Merge tag 'docs-5.0' of git://git.lwn.net/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  *
5  * Authors:
6  * Sean Paul <seanpaul@chromium.org>
7  */
8
9 #include <drm/drmP.h>
10 #include <drm/drm_hdcp.h>
11 #include <linux/i2c.h>
12 #include <linux/random.h>
13
14 #include "intel_drv.h"
15 #include "i915_reg.h"
16
17 #define KEY_LOAD_TRIES  5
18
19 static
20 bool intel_hdcp_is_ksv_valid(u8 *ksv)
21 {
22         int i, ones = 0;
23         /* KSV has 20 1's and 20 0's */
24         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
25                 ones += hweight8(ksv[i]);
26         if (ones != 20)
27                 return false;
28
29         return true;
30 }
31
32 static
33 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
34                                const struct intel_hdcp_shim *shim, u8 *bksv)
35 {
36         int ret, i, tries = 2;
37
38         /* HDCP spec states that we must retry the bksv if it is invalid */
39         for (i = 0; i < tries; i++) {
40                 ret = shim->read_bksv(intel_dig_port, bksv);
41                 if (ret)
42                         return ret;
43                 if (intel_hdcp_is_ksv_valid(bksv))
44                         break;
45         }
46         if (i == tries) {
47                 DRM_DEBUG_KMS("Bksv is invalid\n");
48                 return -ENODEV;
49         }
50
51         return 0;
52 }
53
54 /* Is HDCP1.4 capable on Platform and Sink */
55 bool intel_hdcp_capable(struct intel_connector *connector)
56 {
57         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
58         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
59         bool capable = false;
60         u8 bksv[5];
61
62         if (!shim)
63                 return capable;
64
65         if (shim->hdcp_capable) {
66                 shim->hdcp_capable(intel_dig_port, &capable);
67         } else {
68                 if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
69                         capable = true;
70         }
71
72         return capable;
73 }
74
75 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
76                                     const struct intel_hdcp_shim *shim)
77 {
78         int ret, read_ret;
79         bool ksv_ready;
80
81         /* Poll for ksv list ready (spec says max time allowed is 5s) */
82         ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
83                                                          &ksv_ready),
84                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
85                          100 * 1000);
86         if (ret)
87                 return ret;
88         if (read_ret)
89                 return read_ret;
90         if (!ksv_ready)
91                 return -ETIMEDOUT;
92
93         return 0;
94 }
95
96 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
97 {
98         struct i915_power_domains *power_domains = &dev_priv->power_domains;
99         struct i915_power_well *power_well;
100         enum i915_power_well_id id;
101         bool enabled = false;
102
103         /*
104          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
105          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
106          */
107         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
108                 id = HSW_DISP_PW_GLOBAL;
109         else
110                 id = SKL_DISP_PW_1;
111
112         mutex_lock(&power_domains->lock);
113
114         /* PG1 (power well #1) needs to be enabled */
115         for_each_power_well(dev_priv, power_well) {
116                 if (power_well->desc->id == id) {
117                         enabled = power_well->desc->ops->is_enabled(dev_priv,
118                                                                     power_well);
119                         break;
120                 }
121         }
122         mutex_unlock(&power_domains->lock);
123
124         /*
125          * Another req for hdcp key loadability is enabled state of pll for
126          * cdclk. Without active crtc we wont land here. So we are assuming that
127          * cdclk is already on.
128          */
129
130         return enabled;
131 }
132
133 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
134 {
135         I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
136         I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
137                    HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
138 }
139
140 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
141 {
142         int ret;
143         u32 val;
144
145         val = I915_READ(HDCP_KEY_STATUS);
146         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
147                 return 0;
148
149         /*
150          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
151          * out of reset. So if Key is not already loaded, its an error state.
152          */
153         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
154                 if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
155                         return -ENXIO;
156
157         /*
158          * Initiate loading the HDCP key from fuses.
159          *
160          * BXT+ platforms, HDCP key needs to be loaded by SW. Only SKL and KBL
161          * differ in the key load trigger process from other platforms.
162          */
163         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
164                 mutex_lock(&dev_priv->pcu_lock);
165                 ret = sandybridge_pcode_write(dev_priv,
166                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
167                 mutex_unlock(&dev_priv->pcu_lock);
168                 if (ret) {
169                         DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
170                                   ret);
171                         return ret;
172                 }
173         } else {
174                 I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
175         }
176
177         /* Wait for the keys to load (500us) */
178         ret = __intel_wait_for_register(dev_priv, HDCP_KEY_STATUS,
179                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
180                                         10, 1, &val);
181         if (ret)
182                 return ret;
183         else if (!(val & HDCP_KEY_LOAD_STATUS))
184                 return -ENXIO;
185
186         /* Send Aksv over to PCH display for use in authentication */
187         I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
188
189         return 0;
190 }
191
192 /* Returns updated SHA-1 index */
193 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
194 {
195         I915_WRITE(HDCP_SHA_TEXT, sha_text);
196         if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
197                                     HDCP_SHA1_READY, HDCP_SHA1_READY, 1)) {
198                 DRM_ERROR("Timed out waiting for SHA1 ready\n");
199                 return -ETIMEDOUT;
200         }
201         return 0;
202 }
203
204 static
205 u32 intel_hdcp_get_repeater_ctl(struct intel_digital_port *intel_dig_port)
206 {
207         enum port port = intel_dig_port->base.port;
208         switch (port) {
209         case PORT_A:
210                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
211         case PORT_B:
212                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
213         case PORT_C:
214                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
215         case PORT_D:
216                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
217         case PORT_E:
218                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
219         default:
220                 break;
221         }
222         DRM_ERROR("Unknown port %d\n", port);
223         return -EINVAL;
224 }
225
226 static
227 int intel_hdcp_validate_v_prime(struct intel_digital_port *intel_dig_port,
228                                 const struct intel_hdcp_shim *shim,
229                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
230 {
231         struct drm_i915_private *dev_priv;
232         u32 vprime, sha_text, sha_leftovers, rep_ctl;
233         int ret, i, j, sha_idx;
234
235         dev_priv = intel_dig_port->base.base.dev->dev_private;
236
237         /* Process V' values from the receiver */
238         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
239                 ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
240                 if (ret)
241                         return ret;
242                 I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
243         }
244
245         /*
246          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
247          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
248          * stream is written via the HDCP_SHA_TEXT register in 32-bit
249          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
250          * index will keep track of our progress through the 64 bytes as well as
251          * helping us work the 40-bit KSVs through our 32-bit register.
252          *
253          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
254          */
255         sha_idx = 0;
256         sha_text = 0;
257         sha_leftovers = 0;
258         rep_ctl = intel_hdcp_get_repeater_ctl(intel_dig_port);
259         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
260         for (i = 0; i < num_downstream; i++) {
261                 unsigned int sha_empty;
262                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
263
264                 /* Fill up the empty slots in sha_text and write it out */
265                 sha_empty = sizeof(sha_text) - sha_leftovers;
266                 for (j = 0; j < sha_empty; j++)
267                         sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
268
269                 ret = intel_write_sha_text(dev_priv, sha_text);
270                 if (ret < 0)
271                         return ret;
272
273                 /* Programming guide writes this every 64 bytes */
274                 sha_idx += sizeof(sha_text);
275                 if (!(sha_idx % 64))
276                         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
277
278                 /* Store the leftover bytes from the ksv in sha_text */
279                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
280                 sha_text = 0;
281                 for (j = 0; j < sha_leftovers; j++)
282                         sha_text |= ksv[sha_empty + j] <<
283                                         ((sizeof(sha_text) - j - 1) * 8);
284
285                 /*
286                  * If we still have room in sha_text for more data, continue.
287                  * Otherwise, write it out immediately.
288                  */
289                 if (sizeof(sha_text) > sha_leftovers)
290                         continue;
291
292                 ret = intel_write_sha_text(dev_priv, sha_text);
293                 if (ret < 0)
294                         return ret;
295                 sha_leftovers = 0;
296                 sha_text = 0;
297                 sha_idx += sizeof(sha_text);
298         }
299
300         /*
301          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
302          * bytes are leftover from the last ksv, we might be able to fit them
303          * all in sha_text (first 2 cases), or we might need to split them up
304          * into 2 writes (last 2 cases).
305          */
306         if (sha_leftovers == 0) {
307                 /* Write 16 bits of text, 16 bits of M0 */
308                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
309                 ret = intel_write_sha_text(dev_priv,
310                                            bstatus[0] << 8 | bstatus[1]);
311                 if (ret < 0)
312                         return ret;
313                 sha_idx += sizeof(sha_text);
314
315                 /* Write 32 bits of M0 */
316                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
317                 ret = intel_write_sha_text(dev_priv, 0);
318                 if (ret < 0)
319                         return ret;
320                 sha_idx += sizeof(sha_text);
321
322                 /* Write 16 bits of M0 */
323                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
324                 ret = intel_write_sha_text(dev_priv, 0);
325                 if (ret < 0)
326                         return ret;
327                 sha_idx += sizeof(sha_text);
328
329         } else if (sha_leftovers == 1) {
330                 /* Write 24 bits of text, 8 bits of M0 */
331                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
332                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
333                 /* Only 24-bits of data, must be in the LSB */
334                 sha_text = (sha_text & 0xffffff00) >> 8;
335                 ret = intel_write_sha_text(dev_priv, sha_text);
336                 if (ret < 0)
337                         return ret;
338                 sha_idx += sizeof(sha_text);
339
340                 /* Write 32 bits of M0 */
341                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
342                 ret = intel_write_sha_text(dev_priv, 0);
343                 if (ret < 0)
344                         return ret;
345                 sha_idx += sizeof(sha_text);
346
347                 /* Write 24 bits of M0 */
348                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
349                 ret = intel_write_sha_text(dev_priv, 0);
350                 if (ret < 0)
351                         return ret;
352                 sha_idx += sizeof(sha_text);
353
354         } else if (sha_leftovers == 2) {
355                 /* Write 32 bits of text */
356                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
357                 sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
358                 ret = intel_write_sha_text(dev_priv, sha_text);
359                 if (ret < 0)
360                         return ret;
361                 sha_idx += sizeof(sha_text);
362
363                 /* Write 64 bits of M0 */
364                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
365                 for (i = 0; i < 2; i++) {
366                         ret = intel_write_sha_text(dev_priv, 0);
367                         if (ret < 0)
368                                 return ret;
369                         sha_idx += sizeof(sha_text);
370                 }
371         } else if (sha_leftovers == 3) {
372                 /* Write 32 bits of text */
373                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
374                 sha_text |= bstatus[0] << 24;
375                 ret = intel_write_sha_text(dev_priv, sha_text);
376                 if (ret < 0)
377                         return ret;
378                 sha_idx += sizeof(sha_text);
379
380                 /* Write 8 bits of text, 24 bits of M0 */
381                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
382                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
383                 if (ret < 0)
384                         return ret;
385                 sha_idx += sizeof(sha_text);
386
387                 /* Write 32 bits of M0 */
388                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
389                 ret = intel_write_sha_text(dev_priv, 0);
390                 if (ret < 0)
391                         return ret;
392                 sha_idx += sizeof(sha_text);
393
394                 /* Write 8 bits of M0 */
395                 I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
396                 ret = intel_write_sha_text(dev_priv, 0);
397                 if (ret < 0)
398                         return ret;
399                 sha_idx += sizeof(sha_text);
400         } else {
401                 DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
402                               sha_leftovers);
403                 return -EINVAL;
404         }
405
406         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
407         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
408         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
409                 ret = intel_write_sha_text(dev_priv, 0);
410                 if (ret < 0)
411                         return ret;
412                 sha_idx += sizeof(sha_text);
413         }
414
415         /*
416          * Last write gets the length of the concatenation in bits. That is:
417          *  - 5 bytes per device
418          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
419          */
420         sha_text = (num_downstream * 5 + 10) * 8;
421         ret = intel_write_sha_text(dev_priv, sha_text);
422         if (ret < 0)
423                 return ret;
424
425         /* Tell the HW we're done with the hash and wait for it to ACK */
426         I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
427         if (intel_wait_for_register(dev_priv, HDCP_REP_CTL,
428                                     HDCP_SHA1_COMPLETE,
429                                     HDCP_SHA1_COMPLETE, 1)) {
430                 DRM_ERROR("Timed out waiting for SHA1 complete\n");
431                 return -ETIMEDOUT;
432         }
433         if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
434                 DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
435                 return -ENXIO;
436         }
437
438         return 0;
439 }
440
441 /* Implements Part 2 of the HDCP authorization procedure */
442 static
443 int intel_hdcp_auth_downstream(struct intel_digital_port *intel_dig_port,
444                                const struct intel_hdcp_shim *shim)
445 {
446         u8 bstatus[2], num_downstream, *ksv_fifo;
447         int ret, i, tries = 3;
448
449         ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
450         if (ret) {
451                 DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
452                 return ret;
453         }
454
455         ret = shim->read_bstatus(intel_dig_port, bstatus);
456         if (ret)
457                 return ret;
458
459         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
460             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
461                 DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
462                 return -EPERM;
463         }
464
465         /*
466          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
467          * the HDCP encryption. That implies that repeater can't have its own
468          * display. As there is no consumption of encrypted content in the
469          * repeater with 0 downstream devices, we are failing the
470          * authentication.
471          */
472         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
473         if (num_downstream == 0)
474                 return -EINVAL;
475
476         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
477         if (!ksv_fifo)
478                 return -ENOMEM;
479
480         ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
481         if (ret)
482                 goto err;
483
484         /*
485          * When V prime mismatches, DP Spec mandates re-read of
486          * V prime atleast twice.
487          */
488         for (i = 0; i < tries; i++) {
489                 ret = intel_hdcp_validate_v_prime(intel_dig_port, shim,
490                                                   ksv_fifo, num_downstream,
491                                                   bstatus);
492                 if (!ret)
493                         break;
494         }
495
496         if (i == tries) {
497                 DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
498                 goto err;
499         }
500
501         DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
502                       num_downstream);
503         ret = 0;
504 err:
505         kfree(ksv_fifo);
506         return ret;
507 }
508
509 /* Implements Part 1 of the HDCP authorization procedure */
510 static int intel_hdcp_auth(struct intel_digital_port *intel_dig_port,
511                            const struct intel_hdcp_shim *shim)
512 {
513         struct drm_i915_private *dev_priv;
514         enum port port;
515         unsigned long r0_prime_gen_start;
516         int ret, i, tries = 2;
517         union {
518                 u32 reg[2];
519                 u8 shim[DRM_HDCP_AN_LEN];
520         } an;
521         union {
522                 u32 reg[2];
523                 u8 shim[DRM_HDCP_KSV_LEN];
524         } bksv;
525         union {
526                 u32 reg;
527                 u8 shim[DRM_HDCP_RI_LEN];
528         } ri;
529         bool repeater_present, hdcp_capable;
530
531         dev_priv = intel_dig_port->base.base.dev->dev_private;
532
533         port = intel_dig_port->base.port;
534
535         /*
536          * Detects whether the display is HDCP capable. Although we check for
537          * valid Bksv below, the HDCP over DP spec requires that we check
538          * whether the display supports HDCP before we write An. For HDMI
539          * displays, this is not necessary.
540          */
541         if (shim->hdcp_capable) {
542                 ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
543                 if (ret)
544                         return ret;
545                 if (!hdcp_capable) {
546                         DRM_DEBUG_KMS("Panel is not HDCP capable\n");
547                         return -EINVAL;
548                 }
549         }
550
551         /* Initialize An with 2 random values and acquire it */
552         for (i = 0; i < 2; i++)
553                 I915_WRITE(PORT_HDCP_ANINIT(port), get_random_u32());
554         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_CAPTURE_AN);
555
556         /* Wait for An to be acquired */
557         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
558                                     HDCP_STATUS_AN_READY,
559                                     HDCP_STATUS_AN_READY, 1)) {
560                 DRM_ERROR("Timed out waiting for An\n");
561                 return -ETIMEDOUT;
562         }
563
564         an.reg[0] = I915_READ(PORT_HDCP_ANLO(port));
565         an.reg[1] = I915_READ(PORT_HDCP_ANHI(port));
566         ret = shim->write_an_aksv(intel_dig_port, an.shim);
567         if (ret)
568                 return ret;
569
570         r0_prime_gen_start = jiffies;
571
572         memset(&bksv, 0, sizeof(bksv));
573
574         ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
575         if (ret < 0)
576                 return ret;
577
578         I915_WRITE(PORT_HDCP_BKSVLO(port), bksv.reg[0]);
579         I915_WRITE(PORT_HDCP_BKSVHI(port), bksv.reg[1]);
580
581         ret = shim->repeater_present(intel_dig_port, &repeater_present);
582         if (ret)
583                 return ret;
584         if (repeater_present)
585                 I915_WRITE(HDCP_REP_CTL,
586                            intel_hdcp_get_repeater_ctl(intel_dig_port));
587
588         ret = shim->toggle_signalling(intel_dig_port, true);
589         if (ret)
590                 return ret;
591
592         I915_WRITE(PORT_HDCP_CONF(port), HDCP_CONF_AUTH_AND_ENC);
593
594         /* Wait for R0 ready */
595         if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
596                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
597                 DRM_ERROR("Timed out waiting for R0 ready\n");
598                 return -ETIMEDOUT;
599         }
600
601         /*
602          * Wait for R0' to become available. The spec says 100ms from Aksv, but
603          * some monitors can take longer than this. We'll set the timeout at
604          * 300ms just to be sure.
605          *
606          * On DP, there's an R0_READY bit available but no such bit
607          * exists on HDMI. Since the upper-bound is the same, we'll just do
608          * the stupid thing instead of polling on one and not the other.
609          */
610         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
611
612         tries = 3;
613
614         /*
615          * DP HDCP Spec mandates the two more reattempt to read R0, incase
616          * of R0 mismatch.
617          */
618         for (i = 0; i < tries; i++) {
619                 ri.reg = 0;
620                 ret = shim->read_ri_prime(intel_dig_port, ri.shim);
621                 if (ret)
622                         return ret;
623                 I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg);
624
625                 /* Wait for Ri prime match */
626                 if (!wait_for(I915_READ(PORT_HDCP_STATUS(port)) &
627                     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
628                         break;
629         }
630
631         if (i == tries) {
632                 DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
633                               I915_READ(PORT_HDCP_STATUS(port)));
634                 return -ETIMEDOUT;
635         }
636
637         /* Wait for encryption confirmation */
638         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port),
639                                     HDCP_STATUS_ENC, HDCP_STATUS_ENC, 20)) {
640                 DRM_ERROR("Timed out waiting for encryption\n");
641                 return -ETIMEDOUT;
642         }
643
644         /*
645          * XXX: If we have MST-connected devices, we need to enable encryption
646          * on those as well.
647          */
648
649         if (repeater_present)
650                 return intel_hdcp_auth_downstream(intel_dig_port, shim);
651
652         DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
653         return 0;
654 }
655
656 static int _intel_hdcp_disable(struct intel_connector *connector)
657 {
658         struct intel_hdcp *hdcp = &connector->hdcp;
659         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
660         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
661         enum port port = intel_dig_port->base.port;
662         int ret;
663
664         DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
665                       connector->base.name, connector->base.base.id);
666
667         I915_WRITE(PORT_HDCP_CONF(port), 0);
668         if (intel_wait_for_register(dev_priv, PORT_HDCP_STATUS(port), ~0, 0,
669                                     20)) {
670                 DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
671                 return -ETIMEDOUT;
672         }
673
674         ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
675         if (ret) {
676                 DRM_ERROR("Failed to disable HDCP signalling\n");
677                 return ret;
678         }
679
680         DRM_DEBUG_KMS("HDCP is disabled\n");
681         return 0;
682 }
683
684 static int _intel_hdcp_enable(struct intel_connector *connector)
685 {
686         struct intel_hdcp *hdcp = &connector->hdcp;
687         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
688         int i, ret, tries = 3;
689
690         DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
691                       connector->base.name, connector->base.base.id);
692
693         if (!hdcp_key_loadable(dev_priv)) {
694                 DRM_ERROR("HDCP key Load is not possible\n");
695                 return -ENXIO;
696         }
697
698         for (i = 0; i < KEY_LOAD_TRIES; i++) {
699                 ret = intel_hdcp_load_keys(dev_priv);
700                 if (!ret)
701                         break;
702                 intel_hdcp_clear_keys(dev_priv);
703         }
704         if (ret) {
705                 DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
706                 return ret;
707         }
708
709         /* Incase of authentication failures, HDCP spec expects reauth. */
710         for (i = 0; i < tries; i++) {
711                 ret = intel_hdcp_auth(conn_to_dig_port(connector), hdcp->shim);
712                 if (!ret)
713                         return 0;
714
715                 DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
716
717                 /* Ensuring HDCP encryption and signalling are stopped. */
718                 _intel_hdcp_disable(connector);
719         }
720
721         DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
722         return ret;
723 }
724
725 static inline
726 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
727 {
728         return container_of(hdcp, struct intel_connector, hdcp);
729 }
730
731 static void intel_hdcp_check_work(struct work_struct *work)
732 {
733         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
734                                                struct intel_hdcp,
735                                                check_work);
736         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
737
738         if (!intel_hdcp_check_link(connector))
739                 schedule_delayed_work(&hdcp->check_work,
740                                       DRM_HDCP_CHECK_PERIOD_MS);
741 }
742
743 static void intel_hdcp_prop_work(struct work_struct *work)
744 {
745         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
746                                                prop_work);
747         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
748         struct drm_device *dev = connector->base.dev;
749         struct drm_connector_state *state;
750
751         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
752         mutex_lock(&hdcp->mutex);
753
754         /*
755          * This worker is only used to flip between ENABLED/DESIRED. Either of
756          * those to UNDESIRED is handled by core. If value == UNDESIRED,
757          * we're running just after hdcp has been disabled, so just exit
758          */
759         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
760                 state = connector->base.state;
761                 state->content_protection = hdcp->value;
762         }
763
764         mutex_unlock(&hdcp->mutex);
765         drm_modeset_unlock(&dev->mode_config.connection_mutex);
766 }
767
768 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
769 {
770         /* PORT E doesn't have HDCP, and PORT F is disabled */
771         return ((INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
772                 !IS_CHERRYVIEW(dev_priv) && port < PORT_E);
773 }
774
775 int intel_hdcp_init(struct intel_connector *connector,
776                     const struct intel_hdcp_shim *shim)
777 {
778         struct intel_hdcp *hdcp = &connector->hdcp;
779         int ret;
780
781         ret = drm_connector_attach_content_protection_property(
782                         &connector->base);
783         if (ret)
784                 return ret;
785
786         hdcp->shim = shim;
787         mutex_init(&hdcp->mutex);
788         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
789         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
790         return 0;
791 }
792
793 int intel_hdcp_enable(struct intel_connector *connector)
794 {
795         struct intel_hdcp *hdcp = &connector->hdcp;
796         int ret;
797
798         if (!hdcp->shim)
799                 return -ENOENT;
800
801         mutex_lock(&hdcp->mutex);
802
803         ret = _intel_hdcp_enable(connector);
804         if (ret)
805                 goto out;
806
807         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
808         schedule_work(&hdcp->prop_work);
809         schedule_delayed_work(&hdcp->check_work,
810                               DRM_HDCP_CHECK_PERIOD_MS);
811 out:
812         mutex_unlock(&hdcp->mutex);
813         return ret;
814 }
815
816 int intel_hdcp_disable(struct intel_connector *connector)
817 {
818         struct intel_hdcp *hdcp = &connector->hdcp;
819         int ret = 0;
820
821         if (!hdcp->shim)
822                 return -ENOENT;
823
824         mutex_lock(&hdcp->mutex);
825
826         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
827                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
828                 ret = _intel_hdcp_disable(connector);
829         }
830
831         mutex_unlock(&hdcp->mutex);
832         cancel_delayed_work_sync(&hdcp->check_work);
833         return ret;
834 }
835
836 void intel_hdcp_atomic_check(struct drm_connector *connector,
837                              struct drm_connector_state *old_state,
838                              struct drm_connector_state *new_state)
839 {
840         uint64_t old_cp = old_state->content_protection;
841         uint64_t new_cp = new_state->content_protection;
842         struct drm_crtc_state *crtc_state;
843
844         if (!new_state->crtc) {
845                 /*
846                  * If the connector is being disabled with CP enabled, mark it
847                  * desired so it's re-enabled when the connector is brought back
848                  */
849                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
850                         new_state->content_protection =
851                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
852                 return;
853         }
854
855         /*
856          * Nothing to do if the state didn't change, or HDCP was activated since
857          * the last commit
858          */
859         if (old_cp == new_cp ||
860             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
861              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED))
862                 return;
863
864         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
865                                                    new_state->crtc);
866         crtc_state->mode_changed = true;
867 }
868
869 /* Implements Part 3 of the HDCP authorization procedure */
870 int intel_hdcp_check_link(struct intel_connector *connector)
871 {
872         struct intel_hdcp *hdcp = &connector->hdcp;
873         struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
874         struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
875         enum port port = intel_dig_port->base.port;
876         int ret = 0;
877
878         if (!hdcp->shim)
879                 return -ENOENT;
880
881         mutex_lock(&hdcp->mutex);
882
883         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
884                 goto out;
885
886         if (!(I915_READ(PORT_HDCP_STATUS(port)) & HDCP_STATUS_ENC)) {
887                 DRM_ERROR("%s:%d HDCP check failed: link is not encrypted,%x\n",
888                           connector->base.name, connector->base.base.id,
889                           I915_READ(PORT_HDCP_STATUS(port)));
890                 ret = -ENXIO;
891                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
892                 schedule_work(&hdcp->prop_work);
893                 goto out;
894         }
895
896         if (hdcp->shim->check_link(intel_dig_port)) {
897                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
898                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
899                         schedule_work(&hdcp->prop_work);
900                 }
901                 goto out;
902         }
903
904         DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
905                       connector->base.name, connector->base.base.id);
906
907         ret = _intel_hdcp_disable(connector);
908         if (ret) {
909                 DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
910                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
911                 schedule_work(&hdcp->prop_work);
912                 goto out;
913         }
914
915         ret = _intel_hdcp_enable(connector);
916         if (ret) {
917                 DRM_DEBUG_KMS("Failed to enable hdcp (%d)\n", ret);
918                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
919                 schedule_work(&hdcp->prop_work);
920                 goto out;
921         }
922
923 out:
924         mutex_unlock(&hdcp->mutex);
925         return ret;
926 }