Merge tag 'wireless-drivers-for-davem-2018-11-20' of git://git.kernel.org/pub/scm...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static struct i915_priolist *
263 lookup_priolist(struct intel_engine_cs *engine, int prio)
264 {
265         struct intel_engine_execlists * const execlists = &engine->execlists;
266         struct i915_priolist *p;
267         struct rb_node **parent, *rb;
268         bool first = true;
269
270         if (unlikely(execlists->no_priolist))
271                 prio = I915_PRIORITY_NORMAL;
272
273 find_priolist:
274         /* most positive priority is scheduled first, equal priorities fifo */
275         rb = NULL;
276         parent = &execlists->queue.rb_root.rb_node;
277         while (*parent) {
278                 rb = *parent;
279                 p = to_priolist(rb);
280                 if (prio > p->priority) {
281                         parent = &rb->rb_left;
282                 } else if (prio < p->priority) {
283                         parent = &rb->rb_right;
284                         first = false;
285                 } else {
286                         return p;
287                 }
288         }
289
290         if (prio == I915_PRIORITY_NORMAL) {
291                 p = &execlists->default_priolist;
292         } else {
293                 p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
294                 /* Convert an allocation failure to a priority bump */
295                 if (unlikely(!p)) {
296                         prio = I915_PRIORITY_NORMAL; /* recurses just once */
297
298                         /* To maintain ordering with all rendering, after an
299                          * allocation failure we have to disable all scheduling.
300                          * Requests will then be executed in fifo, and schedule
301                          * will ensure that dependencies are emitted in fifo.
302                          * There will be still some reordering with existing
303                          * requests, so if userspace lied about their
304                          * dependencies that reordering may be visible.
305                          */
306                         execlists->no_priolist = true;
307                         goto find_priolist;
308                 }
309         }
310
311         p->priority = prio;
312         INIT_LIST_HEAD(&p->requests);
313         rb_link_node(&p->node, rb, parent);
314         rb_insert_color_cached(&p->node, &execlists->queue, first);
315
316         return p;
317 }
318
319 static void unwind_wa_tail(struct i915_request *rq)
320 {
321         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
322         assert_ring_tail_valid(rq->ring, rq->tail);
323 }
324
325 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
326 {
327         struct i915_request *rq, *rn;
328         struct i915_priolist *uninitialized_var(p);
329         int last_prio = I915_PRIORITY_INVALID;
330
331         lockdep_assert_held(&engine->timeline.lock);
332
333         list_for_each_entry_safe_reverse(rq, rn,
334                                          &engine->timeline.requests,
335                                          link) {
336                 if (i915_request_completed(rq))
337                         return;
338
339                 __i915_request_unsubmit(rq);
340                 unwind_wa_tail(rq);
341
342                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
343                 if (rq_prio(rq) != last_prio) {
344                         last_prio = rq_prio(rq);
345                         p = lookup_priolist(engine, last_prio);
346                 }
347
348                 GEM_BUG_ON(p->priority != rq_prio(rq));
349                 list_add(&rq->sched.link, &p->requests);
350         }
351 }
352
353 void
354 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
355 {
356         struct intel_engine_cs *engine =
357                 container_of(execlists, typeof(*engine), execlists);
358         unsigned long flags;
359
360         spin_lock_irqsave(&engine->timeline.lock, flags);
361
362         __unwind_incomplete_requests(engine);
363
364         spin_unlock_irqrestore(&engine->timeline.lock, flags);
365 }
366
367 static inline void
368 execlists_context_status_change(struct i915_request *rq, unsigned long status)
369 {
370         /*
371          * Only used when GVT-g is enabled now. When GVT-g is disabled,
372          * The compiler should eliminate this function as dead-code.
373          */
374         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
375                 return;
376
377         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
378                                    status, rq);
379 }
380
381 inline void
382 execlists_user_begin(struct intel_engine_execlists *execlists,
383                      const struct execlist_port *port)
384 {
385         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
386 }
387
388 inline void
389 execlists_user_end(struct intel_engine_execlists *execlists)
390 {
391         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
392 }
393
394 static inline void
395 execlists_context_schedule_in(struct i915_request *rq)
396 {
397         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
398         intel_engine_context_in(rq->engine);
399 }
400
401 static inline void
402 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
403 {
404         intel_engine_context_out(rq->engine);
405         execlists_context_status_change(rq, status);
406         trace_i915_request_out(rq);
407 }
408
409 static void
410 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
411 {
412         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
413         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
414         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
415         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
416 }
417
418 static u64 execlists_update_context(struct i915_request *rq)
419 {
420         struct intel_context *ce = rq->hw_context;
421         struct i915_hw_ppgtt *ppgtt =
422                 rq->gem_context->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
423         u32 *reg_state = ce->lrc_reg_state;
424
425         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
426
427         /*
428          * True 32b PPGTT with dynamic page allocation: update PDP
429          * registers and point the unallocated PDPs to scratch page.
430          * PML4 is allocated during ppgtt init, so this is not needed
431          * in 48-bit mode.
432          */
433         if (ppgtt && !i915_vm_is_48bit(&ppgtt->vm))
434                 execlists_update_context_pdps(ppgtt, reg_state);
435
436         /*
437          * Make sure the context image is complete before we submit it to HW.
438          *
439          * Ostensibly, writes (including the WCB) should be flushed prior to
440          * an uncached write such as our mmio register access, the empirical
441          * evidence (esp. on Braswell) suggests that the WC write into memory
442          * may not be visible to the HW prior to the completion of the UC
443          * register write and that we may begin execution from the context
444          * before its image is complete leading to invalid PD chasing.
445          */
446         wmb();
447         return ce->lrc_desc;
448 }
449
450 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
451 {
452         if (execlists->ctrl_reg) {
453                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
454                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
455         } else {
456                 writel(upper_32_bits(desc), execlists->submit_reg);
457                 writel(lower_32_bits(desc), execlists->submit_reg);
458         }
459 }
460
461 static void execlists_submit_ports(struct intel_engine_cs *engine)
462 {
463         struct intel_engine_execlists *execlists = &engine->execlists;
464         struct execlist_port *port = execlists->port;
465         unsigned int n;
466
467         /*
468          * We can skip acquiring intel_runtime_pm_get() here as it was taken
469          * on our behalf by the request (see i915_gem_mark_busy()) and it will
470          * not be relinquished until the device is idle (see
471          * i915_gem_idle_work_handler()). As a precaution, we make sure
472          * that all ELSP are drained i.e. we have processed the CSB,
473          * before allowing ourselves to idle and calling intel_runtime_pm_put().
474          */
475         GEM_BUG_ON(!engine->i915->gt.awake);
476
477         /*
478          * ELSQ note: the submit queue is not cleared after being submitted
479          * to the HW so we need to make sure we always clean it up. This is
480          * currently ensured by the fact that we always write the same number
481          * of elsq entries, keep this in mind before changing the loop below.
482          */
483         for (n = execlists_num_ports(execlists); n--; ) {
484                 struct i915_request *rq;
485                 unsigned int count;
486                 u64 desc;
487
488                 rq = port_unpack(&port[n], &count);
489                 if (rq) {
490                         GEM_BUG_ON(count > !n);
491                         if (!count++)
492                                 execlists_context_schedule_in(rq);
493                         port_set(&port[n], port_pack(rq, count));
494                         desc = execlists_update_context(rq);
495                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
496
497                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
498                                   engine->name, n,
499                                   port[n].context_id, count,
500                                   rq->global_seqno,
501                                   rq->fence.context, rq->fence.seqno,
502                                   intel_engine_get_seqno(engine),
503                                   rq_prio(rq));
504                 } else {
505                         GEM_BUG_ON(!n);
506                         desc = 0;
507                 }
508
509                 write_desc(execlists, desc, n);
510         }
511
512         /* we need to manually load the submit queue */
513         if (execlists->ctrl_reg)
514                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
515
516         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
517 }
518
519 static bool ctx_single_port_submission(const struct intel_context *ce)
520 {
521         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
522                 i915_gem_context_force_single_submission(ce->gem_context));
523 }
524
525 static bool can_merge_ctx(const struct intel_context *prev,
526                           const struct intel_context *next)
527 {
528         if (prev != next)
529                 return false;
530
531         if (ctx_single_port_submission(prev))
532                 return false;
533
534         return true;
535 }
536
537 static void port_assign(struct execlist_port *port, struct i915_request *rq)
538 {
539         GEM_BUG_ON(rq == port_request(port));
540
541         if (port_isset(port))
542                 i915_request_put(port_request(port));
543
544         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
545 }
546
547 static void inject_preempt_context(struct intel_engine_cs *engine)
548 {
549         struct intel_engine_execlists *execlists = &engine->execlists;
550         struct intel_context *ce =
551                 to_intel_context(engine->i915->preempt_context, engine);
552         unsigned int n;
553
554         GEM_BUG_ON(execlists->preempt_complete_status !=
555                    upper_32_bits(ce->lrc_desc));
556
557         /*
558          * Switch to our empty preempt context so
559          * the state of the GPU is known (idle).
560          */
561         GEM_TRACE("%s\n", engine->name);
562         for (n = execlists_num_ports(execlists); --n; )
563                 write_desc(execlists, 0, n);
564
565         write_desc(execlists, ce->lrc_desc, n);
566
567         /* we need to manually load the submit queue */
568         if (execlists->ctrl_reg)
569                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
570
571         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
572         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
573 }
574
575 static void complete_preempt_context(struct intel_engine_execlists *execlists)
576 {
577         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
578
579         if (inject_preempt_hang(execlists))
580                 return;
581
582         execlists_cancel_port_requests(execlists);
583         __unwind_incomplete_requests(container_of(execlists,
584                                                   struct intel_engine_cs,
585                                                   execlists));
586 }
587
588 static void execlists_dequeue(struct intel_engine_cs *engine)
589 {
590         struct intel_engine_execlists * const execlists = &engine->execlists;
591         struct execlist_port *port = execlists->port;
592         const struct execlist_port * const last_port =
593                 &execlists->port[execlists->port_mask];
594         struct i915_request *last = port_request(port);
595         struct rb_node *rb;
596         bool submit = false;
597
598         /*
599          * Hardware submission is through 2 ports. Conceptually each port
600          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
601          * static for a context, and unique to each, so we only execute
602          * requests belonging to a single context from each ring. RING_HEAD
603          * is maintained by the CS in the context image, it marks the place
604          * where it got up to last time, and through RING_TAIL we tell the CS
605          * where we want to execute up to this time.
606          *
607          * In this list the requests are in order of execution. Consecutive
608          * requests from the same context are adjacent in the ringbuffer. We
609          * can combine these requests into a single RING_TAIL update:
610          *
611          *              RING_HEAD...req1...req2
612          *                                    ^- RING_TAIL
613          * since to execute req2 the CS must first execute req1.
614          *
615          * Our goal then is to point each port to the end of a consecutive
616          * sequence of requests as being the most optimal (fewest wake ups
617          * and context switches) submission.
618          */
619
620         if (last) {
621                 /*
622                  * Don't resubmit or switch until all outstanding
623                  * preemptions (lite-restore) are seen. Then we
624                  * know the next preemption status we see corresponds
625                  * to this ELSP update.
626                  */
627                 GEM_BUG_ON(!execlists_is_active(execlists,
628                                                 EXECLISTS_ACTIVE_USER));
629                 GEM_BUG_ON(!port_count(&port[0]));
630
631                 /*
632                  * If we write to ELSP a second time before the HW has had
633                  * a chance to respond to the previous write, we can confuse
634                  * the HW and hit "undefined behaviour". After writing to ELSP,
635                  * we must then wait until we see a context-switch event from
636                  * the HW to indicate that it has had a chance to respond.
637                  */
638                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
639                         return;
640
641                 if (need_preempt(engine, last, execlists->queue_priority)) {
642                         inject_preempt_context(engine);
643                         return;
644                 }
645
646                 /*
647                  * In theory, we could coalesce more requests onto
648                  * the second port (the first port is active, with
649                  * no preemptions pending). However, that means we
650                  * then have to deal with the possible lite-restore
651                  * of the second port (as we submit the ELSP, there
652                  * may be a context-switch) but also we may complete
653                  * the resubmission before the context-switch. Ergo,
654                  * coalescing onto the second port will cause a
655                  * preemption event, but we cannot predict whether
656                  * that will affect port[0] or port[1].
657                  *
658                  * If the second port is already active, we can wait
659                  * until the next context-switch before contemplating
660                  * new requests. The GPU will be busy and we should be
661                  * able to resubmit the new ELSP before it idles,
662                  * avoiding pipeline bubbles (momentary pauses where
663                  * the driver is unable to keep up the supply of new
664                  * work). However, we have to double check that the
665                  * priorities of the ports haven't been switch.
666                  */
667                 if (port_count(&port[1]))
668                         return;
669
670                 /*
671                  * WaIdleLiteRestore:bdw,skl
672                  * Apply the wa NOOPs to prevent
673                  * ring:HEAD == rq:TAIL as we resubmit the
674                  * request. See gen8_emit_breadcrumb() for
675                  * where we prepare the padding after the
676                  * end of the request.
677                  */
678                 last->tail = last->wa_tail;
679         }
680
681         while ((rb = rb_first_cached(&execlists->queue))) {
682                 struct i915_priolist *p = to_priolist(rb);
683                 struct i915_request *rq, *rn;
684
685                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
686                         /*
687                          * Can we combine this request with the current port?
688                          * It has to be the same context/ringbuffer and not
689                          * have any exceptions (e.g. GVT saying never to
690                          * combine contexts).
691                          *
692                          * If we can combine the requests, we can execute both
693                          * by updating the RING_TAIL to point to the end of the
694                          * second request, and so we never need to tell the
695                          * hardware about the first.
696                          */
697                         if (last &&
698                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
699                                 /*
700                                  * If we are on the second port and cannot
701                                  * combine this request with the last, then we
702                                  * are done.
703                                  */
704                                 if (port == last_port) {
705                                         __list_del_many(&p->requests,
706                                                         &rq->sched.link);
707                                         goto done;
708                                 }
709
710                                 /*
711                                  * If GVT overrides us we only ever submit
712                                  * port[0], leaving port[1] empty. Note that we
713                                  * also have to be careful that we don't queue
714                                  * the same context (even though a different
715                                  * request) to the second port.
716                                  */
717                                 if (ctx_single_port_submission(last->hw_context) ||
718                                     ctx_single_port_submission(rq->hw_context)) {
719                                         __list_del_many(&p->requests,
720                                                         &rq->sched.link);
721                                         goto done;
722                                 }
723
724                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
725
726                                 if (submit)
727                                         port_assign(port, last);
728                                 port++;
729
730                                 GEM_BUG_ON(port_isset(port));
731                         }
732
733                         INIT_LIST_HEAD(&rq->sched.link);
734                         __i915_request_submit(rq);
735                         trace_i915_request_in(rq, port_index(port, execlists));
736                         last = rq;
737                         submit = true;
738                 }
739
740                 rb_erase_cached(&p->node, &execlists->queue);
741                 INIT_LIST_HEAD(&p->requests);
742                 if (p->priority != I915_PRIORITY_NORMAL)
743                         kmem_cache_free(engine->i915->priorities, p);
744         }
745
746 done:
747         /*
748          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
749          *
750          * We choose queue_priority such that if we add a request of greater
751          * priority than this, we kick the submission tasklet to decide on
752          * the right order of submitting the requests to hardware. We must
753          * also be prepared to reorder requests as they are in-flight on the
754          * HW. We derive the queue_priority then as the first "hole" in
755          * the HW submission ports and if there are no available slots,
756          * the priority of the lowest executing request, i.e. last.
757          *
758          * When we do receive a higher priority request ready to run from the
759          * user, see queue_request(), the queue_priority is bumped to that
760          * request triggering preemption on the next dequeue (or subsequent
761          * interrupt for secondary ports).
762          */
763         execlists->queue_priority =
764                 port != execlists->port ? rq_prio(last) : INT_MIN;
765
766         if (submit) {
767                 port_assign(port, last);
768                 execlists_submit_ports(engine);
769         }
770
771         /* We must always keep the beast fed if we have work piled up */
772         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
773                    !port_isset(execlists->port));
774
775         /* Re-evaluate the executing context setup after each preemptive kick */
776         if (last)
777                 execlists_user_begin(execlists, execlists->port);
778
779         /* If the engine is now idle, so should be the flag; and vice versa. */
780         GEM_BUG_ON(execlists_is_active(&engine->execlists,
781                                        EXECLISTS_ACTIVE_USER) ==
782                    !port_isset(engine->execlists.port));
783 }
784
785 void
786 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
787 {
788         struct execlist_port *port = execlists->port;
789         unsigned int num_ports = execlists_num_ports(execlists);
790
791         while (num_ports-- && port_isset(port)) {
792                 struct i915_request *rq = port_request(port);
793
794                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
795                           rq->engine->name,
796                           (unsigned int)(port - execlists->port),
797                           rq->global_seqno,
798                           rq->fence.context, rq->fence.seqno,
799                           intel_engine_get_seqno(rq->engine));
800
801                 GEM_BUG_ON(!execlists->active);
802                 execlists_context_schedule_out(rq,
803                                                i915_request_completed(rq) ?
804                                                INTEL_CONTEXT_SCHEDULE_OUT :
805                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
806
807                 i915_request_put(rq);
808
809                 memset(port, 0, sizeof(*port));
810                 port++;
811         }
812
813         execlists_clear_all_active(execlists);
814 }
815
816 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
817 {
818         /*
819          * After a reset, the HW starts writing into CSB entry [0]. We
820          * therefore have to set our HEAD pointer back one entry so that
821          * the *first* entry we check is entry 0. To complicate this further,
822          * as we don't wait for the first interrupt after reset, we have to
823          * fake the HW write to point back to the last entry so that our
824          * inline comparison of our cached head position against the last HW
825          * write works even before the first interrupt.
826          */
827         execlists->csb_head = execlists->csb_write_reset;
828         WRITE_ONCE(*execlists->csb_write, execlists->csb_write_reset);
829 }
830
831 static void nop_submission_tasklet(unsigned long data)
832 {
833         /* The driver is wedged; don't process any more events. */
834 }
835
836 static void execlists_cancel_requests(struct intel_engine_cs *engine)
837 {
838         struct intel_engine_execlists * const execlists = &engine->execlists;
839         struct i915_request *rq, *rn;
840         struct rb_node *rb;
841         unsigned long flags;
842
843         GEM_TRACE("%s current %d\n",
844                   engine->name, intel_engine_get_seqno(engine));
845
846         /*
847          * Before we call engine->cancel_requests(), we should have exclusive
848          * access to the submission state. This is arranged for us by the
849          * caller disabling the interrupt generation, the tasklet and other
850          * threads that may then access the same state, giving us a free hand
851          * to reset state. However, we still need to let lockdep be aware that
852          * we know this state may be accessed in hardirq context, so we
853          * disable the irq around this manipulation and we want to keep
854          * the spinlock focused on its duties and not accidentally conflate
855          * coverage to the submission's irq state. (Similarly, although we
856          * shouldn't need to disable irq around the manipulation of the
857          * submission's irq state, we also wish to remind ourselves that
858          * it is irq state.)
859          */
860         spin_lock_irqsave(&engine->timeline.lock, flags);
861
862         /* Cancel the requests on the HW and clear the ELSP tracker. */
863         execlists_cancel_port_requests(execlists);
864         execlists_user_end(execlists);
865
866         /* Mark all executing requests as skipped. */
867         list_for_each_entry(rq, &engine->timeline.requests, link) {
868                 GEM_BUG_ON(!rq->global_seqno);
869                 if (!i915_request_completed(rq))
870                         dma_fence_set_error(&rq->fence, -EIO);
871         }
872
873         /* Flush the queued requests to the timeline list (for retiring). */
874         while ((rb = rb_first_cached(&execlists->queue))) {
875                 struct i915_priolist *p = to_priolist(rb);
876
877                 list_for_each_entry_safe(rq, rn, &p->requests, sched.link) {
878                         INIT_LIST_HEAD(&rq->sched.link);
879
880                         dma_fence_set_error(&rq->fence, -EIO);
881                         __i915_request_submit(rq);
882                 }
883
884                 rb_erase_cached(&p->node, &execlists->queue);
885                 INIT_LIST_HEAD(&p->requests);
886                 if (p->priority != I915_PRIORITY_NORMAL)
887                         kmem_cache_free(engine->i915->priorities, p);
888         }
889
890         /* Remaining _unready_ requests will be nop'ed when submitted */
891
892         execlists->queue_priority = INT_MIN;
893         execlists->queue = RB_ROOT_CACHED;
894         GEM_BUG_ON(port_isset(execlists->port));
895
896         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
897         execlists->tasklet.func = nop_submission_tasklet;
898
899         spin_unlock_irqrestore(&engine->timeline.lock, flags);
900 }
901
902 static inline bool
903 reset_in_progress(const struct intel_engine_execlists *execlists)
904 {
905         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
906 }
907
908 static void process_csb(struct intel_engine_cs *engine)
909 {
910         struct intel_engine_execlists * const execlists = &engine->execlists;
911         struct execlist_port *port = execlists->port;
912         const u32 * const buf = execlists->csb_status;
913         u8 head, tail;
914
915         /*
916          * Note that csb_write, csb_status may be either in HWSP or mmio.
917          * When reading from the csb_write mmio register, we have to be
918          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
919          * the low 4bits. As it happens we know the next 4bits are always
920          * zero and so we can simply masked off the low u8 of the register
921          * and treat it identically to reading from the HWSP (without having
922          * to use explicit shifting and masking, and probably bifurcating
923          * the code to handle the legacy mmio read).
924          */
925         head = execlists->csb_head;
926         tail = READ_ONCE(*execlists->csb_write);
927         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
928         if (unlikely(head == tail))
929                 return;
930
931         /*
932          * Hopefully paired with a wmb() in HW!
933          *
934          * We must complete the read of the write pointer before any reads
935          * from the CSB, so that we do not see stale values. Without an rmb
936          * (lfence) the HW may speculatively perform the CSB[] reads *before*
937          * we perform the READ_ONCE(*csb_write).
938          */
939         rmb();
940
941         do {
942                 struct i915_request *rq;
943                 unsigned int status;
944                 unsigned int count;
945
946                 if (++head == GEN8_CSB_ENTRIES)
947                         head = 0;
948
949                 /*
950                  * We are flying near dragons again.
951                  *
952                  * We hold a reference to the request in execlist_port[]
953                  * but no more than that. We are operating in softirq
954                  * context and so cannot hold any mutex or sleep. That
955                  * prevents us stopping the requests we are processing
956                  * in port[] from being retired simultaneously (the
957                  * breadcrumb will be complete before we see the
958                  * context-switch). As we only hold the reference to the
959                  * request, any pointer chasing underneath the request
960                  * is subject to a potential use-after-free. Thus we
961                  * store all of the bookkeeping within port[] as
962                  * required, and avoid using unguarded pointers beneath
963                  * request itself. The same applies to the atomic
964                  * status notifier.
965                  */
966
967                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
968                           engine->name, head,
969                           buf[2 * head + 0], buf[2 * head + 1],
970                           execlists->active);
971
972                 status = buf[2 * head];
973                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
974                               GEN8_CTX_STATUS_PREEMPTED))
975                         execlists_set_active(execlists,
976                                              EXECLISTS_ACTIVE_HWACK);
977                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
978                         execlists_clear_active(execlists,
979                                                EXECLISTS_ACTIVE_HWACK);
980
981                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
982                         continue;
983
984                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
985                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
986
987                 if (status & GEN8_CTX_STATUS_COMPLETE &&
988                     buf[2*head + 1] == execlists->preempt_complete_status) {
989                         GEM_TRACE("%s preempt-idle\n", engine->name);
990                         complete_preempt_context(execlists);
991                         continue;
992                 }
993
994                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
995                     execlists_is_active(execlists,
996                                         EXECLISTS_ACTIVE_PREEMPT))
997                         continue;
998
999                 GEM_BUG_ON(!execlists_is_active(execlists,
1000                                                 EXECLISTS_ACTIVE_USER));
1001
1002                 rq = port_unpack(port, &count);
1003                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
1004                           engine->name,
1005                           port->context_id, count,
1006                           rq ? rq->global_seqno : 0,
1007                           rq ? rq->fence.context : 0,
1008                           rq ? rq->fence.seqno : 0,
1009                           intel_engine_get_seqno(engine),
1010                           rq ? rq_prio(rq) : 0);
1011
1012                 /* Check the context/desc id for this event matches */
1013                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1014
1015                 GEM_BUG_ON(count == 0);
1016                 if (--count == 0) {
1017                         /*
1018                          * On the final event corresponding to the
1019                          * submission of this context, we expect either
1020                          * an element-switch event or a completion
1021                          * event (and on completion, the active-idle
1022                          * marker). No more preemptions, lite-restore
1023                          * or otherwise.
1024                          */
1025                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1026                         GEM_BUG_ON(port_isset(&port[1]) &&
1027                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1028                         GEM_BUG_ON(!port_isset(&port[1]) &&
1029                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1030
1031                         /*
1032                          * We rely on the hardware being strongly
1033                          * ordered, that the breadcrumb write is
1034                          * coherent (visible from the CPU) before the
1035                          * user interrupt and CSB is processed.
1036                          */
1037                         GEM_BUG_ON(!i915_request_completed(rq));
1038
1039                         execlists_context_schedule_out(rq,
1040                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1041                         i915_request_put(rq);
1042
1043                         GEM_TRACE("%s completed ctx=%d\n",
1044                                   engine->name, port->context_id);
1045
1046                         port = execlists_port_complete(execlists, port);
1047                         if (port_isset(port))
1048                                 execlists_user_begin(execlists, port);
1049                         else
1050                                 execlists_user_end(execlists);
1051                 } else {
1052                         port_set(port, port_pack(rq, count));
1053                 }
1054         } while (head != tail);
1055
1056         execlists->csb_head = head;
1057 }
1058
1059 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1060 {
1061         lockdep_assert_held(&engine->timeline.lock);
1062
1063         process_csb(engine);
1064         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1065                 execlists_dequeue(engine);
1066 }
1067
1068 /*
1069  * Check the unread Context Status Buffers and manage the submission of new
1070  * contexts to the ELSP accordingly.
1071  */
1072 static void execlists_submission_tasklet(unsigned long data)
1073 {
1074         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1075         unsigned long flags;
1076
1077         GEM_TRACE("%s awake?=%d, active=%x\n",
1078                   engine->name,
1079                   engine->i915->gt.awake,
1080                   engine->execlists.active);
1081
1082         spin_lock_irqsave(&engine->timeline.lock, flags);
1083         __execlists_submission_tasklet(engine);
1084         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1085 }
1086
1087 static void queue_request(struct intel_engine_cs *engine,
1088                           struct i915_sched_node *node,
1089                           int prio)
1090 {
1091         list_add_tail(&node->link,
1092                       &lookup_priolist(engine, prio)->requests);
1093 }
1094
1095 static void __update_queue(struct intel_engine_cs *engine, int prio)
1096 {
1097         engine->execlists.queue_priority = prio;
1098 }
1099
1100 static void __submit_queue_imm(struct intel_engine_cs *engine)
1101 {
1102         struct intel_engine_execlists * const execlists = &engine->execlists;
1103
1104         if (reset_in_progress(execlists))
1105                 return; /* defer until we restart the engine following reset */
1106
1107         if (execlists->tasklet.func == execlists_submission_tasklet)
1108                 __execlists_submission_tasklet(engine);
1109         else
1110                 tasklet_hi_schedule(&execlists->tasklet);
1111 }
1112
1113 static void submit_queue(struct intel_engine_cs *engine, int prio)
1114 {
1115         if (prio > engine->execlists.queue_priority) {
1116                 __update_queue(engine, prio);
1117                 __submit_queue_imm(engine);
1118         }
1119 }
1120
1121 static void execlists_submit_request(struct i915_request *request)
1122 {
1123         struct intel_engine_cs *engine = request->engine;
1124         unsigned long flags;
1125
1126         /* Will be called from irq-context when using foreign fences. */
1127         spin_lock_irqsave(&engine->timeline.lock, flags);
1128
1129         queue_request(engine, &request->sched, rq_prio(request));
1130
1131         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1132         GEM_BUG_ON(list_empty(&request->sched.link));
1133
1134         submit_queue(engine, rq_prio(request));
1135
1136         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1137 }
1138
1139 static struct i915_request *sched_to_request(struct i915_sched_node *node)
1140 {
1141         return container_of(node, struct i915_request, sched);
1142 }
1143
1144 static struct intel_engine_cs *
1145 sched_lock_engine(struct i915_sched_node *node, struct intel_engine_cs *locked)
1146 {
1147         struct intel_engine_cs *engine = sched_to_request(node)->engine;
1148
1149         GEM_BUG_ON(!locked);
1150
1151         if (engine != locked) {
1152                 spin_unlock(&locked->timeline.lock);
1153                 spin_lock(&engine->timeline.lock);
1154         }
1155
1156         return engine;
1157 }
1158
1159 static void execlists_schedule(struct i915_request *request,
1160                                const struct i915_sched_attr *attr)
1161 {
1162         struct i915_priolist *uninitialized_var(pl);
1163         struct intel_engine_cs *engine, *last;
1164         struct i915_dependency *dep, *p;
1165         struct i915_dependency stack;
1166         const int prio = attr->priority;
1167         LIST_HEAD(dfs);
1168
1169         GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1170
1171         if (i915_request_completed(request))
1172                 return;
1173
1174         if (prio <= READ_ONCE(request->sched.attr.priority))
1175                 return;
1176
1177         /* Need BKL in order to use the temporary link inside i915_dependency */
1178         lockdep_assert_held(&request->i915->drm.struct_mutex);
1179
1180         stack.signaler = &request->sched;
1181         list_add(&stack.dfs_link, &dfs);
1182
1183         /*
1184          * Recursively bump all dependent priorities to match the new request.
1185          *
1186          * A naive approach would be to use recursion:
1187          * static void update_priorities(struct i915_sched_node *node, prio) {
1188          *      list_for_each_entry(dep, &node->signalers_list, signal_link)
1189          *              update_priorities(dep->signal, prio)
1190          *      queue_request(node);
1191          * }
1192          * but that may have unlimited recursion depth and so runs a very
1193          * real risk of overunning the kernel stack. Instead, we build
1194          * a flat list of all dependencies starting with the current request.
1195          * As we walk the list of dependencies, we add all of its dependencies
1196          * to the end of the list (this may include an already visited
1197          * request) and continue to walk onwards onto the new dependencies. The
1198          * end result is a topological list of requests in reverse order, the
1199          * last element in the list is the request we must execute first.
1200          */
1201         list_for_each_entry(dep, &dfs, dfs_link) {
1202                 struct i915_sched_node *node = dep->signaler;
1203
1204                 /*
1205                  * Within an engine, there can be no cycle, but we may
1206                  * refer to the same dependency chain multiple times
1207                  * (redundant dependencies are not eliminated) and across
1208                  * engines.
1209                  */
1210                 list_for_each_entry(p, &node->signalers_list, signal_link) {
1211                         GEM_BUG_ON(p == dep); /* no cycles! */
1212
1213                         if (i915_sched_node_signaled(p->signaler))
1214                                 continue;
1215
1216                         GEM_BUG_ON(p->signaler->attr.priority < node->attr.priority);
1217                         if (prio > READ_ONCE(p->signaler->attr.priority))
1218                                 list_move_tail(&p->dfs_link, &dfs);
1219                 }
1220         }
1221
1222         /*
1223          * If we didn't need to bump any existing priorities, and we haven't
1224          * yet submitted this request (i.e. there is no potential race with
1225          * execlists_submit_request()), we can set our own priority and skip
1226          * acquiring the engine locks.
1227          */
1228         if (request->sched.attr.priority == I915_PRIORITY_INVALID) {
1229                 GEM_BUG_ON(!list_empty(&request->sched.link));
1230                 request->sched.attr = *attr;
1231                 if (stack.dfs_link.next == stack.dfs_link.prev)
1232                         return;
1233                 __list_del_entry(&stack.dfs_link);
1234         }
1235
1236         last = NULL;
1237         engine = request->engine;
1238         spin_lock_irq(&engine->timeline.lock);
1239
1240         /* Fifo and depth-first replacement ensure our deps execute before us */
1241         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1242                 struct i915_sched_node *node = dep->signaler;
1243
1244                 INIT_LIST_HEAD(&dep->dfs_link);
1245
1246                 engine = sched_lock_engine(node, engine);
1247
1248                 if (prio <= node->attr.priority)
1249                         continue;
1250
1251                 node->attr.priority = prio;
1252                 if (!list_empty(&node->link)) {
1253                         if (last != engine) {
1254                                 pl = lookup_priolist(engine, prio);
1255                                 last = engine;
1256                         }
1257                         GEM_BUG_ON(pl->priority != prio);
1258                         list_move_tail(&node->link, &pl->requests);
1259                 }
1260
1261                 if (prio > engine->execlists.queue_priority &&
1262                     i915_sw_fence_done(&sched_to_request(node)->submit)) {
1263                         /* defer submission until after all of our updates */
1264                         __update_queue(engine, prio);
1265                         tasklet_hi_schedule(&engine->execlists.tasklet);
1266                 }
1267         }
1268
1269         spin_unlock_irq(&engine->timeline.lock);
1270 }
1271
1272 static void execlists_context_destroy(struct intel_context *ce)
1273 {
1274         GEM_BUG_ON(ce->pin_count);
1275
1276         if (!ce->state)
1277                 return;
1278
1279         intel_ring_free(ce->ring);
1280
1281         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1282         i915_gem_object_put(ce->state->obj);
1283 }
1284
1285 static void execlists_context_unpin(struct intel_context *ce)
1286 {
1287         i915_gem_context_unpin_hw_id(ce->gem_context);
1288
1289         intel_ring_unpin(ce->ring);
1290
1291         ce->state->obj->pin_global--;
1292         i915_gem_object_unpin_map(ce->state->obj);
1293         i915_vma_unpin(ce->state);
1294
1295         i915_gem_context_put(ce->gem_context);
1296 }
1297
1298 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1299 {
1300         unsigned int flags;
1301         int err;
1302
1303         /*
1304          * Clear this page out of any CPU caches for coherent swap-in/out.
1305          * We only want to do this on the first bind so that we do not stall
1306          * on an active context (which by nature is already on the GPU).
1307          */
1308         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1309                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1310                 if (err)
1311                         return err;
1312         }
1313
1314         flags = PIN_GLOBAL | PIN_HIGH;
1315         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1316
1317         return i915_vma_pin(vma, 0, 0, flags);
1318 }
1319
1320 static struct intel_context *
1321 __execlists_context_pin(struct intel_engine_cs *engine,
1322                         struct i915_gem_context *ctx,
1323                         struct intel_context *ce)
1324 {
1325         void *vaddr;
1326         int ret;
1327
1328         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1329         if (ret)
1330                 goto err;
1331         GEM_BUG_ON(!ce->state);
1332
1333         ret = __context_pin(ctx, ce->state);
1334         if (ret)
1335                 goto err;
1336
1337         vaddr = i915_gem_object_pin_map(ce->state->obj,
1338                                         i915_coherent_map_type(ctx->i915) |
1339                                         I915_MAP_OVERRIDE);
1340         if (IS_ERR(vaddr)) {
1341                 ret = PTR_ERR(vaddr);
1342                 goto unpin_vma;
1343         }
1344
1345         ret = intel_ring_pin(ce->ring);
1346         if (ret)
1347                 goto unpin_map;
1348
1349         ret = i915_gem_context_pin_hw_id(ctx);
1350         if (ret)
1351                 goto unpin_ring;
1352
1353         intel_lr_context_descriptor_update(ctx, engine, ce);
1354
1355         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1356
1357         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1358         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1359                 i915_ggtt_offset(ce->ring->vma);
1360         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1361         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1362
1363         ce->state->obj->pin_global++;
1364         i915_gem_context_get(ctx);
1365         return ce;
1366
1367 unpin_ring:
1368         intel_ring_unpin(ce->ring);
1369 unpin_map:
1370         i915_gem_object_unpin_map(ce->state->obj);
1371 unpin_vma:
1372         __i915_vma_unpin(ce->state);
1373 err:
1374         ce->pin_count = 0;
1375         return ERR_PTR(ret);
1376 }
1377
1378 static const struct intel_context_ops execlists_context_ops = {
1379         .unpin = execlists_context_unpin,
1380         .destroy = execlists_context_destroy,
1381 };
1382
1383 static struct intel_context *
1384 execlists_context_pin(struct intel_engine_cs *engine,
1385                       struct i915_gem_context *ctx)
1386 {
1387         struct intel_context *ce = to_intel_context(ctx, engine);
1388
1389         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1390
1391         if (likely(ce->pin_count++))
1392                 return ce;
1393         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1394
1395         ce->ops = &execlists_context_ops;
1396
1397         return __execlists_context_pin(engine, ctx, ce);
1398 }
1399
1400 static int execlists_request_alloc(struct i915_request *request)
1401 {
1402         int ret;
1403
1404         GEM_BUG_ON(!request->hw_context->pin_count);
1405
1406         /* Flush enough space to reduce the likelihood of waiting after
1407          * we start building the request - in which case we will just
1408          * have to repeat work.
1409          */
1410         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1411
1412         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1413         if (ret)
1414                 return ret;
1415
1416         /* Note that after this point, we have committed to using
1417          * this request as it is being used to both track the
1418          * state of engine initialisation and liveness of the
1419          * golden renderstate above. Think twice before you try
1420          * to cancel/unwind this request now.
1421          */
1422
1423         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1424         return 0;
1425 }
1426
1427 /*
1428  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1429  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1430  * but there is a slight complication as this is applied in WA batch where the
1431  * values are only initialized once so we cannot take register value at the
1432  * beginning and reuse it further; hence we save its value to memory, upload a
1433  * constant value with bit21 set and then we restore it back with the saved value.
1434  * To simplify the WA, a constant value is formed by using the default value
1435  * of this register. This shouldn't be a problem because we are only modifying
1436  * it for a short period and this batch in non-premptible. We can ofcourse
1437  * use additional instructions that read the actual value of the register
1438  * at that time and set our bit of interest but it makes the WA complicated.
1439  *
1440  * This WA is also required for Gen9 so extracting as a function avoids
1441  * code duplication.
1442  */
1443 static u32 *
1444 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1445 {
1446         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1447         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1448         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1449         *batch++ = 0;
1450
1451         *batch++ = MI_LOAD_REGISTER_IMM(1);
1452         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1453         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1454
1455         batch = gen8_emit_pipe_control(batch,
1456                                        PIPE_CONTROL_CS_STALL |
1457                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1458                                        0);
1459
1460         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1461         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1462         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
1463         *batch++ = 0;
1464
1465         return batch;
1466 }
1467
1468 /*
1469  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1470  * initialized at the beginning and shared across all contexts but this field
1471  * helps us to have multiple batches at different offsets and select them based
1472  * on a criteria. At the moment this batch always start at the beginning of the page
1473  * and at this point we don't have multiple wa_ctx batch buffers.
1474  *
1475  * The number of WA applied are not known at the beginning; we use this field
1476  * to return the no of DWORDS written.
1477  *
1478  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1479  * so it adds NOOPs as padding to make it cacheline aligned.
1480  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1481  * makes a complete batch buffer.
1482  */
1483 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1484 {
1485         /* WaDisableCtxRestoreArbitration:bdw,chv */
1486         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1487
1488         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1489         if (IS_BROADWELL(engine->i915))
1490                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1491
1492         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1493         /* Actual scratch location is at 128 bytes offset */
1494         batch = gen8_emit_pipe_control(batch,
1495                                        PIPE_CONTROL_FLUSH_L3 |
1496                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1497                                        PIPE_CONTROL_CS_STALL |
1498                                        PIPE_CONTROL_QW_WRITE,
1499                                        i915_ggtt_offset(engine->scratch) +
1500                                        2 * CACHELINE_BYTES);
1501
1502         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1503
1504         /* Pad to end of cacheline */
1505         while ((unsigned long)batch % CACHELINE_BYTES)
1506                 *batch++ = MI_NOOP;
1507
1508         /*
1509          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1510          * execution depends on the length specified in terms of cache lines
1511          * in the register CTX_RCS_INDIRECT_CTX
1512          */
1513
1514         return batch;
1515 }
1516
1517 struct lri {
1518         i915_reg_t reg;
1519         u32 value;
1520 };
1521
1522 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1523 {
1524         GEM_BUG_ON(!count || count > 63);
1525
1526         *batch++ = MI_LOAD_REGISTER_IMM(count);
1527         do {
1528                 *batch++ = i915_mmio_reg_offset(lri->reg);
1529                 *batch++ = lri->value;
1530         } while (lri++, --count);
1531         *batch++ = MI_NOOP;
1532
1533         return batch;
1534 }
1535
1536 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1537 {
1538         static const struct lri lri[] = {
1539                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1540                 {
1541                         COMMON_SLICE_CHICKEN2,
1542                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1543                                        0),
1544                 },
1545
1546                 /* BSpec: 11391 */
1547                 {
1548                         FF_SLICE_CHICKEN,
1549                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1550                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1551                 },
1552
1553                 /* BSpec: 11299 */
1554                 {
1555                         _3D_CHICKEN3,
1556                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1557                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1558                 }
1559         };
1560
1561         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1562
1563         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1564         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1565
1566         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1567
1568         /* WaClearSlmSpaceAtContextSwitch:kbl */
1569         /* Actual scratch location is at 128 bytes offset */
1570         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1571                 batch = gen8_emit_pipe_control(batch,
1572                                                PIPE_CONTROL_FLUSH_L3 |
1573                                                PIPE_CONTROL_GLOBAL_GTT_IVB |
1574                                                PIPE_CONTROL_CS_STALL |
1575                                                PIPE_CONTROL_QW_WRITE,
1576                                                i915_ggtt_offset(engine->scratch)
1577                                                + 2 * CACHELINE_BYTES);
1578         }
1579
1580         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1581         if (HAS_POOLED_EU(engine->i915)) {
1582                 /*
1583                  * EU pool configuration is setup along with golden context
1584                  * during context initialization. This value depends on
1585                  * device type (2x6 or 3x6) and needs to be updated based
1586                  * on which subslice is disabled especially for 2x6
1587                  * devices, however it is safe to load default
1588                  * configuration of 3x6 device instead of masking off
1589                  * corresponding bits because HW ignores bits of a disabled
1590                  * subslice and drops down to appropriate config. Please
1591                  * see render_state_setup() in i915_gem_render_state.c for
1592                  * possible configurations, to avoid duplication they are
1593                  * not shown here again.
1594                  */
1595                 *batch++ = GEN9_MEDIA_POOL_STATE;
1596                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1597                 *batch++ = 0x00777000;
1598                 *batch++ = 0;
1599                 *batch++ = 0;
1600                 *batch++ = 0;
1601         }
1602
1603         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1604
1605         /* Pad to end of cacheline */
1606         while ((unsigned long)batch % CACHELINE_BYTES)
1607                 *batch++ = MI_NOOP;
1608
1609         return batch;
1610 }
1611
1612 static u32 *
1613 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1614 {
1615         int i;
1616
1617         /*
1618          * WaPipeControlBefore3DStateSamplePattern: cnl
1619          *
1620          * Ensure the engine is idle prior to programming a
1621          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1622          */
1623         batch = gen8_emit_pipe_control(batch,
1624                                        PIPE_CONTROL_CS_STALL,
1625                                        0);
1626         /*
1627          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1628          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1629          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1630          * confusing. Since gen8_emit_pipe_control() already advances the
1631          * batch by 6 dwords, we advance the other 10 here, completing a
1632          * cacheline. It's not clear if the workaround requires this padding
1633          * before other commands, or if it's just the regular padding we would
1634          * already have for the workaround bb, so leave it here for now.
1635          */
1636         for (i = 0; i < 10; i++)
1637                 *batch++ = MI_NOOP;
1638
1639         /* Pad to end of cacheline */
1640         while ((unsigned long)batch % CACHELINE_BYTES)
1641                 *batch++ = MI_NOOP;
1642
1643         return batch;
1644 }
1645
1646 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1647
1648 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1649 {
1650         struct drm_i915_gem_object *obj;
1651         struct i915_vma *vma;
1652         int err;
1653
1654         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1655         if (IS_ERR(obj))
1656                 return PTR_ERR(obj);
1657
1658         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1659         if (IS_ERR(vma)) {
1660                 err = PTR_ERR(vma);
1661                 goto err;
1662         }
1663
1664         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1665         if (err)
1666                 goto err;
1667
1668         engine->wa_ctx.vma = vma;
1669         return 0;
1670
1671 err:
1672         i915_gem_object_put(obj);
1673         return err;
1674 }
1675
1676 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1677 {
1678         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1679 }
1680
1681 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1682
1683 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1684 {
1685         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1686         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1687                                             &wa_ctx->per_ctx };
1688         wa_bb_func_t wa_bb_fn[2];
1689         struct page *page;
1690         void *batch, *batch_ptr;
1691         unsigned int i;
1692         int ret;
1693
1694         if (GEM_WARN_ON(engine->id != RCS))
1695                 return -EINVAL;
1696
1697         switch (INTEL_GEN(engine->i915)) {
1698         case 11:
1699                 return 0;
1700         case 10:
1701                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1702                 wa_bb_fn[1] = NULL;
1703                 break;
1704         case 9:
1705                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1706                 wa_bb_fn[1] = NULL;
1707                 break;
1708         case 8:
1709                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1710                 wa_bb_fn[1] = NULL;
1711                 break;
1712         default:
1713                 MISSING_CASE(INTEL_GEN(engine->i915));
1714                 return 0;
1715         }
1716
1717         ret = lrc_setup_wa_ctx(engine);
1718         if (ret) {
1719                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1720                 return ret;
1721         }
1722
1723         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1724         batch = batch_ptr = kmap_atomic(page);
1725
1726         /*
1727          * Emit the two workaround batch buffers, recording the offset from the
1728          * start of the workaround batch buffer object for each and their
1729          * respective sizes.
1730          */
1731         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1732                 wa_bb[i]->offset = batch_ptr - batch;
1733                 if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1734                                             CACHELINE_BYTES))) {
1735                         ret = -EINVAL;
1736                         break;
1737                 }
1738                 if (wa_bb_fn[i])
1739                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1740                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1741         }
1742
1743         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1744
1745         kunmap_atomic(batch);
1746         if (ret)
1747                 lrc_destroy_wa_ctx(engine);
1748
1749         return ret;
1750 }
1751
1752 static void enable_execlists(struct intel_engine_cs *engine)
1753 {
1754         struct drm_i915_private *dev_priv = engine->i915;
1755
1756         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1757
1758         /*
1759          * Make sure we're not enabling the new 12-deep CSB
1760          * FIFO as that requires a slightly updated handling
1761          * in the ctx switch irq. Since we're currently only
1762          * using only 2 elements of the enhanced execlists the
1763          * deeper FIFO it's not needed and it's not worth adding
1764          * more statements to the irq handler to support it.
1765          */
1766         if (INTEL_GEN(dev_priv) >= 11)
1767                 I915_WRITE(RING_MODE_GEN7(engine),
1768                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1769         else
1770                 I915_WRITE(RING_MODE_GEN7(engine),
1771                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1772
1773         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1774                    _MASKED_BIT_DISABLE(STOP_RING));
1775
1776         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1777                    engine->status_page.ggtt_offset);
1778         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1779 }
1780
1781 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1782 {
1783         struct drm_i915_private *dev_priv = engine->i915;
1784         bool unexpected = false;
1785
1786         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1787                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1788                 unexpected = true;
1789         }
1790
1791         return unexpected;
1792 }
1793
1794 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1795 {
1796         intel_mocs_init_engine(engine);
1797
1798         intel_engine_reset_breadcrumbs(engine);
1799
1800         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1801                 struct drm_printer p = drm_debug_printer(__func__);
1802
1803                 intel_engine_dump(engine, &p, NULL);
1804         }
1805
1806         enable_execlists(engine);
1807
1808         return 0;
1809 }
1810
1811 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1812 {
1813         struct drm_i915_private *dev_priv = engine->i915;
1814         int ret;
1815
1816         ret = gen8_init_common_ring(engine);
1817         if (ret)
1818                 return ret;
1819
1820         intel_whitelist_workarounds_apply(engine);
1821
1822         /* We need to disable the AsyncFlip performance optimisations in order
1823          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1824          * programmed to '1' on all products.
1825          *
1826          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1827          */
1828         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1829
1830         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1831
1832         return 0;
1833 }
1834
1835 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1836 {
1837         int ret;
1838
1839         ret = gen8_init_common_ring(engine);
1840         if (ret)
1841                 return ret;
1842
1843         intel_whitelist_workarounds_apply(engine);
1844
1845         return 0;
1846 }
1847
1848 static struct i915_request *
1849 execlists_reset_prepare(struct intel_engine_cs *engine)
1850 {
1851         struct intel_engine_execlists * const execlists = &engine->execlists;
1852         struct i915_request *request, *active;
1853         unsigned long flags;
1854
1855         GEM_TRACE("%s: depth<-%d\n", engine->name,
1856                   atomic_read(&execlists->tasklet.count));
1857
1858         /*
1859          * Prevent request submission to the hardware until we have
1860          * completed the reset in i915_gem_reset_finish(). If a request
1861          * is completed by one engine, it may then queue a request
1862          * to a second via its execlists->tasklet *just* as we are
1863          * calling engine->init_hw() and also writing the ELSP.
1864          * Turning off the execlists->tasklet until the reset is over
1865          * prevents the race.
1866          */
1867         __tasklet_disable_sync_once(&execlists->tasklet);
1868
1869         spin_lock_irqsave(&engine->timeline.lock, flags);
1870
1871         /*
1872          * We want to flush the pending context switches, having disabled
1873          * the tasklet above, we can assume exclusive access to the execlists.
1874          * For this allows us to catch up with an inflight preemption event,
1875          * and avoid blaming an innocent request if the stall was due to the
1876          * preemption itself.
1877          */
1878         process_csb(engine);
1879
1880         /*
1881          * The last active request can then be no later than the last request
1882          * now in ELSP[0]. So search backwards from there, so that if the GPU
1883          * has advanced beyond the last CSB update, it will be pardoned.
1884          */
1885         active = NULL;
1886         request = port_request(execlists->port);
1887         if (request) {
1888                 /*
1889                  * Prevent the breadcrumb from advancing before we decide
1890                  * which request is currently active.
1891                  */
1892                 intel_engine_stop_cs(engine);
1893
1894                 list_for_each_entry_from_reverse(request,
1895                                                  &engine->timeline.requests,
1896                                                  link) {
1897                         if (__i915_request_completed(request,
1898                                                      request->global_seqno))
1899                                 break;
1900
1901                         active = request;
1902                 }
1903         }
1904
1905         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1906
1907         return active;
1908 }
1909
1910 static void execlists_reset(struct intel_engine_cs *engine,
1911                             struct i915_request *request)
1912 {
1913         struct intel_engine_execlists * const execlists = &engine->execlists;
1914         unsigned long flags;
1915         u32 *regs;
1916
1917         GEM_TRACE("%s request global=%x, current=%d\n",
1918                   engine->name, request ? request->global_seqno : 0,
1919                   intel_engine_get_seqno(engine));
1920
1921         spin_lock_irqsave(&engine->timeline.lock, flags);
1922
1923         /*
1924          * Catch up with any missed context-switch interrupts.
1925          *
1926          * Ideally we would just read the remaining CSB entries now that we
1927          * know the gpu is idle. However, the CSB registers are sometimes^W
1928          * often trashed across a GPU reset! Instead we have to rely on
1929          * guessing the missed context-switch events by looking at what
1930          * requests were completed.
1931          */
1932         execlists_cancel_port_requests(execlists);
1933
1934         /* Push back any incomplete requests for replay after the reset. */
1935         __unwind_incomplete_requests(engine);
1936
1937         /* Following the reset, we need to reload the CSB read/write pointers */
1938         reset_csb_pointers(&engine->execlists);
1939
1940         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1941
1942         /*
1943          * If the request was innocent, we leave the request in the ELSP
1944          * and will try to replay it on restarting. The context image may
1945          * have been corrupted by the reset, in which case we may have
1946          * to service a new GPU hang, but more likely we can continue on
1947          * without impact.
1948          *
1949          * If the request was guilty, we presume the context is corrupt
1950          * and have to at least restore the RING register in the context
1951          * image back to the expected values to skip over the guilty request.
1952          */
1953         if (!request || request->fence.error != -EIO)
1954                 return;
1955
1956         /*
1957          * We want a simple context + ring to execute the breadcrumb update.
1958          * We cannot rely on the context being intact across the GPU hang,
1959          * so clear it and rebuild just what we need for the breadcrumb.
1960          * All pending requests for this context will be zapped, and any
1961          * future request will be after userspace has had the opportunity
1962          * to recreate its own state.
1963          */
1964         regs = request->hw_context->lrc_reg_state;
1965         if (engine->pinned_default_state) {
1966                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1967                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1968                        engine->context_size - PAGE_SIZE);
1969         }
1970         execlists_init_reg_state(regs,
1971                                  request->gem_context, engine, request->ring);
1972
1973         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1974         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1975
1976         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1977         regs[CTX_RING_HEAD + 1] = request->ring->head;
1978
1979         intel_ring_update_space(request->ring);
1980
1981         /* Reset WaIdleLiteRestore:bdw,skl as well */
1982         unwind_wa_tail(request);
1983 }
1984
1985 static void execlists_reset_finish(struct intel_engine_cs *engine)
1986 {
1987         struct intel_engine_execlists * const execlists = &engine->execlists;
1988
1989         /*
1990          * After a GPU reset, we may have requests to replay. Do so now while
1991          * we still have the forcewake to be sure that the GPU is not allowed
1992          * to sleep before we restart and reload a context.
1993          *
1994          */
1995         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1996                 execlists->tasklet.func(execlists->tasklet.data);
1997
1998         tasklet_enable(&execlists->tasklet);
1999         GEM_TRACE("%s: depth->%d\n", engine->name,
2000                   atomic_read(&execlists->tasklet.count));
2001 }
2002
2003 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
2004 {
2005         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
2006         struct intel_engine_cs *engine = rq->engine;
2007         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
2008         u32 *cs;
2009         int i;
2010
2011         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
2012         if (IS_ERR(cs))
2013                 return PTR_ERR(cs);
2014
2015         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
2016         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
2017                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2018
2019                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
2020                 *cs++ = upper_32_bits(pd_daddr);
2021                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
2022                 *cs++ = lower_32_bits(pd_daddr);
2023         }
2024
2025         *cs++ = MI_NOOP;
2026         intel_ring_advance(rq, cs);
2027
2028         return 0;
2029 }
2030
2031 static int gen8_emit_bb_start(struct i915_request *rq,
2032                               u64 offset, u32 len,
2033                               const unsigned int flags)
2034 {
2035         u32 *cs;
2036         int ret;
2037
2038         /* Don't rely in hw updating PDPs, specially in lite-restore.
2039          * Ideally, we should set Force PD Restore in ctx descriptor,
2040          * but we can't. Force Restore would be a second option, but
2041          * it is unsafe in case of lite-restore (because the ctx is
2042          * not idle). PML4 is allocated during ppgtt init so this is
2043          * not needed in 48-bit.*/
2044         if (rq->gem_context->ppgtt &&
2045             (intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
2046             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
2047             !intel_vgpu_active(rq->i915)) {
2048                 ret = intel_logical_ring_emit_pdps(rq);
2049                 if (ret)
2050                         return ret;
2051
2052                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
2053         }
2054
2055         cs = intel_ring_begin(rq, 6);
2056         if (IS_ERR(cs))
2057                 return PTR_ERR(cs);
2058
2059         /*
2060          * WaDisableCtxRestoreArbitration:bdw,chv
2061          *
2062          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2063          * particular all the gen that do not need the w/a at all!), if we
2064          * took care to make sure that on every switch into this context
2065          * (both ordinary and for preemption) that arbitrartion was enabled
2066          * we would be fine. However, there doesn't seem to be a downside to
2067          * being paranoid and making sure it is set before each batch and
2068          * every context-switch.
2069          *
2070          * Note that if we fail to enable arbitration before the request
2071          * is complete, then we do not see the context-switch interrupt and
2072          * the engine hangs (with RING_HEAD == RING_TAIL).
2073          *
2074          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
2075          */
2076         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2077
2078         /* FIXME(BDW): Address space and security selectors. */
2079         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2080                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2081         *cs++ = lower_32_bits(offset);
2082         *cs++ = upper_32_bits(offset);
2083
2084         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2085         *cs++ = MI_NOOP;
2086         intel_ring_advance(rq, cs);
2087
2088         return 0;
2089 }
2090
2091 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2092 {
2093         struct drm_i915_private *dev_priv = engine->i915;
2094         I915_WRITE_IMR(engine,
2095                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
2096         POSTING_READ_FW(RING_IMR(engine->mmio_base));
2097 }
2098
2099 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2100 {
2101         struct drm_i915_private *dev_priv = engine->i915;
2102         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
2103 }
2104
2105 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2106 {
2107         u32 cmd, *cs;
2108
2109         cs = intel_ring_begin(request, 4);
2110         if (IS_ERR(cs))
2111                 return PTR_ERR(cs);
2112
2113         cmd = MI_FLUSH_DW + 1;
2114
2115         /* We always require a command barrier so that subsequent
2116          * commands, such as breadcrumb interrupts, are strictly ordered
2117          * wrt the contents of the write cache being flushed to memory
2118          * (and thus being coherent from the CPU).
2119          */
2120         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2121
2122         if (mode & EMIT_INVALIDATE) {
2123                 cmd |= MI_INVALIDATE_TLB;
2124                 if (request->engine->id == VCS)
2125                         cmd |= MI_INVALIDATE_BSD;
2126         }
2127
2128         *cs++ = cmd;
2129         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2130         *cs++ = 0; /* upper addr */
2131         *cs++ = 0; /* value */
2132         intel_ring_advance(request, cs);
2133
2134         return 0;
2135 }
2136
2137 static int gen8_emit_flush_render(struct i915_request *request,
2138                                   u32 mode)
2139 {
2140         struct intel_engine_cs *engine = request->engine;
2141         u32 scratch_addr =
2142                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
2143         bool vf_flush_wa = false, dc_flush_wa = false;
2144         u32 *cs, flags = 0;
2145         int len;
2146
2147         flags |= PIPE_CONTROL_CS_STALL;
2148
2149         if (mode & EMIT_FLUSH) {
2150                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2151                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2152                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2153                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2154         }
2155
2156         if (mode & EMIT_INVALIDATE) {
2157                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2158                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2159                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2160                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2161                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2162                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2163                 flags |= PIPE_CONTROL_QW_WRITE;
2164                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2165
2166                 /*
2167                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2168                  * pipe control.
2169                  */
2170                 if (IS_GEN9(request->i915))
2171                         vf_flush_wa = true;
2172
2173                 /* WaForGAMHang:kbl */
2174                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2175                         dc_flush_wa = true;
2176         }
2177
2178         len = 6;
2179
2180         if (vf_flush_wa)
2181                 len += 6;
2182
2183         if (dc_flush_wa)
2184                 len += 12;
2185
2186         cs = intel_ring_begin(request, len);
2187         if (IS_ERR(cs))
2188                 return PTR_ERR(cs);
2189
2190         if (vf_flush_wa)
2191                 cs = gen8_emit_pipe_control(cs, 0, 0);
2192
2193         if (dc_flush_wa)
2194                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2195                                             0);
2196
2197         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2198
2199         if (dc_flush_wa)
2200                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2201
2202         intel_ring_advance(request, cs);
2203
2204         return 0;
2205 }
2206
2207 /*
2208  * Reserve space for 2 NOOPs at the end of each request to be
2209  * used as a workaround for not being allowed to do lite
2210  * restore with HEAD==TAIL (WaIdleLiteRestore).
2211  */
2212 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2213 {
2214         /* Ensure there's always at least one preemption point per-request. */
2215         *cs++ = MI_ARB_CHECK;
2216         *cs++ = MI_NOOP;
2217         request->wa_tail = intel_ring_offset(request, cs);
2218 }
2219
2220 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2221 {
2222         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2223         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2224
2225         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2226                                   intel_hws_seqno_address(request->engine));
2227         *cs++ = MI_USER_INTERRUPT;
2228         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2229         request->tail = intel_ring_offset(request, cs);
2230         assert_ring_tail_valid(request->ring, request->tail);
2231
2232         gen8_emit_wa_tail(request, cs);
2233 }
2234 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2235
2236 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2237 {
2238         /* We're using qword write, seqno should be aligned to 8 bytes. */
2239         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2240
2241         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2242                                       intel_hws_seqno_address(request->engine));
2243         *cs++ = MI_USER_INTERRUPT;
2244         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2245         request->tail = intel_ring_offset(request, cs);
2246         assert_ring_tail_valid(request->ring, request->tail);
2247
2248         gen8_emit_wa_tail(request, cs);
2249 }
2250 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2251
2252 static int gen8_init_rcs_context(struct i915_request *rq)
2253 {
2254         int ret;
2255
2256         ret = intel_ctx_workarounds_emit(rq);
2257         if (ret)
2258                 return ret;
2259
2260         ret = intel_rcs_context_init_mocs(rq);
2261         /*
2262          * Failing to program the MOCS is non-fatal.The system will not
2263          * run at peak performance. So generate an error and carry on.
2264          */
2265         if (ret)
2266                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2267
2268         return i915_gem_render_state_emit(rq);
2269 }
2270
2271 /**
2272  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2273  * @engine: Engine Command Streamer.
2274  */
2275 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2276 {
2277         struct drm_i915_private *dev_priv;
2278
2279         /*
2280          * Tasklet cannot be active at this point due intel_mark_active/idle
2281          * so this is just for documentation.
2282          */
2283         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2284                              &engine->execlists.tasklet.state)))
2285                 tasklet_kill(&engine->execlists.tasklet);
2286
2287         dev_priv = engine->i915;
2288
2289         if (engine->buffer) {
2290                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2291         }
2292
2293         if (engine->cleanup)
2294                 engine->cleanup(engine);
2295
2296         intel_engine_cleanup_common(engine);
2297
2298         lrc_destroy_wa_ctx(engine);
2299
2300         engine->i915 = NULL;
2301         dev_priv->engine[engine->id] = NULL;
2302         kfree(engine);
2303 }
2304
2305 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2306 {
2307         engine->submit_request = execlists_submit_request;
2308         engine->cancel_requests = execlists_cancel_requests;
2309         engine->schedule = execlists_schedule;
2310         engine->execlists.tasklet.func = execlists_submission_tasklet;
2311
2312         engine->reset.prepare = execlists_reset_prepare;
2313
2314         engine->park = NULL;
2315         engine->unpark = NULL;
2316
2317         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2318         if (engine->i915->preempt_context)
2319                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2320
2321         engine->i915->caps.scheduler =
2322                 I915_SCHEDULER_CAP_ENABLED |
2323                 I915_SCHEDULER_CAP_PRIORITY;
2324         if (intel_engine_has_preemption(engine))
2325                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2326 }
2327
2328 static void
2329 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2330 {
2331         /* Default vfuncs which can be overriden by each engine. */
2332         engine->init_hw = gen8_init_common_ring;
2333
2334         engine->reset.prepare = execlists_reset_prepare;
2335         engine->reset.reset = execlists_reset;
2336         engine->reset.finish = execlists_reset_finish;
2337
2338         engine->context_pin = execlists_context_pin;
2339         engine->request_alloc = execlists_request_alloc;
2340
2341         engine->emit_flush = gen8_emit_flush;
2342         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2343         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2344
2345         engine->set_default_submission = intel_execlists_set_default_submission;
2346
2347         if (INTEL_GEN(engine->i915) < 11) {
2348                 engine->irq_enable = gen8_logical_ring_enable_irq;
2349                 engine->irq_disable = gen8_logical_ring_disable_irq;
2350         } else {
2351                 /*
2352                  * TODO: On Gen11 interrupt masks need to be clear
2353                  * to allow C6 entry. Keep interrupts enabled at
2354                  * and take the hit of generating extra interrupts
2355                  * until a more refined solution exists.
2356                  */
2357         }
2358         engine->emit_bb_start = gen8_emit_bb_start;
2359 }
2360
2361 static inline void
2362 logical_ring_default_irqs(struct intel_engine_cs *engine)
2363 {
2364         unsigned int shift = 0;
2365
2366         if (INTEL_GEN(engine->i915) < 11) {
2367                 const u8 irq_shifts[] = {
2368                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2369                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2370                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2371                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2372                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2373                 };
2374
2375                 shift = irq_shifts[engine->id];
2376         }
2377
2378         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2379         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2380 }
2381
2382 static void
2383 logical_ring_setup(struct intel_engine_cs *engine)
2384 {
2385         intel_engine_setup_common(engine);
2386
2387         /* Intentionally left blank. */
2388         engine->buffer = NULL;
2389
2390         tasklet_init(&engine->execlists.tasklet,
2391                      execlists_submission_tasklet, (unsigned long)engine);
2392
2393         logical_ring_default_vfuncs(engine);
2394         logical_ring_default_irqs(engine);
2395 }
2396
2397 static bool csb_force_mmio(struct drm_i915_private *i915)
2398 {
2399         /* Older GVT emulation depends upon intercepting CSB mmio */
2400         return intel_vgpu_active(i915) && !intel_vgpu_has_hwsp_emulation(i915);
2401 }
2402
2403 static int logical_ring_init(struct intel_engine_cs *engine)
2404 {
2405         struct drm_i915_private *i915 = engine->i915;
2406         struct intel_engine_execlists * const execlists = &engine->execlists;
2407         int ret;
2408
2409         ret = intel_engine_init_common(engine);
2410         if (ret)
2411                 return ret;
2412
2413         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2414                 execlists->submit_reg = i915->regs +
2415                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2416                 execlists->ctrl_reg = i915->regs +
2417                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2418         } else {
2419                 execlists->submit_reg = i915->regs +
2420                         i915_mmio_reg_offset(RING_ELSP(engine));
2421         }
2422
2423         execlists->preempt_complete_status = ~0u;
2424         if (i915->preempt_context) {
2425                 struct intel_context *ce =
2426                         to_intel_context(i915->preempt_context, engine);
2427
2428                 execlists->preempt_complete_status =
2429                         upper_32_bits(ce->lrc_desc);
2430         }
2431
2432         execlists->csb_read =
2433                 i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
2434         if (csb_force_mmio(i915)) {
2435                 execlists->csb_status = (u32 __force *)
2436                         (i915->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
2437
2438                 execlists->csb_write = (u32 __force *)execlists->csb_read;
2439                 execlists->csb_write_reset =
2440                         _MASKED_FIELD(GEN8_CSB_WRITE_PTR_MASK,
2441                                       GEN8_CSB_ENTRIES - 1);
2442         } else {
2443                 execlists->csb_status =
2444                         &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2445
2446                 execlists->csb_write =
2447                         &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2448                 execlists->csb_write_reset = GEN8_CSB_ENTRIES - 1;
2449         }
2450         reset_csb_pointers(execlists);
2451
2452         return 0;
2453 }
2454
2455 int logical_render_ring_init(struct intel_engine_cs *engine)
2456 {
2457         struct drm_i915_private *dev_priv = engine->i915;
2458         int ret;
2459
2460         logical_ring_setup(engine);
2461
2462         if (HAS_L3_DPF(dev_priv))
2463                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2464
2465         /* Override some for render ring. */
2466         if (INTEL_GEN(dev_priv) >= 9)
2467                 engine->init_hw = gen9_init_render_ring;
2468         else
2469                 engine->init_hw = gen8_init_render_ring;
2470         engine->init_context = gen8_init_rcs_context;
2471         engine->emit_flush = gen8_emit_flush_render;
2472         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2473         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2474
2475         ret = logical_ring_init(engine);
2476         if (ret)
2477                 return ret;
2478
2479         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2480         if (ret)
2481                 goto err_cleanup_common;
2482
2483         ret = intel_init_workaround_bb(engine);
2484         if (ret) {
2485                 /*
2486                  * We continue even if we fail to initialize WA batch
2487                  * because we only expect rare glitches but nothing
2488                  * critical to prevent us from using GPU
2489                  */
2490                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2491                           ret);
2492         }
2493
2494         return 0;
2495
2496 err_cleanup_common:
2497         intel_engine_cleanup_common(engine);
2498         return ret;
2499 }
2500
2501 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2502 {
2503         logical_ring_setup(engine);
2504
2505         return logical_ring_init(engine);
2506 }
2507
2508 static u32
2509 make_rpcs(struct drm_i915_private *dev_priv)
2510 {
2511         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2512         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2513         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2514         u32 rpcs = 0;
2515
2516         /*
2517          * No explicit RPCS request is needed to ensure full
2518          * slice/subslice/EU enablement prior to Gen9.
2519         */
2520         if (INTEL_GEN(dev_priv) < 9)
2521                 return 0;
2522
2523         /*
2524          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2525          * wide and Icelake has up to eight subslices, specfial programming is
2526          * needed in order to correctly enable all subslices.
2527          *
2528          * According to documentation software must consider the configuration
2529          * as 2x4x8 and hardware will translate this to 1x8x8.
2530          *
2531          * Furthemore, even though SScount is three bits, maximum documented
2532          * value for it is four. From this some rules/restrictions follow:
2533          *
2534          * 1.
2535          * If enabled subslice count is greater than four, two whole slices must
2536          * be enabled instead.
2537          *
2538          * 2.
2539          * When more than one slice is enabled, hardware ignores the subslice
2540          * count altogether.
2541          *
2542          * From these restrictions it follows that it is not possible to enable
2543          * a count of subslices between the SScount maximum of four restriction,
2544          * and the maximum available number on a particular SKU. Either all
2545          * subslices are enabled, or a count between one and four on the first
2546          * slice.
2547          */
2548         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2549                 GEM_BUG_ON(subslices & 1);
2550
2551                 subslice_pg = false;
2552                 slices *= 2;
2553         }
2554
2555         /*
2556          * Starting in Gen9, render power gating can leave
2557          * slice/subslice/EU in a partially enabled state. We
2558          * must make an explicit request through RPCS for full
2559          * enablement.
2560         */
2561         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2562                 u32 mask, val = slices;
2563
2564                 if (INTEL_GEN(dev_priv) >= 11) {
2565                         mask = GEN11_RPCS_S_CNT_MASK;
2566                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2567                 } else {
2568                         mask = GEN8_RPCS_S_CNT_MASK;
2569                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2570                 }
2571
2572                 GEM_BUG_ON(val & ~mask);
2573                 val &= mask;
2574
2575                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2576         }
2577
2578         if (subslice_pg) {
2579                 u32 val = subslices;
2580
2581                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2582
2583                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2584                 val &= GEN8_RPCS_SS_CNT_MASK;
2585
2586                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2587         }
2588
2589         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2590                 u32 val;
2591
2592                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2593                       GEN8_RPCS_EU_MIN_SHIFT;
2594                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2595                 val &= GEN8_RPCS_EU_MIN_MASK;
2596
2597                 rpcs |= val;
2598
2599                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2600                       GEN8_RPCS_EU_MAX_SHIFT;
2601                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2602                 val &= GEN8_RPCS_EU_MAX_MASK;
2603
2604                 rpcs |= val;
2605
2606                 rpcs |= GEN8_RPCS_ENABLE;
2607         }
2608
2609         return rpcs;
2610 }
2611
2612 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2613 {
2614         u32 indirect_ctx_offset;
2615
2616         switch (INTEL_GEN(engine->i915)) {
2617         default:
2618                 MISSING_CASE(INTEL_GEN(engine->i915));
2619                 /* fall through */
2620         case 11:
2621                 indirect_ctx_offset =
2622                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2623                 break;
2624         case 10:
2625                 indirect_ctx_offset =
2626                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2627                 break;
2628         case 9:
2629                 indirect_ctx_offset =
2630                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2631                 break;
2632         case 8:
2633                 indirect_ctx_offset =
2634                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2635                 break;
2636         }
2637
2638         return indirect_ctx_offset;
2639 }
2640
2641 static void execlists_init_reg_state(u32 *regs,
2642                                      struct i915_gem_context *ctx,
2643                                      struct intel_engine_cs *engine,
2644                                      struct intel_ring *ring)
2645 {
2646         struct drm_i915_private *dev_priv = engine->i915;
2647         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2648         u32 base = engine->mmio_base;
2649         bool rcs = engine->class == RENDER_CLASS;
2650
2651         /* A context is actually a big batch buffer with several
2652          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2653          * values we are setting here are only for the first context restore:
2654          * on a subsequent save, the GPU will recreate this batchbuffer with new
2655          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2656          * we are not initializing here).
2657          */
2658         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2659                                  MI_LRI_FORCE_POSTED;
2660
2661         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2662                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2663                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2664         if (INTEL_GEN(dev_priv) < 11) {
2665                 regs[CTX_CONTEXT_CONTROL + 1] |=
2666                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2667                                             CTX_CTRL_RS_CTX_ENABLE);
2668         }
2669         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2670         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2671         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2672         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2673                 RING_CTL_SIZE(ring->size) | RING_VALID);
2674         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2675         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2676         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2677         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2678         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2679         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2680         if (rcs) {
2681                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2682
2683                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2684                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2685                         RING_INDIRECT_CTX_OFFSET(base), 0);
2686                 if (wa_ctx->indirect_ctx.size) {
2687                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2688
2689                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2690                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2691                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2692
2693                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2694                                 intel_lr_indirect_ctx_offset(engine) << 6;
2695                 }
2696
2697                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2698                 if (wa_ctx->per_ctx.size) {
2699                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2700
2701                         regs[CTX_BB_PER_CTX_PTR + 1] =
2702                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2703                 }
2704         }
2705
2706         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2707
2708         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2709         /* PDP values well be assigned later if needed */
2710         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2711         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2712         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2713         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2714         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2715         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2716         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2717         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2718
2719         if (ppgtt && i915_vm_is_48bit(&ppgtt->vm)) {
2720                 /* 64b PPGTT (48bit canonical)
2721                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2722                  * other PDP Descriptors are ignored.
2723                  */
2724                 ASSIGN_CTX_PML4(ppgtt, regs);
2725         }
2726
2727         if (rcs) {
2728                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2729                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2730                         make_rpcs(dev_priv));
2731
2732                 i915_oa_init_reg_state(engine, ctx, regs);
2733         }
2734
2735         regs[CTX_END] = MI_BATCH_BUFFER_END;
2736         if (INTEL_GEN(dev_priv) >= 10)
2737                 regs[CTX_END] |= BIT(0);
2738 }
2739
2740 static int
2741 populate_lr_context(struct i915_gem_context *ctx,
2742                     struct drm_i915_gem_object *ctx_obj,
2743                     struct intel_engine_cs *engine,
2744                     struct intel_ring *ring)
2745 {
2746         void *vaddr;
2747         u32 *regs;
2748         int ret;
2749
2750         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2751         if (ret) {
2752                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2753                 return ret;
2754         }
2755
2756         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2757         if (IS_ERR(vaddr)) {
2758                 ret = PTR_ERR(vaddr);
2759                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2760                 return ret;
2761         }
2762         ctx_obj->mm.dirty = true;
2763
2764         if (engine->default_state) {
2765                 /*
2766                  * We only want to copy over the template context state;
2767                  * skipping over the headers reserved for GuC communication,
2768                  * leaving those as zero.
2769                  */
2770                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2771                 void *defaults;
2772
2773                 defaults = i915_gem_object_pin_map(engine->default_state,
2774                                                    I915_MAP_WB);
2775                 if (IS_ERR(defaults)) {
2776                         ret = PTR_ERR(defaults);
2777                         goto err_unpin_ctx;
2778                 }
2779
2780                 memcpy(vaddr + start, defaults + start, engine->context_size);
2781                 i915_gem_object_unpin_map(engine->default_state);
2782         }
2783
2784         /* The second page of the context object contains some fields which must
2785          * be set up prior to the first execution. */
2786         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2787         execlists_init_reg_state(regs, ctx, engine, ring);
2788         if (!engine->default_state)
2789                 regs[CTX_CONTEXT_CONTROL + 1] |=
2790                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2791         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2792                 regs[CTX_CONTEXT_CONTROL + 1] |=
2793                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2794                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2795
2796 err_unpin_ctx:
2797         i915_gem_object_unpin_map(ctx_obj);
2798         return ret;
2799 }
2800
2801 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2802                                             struct intel_engine_cs *engine,
2803                                             struct intel_context *ce)
2804 {
2805         struct drm_i915_gem_object *ctx_obj;
2806         struct i915_vma *vma;
2807         uint32_t context_size;
2808         struct intel_ring *ring;
2809         struct i915_timeline *timeline;
2810         int ret;
2811
2812         if (ce->state)
2813                 return 0;
2814
2815         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2816
2817         /*
2818          * Before the actual start of the context image, we insert a few pages
2819          * for our own use and for sharing with the GuC.
2820          */
2821         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2822
2823         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2824         if (IS_ERR(ctx_obj))
2825                 return PTR_ERR(ctx_obj);
2826
2827         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2828         if (IS_ERR(vma)) {
2829                 ret = PTR_ERR(vma);
2830                 goto error_deref_obj;
2831         }
2832
2833         timeline = i915_timeline_create(ctx->i915, ctx->name);
2834         if (IS_ERR(timeline)) {
2835                 ret = PTR_ERR(timeline);
2836                 goto error_deref_obj;
2837         }
2838
2839         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2840         i915_timeline_put(timeline);
2841         if (IS_ERR(ring)) {
2842                 ret = PTR_ERR(ring);
2843                 goto error_deref_obj;
2844         }
2845
2846         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2847         if (ret) {
2848                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2849                 goto error_ring_free;
2850         }
2851
2852         ce->ring = ring;
2853         ce->state = vma;
2854
2855         return 0;
2856
2857 error_ring_free:
2858         intel_ring_free(ring);
2859 error_deref_obj:
2860         i915_gem_object_put(ctx_obj);
2861         return ret;
2862 }
2863
2864 void intel_lr_context_resume(struct drm_i915_private *i915)
2865 {
2866         struct intel_engine_cs *engine;
2867         struct i915_gem_context *ctx;
2868         enum intel_engine_id id;
2869
2870         /*
2871          * Because we emit WA_TAIL_DWORDS there may be a disparity
2872          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2873          * that stored in context. As we only write new commands from
2874          * ce->ring->tail onwards, everything before that is junk. If the GPU
2875          * starts reading from its RING_HEAD from the context, it may try to
2876          * execute that junk and die.
2877          *
2878          * So to avoid that we reset the context images upon resume. For
2879          * simplicity, we just zero everything out.
2880          */
2881         list_for_each_entry(ctx, &i915->contexts.list, link) {
2882                 for_each_engine(engine, i915, id) {
2883                         struct intel_context *ce =
2884                                 to_intel_context(ctx, engine);
2885
2886                         if (!ce->state)
2887                                 continue;
2888
2889                         intel_ring_reset(ce->ring, 0);
2890
2891                         if (ce->pin_count) { /* otherwise done in context_pin */
2892                                 u32 *regs = ce->lrc_reg_state;
2893
2894                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2895                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2896                         }
2897                 }
2898         }
2899 }
2900
2901 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2902 #include "selftests/intel_lrc.c"
2903 #endif