Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_guc_log.c
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/debugfs.h>
26
27 #include "intel_guc_log.h"
28 #include "i915_drv.h"
29
30 static void guc_log_capture_logs(struct intel_guc_log *log);
31
32 /**
33  * DOC: GuC firmware log
34  *
35  * Firmware log is enabled by setting i915.guc_log_level to the positive level.
36  * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
37  * i915_guc_load_status will print out firmware loading status and scratch
38  * registers value.
39  */
40
41 static int guc_action_flush_log_complete(struct intel_guc *guc)
42 {
43         u32 action[] = {
44                 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
45         };
46
47         return intel_guc_send(guc, action, ARRAY_SIZE(action));
48 }
49
50 static int guc_action_flush_log(struct intel_guc *guc)
51 {
52         u32 action[] = {
53                 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
54                 0
55         };
56
57         return intel_guc_send(guc, action, ARRAY_SIZE(action));
58 }
59
60 static int guc_action_control_log(struct intel_guc *guc, bool enable,
61                                   bool default_logging, u32 verbosity)
62 {
63         u32 action[] = {
64                 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
65                 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) |
66                 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) |
67                 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0)
68         };
69
70         GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX);
71
72         return intel_guc_send(guc, action, ARRAY_SIZE(action));
73 }
74
75 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
76 {
77         return container_of(log, struct intel_guc, log);
78 }
79
80 static void guc_log_enable_flush_events(struct intel_guc_log *log)
81 {
82         intel_guc_enable_msg(log_to_guc(log),
83                              INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
84                              INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
85 }
86
87 static void guc_log_disable_flush_events(struct intel_guc_log *log)
88 {
89         intel_guc_disable_msg(log_to_guc(log),
90                               INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
91                               INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
92 }
93
94 /*
95  * Sub buffer switch callback. Called whenever relay has to switch to a new
96  * sub buffer, relay stays on the same sub buffer if 0 is returned.
97  */
98 static int subbuf_start_callback(struct rchan_buf *buf,
99                                  void *subbuf,
100                                  void *prev_subbuf,
101                                  size_t prev_padding)
102 {
103         /*
104          * Use no-overwrite mode by default, where relay will stop accepting
105          * new data if there are no empty sub buffers left.
106          * There is no strict synchronization enforced by relay between Consumer
107          * and Producer. In overwrite mode, there is a possibility of getting
108          * inconsistent/garbled data, the producer could be writing on to the
109          * same sub buffer from which Consumer is reading. This can't be avoided
110          * unless Consumer is fast enough and can always run in tandem with
111          * Producer.
112          */
113         if (relay_buf_full(buf))
114                 return 0;
115
116         return 1;
117 }
118
119 /*
120  * file_create() callback. Creates relay file in debugfs.
121  */
122 static struct dentry *create_buf_file_callback(const char *filename,
123                                                struct dentry *parent,
124                                                umode_t mode,
125                                                struct rchan_buf *buf,
126                                                int *is_global)
127 {
128         struct dentry *buf_file;
129
130         /*
131          * This to enable the use of a single buffer for the relay channel and
132          * correspondingly have a single file exposed to User, through which
133          * it can collect the logs in order without any post-processing.
134          * Need to set 'is_global' even if parent is NULL for early logging.
135          */
136         *is_global = 1;
137
138         if (!parent)
139                 return NULL;
140
141         buf_file = debugfs_create_file(filename, mode,
142                                        parent, buf, &relay_file_operations);
143         return buf_file;
144 }
145
146 /*
147  * file_remove() default callback. Removes relay file in debugfs.
148  */
149 static int remove_buf_file_callback(struct dentry *dentry)
150 {
151         debugfs_remove(dentry);
152         return 0;
153 }
154
155 /* relay channel callbacks */
156 static struct rchan_callbacks relay_callbacks = {
157         .subbuf_start = subbuf_start_callback,
158         .create_buf_file = create_buf_file_callback,
159         .remove_buf_file = remove_buf_file_callback,
160 };
161
162 static void guc_move_to_next_buf(struct intel_guc_log *log)
163 {
164         /*
165          * Make sure the updates made in the sub buffer are visible when
166          * Consumer sees the following update to offset inside the sub buffer.
167          */
168         smp_wmb();
169
170         /* All data has been written, so now move the offset of sub buffer. */
171         relay_reserve(log->relay.channel, log->vma->obj->base.size);
172
173         /* Switch to the next sub buffer */
174         relay_flush(log->relay.channel);
175 }
176
177 static void *guc_get_write_buffer(struct intel_guc_log *log)
178 {
179         /*
180          * Just get the base address of a new sub buffer and copy data into it
181          * ourselves. NULL will be returned in no-overwrite mode, if all sub
182          * buffers are full. Could have used the relay_write() to indirectly
183          * copy the data, but that would have been bit convoluted, as we need to
184          * write to only certain locations inside a sub buffer which cannot be
185          * done without using relay_reserve() along with relay_write(). So its
186          * better to use relay_reserve() alone.
187          */
188         return relay_reserve(log->relay.channel, 0);
189 }
190
191 static bool guc_check_log_buf_overflow(struct intel_guc_log *log,
192                                        enum guc_log_buffer_type type,
193                                        unsigned int full_cnt)
194 {
195         unsigned int prev_full_cnt = log->stats[type].sampled_overflow;
196         bool overflow = false;
197
198         if (full_cnt != prev_full_cnt) {
199                 overflow = true;
200
201                 log->stats[type].overflow = full_cnt;
202                 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt;
203
204                 if (full_cnt < prev_full_cnt) {
205                         /* buffer_full_cnt is a 4 bit counter */
206                         log->stats[type].sampled_overflow += 16;
207                 }
208                 DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
209         }
210
211         return overflow;
212 }
213
214 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
215 {
216         switch (type) {
217         case GUC_ISR_LOG_BUFFER:
218                 return ISR_BUFFER_SIZE;
219         case GUC_DPC_LOG_BUFFER:
220                 return DPC_BUFFER_SIZE;
221         case GUC_CRASH_DUMP_LOG_BUFFER:
222                 return CRASH_BUFFER_SIZE;
223         default:
224                 MISSING_CASE(type);
225         }
226
227         return 0;
228 }
229
230 static void guc_read_update_log_buffer(struct intel_guc_log *log)
231 {
232         unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
233         struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
234         struct guc_log_buffer_state log_buf_state_local;
235         enum guc_log_buffer_type type;
236         void *src_data, *dst_data;
237         bool new_overflow;
238
239         mutex_lock(&log->relay.lock);
240
241         if (WARN_ON(!intel_guc_log_relay_enabled(log)))
242                 goto out_unlock;
243
244         /* Get the pointer to shared GuC log buffer */
245         log_buf_state = src_data = log->relay.buf_addr;
246
247         /* Get the pointer to local buffer to store the logs */
248         log_buf_snapshot_state = dst_data = guc_get_write_buffer(log);
249
250         if (unlikely(!log_buf_snapshot_state)) {
251                 /*
252                  * Used rate limited to avoid deluge of messages, logs might be
253                  * getting consumed by User at a slow rate.
254                  */
255                 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
256                 log->relay.full_count++;
257
258                 goto out_unlock;
259         }
260
261         /* Actual logs are present from the 2nd page */
262         src_data += PAGE_SIZE;
263         dst_data += PAGE_SIZE;
264
265         for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
266                 /*
267                  * Make a copy of the state structure, inside GuC log buffer
268                  * (which is uncached mapped), on the stack to avoid reading
269                  * from it multiple times.
270                  */
271                 memcpy(&log_buf_state_local, log_buf_state,
272                        sizeof(struct guc_log_buffer_state));
273                 buffer_size = guc_get_log_buffer_size(type);
274                 read_offset = log_buf_state_local.read_ptr;
275                 write_offset = log_buf_state_local.sampled_write_ptr;
276                 full_cnt = log_buf_state_local.buffer_full_cnt;
277
278                 /* Bookkeeping stuff */
279                 log->stats[type].flush += log_buf_state_local.flush_to_file;
280                 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt);
281
282                 /* Update the state of shared log buffer */
283                 log_buf_state->read_ptr = write_offset;
284                 log_buf_state->flush_to_file = 0;
285                 log_buf_state++;
286
287                 /* First copy the state structure in snapshot buffer */
288                 memcpy(log_buf_snapshot_state, &log_buf_state_local,
289                        sizeof(struct guc_log_buffer_state));
290
291                 /*
292                  * The write pointer could have been updated by GuC firmware,
293                  * after sending the flush interrupt to Host, for consistency
294                  * set write pointer value to same value of sampled_write_ptr
295                  * in the snapshot buffer.
296                  */
297                 log_buf_snapshot_state->write_ptr = write_offset;
298                 log_buf_snapshot_state++;
299
300                 /* Now copy the actual logs. */
301                 if (unlikely(new_overflow)) {
302                         /* copy the whole buffer in case of overflow */
303                         read_offset = 0;
304                         write_offset = buffer_size;
305                 } else if (unlikely((read_offset > buffer_size) ||
306                                     (write_offset > buffer_size))) {
307                         DRM_ERROR("invalid log buffer state\n");
308                         /* copy whole buffer as offsets are unreliable */
309                         read_offset = 0;
310                         write_offset = buffer_size;
311                 }
312
313                 /* Just copy the newly written data */
314                 if (read_offset > write_offset) {
315                         i915_memcpy_from_wc(dst_data, src_data, write_offset);
316                         bytes_to_copy = buffer_size - read_offset;
317                 } else {
318                         bytes_to_copy = write_offset - read_offset;
319                 }
320                 i915_memcpy_from_wc(dst_data + read_offset,
321                                     src_data + read_offset, bytes_to_copy);
322
323                 src_data += buffer_size;
324                 dst_data += buffer_size;
325         }
326
327         guc_move_to_next_buf(log);
328
329 out_unlock:
330         mutex_unlock(&log->relay.lock);
331 }
332
333 static void capture_logs_work(struct work_struct *work)
334 {
335         struct intel_guc_log *log =
336                 container_of(work, struct intel_guc_log, relay.flush_work);
337
338         guc_log_capture_logs(log);
339 }
340
341 static int guc_log_map(struct intel_guc_log *log)
342 {
343         struct intel_guc *guc = log_to_guc(log);
344         struct drm_i915_private *dev_priv = guc_to_i915(guc);
345         void *vaddr;
346         int ret;
347
348         lockdep_assert_held(&log->relay.lock);
349
350         if (!log->vma)
351                 return -ENODEV;
352
353         mutex_lock(&dev_priv->drm.struct_mutex);
354         ret = i915_gem_object_set_to_wc_domain(log->vma->obj, true);
355         mutex_unlock(&dev_priv->drm.struct_mutex);
356         if (ret)
357                 return ret;
358
359         /*
360          * Create a WC (Uncached for read) vmalloc mapping of log
361          * buffer pages, so that we can directly get the data
362          * (up-to-date) from memory.
363          */
364         vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC);
365         if (IS_ERR(vaddr)) {
366                 DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
367                 return PTR_ERR(vaddr);
368         }
369
370         log->relay.buf_addr = vaddr;
371
372         return 0;
373 }
374
375 static void guc_log_unmap(struct intel_guc_log *log)
376 {
377         lockdep_assert_held(&log->relay.lock);
378
379         i915_gem_object_unpin_map(log->vma->obj);
380         log->relay.buf_addr = NULL;
381 }
382
383 void intel_guc_log_init_early(struct intel_guc_log *log)
384 {
385         mutex_init(&log->relay.lock);
386         INIT_WORK(&log->relay.flush_work, capture_logs_work);
387 }
388
389 static int guc_log_relay_create(struct intel_guc_log *log)
390 {
391         struct intel_guc *guc = log_to_guc(log);
392         struct drm_i915_private *dev_priv = guc_to_i915(guc);
393         struct rchan *guc_log_relay_chan;
394         size_t n_subbufs, subbuf_size;
395         int ret;
396
397         lockdep_assert_held(&log->relay.lock);
398
399          /* Keep the size of sub buffers same as shared log buffer */
400         subbuf_size = log->vma->size;
401
402         /*
403          * Store up to 8 snapshots, which is large enough to buffer sufficient
404          * boot time logs and provides enough leeway to User, in terms of
405          * latency, for consuming the logs from relay. Also doesn't take
406          * up too much memory.
407          */
408         n_subbufs = 8;
409
410         guc_log_relay_chan = relay_open("guc_log",
411                                         dev_priv->drm.primary->debugfs_root,
412                                         subbuf_size, n_subbufs,
413                                         &relay_callbacks, dev_priv);
414         if (!guc_log_relay_chan) {
415                 DRM_ERROR("Couldn't create relay chan for GuC logging\n");
416
417                 ret = -ENOMEM;
418                 return ret;
419         }
420
421         GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
422         log->relay.channel = guc_log_relay_chan;
423
424         return 0;
425 }
426
427 static void guc_log_relay_destroy(struct intel_guc_log *log)
428 {
429         lockdep_assert_held(&log->relay.lock);
430
431         relay_close(log->relay.channel);
432         log->relay.channel = NULL;
433 }
434
435 static void guc_log_capture_logs(struct intel_guc_log *log)
436 {
437         struct intel_guc *guc = log_to_guc(log);
438         struct drm_i915_private *dev_priv = guc_to_i915(guc);
439
440         guc_read_update_log_buffer(log);
441
442         /*
443          * Generally device is expected to be active only at this
444          * time, so get/put should be really quick.
445          */
446         intel_runtime_pm_get(dev_priv);
447         guc_action_flush_log_complete(guc);
448         intel_runtime_pm_put(dev_priv);
449 }
450
451 int intel_guc_log_create(struct intel_guc_log *log)
452 {
453         struct intel_guc *guc = log_to_guc(log);
454         struct i915_vma *vma;
455         u32 guc_log_size;
456         int ret;
457
458         GEM_BUG_ON(log->vma);
459
460         /*
461          *  GuC Log buffer Layout
462          *
463          *  +===============================+ 00B
464          *  |    Crash dump state header    |
465          *  +-------------------------------+ 32B
466          *  |       DPC state header        |
467          *  +-------------------------------+ 64B
468          *  |       ISR state header        |
469          *  +-------------------------------+ 96B
470          *  |                               |
471          *  +===============================+ PAGE_SIZE (4KB)
472          *  |        Crash Dump logs        |
473          *  +===============================+ + CRASH_SIZE
474          *  |           DPC logs            |
475          *  +===============================+ + DPC_SIZE
476          *  |           ISR logs            |
477          *  +===============================+ + ISR_SIZE
478          */
479         guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE +
480                         ISR_BUFFER_SIZE;
481
482         vma = intel_guc_allocate_vma(guc, guc_log_size);
483         if (IS_ERR(vma)) {
484                 ret = PTR_ERR(vma);
485                 goto err;
486         }
487
488         log->vma = vma;
489
490         log->level = i915_modparams.guc_log_level;
491
492         return 0;
493
494 err:
495         DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret);
496         return ret;
497 }
498
499 void intel_guc_log_destroy(struct intel_guc_log *log)
500 {
501         i915_vma_unpin_and_release(&log->vma);
502 }
503
504 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level)
505 {
506         struct intel_guc *guc = log_to_guc(log);
507         struct drm_i915_private *dev_priv = guc_to_i915(guc);
508         int ret;
509
510         BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0);
511         GEM_BUG_ON(!log->vma);
512
513         /*
514          * GuC is recognizing log levels starting from 0 to max, we're using 0
515          * as indication that logging should be disabled.
516          */
517         if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX)
518                 return -EINVAL;
519
520         mutex_lock(&dev_priv->drm.struct_mutex);
521
522         if (log->level == level) {
523                 ret = 0;
524                 goto out_unlock;
525         }
526
527         intel_runtime_pm_get(dev_priv);
528         ret = guc_action_control_log(guc, GUC_LOG_LEVEL_IS_VERBOSE(level),
529                                      GUC_LOG_LEVEL_IS_ENABLED(level),
530                                      GUC_LOG_LEVEL_TO_VERBOSITY(level));
531         intel_runtime_pm_put(dev_priv);
532         if (ret) {
533                 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret);
534                 goto out_unlock;
535         }
536
537         log->level = level;
538
539 out_unlock:
540         mutex_unlock(&dev_priv->drm.struct_mutex);
541
542         return ret;
543 }
544
545 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log)
546 {
547         return log->relay.buf_addr;
548 }
549
550 int intel_guc_log_relay_open(struct intel_guc_log *log)
551 {
552         int ret;
553
554         mutex_lock(&log->relay.lock);
555
556         if (intel_guc_log_relay_enabled(log)) {
557                 ret = -EEXIST;
558                 goto out_unlock;
559         }
560
561         /*
562          * We require SSE 4.1 for fast reads from the GuC log buffer and
563          * it should be present on the chipsets supporting GuC based
564          * submisssions.
565          */
566         if (!i915_has_memcpy_from_wc()) {
567                 ret = -ENXIO;
568                 goto out_unlock;
569         }
570
571         ret = guc_log_relay_create(log);
572         if (ret)
573                 goto out_unlock;
574
575         ret = guc_log_map(log);
576         if (ret)
577                 goto out_relay;
578
579         mutex_unlock(&log->relay.lock);
580
581         guc_log_enable_flush_events(log);
582
583         /*
584          * When GuC is logging without us relaying to userspace, we're ignoring
585          * the flush notification. This means that we need to unconditionally
586          * flush on relay enabling, since GuC only notifies us once.
587          */
588         queue_work(log->relay.flush_wq, &log->relay.flush_work);
589
590         return 0;
591
592 out_relay:
593         guc_log_relay_destroy(log);
594 out_unlock:
595         mutex_unlock(&log->relay.lock);
596
597         return ret;
598 }
599
600 void intel_guc_log_relay_flush(struct intel_guc_log *log)
601 {
602         struct intel_guc *guc = log_to_guc(log);
603         struct drm_i915_private *i915 = guc_to_i915(guc);
604
605         /*
606          * Before initiating the forceful flush, wait for any pending/ongoing
607          * flush to complete otherwise forceful flush may not actually happen.
608          */
609         flush_work(&log->relay.flush_work);
610
611         intel_runtime_pm_get(i915);
612         guc_action_flush_log(guc);
613         intel_runtime_pm_put(i915);
614
615         /* GuC would have updated log buffer by now, so capture it */
616         guc_log_capture_logs(log);
617 }
618
619 void intel_guc_log_relay_close(struct intel_guc_log *log)
620 {
621         guc_log_disable_flush_events(log);
622         flush_work(&log->relay.flush_work);
623
624         mutex_lock(&log->relay.lock);
625         GEM_BUG_ON(!intel_guc_log_relay_enabled(log));
626         guc_log_unmap(log);
627         guc_log_relay_destroy(log);
628         mutex_unlock(&log->relay.lock);
629 }
630
631 void intel_guc_log_handle_flush_event(struct intel_guc_log *log)
632 {
633         queue_work(log->relay.flush_wq, &log->relay.flush_work);
634 }