          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5626          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5627          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5628          * to make sure it matches what Punit accepts.
5629          */
5630         return max_t(u32, val, 0xc0);
5631 }
5632
5633 /* Check that the pctx buffer wasn't move under us. */
5634 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5635 {
5636         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5637
5638         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5639                              dev_priv->vlv_pctx->stolen->start);
5640 }
5641
5642
5643 /* Check that the pcbr address is not empty. */
5644 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5645 {
5646         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5647
5648         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5649 }
5650
5651 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5652 {
5653         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5654         unsigned long pctx_paddr, paddr;
5655         u32 pcbr;
5656         int pctx_size = 32*1024;
5657
5658         pcbr = I915_READ(VLV_PCBR);
5659         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5660                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5661                 paddr = (dev_priv->mm.stolen_base +
5662                          (ggtt->stolen_size - pctx_size));
5663
5664                 pctx_paddr = (paddr & (~4095));
5665                 I915_WRITE(VLV_PCBR, pctx_paddr);
5666         }
5667
5668         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5669 }
5670
5671 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5672 {
5673         struct drm_i915_gem_object *pctx;
5674         unsigned long pctx_paddr;
5675         u32 pcbr;
5676         int pctx_size = 24*1024;
5677
5678         mutex_lock(&dev_priv->drm.struct_mutex);
5679
5680         pcbr = I915_READ(VLV_PCBR);
5681         if (pcbr) {
5682                 /* BIOS set it up already, grab the pre-alloc'd space */
5683                 int pcbr_offset;
5684
5685                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5686                 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5687                                                                       pcbr_offset,
5688                                                                       I915_GTT_OFFSET_NONE,
5689                                                                       pctx_size);
5690                 goto out;
5691         }
5692
5693         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5694
5695         /*
5696          * From the Gunit register HAS:
5697          * The Gfx driver is expected to program this register and ensure
5698          * proper allocation within Gfx stolen memory.  For example, this
5699          * register should be programmed such than the PCBR range does not
5700          * overlap with other ranges, such as the frame buffer, protected
5701          * memory, or any other relevant ranges.
5702          */
5703         pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5704         if (!pctx) {
5705                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5706                 goto out;
5707         }
5708
5709         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5710         I915_WRITE(VLV_PCBR, pctx_paddr);
5711
5712 out:
5713         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5714         dev_priv->vlv_pctx = pctx;
5715         mutex_unlock(&dev_priv->drm.struct_mutex);
5716 }
5717
5718 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5719 {
5720         if (WARN_ON(!dev_priv->vlv_pctx))
5721                 return;
5722
5723         i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5724         dev_priv->vlv_pctx = NULL;
5725 }
5726
5727 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5728 {
5729         dev_priv->rps.gpll_ref_freq =
5730                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5731                                   CCK_GPLL_CLOCK_CONTROL,
5732                                   dev_priv->czclk_freq);
5733
5734         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5735                          dev_priv->rps.gpll_ref_freq);
5736 }
5737
5738 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5739 {
5740         u32 val;
5741
5742         valleyview_setup_pctx(dev_priv);
5743
5744         vlv_init_gpll_ref_freq(dev_priv);
5745
5746         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5747         switch ((val >> 6) & 3) {
5748         case 0:
5749         case 1:
5750                 dev_priv->mem_freq = 800;
5751                 break;
5752         case 2:
5753                 dev_priv->mem_freq = 1066;
5754                 break;
5755         case 3:
5756                 dev_priv->mem_freq = 1333;
5757                 break;
5758         }
5759         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5760
5761         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5762         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5763         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5764                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5765                          dev_priv->rps.max_freq);
5766
5767         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5768         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5769                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5770                          dev_priv->rps.efficient_freq);
5771
5772         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5773         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5774                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5775                          dev_priv->rps.rp1_freq);
5776
5777         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5778         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5779                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5780                          dev_priv->rps.min_freq);
5781 }
5782
5783 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5784 {
5785         u32 val;
5786
5787         cherryview_setup_pctx(dev_priv);
5788
5789         vlv_init_gpll_ref_freq(dev_priv);
5790
5791         mutex_lock(&dev_priv->sb_lock);
5792         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5793         mutex_unlock(&dev_priv->sb_lock);
5794
5795         switch ((val >> 2) & 0x7) {
5796         case 3:
5797                 dev_priv->mem_freq = 2000;
5798                 break;
5799         default:
5800                 dev_priv->mem_freq = 1600;
5801                 break;
5802         }
5803         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5804
5805         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5806         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5807         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5808                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5809                          dev_priv->rps.max_freq);
5810
5811         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5812         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5813                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5814                          dev_priv->rps.efficient_freq);
5815
5816         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5817         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5818                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5819                          dev_priv->rps.rp1_freq);
5820
5821         /* PUnit validated range is only [RPe, RP0] */
5822         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5823         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5824                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5825                          dev_priv->rps.min_freq);
5826
5827         WARN_ONCE((dev_priv->rps.max_freq |
5828                    dev_priv->rps.efficient_freq |
5829                    dev_priv->rps.rp1_freq |
5830                    dev_priv->rps.min_freq) & 1,
5831                   "Odd GPU freq values\n");
5832 }
5833
5834 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
5835 {
5836         valleyview_cleanup_pctx(dev_priv);
5837 }
5838
5839 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
5840 {
5841         struct intel_engine_cs *engine;
5842         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5843
5844         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5845
5846         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
5847                                              GT_FIFO_FREE_ENTRIES_CHV);
5848         if (gtfifodbg) {
5849                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5850                                  gtfifodbg);
5851                 I915_WRITE(GTFIFODBG, gtfifodbg);
5852         }
5853
5854         cherryview_check_pctx(dev_priv);
5855
5856         /* 1a & 1b: Get forcewake during program sequence. Although the driver
5857          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5858         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5859
5860         /*  Disable RC states. */
5861         I915_WRITE(GEN6_RC_CONTROL, 0);
5862
5863         /* 2a: Program RC6 thresholds.*/
5864         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5865         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5866         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5867
5868         for_each_engine(engine, dev_priv)
5869                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5870         I915_WRITE(GEN6_RC_SLEEP, 0);
5871
5872         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5873         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5874
5875         /* allows RC6 residency counter to work */
5876         I915_WRITE(VLV_COUNTER_CONTROL,
5877                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5878                                       VLV_MEDIA_RC6_COUNT_EN |
5879                                       VLV_RENDER_RC6_COUNT_EN));
5880
5881         /* For now we assume BIOS is allocating and populating the PCBR  */
5882         pcbr = I915_READ(VLV_PCBR);
5883
5884         /* 3: Enable RC6 */
5885         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
5886             (pcbr >> VLV_PCBR_ADDR_SHIFT))
5887                 rc6_mode = GEN7_RC_CTL_TO_MODE;
5888
5889         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5890
5891         /* 4 Program defaults and thresholds for RPS*/
5892         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5893         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5894         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5895         I915_WRITE(GEN6_RP_UP_EI, 66000);
5896         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5897
5898         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5899
5900         /* 5: Enable RPS */
5901         I915_WRITE(GEN6_RP_CONTROL,
5902                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5903                    GEN6_RP_MEDIA_IS_GFX |
5904                    GEN6_RP_ENABLE |
5905                    GEN6_RP_UP_BUSY_AVG |
5906                    GEN6_RP_DOWN_IDLE_AVG);
5907
5908         /* Setting Fixed Bias */
5909         val = VLV_OVERRIDE_EN |
5910                   VLV_SOC_TDP_EN |
5911                   CHV_BIAS_CPU_50_SOC_50;
5912         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5913
5914         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5915
5916         /* RPS code assumes GPLL is used */
5917         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5918
5919         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5920         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5921
5922         reset_rps(dev_priv, valleyview_set_rps);
5923
5924         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5925 }
5926
5927 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
5928 {
5929         struct intel_engine_cs *engine;
5930         u32 gtfifodbg, val, rc6_mode = 0;
5931
5932         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5933
5934         valleyview_check_pctx(dev_priv);
5935
5936         gtfifodbg = I915_READ(GTFIFODBG);
5937         if (gtfifodbg) {
5938                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5939                                  gtfifodbg);
5940                 I915_WRITE(GTFIFODBG, gtfifodbg);
5941         }
5942
5943         /* If VLV, Forcewake all wells, else re-direct to regular path */
5944         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5945
5946         /*  Disable RC states. */
5947         I915_WRITE(GEN6_RC_CONTROL, 0);
5948
5949         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5950         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5951         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5952         I915_WRITE(GEN6_RP_UP_EI, 66000);
5953         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5954
5955         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5956
5957         I915_WRITE(GEN6_RP_CONTROL,
5958                    GEN6_RP_MEDIA_TURBO |
5959                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5960                    GEN6_RP_MEDIA_IS_GFX |
5961                    GEN6_RP_ENABLE |
5962                    GEN6_RP_UP_BUSY_AVG |
5963                    GEN6_RP_DOWN_IDLE_CONT);
5964
5965         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5966         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5967         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5968
5969         for_each_engine(engine, dev_priv)
5970                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5971
5972         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5973
5974         /* allows RC6 residency counter to work */
5975         I915_WRITE(VLV_COUNTER_CONTROL,
5976                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5977                                       VLV_RENDER_RC0_COUNT_EN |
5978                                       VLV_MEDIA_RC6_COUNT_EN |
5979                                       VLV_RENDER_RC6_COUNT_EN));
5980
5981         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5982                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5983
5984         intel_print_rc6_info(dev_priv, rc6_mode);
5985
5986         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5987
5988         /* Setting Fixed Bias */
5989         val = VLV_OVERRIDE_EN |
5990                   VLV_SOC_TDP_EN |
5991                   VLV_BIAS_CPU_125_SOC_875;
5992         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5993
5994         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5995
5996         /* RPS code assumes GPLL is used */
5997         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5998
5999         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6000         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6001
6002         reset_rps(dev_priv, valleyview_set_rps);
6003
6004         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6005 }
6006
6007 static unsigned long intel_pxfreq(u32 vidfreq)
6008 {
6009         unsigned long freq;
6010         int div = (vidfreq & 0x3f0000) >> 16;
6011         int post = (vidfreq & 0x3000) >> 12;
6012         int pre = (vidfreq & 0x7);
6013
6014         if (!pre)
6015                 return 0;
6016
6017         freq = ((div * 133333) / ((1<<post) * pre));
6018
6019         return freq;
6020 }
6021
6022 static const struct cparams {
6023         u16 i;
6024         u16 t;
6025         u16 m;
6026         u16 c;
6027 } cparams[] = {
6028         { 1, 1333, 301, 28664 },
6029         { 1, 1066, 294, 24460 },
6030         { 1, 800, 294, 25192 },
6031         { 0, 1333, 276, 27605 },
6032         { 0, 1066, 276, 27605 },
6033         { 0, 800, 231, 23784 },
6034 };
6035
6036 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6037 {
6038         u64 total_count, diff, ret;
6039         u32 count1, count2, count3, m = 0, c = 0;
6040         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6041         int i;
6042
6043         assert_spin_locked(&mchdev_lock);
6044
6045         diff1 = now - dev_priv->ips.last_time1;
6046
6047         /* Prevent division-by-zero if we are asking too fast.
6048          * Also, we don't get interesting results if we are polling
6049          * faster than once in 10ms, so just return the saved value
6050          * in such cases.
6051          */
6052         if (diff1 <= 10)
6053                 return dev_priv->ips.chipset_power;
6054
6055         count1 = I915_READ(DMIEC);
6056         count2 = I915_READ(DDREC);
6057         count3 = I915_READ(CSIEC);
6058
6059         total_count = count1 + count2 + count3;
6060
6061         /* FIXME: handle per-counter overflow */
6062         if (total_count < dev_priv->ips.last_count1) {
6063                 diff = ~0UL - dev_priv->ips.last_count1;
6064                 diff += total_count;
6065         } else {
6066                 diff = total_count - dev_priv->ips.last_count1;
6067         }
6068
6069         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6070                 if (cparams[i].i == dev_priv->ips.c_m &&
6071                     cparams[i].t == dev_priv->ips.r_t) {
6072                         m = cparams[i].m;
6073                         c = cparams[i].c;
6074                         break;
6075                 }
6076         }
6077
6078         diff = div_u64(diff, diff1);
6079         ret = ((m * diff) + c);
6080         ret = div_u64(ret, 10);
6081
6082         dev_priv->ips.last_count1 = total_count;
6083         dev_priv->ips.last_time1 = now;
6084
6085         dev_priv->ips.chipset_power = ret;
6086
6087         return ret;
6088 }
6089
6090 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6091 {
6092         unsigned long val;
6093
6094         if (INTEL_INFO(dev_priv)->gen != 5)
6095                 return 0;
6096
6097         spin_lock_irq(&mchdev_lock);
6098
6099         val = __i915_chipset_val(dev_priv);
6100
6101         spin_unlock_irq(&mchdev_lock);
6102
6103         return val;
6104 }
6105
6106 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6107 {
6108         unsigned long m, x, b;
6109         u32 tsfs;
6110
6111         tsfs = I915_READ(TSFS);
6112
6113         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6114         x = I915_READ8(TR1);
6115
6116         b = tsfs & TSFS_INTR_MASK;
6117
6118         return ((m * x) / 127) - b;
6119 }
6120
6121 static int _pxvid_to_vd(u8 pxvid)
6122 {
6123         if (pxvid == 0)
6124                 return 0;
6125
6126         if (pxvid >= 8 && pxvid < 31)
6127                 pxvid = 31;
6128
6129         return (pxvid + 2) * 125;
6130 }
6131
6132 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6133 {
6134         const int vd = _pxvid_to_vd(pxvid);
6135         const int vm = vd - 1125;
6136
6137         if (INTEL_INFO(dev_priv)->is_mobile)
6138                 return vm > 0 ? vm : 0;
6139
6140         return vd;
6141 }
6142
6143 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6144 {
6145         u64 now, diff, diffms;
6146         u32 count;
6147
6148         assert_spin_locked(&mchdev_lock);
6149
6150         now = ktime_get_raw_ns();
6151         diffms = now - dev_priv->ips.last_time2;
6152         do_div(diffms, NSEC_PER_MSEC);
6153
6154         /* Don't divide by 0 */
6155         if (!diffms)
6156                 return;
6157
6158         count = I915_READ(GFXEC);
6159
6160         if (count < dev_priv->ips.last_count2) {
6161                 diff = ~0UL - dev_priv->ips.last_count2;
6162                 diff += count;
6163         } else {
6164                 diff = count - dev_priv->ips.last_count2;
6165         }
6166
6167         dev_priv->ips.last_count2 = count;
6168         dev_priv->ips.last_time2 = now;
6169
6170         /* More magic constants... */
6171         diff = diff * 1181;
6172         diff = div_u64(diff, diffms * 10);
6173         dev_priv->ips.gfx_power = diff;
6174 }
6175
6176 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6177 {
6178         if (INTEL_INFO(dev_priv)->gen != 5)
6179                 return;
6180
6181         spin_lock_irq(&mchdev_lock);
6182
6183         __i915_update_gfx_val(dev_priv);
6184
6185         spin_unlock_irq(&mchdev_lock);
6186 }
6187
6188 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6189 {
6190         unsigned long t, corr, state1, corr2, state2;
6191         u32 pxvid, ext_v;
6192
6193         assert_spin_locked(&mchdev_lock);
6194
6195         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6196         pxvid = (pxvid >> 24) & 0x7f;
6197         ext_v = pvid_to_extvid(dev_priv, pxvid);
6198
6199         state1 = ext_v;
6200
6201         t = i915_mch_val(dev_priv);
6202
6203         /* Revel in the empirically derived constants */
6204
6205         /* Correction factor in 1/100000 units */
6206         if (t > 80)
6207                 corr = ((t * 2349) + 135940);
6208         else if (t >= 50)
6209                 corr = ((t * 964) + 29317);
6210         else /* < 50 */
6211                 corr = ((t * 301) + 1004);
6212
6213         corr = corr * ((150142 * state1) / 10000 - 78642);
6214         corr /= 100000;
6215         corr2 = (corr * dev_priv->ips.corr);
6216
6217         state2 = (corr2 * state1) / 10000;
6218         state2 /= 100; /* convert to mW */
6219
6220         __i915_update_gfx_val(dev_priv);
6221
6222         return dev_priv->ips.gfx_power + state2;
6223 }
6224
6225 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6226 {
6227         unsigned long val;
6228
6229         if (INTEL_INFO(dev_priv)->gen != 5)
6230                 return 0;
6231
6232         spin_lock_irq(&mchdev_lock);
6233
6234         val = __i915_gfx_val(dev_priv);
6235
6236         spin_unlock_irq(&mchdev_lock);
6237
6238         return val;
6239 }
6240
6241 /**
6242  * i915_read_mch_val - return value for IPS use
6243  *
6244  * Calculate and return a value for the IPS driver to use when deciding whether
6245  * we have thermal and power headroom to increase CPU or GPU power budget.
6246  */
6247 unsigned long i915_read_mch_val(void)
6248 {
6249         struct drm_i915_private *dev_priv;
6250         unsigned long chipset_val, graphics_val, ret = 0;
6251
6252         spin_lock_irq(&mchdev_lock);
6253         if (!i915_mch_dev)
6254                 goto out_unlock;
6255         dev_priv = i915_mch_dev;
6256
6257         chipset_val = __i915_chipset_val(dev_priv);
6258         graphics_val = __i915_gfx_val(dev_priv);
6259
6260         ret = chipset_val + graphics_val;
6261
6262 out_unlock:
6263         spin_unlock_irq(&mchdev_lock);
6264
6265         return ret;
6266 }
6267 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6268
6269 /**
6270  * i915_gpu_raise - raise GPU frequency limit
6271  *
6272  * Raise the limit; IPS indicates we have thermal headroom.
6273  */
6274 bool i915_gpu_raise(void)
6275 {
6276         struct drm_i915_private *dev_priv;
6277         bool ret = true;
6278
6279         spin_lock_irq(&mchdev_lock);
6280         if (!i915_mch_dev) {
6281                 ret = false;
6282                 goto out_unlock;
6283         }
6284         dev_priv = i915_mch_dev;
6285
6286         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6287                 dev_priv->ips.max_delay--;
6288
6289 out_unlock:
6290         spin_unlock_irq(&mchdev_lock);
6291
6292         return ret;
6293 }
6294 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6295
6296 /**
6297  * i915_gpu_lower - lower GPU frequency limit
6298  *
6299  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6300  * frequency maximum.
6301  */
6302 bool i915_gpu_lower(void)
6303 {
6304         struct drm_i915_private *dev_priv;
6305         bool ret = true;
6306
6307         spin_lock_irq(&mchdev_lock);
6308         if (!i915_mch_dev) {
6309                 ret = false;
6310                 goto out_unlock;
6311         }
6312         dev_priv = i915_mch_dev;
6313
6314         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6315                 dev_priv->ips.max_delay++;
6316
6317 out_unlock:
6318         spin_unlock_irq(&mchdev_lock);
6319
6320         return ret;
6321 }
6322 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6323
6324 /**
6325  * i915_gpu_busy - indicate GPU business to IPS
6326  *
6327  * Tell the IPS driver whether or not the GPU is busy.
6328  */
6329 bool i915_gpu_busy(void)
6330 {
6331         bool ret = false;
6332
6333         spin_lock_irq(&mchdev_lock);
6334         if (i915_mch_dev)
6335                 ret = i915_mch_dev->gt.awake;
6336         spin_unlock_irq(&mchdev_lock);
6337
6338         return ret;
6339 }
6340 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6341
6342 /**
6343  * i915_gpu_turbo_disable - disable graphics turbo
6344  *
6345  * Disable graphics turbo by resetting the max frequency and setting the
6346  * current frequency to the default.
6347  */
6348 bool i915_gpu_turbo_disable(void)
6349 {
6350         struct drm_i915_private *dev_priv;
6351         bool ret = true;
6352
6353         spin_lock_irq(&mchdev_lock);
6354         if (!i915_mch_dev) {
6355                 ret = false;
6356                 goto out_unlock;
6357         }
6358         dev_priv = i915_mch_dev;
6359
6360         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6361
6362         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6363                 ret = false;
6364
6365 out_unlock:
6366         spin_unlock_irq(&mchdev_lock);
6367
6368         return ret;
6369 }
6370 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6371
6372 /**
6373  * Tells the intel_ips driver that the i915 driver is now loaded, if
6374  * IPS got loaded first.
6375  *
6376  * This awkward dance is so that neither module has to depend on the
6377  * other in order for IPS to do the appropriate communication of
6378  * GPU turbo limits to i915.
6379  */
6380 static void
6381 ips_ping_for_i915_load(void)
6382 {
6383         void (*link)(void);
6384
6385         link = symbol_get(ips_link_to_i915_driver);
6386         if (link) {
6387                 link();
6388                 symbol_put(ips_link_to_i915_driver);
6389         }
6390 }
6391
6392 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6393 {
6394         /* We only register the i915 ips part with intel-ips once everything is
6395          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6396         spin_lock_irq(&mchdev_lock);
6397         i915_mch_dev = dev_priv;
6398         spin_unlock_irq(&mchdev_lock);
6399
6400         ips_ping_for_i915_load();
6401 }
6402
6403 void intel_gpu_ips_teardown(void)
6404 {
6405         spin_lock_irq(&mchdev_lock);
6406         i915_mch_dev = NULL;
6407         spin_unlock_irq(&mchdev_lock);
6408 }
6409
6410 static void intel_init_emon(struct drm_i915_private *dev_priv)
6411 {
6412         u32 lcfuse;
6413         u8 pxw[16];
6414         int i;
6415
6416         /* Disable to program */
6417         I915_WRITE(ECR, 0);
6418         POSTING_READ(ECR);
6419
6420         /* Program energy weights for various events */
6421         I915_WRITE(SDEW, 0x15040d00);
6422         I915_WRITE(CSIEW0, 0x007f0000);
6423         I915_WRITE(CSIEW1, 0x1e220004);
6424         I915_WRITE(CSIEW2, 0x04000004);
6425
6426         for (i = 0; i < 5; i++)
6427                 I915_WRITE(PEW(i), 0);
6428         for (i = 0; i < 3; i++)
6429                 I915_WRITE(DEW(i), 0);
6430
6431         /* Program P-state weights to account for frequency power adjustment */
6432         for (i = 0; i < 16; i++) {
6433                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6434                 unsigned long freq = intel_pxfreq(pxvidfreq);
6435                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6436                         PXVFREQ_PX_SHIFT;
6437                 unsigned long val;
6438
6439                 val = vid * vid;
6440                 val *= (freq / 1000);
6441                 val *= 255;
6442                 val /= (127*127*900);
6443                 if (val > 0xff)
6444                         DRM_ERROR("bad pxval: %ld\n", val);
6445                 pxw[i] = val;
6446         }
6447         /* Render standby states get 0 weight */
6448         pxw[14] = 0;
6449         pxw[15] = 0;
6450
6451         for (i = 0; i < 4; i++) {
6452                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6453                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6454                 I915_WRITE(PXW(i), val);
6455         }
6456
6457         /* Adjust magic regs to magic values (more experimental results) */
6458         I915_WRITE(OGW0, 0);
6459         I915_WRITE(OGW1, 0);
6460         I915_WRITE(EG0, 0x00007f00);
6461         I915_WRITE(EG1, 0x0000000e);
6462         I915_WRITE(EG2, 0x000e0000);
6463         I915_WRITE(EG3, 0x68000300);
6464         I915_WRITE(EG4, 0x42000000);
6465         I915_WRITE(EG5, 0x00140031);
6466         I915_WRITE(EG6, 0);
6467         I915_WRITE(EG7, 0);
6468
6469         for (i = 0; i < 8; i++)
6470                 I915_WRITE(PXWL(i), 0);
6471
6472         /* Enable PMON + select events */
6473         I915_WRITE(ECR, 0x80000019);
6474
6475         lcfuse = I915_READ(LCFUSE02);
6476
6477         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6478 }
6479
6480 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6481 {
6482         /*
6483          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6484          * requirement.
6485          */
6486         if (!i915.enable_rc6) {
6487                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6488                 intel_runtime_pm_get(dev_priv);
6489         }
6490
6491         mutex_lock(&dev_priv->rps.hw_lock);
6492
6493         /* Initialize RPS limits (for userspace) */
6494         if (IS_CHERRYVIEW(dev_priv))
6495                 cherryview_init_gt_powersave(dev_priv);
6496         else if (IS_VALLEYVIEW(dev_priv))
6497                 valleyview_init_gt_powersave(dev_priv);
6498         else if (INTEL_GEN(dev_priv) >= 6)
6499                 gen6_init_rps_frequencies(dev_priv);
6500
6501         /* Derive initial user preferences/limits from the hardware limits */
6502         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6503         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6504
6505         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6506         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6507
6508         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6509                 dev_priv->rps.min_freq_softlimit =
6510                         max_t(int,
6511                               dev_priv->rps.efficient_freq,
6512                               intel_freq_opcode(dev_priv, 450));
6513
6514         /* After setting max-softlimit, find the overclock max freq */
6515         if (IS_GEN6(dev_priv) ||
6516             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6517                 u32 params = 0;
6518
6519                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6520                 if (params & BIT(31)) { /* OC supported */
6521                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6522                                          (dev_priv->rps.max_freq & 0xff) * 50,
6523                                          (params & 0xff) * 50);
6524                         dev_priv->rps.max_freq = params & 0xff;
6525                 }
6526         }
6527
6528         /* Finally allow us to boost to max by default */
6529         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6530
6531         mutex_unlock(&dev_priv->rps.hw_lock);
6532
6533         intel_autoenable_gt_powersave(dev_priv);
6534 }
6535
6536 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6537 {
6538         if (IS_VALLEYVIEW(dev_priv))
6539                 valleyview_cleanup_gt_powersave(dev_priv);
6540
6541         if (!i915.enable_rc6)
6542                 intel_runtime_pm_put(dev_priv);
6543 }
6544
6545 /**
6546  * intel_suspend_gt_powersave - suspend PM work and helper threads
6547  * @dev_priv: i915 device
6548  *
6549  * We don't want to disable RC6 or other features here, we just want
6550  * to make sure any work we've queued has finished and won't bother
6551  * us while we're suspended.
6552  */
6553 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6554 {
6555         if (INTEL_GEN(dev_priv) < 6)
6556                 return;
6557
6558         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6559                 intel_runtime_pm_put(dev_priv);
6560
6561         /* gen6_rps_idle() will be called later to disable interrupts */
6562 }
6563
6564 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6565 {
6566         dev_priv->rps.enabled = true; /* force disabling */
6567         intel_disable_gt_powersave(dev_priv);
6568
6569         gen6_reset_rps_interrupts(dev_priv);
6570 }
6571
6572 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6573 {
6574         if (!READ_ONCE(dev_priv->rps.enabled))
6575                 return;
6576
6577         mutex_lock(&dev_priv->rps.hw_lock);
6578
6579         if (INTEL_GEN(dev_priv) >= 9) {
6580                 gen9_disable_rc6(dev_priv);
6581                 gen9_disable_rps(dev_priv);
6582         } else if (IS_CHERRYVIEW(dev_priv)) {
6583                 cherryview_disable_rps(dev_priv);
6584         } else if (IS_VALLEYVIEW(dev_priv)) {
6585                 valleyview_disable_rps(dev_priv);
6586         } else if (INTEL_GEN(dev_priv) >= 6) {
6587                 gen6_disable_rps(dev_priv);
6588         }  else if (IS_IRONLAKE_M(dev_priv)) {
6589                 ironlake_disable_drps(dev_priv);
6590         }
6591
6592         dev_priv->rps.enabled = false;
6593         mutex_unlock(&dev_priv->rps.hw_lock);
6594 }
6595
6596 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6597 {
6598         /* We shouldn't be disabling as we submit, so this should be less
6599          * racy than it appears!
6600          */
6601         if (READ_ONCE(dev_priv->rps.enabled))
6602                 return;
6603
6604         /* Powersaving is controlled by the host when inside a VM */
6605         if (intel_vgpu_active(dev_priv))
6606                 return;
6607
6608         mutex_lock(&dev_priv->rps.hw_lock);
6609
6610         if (IS_CHERRYVIEW(dev_priv)) {
6611                 cherryview_enable_rps(dev_priv);
6612         } else if (IS_VALLEYVIEW(dev_priv)) {
6613                 valleyview_enable_rps(dev_priv);
6614         } else if (INTEL_GEN(dev_priv) >= 9) {
6615                 gen9_enable_rc6(dev_priv);
6616                 gen9_enable_rps(dev_priv);
6617                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6618                         gen6_update_ring_freq(dev_priv);
6619         } else if (IS_BROADWELL(dev_priv)) {
6620                 gen8_enable_rps(dev_priv);
6621                 gen6_update_ring_freq(dev_priv);
6622         } else if (INTEL_GEN(dev_priv) >= 6) {
6623                 gen6_enable_rps(dev_priv);
6624                 gen6_update_ring_freq(dev_priv);
6625         } else if (IS_IRONLAKE_M(dev_priv)) {
6626                 ironlake_enable_drps(dev_priv);
6627                 intel_init_emon(dev_priv);
6628         }
6629
6630         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6631         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6632
6633         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6634         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6635
6636         dev_priv->rps.enabled = true;
6637         mutex_unlock(&dev_priv->rps.hw_lock);
6638 }
6639
6640 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6641 {
6642         struct drm_i915_private *dev_priv =
6643                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6644         struct intel_engine_cs *rcs;
6645         struct drm_i915_gem_request *req;
6646
6647         if (READ_ONCE(dev_priv->rps.enabled))
6648                 goto out;
6649
6650         rcs = &dev_priv->engine[RCS];
6651         if (rcs->last_context)
6652                 goto out;
6653
6654         if (!rcs->init_context)
6655                 goto out;
6656
6657         mutex_lock(&dev_priv->drm.struct_mutex);
6658
6659         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6660         if (IS_ERR(req))
6661                 goto unlock;
6662
6663         if (!i915.enable_execlists && i915_switch_context(req) == 0)
6664                 rcs->init_context(req);
6665
6666         /* Mark the device busy, calling intel_enable_gt_powersave() */
6667         i915_add_request_no_flush(req);
6668
6669 unlock:
6670         mutex_unlock(&dev_priv->drm.struct_mutex);
6671 out:
6672         intel_runtime_pm_put(dev_priv);
6673 }
6674
6675 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6676 {
6677         if (READ_ONCE(dev_priv->rps.enabled))
6678                 return;
6679
6680         if (IS_IRONLAKE_M(dev_priv)) {
6681                 ironlake_enable_drps(dev_priv);
6682                 mutex_lock(&dev_priv->drm.struct_mutex);
6683                 intel_init_emon(dev_priv);
6684                 mutex_unlock(&dev_priv->drm.struct_mutex);
6685         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6686                 /*
6687                  * PCU communication is slow and this doesn't need to be
6688                  * done at any specific time, so do this out of our fast path
6689                  * to make resume and init faster.
6690                  *
6691                  * We depend on the HW RC6 power context save/restore
6692                  * mechanism when entering D3 through runtime PM suspend. So
6693                  * disable RPM until RPS/RC6 is properly setup. We can only
6694                  * get here via the driver load/system resume/runtime resume
6695                  * paths, so the _noresume version is enough (and in case of
6696                  * runtime resume it's necessary).
6697                  */
6698                 if (queue_delayed_work(dev_priv->wq,
6699                                        &dev_priv->rps.autoenable_work,
6700                                        round_jiffies_up_relative(HZ)))
6701                         intel_runtime_pm_get_noresume(dev_priv);
6702         }
6703 }
6704
6705 static void ibx_init_clock_gating(struct drm_device *dev)
6706 {
6707         struct drm_i915_private *dev_priv = to_i915(dev);
6708
6709         /*
6710          * On Ibex Peak and Cougar Point, we need to disable clock
6711          * gating for the panel power sequencer or it will fail to
6712          * start up when no ports are active.
6713          */
6714         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6715 }
6716
6717 static void g4x_disable_trickle_feed(struct drm_device *dev)
6718 {
6719         struct drm_i915_private *dev_priv = to_i915(dev);
6720         enum pipe pipe;
6721
6722         for_each_pipe(dev_priv, pipe) {
6723                 I915_WRITE(DSPCNTR(pipe),
6724                            I915_READ(DSPCNTR(pipe)) |
6725                            DISPPLANE_TRICKLE_FEED_DISABLE);
6726
6727                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6728                 POSTING_READ(DSPSURF(pipe));
6729         }
6730 }
6731
6732 static void ilk_init_lp_watermarks(struct drm_device *dev)
6733 {
6734         struct drm_i915_private *dev_priv = to_i915(dev);
6735
6736         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6737         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6738         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6739
6740         /*
6741          * Don't touch WM1S_LP_EN here.
6742          * Doing so could cause underruns.
6743          */
6744 }
6745
6746 static void ironlake_init_clock_gating(struct drm_device *dev)
6747 {
6748         struct drm_i915_private *dev_priv = to_i915(dev);
6749         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6750
6751         /*
6752          * Required for FBC
6753          * WaFbcDisableDpfcClockGating:ilk
6754          */
6755         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6756                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6757                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6758
6759         I915_WRITE(PCH_3DCGDIS0,
6760                    MARIUNIT_CLOCK_GATE_DISABLE |
6761                    SVSMUNIT_CLOCK_GATE_DISABLE);
6762         I915_WRITE(PCH_3DCGDIS1,
6763                    VFMUNIT_CLOCK_GATE_DISABLE);
6764
6765         /*
6766          * According to the spec the following bits should be set in
6767          * order to enable memory self-refresh
6768          * The bit 22/21 of 0x42004
6769          * The bit 5 of 0x42020
6770          * The bit 15 of 0x45000
6771          */
6772         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6773                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6774                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6775         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6776         I915_WRITE(DISP_ARB_CTL,
6777                    (I915_READ(DISP_ARB_CTL) |
6778                     DISP_FBC_WM_DIS));
6779
6780         ilk_init_lp_watermarks(dev);
6781
6782         /*
6783          * Based on the document from hardware guys the following bits
6784          * should be set unconditionally in order to enable FBC.
6785          * The bit 22 of 0x42000
6786          * The bit 22 of 0x42004
6787          * The bit 7,8,9 of 0x42020.
6788          */
6789         if (IS_IRONLAKE_M(dev)) {
6790                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6791                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6792                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6793                            ILK_FBCQ_DIS);
6794                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6795                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6796                            ILK_DPARB_GATE);
6797         }
6798
6799         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6800
6801         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6802                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6803                    ILK_ELPIN_409_SELECT);
6804         I915_WRITE(_3D_CHICKEN2,
6805                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6806                    _3D_CHICKEN2_WM_READ_PIPELINED);
6807
6808         /* WaDisableRenderCachePipelinedFlush:ilk */
6809         I915_WRITE(CACHE_MODE_0,
6810                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6811
6812         /* WaDisable_RenderCache_OperationalFlush:ilk */
6813         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6814
6815         g4x_disable_trickle_feed(dev);
6816
6817         ibx_init_clock_gating(dev);
6818 }
6819
6820 static void cpt_init_clock_gating(struct drm_device *dev)
6821 {
6822         struct drm_i915_private *dev_priv = to_i915(dev);
6823         int pipe;
6824         uint32_t val;
6825
6826         /*
6827          * On Ibex Peak and Cougar Point, we need to disable clock
6828          * gating for the panel power sequencer or it will fail to
6829          * start up when no ports are active.
6830          */
6831         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6832                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6833                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
6834         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6835                    DPLS_EDP_PPS_FIX_DIS);
6836         /* The below fixes the weird display corruption, a few pixels shifted
6837          * downward, on (only) LVDS of some HP laptops with IVY.
6838          */
6839         for_each_pipe(dev_priv, pipe) {
6840                 val = I915_READ(TRANS_CHICKEN2(pipe));
6841                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6842                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6843                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6844                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6845                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6846                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6847                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6848                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6849         }
6850         /* WADP0ClockGatingDisable */
6851         for_each_pipe(dev_priv, pipe) {
6852                 I915_WRITE(TRANS_CHICKEN1(pipe),
6853                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6854         }
6855 }
6856
6857 static void gen6_check_mch_setup(struct drm_device *dev)
6858 {
6859         struct drm_i915_private *dev_priv = to_i915(dev);
6860         uint32_t tmp;
6861
6862         tmp = I915_READ(MCH_SSKPD);
6863         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6864                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6865                               tmp);
6866 }
6867
6868 static void gen6_init_clock_gating(struct drm_device *dev)
6869 {
6870         struct drm_i915_private *dev_priv = to_i915(dev);
6871         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6872
6873         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6874
6875         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6876                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6877                    ILK_ELPIN_409_SELECT);
6878
6879         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6880         I915_WRITE(_3D_CHICKEN,
6881                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6882
6883         /* WaDisable_RenderCache_OperationalFlush:snb */
6884         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6885
6886         /*
6887          * BSpec recoomends 8x4 when MSAA is used,
6888          * however in practice 16x4 seems fastest.
6889          *
6890          * Note that PS/WM thread counts depend on the WIZ hashing
6891          * disable bit, which we don't touch here, but it's good
6892          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6893          */
6894         I915_WRITE(GEN6_GT_MODE,
6895                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6896
6897         ilk_init_lp_watermarks(dev);
6898
6899         I915_WRITE(CACHE_MODE_0,
6900                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6901
6902         I915_WRITE(GEN6_UCGCTL1,
6903                    I915_READ(GEN6_UCGCTL1) |
6904                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6905                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6906
6907         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6908          * gating disable must be set.  Failure to set it results in
6909          * flickering pixels due to Z write ordering failures after
6910          * some amount of runtime in the Mesa "fire" demo, and Unigine
6911          * Sanctuary and Tropics, and apparently anything else with
6912          * alpha test or pixel discard.
6913          *
6914          * According to the spec, bit 11 (RCCUNIT) must also be set,
6915          * but we didn't debug actual testcases to find it out.
6916          *
6917          * WaDisableRCCUnitClockGating:snb
6918          * WaDisableRCPBUnitClockGating:snb
6919          */
6920         I915_WRITE(GEN6_UCGCTL2,
6921                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6922                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6923
6924         /* WaStripsFansDisableFastClipPerformanceFix:snb */
6925         I915_WRITE(_3D_CHICKEN3,
6926                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6927
6928         /*
6929          * Bspec says:
6930          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6931          * 3DSTATE_SF number of SF output attributes is more than 16."
6932          */
6933         I915_WRITE(_3D_CHICKEN3,
6934                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6935
6936         /*
6937          * According to the spec the following bits should be
6938          * set in order to enable memory self-refresh and fbc:
6939          * The bit21 and bit22 of 0x42000
6940          * The bit21 and bit22 of 0x42004
6941          * The bit5 and bit7 of 0x42020
6942          * The bit14 of 0x70180
6943          * The bit14 of 0x71180
6944          *
6945          * WaFbcAsynchFlipDisableFbcQueue:snb
6946          */
6947         I915_WRITE(ILK_DISPLAY_CHICKEN1,
6948                    I915_READ(ILK_DISPLAY_CHICKEN1) |
6949                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6950         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6951                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6952                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6953         I915_WRITE(ILK_DSPCLK_GATE_D,
6954                    I915_READ(ILK_DSPCLK_GATE_D) |
6955                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6956                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6957
6958         g4x_disable_trickle_feed(dev);
6959
6960         cpt_init_clock_gating(dev);
6961
6962         gen6_check_mch_setup(dev);
6963 }
6964
6965 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6966 {
6967         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6968
6969         /*
6970          * WaVSThreadDispatchOverride:ivb,vlv
6971          *
6972          * This actually overrides the dispatch
6973          * mode for all thread types.
6974          */
6975         reg &= ~GEN7_FF_SCHED_MASK;
6976         reg |= GEN7_FF_TS_SCHED_HW;
6977         reg |= GEN7_FF_VS_SCHED_HW;
6978         reg |= GEN7_FF_DS_SCHED_HW;
6979
6980         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6981 }
6982
6983 static void lpt_init_clock_gating(struct drm_device *dev)
6984 {
6985         struct drm_i915_private *dev_priv = to_i915(dev);
6986
6987         /*
6988          * TODO: this bit should only be enabled when really needed, then
6989          * disabled when not needed anymore in order to save power.
6990          */
6991         if (HAS_PCH_LPT_LP(dev))
6992                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6993                            I915_READ(SOUTH_DSPCLK_GATE_D) |
6994                            PCH_LP_PARTITION_LEVEL_DISABLE);
6995
6996         /* WADPOClockGatingDisable:hsw */
6997         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6998                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6999                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7000 }
7001
7002 static void lpt_suspend_hw(struct drm_device *dev)
7003 {
7004         struct drm_i915_private *dev_priv = to_i915(dev);
7005
7006         if (HAS_PCH_LPT_LP(dev)) {
7007                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7008
7009                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7010                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7011         }
7012 }
7013
7014 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7015                                    int general_prio_credits,
7016                                    int high_prio_credits)
7017 {
7018         u32 misccpctl;
7019
7020         /* WaTempDisableDOPClkGating:bdw */
7021         misccpctl = I915_READ(GEN7_MISCCPCTL);
7022         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7023
7024         I915_WRITE(GEN8_L3SQCREG1,
7025                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7026                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7027
7028         /*
7029          * Wait at least 100 clocks before re-enabling clock gating.
7030          * See the definition of L3SQCREG1 in BSpec.
7031          */
7032         POSTING_READ(GEN8_L3SQCREG1);
7033         udelay(1);
7034         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7035 }
7036
7037 static void kabylake_init_clock_gating(struct drm_device *dev)
7038 {
7039         struct drm_i915_private *dev_priv = dev->dev_private;
7040
7041         gen9_init_clock_gating(dev);
7042
7043         /* WaDisableSDEUnitClockGating:kbl */
7044         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7045                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7046                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7047
7048         /* WaDisableGamClockGating:kbl */
7049         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7050                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7051                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7052
7053         /* WaFbcNukeOnHostModify:kbl */
7054         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7055                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7056 }
7057
7058 static void skylake_init_clock_gating(struct drm_device *dev)
7059 {
7060         struct drm_i915_private *dev_priv = dev->dev_private;
7061
7062         gen9_init_clock_gating(dev);
7063
7064         /* WAC6entrylatency:skl */
7065         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7066                    FBC_LLC_FULLY_OPEN);
7067
7068         /* WaFbcNukeOnHostModify:skl */
7069         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7070                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7071 }
7072
7073 static void broadwell_init_clock_gating(struct drm_device *dev)
7074 {
7075         struct drm_i915_private *dev_priv = to_i915(dev);
7076         enum pipe pipe;
7077
7078         ilk_init_lp_watermarks(dev);
7079
7080         /* WaSwitchSolVfFArbitrationPriority:bdw */
7081         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7082
7083         /* WaPsrDPAMaskVBlankInSRD:bdw */
7084         I915_WRITE(CHICKEN_PAR1_1,
7085                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7086
7087         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7088         for_each_pipe(dev_priv, pipe) {
7089                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7090                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7091                            BDW_DPRS_MASK_VBLANK_SRD);
7092         }
7093
7094         /* WaVSRefCountFullforceMissDisable:bdw */
7095         /* WaDSRefCountFullforceMissDisable:bdw */
7096         I915_WRITE(GEN7_FF_THREAD_MODE,
7097                    I915_READ(GEN7_FF_THREAD_MODE) &
7098                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7099
7100         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7101                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7102
7103         /* WaDisableSDEUnitClockGating:bdw */
7104         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7105                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7106
7107         /* WaProgramL3SqcReg1Default:bdw */
7108         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7109
7110         /*
7111          * WaGttCachingOffByDefault:bdw
7112          * GTT cache may not work with big pages, so if those
7113          * are ever enabled GTT cache may need to be disabled.
7114          */
7115         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7116
7117         /* WaKVMNotificationOnConfigChange:bdw */
7118         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7119                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7120
7121         lpt_init_clock_gating(dev);
7122 }
7123
7124 static void haswell_init_clock_gating(struct drm_device *dev)
7125 {
7126         struct drm_i915_private *dev_priv = to_i915(dev);
7127
7128         ilk_init_lp_watermarks(dev);
7129
7130         /* L3 caching of data atomics doesn't work -- disable it. */
7131         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7132         I915_WRITE(HSW_ROW_CHICKEN3,
7133                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7134
7135         /* This is required by WaCatErrorRejectionIssue:hsw */
7136         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7137                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7138                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7139
7140         /* WaVSRefCountFullforceMissDisable:hsw */
7141         I915_WRITE(GEN7_FF_THREAD_MODE,
7142                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7143
7144         /* WaDisable_RenderCache_OperationalFlush:hsw */
7145         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7146
7147         /* enable HiZ Raw Stall Optimization */
7148         I915_WRITE(CACHE_MODE_0_GEN7,
7149                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7150
7151         /* WaDisable4x2SubspanOptimization:hsw */
7152         I915_WRITE(CACHE_MODE_1,
7153                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7154
7155         /*
7156          * BSpec recommends 8x4 when MSAA is used,
7157          * however in practice 16x4 seems fastest.
7158          *
7159          * Note that PS/WM thread counts depend on the WIZ hashing
7160          * disable bit, which we don't touch here, but it's good
7161          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7162          */
7163         I915_WRITE(GEN7_GT_MODE,
7164                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7165
7166         /* WaSampleCChickenBitEnable:hsw */
7167         I915_WRITE(HALF_SLICE_CHICKEN3,
7168                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7169
7170         /* WaSwitchSolVfFArbitrationPriority:hsw */
7171         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7172
7173         /* WaRsPkgCStateDisplayPMReq:hsw */
7174         I915_WRITE(CHICKEN_PAR1_1,
7175                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7176
7177         lpt_init_clock_gating(dev);
7178 }
7179
7180 static void ivybridge_init_clock_gating(struct drm_device *dev)
7181 {
7182         struct drm_i915_private *dev_priv = to_i915(dev);
7183         uint32_t snpcr;
7184
7185         ilk_init_lp_watermarks(dev);
7186
7187         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7188
7189         /* WaDisableEarlyCull:ivb */
7190         I915_WRITE(_3D_CHICKEN3,
7191                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7192
7193         /* WaDisableBackToBackFlipFix:ivb */
7194         I915_WRITE(IVB_CHICKEN3,
7195                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7196                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7197
7198         /* WaDisablePSDDualDispatchEnable:ivb */
7199         if (IS_IVB_GT1(dev))
7200                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7201                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7202
7203         /* WaDisable_RenderCache_OperationalFlush:ivb */
7204         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7205
7206         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7207         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7208                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7209
7210         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7211         I915_WRITE(GEN7_L3CNTLREG1,
7212                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7213         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7214                    GEN7_WA_L3_CHICKEN_MODE);
7215         if (IS_IVB_GT1(dev))
7216                 I915_WRITE(GEN7_ROW_CHICKEN2,
7217                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7218         else {
7219                 /* must write both registers */
7220                 I915_WRITE(GEN7_ROW_CHICKEN2,
7221                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7222                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7223                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7224         }
7225
7226         /* WaForceL3Serialization:ivb */
7227         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7228                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7229
7230         /*
7231          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7232          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7233          */
7234         I915_WRITE(GEN6_UCGCTL2,
7235                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7236
7237         /* This is required by WaCatErrorRejectionIssue:ivb */
7238         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7239                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7240                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7241
7242         g4x_disable_trickle_feed(dev);
7243
7244         gen7_setup_fixed_func_scheduler(dev_priv);
7245
7246         if (0) { /* causes HiZ corruption on ivb:gt1 */
7247                 /* enable HiZ Raw Stall Optimization */
7248                 I915_WRITE(CACHE_MODE_0_GEN7,
7249                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7250         }
7251
7252         /* WaDisable4x2SubspanOptimization:ivb */
7253         I915_WRITE(CACHE_MODE_1,
7254                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7255
7256         /*
7257          * BSpec recommends 8x4 when MSAA is used,
7258          * however in practice 16x4 seems fastest.
7259          *
7260          * Note that PS/WM thread counts depend on the WIZ hashing
7261          * disable bit, which we don't touch here, but it's good
7262          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7263          */
7264         I915_WRITE(GEN7_GT_MODE,
7265                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7266
7267         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7268         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7269         snpcr |= GEN6_MBC_SNPCR_MED;
7270         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7271
7272         if (!HAS_PCH_NOP(dev))
7273                 cpt_init_clock_gating(dev);
7274
7275         gen6_check_mch_setup(dev);
7276 }
7277
7278 static void valleyview_init_clock_gating(struct drm_device *dev)
7279 {
7280         struct drm_i915_private *dev_priv = to_i915(dev);
7281
7282         /* WaDisableEarlyCull:vlv */
7283         I915_WRITE(_3D_CHICKEN3,
7284                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7285
7286         /* WaDisableBackToBackFlipFix:vlv */
7287         I915_WRITE(IVB_CHICKEN3,
7288                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7289                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7290
7291         /* WaPsdDispatchEnable:vlv */
7292         /* WaDisablePSDDualDispatchEnable:vlv */
7293         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7294                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7295                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7296
7297         /* WaDisable_RenderCache_OperationalFlush:vlv */
7298         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7299
7300         /* WaForceL3Serialization:vlv */
7301         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7302                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7303
7304         /* WaDisableDopClockGating:vlv */
7305         I915_WRITE(GEN7_ROW_CHICKEN2,
7306                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7307
7308         /* This is required by WaCatErrorRejectionIssue:vlv */
7309         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7310                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7311                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7312
7313         gen7_setup_fixed_func_scheduler(dev_priv);
7314
7315         /*
7316          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7317          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7318          */
7319         I915_WRITE(GEN6_UCGCTL2,
7320                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7321
7322         /* WaDisableL3Bank2xClockGate:vlv
7323          * Disabling L3 clock gating- MMIO 940c[25] = 1
7324          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7325         I915_WRITE(GEN7_UCGCTL4,
7326                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7327
7328         /*
7329          * BSpec says this must be set, even though
7330          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7331          */
7332         I915_WRITE(CACHE_MODE_1,
7333                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7334
7335         /*
7336          * BSpec recommends 8x4 when MSAA is used,
7337          * however in practice 16x4 seems fastest.
7338          *
7339          * Note that PS/WM thread counts depend on the WIZ hashing
7340          * disable bit, which we don't touch here, but it's good
7341          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7342          */
7343         I915_WRITE(GEN7_GT_MODE,
7344                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7345
7346         /*
7347          * WaIncreaseL3CreditsForVLVB0:vlv
7348          * This is the hardware default actually.
7349          */
7350         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7351
7352         /*
7353          * WaDisableVLVClockGating_VBIIssue:vlv
7354          * Disable clock gating on th GCFG unit to prevent a delay
7355          * in the reporting of vblank events.
7356          */
7357         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7358 }
7359
7360 static void cherryview_init_clock_gating(struct drm_device *dev)
7361 {
7362         struct drm_i915_private *dev_priv = to_i915(dev);
7363
7364         /* WaVSRefCountFullforceMissDisable:chv */
7365         /* WaDSRefCountFullforceMissDisable:chv */
7366         I915_WRITE(GEN7_FF_THREAD_MODE,
7367                    I915_READ(GEN7_FF_THREAD_MODE) &
7368                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7369
7370         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7371         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7372                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7373
7374         /* WaDisableCSUnitClockGating:chv */
7375         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7376                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7377
7378         /* WaDisableSDEUnitClockGating:chv */
7379         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7380                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7381
7382         /*
7383          * WaProgramL3SqcReg1Default:chv
7384          * See gfxspecs/Related Documents/Performance Guide/
7385          * LSQC Setting Recommendations.
7386          */
7387         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7388
7389         /*
7390          * GTT cache may not work with big pages, so if those
7391          * are ever enabled GTT cache may need to be disabled.
7392          */
7393         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7394 }
7395
7396 static void g4x_init_clock_gating(struct drm_device *dev)
7397 {
7398         struct drm_i915_private *dev_priv = to_i915(dev);
7399         uint32_t dspclk_gate;
7400
7401         I915_WRITE(RENCLK_GATE_D1, 0);
7402         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7403                    GS_UNIT_CLOCK_GATE_DISABLE |
7404                    CL_UNIT_CLOCK_GATE_DISABLE);
7405         I915_WRITE(RAMCLK_GATE_D, 0);
7406         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7407                 OVRUNIT_CLOCK_GATE_DISABLE |
7408                 OVCUNIT_CLOCK_GATE_DISABLE;
7409         if (IS_GM45(dev))
7410                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7411         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7412
7413         /* WaDisableRenderCachePipelinedFlush */
7414         I915_WRITE(CACHE_MODE_0,
7415                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7416
7417         /* WaDisable_RenderCache_OperationalFlush:g4x */
7418         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7419
7420         g4x_disable_trickle_feed(dev);
7421 }
7422
7423 static void crestline_init_clock_gating(struct drm_device *dev)
7424 {
7425         struct drm_i915_private *dev_priv = to_i915(dev);
7426
7427         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7428         I915_WRITE(RENCLK_GATE_D2, 0);
7429         I915_WRITE(DSPCLK_GATE_D, 0);
7430         I915_WRITE(RAMCLK_GATE_D, 0);
7431         I915_WRITE16(DEUC, 0);
7432         I915_WRITE(MI_ARB_STATE,
7433                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7434
7435         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7436         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7437 }
7438
7439 static void broadwater_init_clock_gating(struct drm_device *dev)
7440 {
7441         struct drm_i915_private *dev_priv = to_i915(dev);
7442
7443         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7444                    I965_RCC_CLOCK_GATE_DISABLE |
7445                    I965_RCPB_CLOCK_GATE_DISABLE |
7446                    I965_ISC_CLOCK_GATE_DISABLE |
7447                    I965_FBC_CLOCK_GATE_DISABLE);
7448         I915_WRITE(RENCLK_GATE_D2, 0);
7449         I915_WRITE(MI_ARB_STATE,
7450                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7451
7452         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7453         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7454 }
7455
7456 static void gen3_init_clock_gating(struct drm_device *dev)
7457 {
7458         struct drm_i915_private *dev_priv = to_i915(dev);
7459         u32 dstate = I915_READ(D_STATE);
7460
7461         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7462                 DSTATE_DOT_CLOCK_GATING;
7463         I915_WRITE(D_STATE, dstate);
7464
7465         if (IS_PINEVIEW(dev))
7466                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7467
7468         /* IIR "flip pending" means done if this bit is set */
7469         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7470
7471         /* interrupts should cause a wake up from C3 */
7472         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7473
7474         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7475         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7476
7477         I915_WRITE(MI_ARB_STATE,
7478                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7479 }
7480
7481 static void i85x_init_clock_gating(struct drm_device *dev)
7482 {
7483         struct drm_i915_private *dev_priv = to_i915(dev);
7484
7485         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7486
7487         /* interrupts should cause a wake up from C3 */
7488         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7489                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7490
7491         I915_WRITE(MEM_MODE,
7492                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7493 }
7494
7495 static void i830_init_clock_gating(struct drm_device *dev)
7496 {
7497         struct drm_i915_private *dev_priv = to_i915(dev);
7498
7499         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7500
7501         I915_WRITE(MEM_MODE,
7502                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7503                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7504 }
7505
7506 void intel_init_clock_gating(struct drm_device *dev)
7507 {
7508         struct drm_i915_private *dev_priv = to_i915(dev);
7509
7510         dev_priv->display.init_clock_gating(dev);
7511 }
7512
7513 void intel_suspend_hw(struct drm_device *dev)
7514 {
7515         if (HAS_PCH_LPT(dev))
7516                 lpt_suspend_hw(dev);
7517 }
7518
7519 static void nop_init_clock_gating(struct drm_device *dev)
7520 {
7521         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7522 }
7523
7524 /**
7525  * intel_init_clock_gating_hooks - setup the clock gating hooks
7526  * @dev_priv: device private
7527  *
7528  * Setup the hooks that configure which clocks of a given platform can be
7529  * gated and also apply various GT and display specific workarounds for these
7530  * platforms. Note that some GT specific workarounds are applied separately
7531  * when GPU contexts or batchbuffers start their execution.
7532  */
7533 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7534 {
7535         if (IS_SKYLAKE(dev_priv))
7536                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7537         else if (IS_KABYLAKE(dev_priv))
7538                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7539         else if (IS_BROXTON(dev_priv))
7540                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7541         else if (IS_BROADWELL(dev_priv))
7542                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7543         else if (IS_CHERRYVIEW(dev_priv))
7544                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7545         else if (IS_HASWELL(dev_priv))
7546                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7547         else if (IS_IVYBRIDGE(dev_priv))
7548                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7549         else if (IS_VALLEYVIEW(dev_priv))
7550                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7551         else if (IS_GEN6(dev_priv))
7552                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7553         else if (IS_GEN5(dev_priv))
7554                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7555         else if (IS_G4X(dev_priv))
7556                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7557         else if (IS_CRESTLINE(dev_priv))
7558                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7559         else if (IS_BROADWATER(dev_priv))
7560                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7561         else if (IS_GEN3(dev_priv))
7562                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7563         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7564                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7565         else if (IS_GEN2(dev_priv))
7566                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7567         else {
7568                 MISSING_CASE(INTEL_DEVID(dev_priv));
7569                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7570         }
7571 }
7572
7573 /* Set up chip specific power management-related functions */
7574 void intel_init_pm(struct drm_device *dev)
7575 {
7576         struct drm_i915_private *dev_priv = to_i915(dev);
7577
7578         intel_fbc_init(dev_priv);
7579
7580         /* For cxsr */
7581         if (IS_PINEVIEW(dev))
7582                 i915_pineview_get_mem_freq(dev);
7583         else if (IS_GEN5(dev))
7584                 i915_ironlake_get_mem_freq(dev);
7585
7586         /* For FIFO watermark updates */
7587         if (INTEL_INFO(dev)->gen >= 9) {
7588                 skl_setup_wm_latency(dev);
7589                 dev_priv->display.update_wm = skl_update_wm;
7590                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7591         } else if (HAS_PCH_SPLIT(dev)) {
7592                 ilk_setup_wm_latency(dev);
7593
7594                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7595                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7596                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7597                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7598                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7599                         dev_priv->display.compute_intermediate_wm =
7600                                 ilk_compute_intermediate_wm;
7601                         dev_priv->display.initial_watermarks =
7602                                 ilk_initial_watermarks;
7603                         dev_priv->display.optimize_watermarks =
7604                                 ilk_optimize_watermarks;
7605                 } else {
7606                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7607                                       "Disable CxSR\n");
7608                 }
7609         } else if (IS_CHERRYVIEW(dev)) {
7610                 vlv_setup_wm_latency(dev);
7611                 dev_priv->display.update_wm = vlv_update_wm;
7612         } else if (IS_VALLEYVIEW(dev)) {
7613                 vlv_setup_wm_latency(dev);
7614                 dev_priv->display.update_wm = vlv_update_wm;
7615         } else if (IS_PINEVIEW(dev)) {
7616                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7617                                             dev_priv->is_ddr3,
7618                                             dev_priv->fsb_freq,
7619                                             dev_priv->mem_freq)) {
7620                         DRM_INFO("failed to find known CxSR latency "
7621                                  "(found ddr%s fsb freq %d, mem freq %d), "
7622                                  "disabling CxSR\n",
7623                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7624                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7625                         /* Disable CxSR and never update its watermark again */
7626                         intel_set_memory_cxsr(dev_priv, false);
7627                         dev_priv->display.update_wm = NULL;
7628                 } else
7629                         dev_priv->display.update_wm = pineview_update_wm;
7630         } else if (IS_G4X(dev)) {
7631                 dev_priv->display.update_wm = g4x_update_wm;
7632         } else if (IS_GEN4(dev)) {
7633                 dev_priv->display.update_wm = i965_update_wm;
7634         } else if (IS_GEN3(dev)) {
7635                 dev_priv->display.update_wm = i9xx_update_wm;
7636                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7637         } else if (IS_GEN2(dev)) {
7638                 if (INTEL_INFO(dev)->num_pipes == 1) {
7639                         dev_priv->display.update_wm = i845_update_wm;
7640                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7641                 } else {
7642                         dev_priv->display.update_wm = i9xx_update_wm;
7643                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7644                 }
7645         } else {
7646                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7647         }
7648 }
7649
7650 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7651 {
7652         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7653
7654         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7655          * use te fw I915_READ variants to reduce the amount of work
7656          * required when reading/writing.
7657          */
7658
7659         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7660                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7661                 return -EAGAIN;
7662         }
7663
7664         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7665         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7666         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7667
7668         if (intel_wait_for_register_fw(dev_priv,
7669                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7670                                        500)) {
7671                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7672                 return -ETIMEDOUT;
7673         }
7674
7675         *val = I915_READ_FW(GEN6_PCODE_DATA);
7676         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7677
7678         return 0;
7679 }
7680
7681 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7682                                u32 mbox, u32 val)
7683 {
7684         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7685
7686         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7687          * use te fw I915_READ variants to reduce the amount of work
7688          * required when reading/writing.
7689          */
7690
7691         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7692                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7693                 return -EAGAIN;
7694         }
7695
7696         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7697         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7698
7699         if (intel_wait_for_register_fw(dev_priv,
7700                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7701                                        500)) {
7702                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7703                 return -ETIMEDOUT;
7704         }
7705
7706         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7707
7708         return 0;
7709 }
7710
7711 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7712 {
7713         /*
7714          * N = val - 0xb7
7715          * Slow = Fast = GPLL ref * N
7716          */
7717         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
7718 }
7719
7720 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7721 {
7722         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
7723 }
7724
7725 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7726 {
7727         /*
7728          * N = val / 2
7729          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
7730          */
7731         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
7732 }
7733
7734 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7735 {
7736         /* CHV needs even values */
7737         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
7738 }
7739
7740 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7741 {
7742         if (IS_GEN9(dev_priv))
7743                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7744                                          GEN9_FREQ_SCALER);
7745         else if (IS_CHERRYVIEW(dev_priv))
7746                 return chv_gpu_freq(dev_priv, val);
7747         else if (IS_VALLEYVIEW(dev_priv))
7748                 return byt_gpu_freq(dev_priv, val);
7749         else
7750                 return val * GT_FREQUENCY_MULTIPLIER;
7751 }
7752
7753 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7754 {
7755         if (IS_GEN9(dev_priv))
7756                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7757                                          GT_FREQUENCY_MULTIPLIER);
7758         else if (IS_CHERRYVIEW(dev_priv))
7759                 return chv_freq_opcode(dev_priv, val);
7760         else if (IS_VALLEYVIEW(dev_priv))
7761                 return byt_freq_opcode(dev_priv, val);
7762         else
7763                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7764 }
7765
7766 struct request_boost {
7767         struct work_struct work;
7768         struct drm_i915_gem_request *req;
7769 };
7770
7771 static void __intel_rps_boost_work(struct work_struct *work)
7772 {
7773         struct request_boost *boost = container_of(work, struct request_boost, work);
7774         struct drm_i915_gem_request *req = boost->req;
7775
7776         if (!i915_gem_request_completed(req))
7777                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
7778
7779         i915_gem_request_put(req);
7780         kfree(boost);
7781 }
7782
7783 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
7784 {
7785         struct request_boost *boost;
7786
7787         if (req == NULL || INTEL_GEN(req->i915) < 6)
7788                 return;
7789
7790         if (i915_gem_request_completed(req))
7791                 return;
7792
7793         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7794         if (boost == NULL)
7795                 return;
7796
7797         boost->req = i915_gem_request_get(req);
7798
7799         INIT_WORK(&boost->work, __intel_rps_boost_work);
7800         queue_work(req->i915->wq, &boost->work);
7801 }
7802
7803 void intel_pm_setup(struct drm_device *dev)
7804 {
7805         struct drm_i915_private *dev_priv = to_i915(dev);
7806
7807         mutex_init(&dev_priv->rps.hw_lock);
7808         spin_lock_init(&dev_priv->rps.client_lock);
7809
7810         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
7811                           __intel_autoenable_gt_powersave);
7812         INIT_LIST_HEAD(&dev_priv->rps.clients);
7813
7814         dev_priv->pm.suspended = false;
7815         atomic_set(&dev_priv->pm.wakeref_count, 0);
7816         atomic_set(&dev_priv->pm.atomic_seq, 0);
7817 }