Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static struct i915_priolist *
263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265         struct intel_engine_execlists * const execlists = &engine->execlists;
266         struct i915_priolist *p;
267         struct rb_node **parent, *rb;
268         bool first = true;
269
270         if (unlikely(execlists->no_priolist))
271                 prio = I915_PRIORITY_NORMAL;
272
273 find_priolist:
274         /* most positive priority is scheduled first, equal priorities fifo */
275         rb = NULL;
276         parent = &execlists->queue.rb_root.rb_node;
277         while (*parent) {
278                 rb = *parent;
279                 p = to_priolist(rb);
280                 if (prio > p->priority) {
281                         parent = &rb->rb_left;
282                 } else if (prio < p->priority) {
283                         parent = &rb->rb_right;
284                         first = false;
285                 } else {
286                         return p;
287                 }
288         }
289
290         if (prio == I915_PRIORITY_NORMAL) {
291                 p = &execlists->default_priolist;
292         } else {
293                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294                 /* Convert an allocation failure to a priority bump */
295                 if (unlikely(!p)) {
296                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
297
298                         /* To maintain ordering with all rendering, after an
299                          * allocation failure we have to disable all scheduling.
300                          * Requests will then be executed in fifo, and schedule
301                          * will ensure that dependencies are emitted in fifo.
302                          * There will be still some reordering with existing
303                          * requests, so if userspace lied about their
304                          * dependencies that reordering may be visible.
305                          */
306                         execlists->no_priolist = true;
307                         goto find_priolist;
308                 }
309         }
310
311         p->priority = prio;
312         INIT_LIST_HEAD(&p->requests);
313         rb_link_node(&p->node, rb, parent);
314         rb_insert_color_cached(&p->node, &execlists->queue, first);
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline.lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline.requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, last_prio);
346                 }
347
348                 GEM_BUG_ON(p->priority != rq_prio(rq));
349                 list_add(&rq->sched.link, &p->requests);
350         }
351 }
352
353 void
354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356         struct intel_engine_cs *engine =
357                 container_of(execlists, typeof(*engine), execlists);
358         unsigned long flags;
359
360         spin_lock_irqsave(&engine->timeline.lock, flags);
361
362         __unwind_incomplete_requests(engine);
363
364         spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366
367 static inline void
368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370         /*
371          * Only used when GVT-g is enabled now. When GVT-g is disabled,
372          * The compiler should eliminate this function as dead-code.
373          */
374         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375                 return;
376
377         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378                                    status, rq);
379 }
380
381 inline void
382 execlists_user_begin(struct intel_engine_execlists *execlists,
383                      const struct execlist_port *port)
384 {
385         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387
388 inline void
389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393
394 static inline void
395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398         intel_engine_context_in(rq->engine);
399 }
400
401 static inline void
402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404         intel_engine_context_out(rq->engine);
405         execlists_context_status_change(rq, status);
406         trace_i915_request_out(rq);
407 }
408
409 static void
410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417
418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420         struct intel_context *ce = rq->hw_context;
421         struct i915_hw_ppgtt *ppgtt =
422                 rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423         u32 *reg_state = ce->lrc_reg_state;
424
425         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426
427         /* True 32b PPGTT with dynamic page allocation: update PDP
428          * registers and point the unallocated PDPs to scratch page.
429          * PML4 is allocated during ppgtt init, so this is not needed
430          * in 48-bit mode.
431          */
432         if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
433                 execlists_update_context_pdps(ppgtt, reg_state);
434
435         return ce->lrc_desc;
436 }
437
438 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
439 {
440         if (execlists->ctrl_reg) {
441                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
442                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
443         } else {
444                 writel(upper_32_bits(desc), execlists->submit_reg);
445                 writel(lower_32_bits(desc), execlists->submit_reg);
446         }
447 }
448
449 static void execlists_submit_ports(struct intel_engine_cs *engine)
450 {
451         struct intel_engine_execlists *execlists = &engine->execlists;
452         struct execlist_port *port = execlists->port;
453         unsigned int n;
454
455         /*
456          * We can skip acquiring intel_runtime_pm_get() here as it was taken
457          * on our behalf by the request (see i915_gem_mark_busy()) and it will
458          * not be relinquished until the device is idle (see
459          * i915_gem_idle_work_handler()). As a precaution, we make sure
460          * that all ELSP are drained i.e. we have processed the CSB,
461          * before allowing ourselves to idle and calling intel_runtime_pm_put().
462          */
463         GEM_BUG_ON(!engine->i915->gt.awake);
464
465         /*
466          * ELSQ note: the submit queue is not cleared after being submitted
467          * to the HW so we need to make sure we always clean it up. This is
468          * currently ensured by the fact that we always write the same number
469          * of elsq entries, keep this in mind before changing the loop below.
470          */
471         for (n = execlists_num_ports(execlists); n--; ) {
472                 struct i915_request *rq;
473                 unsigned int count;
474                 u64 desc;
475
476                 rq = port_unpack(&port[n], &count);
477                 if (rq) {
478                         GEM_BUG_ON(count > !n);
479                         if (!count++)
480                                 execlists_context_schedule_in(rq);
481                         port_set(&port[n], port_pack(rq, count));
482                         desc = execlists_update_context(rq);
483                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
484
485                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
486                                   engine->name, n,
487                                   port[n].context_id, count,
488                                   rq->global_seqno,
489                                   rq->fence.context, rq->fence.seqno,
490                                   intel_engine_get_seqno(engine),
491                                   rq_prio(rq));
492                 } else {
493                         GEM_BUG_ON(!n);
494                         desc = 0;
495                 }
496
497                 write_desc(execlists, desc, n);
498         }
499
500         /* we need to manually load the submit queue */
501         if (execlists->ctrl_reg)
502                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
503
504         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
505 }
506
507 static bool ctx_single_port_submission(const struct intel_context *ce)
508 {
509         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
510                 i915_gem_context_force_single_submission(ce->gem_context));
511 }
512
513 static bool can_merge_ctx(const struct intel_context *prev,
514                           const struct intel_context *next)
515 {
516         if (prev != next)
517                 return false;
518
519         if (ctx_single_port_submission(prev))
520                 return false;
521
522         return true;
523 }
524
525 static void port_assign(struct execlist_port *port, struct i915_request *rq)
526 {
527         GEM_BUG_ON(rq == port_request(port));
528
529         if (port_isset(port))
530                 i915_request_put(port_request(port));
531
532         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
533 }
534
535 static void inject_preempt_context(struct intel_engine_cs *engine)
536 {
537         struct intel_engine_execlists *execlists = &engine->execlists;
538         struct intel_context *ce =
539                 to_intel_context(engine->i915->preempt_context, engine);
540         unsigned int n;
541
542         GEM_BUG_ON(execlists->preempt_complete_status !=
543                    upper_32_bits(ce->lrc_desc));
544
545         /*
546          * Switch to our empty preempt context so
547          * the state of the GPU is known (idle).
548          */
549         GEM_TRACE("%s\n", engine->name);
550         for (n = execlists_num_ports(execlists); --n; )
551                 write_desc(execlists, 0, n);
552
553         write_desc(execlists, ce->lrc_desc, n);
554
555         /* we need to manually load the submit queue */
556         if (execlists->ctrl_reg)
557                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
558
559         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
560         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
561 }
562
563 static void complete_preempt_context(struct intel_engine_execlists *execlists)
564 {
565         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
566
567         if (inject_preempt_hang(execlists))
568                 return;
569
570         execlists_cancel_port_requests(execlists);
571         __unwind_incomplete_requests(container_of(execlists,
572                                                   struct intel_engine_cs,
573                                                   execlists));
574 }
575
576 static void execlists_dequeue(struct intel_engine_cs *engine)
577 {
578         struct intel_engine_execlists * const execlists = &engine->execlists;
579         struct execlist_port *port = execlists->port;
580         const struct execlist_port * const last_port =
581                 &execlists->port[execlists->port_mask];
582         struct i915_request *last = port_request(port);
583         struct rb_node *rb;
584         bool submit = false;
585
586         /*
587          * Hardware submission is through 2 ports. Conceptually each port
588          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
589          * static for a context, and unique to each, so we only execute
590          * requests belonging to a single context from each ring. RING_HEAD
591          * is maintained by the CS in the context image, it marks the place
592          * where it got up to last time, and through RING_TAIL we tell the CS
593          * where we want to execute up to this time.
594          *
595          * In this list the requests are in order of execution. Consecutive
596          * requests from the same context are adjacent in the ringbuffer. We
597          * can combine these requests into a single RING_TAIL update:
598          *
599          *              RING_HEAD...req1...req2
600          *                                    ^- RING_TAIL
601          * since to execute req2 the CS must first execute req1.
602          *
603          * Our goal then is to point each port to the end of a consecutive
604          * sequence of requests as being the most optimal (fewest wake ups
605          * and context switches) submission.
606          */
607
608         if (last) {
609                 /*
610                  * Don't resubmit or switch until all outstanding
611                  * preemptions (lite-restore) are seen. Then we
612                  * know the next preemption status we see corresponds
613                  * to this ELSP update.
614                  */
615                 GEM_BUG_ON(!execlists_is_active(execlists,
616                                                 EXECLISTS_ACTIVE_USER));
617                 GEM_BUG_ON(!port_count(&port[0]));
618
619                 /*
620                  * If we write to ELSP a second time before the HW has had
621                  * a chance to respond to the previous write, we can confuse
622                  * the HW and hit "undefined behaviour". After writing to ELSP,
623                  * we must then wait until we see a context-switch event from
624                  * the HW to indicate that it has had a chance to respond.
625                  */
626                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
627                         return;
628
629                 if (need_preempt(engine, last, execlists->queue_priority)) {
630                         inject_preempt_context(engine);
631                         return;
632                 }
633
634                 /*
635                  * In theory, we could coalesce more requests onto
636                  * the second port (the first port is active, with
637                  * no preemptions pending). However, that means we
638                  * then have to deal with the possible lite-restore
639                  * of the second port (as we submit the ELSP, there
640                  * may be a context-switch) but also we may complete
641                  * the resubmission before the context-switch. Ergo,
642                  * coalescing onto the second port will cause a
643                  * preemption event, but we cannot predict whether
644                  * that will affect port[0] or port[1].
645                  *
646                  * If the second port is already active, we can wait
647                  * until the next context-switch before contemplating
648                  * new requests. The GPU will be busy and we should be
649                  * able to resubmit the new ELSP before it idles,
650                  * avoiding pipeline bubbles (momentary pauses where
651                  * the driver is unable to keep up the supply of new
652                  * work). However, we have to double check that the
653                  * priorities of the ports haven't been switch.
654                  */
655                 if (port_count(&port[1]))
656                         return;
657
658                 /*
659                  * WaIdleLiteRestore:bdw,skl
660                  * Apply the wa NOOPs to prevent
661                  * ring:HEAD == rq:TAIL as we resubmit the
662                  * request. See gen8_emit_breadcrumb() for
663                  * where we prepare the padding after the
664                  * end of the request.
665                  */
666                 last->tail = last->wa_tail;
667         }
668
669         while ((rb = rb_first_cached(&execlists->queue))) {
670                 struct i915_priolist *p = to_priolist(rb);
671                 struct i915_request *rq, *rn;
672
673                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
674                         /*
675                          * Can we combine this request with the current port?
676                          * It has to be the same context/ringbuffer and not
677                          * have any exceptions (e.g. GVT saying never to
678                          * combine contexts).
679                          *
680                          * If we can combine the requests, we can execute both
681                          * by updating the RING_TAIL to point to the end of the
682                          * second request, and so we never need to tell the
683                          * hardware about the first.
684                          */
685                         if (last &&
686                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
687                                 /*
688                                  * If we are on the second port and cannot
689                                  * combine this request with the last, then we
690                                  * are done.
691                                  */
692                                 if (port == last_port) {
693                                         __list_del_many(&p->requests,
694                                                         &rq->sched.link);
695                                         goto done;
696                                 }
697
698                                 /*
699                                  * If GVT overrides us we only ever submit
700                                  * port[0], leaving port[1] empty. Note that we
701                                  * also have to be careful that we don't queue
702                                  * the same context (even though a different
703                                  * request) to the second port.
704                                  */
705                                 if (ctx_single_port_submission(last->hw_context) ||
706                                     ctx_single_port_submission(rq->hw_context)) {
707                                         __list_del_many(&p->requests,
708                                                         &rq->sched.link);
709                                         goto done;
710                                 }
711
712                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
713
714                                 if (submit)
715                                         port_assign(port, last);
716                                 port++;
717
718                                 GEM_BUG_ON(port_isset(port));
719                         }
720
721                         INIT_LIST_HEAD(&rq->sched.link);
722                         __i915_request_submit(rq);
723                         trace_i915_request_in(rq, port_index(port, execlists));
724                         last = rq;
725                         submit = true;
726                 }
727
728                 rb_erase_cached(&p->node, &execlists->queue);
729                 INIT_LIST_HEAD(&p->requests);
730                 if (p->priority != I915_PRIORITY_NORMAL)
731                         kmem_cache_free(engine->i915->priorities, p);
732         }
733
734 done:
735         /*
736          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
737          *
738          * We choose queue_priority such that if we add a request of greater
739          * priority than this, we kick the submission tasklet to decide on
740          * the right order of submitting the requests to hardware. We must
741          * also be prepared to reorder requests as they are in-flight on the
742          * HW. We derive the queue_priority then as the first "hole" in
743          * the HW submission ports and if there are no available slots,
744          * the priority of the lowest executing request, i.e. last.
745          *
746          * When we do receive a higher priority request ready to run from the
747          * user, see queue_request(), the queue_priority is bumped to that
748          * request triggering preemption on the next dequeue (or subsequent
749          * interrupt for secondary ports).
750          */
751         execlists->queue_priority =
752                 port != execlists->port ? rq_prio(last) : INT_MIN;
753
754         if (submit) {
755                 port_assign(port, last);
756                 execlists_submit_ports(engine);
757         }
758
759         /* We must always keep the beast fed if we have work piled up */
760         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
761                    !port_isset(execlists->port));
762
763         /* Re-evaluate the executing context setup after each preemptive kick */
764         if (last)
765                 execlists_user_begin(execlists, execlists->port);
766
767         /* If the engine is now idle, so should be the flag; and vice versa. */
768         GEM_BUG_ON(execlists_is_active(&engine->execlists,
769                                        EXECLISTS_ACTIVE_USER) ==
770                    !port_isset(engine->execlists.port));
771 }
772
773 void
774 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
775 {
776         struct execlist_port *port = execlists->port;
777         unsigned int num_ports = execlists_num_ports(execlists);
778
779         while (num_ports-- && port_isset(port)) {
780                 struct i915_request *rq = port_request(port);
781
782                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
783                           rq->engine->name,
784                           (unsigned int)(port - execlists->port),
785                           rq->global_seqno,
786                           rq->fence.context, rq->fence.seqno,
787                           intel_engine_get_seqno(rq->engine));
788
789                 GEM_BUG_ON(!execlists->active);
790                 execlists_context_schedule_out(rq,
791                                                i915_request_completed(rq) ?
792                                                INTEL_CONTEXT_SCHEDULE_OUT :
793                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
794
795                 i915_request_put(rq);
796
797                 memset(port, 0, sizeof(*port));
798                 port++;
799         }
800
801         execlists_clear_all_active(execlists);
802 }
803
804 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
805 {
806         /*
807          * After a reset, the HW starts writing into CSB entry [0]. We
808          * therefore have to set our HEAD pointer back one entry so that
809          * the *first* entry we check is entry 0. To complicate this further,
810          * as we don't wait for the first interrupt after reset, we have to
811          * fake the HW write to point back to the last entry so that our
812          * inline comparison of our cached head position against the last HW
813          * write works even before the first interrupt.
814          */
815         execlists->csb_head = execlists->csb_write_reset;
816         WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
817 }
818
819 static void nop_submission_tasklet(unsigned long data)
820 {
821         /* The driver is wedged; don't process any more events. */
822 }
823
824 static void execlists_cancel_requests(struct intel_engine_cs *engine)
825 {
826         struct intel_engine_execlists * const execlists = &engine->execlists;
827         struct i915_request *rq, *rn;
828         struct rb_node *rb;
829         unsigned long flags;
830
831         GEM_TRACE("%s current %d\n",
832                   engine->name, intel_engine_get_seqno(engine));
833
834         /*
835          * Before we call engine->cancel_requests(), we should have exclusive
836          * access to the submission state. This is arranged for us by the
837          * caller disabling the interrupt generation, the tasklet and other
838          * threads that may then access the same state, giving us a free hand
839          * to reset state. However, we still need to let lockdep be aware that
840          * we know this state may be accessed in hardirq context, so we
841          * disable the irq around this manipulation and we want to keep
842          * the spinlock focused on its duties and not accidentally conflate
843          * coverage to the submission's irq state. (Similarly, although we
844          * shouldn't need to disable irq around the manipulation of the
845          * submission's irq state, we also wish to remind ourselves that
846          * it is irq state.)
847          */
848         spin_lock_irqsave(&engine->timeline.lock, flags);
849
850         /* Cancel the requests on the HW and clear the ELSP tracker. */
851         execlists_cancel_port_requests(execlists);
852         execlists_user_end(execlists);
853
854         /* Mark all executing requests as skipped. */
855         list_for_each_entry(rq, &engine->timeline.requests, link) {
856                 GEM_BUG_ON(!rq->global_seqno);
857                 if (!i915_request_completed(rq))
858                         dma_fence_set_error(&rq->fence, -EIO);
859         }
860
861         /* Flush the queued requests to the timeline list (for retiring). */
862         while ((rb = rb_first_cached(&execlists->queue))) {
863                 struct i915_priolist *p = to_priolist(rb);
864
865                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
866                         INIT_LIST_HEAD(&rq->sched.link);
867
868                         dma_fence_set_error(&rq->fence, -EIO);
869                         __i915_request_submit(rq);
870                 }
871
872                 rb_erase_cached(&p->node, &execlists->queue);
873                 INIT_LIST_HEAD(&p->requests);
874                 if (p->priority != I915_PRIORITY_NORMAL)
875                         kmem_cache_free(engine->i915->priorities, p);
876         }
877
878         /* Remaining _unready_ requests will be nop'ed when submitted */
879
880         execlists->queue_priority = INT_MIN;
881         execlists->queue = RB_ROOT_CACHED;
882         GEM_BUG_ON(port_isset(execlists->port));
883
884         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
885         execlists->tasklet.func = nop_submission_tasklet;
886
887         spin_unlock_irqrestore(&engine->timeline.lock, flags);
888 }
889
890 static inline bool
891 reset_in_progress(const struct intel_engine_execlists *execlists)
892 {
893         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
894 }
895
896 static void process_csb(struct intel_engine_cs *engine)
897 {
898         struct intel_engine_execlists * const execlists = &engine->execlists;
899         struct execlist_port *port = execlists->port;
900         const u32 * const buf = execlists->csb_status;
901         u8 head, tail;
902
903         /*
904          * Note that csb_write, csb_status may be either in HWSP or mmio.
905          * When reading from the csb_write mmio register, we have to be
906          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
907          * the low 4bits. As it happens we know the next 4bits are always
908          * zero and so we can simply masked off the low u8 of the register
909          * and treat it identically to reading from the HWSP (without having
910          * to use explicit shifting and masking, and probably bifurcating
911          * the code to handle the legacy mmio read).
912          */
913         head = execlists->csb_head;
914         tail = READ_ONCE(*execlists->csb_write);
915         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
916         if (unlikely(head == tail))
917                 return;
918
919         /*
920          * Hopefully paired with a wmb() in HW!
921          *
922          * We must complete the read of the write pointer before any reads
923          * from the CSB, so that we do not see stale values. Without an rmb
924          * (lfence) the HW may speculatively perform the CSB[] reads *before*
925          * we perform the READ_ONCE(*csb_write).
926          */
927         rmb();
928
929         do {
930                 struct i915_request *rq;
931                 unsigned int status;
932                 unsigned int count;
933
934                 if (++head == GEN8_CSB_ENTRIES)
935                         head = 0;
936
937                 /*
938                  * We are flying near dragons again.
939                  *
940                  * We hold a reference to the request in execlist_port[]
941                  * but no more than that. We are operating in softirq
942                  * context and so cannot hold any mutex or sleep. That
943                  * prevents us stopping the requests we are processing
944                  * in port[] from being retired simultaneously (the
945                  * breadcrumb will be complete before we see the
946                  * context-switch). As we only hold the reference to the
947                  * request, any pointer chasing underneath the request
948                  * is subject to a potential use-after-free. Thus we
949                  * store all of the bookkeeping within port[] as
950                  * required, and avoid using unguarded pointers beneath
951                  * request itself. The same applies to the atomic
952                  * status notifier.
953                  */
954
955                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
956                           engine->name, head,
957                           buf[2 * head + 0], buf[2 * head + 1],
958                           execlists->active);
959
960                 status = buf[2 * head];
961                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
962                               GEN8_CTX_STATUS_PREEMPTED))
963                         execlists_set_active(execlists,
964                                              EXECLISTS_ACTIVE_HWACK);
965                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
966                         execlists_clear_active(execlists,
967                                                EXECLISTS_ACTIVE_HWACK);
968
969                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
970                         continue;
971
972                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
973                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
974
975                 if (status & GEN8_CTX_STATUS_COMPLETE &&
976                     buf[2*head + 1] == execlists->preempt_complete_status) {
977                         GEM_TRACE("%s preempt-idle\n", engine->name);
978                         complete_preempt_context(execlists);
979                         continue;
980                 }
981
982                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
983                     execlists_is_active(execlists,
984                                         EXECLISTS_ACTIVE_PREEMPT))
985                         continue;
986
987                 GEM_BUG_ON(!execlists_is_active(execlists,
988                                                 EXECLISTS_ACTIVE_USER));
989
990                 rq = port_unpack(port, &count);
991                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
992                           engine->name,
993                           port->context_id, count,
994                           rq ? rq->global_seqno : 0,
995                           rq ? rq->fence.context : 0,
996                           rq ? rq->fence.seqno : 0,
997                           intel_engine_get_seqno(engine),
998                           rq ? rq_prio(rq) : 0);
999
1000                 /* Check the context/desc id for this event matches */
1001                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1002
1003                 GEM_BUG_ON(count == 0);
1004                 if (--count == 0) {
1005                         /*
1006                          * On the final event corresponding to the
1007                          * submission of this context, we expect either
1008                          * an element-switch event or a completion
1009                          * event (and on completion, the active-idle
1010                          * marker). No more preemptions, lite-restore
1011                          * or otherwise.
1012                          */
1013                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1014                         GEM_BUG_ON(port_isset(&port[1]) &&
1015                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1016                         GEM_BUG_ON(!port_isset(&port[1]) &&
1017                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1018
1019                         /*
1020                          * We rely on the hardware being strongly
1021                          * ordered, that the breadcrumb write is
1022                          * coherent (visible from the CPU) before the
1023                          * user interrupt and CSB is processed.
1024                          */
1025                         GEM_BUG_ON(!i915_request_completed(rq));
1026
1027                         execlists_context_schedule_out(rq,
1028                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1029                         i915_request_put(rq);
1030
1031                         GEM_TRACE("%s completed ctx=%d\n",
1032                                   engine->name, port->context_id);
1033
1034                         port = execlists_port_complete(execlists, port);
1035                         if (port_isset(port))
1036                                 execlists_user_begin(execlists, port);
1037                         else
1038                                 execlists_user_end(execlists);
1039                 } else {
1040                         port_set(port, port_pack(rq, count));
1041                 }
1042         } while (head != tail);
1043
1044         execlists->csb_head = head;
1045 }
1046
1047 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1048 {
1049         lockdep_assert_held(&engine->timeline.lock);
1050
1051         process_csb(engine);
1052         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1053                 execlists_dequeue(engine);
1054 }
1055
1056 /*
1057  * Check the unread Context Status Buffers and manage the submission of new
1058  * contexts to the ELSP accordingly.
1059  */
1060 static void execlists_submission_tasklet(unsigned long data)
1061 {
1062         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1063         unsigned long flags;
1064
1065         GEM_TRACE("%s awake?=%d, active=%x\n",
1066                   engine->name,
1067                   engine->i915->gt.awake,
1068                   engine->execlists.active);
1069
1070         spin_lock_irqsave(&engine->timeline.lock, flags);
1071         __execlists_submission_tasklet(engine);
1072         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1073 }
1074
1075 static void queue_request(struct intel_engine_cs *engine,
1076                           struct i915_sched_node *node,
1077                           int prio)
1078 {
1079         list_add_tail(&node->link,
1080                       &lookup_priolist(engine, prio)->requests);
1081 }
1082
1083 static void __update_queue(struct intel_engine_cs *engine, int prio)
1084 {
1085         engine->execlists.queue_priority = prio;
1086 }
1087
1088 static void __submit_queue_imm(struct intel_engine_cs *engine)
1089 {
1090         struct intel_engine_execlists * const execlists = &engine->execlists;
1091
1092         if (reset_in_progress(execlists))
1093                 return; /* defer until we restart the engine following reset */
1094
1095         if (execlists->tasklet.func == execlists_submission_tasklet)
1096                 __execlists_submission_tasklet(engine);
1097         else
1098                 tasklet_hi_schedule(&execlists->tasklet);
1099 }
1100
1101 static void submit_queue(struct intel_engine_cs *engine, int prio)
1102 {
1103         if (prio > engine->execlists.queue_priority) {
1104                 __update_queue(engine, prio);
1105                 __submit_queue_imm(engine);
1106         }
1107 }
1108
1109 static void execlists_submit_request(struct i915_request *request)
1110 {
1111         struct intel_engine_cs *engine = request->engine;
1112         unsigned long flags;
1113
1114         /* Will be called from irq-context when using foreign fences. */
1115         spin_lock_irqsave(&engine->timeline.lock, flags);
1116
1117         queue_request(engine, &request->sched, rq_prio(request));
1118
1119         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1120         GEM_BUG_ON(list_empty(&request->sched.link));
1121
1122         submit_queue(engine, rq_prio(request));
1123
1124         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1125 }
1126
1127 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1128 {
1129         return container_of(node, struct i915_request, sched);
1130 }
1131
1132 static struct intel_engine_cs *
1133 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1134 {
1135         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1136
1137         GEM_BUG_ON(!locked);
1138
1139         if (engine != locked) {
1140                 spin_unlock(&locked->timeline.lock);
1141                 spin_lock(&engine->timeline.lock);
1142         }
1143
1144         return engine;
1145 }
1146
1147 static void execlists_schedule(struct i915_request *request,
1148                                const struct i915_sched_attr *attr)
1149 {
1150         struct i915_priolist *uninitialized_var(pl);
1151         struct intel_engine_cs *engine, *last;
1152         struct i915_dependency *dep, *p;
1153         struct i915_dependency stack;
1154         const int prio = attr->priority;
1155         LIST_HEAD(dfs);
1156
1157         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1158
1159         if (i915_request_completed(request))
1160                 return;
1161
1162         if (prio <= READ_ONCE(request->sched.attr.priority))
1163                 return;
1164
1165         /* Need BKL in order to use the temporary link inside i915_dependency */
1166         lockdep_assert_held(&request->i915->drm.struct_mutex);
1167
1168         stack.signaler = &request->sched;
1169         list_add(&stack.dfs_link, &dfs);
1170
1171         /*
1172          * Recursively bump all dependent priorities to match the new request.
1173          *
1174          * A naive approach would be to use recursion:
1175          * static void update_priorities(struct i915_sched_node *node, prio) {
1176          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1177          *              update_priorities(dep->signal, prio)
1178          *      queue_request(node);
1179          * }
1180          * but that may have unlimited recursion depth and so runs a very
1181          * real risk of overunning the kernel stack. Instead, we build
1182          * a flat list of all dependencies starting with the current request.
1183          * As we walk the list of dependencies, we add all of its dependencies
1184          * to the end of the list (this may include an already visited
1185          * request) and continue to walk onwards onto the new dependencies. The
1186          * end result is a topological list of requests in reverse order, the
1187          * last element in the list is the request we must execute first.
1188          */
1189         list_for_each_entry(dep, &dfs, dfs_link) {
1190                 struct i915_sched_node *node = dep->signaler;
1191
1192                 /*
1193                  * Within an engine, there can be no cycle, but we may
1194                  * refer to the same dependency chain multiple times
1195                  * (redundant dependencies are not eliminated) and across
1196                  * engines.
1197                  */
1198                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1199                         GEM_BUG_ON(p == dep); /* no cycles! */
1200
1201                         if (i915_sched_node_signaled(p->signaler))
1202                                 continue;
1203
1204                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1205                         if (prio > READ_ONCE(p->signaler->attr.priority))
1206                                 list_move_tail(&p->dfs_link, &dfs);
1207                 }
1208         }
1209
1210         /*
1211          * If we didn't need to bump any existing priorities, and we haven't
1212          * yet submitted this request (i.e. there is no potential race with
1213          * execlists_submit_request()), we can set our own priority and skip
1214          * acquiring the engine locks.
1215          */
1216         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1217                 GEM_BUG_ON(!list_empty(&request->sched.link));
1218                 request->sched.attr = *attr;
1219                 if (stack.dfs_link.next == stack.dfs_link.prev)
1220                         return;
1221                 __list_del_entry(&stack.dfs_link);
1222         }
1223
1224         last = NULL;
1225         engine = request->engine;
1226         spin_lock_irq(&engine->timeline.lock);
1227
1228         /* Fifo and depth-first replacement ensure our deps execute before us */
1229         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1230                 struct i915_sched_node *node = dep->signaler;
1231
1232                 INIT_LIST_HEAD(&dep->dfs_link);
1233
1234                 engine = sched_lock_engine(node, engine);
1235
1236                 if (prio <= node->attr.priority)
1237                         continue;
1238
1239                 node->attr.priority = prio;
1240                 if (!list_empty(&node->link)) {
1241                         if (last != engine) {
1242                                 pl = lookup_priolist(engine, prio);
1243                                 last = engine;
1244                         }
1245                         GEM_BUG_ON(pl->priority != prio);
1246                         list_move_tail(&node->link, &pl->requests);
1247                 }
1248
1249                 if (prio > engine->execlists.queue_priority &&
1250                     i915_sw_fence_done(&sched_to_request(node)->submit)) {
1251                         /* defer submission until after all of our updates */
1252                         __update_queue(engine, prio);
1253                         tasklet_hi_schedule(&engine->execlists.tasklet);
1254                 }
1255         }
1256
1257         spin_unlock_irq(&engine->timeline.lock);
1258 }
1259
1260 static void execlists_context_destroy(struct intel_context *ce)
1261 {
1262         GEM_BUG_ON(ce->pin_count);
1263
1264         if (!ce->state)
1265                 return;
1266
1267         intel_ring_free(ce->ring);
1268
1269         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1270         i915_gem_object_put(ce->state->obj);
1271 }
1272
1273 static void execlists_context_unpin(struct intel_context *ce)
1274 {
1275         i915_gem_context_unpin_hw_id(ce->gem_context);
1276
1277         intel_ring_unpin(ce->ring);
1278
1279         ce->state->obj->pin_global--;
1280         i915_gem_object_unpin_map(ce->state->obj);
1281         i915_vma_unpin(ce->state);
1282
1283         i915_gem_context_put(ce->gem_context);
1284 }
1285
1286 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1287 {
1288         unsigned int flags;
1289         int err;
1290
1291         /*
1292          * Clear this page out of any CPU caches for coherent swap-in/out.
1293          * We only want to do this on the first bind so that we do not stall
1294          * on an active context (which by nature is already on the GPU).
1295          */
1296         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1297                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1298                 if (err)
1299                         return err;
1300         }
1301
1302         flags = PIN_GLOBAL | PIN_HIGH;
1303         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1304
1305         return i915_vma_pin(vma, 0, 0, flags);
1306 }
1307
1308 static struct intel_context *
1309 __execlists_context_pin(struct intel_engine_cs *engine,
1310                         struct i915_gem_context *ctx,
1311                         struct intel_context *ce)
1312 {
1313         void *vaddr;
1314         int ret;
1315
1316         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1317         if (ret)
1318                 goto err;
1319         GEM_BUG_ON(!ce->state);
1320
1321         ret = __context_pin(ctx, ce->state);
1322         if (ret)
1323                 goto err;
1324
1325         vaddr = i915_gem_object_pin_map(ce->state->obj,
1326                                         i915_coherent_map_type(ctx->i915) |
1327                                         I915_MAP_OVERRIDE);
1328         if (IS_ERR(vaddr)) {
1329                 ret = PTR_ERR(vaddr);
1330                 goto unpin_vma;
1331         }
1332
1333         ret = intel_ring_pin(ce->ring);
1334         if (ret)
1335                 goto unpin_map;
1336
1337         ret = i915_gem_context_pin_hw_id(ctx);
1338         if (ret)
1339                 goto unpin_ring;
1340
1341         intel_lr_context_descriptor_update(ctx, engine, ce);
1342
1343         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1344
1345         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1346         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1347                 i915_ggtt_offset(ce->ring->vma);
1348         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1349         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1350
1351         ce->state->obj->pin_global++;
1352         i915_gem_context_get(ctx);
1353         return ce;
1354
1355 unpin_ring:
1356         intel_ring_unpin(ce->ring);
1357 unpin_map:
1358         i915_gem_object_unpin_map(ce->state->obj);
1359 unpin_vma:
1360         __i915_vma_unpin(ce->state);
1361 err:
1362         ce->pin_count = 0;
1363         return ERR_PTR(ret);
1364 }
1365
1366 static const struct intel_context_ops execlists_context_ops = {
1367         .unpin = execlists_context_unpin,
1368         .destroy = execlists_context_destroy,
1369 };
1370
1371 static struct intel_context *
1372 execlists_context_pin(struct intel_engine_cs *engine,
1373                       struct i915_gem_context *ctx)
1374 {
1375         struct intel_context *ce = to_intel_context(ctx, engine);
1376
1377         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1378
1379         if (likely(ce->pin_count++))
1380                 return ce;
1381         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1382
1383         ce->ops = &execlists_context_ops;
1384
1385         return __execlists_context_pin(engine, ctx, ce);
1386 }
1387
1388 static int execlists_request_alloc(struct i915_request *request)
1389 {
1390         int ret;
1391
1392         GEM_BUG_ON(!request->hw_context->pin_count);
1393
1394         /* Flush enough space to reduce the likelihood of waiting after
1395          * we start building the request - in which case we will just
1396          * have to repeat work.
1397          */
1398         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1399
1400         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1401         if (ret)
1402                 return ret;
1403
1404         /* Note that after this point, we have committed to using
1405          * this request as it is being used to both track the
1406          * state of engine initialisation and liveness of the
1407          * golden renderstate above. Think twice before you try
1408          * to cancel/unwind this request now.
1409          */
1410
1411         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1412         return 0;
1413 }
1414
1415 /*
1416  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1417  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1418  * but there is a slight complication as this is applied in WA batch where the
1419  * values are only initialized once so we cannot take register value at the
1420  * beginning and reuse it further; hence we save its value to memory, upload a
1421  * constant value with bit21 set and then we restore it back with the saved value.
1422  * To simplify the WA, a constant value is formed by using the default value
1423  * of this register. This shouldn't be a problem because we are only modifying
1424  * it for a short period and this batch in non-premptible. We can ofcourse
1425  * use additional instructions that read the actual value of the register
1426  * at that time and set our bit of interest but it makes the WA complicated.
1427  *
1428  * This WA is also required for Gen9 so extracting as a function avoids
1429  * code duplication.
1430  */
1431 static u32 *
1432 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1433 {
1434         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1435         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1436         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1437         *batch++ = 0;
1438
1439         *batch++ = MI_LOAD_REGISTER_IMM(1);
1440         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1441         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1442
1443         batch = gen8_emit_pipe_control(batch,
1444                                        PIPE_CONTROL_CS_STALL |
1445                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1446                                        0);
1447
1448         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1449         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1450         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1451         *batch++ = 0;
1452
1453         return batch;
1454 }
1455
1456 /*
1457  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1458  * initialized at the beginning and shared across all contexts but this field
1459  * helps us to have multiple batches at different offsets and select them based
1460  * on a criteria. At the moment this batch always start at the beginning of the page
1461  * and at this point we don't have multiple wa_ctx batch buffers.
1462  *
1463  * The number of WA applied are not known at the beginning; we use this field
1464  * to return the no of DWORDS written.
1465  *
1466  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1467  * so it adds NOOPs as padding to make it cacheline aligned.
1468  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1469  * makes a complete batch buffer.
1470  */
1471 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1472 {
1473         /* WaDisableCtxRestoreArbitration:bdw,chv */
1474         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1475
1476         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1477         if (IS_BROADWELL(engine->i915))
1478                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1479
1480         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1481         /* Actual scratch location is at 128 bytes offset */
1482         batch = gen8_emit_pipe_control(batch,
1483                                        PIPE_CONTROL_FLUSH_L3 |
1484                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1485                                        PIPE_CONTROL_CS_STALL |
1486                                        PIPE_CONTROL_QW_WRITE,
1487                                        i915_ggtt_offset(engine->scratch) +
1488                                        2 * CACHELINE_BYTES);
1489
1490         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1491
1492         /* Pad to end of cacheline */
1493         while ((unsigned long)batch % CACHELINE_BYTES)
1494                 *batch++ = MI_NOOP;
1495
1496         /*
1497          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1498          * execution depends on the length specified in terms of cache lines
1499          * in the register CTX_RCS_INDIRECT_CTX
1500          */
1501
1502         return batch;
1503 }
1504
1505 struct lri {
1506         i915_reg_t reg;
1507         u32 value;
1508 };
1509
1510 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1511 {
1512         GEM_BUG_ON(!count || count > 63);
1513
1514         *batch++ = MI_LOAD_REGISTER_IMM(count);
1515         do {
1516                 *batch++ = i915_mmio_reg_offset(lri->reg);
1517                 *batch++ = lri->value;
1518         } while (lri++, --count);
1519         *batch++ = MI_NOOP;
1520
1521         return batch;
1522 }
1523
1524 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1525 {
1526         static const struct lri lri[] = {
1527                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1528                 {
1529                         COMMON_SLICE_CHICKEN2,
1530                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1531                                        0),
1532                 },
1533
1534                 /* BSpec: 11391 */
1535                 {
1536                         FF_SLICE_CHICKEN,
1537                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1538                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1539                 },
1540
1541                 /* BSpec: 11299 */
1542                 {
1543                         _3D_CHICKEN3,
1544                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1545                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1546                 }
1547         };
1548
1549         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1550
1551         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1552         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1553
1554         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1555
1556         /* WaClearSlmSpaceAtContextSwitch:kbl */
1557         /* Actual scratch location is at 128 bytes offset */
1558         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1559                 batch = gen8_emit_pipe_control(batch,
1560                                                PIPE_CONTROL_FLUSH_L3 |
1561                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1562                                                PIPE_CONTROL_CS_STALL |
1563                                                PIPE_CONTROL_QW_WRITE,
1564                                                i915_ggtt_offset(engine->scratch)
1565                                                + 2 * CACHELINE_BYTES);
1566         }
1567
1568         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1569         if (HAS_POOLED_EU(engine->i915)) {
1570                 /*
1571                  * EU pool configuration is setup along with golden context
1572                  * during context initialization. This value depends on
1573                  * device type (2x6 or 3x6) and needs to be updated based
1574                  * on which subslice is disabled especially for 2x6
1575                  * devices, however it is safe to load default
1576                  * configuration of 3x6 device instead of masking off
1577                  * corresponding bits because HW ignores bits of a disabled
1578                  * subslice and drops down to appropriate config. Please
1579                  * see render_state_setup() in i915_gem_render_state.c for
1580                  * possible configurations, to avoid duplication they are
1581                  * not shown here again.
1582                  */
1583                 *batch++ = GEN9_MEDIA_POOL_STATE;
1584                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1585                 *batch++ = 0x00777000;
1586                 *batch++ = 0;
1587                 *batch++ = 0;
1588                 *batch++ = 0;
1589         }
1590
1591         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1592
1593         /* Pad to end of cacheline */
1594         while ((unsigned long)batch % CACHELINE_BYTES)
1595                 *batch++ = MI_NOOP;
1596
1597         return batch;
1598 }
1599
1600 static u32 *
1601 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1602 {
1603         int i;
1604
1605         /*
1606          * WaPipeControlBefore3DStateSamplePattern: cnl
1607          *
1608          * Ensure the engine is idle prior to programming a
1609          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1610          */
1611         batch = gen8_emit_pipe_control(batch,
1612                                        PIPE_CONTROL_CS_STALL,
1613                                        0);
1614         /*
1615          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1616          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1617          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1618          * confusing. Since gen8_emit_pipe_control() already advances the
1619          * batch by 6 dwords, we advance the other 10 here, completing a
1620          * cacheline. It's not clear if the workaround requires this padding
1621          * before other commands, or if it's just the regular padding we would
1622          * already have for the workaround bb, so leave it here for now.
1623          */
1624         for (i = 0; i < 10; i++)
1625                 *batch++ = MI_NOOP;
1626
1627         /* Pad to end of cacheline */
1628         while ((unsigned long)batch % CACHELINE_BYTES)
1629                 *batch++ = MI_NOOP;
1630
1631         return batch;
1632 }
1633
1634 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1635
1636 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1637 {
1638         struct drm_i915_gem_object *obj;
1639         struct i915_vma *vma;
1640         int err;
1641
1642         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1643         if (IS_ERR(obj))
1644                 return PTR_ERR(obj);
1645
1646         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1647         if (IS_ERR(vma)) {
1648                 err = PTR_ERR(vma);
1649                 goto err;
1650         }
1651
1652         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1653         if (err)
1654                 goto err;
1655
1656         engine->wa_ctx.vma = vma;
1657         return 0;
1658
1659 err:
1660         i915_gem_object_put(obj);
1661         return err;
1662 }
1663
1664 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1665 {
1666         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1667 }
1668
1669 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1670
1671 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1672 {
1673         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1674         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1675                                             &wa_ctx->per_ctx };
1676         wa_bb_func_t wa_bb_fn[2];
1677         struct page *page;
1678         void *batch, *batch_ptr;
1679         unsigned int i;
1680         int ret;
1681
1682         if (GEM_WARN_ON(engine->id != RCS))
1683                 return -EINVAL;
1684
1685         switch (INTEL_GEN(engine->i915)) {
1686         case 11:
1687                 return 0;
1688         case 10:
1689                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1690                 wa_bb_fn[1] = NULL;
1691                 break;
1692         case 9:
1693                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1694                 wa_bb_fn[1] = NULL;
1695                 break;
1696         case 8:
1697                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1698                 wa_bb_fn[1] = NULL;
1699                 break;
1700         default:
1701                 MISSING_CASE(INTEL_GEN(engine->i915));
1702                 return 0;
1703         }
1704
1705         ret = lrc_setup_wa_ctx(engine);
1706         if (ret) {
1707                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1708                 return ret;
1709         }
1710
1711         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1712         batch = batch_ptr = kmap_atomic(page);
1713
1714         /*
1715          * Emit the two workaround batch buffers, recording the offset from the
1716          * start of the workaround batch buffer object for each and their
1717          * respective sizes.
1718          */
1719         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1720                 wa_bb[i]->offset = batch_ptr - batch;
1721                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1722                                             CACHELINE_BYTES))) {
1723                         ret = -EINVAL;
1724                         break;
1725                 }
1726                 if (wa_bb_fn[i])
1727                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1728                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1729         }
1730
1731         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1732
1733         kunmap_atomic(batch);
1734         if (ret)
1735                 lrc_destroy_wa_ctx(engine);
1736
1737         return ret;
1738 }
1739
1740 static void enable_execlists(struct intel_engine_cs *engine)
1741 {
1742         struct drm_i915_private *dev_priv = engine->i915;
1743
1744         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1745
1746         /*
1747          * Make sure we're not enabling the new 12-deep CSB
1748          * FIFO as that requires a slightly updated handling
1749          * in the ctx switch irq. Since we're currently only
1750          * using only 2 elements of the enhanced execlists the
1751          * deeper FIFO it's not needed and it's not worth adding
1752          * more statements to the irq handler to support it.
1753          */
1754         if (INTEL_GEN(dev_priv) >= 11)
1755                 I915_WRITE(RING_MODE_GEN7(engine),
1756                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1757         else
1758                 I915_WRITE(RING_MODE_GEN7(engine),
1759                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1760
1761         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1762                    _MASKED_BIT_DISABLE(STOP_RING));
1763
1764         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1765                    engine->status_page.ggtt_offset);
1766         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1767 }
1768
1769 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1770 {
1771         struct drm_i915_private *dev_priv = engine->i915;
1772         bool unexpected = false;
1773
1774         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1775                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1776                 unexpected = true;
1777         }
1778
1779         return unexpected;
1780 }
1781
1782 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1783 {
1784         intel_mocs_init_engine(engine);
1785
1786         intel_engine_reset_breadcrumbs(engine);
1787
1788         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1789                 struct drm_printer p = drm_debug_printer(__func__);
1790
1791                 intel_engine_dump(engine, &p, NULL);
1792         }
1793
1794         enable_execlists(engine);
1795
1796         return 0;
1797 }
1798
1799 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1800 {
1801         struct drm_i915_private *dev_priv = engine->i915;
1802         int ret;
1803
1804         ret = gen8_init_common_ring(engine);
1805         if (ret)
1806                 return ret;
1807
1808         intel_whitelist_workarounds_apply(engine);
1809
1810         /* We need to disable the AsyncFlip performance optimisations in order
1811          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1812          * programmed to '1' on all products.
1813          *
1814          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1815          */
1816         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1817
1818         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1819
1820         return 0;
1821 }
1822
1823 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1824 {
1825         int ret;
1826
1827         ret = gen8_init_common_ring(engine);
1828         if (ret)
1829                 return ret;
1830
1831         intel_whitelist_workarounds_apply(engine);
1832
1833         return 0;
1834 }
1835
1836 static struct i915_request *
1837 execlists_reset_prepare(struct intel_engine_cs *engine)
1838 {
1839         struct intel_engine_execlists * const execlists = &engine->execlists;
1840         struct i915_request *request, *active;
1841         unsigned long flags;
1842
1843         GEM_TRACE("%s: depth<-%d\n", engine->name,
1844                   atomic_read(&execlists->tasklet.count));
1845
1846         /*
1847          * Prevent request submission to the hardware until we have
1848          * completed the reset in i915_gem_reset_finish(). If a request
1849          * is completed by one engine, it may then queue a request
1850          * to a second via its execlists->tasklet *just* as we are
1851          * calling engine->init_hw() and also writing the ELSP.
1852          * Turning off the execlists->tasklet until the reset is over
1853          * prevents the race.
1854          */
1855         __tasklet_disable_sync_once(&execlists->tasklet);
1856
1857         spin_lock_irqsave(&engine->timeline.lock, flags);
1858
1859         /*
1860          * We want to flush the pending context switches, having disabled
1861          * the tasklet above, we can assume exclusive access to the execlists.
1862          * For this allows us to catch up with an inflight preemption event,
1863          * and avoid blaming an innocent request if the stall was due to the
1864          * preemption itself.
1865          */
1866         process_csb(engine);
1867
1868         /*
1869          * The last active request can then be no later than the last request
1870          * now in ELSP[0]. So search backwards from there, so that if the GPU
1871          * has advanced beyond the last CSB update, it will be pardoned.
1872          */
1873         active = NULL;
1874         request = port_request(execlists->port);
1875         if (request) {
1876                 /*
1877                  * Prevent the breadcrumb from advancing before we decide
1878                  * which request is currently active.
1879                  */
1880                 intel_engine_stop_cs(engine);
1881
1882                 list_for_each_entry_from_reverse(request,
1883                                                  &engine->timeline.requests,
1884                                                  link) {
1885                         if (__i915_request_completed(request,
1886                                                      request->global_seqno))
1887                                 break;
1888
1889                         active = request;
1890                 }
1891         }
1892
1893         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1894
1895         return active;
1896 }
1897
1898 static void execlists_reset(struct intel_engine_cs *engine,
1899                             struct i915_request *request)
1900 {
1901         struct intel_engine_execlists * const execlists = &engine->execlists;
1902         unsigned long flags;
1903         u32 *regs;
1904
1905         GEM_TRACE("%s request global=%x, current=%d\n",
1906                   engine->name, request ? request->global_seqno : 0,
1907                   intel_engine_get_seqno(engine));
1908
1909         spin_lock_irqsave(&engine->timeline.lock, flags);
1910
1911         /*
1912          * Catch up with any missed context-switch interrupts.
1913          *
1914          * Ideally we would just read the remaining CSB entries now that we
1915          * know the gpu is idle. However, the CSB registers are sometimes^W
1916          * often trashed across a GPU reset! Instead we have to rely on
1917          * guessing the missed context-switch events by looking at what
1918          * requests were completed.
1919          */
1920         execlists_cancel_port_requests(execlists);
1921
1922         /* Push back any incomplete requests for replay after the reset. */
1923         __unwind_incomplete_requests(engine);
1924
1925         /* Following the reset, we need to reload the CSB read/write pointers */
1926         reset_csb_pointers(&engine->execlists);
1927
1928         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1929
1930         /*
1931          * If the request was innocent, we leave the request in the ELSP
1932          * and will try to replay it on restarting. The context image may
1933          * have been corrupted by the reset, in which case we may have
1934          * to service a new GPU hang, but more likely we can continue on
1935          * without impact.
1936          *
1937          * If the request was guilty, we presume the context is corrupt
1938          * and have to at least restore the RING register in the context
1939          * image back to the expected values to skip over the guilty request.
1940          */
1941         if (!request || request->fence.error != -EIO)
1942                 return;
1943
1944         /*
1945          * We want a simple context + ring to execute the breadcrumb update.
1946          * We cannot rely on the context being intact across the GPU hang,
1947          * so clear it and rebuild just what we need for the breadcrumb.
1948          * All pending requests for this context will be zapped, and any
1949          * future request will be after userspace has had the opportunity
1950          * to recreate its own state.
1951          */
1952         regs = request->hw_context->lrc_reg_state;
1953         if (engine->pinned_default_state) {
1954                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1955                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1956                        engine->context_size - PAGE_SIZE);
1957         }
1958         execlists_init_reg_state(regs,
1959                                  request->gem_context, engine, request->ring);
1960
1961         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1962         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1963
1964         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1965         regs[CTX_RING_HEAD + 1] = request->ring->head;
1966
1967         intel_ring_update_space(request->ring);
1968
1969         /* Reset WaIdleLiteRestore:bdw,skl as well */
1970         unwind_wa_tail(request);
1971 }
1972
1973 static void execlists_reset_finish(struct intel_engine_cs *engine)
1974 {
1975         struct intel_engine_execlists * const execlists = &engine->execlists;
1976
1977         /*
1978          * After a GPU reset, we may have requests to replay. Do so now while
1979          * we still have the forcewake to be sure that the GPU is not allowed
1980          * to sleep before we restart and reload a context.
1981          *
1982          */
1983         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1984                 execlists->tasklet.func(execlists->tasklet.data);
1985
1986         tasklet_enable(&execlists->tasklet);
1987         GEM_TRACE("%s: depth->%d\n", engine->name,
1988                   atomic_read(&execlists->tasklet.count));
1989 }
1990
1991 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1992 {
1993         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1994         struct intel_engine_cs *engine = rq->engine;
1995         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1996         u32 *cs;
1997         int i;
1998
1999         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2000         if (IS_ERR(cs))
2001                 return PTR_ERR(cs);
2002
2003         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2004         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2005                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2006
2007                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2008                 *cs++ = upper_32_bits(pd_daddr);
2009                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2010                 *cs++ = lower_32_bits(pd_daddr);
2011         }
2012
2013         *cs++ = MI_NOOP;
2014         intel_ring_advance(rq, cs);
2015
2016         return 0;
2017 }
2018
2019 static int gen8_emit_bb_start(struct i915_request *rq,
2020                               u64 offset, u32 len,
2021                               const unsigned int flags)
2022 {
2023         u32 *cs;
2024         int ret;
2025
2026         /* Don't rely in hw updating PDPs, specially in lite-restore.
2027          * Ideally, we should set Force PD Restore in ctx descriptor,
2028          * but we can't. Force Restore would be a second option, but
2029          * it is unsafe in case of lite-restore (because the ctx is
2030          * not idle). PML4 is allocated during ppgtt init so this is
2031          * not needed in 48-bit.*/
2032         if (rq->gem_context->ppgtt &&
2033             (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2034             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2035             !intel_vgpu_active(rq->i915)) {
2036                 ret = intel_logical_ring_emit_pdps(rq);
2037                 if (ret)
2038                         return ret;
2039
2040                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2041         }
2042
2043         cs = intel_ring_begin(rq, 6);
2044         if (IS_ERR(cs))
2045                 return PTR_ERR(cs);
2046
2047         /*
2048          * WaDisableCtxRestoreArbitration:bdw,chv
2049          *
2050          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2051          * particular all the gen that do not need the w/a at all!), if we
2052          * took care to make sure that on every switch into this context
2053          * (both ordinary and for preemption) that arbitrartion was enabled
2054          * we would be fine. However, there doesn't seem to be a downside to
2055          * being paranoid and making sure it is set before each batch and
2056          * every context-switch.
2057          *
2058          * Note that if we fail to enable arbitration before the request
2059          * is complete, then we do not see the context-switch interrupt and
2060          * the engine hangs (with RING_HEAD == RING_TAIL).
2061          *
2062          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2063          */
2064         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2065
2066         /* FIXME(BDW): Address space and security selectors. */
2067         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2068                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2069         *cs++ = lower_32_bits(offset);
2070         *cs++ = upper_32_bits(offset);
2071
2072         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2073         *cs++ = MI_NOOP;
2074         intel_ring_advance(rq, cs);
2075
2076         return 0;
2077 }
2078
2079 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2080 {
2081         struct drm_i915_private *dev_priv = engine->i915;
2082         I915_WRITE_IMR(engine,
2083                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2084         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2085 }
2086
2087 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2088 {
2089         struct drm_i915_private *dev_priv = engine->i915;
2090         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2091 }
2092
2093 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2094 {
2095         u32 cmd, *cs;
2096
2097         cs = intel_ring_begin(request, 4);
2098         if (IS_ERR(cs))
2099                 return PTR_ERR(cs);
2100
2101         cmd = MI_FLUSH_DW + 1;
2102
2103         /* We always require a command barrier so that subsequent
2104          * commands, such as breadcrumb interrupts, are strictly ordered
2105          * wrt the contents of the write cache being flushed to memory
2106          * (and thus being coherent from the CPU).
2107          */
2108         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2109
2110         if (mode & EMIT_INVALIDATE) {
2111                 cmd |= MI_INVALIDATE_TLB;
2112                 if (request->engine->id == VCS)
2113                         cmd |= MI_INVALIDATE_BSD;
2114         }
2115
2116         *cs++ = cmd;
2117         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2118         *cs++ = 0; /* upper addr */
2119         *cs++ = 0; /* value */
2120         intel_ring_advance(request, cs);
2121
2122         return 0;
2123 }
2124
2125 static int gen8_emit_flush_render(struct i915_request *request,
2126                                   u32 mode)
2127 {
2128         struct intel_engine_cs *engine = request->engine;
2129         u32 scratch_addr =
2130                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2131         bool vf_flush_wa = false, dc_flush_wa = false;
2132         u32 *cs, flags = 0;
2133         int len;
2134
2135         flags |= PIPE_CONTROL_CS_STALL;
2136
2137         if (mode & EMIT_FLUSH) {
2138                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2139                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2140                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2141                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2142         }
2143
2144         if (mode & EMIT_INVALIDATE) {
2145                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2146                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2147                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2148                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2149                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2150                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2151                 flags |= PIPE_CONTROL_QW_WRITE;
2152                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2153
2154                 /*
2155                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2156                  * pipe control.
2157                  */
2158                 if (IS_GEN9(request->i915))
2159                         vf_flush_wa = true;
2160
2161                 /* WaForGAMHang:kbl */
2162                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2163                         dc_flush_wa = true;
2164         }
2165
2166         len = 6;
2167
2168         if (vf_flush_wa)
2169                 len += 6;
2170
2171         if (dc_flush_wa)
2172                 len += 12;
2173
2174         cs = intel_ring_begin(request, len);
2175         if (IS_ERR(cs))
2176                 return PTR_ERR(cs);
2177
2178         if (vf_flush_wa)
2179                 cs = gen8_emit_pipe_control(cs, 0, 0);
2180
2181         if (dc_flush_wa)
2182                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2183                                             0);
2184
2185         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2186
2187         if (dc_flush_wa)
2188                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2189
2190         intel_ring_advance(request, cs);
2191
2192         return 0;
2193 }
2194
2195 /*
2196  * Reserve space for 2 NOOPs at the end of each request to be
2197  * used as a workaround for not being allowed to do lite
2198  * restore with HEAD==TAIL (WaIdleLiteRestore).
2199  */
2200 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2201 {
2202         /* Ensure there's always at least one preemption point per-request. */
2203         *cs++ = MI_ARB_CHECK;
2204         *cs++ = MI_NOOP;
2205         request->wa_tail = intel_ring_offset(request, cs);
2206 }
2207
2208 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2209 {
2210         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2211         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2212
2213         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2214                                   intel_hws_seqno_address(request->engine));
2215         *cs++ = MI_USER_INTERRUPT;
2216         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2217         request->tail = intel_ring_offset(request, cs);
2218         assert_ring_tail_valid(request->ring, request->tail);
2219
2220         gen8_emit_wa_tail(request, cs);
2221 }
2222 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2223
2224 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2225 {
2226         /* We're using qword write, seqno should be aligned to 8 bytes. */
2227         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2228
2229         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2230                                       intel_hws_seqno_address(request->engine));
2231         *cs++ = MI_USER_INTERRUPT;
2232         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2233         request->tail = intel_ring_offset(request, cs);
2234         assert_ring_tail_valid(request->ring, request->tail);
2235
2236         gen8_emit_wa_tail(request, cs);
2237 }
2238 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2239
2240 static int gen8_init_rcs_context(struct i915_request *rq)
2241 {
2242         int ret;
2243
2244         ret = intel_ctx_workarounds_emit(rq);
2245         if (ret)
2246                 return ret;
2247
2248         ret = intel_rcs_context_init_mocs(rq);
2249         /*
2250          * Failing to program the MOCS is non-fatal.The system will not
2251          * run at peak performance. So generate an error and carry on.
2252          */
2253         if (ret)
2254                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2255
2256         return i915_gem_render_state_emit(rq);
2257 }
2258
2259 /**
2260  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2261  * @engine: Engine Command Streamer.
2262  */
2263 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2264 {
2265         struct drm_i915_private *dev_priv;
2266
2267         /*
2268          * Tasklet cannot be active at this point due intel_mark_active/idle
2269          * so this is just for documentation.
2270          */
2271         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2272                              &engine->execlists.tasklet.state)))
2273                 tasklet_kill(&engine->execlists.tasklet);
2274
2275         dev_priv = engine->i915;
2276
2277         if (engine->buffer) {
2278                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2279         }
2280
2281         if (engine->cleanup)
2282                 engine->cleanup(engine);
2283
2284         intel_engine_cleanup_common(engine);
2285
2286         lrc_destroy_wa_ctx(engine);
2287
2288         engine->i915 = NULL;
2289         dev_priv->engine[engine->id] = NULL;
2290         kfree(engine);
2291 }
2292
2293 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2294 {
2295         engine->submit_request = execlists_submit_request;
2296         engine->cancel_requests = execlists_cancel_requests;
2297         engine->schedule = execlists_schedule;
2298         engine->execlists.tasklet.func = execlists_submission_tasklet;
2299
2300         engine->reset.prepare = execlists_reset_prepare;
2301
2302         engine->park = NULL;
2303         engine->unpark = NULL;
2304
2305         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2306         if (engine->i915->preempt_context)
2307                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2308
2309         engine->i915->caps.scheduler =
2310                 I915_SCHEDULER_CAP_ENABLED |
2311                 I915_SCHEDULER_CAP_PRIORITY;
2312         if (intel_engine_has_preemption(engine))
2313                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2314 }
2315
2316 static void
2317 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2318 {
2319         /* Default vfuncs which can be overriden by each engine. */
2320         engine->init_hw = gen8_init_common_ring;
2321
2322         engine->reset.prepare = execlists_reset_prepare;
2323         engine->reset.reset = execlists_reset;
2324         engine->reset.finish = execlists_reset_finish;
2325
2326         engine->context_pin = execlists_context_pin;
2327         engine->request_alloc = execlists_request_alloc;
2328
2329         engine->emit_flush = gen8_emit_flush;
2330         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2331         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2332
2333         engine->set_default_submission = intel_execlists_set_default_submission;
2334
2335         if (INTEL_GEN(engine->i915) < 11) {
2336                 engine->irq_enable = gen8_logical_ring_enable_irq;
2337                 engine->irq_disable = gen8_logical_ring_disable_irq;
2338         } else {
2339                 /*
2340                  * TODO: On Gen11 interrupt masks need to be clear
2341                  * to allow C6 entry. Keep interrupts enabled at
2342                  * and take the hit of generating extra interrupts
2343                  * until a more refined solution exists.
2344                  */
2345         }
2346         engine->emit_bb_start = gen8_emit_bb_start;
2347 }
2348
2349 static inline void
2350 logical_ring_default_irqs(struct intel_engine_cs *engine)
2351 {
2352         unsigned int shift = 0;
2353
2354         if (INTEL_GEN(engine->i915) < 11) {
2355                 const u8 irq_shifts[] = {
2356                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2357                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2358                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2359                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2360                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2361                 };
2362
2363                 shift = irq_shifts[engine->id];
2364         }
2365
2366         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2367         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2368 }
2369
2370 static void
2371 logical_ring_setup(struct intel_engine_cs *engine)
2372 {
2373         intel_engine_setup_common(engine);
2374
2375         /* Intentionally left blank. */
2376         engine->buffer = NULL;
2377
2378         tasklet_init(&engine->execlists.tasklet,
2379                      execlists_submission_tasklet, (unsigned long)engine);
2380
2381         logical_ring_default_vfuncs(engine);
2382         logical_ring_default_irqs(engine);
2383 }
2384
2385 static bool csb_force_mmio(struct drm_i915_private *i915)
2386 {
2387         /* Older GVT emulation depends upon intercepting CSB mmio */
2388         return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2389 }
2390
2391 static int logical_ring_init(struct intel_engine_cs *engine)
2392 {
2393         struct drm_i915_private *i915 = engine->i915;
2394         struct intel_engine_execlists * const execlists = &engine->execlists;
2395         int ret;
2396
2397         ret = intel_engine_init_common(engine);
2398         if (ret)
2399                 return ret;
2400
2401         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2402                 execlists->submit_reg = i915->regs +
2403                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2404                 execlists->ctrl_reg = i915->regs +
2405                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2406         } else {
2407                 execlists->submit_reg = i915->regs +
2408                         i915_mmio_reg_offset(RING_ELSP(engine));
2409         }
2410
2411         execlists->preempt_complete_status = ~0u;
2412         if (i915->preempt_context) {
2413                 struct intel_context *ce =
2414                         to_intel_context(i915->preempt_context, engine);
2415
2416                 execlists->preempt_complete_status =
2417                         upper_32_bits(ce->lrc_desc);
2418         }
2419
2420         execlists->csb_read =
2421                 i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2422         if (csb_force_mmio(i915)) {
2423                 execlists->csb_status = (u32 __force *)
2424                         (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2425
2426                 execlists->csb_write = (u32 __force *)execlists->csb_read;
2427                 execlists->csb_write_reset =
2428                         _MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2429                                       GEN8_CSB_ENTRIES - 1);
2430         } else {
2431                 execlists->csb_status =
2432                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2433
2434                 execlists->csb_write =
2435                         &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2436                 execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2437         }
2438         reset_csb_pointers(execlists);
2439
2440         return 0;
2441 }
2442
2443 int logical_render_ring_init(struct intel_engine_cs *engine)
2444 {
2445         struct drm_i915_private *dev_priv = engine->i915;
2446         int ret;
2447
2448         logical_ring_setup(engine);
2449
2450         if (HAS_L3_DPF(dev_priv))
2451                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2452
2453         /* Override some for render ring. */
2454         if (INTEL_GEN(dev_priv) >= 9)
2455                 engine->init_hw = gen9_init_render_ring;
2456         else
2457                 engine->init_hw = gen8_init_render_ring;
2458         engine->init_context = gen8_init_rcs_context;
2459         engine->emit_flush = gen8_emit_flush_render;
2460         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2461         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2462
2463         ret = logical_ring_init(engine);
2464         if (ret)
2465                 return ret;
2466
2467         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2468         if (ret)
2469                 goto err_cleanup_common;
2470
2471         ret = intel_init_workaround_bb(engine);
2472         if (ret) {
2473                 /*
2474                  * We continue even if we fail to initialize WA batch
2475                  * because we only expect rare glitches but nothing
2476                  * critical to prevent us from using GPU
2477                  */
2478                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2479                           ret);
2480         }
2481
2482         return 0;
2483
2484 err_cleanup_common:
2485         intel_engine_cleanup_common(engine);
2486         return ret;
2487 }
2488
2489 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2490 {
2491         logical_ring_setup(engine);
2492
2493         return logical_ring_init(engine);
2494 }
2495
2496 static u32
2497 make_rpcs(struct drm_i915_private *dev_priv)
2498 {
2499         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2500         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2501         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2502         u32 rpcs = 0;
2503
2504         /*
2505          * No explicit RPCS request is needed to ensure full
2506          * slice/subslice/EU enablement prior to Gen9.
2507         */
2508         if (INTEL_GEN(dev_priv) < 9)
2509                 return 0;
2510
2511         /*
2512          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2513          * wide and Icelake has up to eight subslices, specfial programming is
2514          * needed in order to correctly enable all subslices.
2515          *
2516          * According to documentation software must consider the configuration
2517          * as 2x4x8 and hardware will translate this to 1x8x8.
2518          *
2519          * Furthemore, even though SScount is three bits, maximum documented
2520          * value for it is four. From this some rules/restrictions follow:
2521          *
2522          * 1.
2523          * If enabled subslice count is greater than four, two whole slices must
2524          * be enabled instead.
2525          *
2526          * 2.
2527          * When more than one slice is enabled, hardware ignores the subslice
2528          * count altogether.
2529          *
2530          * From these restrictions it follows that it is not possible to enable
2531          * a count of subslices between the SScount maximum of four restriction,
2532          * and the maximum available number on a particular SKU. Either all
2533          * subslices are enabled, or a count between one and four on the first
2534          * slice.
2535          */
2536         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2537                 GEM_BUG_ON(subslices & 1);
2538
2539                 subslice_pg = false;
2540                 slices *= 2;
2541         }
2542
2543         /*
2544          * Starting in Gen9, render power gating can leave
2545          * slice/subslice/EU in a partially enabled state. We
2546          * must make an explicit request through RPCS for full
2547          * enablement.
2548         */
2549         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2550                 u32 mask, val = slices;
2551
2552                 if (INTEL_GEN(dev_priv) >= 11) {
2553                         mask = GEN11_RPCS_S_CNT_MASK;
2554                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2555                 } else {
2556                         mask = GEN8_RPCS_S_CNT_MASK;
2557                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2558                 }
2559
2560                 GEM_BUG_ON(val & ~mask);
2561                 val &= mask;
2562
2563                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2564         }
2565
2566         if (subslice_pg) {
2567                 u32 val = subslices;
2568
2569                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2570
2571                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2572                 val &= GEN8_RPCS_SS_CNT_MASK;
2573
2574                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2575         }
2576
2577         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2578                 u32 val;
2579
2580                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2581                       GEN8_RPCS_EU_MIN_SHIFT;
2582                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2583                 val &= GEN8_RPCS_EU_MIN_MASK;
2584
2585                 rpcs |= val;
2586
2587                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2588                       GEN8_RPCS_EU_MAX_SHIFT;
2589                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2590                 val &= GEN8_RPCS_EU_MAX_MASK;
2591
2592                 rpcs |= val;
2593
2594                 rpcs |= GEN8_RPCS_ENABLE;
2595         }
2596
2597         return rpcs;
2598 }
2599
2600 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2601 {
2602         u32 indirect_ctx_offset;
2603
2604         switch (INTEL_GEN(engine->i915)) {
2605         default:
2606                 MISSING_CASE(INTEL_GEN(engine->i915));
2607                 /* fall through */
2608         case 11:
2609                 indirect_ctx_offset =
2610                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2611                 break;
2612         case 10:
2613                 indirect_ctx_offset =
2614                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2615                 break;
2616         case 9:
2617                 indirect_ctx_offset =
2618                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2619                 break;
2620         case 8:
2621                 indirect_ctx_offset =
2622                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2623                 break;
2624         }
2625
2626         return indirect_ctx_offset;
2627 }
2628
2629 static void execlists_init_reg_state(u32 *regs,
2630                                      struct i915_gem_context *ctx,
2631                                      struct intel_engine_cs *engine,
2632                                      struct intel_ring *ring)
2633 {
2634         struct drm_i915_private *dev_priv = engine->i915;
2635         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2636         u32 base = engine->mmio_base;
2637         bool rcs = engine->class == RENDER_CLASS;
2638
2639         /* A context is actually a big batch buffer with several
2640          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2641          * values we are setting here are only for the first context restore:
2642          * on a subsequent save, the GPU will recreate this batchbuffer with new
2643          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2644          * we are not initializing here).
2645          */
2646         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2647                                  MI_LRI_FORCE_POSTED;
2648
2649         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2650                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2651                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2652         if (INTEL_GEN(dev_priv) < 11) {
2653                 regs[CTX_CONTEXT_CONTROL + 1] |=
2654                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2655                                             CTX_CTRL_RS_CTX_ENABLE);
2656         }
2657         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2658         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2659         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2660         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2661                 RING_CTL_SIZE(ring->size) | RING_VALID);
2662         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2663         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2664         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2665         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2666         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2667         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2668         if (rcs) {
2669                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2670
2671                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2672                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2673                         RING_INDIRECT_CTX_OFFSET(base), 0);
2674                 if (wa_ctx->indirect_ctx.size) {
2675                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2676
2677                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2678                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2679                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2680
2681                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2682                                 intel_lr_indirect_ctx_offset(engine) << 6;
2683                 }
2684
2685                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2686                 if (wa_ctx->per_ctx.size) {
2687                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2688
2689                         regs[CTX_BB_PER_CTX_PTR + 1] =
2690                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2691                 }
2692         }
2693
2694         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2695
2696         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2697         /* PDP values well be assigned later if needed */
2698         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2699         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2700         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2701         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2702         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2703         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2704         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2705         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2706
2707         if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2708                 /* 64b PPGTT (48bit canonical)
2709                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2710                  * other PDP Descriptors are ignored.
2711                  */
2712                 ASSIGN_CTX_PML4(ppgtt, regs);
2713         }
2714
2715         if (rcs) {
2716                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2717                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2718                         make_rpcs(dev_priv));
2719
2720                 i915_oa_init_reg_state(engine, ctx, regs);
2721         }
2722
2723         regs[CTX_END] = MI_BATCH_BUFFER_END;
2724         if (INTEL_GEN(dev_priv) >= 10)
2725                 regs[CTX_END] |= BIT(0);
2726 }
2727
2728 static int
2729 populate_lr_context(struct i915_gem_context *ctx,
2730                     struct drm_i915_gem_object *ctx_obj,
2731                     struct intel_engine_cs *engine,
2732                     struct intel_ring *ring)
2733 {
2734         void *vaddr;
2735         u32 *regs;
2736         int ret;
2737
2738         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2739         if (ret) {
2740                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2741                 return ret;
2742         }
2743
2744         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2745         if (IS_ERR(vaddr)) {
2746                 ret = PTR_ERR(vaddr);
2747                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2748                 return ret;
2749         }
2750         ctx_obj->mm.dirty = true;
2751
2752         if (engine->default_state) {
2753                 /*
2754                  * We only want to copy over the template context state;
2755                  * skipping over the headers reserved for GuC communication,
2756                  * leaving those as zero.
2757                  */
2758                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2759                 void *defaults;
2760
2761                 defaults = i915_gem_object_pin_map(engine->default_state,
2762                                                    I915_MAP_WB);
2763                 if (IS_ERR(defaults)) {
2764                         ret = PTR_ERR(defaults);
2765                         goto err_unpin_ctx;
2766                 }
2767
2768                 memcpy(vaddr + start, defaults + start, engine->context_size);
2769                 i915_gem_object_unpin_map(engine->default_state);
2770         }
2771
2772         /* The second page of the context object contains some fields which must
2773          * be set up prior to the first execution. */
2774         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2775         execlists_init_reg_state(regs, ctx, engine, ring);
2776         if (!engine->default_state)
2777                 regs[CTX_CONTEXT_CONTROL + 1] |=
2778                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2779         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2780                 regs[CTX_CONTEXT_CONTROL + 1] |=
2781                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2782                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2783
2784 err_unpin_ctx:
2785         i915_gem_object_unpin_map(ctx_obj);
2786         return ret;
2787 }
2788
2789 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2790                                             struct intel_engine_cs *engine,
2791                                             struct intel_context *ce)
2792 {
2793         struct drm_i915_gem_object *ctx_obj;
2794         struct i915_vma *vma;
2795         uint32_t context_size;
2796         struct intel_ring *ring;
2797         struct i915_timeline *timeline;
2798         int ret;
2799
2800         if (ce->state)
2801                 return 0;
2802
2803         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2804
2805         /*
2806          * Before the actual start of the context image, we insert a few pages
2807          * for our own use and for sharing with the GuC.
2808          */
2809         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2810
2811         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2812         if (IS_ERR(ctx_obj))
2813                 return PTR_ERR(ctx_obj);
2814
2815         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2816         if (IS_ERR(vma)) {
2817                 ret = PTR_ERR(vma);
2818                 goto error_deref_obj;
2819         }
2820
2821         timeline = i915_timeline_create(ctx->i915, ctx->name);
2822         if (IS_ERR(timeline)) {
2823                 ret = PTR_ERR(timeline);
2824                 goto error_deref_obj;
2825         }
2826
2827         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2828         i915_timeline_put(timeline);
2829         if (IS_ERR(ring)) {
2830                 ret = PTR_ERR(ring);
2831                 goto error_deref_obj;
2832         }
2833
2834         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2835         if (ret) {
2836                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2837                 goto error_ring_free;
2838         }
2839
2840         ce->ring = ring;
2841         ce->state = vma;
2842
2843         return 0;
2844
2845 error_ring_free:
2846         intel_ring_free(ring);
2847 error_deref_obj:
2848         i915_gem_object_put(ctx_obj);
2849         return ret;
2850 }
2851
2852 void intel_lr_context_resume(struct drm_i915_private *i915)
2853 {
2854         struct intel_engine_cs *engine;
2855         struct i915_gem_context *ctx;
2856         enum intel_engine_id id;
2857
2858         /*
2859          * Because we emit WA_TAIL_DWORDS there may be a disparity
2860          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2861          * that stored in context. As we only write new commands from
2862          * ce->ring->tail onwards, everything before that is junk. If the GPU
2863          * starts reading from its RING_HEAD from the context, it may try to
2864          * execute that junk and die.
2865          *
2866          * So to avoid that we reset the context images upon resume. For
2867          * simplicity, we just zero everything out.
2868          */
2869         list_for_each_entry(ctx, &i915->contexts.list, link) {
2870                 for_each_engine(engine, i915, id) {
2871                         struct intel_context *ce =
2872                                 to_intel_context(ctx, engine);
2873
2874                         if (!ce->state)
2875                                 continue;
2876
2877                         intel_ring_reset(ce->ring, 0);
2878
2879                         if (ce->pin_count) { /* otherwise done in context_pin */
2880                                 u32 *regs = ce->lrc_reg_state;
2881
2882                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2883                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2884                         }
2885                 }
2886         }
2887 }
2888
2889 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2890 #include "selftests/intel_lrc.c"
2891 #endif