Merge tag 'usb-5.0-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_lrc_reg.h"
142 #include "intel_mocs.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
168                                             struct intel_engine_cs *engine,
169                                             struct intel_context *ce);
170 static void execlists_init_reg_state(u32 *reg_state,
171                                      struct i915_gem_context *ctx,
172                                      struct intel_engine_cs *engine,
173                                      struct intel_ring *ring);
174
175 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
176 {
177         return rb_entry(rb, struct i915_priolist, node);
178 }
179
180 static inline int rq_prio(const struct i915_request *rq)
181 {
182         return rq->sched.attr.priority;
183 }
184
185 static inline bool need_preempt(const struct intel_engine_cs *engine,
186                                 const struct i915_request *last,
187                                 int prio)
188 {
189         return (intel_engine_has_preemption(engine) &&
190                 __execlists_need_preempt(prio, rq_prio(last)) &&
191                 !i915_request_completed(last));
192 }
193
194 /*
195  * The context descriptor encodes various attributes of a context,
196  * including its GTT address and some flags. Because it's fairly
197  * expensive to calculate, we'll just do it once and cache the result,
198  * which remains valid until the context is unpinned.
199  *
200  * This is what a descriptor looks like, from LSB to MSB::
201  *
202  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
203  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
204  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
205  *      bits 53-54:    mbz, reserved for use by hardware
206  *      bits 55-63:    group ID, currently unused and set to 0
207  *
208  * Starting from Gen11, the upper dword of the descriptor has a new format:
209  *
210  *      bits 32-36:    reserved
211  *      bits 37-47:    SW context ID
212  *      bits 48:53:    engine instance
213  *      bit 54:        mbz, reserved for use by hardware
214  *      bits 55-60:    SW counter
215  *      bits 61-63:    engine class
216  *
217  * engine info, SW context ID and SW counter need to form a unique number
218  * (Context ID) per lrc.
219  */
220 static void
221 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
222                                    struct intel_engine_cs *engine,
223                                    struct intel_context *ce)
224 {
225         u64 desc;
226
227         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
228         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
229
230         desc = ctx->desc_template;                              /* bits  0-11 */
231         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
232
233         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
234                                                                 /* bits 12-31 */
235         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
236
237         /*
238          * The following 32bits are copied into the OA reports (dword 2).
239          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
240          * anything below.
241          */
242         if (INTEL_GEN(ctx->i915) >= 11) {
243                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
244                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
245                                                                 /* bits 37-47 */
246
247                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
248                                                                 /* bits 48-53 */
249
250                 /* TODO: decide what to do with SW counter (bits 55-60) */
251
252                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
253                                                                 /* bits 61-63 */
254         } else {
255                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
256                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
257         }
258
259         ce->lrc_desc = desc;
260 }
261
262 static void unwind_wa_tail(struct i915_request *rq)
263 {
264         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
265         assert_ring_tail_valid(rq->ring, rq->tail);
266 }
267
268 static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
269 {
270         struct i915_request *rq, *rn, *active = NULL;
271         struct list_head *uninitialized_var(pl);
272         int prio = I915_PRIORITY_INVALID | I915_PRIORITY_NEWCLIENT;
273
274         lockdep_assert_held(&engine->timeline.lock);
275
276         list_for_each_entry_safe_reverse(rq, rn,
277                                          &engine->timeline.requests,
278                                          link) {
279                 if (i915_request_completed(rq))
280                         break;
281
282                 __i915_request_unsubmit(rq);
283                 unwind_wa_tail(rq);
284
285                 GEM_BUG_ON(rq->hw_context->active);
286
287                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
288                 if (rq_prio(rq) != prio) {
289                         prio = rq_prio(rq);
290                         pl = i915_sched_lookup_priolist(engine, prio);
291                 }
292                 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
293
294                 list_add(&rq->sched.link, pl);
295
296                 active = rq;
297         }
298
299         /*
300          * The active request is now effectively the start of a new client
301          * stream, so give it the equivalent small priority bump to prevent
302          * it being gazumped a second time by another peer.
303          */
304         if (!(prio & I915_PRIORITY_NEWCLIENT)) {
305                 prio |= I915_PRIORITY_NEWCLIENT;
306                 active->sched.attr.priority = prio;
307                 list_move_tail(&active->sched.link,
308                                i915_sched_lookup_priolist(engine, prio));
309         }
310 }
311
312 void
313 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
314 {
315         struct intel_engine_cs *engine =
316                 container_of(execlists, typeof(*engine), execlists);
317
318         __unwind_incomplete_requests(engine);
319 }
320
321 static inline void
322 execlists_context_status_change(struct i915_request *rq, unsigned long status)
323 {
324         /*
325          * Only used when GVT-g is enabled now. When GVT-g is disabled,
326          * The compiler should eliminate this function as dead-code.
327          */
328         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
329                 return;
330
331         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
332                                    status, rq);
333 }
334
335 inline void
336 execlists_user_begin(struct intel_engine_execlists *execlists,
337                      const struct execlist_port *port)
338 {
339         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
340 }
341
342 inline void
343 execlists_user_end(struct intel_engine_execlists *execlists)
344 {
345         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
346 }
347
348 static inline void
349 execlists_context_schedule_in(struct i915_request *rq)
350 {
351         GEM_BUG_ON(rq->hw_context->active);
352
353         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
354         intel_engine_context_in(rq->engine);
355         rq->hw_context->active = rq->engine;
356 }
357
358 static inline void
359 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
360 {
361         rq->hw_context->active = NULL;
362         intel_engine_context_out(rq->engine);
363         execlists_context_status_change(rq, status);
364         trace_i915_request_out(rq);
365 }
366
367 static void
368 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
369 {
370         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
371         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
372         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
373         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
374 }
375
376 static u64 execlists_update_context(struct i915_request *rq)
377 {
378         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
379         struct intel_context *ce = rq->hw_context;
380         u32 *reg_state = ce->lrc_reg_state;
381
382         reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
383
384         /*
385          * True 32b PPGTT with dynamic page allocation: update PDP
386          * registers and point the unallocated PDPs to scratch page.
387          * PML4 is allocated during ppgtt init, so this is not needed
388          * in 48-bit mode.
389          */
390         if (!i915_vm_is_48bit(&ppgtt->vm))
391                 execlists_update_context_pdps(ppgtt, reg_state);
392
393         /*
394          * Make sure the context image is complete before we submit it to HW.
395          *
396          * Ostensibly, writes (including the WCB) should be flushed prior to
397          * an uncached write such as our mmio register access, the empirical
398          * evidence (esp. on Braswell) suggests that the WC write into memory
399          * may not be visible to the HW prior to the completion of the UC
400          * register write and that we may begin execution from the context
401          * before its image is complete leading to invalid PD chasing.
402          *
403          * Furthermore, Braswell, at least, wants a full mb to be sure that
404          * the writes are coherent in memory (visible to the GPU) prior to
405          * execution, and not just visible to other CPUs (as is the result of
406          * wmb).
407          */
408         mb();
409         return ce->lrc_desc;
410 }
411
412 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
413 {
414         if (execlists->ctrl_reg) {
415                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
416                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
417         } else {
418                 writel(upper_32_bits(desc), execlists->submit_reg);
419                 writel(lower_32_bits(desc), execlists->submit_reg);
420         }
421 }
422
423 static void execlists_submit_ports(struct intel_engine_cs *engine)
424 {
425         struct intel_engine_execlists *execlists = &engine->execlists;
426         struct execlist_port *port = execlists->port;
427         unsigned int n;
428
429         /*
430          * We can skip acquiring intel_runtime_pm_get() here as it was taken
431          * on our behalf by the request (see i915_gem_mark_busy()) and it will
432          * not be relinquished until the device is idle (see
433          * i915_gem_idle_work_handler()). As a precaution, we make sure
434          * that all ELSP are drained i.e. we have processed the CSB,
435          * before allowing ourselves to idle and calling intel_runtime_pm_put().
436          */
437         GEM_BUG_ON(!engine->i915->gt.awake);
438
439         /*
440          * ELSQ note: the submit queue is not cleared after being submitted
441          * to the HW so we need to make sure we always clean it up. This is
442          * currently ensured by the fact that we always write the same number
443          * of elsq entries, keep this in mind before changing the loop below.
444          */
445         for (n = execlists_num_ports(execlists); n--; ) {
446                 struct i915_request *rq;
447                 unsigned int count;
448                 u64 desc;
449
450                 rq = port_unpack(&port[n], &count);
451                 if (rq) {
452                         GEM_BUG_ON(count > !n);
453                         if (!count++)
454                                 execlists_context_schedule_in(rq);
455                         port_set(&port[n], port_pack(rq, count));
456                         desc = execlists_update_context(rq);
457                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
458
459                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
460                                   engine->name, n,
461                                   port[n].context_id, count,
462                                   rq->global_seqno,
463                                   rq->fence.context, rq->fence.seqno,
464                                   intel_engine_get_seqno(engine),
465                                   rq_prio(rq));
466                 } else {
467                         GEM_BUG_ON(!n);
468                         desc = 0;
469                 }
470
471                 write_desc(execlists, desc, n);
472         }
473
474         /* we need to manually load the submit queue */
475         if (execlists->ctrl_reg)
476                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
477
478         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
479 }
480
481 static bool ctx_single_port_submission(const struct intel_context *ce)
482 {
483         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
484                 i915_gem_context_force_single_submission(ce->gem_context));
485 }
486
487 static bool can_merge_ctx(const struct intel_context *prev,
488                           const struct intel_context *next)
489 {
490         if (prev != next)
491                 return false;
492
493         if (ctx_single_port_submission(prev))
494                 return false;
495
496         return true;
497 }
498
499 static void port_assign(struct execlist_port *port, struct i915_request *rq)
500 {
501         GEM_BUG_ON(rq == port_request(port));
502
503         if (port_isset(port))
504                 i915_request_put(port_request(port));
505
506         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
507 }
508
509 static void inject_preempt_context(struct intel_engine_cs *engine)
510 {
511         struct intel_engine_execlists *execlists = &engine->execlists;
512         struct intel_context *ce =
513                 to_intel_context(engine->i915->preempt_context, engine);
514         unsigned int n;
515
516         GEM_BUG_ON(execlists->preempt_complete_status !=
517                    upper_32_bits(ce->lrc_desc));
518
519         /*
520          * Switch to our empty preempt context so
521          * the state of the GPU is known (idle).
522          */
523         GEM_TRACE("%s\n", engine->name);
524         for (n = execlists_num_ports(execlists); --n; )
525                 write_desc(execlists, 0, n);
526
527         write_desc(execlists, ce->lrc_desc, n);
528
529         /* we need to manually load the submit queue */
530         if (execlists->ctrl_reg)
531                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
532
533         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
534         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
535 }
536
537 static void complete_preempt_context(struct intel_engine_execlists *execlists)
538 {
539         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
540
541         if (inject_preempt_hang(execlists))
542                 return;
543
544         execlists_cancel_port_requests(execlists);
545         __unwind_incomplete_requests(container_of(execlists,
546                                                   struct intel_engine_cs,
547                                                   execlists));
548 }
549
550 static void execlists_dequeue(struct intel_engine_cs *engine)
551 {
552         struct intel_engine_execlists * const execlists = &engine->execlists;
553         struct execlist_port *port = execlists->port;
554         const struct execlist_port * const last_port =
555                 &execlists->port[execlists->port_mask];
556         struct i915_request *last = port_request(port);
557         struct rb_node *rb;
558         bool submit = false;
559
560         /*
561          * Hardware submission is through 2 ports. Conceptually each port
562          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
563          * static for a context, and unique to each, so we only execute
564          * requests belonging to a single context from each ring. RING_HEAD
565          * is maintained by the CS in the context image, it marks the place
566          * where it got up to last time, and through RING_TAIL we tell the CS
567          * where we want to execute up to this time.
568          *
569          * In this list the requests are in order of execution. Consecutive
570          * requests from the same context are adjacent in the ringbuffer. We
571          * can combine these requests into a single RING_TAIL update:
572          *
573          *              RING_HEAD...req1...req2
574          *                                    ^- RING_TAIL
575          * since to execute req2 the CS must first execute req1.
576          *
577          * Our goal then is to point each port to the end of a consecutive
578          * sequence of requests as being the most optimal (fewest wake ups
579          * and context switches) submission.
580          */
581
582         if (last) {
583                 /*
584                  * Don't resubmit or switch until all outstanding
585                  * preemptions (lite-restore) are seen. Then we
586                  * know the next preemption status we see corresponds
587                  * to this ELSP update.
588                  */
589                 GEM_BUG_ON(!execlists_is_active(execlists,
590                                                 EXECLISTS_ACTIVE_USER));
591                 GEM_BUG_ON(!port_count(&port[0]));
592
593                 /*
594                  * If we write to ELSP a second time before the HW has had
595                  * a chance to respond to the previous write, we can confuse
596                  * the HW and hit "undefined behaviour". After writing to ELSP,
597                  * we must then wait until we see a context-switch event from
598                  * the HW to indicate that it has had a chance to respond.
599                  */
600                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
601                         return;
602
603                 if (need_preempt(engine, last, execlists->queue_priority)) {
604                         inject_preempt_context(engine);
605                         return;
606                 }
607
608                 /*
609                  * In theory, we could coalesce more requests onto
610                  * the second port (the first port is active, with
611                  * no preemptions pending). However, that means we
612                  * then have to deal with the possible lite-restore
613                  * of the second port (as we submit the ELSP, there
614                  * may be a context-switch) but also we may complete
615                  * the resubmission before the context-switch. Ergo,
616                  * coalescing onto the second port will cause a
617                  * preemption event, but we cannot predict whether
618                  * that will affect port[0] or port[1].
619                  *
620                  * If the second port is already active, we can wait
621                  * until the next context-switch before contemplating
622                  * new requests. The GPU will be busy and we should be
623                  * able to resubmit the new ELSP before it idles,
624                  * avoiding pipeline bubbles (momentary pauses where
625                  * the driver is unable to keep up the supply of new
626                  * work). However, we have to double check that the
627                  * priorities of the ports haven't been switch.
628                  */
629                 if (port_count(&port[1]))
630                         return;
631
632                 /*
633                  * WaIdleLiteRestore:bdw,skl
634                  * Apply the wa NOOPs to prevent
635                  * ring:HEAD == rq:TAIL as we resubmit the
636                  * request. See gen8_emit_breadcrumb() for
637                  * where we prepare the padding after the
638                  * end of the request.
639                  */
640                 last->tail = last->wa_tail;
641         }
642
643         while ((rb = rb_first_cached(&execlists->queue))) {
644                 struct i915_priolist *p = to_priolist(rb);
645                 struct i915_request *rq, *rn;
646                 int i;
647
648                 priolist_for_each_request_consume(rq, rn, p, i) {
649                         GEM_BUG_ON(last &&
650                                    need_preempt(engine, last, rq_prio(rq)));
651
652                         /*
653                          * Can we combine this request with the current port?
654                          * It has to be the same context/ringbuffer and not
655                          * have any exceptions (e.g. GVT saying never to
656                          * combine contexts).
657                          *
658                          * If we can combine the requests, we can execute both
659                          * by updating the RING_TAIL to point to the end of the
660                          * second request, and so we never need to tell the
661                          * hardware about the first.
662                          */
663                         if (last &&
664                             !can_merge_ctx(rq->hw_context, last->hw_context)) {
665                                 /*
666                                  * If we are on the second port and cannot
667                                  * combine this request with the last, then we
668                                  * are done.
669                                  */
670                                 if (port == last_port)
671                                         goto done;
672
673                                 /*
674                                  * If GVT overrides us we only ever submit
675                                  * port[0], leaving port[1] empty. Note that we
676                                  * also have to be careful that we don't queue
677                                  * the same context (even though a different
678                                  * request) to the second port.
679                                  */
680                                 if (ctx_single_port_submission(last->hw_context) ||
681                                     ctx_single_port_submission(rq->hw_context))
682                                         goto done;
683
684                                 GEM_BUG_ON(last->hw_context == rq->hw_context);
685
686                                 if (submit)
687                                         port_assign(port, last);
688                                 port++;
689
690                                 GEM_BUG_ON(port_isset(port));
691                         }
692
693                         list_del_init(&rq->sched.link);
694
695                         __i915_request_submit(rq);
696                         trace_i915_request_in(rq, port_index(port, execlists));
697
698                         last = rq;
699                         submit = true;
700                 }
701
702                 rb_erase_cached(&p->node, &execlists->queue);
703                 if (p->priority != I915_PRIORITY_NORMAL)
704                         kmem_cache_free(engine->i915->priorities, p);
705         }
706
707 done:
708         /*
709          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
710          *
711          * We choose queue_priority such that if we add a request of greater
712          * priority than this, we kick the submission tasklet to decide on
713          * the right order of submitting the requests to hardware. We must
714          * also be prepared to reorder requests as they are in-flight on the
715          * HW. We derive the queue_priority then as the first "hole" in
716          * the HW submission ports and if there are no available slots,
717          * the priority of the lowest executing request, i.e. last.
718          *
719          * When we do receive a higher priority request ready to run from the
720          * user, see queue_request(), the queue_priority is bumped to that
721          * request triggering preemption on the next dequeue (or subsequent
722          * interrupt for secondary ports).
723          */
724         execlists->queue_priority =
725                 port != execlists->port ? rq_prio(last) : INT_MIN;
726
727         if (submit) {
728                 port_assign(port, last);
729                 execlists_submit_ports(engine);
730         }
731
732         /* We must always keep the beast fed if we have work piled up */
733         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
734                    !port_isset(execlists->port));
735
736         /* Re-evaluate the executing context setup after each preemptive kick */
737         if (last)
738                 execlists_user_begin(execlists, execlists->port);
739
740         /* If the engine is now idle, so should be the flag; and vice versa. */
741         GEM_BUG_ON(execlists_is_active(&engine->execlists,
742                                        EXECLISTS_ACTIVE_USER) ==
743                    !port_isset(engine->execlists.port));
744 }
745
746 void
747 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
748 {
749         struct execlist_port *port = execlists->port;
750         unsigned int num_ports = execlists_num_ports(execlists);
751
752         while (num_ports-- && port_isset(port)) {
753                 struct i915_request *rq = port_request(port);
754
755                 GEM_TRACE("%s:port%u global=%d (fence %llx:%d), (current %d)\n",
756                           rq->engine->name,
757                           (unsigned int)(port - execlists->port),
758                           rq->global_seqno,
759                           rq->fence.context, rq->fence.seqno,
760                           intel_engine_get_seqno(rq->engine));
761
762                 GEM_BUG_ON(!execlists->active);
763                 execlists_context_schedule_out(rq,
764                                                i915_request_completed(rq) ?
765                                                INTEL_CONTEXT_SCHEDULE_OUT :
766                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
767
768                 i915_request_put(rq);
769
770                 memset(port, 0, sizeof(*port));
771                 port++;
772         }
773
774         execlists_clear_all_active(execlists);
775 }
776
777 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
778 {
779         const unsigned int reset_value = GEN8_CSB_ENTRIES - 1;
780
781         /*
782          * After a reset, the HW starts writing into CSB entry [0]. We
783          * therefore have to set our HEAD pointer back one entry so that
784          * the *first* entry we check is entry 0. To complicate this further,
785          * as we don't wait for the first interrupt after reset, we have to
786          * fake the HW write to point back to the last entry so that our
787          * inline comparison of our cached head position against the last HW
788          * write works even before the first interrupt.
789          */
790         execlists->csb_head = reset_value;
791         WRITE_ONCE(*execlists->csb_write, reset_value);
792 }
793
794 static void nop_submission_tasklet(unsigned long data)
795 {
796         /* The driver is wedged; don't process any more events. */
797 }
798
799 static void execlists_cancel_requests(struct intel_engine_cs *engine)
800 {
801         struct intel_engine_execlists * const execlists = &engine->execlists;
802         struct i915_request *rq, *rn;
803         struct rb_node *rb;
804         unsigned long flags;
805
806         GEM_TRACE("%s current %d\n",
807                   engine->name, intel_engine_get_seqno(engine));
808
809         /*
810          * Before we call engine->cancel_requests(), we should have exclusive
811          * access to the submission state. This is arranged for us by the
812          * caller disabling the interrupt generation, the tasklet and other
813          * threads that may then access the same state, giving us a free hand
814          * to reset state. However, we still need to let lockdep be aware that
815          * we know this state may be accessed in hardirq context, so we
816          * disable the irq around this manipulation and we want to keep
817          * the spinlock focused on its duties and not accidentally conflate
818          * coverage to the submission's irq state. (Similarly, although we
819          * shouldn't need to disable irq around the manipulation of the
820          * submission's irq state, we also wish to remind ourselves that
821          * it is irq state.)
822          */
823         spin_lock_irqsave(&engine->timeline.lock, flags);
824
825         /* Cancel the requests on the HW and clear the ELSP tracker. */
826         execlists_cancel_port_requests(execlists);
827         execlists_user_end(execlists);
828
829         /* Mark all executing requests as skipped. */
830         list_for_each_entry(rq, &engine->timeline.requests, link) {
831                 GEM_BUG_ON(!rq->global_seqno);
832
833                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
834                         continue;
835
836                 dma_fence_set_error(&rq->fence, -EIO);
837         }
838
839         /* Flush the queued requests to the timeline list (for retiring). */
840         while ((rb = rb_first_cached(&execlists->queue))) {
841                 struct i915_priolist *p = to_priolist(rb);
842                 int i;
843
844                 priolist_for_each_request_consume(rq, rn, p, i) {
845                         list_del_init(&rq->sched.link);
846
847                         dma_fence_set_error(&rq->fence, -EIO);
848                         __i915_request_submit(rq);
849                 }
850
851                 rb_erase_cached(&p->node, &execlists->queue);
852                 if (p->priority != I915_PRIORITY_NORMAL)
853                         kmem_cache_free(engine->i915->priorities, p);
854         }
855
856         intel_write_status_page(engine,
857                                 I915_GEM_HWS_INDEX,
858                                 intel_engine_last_submit(engine));
859
860         /* Remaining _unready_ requests will be nop'ed when submitted */
861
862         execlists->queue_priority = INT_MIN;
863         execlists->queue = RB_ROOT_CACHED;
864         GEM_BUG_ON(port_isset(execlists->port));
865
866         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
867         execlists->tasklet.func = nop_submission_tasklet;
868
869         spin_unlock_irqrestore(&engine->timeline.lock, flags);
870 }
871
872 static inline bool
873 reset_in_progress(const struct intel_engine_execlists *execlists)
874 {
875         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
876 }
877
878 static void process_csb(struct intel_engine_cs *engine)
879 {
880         struct intel_engine_execlists * const execlists = &engine->execlists;
881         struct execlist_port *port = execlists->port;
882         const u32 * const buf = execlists->csb_status;
883         u8 head, tail;
884
885         /*
886          * Note that csb_write, csb_status may be either in HWSP or mmio.
887          * When reading from the csb_write mmio register, we have to be
888          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
889          * the low 4bits. As it happens we know the next 4bits are always
890          * zero and so we can simply masked off the low u8 of the register
891          * and treat it identically to reading from the HWSP (without having
892          * to use explicit shifting and masking, and probably bifurcating
893          * the code to handle the legacy mmio read).
894          */
895         head = execlists->csb_head;
896         tail = READ_ONCE(*execlists->csb_write);
897         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
898         if (unlikely(head == tail))
899                 return;
900
901         /*
902          * Hopefully paired with a wmb() in HW!
903          *
904          * We must complete the read of the write pointer before any reads
905          * from the CSB, so that we do not see stale values. Without an rmb
906          * (lfence) the HW may speculatively perform the CSB[] reads *before*
907          * we perform the READ_ONCE(*csb_write).
908          */
909         rmb();
910
911         do {
912                 struct i915_request *rq;
913                 unsigned int status;
914                 unsigned int count;
915
916                 if (++head == GEN8_CSB_ENTRIES)
917                         head = 0;
918
919                 /*
920                  * We are flying near dragons again.
921                  *
922                  * We hold a reference to the request in execlist_port[]
923                  * but no more than that. We are operating in softirq
924                  * context and so cannot hold any mutex or sleep. That
925                  * prevents us stopping the requests we are processing
926                  * in port[] from being retired simultaneously (the
927                  * breadcrumb will be complete before we see the
928                  * context-switch). As we only hold the reference to the
929                  * request, any pointer chasing underneath the request
930                  * is subject to a potential use-after-free. Thus we
931                  * store all of the bookkeeping within port[] as
932                  * required, and avoid using unguarded pointers beneath
933                  * request itself. The same applies to the atomic
934                  * status notifier.
935                  */
936
937                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
938                           engine->name, head,
939                           buf[2 * head + 0], buf[2 * head + 1],
940                           execlists->active);
941
942                 status = buf[2 * head];
943                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
944                               GEN8_CTX_STATUS_PREEMPTED))
945                         execlists_set_active(execlists,
946                                              EXECLISTS_ACTIVE_HWACK);
947                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
948                         execlists_clear_active(execlists,
949                                                EXECLISTS_ACTIVE_HWACK);
950
951                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
952                         continue;
953
954                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
955                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
956
957                 if (status & GEN8_CTX_STATUS_COMPLETE &&
958                     buf[2*head + 1] == execlists->preempt_complete_status) {
959                         GEM_TRACE("%s preempt-idle\n", engine->name);
960                         complete_preempt_context(execlists);
961                         continue;
962                 }
963
964                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
965                     execlists_is_active(execlists,
966                                         EXECLISTS_ACTIVE_PREEMPT))
967                         continue;
968
969                 GEM_BUG_ON(!execlists_is_active(execlists,
970                                                 EXECLISTS_ACTIVE_USER));
971
972                 rq = port_unpack(port, &count);
973                 GEM_TRACE("%s out[0]: ctx=%d.%d, global=%d (fence %llx:%d) (current %d), prio=%d\n",
974                           engine->name,
975                           port->context_id, count,
976                           rq ? rq->global_seqno : 0,
977                           rq ? rq->fence.context : 0,
978                           rq ? rq->fence.seqno : 0,
979                           intel_engine_get_seqno(engine),
980                           rq ? rq_prio(rq) : 0);
981
982                 /* Check the context/desc id for this event matches */
983                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
984
985                 GEM_BUG_ON(count == 0);
986                 if (--count == 0) {
987                         /*
988                          * On the final event corresponding to the
989                          * submission of this context, we expect either
990                          * an element-switch event or a completion
991                          * event (and on completion, the active-idle
992                          * marker). No more preemptions, lite-restore
993                          * or otherwise.
994                          */
995                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
996                         GEM_BUG_ON(port_isset(&port[1]) &&
997                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
998                         GEM_BUG_ON(!port_isset(&port[1]) &&
999                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1000
1001                         /*
1002                          * We rely on the hardware being strongly
1003                          * ordered, that the breadcrumb write is
1004                          * coherent (visible from the CPU) before the
1005                          * user interrupt and CSB is processed.
1006                          */
1007                         GEM_BUG_ON(!i915_request_completed(rq));
1008
1009                         execlists_context_schedule_out(rq,
1010                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1011                         i915_request_put(rq);
1012
1013                         GEM_TRACE("%s completed ctx=%d\n",
1014                                   engine->name, port->context_id);
1015
1016                         port = execlists_port_complete(execlists, port);
1017                         if (port_isset(port))
1018                                 execlists_user_begin(execlists, port);
1019                         else
1020                                 execlists_user_end(execlists);
1021                 } else {
1022                         port_set(port, port_pack(rq, count));
1023                 }
1024         } while (head != tail);
1025
1026         execlists->csb_head = head;
1027 }
1028
1029 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1030 {
1031         lockdep_assert_held(&engine->timeline.lock);
1032
1033         process_csb(engine);
1034         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1035                 execlists_dequeue(engine);
1036 }
1037
1038 /*
1039  * Check the unread Context Status Buffers and manage the submission of new
1040  * contexts to the ELSP accordingly.
1041  */
1042 static void execlists_submission_tasklet(unsigned long data)
1043 {
1044         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1045         unsigned long flags;
1046
1047         GEM_TRACE("%s awake?=%d, active=%x\n",
1048                   engine->name,
1049                   engine->i915->gt.awake,
1050                   engine->execlists.active);
1051
1052         spin_lock_irqsave(&engine->timeline.lock, flags);
1053         __execlists_submission_tasklet(engine);
1054         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1055 }
1056
1057 static void queue_request(struct intel_engine_cs *engine,
1058                           struct i915_sched_node *node,
1059                           int prio)
1060 {
1061         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1062 }
1063
1064 static void __submit_queue_imm(struct intel_engine_cs *engine)
1065 {
1066         struct intel_engine_execlists * const execlists = &engine->execlists;
1067
1068         if (reset_in_progress(execlists))
1069                 return; /* defer until we restart the engine following reset */
1070
1071         if (execlists->tasklet.func == execlists_submission_tasklet)
1072                 __execlists_submission_tasklet(engine);
1073         else
1074                 tasklet_hi_schedule(&execlists->tasklet);
1075 }
1076
1077 static void submit_queue(struct intel_engine_cs *engine, int prio)
1078 {
1079         if (prio > engine->execlists.queue_priority) {
1080                 engine->execlists.queue_priority = prio;
1081                 __submit_queue_imm(engine);
1082         }
1083 }
1084
1085 static void execlists_submit_request(struct i915_request *request)
1086 {
1087         struct intel_engine_cs *engine = request->engine;
1088         unsigned long flags;
1089
1090         /* Will be called from irq-context when using foreign fences. */
1091         spin_lock_irqsave(&engine->timeline.lock, flags);
1092
1093         queue_request(engine, &request->sched, rq_prio(request));
1094
1095         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1096         GEM_BUG_ON(list_empty(&request->sched.link));
1097
1098         submit_queue(engine, rq_prio(request));
1099
1100         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1101 }
1102
1103 static void execlists_context_destroy(struct intel_context *ce)
1104 {
1105         GEM_BUG_ON(ce->pin_count);
1106
1107         if (!ce->state)
1108                 return;
1109
1110         intel_ring_free(ce->ring);
1111
1112         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1113         i915_gem_object_put(ce->state->obj);
1114 }
1115
1116 static void execlists_context_unpin(struct intel_context *ce)
1117 {
1118         struct intel_engine_cs *engine;
1119
1120         /*
1121          * The tasklet may still be using a pointer to our state, via an
1122          * old request. However, since we know we only unpin the context
1123          * on retirement of the following request, we know that the last
1124          * request referencing us will have had a completion CS interrupt.
1125          * If we see that it is still active, it means that the tasklet hasn't
1126          * had the chance to run yet; let it run before we teardown the
1127          * reference it may use.
1128          */
1129         engine = READ_ONCE(ce->active);
1130         if (unlikely(engine)) {
1131                 unsigned long flags;
1132
1133                 spin_lock_irqsave(&engine->timeline.lock, flags);
1134                 process_csb(engine);
1135                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1136
1137                 GEM_BUG_ON(READ_ONCE(ce->active));
1138         }
1139
1140         i915_gem_context_unpin_hw_id(ce->gem_context);
1141
1142         intel_ring_unpin(ce->ring);
1143
1144         ce->state->obj->pin_global--;
1145         i915_gem_object_unpin_map(ce->state->obj);
1146         i915_vma_unpin(ce->state);
1147
1148         i915_gem_context_put(ce->gem_context);
1149 }
1150
1151 static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1152 {
1153         unsigned int flags;
1154         int err;
1155
1156         /*
1157          * Clear this page out of any CPU caches for coherent swap-in/out.
1158          * We only want to do this on the first bind so that we do not stall
1159          * on an active context (which by nature is already on the GPU).
1160          */
1161         if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1162                 err = i915_gem_object_set_to_wc_domain(vma->obj, true);
1163                 if (err)
1164                         return err;
1165         }
1166
1167         flags = PIN_GLOBAL | PIN_HIGH;
1168         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1169
1170         return i915_vma_pin(vma, 0, 0, flags);
1171 }
1172
1173 static struct intel_context *
1174 __execlists_context_pin(struct intel_engine_cs *engine,
1175                         struct i915_gem_context *ctx,
1176                         struct intel_context *ce)
1177 {
1178         void *vaddr;
1179         int ret;
1180
1181         ret = execlists_context_deferred_alloc(ctx, engine, ce);
1182         if (ret)
1183                 goto err;
1184         GEM_BUG_ON(!ce->state);
1185
1186         ret = __context_pin(ctx, ce->state);
1187         if (ret)
1188                 goto err;
1189
1190         vaddr = i915_gem_object_pin_map(ce->state->obj,
1191                                         i915_coherent_map_type(ctx->i915) |
1192                                         I915_MAP_OVERRIDE);
1193         if (IS_ERR(vaddr)) {
1194                 ret = PTR_ERR(vaddr);
1195                 goto unpin_vma;
1196         }
1197
1198         ret = intel_ring_pin(ce->ring);
1199         if (ret)
1200                 goto unpin_map;
1201
1202         ret = i915_gem_context_pin_hw_id(ctx);
1203         if (ret)
1204                 goto unpin_ring;
1205
1206         intel_lr_context_descriptor_update(ctx, engine, ce);
1207
1208         GEM_BUG_ON(!intel_ring_offset_valid(ce->ring, ce->ring->head));
1209
1210         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1211         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1212                 i915_ggtt_offset(ce->ring->vma);
1213         ce->lrc_reg_state[CTX_RING_HEAD + 1] = ce->ring->head;
1214         ce->lrc_reg_state[CTX_RING_TAIL + 1] = ce->ring->tail;
1215
1216         ce->state->obj->pin_global++;
1217         i915_gem_context_get(ctx);
1218         return ce;
1219
1220 unpin_ring:
1221         intel_ring_unpin(ce->ring);
1222 unpin_map:
1223         i915_gem_object_unpin_map(ce->state->obj);
1224 unpin_vma:
1225         __i915_vma_unpin(ce->state);
1226 err:
1227         ce->pin_count = 0;
1228         return ERR_PTR(ret);
1229 }
1230
1231 static const struct intel_context_ops execlists_context_ops = {
1232         .unpin = execlists_context_unpin,
1233         .destroy = execlists_context_destroy,
1234 };
1235
1236 static struct intel_context *
1237 execlists_context_pin(struct intel_engine_cs *engine,
1238                       struct i915_gem_context *ctx)
1239 {
1240         struct intel_context *ce = to_intel_context(ctx, engine);
1241
1242         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1243         GEM_BUG_ON(!ctx->ppgtt);
1244
1245         if (likely(ce->pin_count++))
1246                 return ce;
1247         GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1248
1249         ce->ops = &execlists_context_ops;
1250
1251         return __execlists_context_pin(engine, ctx, ce);
1252 }
1253
1254 static int execlists_request_alloc(struct i915_request *request)
1255 {
1256         int ret;
1257
1258         GEM_BUG_ON(!request->hw_context->pin_count);
1259
1260         /* Flush enough space to reduce the likelihood of waiting after
1261          * we start building the request - in which case we will just
1262          * have to repeat work.
1263          */
1264         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1265
1266         ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1267         if (ret)
1268                 return ret;
1269
1270         /* Note that after this point, we have committed to using
1271          * this request as it is being used to both track the
1272          * state of engine initialisation and liveness of the
1273          * golden renderstate above. Think twice before you try
1274          * to cancel/unwind this request now.
1275          */
1276
1277         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1278         return 0;
1279 }
1280
1281 /*
1282  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1283  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1284  * but there is a slight complication as this is applied in WA batch where the
1285  * values are only initialized once so we cannot take register value at the
1286  * beginning and reuse it further; hence we save its value to memory, upload a
1287  * constant value with bit21 set and then we restore it back with the saved value.
1288  * To simplify the WA, a constant value is formed by using the default value
1289  * of this register. This shouldn't be a problem because we are only modifying
1290  * it for a short period and this batch in non-premptible. We can ofcourse
1291  * use additional instructions that read the actual value of the register
1292  * at that time and set our bit of interest but it makes the WA complicated.
1293  *
1294  * This WA is also required for Gen9 so extracting as a function avoids
1295  * code duplication.
1296  */
1297 static u32 *
1298 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1299 {
1300         /* NB no one else is allowed to scribble over scratch + 256! */
1301         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1302         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1303         *batch++ = i915_scratch_offset(engine->i915) + 256;
1304         *batch++ = 0;
1305
1306         *batch++ = MI_LOAD_REGISTER_IMM(1);
1307         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1308         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1309
1310         batch = gen8_emit_pipe_control(batch,
1311                                        PIPE_CONTROL_CS_STALL |
1312                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1313                                        0);
1314
1315         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1316         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1317         *batch++ = i915_scratch_offset(engine->i915) + 256;
1318         *batch++ = 0;
1319
1320         return batch;
1321 }
1322
1323 /*
1324  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1325  * initialized at the beginning and shared across all contexts but this field
1326  * helps us to have multiple batches at different offsets and select them based
1327  * on a criteria. At the moment this batch always start at the beginning of the page
1328  * and at this point we don't have multiple wa_ctx batch buffers.
1329  *
1330  * The number of WA applied are not known at the beginning; we use this field
1331  * to return the no of DWORDS written.
1332  *
1333  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1334  * so it adds NOOPs as padding to make it cacheline aligned.
1335  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1336  * makes a complete batch buffer.
1337  */
1338 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1339 {
1340         /* WaDisableCtxRestoreArbitration:bdw,chv */
1341         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1342
1343         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1344         if (IS_BROADWELL(engine->i915))
1345                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1346
1347         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1348         /* Actual scratch location is at 128 bytes offset */
1349         batch = gen8_emit_pipe_control(batch,
1350                                        PIPE_CONTROL_FLUSH_L3 |
1351                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1352                                        PIPE_CONTROL_CS_STALL |
1353                                        PIPE_CONTROL_QW_WRITE,
1354                                        i915_scratch_offset(engine->i915) +
1355                                        2 * CACHELINE_BYTES);
1356
1357         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1358
1359         /* Pad to end of cacheline */
1360         while ((unsigned long)batch % CACHELINE_BYTES)
1361                 *batch++ = MI_NOOP;
1362
1363         /*
1364          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1365          * execution depends on the length specified in terms of cache lines
1366          * in the register CTX_RCS_INDIRECT_CTX
1367          */
1368
1369         return batch;
1370 }
1371
1372 struct lri {
1373         i915_reg_t reg;
1374         u32 value;
1375 };
1376
1377 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1378 {
1379         GEM_BUG_ON(!count || count > 63);
1380
1381         *batch++ = MI_LOAD_REGISTER_IMM(count);
1382         do {
1383                 *batch++ = i915_mmio_reg_offset(lri->reg);
1384                 *batch++ = lri->value;
1385         } while (lri++, --count);
1386         *batch++ = MI_NOOP;
1387
1388         return batch;
1389 }
1390
1391 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1392 {
1393         static const struct lri lri[] = {
1394                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1395                 {
1396                         COMMON_SLICE_CHICKEN2,
1397                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1398                                        0),
1399                 },
1400
1401                 /* BSpec: 11391 */
1402                 {
1403                         FF_SLICE_CHICKEN,
1404                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1405                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1406                 },
1407
1408                 /* BSpec: 11299 */
1409                 {
1410                         _3D_CHICKEN3,
1411                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1412                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1413                 }
1414         };
1415
1416         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1417
1418         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1419         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1420
1421         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1422
1423         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1424         if (HAS_POOLED_EU(engine->i915)) {
1425                 /*
1426                  * EU pool configuration is setup along with golden context
1427                  * during context initialization. This value depends on
1428                  * device type (2x6 or 3x6) and needs to be updated based
1429                  * on which subslice is disabled especially for 2x6
1430                  * devices, however it is safe to load default
1431                  * configuration of 3x6 device instead of masking off
1432                  * corresponding bits because HW ignores bits of a disabled
1433                  * subslice and drops down to appropriate config. Please
1434                  * see render_state_setup() in i915_gem_render_state.c for
1435                  * possible configurations, to avoid duplication they are
1436                  * not shown here again.
1437                  */
1438                 *batch++ = GEN9_MEDIA_POOL_STATE;
1439                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1440                 *batch++ = 0x00777000;
1441                 *batch++ = 0;
1442                 *batch++ = 0;
1443                 *batch++ = 0;
1444         }
1445
1446         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1447
1448         /* Pad to end of cacheline */
1449         while ((unsigned long)batch % CACHELINE_BYTES)
1450                 *batch++ = MI_NOOP;
1451
1452         return batch;
1453 }
1454
1455 static u32 *
1456 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1457 {
1458         int i;
1459
1460         /*
1461          * WaPipeControlBefore3DStateSamplePattern: cnl
1462          *
1463          * Ensure the engine is idle prior to programming a
1464          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1465          */
1466         batch = gen8_emit_pipe_control(batch,
1467                                        PIPE_CONTROL_CS_STALL,
1468                                        0);
1469         /*
1470          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1471          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1472          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1473          * confusing. Since gen8_emit_pipe_control() already advances the
1474          * batch by 6 dwords, we advance the other 10 here, completing a
1475          * cacheline. It's not clear if the workaround requires this padding
1476          * before other commands, or if it's just the regular padding we would
1477          * already have for the workaround bb, so leave it here for now.
1478          */
1479         for (i = 0; i < 10; i++)
1480                 *batch++ = MI_NOOP;
1481
1482         /* Pad to end of cacheline */
1483         while ((unsigned long)batch % CACHELINE_BYTES)
1484                 *batch++ = MI_NOOP;
1485
1486         return batch;
1487 }
1488
1489 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1490
1491 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1492 {
1493         struct drm_i915_gem_object *obj;
1494         struct i915_vma *vma;
1495         int err;
1496
1497         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1498         if (IS_ERR(obj))
1499                 return PTR_ERR(obj);
1500
1501         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1502         if (IS_ERR(vma)) {
1503                 err = PTR_ERR(vma);
1504                 goto err;
1505         }
1506
1507         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1508         if (err)
1509                 goto err;
1510
1511         engine->wa_ctx.vma = vma;
1512         return 0;
1513
1514 err:
1515         i915_gem_object_put(obj);
1516         return err;
1517 }
1518
1519 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1520 {
1521         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1522 }
1523
1524 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1525
1526 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1527 {
1528         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1529         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1530                                             &wa_ctx->per_ctx };
1531         wa_bb_func_t wa_bb_fn[2];
1532         struct page *page;
1533         void *batch, *batch_ptr;
1534         unsigned int i;
1535         int ret;
1536
1537         if (GEM_DEBUG_WARN_ON(engine->id != RCS))
1538                 return -EINVAL;
1539
1540         switch (INTEL_GEN(engine->i915)) {
1541         case 11:
1542                 return 0;
1543         case 10:
1544                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1545                 wa_bb_fn[1] = NULL;
1546                 break;
1547         case 9:
1548                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1549                 wa_bb_fn[1] = NULL;
1550                 break;
1551         case 8:
1552                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1553                 wa_bb_fn[1] = NULL;
1554                 break;
1555         default:
1556                 MISSING_CASE(INTEL_GEN(engine->i915));
1557                 return 0;
1558         }
1559
1560         ret = lrc_setup_wa_ctx(engine);
1561         if (ret) {
1562                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1563                 return ret;
1564         }
1565
1566         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1567         batch = batch_ptr = kmap_atomic(page);
1568
1569         /*
1570          * Emit the two workaround batch buffers, recording the offset from the
1571          * start of the workaround batch buffer object for each and their
1572          * respective sizes.
1573          */
1574         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1575                 wa_bb[i]->offset = batch_ptr - batch;
1576                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1577                                                   CACHELINE_BYTES))) {
1578                         ret = -EINVAL;
1579                         break;
1580                 }
1581                 if (wa_bb_fn[i])
1582                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1583                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1584         }
1585
1586         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1587
1588         kunmap_atomic(batch);
1589         if (ret)
1590                 lrc_destroy_wa_ctx(engine);
1591
1592         return ret;
1593 }
1594
1595 static void enable_execlists(struct intel_engine_cs *engine)
1596 {
1597         struct drm_i915_private *dev_priv = engine->i915;
1598
1599         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1600
1601         /*
1602          * Make sure we're not enabling the new 12-deep CSB
1603          * FIFO as that requires a slightly updated handling
1604          * in the ctx switch irq. Since we're currently only
1605          * using only 2 elements of the enhanced execlists the
1606          * deeper FIFO it's not needed and it's not worth adding
1607          * more statements to the irq handler to support it.
1608          */
1609         if (INTEL_GEN(dev_priv) >= 11)
1610                 I915_WRITE(RING_MODE_GEN7(engine),
1611                            _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1612         else
1613                 I915_WRITE(RING_MODE_GEN7(engine),
1614                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1615
1616         I915_WRITE(RING_MI_MODE(engine->mmio_base),
1617                    _MASKED_BIT_DISABLE(STOP_RING));
1618
1619         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1620                    engine->status_page.ggtt_offset);
1621         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1622 }
1623
1624 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1625 {
1626         struct drm_i915_private *dev_priv = engine->i915;
1627         bool unexpected = false;
1628
1629         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
1630                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1631                 unexpected = true;
1632         }
1633
1634         return unexpected;
1635 }
1636
1637 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1638 {
1639         intel_engine_apply_workarounds(engine);
1640
1641         intel_mocs_init_engine(engine);
1642
1643         intel_engine_reset_breadcrumbs(engine);
1644
1645         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
1646                 struct drm_printer p = drm_debug_printer(__func__);
1647
1648                 intel_engine_dump(engine, &p, NULL);
1649         }
1650
1651         enable_execlists(engine);
1652
1653         return 0;
1654 }
1655
1656 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1657 {
1658         struct drm_i915_private *dev_priv = engine->i915;
1659         int ret;
1660
1661         ret = gen8_init_common_ring(engine);
1662         if (ret)
1663                 return ret;
1664
1665         intel_engine_apply_whitelist(engine);
1666
1667         /* We need to disable the AsyncFlip performance optimisations in order
1668          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1669          * programmed to '1' on all products.
1670          *
1671          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1672          */
1673         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1674
1675         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1676
1677         return 0;
1678 }
1679
1680 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1681 {
1682         int ret;
1683
1684         ret = gen8_init_common_ring(engine);
1685         if (ret)
1686                 return ret;
1687
1688         intel_engine_apply_whitelist(engine);
1689
1690         return 0;
1691 }
1692
1693 static struct i915_request *
1694 execlists_reset_prepare(struct intel_engine_cs *engine)
1695 {
1696         struct intel_engine_execlists * const execlists = &engine->execlists;
1697         struct i915_request *request, *active;
1698         unsigned long flags;
1699
1700         GEM_TRACE("%s: depth<-%d\n", engine->name,
1701                   atomic_read(&execlists->tasklet.count));
1702
1703         /*
1704          * Prevent request submission to the hardware until we have
1705          * completed the reset in i915_gem_reset_finish(). If a request
1706          * is completed by one engine, it may then queue a request
1707          * to a second via its execlists->tasklet *just* as we are
1708          * calling engine->init_hw() and also writing the ELSP.
1709          * Turning off the execlists->tasklet until the reset is over
1710          * prevents the race.
1711          */
1712         __tasklet_disable_sync_once(&execlists->tasklet);
1713
1714         spin_lock_irqsave(&engine->timeline.lock, flags);
1715
1716         /*
1717          * We want to flush the pending context switches, having disabled
1718          * the tasklet above, we can assume exclusive access to the execlists.
1719          * For this allows us to catch up with an inflight preemption event,
1720          * and avoid blaming an innocent request if the stall was due to the
1721          * preemption itself.
1722          */
1723         process_csb(engine);
1724
1725         /*
1726          * The last active request can then be no later than the last request
1727          * now in ELSP[0]. So search backwards from there, so that if the GPU
1728          * has advanced beyond the last CSB update, it will be pardoned.
1729          */
1730         active = NULL;
1731         request = port_request(execlists->port);
1732         if (request) {
1733                 /*
1734                  * Prevent the breadcrumb from advancing before we decide
1735                  * which request is currently active.
1736                  */
1737                 intel_engine_stop_cs(engine);
1738
1739                 list_for_each_entry_from_reverse(request,
1740                                                  &engine->timeline.requests,
1741                                                  link) {
1742                         if (__i915_request_completed(request,
1743                                                      request->global_seqno))
1744                                 break;
1745
1746                         active = request;
1747                 }
1748         }
1749
1750         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1751
1752         return active;
1753 }
1754
1755 static void execlists_reset(struct intel_engine_cs *engine,
1756                             struct i915_request *request)
1757 {
1758         struct intel_engine_execlists * const execlists = &engine->execlists;
1759         unsigned long flags;
1760         u32 *regs;
1761
1762         GEM_TRACE("%s request global=%d, current=%d\n",
1763                   engine->name, request ? request->global_seqno : 0,
1764                   intel_engine_get_seqno(engine));
1765
1766         spin_lock_irqsave(&engine->timeline.lock, flags);
1767
1768         /*
1769          * Catch up with any missed context-switch interrupts.
1770          *
1771          * Ideally we would just read the remaining CSB entries now that we
1772          * know the gpu is idle. However, the CSB registers are sometimes^W
1773          * often trashed across a GPU reset! Instead we have to rely on
1774          * guessing the missed context-switch events by looking at what
1775          * requests were completed.
1776          */
1777         execlists_cancel_port_requests(execlists);
1778
1779         /* Push back any incomplete requests for replay after the reset. */
1780         __unwind_incomplete_requests(engine);
1781
1782         /* Following the reset, we need to reload the CSB read/write pointers */
1783         reset_csb_pointers(&engine->execlists);
1784
1785         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1786
1787         /*
1788          * If the request was innocent, we leave the request in the ELSP
1789          * and will try to replay it on restarting. The context image may
1790          * have been corrupted by the reset, in which case we may have
1791          * to service a new GPU hang, but more likely we can continue on
1792          * without impact.
1793          *
1794          * If the request was guilty, we presume the context is corrupt
1795          * and have to at least restore the RING register in the context
1796          * image back to the expected values to skip over the guilty request.
1797          */
1798         if (!request || request->fence.error != -EIO)
1799                 return;
1800
1801         /*
1802          * We want a simple context + ring to execute the breadcrumb update.
1803          * We cannot rely on the context being intact across the GPU hang,
1804          * so clear it and rebuild just what we need for the breadcrumb.
1805          * All pending requests for this context will be zapped, and any
1806          * future request will be after userspace has had the opportunity
1807          * to recreate its own state.
1808          */
1809         regs = request->hw_context->lrc_reg_state;
1810         if (engine->pinned_default_state) {
1811                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
1812                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
1813                        engine->context_size - PAGE_SIZE);
1814         }
1815         execlists_init_reg_state(regs,
1816                                  request->gem_context, engine, request->ring);
1817
1818         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1819         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(request->ring->vma);
1820
1821         request->ring->head = intel_ring_wrap(request->ring, request->postfix);
1822         regs[CTX_RING_HEAD + 1] = request->ring->head;
1823
1824         intel_ring_update_space(request->ring);
1825
1826         /* Reset WaIdleLiteRestore:bdw,skl as well */
1827         unwind_wa_tail(request);
1828 }
1829
1830 static void execlists_reset_finish(struct intel_engine_cs *engine)
1831 {
1832         struct intel_engine_execlists * const execlists = &engine->execlists;
1833
1834         /*
1835          * After a GPU reset, we may have requests to replay. Do so now while
1836          * we still have the forcewake to be sure that the GPU is not allowed
1837          * to sleep before we restart and reload a context.
1838          *
1839          */
1840         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
1841                 execlists->tasklet.func(execlists->tasklet.data);
1842
1843         tasklet_enable(&execlists->tasklet);
1844         GEM_TRACE("%s: depth->%d\n", engine->name,
1845                   atomic_read(&execlists->tasklet.count));
1846 }
1847
1848 static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1849 {
1850         struct i915_hw_ppgtt *ppgtt = rq->gem_context->ppgtt;
1851         struct intel_engine_cs *engine = rq->engine;
1852         const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1853         u32 *cs;
1854         int i;
1855
1856         cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1857         if (IS_ERR(cs))
1858                 return PTR_ERR(cs);
1859
1860         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1861         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1862                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1863
1864                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1865                 *cs++ = upper_32_bits(pd_daddr);
1866                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1867                 *cs++ = lower_32_bits(pd_daddr);
1868         }
1869
1870         *cs++ = MI_NOOP;
1871         intel_ring_advance(rq, cs);
1872
1873         return 0;
1874 }
1875
1876 static int gen8_emit_bb_start(struct i915_request *rq,
1877                               u64 offset, u32 len,
1878                               const unsigned int flags)
1879 {
1880         u32 *cs;
1881         int ret;
1882
1883         /* Don't rely in hw updating PDPs, specially in lite-restore.
1884          * Ideally, we should set Force PD Restore in ctx descriptor,
1885          * but we can't. Force Restore would be a second option, but
1886          * it is unsafe in case of lite-restore (because the ctx is
1887          * not idle). PML4 is allocated during ppgtt init so this is
1888          * not needed in 48-bit.*/
1889         if ((intel_engine_flag(rq->engine) & rq->gem_context->ppgtt->pd_dirty_rings) &&
1890             !i915_vm_is_48bit(&rq->gem_context->ppgtt->vm) &&
1891             !intel_vgpu_active(rq->i915)) {
1892                 ret = intel_logical_ring_emit_pdps(rq);
1893                 if (ret)
1894                         return ret;
1895
1896                 rq->gem_context->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1897         }
1898
1899         cs = intel_ring_begin(rq, 6);
1900         if (IS_ERR(cs))
1901                 return PTR_ERR(cs);
1902
1903         /*
1904          * WaDisableCtxRestoreArbitration:bdw,chv
1905          *
1906          * We don't need to perform MI_ARB_ENABLE as often as we do (in
1907          * particular all the gen that do not need the w/a at all!), if we
1908          * took care to make sure that on every switch into this context
1909          * (both ordinary and for preemption) that arbitrartion was enabled
1910          * we would be fine. However, there doesn't seem to be a downside to
1911          * being paranoid and making sure it is set before each batch and
1912          * every context-switch.
1913          *
1914          * Note that if we fail to enable arbitration before the request
1915          * is complete, then we do not see the context-switch interrupt and
1916          * the engine hangs (with RING_HEAD == RING_TAIL).
1917          *
1918          * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1919          */
1920         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1921
1922         /* FIXME(BDW): Address space and security selectors. */
1923         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
1924                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
1925         *cs++ = lower_32_bits(offset);
1926         *cs++ = upper_32_bits(offset);
1927
1928         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1929         *cs++ = MI_NOOP;
1930         intel_ring_advance(rq, cs);
1931
1932         return 0;
1933 }
1934
1935 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1936 {
1937         struct drm_i915_private *dev_priv = engine->i915;
1938         I915_WRITE_IMR(engine,
1939                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1940         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1941 }
1942
1943 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1944 {
1945         struct drm_i915_private *dev_priv = engine->i915;
1946         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1947 }
1948
1949 static int gen8_emit_flush(struct i915_request *request, u32 mode)
1950 {
1951         u32 cmd, *cs;
1952
1953         cs = intel_ring_begin(request, 4);
1954         if (IS_ERR(cs))
1955                 return PTR_ERR(cs);
1956
1957         cmd = MI_FLUSH_DW + 1;
1958
1959         /* We always require a command barrier so that subsequent
1960          * commands, such as breadcrumb interrupts, are strictly ordered
1961          * wrt the contents of the write cache being flushed to memory
1962          * (and thus being coherent from the CPU).
1963          */
1964         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1965
1966         if (mode & EMIT_INVALIDATE) {
1967                 cmd |= MI_INVALIDATE_TLB;
1968                 if (request->engine->class == VIDEO_DECODE_CLASS)
1969                         cmd |= MI_INVALIDATE_BSD;
1970         }
1971
1972         *cs++ = cmd;
1973         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1974         *cs++ = 0; /* upper addr */
1975         *cs++ = 0; /* value */
1976         intel_ring_advance(request, cs);
1977
1978         return 0;
1979 }
1980
1981 static int gen8_emit_flush_render(struct i915_request *request,
1982                                   u32 mode)
1983 {
1984         struct intel_engine_cs *engine = request->engine;
1985         u32 scratch_addr =
1986                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
1987         bool vf_flush_wa = false, dc_flush_wa = false;
1988         u32 *cs, flags = 0;
1989         int len;
1990
1991         flags |= PIPE_CONTROL_CS_STALL;
1992
1993         if (mode & EMIT_FLUSH) {
1994                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1995                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1996                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1997                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1998         }
1999
2000         if (mode & EMIT_INVALIDATE) {
2001                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2002                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2003                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2004                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2005                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2006                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2007                 flags |= PIPE_CONTROL_QW_WRITE;
2008                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2009
2010                 /*
2011                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2012                  * pipe control.
2013                  */
2014                 if (IS_GEN9(request->i915))
2015                         vf_flush_wa = true;
2016
2017                 /* WaForGAMHang:kbl */
2018                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2019                         dc_flush_wa = true;
2020         }
2021
2022         len = 6;
2023
2024         if (vf_flush_wa)
2025                 len += 6;
2026
2027         if (dc_flush_wa)
2028                 len += 12;
2029
2030         cs = intel_ring_begin(request, len);
2031         if (IS_ERR(cs))
2032                 return PTR_ERR(cs);
2033
2034         if (vf_flush_wa)
2035                 cs = gen8_emit_pipe_control(cs, 0, 0);
2036
2037         if (dc_flush_wa)
2038                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2039                                             0);
2040
2041         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2042
2043         if (dc_flush_wa)
2044                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2045
2046         intel_ring_advance(request, cs);
2047
2048         return 0;
2049 }
2050
2051 /*
2052  * Reserve space for 2 NOOPs at the end of each request to be
2053  * used as a workaround for not being allowed to do lite
2054  * restore with HEAD==TAIL (WaIdleLiteRestore).
2055  */
2056 static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2057 {
2058         /* Ensure there's always at least one preemption point per-request. */
2059         *cs++ = MI_ARB_CHECK;
2060         *cs++ = MI_NOOP;
2061         request->wa_tail = intel_ring_offset(request, cs);
2062 }
2063
2064 static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
2065 {
2066         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
2067         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
2068
2069         cs = gen8_emit_ggtt_write(cs, request->global_seqno,
2070                                   intel_hws_seqno_address(request->engine));
2071         *cs++ = MI_USER_INTERRUPT;
2072         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2073         request->tail = intel_ring_offset(request, cs);
2074         assert_ring_tail_valid(request->ring, request->tail);
2075
2076         gen8_emit_wa_tail(request, cs);
2077 }
2078 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
2079
2080 static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2081 {
2082         /* We're using qword write, seqno should be aligned to 8 bytes. */
2083         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2084
2085         cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2086                                       intel_hws_seqno_address(request->engine));
2087         *cs++ = MI_USER_INTERRUPT;
2088         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2089         request->tail = intel_ring_offset(request, cs);
2090         assert_ring_tail_valid(request->ring, request->tail);
2091
2092         gen8_emit_wa_tail(request, cs);
2093 }
2094 static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2095
2096 static int gen8_init_rcs_context(struct i915_request *rq)
2097 {
2098         int ret;
2099
2100         ret = intel_engine_emit_ctx_wa(rq);
2101         if (ret)
2102                 return ret;
2103
2104         ret = intel_rcs_context_init_mocs(rq);
2105         /*
2106          * Failing to program the MOCS is non-fatal.The system will not
2107          * run at peak performance. So generate an error and carry on.
2108          */
2109         if (ret)
2110                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2111
2112         return i915_gem_render_state_emit(rq);
2113 }
2114
2115 /**
2116  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2117  * @engine: Engine Command Streamer.
2118  */
2119 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2120 {
2121         struct drm_i915_private *dev_priv;
2122
2123         /*
2124          * Tasklet cannot be active at this point due intel_mark_active/idle
2125          * so this is just for documentation.
2126          */
2127         if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2128                              &engine->execlists.tasklet.state)))
2129                 tasklet_kill(&engine->execlists.tasklet);
2130
2131         dev_priv = engine->i915;
2132
2133         if (engine->buffer) {
2134                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2135         }
2136
2137         if (engine->cleanup)
2138                 engine->cleanup(engine);
2139
2140         intel_engine_cleanup_common(engine);
2141
2142         lrc_destroy_wa_ctx(engine);
2143
2144         engine->i915 = NULL;
2145         dev_priv->engine[engine->id] = NULL;
2146         kfree(engine);
2147 }
2148
2149 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2150 {
2151         engine->submit_request = execlists_submit_request;
2152         engine->cancel_requests = execlists_cancel_requests;
2153         engine->schedule = i915_schedule;
2154         engine->execlists.tasklet.func = execlists_submission_tasklet;
2155
2156         engine->reset.prepare = execlists_reset_prepare;
2157
2158         engine->park = NULL;
2159         engine->unpark = NULL;
2160
2161         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2162         if (engine->i915->preempt_context)
2163                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2164
2165         engine->i915->caps.scheduler =
2166                 I915_SCHEDULER_CAP_ENABLED |
2167                 I915_SCHEDULER_CAP_PRIORITY;
2168         if (intel_engine_has_preemption(engine))
2169                 engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2170 }
2171
2172 static void
2173 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2174 {
2175         /* Default vfuncs which can be overriden by each engine. */
2176         engine->init_hw = gen8_init_common_ring;
2177
2178         engine->reset.prepare = execlists_reset_prepare;
2179         engine->reset.reset = execlists_reset;
2180         engine->reset.finish = execlists_reset_finish;
2181
2182         engine->context_pin = execlists_context_pin;
2183         engine->request_alloc = execlists_request_alloc;
2184
2185         engine->emit_flush = gen8_emit_flush;
2186         engine->emit_breadcrumb = gen8_emit_breadcrumb;
2187         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2188
2189         engine->set_default_submission = intel_execlists_set_default_submission;
2190
2191         if (INTEL_GEN(engine->i915) < 11) {
2192                 engine->irq_enable = gen8_logical_ring_enable_irq;
2193                 engine->irq_disable = gen8_logical_ring_disable_irq;
2194         } else {
2195                 /*
2196                  * TODO: On Gen11 interrupt masks need to be clear
2197                  * to allow C6 entry. Keep interrupts enabled at
2198                  * and take the hit of generating extra interrupts
2199                  * until a more refined solution exists.
2200                  */
2201         }
2202         engine->emit_bb_start = gen8_emit_bb_start;
2203 }
2204
2205 static inline void
2206 logical_ring_default_irqs(struct intel_engine_cs *engine)
2207 {
2208         unsigned int shift = 0;
2209
2210         if (INTEL_GEN(engine->i915) < 11) {
2211                 const u8 irq_shifts[] = {
2212                         [RCS]  = GEN8_RCS_IRQ_SHIFT,
2213                         [BCS]  = GEN8_BCS_IRQ_SHIFT,
2214                         [VCS]  = GEN8_VCS1_IRQ_SHIFT,
2215                         [VCS2] = GEN8_VCS2_IRQ_SHIFT,
2216                         [VECS] = GEN8_VECS_IRQ_SHIFT,
2217                 };
2218
2219                 shift = irq_shifts[engine->id];
2220         }
2221
2222         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2223         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2224 }
2225
2226 static void
2227 logical_ring_setup(struct intel_engine_cs *engine)
2228 {
2229         intel_engine_setup_common(engine);
2230
2231         /* Intentionally left blank. */
2232         engine->buffer = NULL;
2233
2234         tasklet_init(&engine->execlists.tasklet,
2235                      execlists_submission_tasklet, (unsigned long)engine);
2236
2237         logical_ring_default_vfuncs(engine);
2238         logical_ring_default_irqs(engine);
2239 }
2240
2241 static int logical_ring_init(struct intel_engine_cs *engine)
2242 {
2243         struct drm_i915_private *i915 = engine->i915;
2244         struct intel_engine_execlists * const execlists = &engine->execlists;
2245         int ret;
2246
2247         ret = intel_engine_init_common(engine);
2248         if (ret)
2249                 return ret;
2250
2251         intel_engine_init_workarounds(engine);
2252
2253         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2254                 execlists->submit_reg = i915->regs +
2255                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2256                 execlists->ctrl_reg = i915->regs +
2257                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2258         } else {
2259                 execlists->submit_reg = i915->regs +
2260                         i915_mmio_reg_offset(RING_ELSP(engine));
2261         }
2262
2263         execlists->preempt_complete_status = ~0u;
2264         if (i915->preempt_context) {
2265                 struct intel_context *ce =
2266                         to_intel_context(i915->preempt_context, engine);
2267
2268                 execlists->preempt_complete_status =
2269                         upper_32_bits(ce->lrc_desc);
2270         }
2271
2272         execlists->csb_status =
2273                 &engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
2274
2275         execlists->csb_write =
2276                 &engine->status_page.page_addr[intel_hws_csb_write_index(i915)];
2277
2278         reset_csb_pointers(execlists);
2279
2280         return 0;
2281 }
2282
2283 int logical_render_ring_init(struct intel_engine_cs *engine)
2284 {
2285         struct drm_i915_private *dev_priv = engine->i915;
2286         int ret;
2287
2288         logical_ring_setup(engine);
2289
2290         if (HAS_L3_DPF(dev_priv))
2291                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2292
2293         /* Override some for render ring. */
2294         if (INTEL_GEN(dev_priv) >= 9)
2295                 engine->init_hw = gen9_init_render_ring;
2296         else
2297                 engine->init_hw = gen8_init_render_ring;
2298         engine->init_context = gen8_init_rcs_context;
2299         engine->emit_flush = gen8_emit_flush_render;
2300         engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2301         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2302
2303         ret = logical_ring_init(engine);
2304         if (ret)
2305                 return ret;
2306
2307         ret = intel_init_workaround_bb(engine);
2308         if (ret) {
2309                 /*
2310                  * We continue even if we fail to initialize WA batch
2311                  * because we only expect rare glitches but nothing
2312                  * critical to prevent us from using GPU
2313                  */
2314                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2315                           ret);
2316         }
2317
2318         intel_engine_init_whitelist(engine);
2319
2320         return 0;
2321 }
2322
2323 int logical_xcs_ring_init(struct intel_engine_cs *engine)
2324 {
2325         logical_ring_setup(engine);
2326
2327         return logical_ring_init(engine);
2328 }
2329
2330 static u32
2331 make_rpcs(struct drm_i915_private *dev_priv)
2332 {
2333         bool subslice_pg = INTEL_INFO(dev_priv)->sseu.has_subslice_pg;
2334         u8 slices = hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask);
2335         u8 subslices = hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]);
2336         u32 rpcs = 0;
2337
2338         /*
2339          * No explicit RPCS request is needed to ensure full
2340          * slice/subslice/EU enablement prior to Gen9.
2341         */
2342         if (INTEL_GEN(dev_priv) < 9)
2343                 return 0;
2344
2345         /*
2346          * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
2347          * wide and Icelake has up to eight subslices, specfial programming is
2348          * needed in order to correctly enable all subslices.
2349          *
2350          * According to documentation software must consider the configuration
2351          * as 2x4x8 and hardware will translate this to 1x8x8.
2352          *
2353          * Furthemore, even though SScount is three bits, maximum documented
2354          * value for it is four. From this some rules/restrictions follow:
2355          *
2356          * 1.
2357          * If enabled subslice count is greater than four, two whole slices must
2358          * be enabled instead.
2359          *
2360          * 2.
2361          * When more than one slice is enabled, hardware ignores the subslice
2362          * count altogether.
2363          *
2364          * From these restrictions it follows that it is not possible to enable
2365          * a count of subslices between the SScount maximum of four restriction,
2366          * and the maximum available number on a particular SKU. Either all
2367          * subslices are enabled, or a count between one and four on the first
2368          * slice.
2369          */
2370         if (IS_GEN11(dev_priv) && slices == 1 && subslices >= 4) {
2371                 GEM_BUG_ON(subslices & 1);
2372
2373                 subslice_pg = false;
2374                 slices *= 2;
2375         }
2376
2377         /*
2378          * Starting in Gen9, render power gating can leave
2379          * slice/subslice/EU in a partially enabled state. We
2380          * must make an explicit request through RPCS for full
2381          * enablement.
2382         */
2383         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2384                 u32 mask, val = slices;
2385
2386                 if (INTEL_GEN(dev_priv) >= 11) {
2387                         mask = GEN11_RPCS_S_CNT_MASK;
2388                         val <<= GEN11_RPCS_S_CNT_SHIFT;
2389                 } else {
2390                         mask = GEN8_RPCS_S_CNT_MASK;
2391                         val <<= GEN8_RPCS_S_CNT_SHIFT;
2392                 }
2393
2394                 GEM_BUG_ON(val & ~mask);
2395                 val &= mask;
2396
2397                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
2398         }
2399
2400         if (subslice_pg) {
2401                 u32 val = subslices;
2402
2403                 val <<= GEN8_RPCS_SS_CNT_SHIFT;
2404
2405                 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
2406                 val &= GEN8_RPCS_SS_CNT_MASK;
2407
2408                 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
2409         }
2410
2411         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2412                 u32 val;
2413
2414                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2415                       GEN8_RPCS_EU_MIN_SHIFT;
2416                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
2417                 val &= GEN8_RPCS_EU_MIN_MASK;
2418
2419                 rpcs |= val;
2420
2421                 val = INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2422                       GEN8_RPCS_EU_MAX_SHIFT;
2423                 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
2424                 val &= GEN8_RPCS_EU_MAX_MASK;
2425
2426                 rpcs |= val;
2427
2428                 rpcs |= GEN8_RPCS_ENABLE;
2429         }
2430
2431         return rpcs;
2432 }
2433
2434 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2435 {
2436         u32 indirect_ctx_offset;
2437
2438         switch (INTEL_GEN(engine->i915)) {
2439         default:
2440                 MISSING_CASE(INTEL_GEN(engine->i915));
2441                 /* fall through */
2442         case 11:
2443                 indirect_ctx_offset =
2444                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2445                 break;
2446         case 10:
2447                 indirect_ctx_offset =
2448                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2449                 break;
2450         case 9:
2451                 indirect_ctx_offset =
2452                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2453                 break;
2454         case 8:
2455                 indirect_ctx_offset =
2456                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2457                 break;
2458         }
2459
2460         return indirect_ctx_offset;
2461 }
2462
2463 static void execlists_init_reg_state(u32 *regs,
2464                                      struct i915_gem_context *ctx,
2465                                      struct intel_engine_cs *engine,
2466                                      struct intel_ring *ring)
2467 {
2468         struct drm_i915_private *dev_priv = engine->i915;
2469         u32 base = engine->mmio_base;
2470         bool rcs = engine->class == RENDER_CLASS;
2471
2472         /* A context is actually a big batch buffer with several
2473          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2474          * values we are setting here are only for the first context restore:
2475          * on a subsequent save, the GPU will recreate this batchbuffer with new
2476          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2477          * we are not initializing here).
2478          */
2479         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2480                                  MI_LRI_FORCE_POSTED;
2481
2482         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2483                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2484                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2485         if (INTEL_GEN(dev_priv) < 11) {
2486                 regs[CTX_CONTEXT_CONTROL + 1] |=
2487                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2488                                             CTX_CTRL_RS_CTX_ENABLE);
2489         }
2490         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2491         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2492         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2493         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2494                 RING_CTL_SIZE(ring->size) | RING_VALID);
2495         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2496         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2497         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2498         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2499         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2500         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2501         if (rcs) {
2502                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2503
2504                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2505                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2506                         RING_INDIRECT_CTX_OFFSET(base), 0);
2507                 if (wa_ctx->indirect_ctx.size) {
2508                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2509
2510                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2511                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2512                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2513
2514                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2515                                 intel_lr_indirect_ctx_offset(engine) << 6;
2516                 }
2517
2518                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2519                 if (wa_ctx->per_ctx.size) {
2520                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2521
2522                         regs[CTX_BB_PER_CTX_PTR + 1] =
2523                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2524                 }
2525         }
2526
2527         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2528
2529         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2530         /* PDP values well be assigned later if needed */
2531         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2532         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2533         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2534         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2535         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2536         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2537         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2538         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2539
2540         if (i915_vm_is_48bit(&ctx->ppgtt->vm)) {
2541                 /* 64b PPGTT (48bit canonical)
2542                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2543                  * other PDP Descriptors are ignored.
2544                  */
2545                 ASSIGN_CTX_PML4(ctx->ppgtt, regs);
2546         }
2547
2548         if (rcs) {
2549                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2550                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2551                         make_rpcs(dev_priv));
2552
2553                 i915_oa_init_reg_state(engine, ctx, regs);
2554         }
2555
2556         regs[CTX_END] = MI_BATCH_BUFFER_END;
2557         if (INTEL_GEN(dev_priv) >= 10)
2558                 regs[CTX_END] |= BIT(0);
2559 }
2560
2561 static int
2562 populate_lr_context(struct i915_gem_context *ctx,
2563                     struct drm_i915_gem_object *ctx_obj,
2564                     struct intel_engine_cs *engine,
2565                     struct intel_ring *ring)
2566 {
2567         void *vaddr;
2568         u32 *regs;
2569         int ret;
2570
2571         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2572         if (ret) {
2573                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2574                 return ret;
2575         }
2576
2577         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2578         if (IS_ERR(vaddr)) {
2579                 ret = PTR_ERR(vaddr);
2580                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2581                 return ret;
2582         }
2583         ctx_obj->mm.dirty = true;
2584
2585         if (engine->default_state) {
2586                 /*
2587                  * We only want to copy over the template context state;
2588                  * skipping over the headers reserved for GuC communication,
2589                  * leaving those as zero.
2590                  */
2591                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2592                 void *defaults;
2593
2594                 defaults = i915_gem_object_pin_map(engine->default_state,
2595                                                    I915_MAP_WB);
2596                 if (IS_ERR(defaults)) {
2597                         ret = PTR_ERR(defaults);
2598                         goto err_unpin_ctx;
2599                 }
2600
2601                 memcpy(vaddr + start, defaults + start, engine->context_size);
2602                 i915_gem_object_unpin_map(engine->default_state);
2603         }
2604
2605         /* The second page of the context object contains some fields which must
2606          * be set up prior to the first execution. */
2607         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2608         execlists_init_reg_state(regs, ctx, engine, ring);
2609         if (!engine->default_state)
2610                 regs[CTX_CONTEXT_CONTROL + 1] |=
2611                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2612         if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2613                 regs[CTX_CONTEXT_CONTROL + 1] |=
2614                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2615                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2616
2617 err_unpin_ctx:
2618         i915_gem_object_unpin_map(ctx_obj);
2619         return ret;
2620 }
2621
2622 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2623                                             struct intel_engine_cs *engine,
2624                                             struct intel_context *ce)
2625 {
2626         struct drm_i915_gem_object *ctx_obj;
2627         struct i915_vma *vma;
2628         uint32_t context_size;
2629         struct intel_ring *ring;
2630         struct i915_timeline *timeline;
2631         int ret;
2632
2633         if (ce->state)
2634                 return 0;
2635
2636         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2637
2638         /*
2639          * Before the actual start of the context image, we insert a few pages
2640          * for our own use and for sharing with the GuC.
2641          */
2642         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2643
2644         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2645         if (IS_ERR(ctx_obj))
2646                 return PTR_ERR(ctx_obj);
2647
2648         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.vm, NULL);
2649         if (IS_ERR(vma)) {
2650                 ret = PTR_ERR(vma);
2651                 goto error_deref_obj;
2652         }
2653
2654         timeline = i915_timeline_create(ctx->i915, ctx->name);
2655         if (IS_ERR(timeline)) {
2656                 ret = PTR_ERR(timeline);
2657                 goto error_deref_obj;
2658         }
2659
2660         ring = intel_engine_create_ring(engine, timeline, ctx->ring_size);
2661         i915_timeline_put(timeline);
2662         if (IS_ERR(ring)) {
2663                 ret = PTR_ERR(ring);
2664                 goto error_deref_obj;
2665         }
2666
2667         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2668         if (ret) {
2669                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2670                 goto error_ring_free;
2671         }
2672
2673         ce->ring = ring;
2674         ce->state = vma;
2675
2676         return 0;
2677
2678 error_ring_free:
2679         intel_ring_free(ring);
2680 error_deref_obj:
2681         i915_gem_object_put(ctx_obj);
2682         return ret;
2683 }
2684
2685 void intel_lr_context_resume(struct drm_i915_private *i915)
2686 {
2687         struct intel_engine_cs *engine;
2688         struct i915_gem_context *ctx;
2689         enum intel_engine_id id;
2690
2691         /*
2692          * Because we emit WA_TAIL_DWORDS there may be a disparity
2693          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2694          * that stored in context. As we only write new commands from
2695          * ce->ring->tail onwards, everything before that is junk. If the GPU
2696          * starts reading from its RING_HEAD from the context, it may try to
2697          * execute that junk and die.
2698          *
2699          * So to avoid that we reset the context images upon resume. For
2700          * simplicity, we just zero everything out.
2701          */
2702         list_for_each_entry(ctx, &i915->contexts.list, link) {
2703                 for_each_engine(engine, i915, id) {
2704                         struct intel_context *ce =
2705                                 to_intel_context(ctx, engine);
2706
2707                         if (!ce->state)
2708                                 continue;
2709
2710                         intel_ring_reset(ce->ring, 0);
2711
2712                         if (ce->pin_count) { /* otherwise done in context_pin */
2713                                 u32 *regs = ce->lrc_reg_state;
2714
2715                                 regs[CTX_RING_HEAD + 1] = ce->ring->head;
2716                                 regs[CTX_RING_TAIL + 1] = ce->ring->tail;
2717                         }
2718                 }
2719         }
2720 }
2721
2722 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2723 #include "selftests/intel_lrc.c"
2724 #endif