Merge tag 'spi-v3.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48                                 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50                                    struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53                           int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57         int     min, max;
58 } intel_range_t;
59
60 typedef struct {
61         int     dot_limit;
62         int     p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
68         intel_p2_t          p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74         struct drm_i915_private *dev_priv = dev->dev_private;
75
76         WARN_ON(!HAS_PCH_SPLIT(dev));
77
78         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84         if (IS_GEN5(dev)) {
85                 struct drm_i915_private *dev_priv = dev->dev_private;
86                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87         } else
88                 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92         .dot = { .min = 25000, .max = 350000 },
93         .vco = { .min = 908000, .max = 1512000 },
94         .n = { .min = 2, .max = 16 },
95         .m = { .min = 96, .max = 140 },
96         .m1 = { .min = 18, .max = 26 },
97         .m2 = { .min = 6, .max = 16 },
98         .p = { .min = 4, .max = 128 },
99         .p1 = { .min = 2, .max = 33 },
100         .p2 = { .dot_limit = 165000,
101                 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105         .dot = { .min = 25000, .max = 350000 },
106         .vco = { .min = 908000, .max = 1512000 },
107         .n = { .min = 2, .max = 16 },
108         .m = { .min = 96, .max = 140 },
109         .m1 = { .min = 18, .max = 26 },
110         .m2 = { .min = 6, .max = 16 },
111         .p = { .min = 4, .max = 128 },
112         .p1 = { .min = 2, .max = 33 },
113         .p2 = { .dot_limit = 165000,
114                 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118         .dot = { .min = 25000, .max = 350000 },
119         .vco = { .min = 908000, .max = 1512000 },
120         .n = { .min = 2, .max = 16 },
121         .m = { .min = 96, .max = 140 },
122         .m1 = { .min = 18, .max = 26 },
123         .m2 = { .min = 6, .max = 16 },
124         .p = { .min = 4, .max = 128 },
125         .p1 = { .min = 1, .max = 6 },
126         .p2 = { .dot_limit = 165000,
127                 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131         .dot = { .min = 20000, .max = 400000 },
132         .vco = { .min = 1400000, .max = 2800000 },
133         .n = { .min = 1, .max = 6 },
134         .m = { .min = 70, .max = 120 },
135         .m1 = { .min = 8, .max = 18 },
136         .m2 = { .min = 3, .max = 7 },
137         .p = { .min = 5, .max = 80 },
138         .p1 = { .min = 1, .max = 8 },
139         .p2 = { .dot_limit = 200000,
140                 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144         .dot = { .min = 20000, .max = 400000 },
145         .vco = { .min = 1400000, .max = 2800000 },
146         .n = { .min = 1, .max = 6 },
147         .m = { .min = 70, .max = 120 },
148         .m1 = { .min = 8, .max = 18 },
149         .m2 = { .min = 3, .max = 7 },
150         .p = { .min = 7, .max = 98 },
151         .p1 = { .min = 1, .max = 8 },
152         .p2 = { .dot_limit = 112000,
153                 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158         .dot = { .min = 25000, .max = 270000 },
159         .vco = { .min = 1750000, .max = 3500000},
160         .n = { .min = 1, .max = 4 },
161         .m = { .min = 104, .max = 138 },
162         .m1 = { .min = 17, .max = 23 },
163         .m2 = { .min = 5, .max = 11 },
164         .p = { .min = 10, .max = 30 },
165         .p1 = { .min = 1, .max = 3},
166         .p2 = { .dot_limit = 270000,
167                 .p2_slow = 10,
168                 .p2_fast = 10
169         },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173         .dot = { .min = 22000, .max = 400000 },
174         .vco = { .min = 1750000, .max = 3500000},
175         .n = { .min = 1, .max = 4 },
176         .m = { .min = 104, .max = 138 },
177         .m1 = { .min = 16, .max = 23 },
178         .m2 = { .min = 5, .max = 11 },
179         .p = { .min = 5, .max = 80 },
180         .p1 = { .min = 1, .max = 8},
181         .p2 = { .dot_limit = 165000,
182                 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186         .dot = { .min = 20000, .max = 115000 },
187         .vco = { .min = 1750000, .max = 3500000 },
188         .n = { .min = 1, .max = 3 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 17, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 28, .max = 112 },
193         .p1 = { .min = 2, .max = 8 },
194         .p2 = { .dot_limit = 0,
195                 .p2_slow = 14, .p2_fast = 14
196         },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200         .dot = { .min = 80000, .max = 224000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 14, .max = 42 },
207         .p1 = { .min = 2, .max = 6 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 7, .p2_fast = 7
210         },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214         .dot = { .min = 20000, .max = 400000},
215         .vco = { .min = 1700000, .max = 3500000 },
216         /* Pineview's Ncounter is a ring counter */
217         .n = { .min = 3, .max = 6 },
218         .m = { .min = 2, .max = 256 },
219         /* Pineview only has one combined m divider, which we treat as m2. */
220         .m1 = { .min = 0, .max = 0 },
221         .m2 = { .min = 0, .max = 254 },
222         .p = { .min = 5, .max = 80 },
223         .p1 = { .min = 1, .max = 8 },
224         .p2 = { .dot_limit = 200000,
225                 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229         .dot = { .min = 20000, .max = 400000 },
230         .vco = { .min = 1700000, .max = 3500000 },
231         .n = { .min = 3, .max = 6 },
232         .m = { .min = 2, .max = 256 },
233         .m1 = { .min = 0, .max = 0 },
234         .m2 = { .min = 0, .max = 254 },
235         .p = { .min = 7, .max = 112 },
236         .p1 = { .min = 1, .max = 8 },
237         .p2 = { .dot_limit = 112000,
238                 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242  *
243  * We calculate clock using (register_value + 2) for N/M1/M2, so here
244  * the range value for them is (actual_value - 2).
245  */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247         .dot = { .min = 25000, .max = 350000 },
248         .vco = { .min = 1760000, .max = 3510000 },
249         .n = { .min = 1, .max = 5 },
250         .m = { .min = 79, .max = 127 },
251         .m1 = { .min = 12, .max = 22 },
252         .m2 = { .min = 5, .max = 9 },
253         .p = { .min = 5, .max = 80 },
254         .p1 = { .min = 1, .max = 8 },
255         .p2 = { .dot_limit = 225000,
256                 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260         .dot = { .min = 25000, .max = 350000 },
261         .vco = { .min = 1760000, .max = 3510000 },
262         .n = { .min = 1, .max = 3 },
263         .m = { .min = 79, .max = 118 },
264         .m1 = { .min = 12, .max = 22 },
265         .m2 = { .min = 5, .max = 9 },
266         .p = { .min = 28, .max = 112 },
267         .p1 = { .min = 2, .max = 8 },
268         .p2 = { .dot_limit = 225000,
269                 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 3 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 14, .max = 56 },
280         .p1 = { .min = 2, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 2 },
290         .m = { .min = 79, .max = 126 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 126 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 42 },
307         .p1 = { .min = 2, .max = 6 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv = {
313          /*
314           * These are the data rate limits (measured in fast clocks)
315           * since those are the strictest limits we have. The fast
316           * clock and actual rate limits are more relaxed, so checking
317           * them would make no difference.
318           */
319         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320         .vco = { .min = 4000000, .max = 6000000 },
321         .n = { .min = 1, .max = 7 },
322         .m1 = { .min = 2, .max = 3 },
323         .m2 = { .min = 11, .max = 156 },
324         .p1 = { .min = 2, .max = 3 },
325         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326 };
327
328 static void vlv_clock(int refclk, intel_clock_t *clock)
329 {
330         clock->m = clock->m1 * clock->m2;
331         clock->p = clock->p1 * clock->p2;
332         if (WARN_ON(clock->n == 0 || clock->p == 0))
333                 return;
334         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
335         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
336 }
337
338 /**
339  * Returns whether any output on the specified pipe is of the specified type
340  */
341 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342 {
343         struct drm_device *dev = crtc->dev;
344         struct intel_encoder *encoder;
345
346         for_each_encoder_on_crtc(dev, crtc, encoder)
347                 if (encoder->type == type)
348                         return true;
349
350         return false;
351 }
352
353 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354                                                 int refclk)
355 {
356         struct drm_device *dev = crtc->dev;
357         const intel_limit_t *limit;
358
359         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360                 if (intel_is_dual_link_lvds(dev)) {
361                         if (refclk == 100000)
362                                 limit = &intel_limits_ironlake_dual_lvds_100m;
363                         else
364                                 limit = &intel_limits_ironlake_dual_lvds;
365                 } else {
366                         if (refclk == 100000)
367                                 limit = &intel_limits_ironlake_single_lvds_100m;
368                         else
369                                 limit = &intel_limits_ironlake_single_lvds;
370                 }
371         } else
372                 limit = &intel_limits_ironlake_dac;
373
374         return limit;
375 }
376
377 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378 {
379         struct drm_device *dev = crtc->dev;
380         const intel_limit_t *limit;
381
382         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383                 if (intel_is_dual_link_lvds(dev))
384                         limit = &intel_limits_g4x_dual_channel_lvds;
385                 else
386                         limit = &intel_limits_g4x_single_channel_lvds;
387         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389                 limit = &intel_limits_g4x_hdmi;
390         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391                 limit = &intel_limits_g4x_sdvo;
392         } else /* The option is for other outputs */
393                 limit = &intel_limits_i9xx_sdvo;
394
395         return limit;
396 }
397
398 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399 {
400         struct drm_device *dev = crtc->dev;
401         const intel_limit_t *limit;
402
403         if (HAS_PCH_SPLIT(dev))
404                 limit = intel_ironlake_limit(crtc, refclk);
405         else if (IS_G4X(dev)) {
406                 limit = intel_g4x_limit(crtc);
407         } else if (IS_PINEVIEW(dev)) {
408                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409                         limit = &intel_limits_pineview_lvds;
410                 else
411                         limit = &intel_limits_pineview_sdvo;
412         } else if (IS_VALLEYVIEW(dev)) {
413                 limit = &intel_limits_vlv;
414         } else if (!IS_GEN2(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
416                         limit = &intel_limits_i9xx_lvds;
417                 else
418                         limit = &intel_limits_i9xx_sdvo;
419         } else {
420                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
421                         limit = &intel_limits_i8xx_lvds;
422                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
423                         limit = &intel_limits_i8xx_dvo;
424                 else
425                         limit = &intel_limits_i8xx_dac;
426         }
427         return limit;
428 }
429
430 /* m1 is reserved as 0 in Pineview, n is a ring counter */
431 static void pineview_clock(int refclk, intel_clock_t *clock)
432 {
433         clock->m = clock->m2 + 2;
434         clock->p = clock->p1 * clock->p2;
435         if (WARN_ON(clock->n == 0 || clock->p == 0))
436                 return;
437         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
438         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
439 }
440
441 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
442 {
443         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
444 }
445
446 static void i9xx_clock(int refclk, intel_clock_t *clock)
447 {
448         clock->m = i9xx_dpll_compute_m(clock);
449         clock->p = clock->p1 * clock->p2;
450         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
451                 return;
452         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
453         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
454 }
455
456 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
457 /**
458  * Returns whether the given set of divisors are valid for a given refclk with
459  * the given connectors.
460  */
461
462 static bool intel_PLL_is_valid(struct drm_device *dev,
463                                const intel_limit_t *limit,
464                                const intel_clock_t *clock)
465 {
466         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
467                 INTELPllInvalid("n out of range\n");
468         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
469                 INTELPllInvalid("p1 out of range\n");
470         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
471                 INTELPllInvalid("m2 out of range\n");
472         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
473                 INTELPllInvalid("m1 out of range\n");
474
475         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
476                 if (clock->m1 <= clock->m2)
477                         INTELPllInvalid("m1 <= m2\n");
478
479         if (!IS_VALLEYVIEW(dev)) {
480                 if (clock->p < limit->p.min || limit->p.max < clock->p)
481                         INTELPllInvalid("p out of range\n");
482                 if (clock->m < limit->m.min || limit->m.max < clock->m)
483                         INTELPllInvalid("m out of range\n");
484         }
485
486         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
487                 INTELPllInvalid("vco out of range\n");
488         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
489          * connector, etc., rather than just a single range.
490          */
491         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
492                 INTELPllInvalid("dot out of range\n");
493
494         return true;
495 }
496
497 static bool
498 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
499                     int target, int refclk, intel_clock_t *match_clock,
500                     intel_clock_t *best_clock)
501 {
502         struct drm_device *dev = crtc->dev;
503         intel_clock_t clock;
504         int err = target;
505
506         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
507                 /*
508                  * For LVDS just rely on its current settings for dual-channel.
509                  * We haven't figured out how to reliably set up different
510                  * single/dual channel state, if we even can.
511                  */
512                 if (intel_is_dual_link_lvds(dev))
513                         clock.p2 = limit->p2.p2_fast;
514                 else
515                         clock.p2 = limit->p2.p2_slow;
516         } else {
517                 if (target < limit->p2.dot_limit)
518                         clock.p2 = limit->p2.p2_slow;
519                 else
520                         clock.p2 = limit->p2.p2_fast;
521         }
522
523         memset(best_clock, 0, sizeof(*best_clock));
524
525         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
526              clock.m1++) {
527                 for (clock.m2 = limit->m2.min;
528                      clock.m2 <= limit->m2.max; clock.m2++) {
529                         if (clock.m2 >= clock.m1)
530                                 break;
531                         for (clock.n = limit->n.min;
532                              clock.n <= limit->n.max; clock.n++) {
533                                 for (clock.p1 = limit->p1.min;
534                                         clock.p1 <= limit->p1.max; clock.p1++) {
535                                         int this_err;
536
537                                         i9xx_clock(refclk, &clock);
538                                         if (!intel_PLL_is_valid(dev, limit,
539                                                                 &clock))
540                                                 continue;
541                                         if (match_clock &&
542                                             clock.p != match_clock->p)
543                                                 continue;
544
545                                         this_err = abs(clock.dot - target);
546                                         if (this_err < err) {
547                                                 *best_clock = clock;
548                                                 err = this_err;
549                                         }
550                                 }
551                         }
552                 }
553         }
554
555         return (err != target);
556 }
557
558 static bool
559 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
560                    int target, int refclk, intel_clock_t *match_clock,
561                    intel_clock_t *best_clock)
562 {
563         struct drm_device *dev = crtc->dev;
564         intel_clock_t clock;
565         int err = target;
566
567         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
568                 /*
569                  * For LVDS just rely on its current settings for dual-channel.
570                  * We haven't figured out how to reliably set up different
571                  * single/dual channel state, if we even can.
572                  */
573                 if (intel_is_dual_link_lvds(dev))
574                         clock.p2 = limit->p2.p2_fast;
575                 else
576                         clock.p2 = limit->p2.p2_slow;
577         } else {
578                 if (target < limit->p2.dot_limit)
579                         clock.p2 = limit->p2.p2_slow;
580                 else
581                         clock.p2 = limit->p2.p2_fast;
582         }
583
584         memset(best_clock, 0, sizeof(*best_clock));
585
586         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
587              clock.m1++) {
588                 for (clock.m2 = limit->m2.min;
589                      clock.m2 <= limit->m2.max; clock.m2++) {
590                         for (clock.n = limit->n.min;
591                              clock.n <= limit->n.max; clock.n++) {
592                                 for (clock.p1 = limit->p1.min;
593                                         clock.p1 <= limit->p1.max; clock.p1++) {
594                                         int this_err;
595
596                                         pineview_clock(refclk, &clock);
597                                         if (!intel_PLL_is_valid(dev, limit,
598                                                                 &clock))
599                                                 continue;
600                                         if (match_clock &&
601                                             clock.p != match_clock->p)
602                                                 continue;
603
604                                         this_err = abs(clock.dot - target);
605                                         if (this_err < err) {
606                                                 *best_clock = clock;
607                                                 err = this_err;
608                                         }
609                                 }
610                         }
611                 }
612         }
613
614         return (err != target);
615 }
616
617 static bool
618 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
619                    int target, int refclk, intel_clock_t *match_clock,
620                    intel_clock_t *best_clock)
621 {
622         struct drm_device *dev = crtc->dev;
623         intel_clock_t clock;
624         int max_n;
625         bool found;
626         /* approximately equals target * 0.00585 */
627         int err_most = (target >> 8) + (target >> 9);
628         found = false;
629
630         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
631                 if (intel_is_dual_link_lvds(dev))
632                         clock.p2 = limit->p2.p2_fast;
633                 else
634                         clock.p2 = limit->p2.p2_slow;
635         } else {
636                 if (target < limit->p2.dot_limit)
637                         clock.p2 = limit->p2.p2_slow;
638                 else
639                         clock.p2 = limit->p2.p2_fast;
640         }
641
642         memset(best_clock, 0, sizeof(*best_clock));
643         max_n = limit->n.max;
644         /* based on hardware requirement, prefer smaller n to precision */
645         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
646                 /* based on hardware requirement, prefere larger m1,m2 */
647                 for (clock.m1 = limit->m1.max;
648                      clock.m1 >= limit->m1.min; clock.m1--) {
649                         for (clock.m2 = limit->m2.max;
650                              clock.m2 >= limit->m2.min; clock.m2--) {
651                                 for (clock.p1 = limit->p1.max;
652                                      clock.p1 >= limit->p1.min; clock.p1--) {
653                                         int this_err;
654
655                                         i9xx_clock(refclk, &clock);
656                                         if (!intel_PLL_is_valid(dev, limit,
657                                                                 &clock))
658                                                 continue;
659
660                                         this_err = abs(clock.dot - target);
661                                         if (this_err < err_most) {
662                                                 *best_clock = clock;
663                                                 err_most = this_err;
664                                                 max_n = clock.n;
665                                                 found = true;
666                                         }
667                                 }
668                         }
669                 }
670         }
671         return found;
672 }
673
674 static bool
675 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
676                    int target, int refclk, intel_clock_t *match_clock,
677                    intel_clock_t *best_clock)
678 {
679         struct drm_device *dev = crtc->dev;
680         intel_clock_t clock;
681         unsigned int bestppm = 1000000;
682         /* min update 19.2 MHz */
683         int max_n = min(limit->n.max, refclk / 19200);
684         bool found = false;
685
686         target *= 5; /* fast clock */
687
688         memset(best_clock, 0, sizeof(*best_clock));
689
690         /* based on hardware requirement, prefer smaller n to precision */
691         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
692                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
693                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
694                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
695                                 clock.p = clock.p1 * clock.p2;
696                                 /* based on hardware requirement, prefer bigger m1,m2 values */
697                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
698                                         unsigned int ppm, diff;
699
700                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
701                                                                      refclk * clock.m1);
702
703                                         vlv_clock(refclk, &clock);
704
705                                         if (!intel_PLL_is_valid(dev, limit,
706                                                                 &clock))
707                                                 continue;
708
709                                         diff = abs(clock.dot - target);
710                                         ppm = div_u64(1000000ULL * diff, target);
711
712                                         if (ppm < 100 && clock.p > best_clock->p) {
713                                                 bestppm = 0;
714                                                 *best_clock = clock;
715                                                 found = true;
716                                         }
717
718                                         if (bestppm >= 10 && ppm < bestppm - 10) {
719                                                 bestppm = ppm;
720                                                 *best_clock = clock;
721                                                 found = true;
722                                         }
723                                 }
724                         }
725                 }
726         }
727
728         return found;
729 }
730
731 bool intel_crtc_active(struct drm_crtc *crtc)
732 {
733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
734
735         /* Be paranoid as we can arrive here with only partial
736          * state retrieved from the hardware during setup.
737          *
738          * We can ditch the adjusted_mode.crtc_clock check as soon
739          * as Haswell has gained clock readout/fastboot support.
740          *
741          * We can ditch the crtc->fb check as soon as we can
742          * properly reconstruct framebuffers.
743          */
744         return intel_crtc->active && crtc->fb &&
745                 intel_crtc->config.adjusted_mode.crtc_clock;
746 }
747
748 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
749                                              enum pipe pipe)
750 {
751         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
752         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753
754         return intel_crtc->config.cpu_transcoder;
755 }
756
757 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
758 {
759         struct drm_i915_private *dev_priv = dev->dev_private;
760         u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
761
762         frame = I915_READ(frame_reg);
763
764         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
765                 DRM_DEBUG_KMS("vblank wait timed out\n");
766 }
767
768 /**
769  * intel_wait_for_vblank - wait for vblank on a given pipe
770  * @dev: drm device
771  * @pipe: pipe to wait for
772  *
773  * Wait for vblank to occur on a given pipe.  Needed for various bits of
774  * mode setting code.
775  */
776 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
777 {
778         struct drm_i915_private *dev_priv = dev->dev_private;
779         int pipestat_reg = PIPESTAT(pipe);
780
781         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
782                 g4x_wait_for_vblank(dev, pipe);
783                 return;
784         }
785
786         /* Clear existing vblank status. Note this will clear any other
787          * sticky status fields as well.
788          *
789          * This races with i915_driver_irq_handler() with the result
790          * that either function could miss a vblank event.  Here it is not
791          * fatal, as we will either wait upon the next vblank interrupt or
792          * timeout.  Generally speaking intel_wait_for_vblank() is only
793          * called during modeset at which time the GPU should be idle and
794          * should *not* be performing page flips and thus not waiting on
795          * vblanks...
796          * Currently, the result of us stealing a vblank from the irq
797          * handler is that a single frame will be skipped during swapbuffers.
798          */
799         I915_WRITE(pipestat_reg,
800                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
801
802         /* Wait for vblank interrupt bit to set */
803         if (wait_for(I915_READ(pipestat_reg) &
804                      PIPE_VBLANK_INTERRUPT_STATUS,
805                      50))
806                 DRM_DEBUG_KMS("vblank wait timed out\n");
807 }
808
809 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
810 {
811         struct drm_i915_private *dev_priv = dev->dev_private;
812         u32 reg = PIPEDSL(pipe);
813         u32 line1, line2;
814         u32 line_mask;
815
816         if (IS_GEN2(dev))
817                 line_mask = DSL_LINEMASK_GEN2;
818         else
819                 line_mask = DSL_LINEMASK_GEN3;
820
821         line1 = I915_READ(reg) & line_mask;
822         mdelay(5);
823         line2 = I915_READ(reg) & line_mask;
824
825         return line1 == line2;
826 }
827
828 /*
829  * intel_wait_for_pipe_off - wait for pipe to turn off
830  * @dev: drm device
831  * @pipe: pipe to wait for
832  *
833  * After disabling a pipe, we can't wait for vblank in the usual way,
834  * spinning on the vblank interrupt status bit, since we won't actually
835  * see an interrupt when the pipe is disabled.
836  *
837  * On Gen4 and above:
838  *   wait for the pipe register state bit to turn off
839  *
840  * Otherwise:
841  *   wait for the display line value to settle (it usually
842  *   ends up stopping at the start of the next frame).
843  *
844  */
845 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
846 {
847         struct drm_i915_private *dev_priv = dev->dev_private;
848         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
849                                                                       pipe);
850
851         if (INTEL_INFO(dev)->gen >= 4) {
852                 int reg = PIPECONF(cpu_transcoder);
853
854                 /* Wait for the Pipe State to go off */
855                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
856                              100))
857                         WARN(1, "pipe_off wait timed out\n");
858         } else {
859                 /* Wait for the display line to settle */
860                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
861                         WARN(1, "pipe_off wait timed out\n");
862         }
863 }
864
865 /*
866  * ibx_digital_port_connected - is the specified port connected?
867  * @dev_priv: i915 private structure
868  * @port: the port to test
869  *
870  * Returns true if @port is connected, false otherwise.
871  */
872 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873                                 struct intel_digital_port *port)
874 {
875         u32 bit;
876
877         if (HAS_PCH_IBX(dev_priv->dev)) {
878                 switch(port->port) {
879                 case PORT_B:
880                         bit = SDE_PORTB_HOTPLUG;
881                         break;
882                 case PORT_C:
883                         bit = SDE_PORTC_HOTPLUG;
884                         break;
885                 case PORT_D:
886                         bit = SDE_PORTD_HOTPLUG;
887                         break;
888                 default:
889                         return true;
890                 }
891         } else {
892                 switch(port->port) {
893                 case PORT_B:
894                         bit = SDE_PORTB_HOTPLUG_CPT;
895                         break;
896                 case PORT_C:
897                         bit = SDE_PORTC_HOTPLUG_CPT;
898                         break;
899                 case PORT_D:
900                         bit = SDE_PORTD_HOTPLUG_CPT;
901                         break;
902                 default:
903                         return true;
904                 }
905         }
906
907         return I915_READ(SDEISR) & bit;
908 }
909
910 static const char *state_string(bool enabled)
911 {
912         return enabled ? "on" : "off";
913 }
914
915 /* Only for pre-ILK configs */
916 void assert_pll(struct drm_i915_private *dev_priv,
917                 enum pipe pipe, bool state)
918 {
919         int reg;
920         u32 val;
921         bool cur_state;
922
923         reg = DPLL(pipe);
924         val = I915_READ(reg);
925         cur_state = !!(val & DPLL_VCO_ENABLE);
926         WARN(cur_state != state,
927              "PLL state assertion failure (expected %s, current %s)\n",
928              state_string(state), state_string(cur_state));
929 }
930
931 /* XXX: the dsi pll is shared between MIPI DSI ports */
932 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933 {
934         u32 val;
935         bool cur_state;
936
937         mutex_lock(&dev_priv->dpio_lock);
938         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939         mutex_unlock(&dev_priv->dpio_lock);
940
941         cur_state = val & DSI_PLL_VCO_EN;
942         WARN(cur_state != state,
943              "DSI PLL state assertion failure (expected %s, current %s)\n",
944              state_string(state), state_string(cur_state));
945 }
946 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949 struct intel_shared_dpll *
950 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951 {
952         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954         if (crtc->config.shared_dpll < 0)
955                 return NULL;
956
957         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958 }
959
960 /* For ILK+ */
961 void assert_shared_dpll(struct drm_i915_private *dev_priv,
962                         struct intel_shared_dpll *pll,
963                         bool state)
964 {
965         bool cur_state;
966         struct intel_dpll_hw_state hw_state;
967
968         if (HAS_PCH_LPT(dev_priv->dev)) {
969                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970                 return;
971         }
972
973         if (WARN (!pll,
974                   "asserting DPLL %s with no DPLL\n", state_string(state)))
975                 return;
976
977         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978         WARN(cur_state != state,
979              "%s assertion failure (expected %s, current %s)\n",
980              pll->name, state_string(state), state_string(cur_state));
981 }
982
983 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984                           enum pipe pipe, bool state)
985 {
986         int reg;
987         u32 val;
988         bool cur_state;
989         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990                                                                       pipe);
991
992         if (HAS_DDI(dev_priv->dev)) {
993                 /* DDI does not have a specific FDI_TX register */
994                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995                 val = I915_READ(reg);
996                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997         } else {
998                 reg = FDI_TX_CTL(pipe);
999                 val = I915_READ(reg);
1000                 cur_state = !!(val & FDI_TX_ENABLE);
1001         }
1002         WARN(cur_state != state,
1003              "FDI TX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010                           enum pipe pipe, bool state)
1011 {
1012         int reg;
1013         u32 val;
1014         bool cur_state;
1015
1016         reg = FDI_RX_CTL(pipe);
1017         val = I915_READ(reg);
1018         cur_state = !!(val & FDI_RX_ENABLE);
1019         WARN(cur_state != state,
1020              "FDI RX state assertion failure (expected %s, current %s)\n",
1021              state_string(state), state_string(cur_state));
1022 }
1023 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027                                       enum pipe pipe)
1028 {
1029         int reg;
1030         u32 val;
1031
1032         /* ILK FDI PLL is always enabled */
1033         if (dev_priv->info->gen == 5)
1034                 return;
1035
1036         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037         if (HAS_DDI(dev_priv->dev))
1038                 return;
1039
1040         reg = FDI_TX_CTL(pipe);
1041         val = I915_READ(reg);
1042         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043 }
1044
1045 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046                        enum pipe pipe, bool state)
1047 {
1048         int reg;
1049         u32 val;
1050         bool cur_state;
1051
1052         reg = FDI_RX_CTL(pipe);
1053         val = I915_READ(reg);
1054         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055         WARN(cur_state != state,
1056              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057              state_string(state), state_string(cur_state));
1058 }
1059
1060 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061                                   enum pipe pipe)
1062 {
1063         int pp_reg, lvds_reg;
1064         u32 val;
1065         enum pipe panel_pipe = PIPE_A;
1066         bool locked = true;
1067
1068         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069                 pp_reg = PCH_PP_CONTROL;
1070                 lvds_reg = PCH_LVDS;
1071         } else {
1072                 pp_reg = PP_CONTROL;
1073                 lvds_reg = LVDS;
1074         }
1075
1076         val = I915_READ(pp_reg);
1077         if (!(val & PANEL_POWER_ON) ||
1078             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079                 locked = false;
1080
1081         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082                 panel_pipe = PIPE_B;
1083
1084         WARN(panel_pipe == pipe && locked,
1085              "panel assertion failure, pipe %c regs locked\n",
1086              pipe_name(pipe));
1087 }
1088
1089 static void assert_cursor(struct drm_i915_private *dev_priv,
1090                           enum pipe pipe, bool state)
1091 {
1092         struct drm_device *dev = dev_priv->dev;
1093         bool cur_state;
1094
1095         if (IS_845G(dev) || IS_I865G(dev))
1096                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1097         else if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev))
1098                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1099         else
1100                 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1101
1102         WARN(cur_state != state,
1103              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104              pipe_name(pipe), state_string(state), state_string(cur_state));
1105 }
1106 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109 void assert_pipe(struct drm_i915_private *dev_priv,
1110                  enum pipe pipe, bool state)
1111 {
1112         int reg;
1113         u32 val;
1114         bool cur_state;
1115         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116                                                                       pipe);
1117
1118         /* if we need the pipe A quirk it must be always on */
1119         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120                 state = true;
1121
1122         if (!intel_display_power_enabled(dev_priv->dev,
1123                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124                 cur_state = false;
1125         } else {
1126                 reg = PIPECONF(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & PIPECONF_ENABLE);
1129         }
1130
1131         WARN(cur_state != state,
1132              "pipe %c assertion failure (expected %s, current %s)\n",
1133              pipe_name(pipe), state_string(state), state_string(cur_state));
1134 }
1135
1136 static void assert_plane(struct drm_i915_private *dev_priv,
1137                          enum plane plane, bool state)
1138 {
1139         int reg;
1140         u32 val;
1141         bool cur_state;
1142
1143         reg = DSPCNTR(plane);
1144         val = I915_READ(reg);
1145         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146         WARN(cur_state != state,
1147              "plane %c assertion failure (expected %s, current %s)\n",
1148              plane_name(plane), state_string(state), state_string(cur_state));
1149 }
1150
1151 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155                                    enum pipe pipe)
1156 {
1157         struct drm_device *dev = dev_priv->dev;
1158         int reg, i;
1159         u32 val;
1160         int cur_pipe;
1161
1162         /* Primary planes are fixed to pipes on gen4+ */
1163         if (INTEL_INFO(dev)->gen >= 4) {
1164                 reg = DSPCNTR(pipe);
1165                 val = I915_READ(reg);
1166                 WARN((val & DISPLAY_PLANE_ENABLE),
1167                      "plane %c assertion failure, should be disabled but not\n",
1168                      plane_name(pipe));
1169                 return;
1170         }
1171
1172         /* Need to check both planes against the pipe */
1173         for_each_pipe(i) {
1174                 reg = DSPCNTR(i);
1175                 val = I915_READ(reg);
1176                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177                         DISPPLANE_SEL_PIPE_SHIFT;
1178                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180                      plane_name(i), pipe_name(pipe));
1181         }
1182 }
1183
1184 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185                                     enum pipe pipe)
1186 {
1187         struct drm_device *dev = dev_priv->dev;
1188         int reg, i;
1189         u32 val;
1190
1191         if (IS_VALLEYVIEW(dev)) {
1192                 for (i = 0; i < dev_priv->num_plane; i++) {
1193                         reg = SPCNTR(pipe, i);
1194                         val = I915_READ(reg);
1195                         WARN((val & SP_ENABLE),
1196                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197                              sprite_name(pipe, i), pipe_name(pipe));
1198                 }
1199         } else if (INTEL_INFO(dev)->gen >= 7) {
1200                 reg = SPRCTL(pipe);
1201                 val = I915_READ(reg);
1202                 WARN((val & SPRITE_ENABLE),
1203                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204                      plane_name(pipe), pipe_name(pipe));
1205         } else if (INTEL_INFO(dev)->gen >= 5) {
1206                 reg = DVSCNTR(pipe);
1207                 val = I915_READ(reg);
1208                 WARN((val & DVS_ENABLE),
1209                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210                      plane_name(pipe), pipe_name(pipe));
1211         }
1212 }
1213
1214 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215 {
1216         u32 val;
1217         bool enabled;
1218
1219         WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1220
1221         val = I915_READ(PCH_DREF_CONTROL);
1222         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1223                             DREF_SUPERSPREAD_SOURCE_MASK));
1224         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1225 }
1226
1227 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1228                                            enum pipe pipe)
1229 {
1230         int reg;
1231         u32 val;
1232         bool enabled;
1233
1234         reg = PCH_TRANSCONF(pipe);
1235         val = I915_READ(reg);
1236         enabled = !!(val & TRANS_ENABLE);
1237         WARN(enabled,
1238              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1239              pipe_name(pipe));
1240 }
1241
1242 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1243                             enum pipe pipe, u32 port_sel, u32 val)
1244 {
1245         if ((val & DP_PORT_EN) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1250                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1251                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1252                         return false;
1253         } else {
1254                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1255                         return false;
1256         }
1257         return true;
1258 }
1259
1260 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1261                               enum pipe pipe, u32 val)
1262 {
1263         if ((val & SDVO_ENABLE) == 0)
1264                 return false;
1265
1266         if (HAS_PCH_CPT(dev_priv->dev)) {
1267                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1268                         return false;
1269         } else {
1270                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1271                         return false;
1272         }
1273         return true;
1274 }
1275
1276 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1277                               enum pipe pipe, u32 val)
1278 {
1279         if ((val & LVDS_PORT_EN) == 0)
1280                 return false;
1281
1282         if (HAS_PCH_CPT(dev_priv->dev)) {
1283                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1284                         return false;
1285         } else {
1286                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1287                         return false;
1288         }
1289         return true;
1290 }
1291
1292 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1293                               enum pipe pipe, u32 val)
1294 {
1295         if ((val & ADPA_DAC_ENABLE) == 0)
1296                 return false;
1297         if (HAS_PCH_CPT(dev_priv->dev)) {
1298                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1299                         return false;
1300         } else {
1301                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1302                         return false;
1303         }
1304         return true;
1305 }
1306
1307 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1308                                    enum pipe pipe, int reg, u32 port_sel)
1309 {
1310         u32 val = I915_READ(reg);
1311         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1312              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1313              reg, pipe_name(pipe));
1314
1315         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1316              && (val & DP_PIPEB_SELECT),
1317              "IBX PCH dp port still using transcoder B\n");
1318 }
1319
1320 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1321                                      enum pipe pipe, int reg)
1322 {
1323         u32 val = I915_READ(reg);
1324         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1325              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1326              reg, pipe_name(pipe));
1327
1328         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1329              && (val & SDVO_PIPE_B_SELECT),
1330              "IBX PCH hdmi port still using transcoder B\n");
1331 }
1332
1333 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1334                                       enum pipe pipe)
1335 {
1336         int reg;
1337         u32 val;
1338
1339         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1340         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1341         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1342
1343         reg = PCH_ADPA;
1344         val = I915_READ(reg);
1345         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1346              "PCH VGA enabled on transcoder %c, should be disabled\n",
1347              pipe_name(pipe));
1348
1349         reg = PCH_LVDS;
1350         val = I915_READ(reg);
1351         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1352              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1353              pipe_name(pipe));
1354
1355         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1356         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1357         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1358 }
1359
1360 static void intel_init_dpio(struct drm_device *dev)
1361 {
1362         struct drm_i915_private *dev_priv = dev->dev_private;
1363
1364         if (!IS_VALLEYVIEW(dev))
1365                 return;
1366
1367         DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1368 }
1369
1370 static void intel_reset_dpio(struct drm_device *dev)
1371 {
1372         struct drm_i915_private *dev_priv = dev->dev_private;
1373
1374         if (!IS_VALLEYVIEW(dev))
1375                 return;
1376
1377         /*
1378          * Enable the CRI clock source so we can get at the display and the
1379          * reference clock for VGA hotplug / manual detection.
1380          */
1381         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1382                    DPLL_REFA_CLK_ENABLE_VLV |
1383                    DPLL_INTEGRATED_CRI_CLK_VLV);
1384
1385         /*
1386          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1387          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
1388          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
1389          *   b. The other bits such as sfr settings / modesel may all be set
1390          *      to 0.
1391          *
1392          * This should only be done on init and resume from S3 with both
1393          * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1394          */
1395         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1396 }
1397
1398 static void vlv_enable_pll(struct intel_crtc *crtc)
1399 {
1400         struct drm_device *dev = crtc->base.dev;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         int reg = DPLL(crtc->pipe);
1403         u32 dpll = crtc->config.dpll_hw_state.dpll;
1404
1405         assert_pipe_disabled(dev_priv, crtc->pipe);
1406
1407         /* No really, not for ILK+ */
1408         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1409
1410         /* PLL is protected by panel, make sure we can write it */
1411         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1412                 assert_panel_unlocked(dev_priv, crtc->pipe);
1413
1414         I915_WRITE(reg, dpll);
1415         POSTING_READ(reg);
1416         udelay(150);
1417
1418         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1419                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1420
1421         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1422         POSTING_READ(DPLL_MD(crtc->pipe));
1423
1424         /* We do this three times for luck */
1425         I915_WRITE(reg, dpll);
1426         POSTING_READ(reg);
1427         udelay(150); /* wait for warmup */
1428         I915_WRITE(reg, dpll);
1429         POSTING_READ(reg);
1430         udelay(150); /* wait for warmup */
1431         I915_WRITE(reg, dpll);
1432         POSTING_READ(reg);
1433         udelay(150); /* wait for warmup */
1434 }
1435
1436 static void i9xx_enable_pll(struct intel_crtc *crtc)
1437 {
1438         struct drm_device *dev = crtc->base.dev;
1439         struct drm_i915_private *dev_priv = dev->dev_private;
1440         int reg = DPLL(crtc->pipe);
1441         u32 dpll = crtc->config.dpll_hw_state.dpll;
1442
1443         assert_pipe_disabled(dev_priv, crtc->pipe);
1444
1445         /* No really, not for ILK+ */
1446         BUG_ON(dev_priv->info->gen >= 5);
1447
1448         /* PLL is protected by panel, make sure we can write it */
1449         if (IS_MOBILE(dev) && !IS_I830(dev))
1450                 assert_panel_unlocked(dev_priv, crtc->pipe);
1451
1452         I915_WRITE(reg, dpll);
1453
1454         /* Wait for the clocks to stabilize. */
1455         POSTING_READ(reg);
1456         udelay(150);
1457
1458         if (INTEL_INFO(dev)->gen >= 4) {
1459                 I915_WRITE(DPLL_MD(crtc->pipe),
1460                            crtc->config.dpll_hw_state.dpll_md);
1461         } else {
1462                 /* The pixel multiplier can only be updated once the
1463                  * DPLL is enabled and the clocks are stable.
1464                  *
1465                  * So write it again.
1466                  */
1467                 I915_WRITE(reg, dpll);
1468         }
1469
1470         /* We do this three times for luck */
1471         I915_WRITE(reg, dpll);
1472         POSTING_READ(reg);
1473         udelay(150); /* wait for warmup */
1474         I915_WRITE(reg, dpll);
1475         POSTING_READ(reg);
1476         udelay(150); /* wait for warmup */
1477         I915_WRITE(reg, dpll);
1478         POSTING_READ(reg);
1479         udelay(150); /* wait for warmup */
1480 }
1481
1482 /**
1483  * i9xx_disable_pll - disable a PLL
1484  * @dev_priv: i915 private structure
1485  * @pipe: pipe PLL to disable
1486  *
1487  * Disable the PLL for @pipe, making sure the pipe is off first.
1488  *
1489  * Note!  This is for pre-ILK only.
1490  */
1491 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1492 {
1493         /* Don't disable pipe A or pipe A PLLs if needed */
1494         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495                 return;
1496
1497         /* Make sure the pipe isn't still relying on us */
1498         assert_pipe_disabled(dev_priv, pipe);
1499
1500         I915_WRITE(DPLL(pipe), 0);
1501         POSTING_READ(DPLL(pipe));
1502 }
1503
1504 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1505 {
1506         u32 val = 0;
1507
1508         /* Make sure the pipe isn't still relying on us */
1509         assert_pipe_disabled(dev_priv, pipe);
1510
1511         /*
1512          * Leave integrated clock source and reference clock enabled for pipe B.
1513          * The latter is needed for VGA hotplug / manual detection.
1514          */
1515         if (pipe == PIPE_B)
1516                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1517         I915_WRITE(DPLL(pipe), val);
1518         POSTING_READ(DPLL(pipe));
1519 }
1520
1521 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1522                 struct intel_digital_port *dport)
1523 {
1524         u32 port_mask;
1525
1526         switch (dport->port) {
1527         case PORT_B:
1528                 port_mask = DPLL_PORTB_READY_MASK;
1529                 break;
1530         case PORT_C:
1531                 port_mask = DPLL_PORTC_READY_MASK;
1532                 break;
1533         default:
1534                 BUG();
1535         }
1536
1537         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1538                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1539                      port_name(dport->port), I915_READ(DPLL(0)));
1540 }
1541
1542 /**
1543  * ironlake_enable_shared_dpll - enable PCH PLL
1544  * @dev_priv: i915 private structure
1545  * @pipe: pipe PLL to enable
1546  *
1547  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1548  * drives the transcoder clock.
1549  */
1550 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1551 {
1552         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1553         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1554
1555         /* PCH PLLs only available on ILK, SNB and IVB */
1556         BUG_ON(dev_priv->info->gen < 5);
1557         if (WARN_ON(pll == NULL))
1558                 return;
1559
1560         if (WARN_ON(pll->refcount == 0))
1561                 return;
1562
1563         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1564                       pll->name, pll->active, pll->on,
1565                       crtc->base.base.id);
1566
1567         if (pll->active++) {
1568                 WARN_ON(!pll->on);
1569                 assert_shared_dpll_enabled(dev_priv, pll);
1570                 return;
1571         }
1572         WARN_ON(pll->on);
1573
1574         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1575         pll->enable(dev_priv, pll);
1576         pll->on = true;
1577 }
1578
1579 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1580 {
1581         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1582         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1583
1584         /* PCH only available on ILK+ */
1585         BUG_ON(dev_priv->info->gen < 5);
1586         if (WARN_ON(pll == NULL))
1587                return;
1588
1589         if (WARN_ON(pll->refcount == 0))
1590                 return;
1591
1592         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1593                       pll->name, pll->active, pll->on,
1594                       crtc->base.base.id);
1595
1596         if (WARN_ON(pll->active == 0)) {
1597                 assert_shared_dpll_disabled(dev_priv, pll);
1598                 return;
1599         }
1600
1601         assert_shared_dpll_enabled(dev_priv, pll);
1602         WARN_ON(!pll->on);
1603         if (--pll->active)
1604                 return;
1605
1606         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1607         pll->disable(dev_priv, pll);
1608         pll->on = false;
1609 }
1610
1611 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1612                                            enum pipe pipe)
1613 {
1614         struct drm_device *dev = dev_priv->dev;
1615         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1617         uint32_t reg, val, pipeconf_val;
1618
1619         /* PCH only available on ILK+ */
1620         BUG_ON(dev_priv->info->gen < 5);
1621
1622         /* Make sure PCH DPLL is enabled */
1623         assert_shared_dpll_enabled(dev_priv,
1624                                    intel_crtc_to_shared_dpll(intel_crtc));
1625
1626         /* FDI must be feeding us bits for PCH ports */
1627         assert_fdi_tx_enabled(dev_priv, pipe);
1628         assert_fdi_rx_enabled(dev_priv, pipe);
1629
1630         if (HAS_PCH_CPT(dev)) {
1631                 /* Workaround: Set the timing override bit before enabling the
1632                  * pch transcoder. */
1633                 reg = TRANS_CHICKEN2(pipe);
1634                 val = I915_READ(reg);
1635                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1636                 I915_WRITE(reg, val);
1637         }
1638
1639         reg = PCH_TRANSCONF(pipe);
1640         val = I915_READ(reg);
1641         pipeconf_val = I915_READ(PIPECONF(pipe));
1642
1643         if (HAS_PCH_IBX(dev_priv->dev)) {
1644                 /*
1645                  * make the BPC in transcoder be consistent with
1646                  * that in pipeconf reg.
1647                  */
1648                 val &= ~PIPECONF_BPC_MASK;
1649                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1650         }
1651
1652         val &= ~TRANS_INTERLACE_MASK;
1653         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1654                 if (HAS_PCH_IBX(dev_priv->dev) &&
1655                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1656                         val |= TRANS_LEGACY_INTERLACED_ILK;
1657                 else
1658                         val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(reg, val | TRANS_ENABLE);
1663         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1665 }
1666
1667 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                       enum transcoder cpu_transcoder)
1669 {
1670         u32 val, pipeconf_val;
1671
1672         /* PCH only available on ILK+ */
1673         BUG_ON(dev_priv->info->gen < 5);
1674
1675         /* FDI must be feeding us bits for PCH ports */
1676         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1677         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1678
1679         /* Workaround: set timing override bit. */
1680         val = I915_READ(_TRANSA_CHICKEN2);
1681         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1682         I915_WRITE(_TRANSA_CHICKEN2, val);
1683
1684         val = TRANS_ENABLE;
1685         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1686
1687         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1688             PIPECONF_INTERLACED_ILK)
1689                 val |= TRANS_INTERLACED;
1690         else
1691                 val |= TRANS_PROGRESSIVE;
1692
1693         I915_WRITE(LPT_TRANSCONF, val);
1694         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1695                 DRM_ERROR("Failed to enable PCH transcoder\n");
1696 }
1697
1698 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1699                                             enum pipe pipe)
1700 {
1701         struct drm_device *dev = dev_priv->dev;
1702         uint32_t reg, val;
1703
1704         /* FDI relies on the transcoder */
1705         assert_fdi_tx_disabled(dev_priv, pipe);
1706         assert_fdi_rx_disabled(dev_priv, pipe);
1707
1708         /* Ports must be off as well */
1709         assert_pch_ports_disabled(dev_priv, pipe);
1710
1711         reg = PCH_TRANSCONF(pipe);
1712         val = I915_READ(reg);
1713         val &= ~TRANS_ENABLE;
1714         I915_WRITE(reg, val);
1715         /* wait for PCH transcoder off, transcoder state */
1716         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1717                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1718
1719         if (!HAS_PCH_IBX(dev)) {
1720                 /* Workaround: Clear the timing override chicken bit again. */
1721                 reg = TRANS_CHICKEN2(pipe);
1722                 val = I915_READ(reg);
1723                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1724                 I915_WRITE(reg, val);
1725         }
1726 }
1727
1728 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1729 {
1730         u32 val;
1731
1732         val = I915_READ(LPT_TRANSCONF);
1733         val &= ~TRANS_ENABLE;
1734         I915_WRITE(LPT_TRANSCONF, val);
1735         /* wait for PCH transcoder off, transcoder state */
1736         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1737                 DRM_ERROR("Failed to disable PCH transcoder\n");
1738
1739         /* Workaround: clear timing override bit. */
1740         val = I915_READ(_TRANSA_CHICKEN2);
1741         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1742         I915_WRITE(_TRANSA_CHICKEN2, val);
1743 }
1744
1745 /**
1746  * intel_enable_pipe - enable a pipe, asserting requirements
1747  * @dev_priv: i915 private structure
1748  * @pipe: pipe to enable
1749  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1750  *
1751  * Enable @pipe, making sure that various hardware specific requirements
1752  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1753  *
1754  * @pipe should be %PIPE_A or %PIPE_B.
1755  *
1756  * Will wait until the pipe is actually running (i.e. first vblank) before
1757  * returning.
1758  */
1759 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1760                               bool pch_port, bool dsi)
1761 {
1762         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1763                                                                       pipe);
1764         enum pipe pch_transcoder;
1765         int reg;
1766         u32 val;
1767
1768         assert_planes_disabled(dev_priv, pipe);
1769         assert_cursor_disabled(dev_priv, pipe);
1770         assert_sprites_disabled(dev_priv, pipe);
1771
1772         if (HAS_PCH_LPT(dev_priv->dev))
1773                 pch_transcoder = TRANSCODER_A;
1774         else
1775                 pch_transcoder = pipe;
1776
1777         /*
1778          * A pipe without a PLL won't actually be able to drive bits from
1779          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1780          * need the check.
1781          */
1782         if (!HAS_PCH_SPLIT(dev_priv->dev))
1783                 if (dsi)
1784                         assert_dsi_pll_enabled(dev_priv);
1785                 else
1786                         assert_pll_enabled(dev_priv, pipe);
1787         else {
1788                 if (pch_port) {
1789                         /* if driving the PCH, we need FDI enabled */
1790                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1791                         assert_fdi_tx_pll_enabled(dev_priv,
1792                                                   (enum pipe) cpu_transcoder);
1793                 }
1794                 /* FIXME: assert CPU port conditions for SNB+ */
1795         }
1796
1797         reg = PIPECONF(cpu_transcoder);
1798         val = I915_READ(reg);
1799         if (val & PIPECONF_ENABLE)
1800                 return;
1801
1802         I915_WRITE(reg, val | PIPECONF_ENABLE);
1803         intel_wait_for_vblank(dev_priv->dev, pipe);
1804 }
1805
1806 /**
1807  * intel_disable_pipe - disable a pipe, asserting requirements
1808  * @dev_priv: i915 private structure
1809  * @pipe: pipe to disable
1810  *
1811  * Disable @pipe, making sure that various hardware specific requirements
1812  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1813  *
1814  * @pipe should be %PIPE_A or %PIPE_B.
1815  *
1816  * Will wait until the pipe has shut down before returning.
1817  */
1818 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1819                                enum pipe pipe)
1820 {
1821         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1822                                                                       pipe);
1823         int reg;
1824         u32 val;
1825
1826         /*
1827          * Make sure planes won't keep trying to pump pixels to us,
1828          * or we might hang the display.
1829          */
1830         assert_planes_disabled(dev_priv, pipe);
1831         assert_cursor_disabled(dev_priv, pipe);
1832         assert_sprites_disabled(dev_priv, pipe);
1833
1834         /* Don't disable pipe A or pipe A PLLs if needed */
1835         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1836                 return;
1837
1838         reg = PIPECONF(cpu_transcoder);
1839         val = I915_READ(reg);
1840         if ((val & PIPECONF_ENABLE) == 0)
1841                 return;
1842
1843         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1844         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1845 }
1846
1847 /*
1848  * Plane regs are double buffered, going from enabled->disabled needs a
1849  * trigger in order to latch.  The display address reg provides this.
1850  */
1851 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1852                                enum plane plane)
1853 {
1854         u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1855
1856         I915_WRITE(reg, I915_READ(reg));
1857         POSTING_READ(reg);
1858 }
1859
1860 /**
1861  * intel_enable_primary_plane - enable the primary plane on a given pipe
1862  * @dev_priv: i915 private structure
1863  * @plane: plane to enable
1864  * @pipe: pipe being fed
1865  *
1866  * Enable @plane on @pipe, making sure that @pipe is running first.
1867  */
1868 static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1869                                        enum plane plane, enum pipe pipe)
1870 {
1871         struct intel_crtc *intel_crtc =
1872                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1873         int reg;
1874         u32 val;
1875
1876         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1877         assert_pipe_enabled(dev_priv, pipe);
1878
1879         WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1880
1881         intel_crtc->primary_enabled = true;
1882
1883         reg = DSPCNTR(plane);
1884         val = I915_READ(reg);
1885         if (val & DISPLAY_PLANE_ENABLE)
1886                 return;
1887
1888         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1889         intel_flush_primary_plane(dev_priv, plane);
1890         intel_wait_for_vblank(dev_priv->dev, pipe);
1891 }
1892
1893 /**
1894  * intel_disable_primary_plane - disable the primary plane
1895  * @dev_priv: i915 private structure
1896  * @plane: plane to disable
1897  * @pipe: pipe consuming the data
1898  *
1899  * Disable @plane; should be an independent operation.
1900  */
1901 static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1902                                         enum plane plane, enum pipe pipe)
1903 {
1904         struct intel_crtc *intel_crtc =
1905                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1906         int reg;
1907         u32 val;
1908
1909         WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1910
1911         intel_crtc->primary_enabled = false;
1912
1913         reg = DSPCNTR(plane);
1914         val = I915_READ(reg);
1915         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1916                 return;
1917
1918         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1919         intel_flush_primary_plane(dev_priv, plane);
1920         intel_wait_for_vblank(dev_priv->dev, pipe);
1921 }
1922
1923 static bool need_vtd_wa(struct drm_device *dev)
1924 {
1925 #ifdef CONFIG_INTEL_IOMMU
1926         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1927                 return true;
1928 #endif
1929         return false;
1930 }
1931
1932 int
1933 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1934                            struct drm_i915_gem_object *obj,
1935                            struct intel_ring_buffer *pipelined)
1936 {
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         u32 alignment;
1939         int ret;
1940
1941         switch (obj->tiling_mode) {
1942         case I915_TILING_NONE:
1943                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1944                         alignment = 128 * 1024;
1945                 else if (INTEL_INFO(dev)->gen >= 4)
1946                         alignment = 4 * 1024;
1947                 else
1948                         alignment = 64 * 1024;
1949                 break;
1950         case I915_TILING_X:
1951                 /* pin() will align the object as required by fence */
1952                 alignment = 0;
1953                 break;
1954         case I915_TILING_Y:
1955                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1956                 return -EINVAL;
1957         default:
1958                 BUG();
1959         }
1960
1961         /* Note that the w/a also requires 64 PTE of padding following the
1962          * bo. We currently fill all unused PTE with the shadow page and so
1963          * we should always have valid PTE following the scanout preventing
1964          * the VT-d warning.
1965          */
1966         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1967                 alignment = 256 * 1024;
1968
1969         dev_priv->mm.interruptible = false;
1970         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1971         if (ret)
1972                 goto err_interruptible;
1973
1974         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1975          * fence, whereas 965+ only requires a fence if using
1976          * framebuffer compression.  For simplicity, we always install
1977          * a fence as the cost is not that onerous.
1978          */
1979         ret = i915_gem_object_get_fence(obj);
1980         if (ret)
1981                 goto err_unpin;
1982
1983         i915_gem_object_pin_fence(obj);
1984
1985         dev_priv->mm.interruptible = true;
1986         return 0;
1987
1988 err_unpin:
1989         i915_gem_object_unpin_from_display_plane(obj);
1990 err_interruptible:
1991         dev_priv->mm.interruptible = true;
1992         return ret;
1993 }
1994
1995 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1996 {
1997         i915_gem_object_unpin_fence(obj);
1998         i915_gem_object_unpin_from_display_plane(obj);
1999 }
2000
2001 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2002  * is assumed to be a power-of-two. */
2003 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2004                                              unsigned int tiling_mode,
2005                                              unsigned int cpp,
2006                                              unsigned int pitch)
2007 {
2008         if (tiling_mode != I915_TILING_NONE) {
2009                 unsigned int tile_rows, tiles;
2010
2011                 tile_rows = *y / 8;
2012                 *y %= 8;
2013
2014                 tiles = *x / (512/cpp);
2015                 *x %= 512/cpp;
2016
2017                 return tile_rows * pitch * 8 + tiles * 4096;
2018         } else {
2019                 unsigned int offset;
2020
2021                 offset = *y * pitch + *x * cpp;
2022                 *y = 0;
2023                 *x = (offset & 4095) / cpp;
2024                 return offset & -4096;
2025         }
2026 }
2027
2028 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2029                              int x, int y)
2030 {
2031         struct drm_device *dev = crtc->dev;
2032         struct drm_i915_private *dev_priv = dev->dev_private;
2033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2034         struct intel_framebuffer *intel_fb;
2035         struct drm_i915_gem_object *obj;
2036         int plane = intel_crtc->plane;
2037         unsigned long linear_offset;
2038         u32 dspcntr;
2039         u32 reg;
2040
2041         switch (plane) {
2042         case 0:
2043         case 1:
2044                 break;
2045         default:
2046                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2047                 return -EINVAL;
2048         }
2049
2050         intel_fb = to_intel_framebuffer(fb);
2051         obj = intel_fb->obj;
2052
2053         reg = DSPCNTR(plane);
2054         dspcntr = I915_READ(reg);
2055         /* Mask out pixel format bits in case we change it */
2056         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2057         switch (fb->pixel_format) {
2058         case DRM_FORMAT_C8:
2059                 dspcntr |= DISPPLANE_8BPP;
2060                 break;
2061         case DRM_FORMAT_XRGB1555:
2062         case DRM_FORMAT_ARGB1555:
2063                 dspcntr |= DISPPLANE_BGRX555;
2064                 break;
2065         case DRM_FORMAT_RGB565:
2066                 dspcntr |= DISPPLANE_BGRX565;
2067                 break;
2068         case DRM_FORMAT_XRGB8888:
2069         case DRM_FORMAT_ARGB8888:
2070                 dspcntr |= DISPPLANE_BGRX888;
2071                 break;
2072         case DRM_FORMAT_XBGR8888:
2073         case DRM_FORMAT_ABGR8888:
2074                 dspcntr |= DISPPLANE_RGBX888;
2075                 break;
2076         case DRM_FORMAT_XRGB2101010:
2077         case DRM_FORMAT_ARGB2101010:
2078                 dspcntr |= DISPPLANE_BGRX101010;
2079                 break;
2080         case DRM_FORMAT_XBGR2101010:
2081         case DRM_FORMAT_ABGR2101010:
2082                 dspcntr |= DISPPLANE_RGBX101010;
2083                 break;
2084         default:
2085                 BUG();
2086         }
2087
2088         if (INTEL_INFO(dev)->gen >= 4) {
2089                 if (obj->tiling_mode != I915_TILING_NONE)
2090                         dspcntr |= DISPPLANE_TILED;
2091                 else
2092                         dspcntr &= ~DISPPLANE_TILED;
2093         }
2094
2095         if (IS_G4X(dev))
2096                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2097
2098         I915_WRITE(reg, dspcntr);
2099
2100         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2101
2102         if (INTEL_INFO(dev)->gen >= 4) {
2103                 intel_crtc->dspaddr_offset =
2104                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2105                                                        fb->bits_per_pixel / 8,
2106                                                        fb->pitches[0]);
2107                 linear_offset -= intel_crtc->dspaddr_offset;
2108         } else {
2109                 intel_crtc->dspaddr_offset = linear_offset;
2110         }
2111
2112         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2113                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2114                       fb->pitches[0]);
2115         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2116         if (INTEL_INFO(dev)->gen >= 4) {
2117                 I915_WRITE(DSPSURF(plane),
2118                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2119                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2120                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2121         } else
2122                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2123         POSTING_READ(reg);
2124
2125         return 0;
2126 }
2127
2128 static int ironlake_update_plane(struct drm_crtc *crtc,
2129                                  struct drm_framebuffer *fb, int x, int y)
2130 {
2131         struct drm_device *dev = crtc->dev;
2132         struct drm_i915_private *dev_priv = dev->dev_private;
2133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2134         struct intel_framebuffer *intel_fb;
2135         struct drm_i915_gem_object *obj;
2136         int plane = intel_crtc->plane;
2137         unsigned long linear_offset;
2138         u32 dspcntr;
2139         u32 reg;
2140
2141         switch (plane) {
2142         case 0:
2143         case 1:
2144         case 2:
2145                 break;
2146         default:
2147                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2148                 return -EINVAL;
2149         }
2150
2151         intel_fb = to_intel_framebuffer(fb);
2152         obj = intel_fb->obj;
2153
2154         reg = DSPCNTR(plane);
2155         dspcntr = I915_READ(reg);
2156         /* Mask out pixel format bits in case we change it */
2157         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2158         switch (fb->pixel_format) {
2159         case DRM_FORMAT_C8:
2160                 dspcntr |= DISPPLANE_8BPP;
2161                 break;
2162         case DRM_FORMAT_RGB565:
2163                 dspcntr |= DISPPLANE_BGRX565;
2164                 break;
2165         case DRM_FORMAT_XRGB8888:
2166         case DRM_FORMAT_ARGB8888:
2167                 dspcntr |= DISPPLANE_BGRX888;
2168                 break;
2169         case DRM_FORMAT_XBGR8888:
2170         case DRM_FORMAT_ABGR8888:
2171                 dspcntr |= DISPPLANE_RGBX888;
2172                 break;
2173         case DRM_FORMAT_XRGB2101010:
2174         case DRM_FORMAT_ARGB2101010:
2175                 dspcntr |= DISPPLANE_BGRX101010;
2176                 break;
2177         case DRM_FORMAT_XBGR2101010:
2178         case DRM_FORMAT_ABGR2101010:
2179                 dspcntr |= DISPPLANE_RGBX101010;
2180                 break;
2181         default:
2182                 BUG();
2183         }
2184
2185         if (obj->tiling_mode != I915_TILING_NONE)
2186                 dspcntr |= DISPPLANE_TILED;
2187         else
2188                 dspcntr &= ~DISPPLANE_TILED;
2189
2190         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2191                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2192         else
2193                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2194
2195         I915_WRITE(reg, dspcntr);
2196
2197         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2198         intel_crtc->dspaddr_offset =
2199                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2200                                                fb->bits_per_pixel / 8,
2201                                                fb->pitches[0]);
2202         linear_offset -= intel_crtc->dspaddr_offset;
2203
2204         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2205                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2206                       fb->pitches[0]);
2207         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2208         I915_WRITE(DSPSURF(plane),
2209                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2210         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2211                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2212         } else {
2213                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2214                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2215         }
2216         POSTING_READ(reg);
2217
2218         return 0;
2219 }
2220
2221 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2222 static int
2223 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2224                            int x, int y, enum mode_set_atomic state)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (dev_priv->display.disable_fbc)
2230                 dev_priv->display.disable_fbc(dev);
2231         intel_increase_pllclock(crtc);
2232
2233         return dev_priv->display.update_plane(crtc, fb, x, y);
2234 }
2235
2236 void intel_display_handle_reset(struct drm_device *dev)
2237 {
2238         struct drm_i915_private *dev_priv = dev->dev_private;
2239         struct drm_crtc *crtc;
2240
2241         /*
2242          * Flips in the rings have been nuked by the reset,
2243          * so complete all pending flips so that user space
2244          * will get its events and not get stuck.
2245          *
2246          * Also update the base address of all primary
2247          * planes to the the last fb to make sure we're
2248          * showing the correct fb after a reset.
2249          *
2250          * Need to make two loops over the crtcs so that we
2251          * don't try to grab a crtc mutex before the
2252          * pending_flip_queue really got woken up.
2253          */
2254
2255         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2256                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2257                 enum plane plane = intel_crtc->plane;
2258
2259                 intel_prepare_page_flip(dev, plane);
2260                 intel_finish_page_flip_plane(dev, plane);
2261         }
2262
2263         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2264                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265
2266                 mutex_lock(&crtc->mutex);
2267                 /*
2268                  * FIXME: Once we have proper support for primary planes (and
2269                  * disabling them without disabling the entire crtc) allow again
2270                  * a NULL crtc->fb.
2271                  */
2272                 if (intel_crtc->active && crtc->fb)
2273                         dev_priv->display.update_plane(crtc, crtc->fb,
2274                                                        crtc->x, crtc->y);
2275                 mutex_unlock(&crtc->mutex);
2276         }
2277 }
2278
2279 static int
2280 intel_finish_fb(struct drm_framebuffer *old_fb)
2281 {
2282         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2283         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2284         bool was_interruptible = dev_priv->mm.interruptible;
2285         int ret;
2286
2287         /* Big Hammer, we also need to ensure that any pending
2288          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2289          * current scanout is retired before unpinning the old
2290          * framebuffer.
2291          *
2292          * This should only fail upon a hung GPU, in which case we
2293          * can safely continue.
2294          */
2295         dev_priv->mm.interruptible = false;
2296         ret = i915_gem_object_finish_gpu(obj);
2297         dev_priv->mm.interruptible = was_interruptible;
2298
2299         return ret;
2300 }
2301
2302 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2303 {
2304         struct drm_device *dev = crtc->dev;
2305         struct drm_i915_master_private *master_priv;
2306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2307
2308         if (!dev->primary->master)
2309                 return;
2310
2311         master_priv = dev->primary->master->driver_priv;
2312         if (!master_priv->sarea_priv)
2313                 return;
2314
2315         switch (intel_crtc->pipe) {
2316         case 0:
2317                 master_priv->sarea_priv->pipeA_x = x;
2318                 master_priv->sarea_priv->pipeA_y = y;
2319                 break;
2320         case 1:
2321                 master_priv->sarea_priv->pipeB_x = x;
2322                 master_priv->sarea_priv->pipeB_y = y;
2323                 break;
2324         default:
2325                 break;
2326         }
2327 }
2328
2329 static int
2330 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2331                     struct drm_framebuffer *fb)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         struct drm_framebuffer *old_fb;
2337         int ret;
2338
2339         /* no fb bound */
2340         if (!fb) {
2341                 DRM_ERROR("No FB bound\n");
2342                 return 0;
2343         }
2344
2345         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2346                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2347                           plane_name(intel_crtc->plane),
2348                           INTEL_INFO(dev)->num_pipes);
2349                 return -EINVAL;
2350         }
2351
2352         mutex_lock(&dev->struct_mutex);
2353         ret = intel_pin_and_fence_fb_obj(dev,
2354                                          to_intel_framebuffer(fb)->obj,
2355                                          NULL);
2356         if (ret != 0) {
2357                 mutex_unlock(&dev->struct_mutex);
2358                 DRM_ERROR("pin & fence failed\n");
2359                 return ret;
2360         }
2361
2362         /*
2363          * Update pipe size and adjust fitter if needed: the reason for this is
2364          * that in compute_mode_changes we check the native mode (not the pfit
2365          * mode) to see if we can flip rather than do a full mode set. In the
2366          * fastboot case, we'll flip, but if we don't update the pipesrc and
2367          * pfit state, we'll end up with a big fb scanned out into the wrong
2368          * sized surface.
2369          *
2370          * To fix this properly, we need to hoist the checks up into
2371          * compute_mode_changes (or above), check the actual pfit state and
2372          * whether the platform allows pfit disable with pipe active, and only
2373          * then update the pipesrc and pfit state, even on the flip path.
2374          */
2375         if (i915_fastboot) {
2376                 const struct drm_display_mode *adjusted_mode =
2377                         &intel_crtc->config.adjusted_mode;
2378
2379                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2380                            ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2381                            (adjusted_mode->crtc_vdisplay - 1));
2382                 if (!intel_crtc->config.pch_pfit.enabled &&
2383                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2384                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2385                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2386                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2387                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2388                 }
2389                 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2390                 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2391         }
2392
2393         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2394         if (ret) {
2395                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2396                 mutex_unlock(&dev->struct_mutex);
2397                 DRM_ERROR("failed to update base address\n");
2398                 return ret;
2399         }
2400
2401         old_fb = crtc->fb;
2402         crtc->fb = fb;
2403         crtc->x = x;
2404         crtc->y = y;
2405
2406         if (old_fb) {
2407                 if (intel_crtc->active && old_fb != fb)
2408                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2409                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2410         }
2411
2412         intel_update_fbc(dev);
2413         intel_edp_psr_update(dev);
2414         mutex_unlock(&dev->struct_mutex);
2415
2416         intel_crtc_update_sarea_pos(crtc, x, y);
2417
2418         return 0;
2419 }
2420
2421 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2422 {
2423         struct drm_device *dev = crtc->dev;
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2426         int pipe = intel_crtc->pipe;
2427         u32 reg, temp;
2428
2429         /* enable normal train */
2430         reg = FDI_TX_CTL(pipe);
2431         temp = I915_READ(reg);
2432         if (IS_IVYBRIDGE(dev)) {
2433                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2434                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2435         } else {
2436                 temp &= ~FDI_LINK_TRAIN_NONE;
2437                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2438         }
2439         I915_WRITE(reg, temp);
2440
2441         reg = FDI_RX_CTL(pipe);
2442         temp = I915_READ(reg);
2443         if (HAS_PCH_CPT(dev)) {
2444                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2445                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2446         } else {
2447                 temp &= ~FDI_LINK_TRAIN_NONE;
2448                 temp |= FDI_LINK_TRAIN_NONE;
2449         }
2450         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2451
2452         /* wait one idle pattern time */
2453         POSTING_READ(reg);
2454         udelay(1000);
2455
2456         /* IVB wants error correction enabled */
2457         if (IS_IVYBRIDGE(dev))
2458                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2459                            FDI_FE_ERRC_ENABLE);
2460 }
2461
2462 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2463 {
2464         return crtc->base.enabled && crtc->active &&
2465                 crtc->config.has_pch_encoder;
2466 }
2467
2468 static void ivb_modeset_global_resources(struct drm_device *dev)
2469 {
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         struct intel_crtc *pipe_B_crtc =
2472                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2473         struct intel_crtc *pipe_C_crtc =
2474                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2475         uint32_t temp;
2476
2477         /*
2478          * When everything is off disable fdi C so that we could enable fdi B
2479          * with all lanes. Note that we don't care about enabled pipes without
2480          * an enabled pch encoder.
2481          */
2482         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2483             !pipe_has_enabled_pch(pipe_C_crtc)) {
2484                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2485                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2486
2487                 temp = I915_READ(SOUTH_CHICKEN1);
2488                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2489                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2490                 I915_WRITE(SOUTH_CHICKEN1, temp);
2491         }
2492 }
2493
2494 /* The FDI link training functions for ILK/Ibexpeak. */
2495 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2496 {
2497         struct drm_device *dev = crtc->dev;
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2500         int pipe = intel_crtc->pipe;
2501         int plane = intel_crtc->plane;
2502         u32 reg, temp, tries;
2503
2504         /* FDI needs bits from pipe & plane first */
2505         assert_pipe_enabled(dev_priv, pipe);
2506         assert_plane_enabled(dev_priv, plane);
2507
2508         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2509            for train result */
2510         reg = FDI_RX_IMR(pipe);
2511         temp = I915_READ(reg);
2512         temp &= ~FDI_RX_SYMBOL_LOCK;
2513         temp &= ~FDI_RX_BIT_LOCK;
2514         I915_WRITE(reg, temp);
2515         I915_READ(reg);
2516         udelay(150);
2517
2518         /* enable CPU FDI TX and PCH FDI RX */
2519         reg = FDI_TX_CTL(pipe);
2520         temp = I915_READ(reg);
2521         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2522         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2523         temp &= ~FDI_LINK_TRAIN_NONE;
2524         temp |= FDI_LINK_TRAIN_PATTERN_1;
2525         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2526
2527         reg = FDI_RX_CTL(pipe);
2528         temp = I915_READ(reg);
2529         temp &= ~FDI_LINK_TRAIN_NONE;
2530         temp |= FDI_LINK_TRAIN_PATTERN_1;
2531         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2532
2533         POSTING_READ(reg);
2534         udelay(150);
2535
2536         /* Ironlake workaround, enable clock pointer after FDI enable*/
2537         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2538         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2539                    FDI_RX_PHASE_SYNC_POINTER_EN);
2540
2541         reg = FDI_RX_IIR(pipe);
2542         for (tries = 0; tries < 5; tries++) {
2543                 temp = I915_READ(reg);
2544                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546                 if ((temp & FDI_RX_BIT_LOCK)) {
2547                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2548                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2549                         break;
2550                 }
2551         }
2552         if (tries == 5)
2553                 DRM_ERROR("FDI train 1 fail!\n");
2554
2555         /* Train 2 */
2556         reg = FDI_TX_CTL(pipe);
2557         temp = I915_READ(reg);
2558         temp &= ~FDI_LINK_TRAIN_NONE;
2559         temp |= FDI_LINK_TRAIN_PATTERN_2;
2560         I915_WRITE(reg, temp);
2561
2562         reg = FDI_RX_CTL(pipe);
2563         temp = I915_READ(reg);
2564         temp &= ~FDI_LINK_TRAIN_NONE;
2565         temp |= FDI_LINK_TRAIN_PATTERN_2;
2566         I915_WRITE(reg, temp);
2567
2568         POSTING_READ(reg);
2569         udelay(150);
2570
2571         reg = FDI_RX_IIR(pipe);
2572         for (tries = 0; tries < 5; tries++) {
2573                 temp = I915_READ(reg);
2574                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2575
2576                 if (temp & FDI_RX_SYMBOL_LOCK) {
2577                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2578                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2579                         break;
2580                 }
2581         }
2582         if (tries == 5)
2583                 DRM_ERROR("FDI train 2 fail!\n");
2584
2585         DRM_DEBUG_KMS("FDI train done\n");
2586
2587 }
2588
2589 static const int snb_b_fdi_train_param[] = {
2590         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2591         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2592         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2593         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2594 };
2595
2596 /* The FDI link training functions for SNB/Cougarpoint. */
2597 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2598 {
2599         struct drm_device *dev = crtc->dev;
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2602         int pipe = intel_crtc->pipe;
2603         u32 reg, temp, i, retry;
2604
2605         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2606            for train result */
2607         reg = FDI_RX_IMR(pipe);
2608         temp = I915_READ(reg);
2609         temp &= ~FDI_RX_SYMBOL_LOCK;
2610         temp &= ~FDI_RX_BIT_LOCK;
2611         I915_WRITE(reg, temp);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         /* enable CPU FDI TX and PCH FDI RX */
2617         reg = FDI_TX_CTL(pipe);
2618         temp = I915_READ(reg);
2619         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2620         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2621         temp &= ~FDI_LINK_TRAIN_NONE;
2622         temp |= FDI_LINK_TRAIN_PATTERN_1;
2623         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2624         /* SNB-B */
2625         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2626         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2627
2628         I915_WRITE(FDI_RX_MISC(pipe),
2629                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2630
2631         reg = FDI_RX_CTL(pipe);
2632         temp = I915_READ(reg);
2633         if (HAS_PCH_CPT(dev)) {
2634                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2636         } else {
2637                 temp &= ~FDI_LINK_TRAIN_NONE;
2638                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2639         }
2640         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2641
2642         POSTING_READ(reg);
2643         udelay(150);
2644
2645         for (i = 0; i < 4; i++) {
2646                 reg = FDI_TX_CTL(pipe);
2647                 temp = I915_READ(reg);
2648                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649                 temp |= snb_b_fdi_train_param[i];
2650                 I915_WRITE(reg, temp);
2651
2652                 POSTING_READ(reg);
2653                 udelay(500);
2654
2655                 for (retry = 0; retry < 5; retry++) {
2656                         reg = FDI_RX_IIR(pipe);
2657                         temp = I915_READ(reg);
2658                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2659                         if (temp & FDI_RX_BIT_LOCK) {
2660                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2661                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2662                                 break;
2663                         }
2664                         udelay(50);
2665                 }
2666                 if (retry < 5)
2667                         break;
2668         }
2669         if (i == 4)
2670                 DRM_ERROR("FDI train 1 fail!\n");
2671
2672         /* Train 2 */
2673         reg = FDI_TX_CTL(pipe);
2674         temp = I915_READ(reg);
2675         temp &= ~FDI_LINK_TRAIN_NONE;
2676         temp |= FDI_LINK_TRAIN_PATTERN_2;
2677         if (IS_GEN6(dev)) {
2678                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2679                 /* SNB-B */
2680                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2681         }
2682         I915_WRITE(reg, temp);
2683
2684         reg = FDI_RX_CTL(pipe);
2685         temp = I915_READ(reg);
2686         if (HAS_PCH_CPT(dev)) {
2687                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2688                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2689         } else {
2690                 temp &= ~FDI_LINK_TRAIN_NONE;
2691                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2692         }
2693         I915_WRITE(reg, temp);
2694
2695         POSTING_READ(reg);
2696         udelay(150);
2697
2698         for (i = 0; i < 4; i++) {
2699                 reg = FDI_TX_CTL(pipe);
2700                 temp = I915_READ(reg);
2701                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2702                 temp |= snb_b_fdi_train_param[i];
2703                 I915_WRITE(reg, temp);
2704
2705                 POSTING_READ(reg);
2706                 udelay(500);
2707
2708                 for (retry = 0; retry < 5; retry++) {
2709                         reg = FDI_RX_IIR(pipe);
2710                         temp = I915_READ(reg);
2711                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2712                         if (temp & FDI_RX_SYMBOL_LOCK) {
2713                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2714                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2715                                 break;
2716                         }
2717                         udelay(50);
2718                 }
2719                 if (retry < 5)
2720                         break;
2721         }
2722         if (i == 4)
2723                 DRM_ERROR("FDI train 2 fail!\n");
2724
2725         DRM_DEBUG_KMS("FDI train done.\n");
2726 }
2727
2728 /* Manual link training for Ivy Bridge A0 parts */
2729 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2730 {
2731         struct drm_device *dev = crtc->dev;
2732         struct drm_i915_private *dev_priv = dev->dev_private;
2733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2734         int pipe = intel_crtc->pipe;
2735         u32 reg, temp, i, j;
2736
2737         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2738            for train result */
2739         reg = FDI_RX_IMR(pipe);
2740         temp = I915_READ(reg);
2741         temp &= ~FDI_RX_SYMBOL_LOCK;
2742         temp &= ~FDI_RX_BIT_LOCK;
2743         I915_WRITE(reg, temp);
2744
2745         POSTING_READ(reg);
2746         udelay(150);
2747
2748         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2749                       I915_READ(FDI_RX_IIR(pipe)));
2750
2751         /* Try each vswing and preemphasis setting twice before moving on */
2752         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2753                 /* disable first in case we need to retry */
2754                 reg = FDI_TX_CTL(pipe);
2755                 temp = I915_READ(reg);
2756                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2757                 temp &= ~FDI_TX_ENABLE;
2758                 I915_WRITE(reg, temp);
2759
2760                 reg = FDI_RX_CTL(pipe);
2761                 temp = I915_READ(reg);
2762                 temp &= ~FDI_LINK_TRAIN_AUTO;
2763                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2764                 temp &= ~FDI_RX_ENABLE;
2765                 I915_WRITE(reg, temp);
2766
2767                 /* enable CPU FDI TX and PCH FDI RX */
2768                 reg = FDI_TX_CTL(pipe);
2769                 temp = I915_READ(reg);
2770                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2771                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2772                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2773                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2774                 temp |= snb_b_fdi_train_param[j/2];
2775                 temp |= FDI_COMPOSITE_SYNC;
2776                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2777
2778                 I915_WRITE(FDI_RX_MISC(pipe),
2779                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2780
2781                 reg = FDI_RX_CTL(pipe);
2782                 temp = I915_READ(reg);
2783                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2784                 temp |= FDI_COMPOSITE_SYNC;
2785                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2786
2787                 POSTING_READ(reg);
2788                 udelay(1); /* should be 0.5us */
2789
2790                 for (i = 0; i < 4; i++) {
2791                         reg = FDI_RX_IIR(pipe);
2792                         temp = I915_READ(reg);
2793                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795                         if (temp & FDI_RX_BIT_LOCK ||
2796                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2797                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2798                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2799                                               i);
2800                                 break;
2801                         }
2802                         udelay(1); /* should be 0.5us */
2803                 }
2804                 if (i == 4) {
2805                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2806                         continue;
2807                 }
2808
2809                 /* Train 2 */
2810                 reg = FDI_TX_CTL(pipe);
2811                 temp = I915_READ(reg);
2812                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2813                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2814                 I915_WRITE(reg, temp);
2815
2816                 reg = FDI_RX_CTL(pipe);
2817                 temp = I915_READ(reg);
2818                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2819                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2820                 I915_WRITE(reg, temp);
2821
2822                 POSTING_READ(reg);
2823                 udelay(2); /* should be 1.5us */
2824
2825                 for (i = 0; i < 4; i++) {
2826                         reg = FDI_RX_IIR(pipe);
2827                         temp = I915_READ(reg);
2828                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2829
2830                         if (temp & FDI_RX_SYMBOL_LOCK ||
2831                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2832                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2833                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2834                                               i);
2835                                 goto train_done;
2836                         }
2837                         udelay(2); /* should be 1.5us */
2838                 }
2839                 if (i == 4)
2840                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2841         }
2842
2843 train_done:
2844         DRM_DEBUG_KMS("FDI train done.\n");
2845 }
2846
2847 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2848 {
2849         struct drm_device *dev = intel_crtc->base.dev;
2850         struct drm_i915_private *dev_priv = dev->dev_private;
2851         int pipe = intel_crtc->pipe;
2852         u32 reg, temp;
2853
2854
2855         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2856         reg = FDI_RX_CTL(pipe);
2857         temp = I915_READ(reg);
2858         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2859         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2860         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2861         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2862
2863         POSTING_READ(reg);
2864         udelay(200);
2865
2866         /* Switch from Rawclk to PCDclk */
2867         temp = I915_READ(reg);
2868         I915_WRITE(reg, temp | FDI_PCDCLK);
2869
2870         POSTING_READ(reg);
2871         udelay(200);
2872
2873         /* Enable CPU FDI TX PLL, always on for Ironlake */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2877                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2878
2879                 POSTING_READ(reg);
2880                 udelay(100);
2881         }
2882 }
2883
2884 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2885 {
2886         struct drm_device *dev = intel_crtc->base.dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888         int pipe = intel_crtc->pipe;
2889         u32 reg, temp;
2890
2891         /* Switch from PCDclk to Rawclk */
2892         reg = FDI_RX_CTL(pipe);
2893         temp = I915_READ(reg);
2894         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2895
2896         /* Disable CPU FDI TX PLL */
2897         reg = FDI_TX_CTL(pipe);
2898         temp = I915_READ(reg);
2899         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2900
2901         POSTING_READ(reg);
2902         udelay(100);
2903
2904         reg = FDI_RX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2907
2908         /* Wait for the clocks to turn off. */
2909         POSTING_READ(reg);
2910         udelay(100);
2911 }
2912
2913 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2914 {
2915         struct drm_device *dev = crtc->dev;
2916         struct drm_i915_private *dev_priv = dev->dev_private;
2917         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2918         int pipe = intel_crtc->pipe;
2919         u32 reg, temp;
2920
2921         /* disable CPU FDI tx and PCH FDI rx */
2922         reg = FDI_TX_CTL(pipe);
2923         temp = I915_READ(reg);
2924         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2925         POSTING_READ(reg);
2926
2927         reg = FDI_RX_CTL(pipe);
2928         temp = I915_READ(reg);
2929         temp &= ~(0x7 << 16);
2930         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2931         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2932
2933         POSTING_READ(reg);
2934         udelay(100);
2935
2936         /* Ironlake workaround, disable clock pointer after downing FDI */
2937         if (HAS_PCH_IBX(dev)) {
2938                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2939         }
2940
2941         /* still set train pattern 1 */
2942         reg = FDI_TX_CTL(pipe);
2943         temp = I915_READ(reg);
2944         temp &= ~FDI_LINK_TRAIN_NONE;
2945         temp |= FDI_LINK_TRAIN_PATTERN_1;
2946         I915_WRITE(reg, temp);
2947
2948         reg = FDI_RX_CTL(pipe);
2949         temp = I915_READ(reg);
2950         if (HAS_PCH_CPT(dev)) {
2951                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2952                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2953         } else {
2954                 temp &= ~FDI_LINK_TRAIN_NONE;
2955                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2956         }
2957         /* BPC in FDI rx is consistent with that in PIPECONF */
2958         temp &= ~(0x07 << 16);
2959         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2960         I915_WRITE(reg, temp);
2961
2962         POSTING_READ(reg);
2963         udelay(100);
2964 }
2965
2966 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2967 {
2968         struct drm_device *dev = crtc->dev;
2969         struct drm_i915_private *dev_priv = dev->dev_private;
2970         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2971         unsigned long flags;
2972         bool pending;
2973
2974         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2975             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2976                 return false;
2977
2978         spin_lock_irqsave(&dev->event_lock, flags);
2979         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2980         spin_unlock_irqrestore(&dev->event_lock, flags);
2981
2982         return pending;
2983 }
2984
2985 bool intel_has_pending_fb_unpin(struct drm_device *dev)
2986 {
2987         struct intel_crtc *crtc;
2988
2989         /* Note that we don't need to be called with mode_config.lock here
2990          * as our list of CRTC objects is static for the lifetime of the
2991          * device and so cannot disappear as we iterate. Similarly, we can
2992          * happily treat the predicates as racy, atomic checks as userspace
2993          * cannot claim and pin a new fb without at least acquring the
2994          * struct_mutex and so serialising with us.
2995          */
2996         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
2997                 if (atomic_read(&crtc->unpin_work_count) == 0)
2998                         continue;
2999
3000                 if (crtc->unpin_work)
3001                         intel_wait_for_vblank(dev, crtc->pipe);
3002
3003                 return true;
3004         }
3005
3006         return false;
3007 }
3008
3009 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3010 {
3011         struct drm_device *dev = crtc->dev;
3012         struct drm_i915_private *dev_priv = dev->dev_private;
3013
3014         if (crtc->fb == NULL)
3015                 return;
3016
3017         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3018
3019         wait_event(dev_priv->pending_flip_queue,
3020                    !intel_crtc_has_pending_flip(crtc));
3021
3022         mutex_lock(&dev->struct_mutex);
3023         intel_finish_fb(crtc->fb);
3024         mutex_unlock(&dev->struct_mutex);
3025 }
3026
3027 /* Program iCLKIP clock to the desired frequency */
3028 static void lpt_program_iclkip(struct drm_crtc *crtc)
3029 {
3030         struct drm_device *dev = crtc->dev;
3031         struct drm_i915_private *dev_priv = dev->dev_private;
3032         int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3033         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3034         u32 temp;
3035
3036         mutex_lock(&dev_priv->dpio_lock);
3037
3038         /* It is necessary to ungate the pixclk gate prior to programming
3039          * the divisors, and gate it back when it is done.
3040          */
3041         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3042
3043         /* Disable SSCCTL */
3044         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3045                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3046                                 SBI_SSCCTL_DISABLE,
3047                         SBI_ICLK);
3048
3049         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3050         if (clock == 20000) {
3051                 auxdiv = 1;
3052                 divsel = 0x41;
3053                 phaseinc = 0x20;
3054         } else {
3055                 /* The iCLK virtual clock root frequency is in MHz,
3056                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3057                  * divisors, it is necessary to divide one by another, so we
3058                  * convert the virtual clock precision to KHz here for higher
3059                  * precision.
3060                  */
3061                 u32 iclk_virtual_root_freq = 172800 * 1000;
3062                 u32 iclk_pi_range = 64;
3063                 u32 desired_divisor, msb_divisor_value, pi_value;
3064
3065                 desired_divisor = (iclk_virtual_root_freq / clock);
3066                 msb_divisor_value = desired_divisor / iclk_pi_range;
3067                 pi_value = desired_divisor % iclk_pi_range;
3068
3069                 auxdiv = 0;
3070                 divsel = msb_divisor_value - 2;
3071                 phaseinc = pi_value;
3072         }
3073
3074         /* This should not happen with any sane values */
3075         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3076                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3077         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3078                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3079
3080         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3081                         clock,
3082                         auxdiv,
3083                         divsel,
3084                         phasedir,
3085                         phaseinc);
3086
3087         /* Program SSCDIVINTPHASE6 */
3088         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3089         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3090         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3091         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3092         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3093         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3094         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3095         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3096
3097         /* Program SSCAUXDIV */
3098         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3099         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3100         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3101         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3102
3103         /* Enable modulator and associated divider */
3104         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3105         temp &= ~SBI_SSCCTL_DISABLE;
3106         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3107
3108         /* Wait for initialization time */
3109         udelay(24);
3110
3111         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3112
3113         mutex_unlock(&dev_priv->dpio_lock);
3114 }
3115
3116 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3117                                                 enum pipe pch_transcoder)
3118 {
3119         struct drm_device *dev = crtc->base.dev;
3120         struct drm_i915_private *dev_priv = dev->dev_private;
3121         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3122
3123         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3124                    I915_READ(HTOTAL(cpu_transcoder)));
3125         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3126                    I915_READ(HBLANK(cpu_transcoder)));
3127         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3128                    I915_READ(HSYNC(cpu_transcoder)));
3129
3130         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3131                    I915_READ(VTOTAL(cpu_transcoder)));
3132         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3133                    I915_READ(VBLANK(cpu_transcoder)));
3134         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3135                    I915_READ(VSYNC(cpu_transcoder)));
3136         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3137                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3138 }
3139
3140 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3141 {
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143         uint32_t temp;
3144
3145         temp = I915_READ(SOUTH_CHICKEN1);
3146         if (temp & FDI_BC_BIFURCATION_SELECT)
3147                 return;
3148
3149         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3150         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3151
3152         temp |= FDI_BC_BIFURCATION_SELECT;
3153         DRM_DEBUG_KMS("enabling fdi C rx\n");
3154         I915_WRITE(SOUTH_CHICKEN1, temp);
3155         POSTING_READ(SOUTH_CHICKEN1);
3156 }
3157
3158 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3159 {
3160         struct drm_device *dev = intel_crtc->base.dev;
3161         struct drm_i915_private *dev_priv = dev->dev_private;
3162
3163         switch (intel_crtc->pipe) {
3164         case PIPE_A:
3165                 break;
3166         case PIPE_B:
3167                 if (intel_crtc->config.fdi_lanes > 2)
3168                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3169                 else
3170                         cpt_enable_fdi_bc_bifurcation(dev);
3171
3172                 break;
3173         case PIPE_C:
3174                 cpt_enable_fdi_bc_bifurcation(dev);
3175
3176                 break;
3177         default:
3178                 BUG();
3179         }
3180 }
3181
3182 /*
3183  * Enable PCH resources required for PCH ports:
3184  *   - PCH PLLs
3185  *   - FDI training & RX/TX
3186  *   - update transcoder timings
3187  *   - DP transcoding bits
3188  *   - transcoder
3189  */
3190 static void ironlake_pch_enable(struct drm_crtc *crtc)
3191 {
3192         struct drm_device *dev = crtc->dev;
3193         struct drm_i915_private *dev_priv = dev->dev_private;
3194         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3195         int pipe = intel_crtc->pipe;
3196         u32 reg, temp;
3197
3198         assert_pch_transcoder_disabled(dev_priv, pipe);
3199
3200         if (IS_IVYBRIDGE(dev))
3201                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3202
3203         /* Write the TU size bits before fdi link training, so that error
3204          * detection works. */
3205         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3206                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3207
3208         /* For PCH output, training FDI link */
3209         dev_priv->display.fdi_link_train(crtc);
3210
3211         /* We need to program the right clock selection before writing the pixel
3212          * mutliplier into the DPLL. */
3213         if (HAS_PCH_CPT(dev)) {
3214                 u32 sel;
3215
3216                 temp = I915_READ(PCH_DPLL_SEL);
3217                 temp |= TRANS_DPLL_ENABLE(pipe);
3218                 sel = TRANS_DPLLB_SEL(pipe);
3219                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3220                         temp |= sel;
3221                 else
3222                         temp &= ~sel;
3223                 I915_WRITE(PCH_DPLL_SEL, temp);
3224         }
3225
3226         /* XXX: pch pll's can be enabled any time before we enable the PCH
3227          * transcoder, and we actually should do this to not upset any PCH
3228          * transcoder that already use the clock when we share it.
3229          *
3230          * Note that enable_shared_dpll tries to do the right thing, but
3231          * get_shared_dpll unconditionally resets the pll - we need that to have
3232          * the right LVDS enable sequence. */
3233         ironlake_enable_shared_dpll(intel_crtc);
3234
3235         /* set transcoder timing, panel must allow it */
3236         assert_panel_unlocked(dev_priv, pipe);
3237         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3238
3239         intel_fdi_normal_train(crtc);
3240
3241         /* For PCH DP, enable TRANS_DP_CTL */
3242         if (HAS_PCH_CPT(dev) &&
3243             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3244              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3245                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3246                 reg = TRANS_DP_CTL(pipe);
3247                 temp = I915_READ(reg);
3248                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3249                           TRANS_DP_SYNC_MASK |
3250                           TRANS_DP_BPC_MASK);
3251                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3252                          TRANS_DP_ENH_FRAMING);
3253                 temp |= bpc << 9; /* same format but at 11:9 */
3254
3255                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3256                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3257                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3258                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3259
3260                 switch (intel_trans_dp_port_sel(crtc)) {
3261                 case PCH_DP_B:
3262                         temp |= TRANS_DP_PORT_SEL_B;
3263                         break;
3264                 case PCH_DP_C:
3265                         temp |= TRANS_DP_PORT_SEL_C;
3266                         break;
3267                 case PCH_DP_D:
3268                         temp |= TRANS_DP_PORT_SEL_D;
3269                         break;
3270                 default:
3271                         BUG();
3272                 }
3273
3274                 I915_WRITE(reg, temp);
3275         }
3276
3277         ironlake_enable_pch_transcoder(dev_priv, pipe);
3278 }
3279
3280 static void lpt_pch_enable(struct drm_crtc *crtc)
3281 {
3282         struct drm_device *dev = crtc->dev;
3283         struct drm_i915_private *dev_priv = dev->dev_private;
3284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3286
3287         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3288
3289         lpt_program_iclkip(crtc);
3290
3291         /* Set transcoder timing. */
3292         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3293
3294         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3295 }
3296
3297 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3298 {
3299         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3300
3301         if (pll == NULL)
3302                 return;
3303
3304         if (pll->refcount == 0) {
3305                 WARN(1, "bad %s refcount\n", pll->name);
3306                 return;
3307         }
3308
3309         if (--pll->refcount == 0) {
3310                 WARN_ON(pll->on);
3311                 WARN_ON(pll->active);
3312         }
3313
3314         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3315 }
3316
3317 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3318 {
3319         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3320         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3321         enum intel_dpll_id i;
3322
3323         if (pll) {
3324                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3325                               crtc->base.base.id, pll->name);
3326                 intel_put_shared_dpll(crtc);
3327         }
3328
3329         if (HAS_PCH_IBX(dev_priv->dev)) {
3330                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3331                 i = (enum intel_dpll_id) crtc->pipe;
3332                 pll = &dev_priv->shared_dplls[i];
3333
3334                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3335                               crtc->base.base.id, pll->name);
3336
3337                 goto found;
3338         }
3339
3340         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3341                 pll = &dev_priv->shared_dplls[i];
3342
3343                 /* Only want to check enabled timings first */
3344                 if (pll->refcount == 0)
3345                         continue;
3346
3347                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3348                            sizeof(pll->hw_state)) == 0) {
3349                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3350                                       crtc->base.base.id,
3351                                       pll->name, pll->refcount, pll->active);
3352
3353                         goto found;
3354                 }
3355         }
3356
3357         /* Ok no matching timings, maybe there's a free one? */
3358         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3359                 pll = &dev_priv->shared_dplls[i];
3360                 if (pll->refcount == 0) {
3361                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3362                                       crtc->base.base.id, pll->name);
3363                         goto found;
3364                 }
3365         }
3366
3367         return NULL;
3368
3369 found:
3370         crtc->config.shared_dpll = i;
3371         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3372                          pipe_name(crtc->pipe));
3373
3374         if (pll->active == 0) {
3375                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3376                        sizeof(pll->hw_state));
3377
3378                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3379                 WARN_ON(pll->on);
3380                 assert_shared_dpll_disabled(dev_priv, pll);
3381
3382                 pll->mode_set(dev_priv, pll);
3383         }
3384         pll->refcount++;
3385
3386         return pll;
3387 }
3388
3389 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3390 {
3391         struct drm_i915_private *dev_priv = dev->dev_private;
3392         int dslreg = PIPEDSL(pipe);
3393         u32 temp;
3394
3395         temp = I915_READ(dslreg);
3396         udelay(500);
3397         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3398                 if (wait_for(I915_READ(dslreg) != temp, 5))
3399                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3400         }
3401 }
3402
3403 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3404 {
3405         struct drm_device *dev = crtc->base.dev;
3406         struct drm_i915_private *dev_priv = dev->dev_private;
3407         int pipe = crtc->pipe;
3408
3409         if (crtc->config.pch_pfit.enabled) {
3410                 /* Force use of hard-coded filter coefficients
3411                  * as some pre-programmed values are broken,
3412                  * e.g. x201.
3413                  */
3414                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3415                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3416                                                  PF_PIPE_SEL_IVB(pipe));
3417                 else
3418                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3419                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3420                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3421         }
3422 }
3423
3424 static void intel_enable_planes(struct drm_crtc *crtc)
3425 {
3426         struct drm_device *dev = crtc->dev;
3427         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3428         struct intel_plane *intel_plane;
3429
3430         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3431                 if (intel_plane->pipe == pipe)
3432                         intel_plane_restore(&intel_plane->base);
3433 }
3434
3435 static void intel_disable_planes(struct drm_crtc *crtc)
3436 {
3437         struct drm_device *dev = crtc->dev;
3438         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3439         struct intel_plane *intel_plane;
3440
3441         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3442                 if (intel_plane->pipe == pipe)
3443                         intel_plane_disable(&intel_plane->base);
3444 }
3445
3446 void hsw_enable_ips(struct intel_crtc *crtc)
3447 {
3448         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3449
3450         if (!crtc->config.ips_enabled)
3451                 return;
3452
3453         /* We can only enable IPS after we enable a plane and wait for a vblank.
3454          * We guarantee that the plane is enabled by calling intel_enable_ips
3455          * only after intel_enable_plane. And intel_enable_plane already waits
3456          * for a vblank, so all we need to do here is to enable the IPS bit. */
3457         assert_plane_enabled(dev_priv, crtc->plane);
3458         if (IS_BROADWELL(crtc->base.dev)) {
3459                 mutex_lock(&dev_priv->rps.hw_lock);
3460                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3461                 mutex_unlock(&dev_priv->rps.hw_lock);
3462                 /* Quoting Art Runyan: "its not safe to expect any particular
3463                  * value in IPS_CTL bit 31 after enabling IPS through the
3464                  * mailbox." Moreover, the mailbox may return a bogus state,
3465                  * so we need to just enable it and continue on.
3466                  */
3467         } else {
3468                 I915_WRITE(IPS_CTL, IPS_ENABLE);
3469                 /* The bit only becomes 1 in the next vblank, so this wait here
3470                  * is essentially intel_wait_for_vblank. If we don't have this
3471                  * and don't wait for vblanks until the end of crtc_enable, then
3472                  * the HW state readout code will complain that the expected
3473                  * IPS_CTL value is not the one we read. */
3474                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3475                         DRM_ERROR("Timed out waiting for IPS enable\n");
3476         }
3477 }
3478
3479 void hsw_disable_ips(struct intel_crtc *crtc)
3480 {
3481         struct drm_device *dev = crtc->base.dev;
3482         struct drm_i915_private *dev_priv = dev->dev_private;
3483
3484         if (!crtc->config.ips_enabled)
3485                 return;
3486
3487         assert_plane_enabled(dev_priv, crtc->plane);
3488         if (IS_BROADWELL(crtc->base.dev)) {
3489                 mutex_lock(&dev_priv->rps.hw_lock);
3490                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3491                 mutex_unlock(&dev_priv->rps.hw_lock);
3492         } else {
3493                 I915_WRITE(IPS_CTL, 0);
3494                 POSTING_READ(IPS_CTL);
3495         }
3496
3497         /* We need to wait for a vblank before we can disable the plane. */
3498         intel_wait_for_vblank(dev, crtc->pipe);
3499 }
3500
3501 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3502 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3503 {
3504         struct drm_device *dev = crtc->dev;
3505         struct drm_i915_private *dev_priv = dev->dev_private;
3506         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3507         enum pipe pipe = intel_crtc->pipe;
3508         int palreg = PALETTE(pipe);
3509         int i;
3510         bool reenable_ips = false;
3511
3512         /* The clocks have to be on to load the palette. */
3513         if (!crtc->enabled || !intel_crtc->active)
3514                 return;
3515
3516         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3517                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3518                         assert_dsi_pll_enabled(dev_priv);
3519                 else
3520                         assert_pll_enabled(dev_priv, pipe);
3521         }
3522
3523         /* use legacy palette for Ironlake */
3524         if (HAS_PCH_SPLIT(dev))
3525                 palreg = LGC_PALETTE(pipe);
3526
3527         /* Workaround : Do not read or write the pipe palette/gamma data while
3528          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3529          */
3530         if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3531             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3532              GAMMA_MODE_MODE_SPLIT)) {
3533                 hsw_disable_ips(intel_crtc);
3534                 reenable_ips = true;
3535         }
3536
3537         for (i = 0; i < 256; i++) {
3538                 I915_WRITE(palreg + 4 * i,
3539                            (intel_crtc->lut_r[i] << 16) |
3540                            (intel_crtc->lut_g[i] << 8) |
3541                            intel_crtc->lut_b[i]);
3542         }
3543
3544         if (reenable_ips)
3545                 hsw_enable_ips(intel_crtc);
3546 }
3547
3548 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3549 {
3550         struct drm_device *dev = crtc->dev;
3551         struct drm_i915_private *dev_priv = dev->dev_private;
3552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553         struct intel_encoder *encoder;
3554         int pipe = intel_crtc->pipe;
3555         int plane = intel_crtc->plane;
3556
3557         WARN_ON(!crtc->enabled);
3558
3559         if (intel_crtc->active)
3560                 return;
3561
3562         intel_crtc->active = true;
3563
3564         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3565         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3566
3567         for_each_encoder_on_crtc(dev, crtc, encoder)
3568                 if (encoder->pre_enable)
3569                         encoder->pre_enable(encoder);
3570
3571         if (intel_crtc->config.has_pch_encoder) {
3572                 /* Note: FDI PLL enabling _must_ be done before we enable the
3573                  * cpu pipes, hence this is separate from all the other fdi/pch
3574                  * enabling. */
3575                 ironlake_fdi_pll_enable(intel_crtc);
3576         } else {
3577                 assert_fdi_tx_disabled(dev_priv, pipe);
3578                 assert_fdi_rx_disabled(dev_priv, pipe);
3579         }
3580
3581         ironlake_pfit_enable(intel_crtc);
3582
3583         /*
3584          * On ILK+ LUT must be loaded before the pipe is running but with
3585          * clocks enabled
3586          */
3587         intel_crtc_load_lut(crtc);
3588
3589         intel_update_watermarks(crtc);
3590         intel_enable_pipe(dev_priv, pipe,
3591                           intel_crtc->config.has_pch_encoder, false);
3592         intel_enable_primary_plane(dev_priv, plane, pipe);
3593         intel_enable_planes(crtc);
3594         intel_crtc_update_cursor(crtc, true);
3595
3596         if (intel_crtc->config.has_pch_encoder)
3597                 ironlake_pch_enable(crtc);
3598
3599         mutex_lock(&dev->struct_mutex);
3600         intel_update_fbc(dev);
3601         mutex_unlock(&dev->struct_mutex);
3602
3603         for_each_encoder_on_crtc(dev, crtc, encoder)
3604                 encoder->enable(encoder);
3605
3606         if (HAS_PCH_CPT(dev))
3607                 cpt_verify_modeset(dev, intel_crtc->pipe);
3608
3609         /*
3610          * There seems to be a race in PCH platform hw (at least on some
3611          * outputs) where an enabled pipe still completes any pageflip right
3612          * away (as if the pipe is off) instead of waiting for vblank. As soon
3613          * as the first vblank happend, everything works as expected. Hence just
3614          * wait for one vblank before returning to avoid strange things
3615          * happening.
3616          */
3617         intel_wait_for_vblank(dev, intel_crtc->pipe);
3618 }
3619
3620 /* IPS only exists on ULT machines and is tied to pipe A. */
3621 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3622 {
3623         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3624 }
3625
3626 static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3627 {
3628         struct drm_device *dev = crtc->dev;
3629         struct drm_i915_private *dev_priv = dev->dev_private;
3630         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3631         int pipe = intel_crtc->pipe;
3632         int plane = intel_crtc->plane;
3633
3634         intel_enable_primary_plane(dev_priv, plane, pipe);
3635         intel_enable_planes(crtc);
3636         intel_crtc_update_cursor(crtc, true);
3637
3638         hsw_enable_ips(intel_crtc);
3639
3640         mutex_lock(&dev->struct_mutex);
3641         intel_update_fbc(dev);
3642         mutex_unlock(&dev->struct_mutex);
3643 }
3644
3645 static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3646 {
3647         struct drm_device *dev = crtc->dev;
3648         struct drm_i915_private *dev_priv = dev->dev_private;
3649         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650         int pipe = intel_crtc->pipe;
3651         int plane = intel_crtc->plane;
3652
3653         intel_crtc_wait_for_pending_flips(crtc);
3654         drm_vblank_off(dev, pipe);
3655
3656         /* FBC must be disabled before disabling the plane on HSW. */
3657         if (dev_priv->fbc.plane == plane)
3658                 intel_disable_fbc(dev);
3659
3660         hsw_disable_ips(intel_crtc);
3661
3662         intel_crtc_update_cursor(crtc, false);
3663         intel_disable_planes(crtc);
3664         intel_disable_primary_plane(dev_priv, plane, pipe);
3665 }
3666
3667 /*
3668  * This implements the workaround described in the "notes" section of the mode
3669  * set sequence documentation. When going from no pipes or single pipe to
3670  * multiple pipes, and planes are enabled after the pipe, we need to wait at
3671  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3672  */
3673 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3674 {
3675         struct drm_device *dev = crtc->base.dev;
3676         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3677
3678         /* We want to get the other_active_crtc only if there's only 1 other
3679          * active crtc. */
3680         list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3681                 if (!crtc_it->active || crtc_it == crtc)
3682                         continue;
3683
3684                 if (other_active_crtc)
3685                         return;
3686
3687                 other_active_crtc = crtc_it;
3688         }
3689         if (!other_active_crtc)
3690                 return;
3691
3692         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3693         intel_wait_for_vblank(dev, other_active_crtc->pipe);
3694 }
3695
3696 static void haswell_crtc_enable(struct drm_crtc *crtc)
3697 {
3698         struct drm_device *dev = crtc->dev;
3699         struct drm_i915_private *dev_priv = dev->dev_private;
3700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3701         struct intel_encoder *encoder;
3702         int pipe = intel_crtc->pipe;
3703
3704         WARN_ON(!crtc->enabled);
3705
3706         if (intel_crtc->active)
3707                 return;
3708
3709         intel_crtc->active = true;
3710
3711         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3712         if (intel_crtc->config.has_pch_encoder)
3713                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3714
3715         if (intel_crtc->config.has_pch_encoder)
3716                 dev_priv->display.fdi_link_train(crtc);
3717
3718         for_each_encoder_on_crtc(dev, crtc, encoder)
3719                 if (encoder->pre_enable)
3720                         encoder->pre_enable(encoder);
3721
3722         intel_ddi_enable_pipe_clock(intel_crtc);
3723
3724         ironlake_pfit_enable(intel_crtc);
3725
3726         /*
3727          * On ILK+ LUT must be loaded before the pipe is running but with
3728          * clocks enabled
3729          */
3730         intel_crtc_load_lut(crtc);
3731
3732         intel_ddi_set_pipe_settings(crtc);
3733         intel_ddi_enable_transcoder_func(crtc);
3734
3735         intel_update_watermarks(crtc);
3736         intel_enable_pipe(dev_priv, pipe,
3737                           intel_crtc->config.has_pch_encoder, false);
3738
3739         if (intel_crtc->config.has_pch_encoder)
3740                 lpt_pch_enable(crtc);
3741
3742         for_each_encoder_on_crtc(dev, crtc, encoder) {
3743                 encoder->enable(encoder);
3744                 intel_opregion_notify_encoder(encoder, true);
3745         }
3746
3747         /* If we change the relative order between pipe/planes enabling, we need
3748          * to change the workaround. */
3749         haswell_mode_set_planes_workaround(intel_crtc);
3750         haswell_crtc_enable_planes(crtc);
3751
3752         /*
3753          * There seems to be a race in PCH platform hw (at least on some
3754          * outputs) where an enabled pipe still completes any pageflip right
3755          * away (as if the pipe is off) instead of waiting for vblank. As soon
3756          * as the first vblank happend, everything works as expected. Hence just
3757          * wait for one vblank before returning to avoid strange things
3758          * happening.
3759          */
3760         intel_wait_for_vblank(dev, intel_crtc->pipe);
3761 }
3762
3763 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3764 {
3765         struct drm_device *dev = crtc->base.dev;
3766         struct drm_i915_private *dev_priv = dev->dev_private;
3767         int pipe = crtc->pipe;
3768
3769         /* To avoid upsetting the power well on haswell only disable the pfit if
3770          * it's in use. The hw state code will make sure we get this right. */
3771         if (crtc->config.pch_pfit.enabled) {
3772                 I915_WRITE(PF_CTL(pipe), 0);
3773                 I915_WRITE(PF_WIN_POS(pipe), 0);
3774                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3775         }
3776 }
3777
3778 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3779 {
3780         struct drm_device *dev = crtc->dev;
3781         struct drm_i915_private *dev_priv = dev->dev_private;
3782         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3783         struct intel_encoder *encoder;
3784         int pipe = intel_crtc->pipe;
3785         int plane = intel_crtc->plane;
3786         u32 reg, temp;
3787
3788
3789         if (!intel_crtc->active)
3790                 return;
3791
3792         for_each_encoder_on_crtc(dev, crtc, encoder)
3793                 encoder->disable(encoder);
3794
3795         intel_crtc_wait_for_pending_flips(crtc);
3796         drm_vblank_off(dev, pipe);
3797
3798         if (dev_priv->fbc.plane == plane)
3799                 intel_disable_fbc(dev);
3800
3801         intel_crtc_update_cursor(crtc, false);
3802         intel_disable_planes(crtc);
3803         intel_disable_primary_plane(dev_priv, plane, pipe);
3804
3805         if (intel_crtc->config.has_pch_encoder)
3806                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3807
3808         intel_disable_pipe(dev_priv, pipe);
3809
3810         ironlake_pfit_disable(intel_crtc);
3811
3812         for_each_encoder_on_crtc(dev, crtc, encoder)
3813                 if (encoder->post_disable)
3814                         encoder->post_disable(encoder);
3815
3816         if (intel_crtc->config.has_pch_encoder) {
3817                 ironlake_fdi_disable(crtc);
3818
3819                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3820                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3821
3822                 if (HAS_PCH_CPT(dev)) {
3823                         /* disable TRANS_DP_CTL */
3824                         reg = TRANS_DP_CTL(pipe);
3825                         temp = I915_READ(reg);
3826                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3827                                   TRANS_DP_PORT_SEL_MASK);
3828                         temp |= TRANS_DP_PORT_SEL_NONE;
3829                         I915_WRITE(reg, temp);
3830
3831                         /* disable DPLL_SEL */
3832                         temp = I915_READ(PCH_DPLL_SEL);
3833                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3834                         I915_WRITE(PCH_DPLL_SEL, temp);
3835                 }
3836
3837                 /* disable PCH DPLL */
3838                 intel_disable_shared_dpll(intel_crtc);
3839
3840                 ironlake_fdi_pll_disable(intel_crtc);
3841         }
3842
3843         intel_crtc->active = false;
3844         intel_update_watermarks(crtc);
3845
3846         mutex_lock(&dev->struct_mutex);
3847         intel_update_fbc(dev);
3848         mutex_unlock(&dev->struct_mutex);
3849 }
3850
3851 static void haswell_crtc_disable(struct drm_crtc *crtc)
3852 {
3853         struct drm_device *dev = crtc->dev;
3854         struct drm_i915_private *dev_priv = dev->dev_private;
3855         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3856         struct intel_encoder *encoder;
3857         int pipe = intel_crtc->pipe;
3858         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3859
3860         if (!intel_crtc->active)
3861                 return;
3862
3863         haswell_crtc_disable_planes(crtc);
3864
3865         for_each_encoder_on_crtc(dev, crtc, encoder) {
3866                 intel_opregion_notify_encoder(encoder, false);
3867                 encoder->disable(encoder);
3868         }
3869
3870         if (intel_crtc->config.has_pch_encoder)
3871                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3872         intel_disable_pipe(dev_priv, pipe);
3873
3874         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3875
3876         ironlake_pfit_disable(intel_crtc);
3877
3878         intel_ddi_disable_pipe_clock(intel_crtc);
3879
3880         for_each_encoder_on_crtc(dev, crtc, encoder)
3881                 if (encoder->post_disable)
3882                         encoder->post_disable(encoder);
3883
3884         if (intel_crtc->config.has_pch_encoder) {
3885                 lpt_disable_pch_transcoder(dev_priv);
3886                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3887                 intel_ddi_fdi_disable(crtc);
3888         }
3889
3890         intel_crtc->active = false;
3891         intel_update_watermarks(crtc);
3892
3893         mutex_lock(&dev->struct_mutex);
3894         intel_update_fbc(dev);
3895         mutex_unlock(&dev->struct_mutex);
3896 }
3897
3898 static void ironlake_crtc_off(struct drm_crtc *crtc)
3899 {
3900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3901         intel_put_shared_dpll(intel_crtc);
3902 }
3903
3904 static void haswell_crtc_off(struct drm_crtc *crtc)
3905 {
3906         intel_ddi_put_crtc_pll(crtc);
3907 }
3908
3909 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3910 {
3911         if (!enable && intel_crtc->overlay) {
3912                 struct drm_device *dev = intel_crtc->base.dev;
3913                 struct drm_i915_private *dev_priv = dev->dev_private;
3914
3915                 mutex_lock(&dev->struct_mutex);
3916                 dev_priv->mm.interruptible = false;
3917                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3918                 dev_priv->mm.interruptible = true;
3919                 mutex_unlock(&dev->struct_mutex);
3920         }
3921
3922         /* Let userspace switch the overlay on again. In most cases userspace
3923          * has to recompute where to put it anyway.
3924          */
3925 }
3926
3927 /**
3928  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3929  * cursor plane briefly if not already running after enabling the display
3930  * plane.
3931  * This workaround avoids occasional blank screens when self refresh is
3932  * enabled.
3933  */
3934 static void
3935 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3936 {
3937         u32 cntl = I915_READ(CURCNTR(pipe));
3938
3939         if ((cntl & CURSOR_MODE) == 0) {
3940                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3941
3942                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3943                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3944                 intel_wait_for_vblank(dev_priv->dev, pipe);
3945                 I915_WRITE(CURCNTR(pipe), cntl);
3946                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3947                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3948         }
3949 }
3950
3951 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3952 {
3953         struct drm_device *dev = crtc->base.dev;
3954         struct drm_i915_private *dev_priv = dev->dev_private;
3955         struct intel_crtc_config *pipe_config = &crtc->config;
3956
3957         if (!crtc->config.gmch_pfit.control)
3958                 return;
3959
3960         /*
3961          * The panel fitter should only be adjusted whilst the pipe is disabled,
3962          * according to register description and PRM.
3963          */
3964         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3965         assert_pipe_disabled(dev_priv, crtc->pipe);
3966
3967         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3968         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3969
3970         /* Border color in case we don't scale up to the full screen. Black by
3971          * default, change to something else for debugging. */
3972         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3973 }
3974
3975 int valleyview_get_vco(struct drm_i915_private *dev_priv)
3976 {
3977         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3978
3979         /* Obtain SKU information */
3980         mutex_lock(&dev_priv->dpio_lock);
3981         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3982                 CCK_FUSE_HPLL_FREQ_MASK;
3983         mutex_unlock(&dev_priv->dpio_lock);
3984
3985         return vco_freq[hpll_freq];
3986 }
3987
3988 /* Adjust CDclk dividers to allow high res or save power if possible */
3989 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3990 {
3991         struct drm_i915_private *dev_priv = dev->dev_private;
3992         u32 val, cmd;
3993
3994         if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3995                 cmd = 2;
3996         else if (cdclk == 266)
3997                 cmd = 1;
3998         else
3999                 cmd = 0;
4000
4001         mutex_lock(&dev_priv->rps.hw_lock);
4002         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4003         val &= ~DSPFREQGUAR_MASK;
4004         val |= (cmd << DSPFREQGUAR_SHIFT);
4005         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4006         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4007                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4008                      50)) {
4009                 DRM_ERROR("timed out waiting for CDclk change\n");
4010         }
4011         mutex_unlock(&dev_priv->rps.hw_lock);
4012
4013         if (cdclk == 400) {
4014                 u32 divider, vco;
4015
4016                 vco = valleyview_get_vco(dev_priv);
4017                 divider = ((vco << 1) / cdclk) - 1;
4018
4019                 mutex_lock(&dev_priv->dpio_lock);
4020                 /* adjust cdclk divider */
4021                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4022                 val &= ~0xf;
4023                 val |= divider;
4024                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4025                 mutex_unlock(&dev_priv->dpio_lock);
4026         }
4027
4028         mutex_lock(&dev_priv->dpio_lock);
4029         /* adjust self-refresh exit latency value */
4030         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4031         val &= ~0x7f;
4032
4033         /*
4034          * For high bandwidth configs, we set a higher latency in the bunit
4035          * so that the core display fetch happens in time to avoid underruns.
4036          */
4037         if (cdclk == 400)
4038                 val |= 4500 / 250; /* 4.5 usec */
4039         else
4040                 val |= 3000 / 250; /* 3.0 usec */
4041         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4042         mutex_unlock(&dev_priv->dpio_lock);
4043
4044         /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4045         intel_i2c_reset(dev);
4046 }
4047
4048 static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4049 {
4050         int cur_cdclk, vco;
4051         int divider;
4052
4053         vco = valleyview_get_vco(dev_priv);
4054
4055         mutex_lock(&dev_priv->dpio_lock);
4056         divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4057         mutex_unlock(&dev_priv->dpio_lock);
4058
4059         divider &= 0xf;
4060
4061         cur_cdclk = (vco << 1) / (divider + 1);
4062
4063         return cur_cdclk;
4064 }
4065
4066 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4067                                  int max_pixclk)
4068 {
4069         int cur_cdclk;
4070
4071         cur_cdclk = valleyview_cur_cdclk(dev_priv);
4072
4073         /*
4074          * Really only a few cases to deal with, as only 4 CDclks are supported:
4075          *   200MHz
4076          *   267MHz
4077          *   320MHz
4078          *   400MHz
4079          * So we check to see whether we're above 90% of the lower bin and
4080          * adjust if needed.
4081          */
4082         if (max_pixclk > 288000) {
4083                 return 400;
4084         } else if (max_pixclk > 240000) {
4085                 return 320;
4086         } else
4087                 return 266;
4088         /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4089 }
4090
4091 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4092                                  unsigned modeset_pipes,
4093                                  struct intel_crtc_config *pipe_config)
4094 {
4095         struct drm_device *dev = dev_priv->dev;
4096         struct intel_crtc *intel_crtc;
4097         int max_pixclk = 0;
4098
4099         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4100                             base.head) {
4101                 if (modeset_pipes & (1 << intel_crtc->pipe))
4102                         max_pixclk = max(max_pixclk,
4103                                          pipe_config->adjusted_mode.crtc_clock);
4104                 else if (intel_crtc->base.enabled)
4105                         max_pixclk = max(max_pixclk,
4106                                          intel_crtc->config.adjusted_mode.crtc_clock);
4107         }
4108
4109         return max_pixclk;
4110 }
4111
4112 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4113                                             unsigned *prepare_pipes,
4114                                             unsigned modeset_pipes,
4115                                             struct intel_crtc_config *pipe_config)
4116 {
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         struct intel_crtc *intel_crtc;
4119         int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4120                                                pipe_config);
4121         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4122
4123         if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4124                 return;
4125
4126         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4127                             base.head)
4128                 if (intel_crtc->base.enabled)
4129                         *prepare_pipes |= (1 << intel_crtc->pipe);
4130 }
4131
4132 static void valleyview_modeset_global_resources(struct drm_device *dev)
4133 {
4134         struct drm_i915_private *dev_priv = dev->dev_private;
4135         int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4136         int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4137         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4138
4139         if (req_cdclk != cur_cdclk)
4140                 valleyview_set_cdclk(dev, req_cdclk);
4141 }
4142
4143 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4144 {
4145         struct drm_device *dev = crtc->dev;
4146         struct drm_i915_private *dev_priv = dev->dev_private;
4147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4148         struct intel_encoder *encoder;
4149         int pipe = intel_crtc->pipe;
4150         int plane = intel_crtc->plane;
4151         bool is_dsi;
4152
4153         WARN_ON(!crtc->enabled);
4154
4155         if (intel_crtc->active)
4156                 return;
4157
4158         intel_crtc->active = true;
4159
4160         for_each_encoder_on_crtc(dev, crtc, encoder)
4161                 if (encoder->pre_pll_enable)
4162                         encoder->pre_pll_enable(encoder);
4163
4164         is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4165
4166         if (!is_dsi)
4167                 vlv_enable_pll(intel_crtc);
4168
4169         for_each_encoder_on_crtc(dev, crtc, encoder)
4170                 if (encoder->pre_enable)
4171                         encoder->pre_enable(encoder);
4172
4173         i9xx_pfit_enable(intel_crtc);
4174
4175         intel_crtc_load_lut(crtc);
4176
4177         intel_update_watermarks(crtc);
4178         intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4179         intel_enable_primary_plane(dev_priv, plane, pipe);
4180         intel_enable_planes(crtc);
4181         intel_crtc_update_cursor(crtc, true);
4182
4183         intel_update_fbc(dev);
4184
4185         for_each_encoder_on_crtc(dev, crtc, encoder)
4186                 encoder->enable(encoder);
4187 }
4188
4189 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4190 {
4191         struct drm_device *dev = crtc->dev;
4192         struct drm_i915_private *dev_priv = dev->dev_private;
4193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194         struct intel_encoder *encoder;
4195         int pipe = intel_crtc->pipe;
4196         int plane = intel_crtc->plane;
4197
4198         WARN_ON(!crtc->enabled);
4199
4200         if (intel_crtc->active)
4201                 return;
4202
4203         intel_crtc->active = true;
4204
4205         for_each_encoder_on_crtc(dev, crtc, encoder)
4206                 if (encoder->pre_enable)
4207                         encoder->pre_enable(encoder);
4208
4209         i9xx_enable_pll(intel_crtc);
4210
4211         i9xx_pfit_enable(intel_crtc);
4212
4213         intel_crtc_load_lut(crtc);
4214
4215         intel_update_watermarks(crtc);
4216         intel_enable_pipe(dev_priv, pipe, false, false);
4217         intel_enable_primary_plane(dev_priv, plane, pipe);
4218         intel_enable_planes(crtc);
4219         /* The fixup needs to happen before cursor is enabled */
4220         if (IS_G4X(dev))
4221                 g4x_fixup_plane(dev_priv, pipe);
4222         intel_crtc_update_cursor(crtc, true);
4223
4224         /* Give the overlay scaler a chance to enable if it's on this pipe */
4225         intel_crtc_dpms_overlay(intel_crtc, true);
4226
4227         intel_update_fbc(dev);
4228
4229         for_each_encoder_on_crtc(dev, crtc, encoder)
4230                 encoder->enable(encoder);
4231 }
4232
4233 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4234 {
4235         struct drm_device *dev = crtc->base.dev;
4236         struct drm_i915_private *dev_priv = dev->dev_private;
4237
4238         if (!crtc->config.gmch_pfit.control)
4239                 return;
4240
4241         assert_pipe_disabled(dev_priv, crtc->pipe);
4242
4243         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4244                          I915_READ(PFIT_CONTROL));
4245         I915_WRITE(PFIT_CONTROL, 0);
4246 }
4247
4248 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4249 {
4250         struct drm_device *dev = crtc->dev;
4251         struct drm_i915_private *dev_priv = dev->dev_private;
4252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4253         struct intel_encoder *encoder;
4254         int pipe = intel_crtc->pipe;
4255         int plane = intel_crtc->plane;
4256
4257         if (!intel_crtc->active)
4258                 return;
4259
4260         for_each_encoder_on_crtc(dev, crtc, encoder)
4261                 encoder->disable(encoder);
4262
4263         /* Give the overlay scaler a chance to disable if it's on this pipe */
4264         intel_crtc_wait_for_pending_flips(crtc);
4265         drm_vblank_off(dev, pipe);
4266
4267         if (dev_priv->fbc.plane == plane)
4268                 intel_disable_fbc(dev);
4269
4270         intel_crtc_dpms_overlay(intel_crtc, false);
4271         intel_crtc_update_cursor(crtc, false);
4272         intel_disable_planes(crtc);
4273         intel_disable_primary_plane(dev_priv, plane, pipe);
4274
4275         intel_disable_pipe(dev_priv, pipe);
4276
4277         i9xx_pfit_disable(intel_crtc);
4278
4279         for_each_encoder_on_crtc(dev, crtc, encoder)
4280                 if (encoder->post_disable)
4281                         encoder->post_disable(encoder);
4282
4283         if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4284                 vlv_disable_pll(dev_priv, pipe);
4285         else if (!IS_VALLEYVIEW(dev))
4286                 i9xx_disable_pll(dev_priv, pipe);
4287
4288         intel_crtc->active = false;
4289         intel_update_watermarks(crtc);
4290
4291         intel_update_fbc(dev);
4292 }
4293
4294 static void i9xx_crtc_off(struct drm_crtc *crtc)
4295 {
4296 }
4297
4298 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4299                                     bool enabled)
4300 {
4301         struct drm_device *dev = crtc->dev;
4302         struct drm_i915_master_private *master_priv;
4303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4304         int pipe = intel_crtc->pipe;
4305
4306         if (!dev->primary->master)
4307                 return;
4308
4309         master_priv = dev->primary->master->driver_priv;
4310         if (!master_priv->sarea_priv)
4311                 return;
4312
4313         switch (pipe) {
4314         case 0:
4315                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4316                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4317                 break;
4318         case 1:
4319                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4320                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4321                 break;
4322         default:
4323                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4324                 break;
4325         }
4326 }
4327
4328 /**
4329  * Sets the power management mode of the pipe and plane.
4330  */
4331 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4332 {
4333         struct drm_device *dev = crtc->dev;
4334         struct drm_i915_private *dev_priv = dev->dev_private;
4335         struct intel_encoder *intel_encoder;
4336         bool enable = false;
4337
4338         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4339                 enable |= intel_encoder->connectors_active;
4340
4341         if (enable)
4342                 dev_priv->display.crtc_enable(crtc);
4343         else
4344                 dev_priv->display.crtc_disable(crtc);
4345
4346         intel_crtc_update_sarea(crtc, enable);
4347 }
4348
4349 static void intel_crtc_disable(struct drm_crtc *crtc)
4350 {
4351         struct drm_device *dev = crtc->dev;
4352         struct drm_connector *connector;
4353         struct drm_i915_private *dev_priv = dev->dev_private;
4354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4355
4356         /* crtc should still be enabled when we disable it. */
4357         WARN_ON(!crtc->enabled);
4358
4359         dev_priv->display.crtc_disable(crtc);
4360         intel_crtc->eld_vld = false;
4361         intel_crtc_update_sarea(crtc, false);
4362         dev_priv->display.off(crtc);
4363
4364         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4365         assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4366         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4367
4368         if (crtc->fb) {
4369                 mutex_lock(&dev->struct_mutex);
4370                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4371                 mutex_unlock(&dev->struct_mutex);
4372                 crtc->fb = NULL;
4373         }
4374
4375         /* Update computed state. */
4376         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4377                 if (!connector->encoder || !connector->encoder->crtc)
4378                         continue;
4379
4380                 if (connector->encoder->crtc != crtc)
4381                         continue;
4382
4383                 connector->dpms = DRM_MODE_DPMS_OFF;
4384                 to_intel_encoder(connector->encoder)->connectors_active = false;
4385         }
4386 }
4387
4388 void intel_encoder_destroy(struct drm_encoder *encoder)
4389 {
4390         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4391
4392         drm_encoder_cleanup(encoder);
4393         kfree(intel_encoder);
4394 }
4395
4396 /* Simple dpms helper for encoders with just one connector, no cloning and only
4397  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4398  * state of the entire output pipe. */
4399 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4400 {
4401         if (mode == DRM_MODE_DPMS_ON) {
4402                 encoder->connectors_active = true;
4403
4404                 intel_crtc_update_dpms(encoder->base.crtc);
4405         } else {
4406                 encoder->connectors_active = false;
4407
4408                 intel_crtc_update_dpms(encoder->base.crtc);
4409         }
4410 }
4411
4412 /* Cross check the actual hw state with our own modeset state tracking (and it's
4413  * internal consistency). */
4414 static void intel_connector_check_state(struct intel_connector *connector)
4415 {
4416         if (connector->get_hw_state(connector)) {
4417                 struct intel_encoder *encoder = connector->encoder;
4418                 struct drm_crtc *crtc;
4419                 bool encoder_enabled;
4420                 enum pipe pipe;
4421
4422                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4423                               connector->base.base.id,
4424                               drm_get_connector_name(&connector->base));
4425
4426                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4427                      "wrong connector dpms state\n");
4428                 WARN(connector->base.encoder != &encoder->base,
4429                      "active connector not linked to encoder\n");
4430                 WARN(!encoder->connectors_active,
4431                      "encoder->connectors_active not set\n");
4432
4433                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4434                 WARN(!encoder_enabled, "encoder not enabled\n");
4435                 if (WARN_ON(!encoder->base.crtc))
4436                         return;
4437
4438                 crtc = encoder->base.crtc;
4439
4440                 WARN(!crtc->enabled, "crtc not enabled\n");
4441                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4442                 WARN(pipe != to_intel_crtc(crtc)->pipe,
4443                      "encoder active on the wrong pipe\n");
4444         }
4445 }
4446
4447 /* Even simpler default implementation, if there's really no special case to
4448  * consider. */
4449 void intel_connector_dpms(struct drm_connector *connector, int mode)
4450 {
4451         /* All the simple cases only support two dpms states. */
4452         if (mode != DRM_MODE_DPMS_ON)
4453                 mode = DRM_MODE_DPMS_OFF;
4454
4455         if (mode == connector->dpms)
4456                 return;
4457
4458         connector->dpms = mode;
4459
4460         /* Only need to change hw state when actually enabled */
4461         if (connector->encoder)
4462                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4463
4464         intel_modeset_check_state(connector->dev);
4465 }
4466
4467 /* Simple connector->get_hw_state implementation for encoders that support only
4468  * one connector and no cloning and hence the encoder state determines the state
4469  * of the connector. */
4470 bool intel_connector_get_hw_state(struct intel_connector *connector)
4471 {
4472         enum pipe pipe = 0;
4473         struct intel_encoder *encoder = connector->encoder;
4474
4475         return encoder->get_hw_state(encoder, &pipe);
4476 }
4477
4478 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4479                                      struct intel_crtc_config *pipe_config)
4480 {
4481         struct drm_i915_private *dev_priv = dev->dev_private;
4482         struct intel_crtc *pipe_B_crtc =
4483                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4484
4485         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4486                       pipe_name(pipe), pipe_config->fdi_lanes);
4487         if (pipe_config->fdi_lanes > 4) {
4488                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4489                               pipe_name(pipe), pipe_config->fdi_lanes);
4490                 return false;
4491         }
4492
4493         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4494                 if (pipe_config->fdi_lanes > 2) {
4495                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4496                                       pipe_config->fdi_lanes);
4497                         return false;
4498                 } else {
4499                         return true;
4500                 }
4501         }
4502
4503         if (INTEL_INFO(dev)->num_pipes == 2)
4504                 return true;
4505
4506         /* Ivybridge 3 pipe is really complicated */
4507         switch (pipe) {
4508         case PIPE_A:
4509                 return true;
4510         case PIPE_B:
4511                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4512                     pipe_config->fdi_lanes > 2) {
4513                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4514                                       pipe_name(pipe), pipe_config->fdi_lanes);
4515                         return false;
4516                 }
4517                 return true;
4518         case PIPE_C:
4519                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4520                     pipe_B_crtc->config.fdi_lanes <= 2) {
4521                         if (pipe_config->fdi_lanes > 2) {
4522                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4523                                               pipe_name(pipe), pipe_config->fdi_lanes);
4524                                 return false;
4525                         }
4526                 } else {
4527                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4528                         return false;
4529                 }
4530                 return true;
4531         default:
4532                 BUG();
4533         }
4534 }
4535
4536 #define RETRY 1
4537 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4538                                        struct intel_crtc_config *pipe_config)
4539 {
4540         struct drm_device *dev = intel_crtc->base.dev;
4541         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4542         int lane, link_bw, fdi_dotclock;
4543         bool setup_ok, needs_recompute = false;
4544
4545 retry:
4546         /* FDI is a binary signal running at ~2.7GHz, encoding
4547          * each output octet as 10 bits. The actual frequency
4548          * is stored as a divider into a 100MHz clock, and the
4549          * mode pixel clock is stored in units of 1KHz.
4550          * Hence the bw of each lane in terms of the mode signal
4551          * is:
4552          */
4553         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4554
4555         fdi_dotclock = adjusted_mode->crtc_clock;
4556
4557         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4558                                            pipe_config->pipe_bpp);
4559
4560         pipe_config->fdi_lanes = lane;
4561
4562         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4563                                link_bw, &pipe_config->fdi_m_n);
4564
4565         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4566                                             intel_crtc->pipe, pipe_config);
4567         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4568                 pipe_config->pipe_bpp -= 2*3;
4569                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4570                               pipe_config->pipe_bpp);
4571                 needs_recompute = true;
4572                 pipe_config->bw_constrained = true;
4573
4574                 goto retry;
4575         }
4576
4577         if (needs_recompute)
4578                 return RETRY;
4579
4580         return setup_ok ? 0 : -EINVAL;
4581 }
4582
4583 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4584                                    struct intel_crtc_config *pipe_config)
4585 {
4586         pipe_config->ips_enabled = i915_enable_ips &&
4587                                    hsw_crtc_supports_ips(crtc) &&
4588                                    pipe_config->pipe_bpp <= 24;
4589 }
4590
4591 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4592                                      struct intel_crtc_config *pipe_config)
4593 {
4594         struct drm_device *dev = crtc->base.dev;
4595         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4596
4597         /* FIXME should check pixel clock limits on all platforms */
4598         if (INTEL_INFO(dev)->gen < 4) {
4599                 struct drm_i915_private *dev_priv = dev->dev_private;
4600                 int clock_limit =
4601                         dev_priv->display.get_display_clock_speed(dev);
4602
4603                 /*
4604                  * Enable pixel doubling when the dot clock
4605                  * is > 90% of the (display) core speed.
4606                  *
4607                  * GDG double wide on either pipe,
4608                  * otherwise pipe A only.
4609                  */
4610                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4611                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4612                         clock_limit *= 2;
4613                         pipe_config->double_wide = true;
4614                 }
4615
4616                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4617                         return -EINVAL;
4618         }
4619
4620         /*
4621          * Pipe horizontal size must be even in:
4622          * - DVO ganged mode
4623          * - LVDS dual channel mode
4624          * - Double wide pipe
4625          */
4626         if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4627              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4628                 pipe_config->pipe_src_w &= ~1;
4629
4630         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4631          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4632          */
4633         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4634                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4635                 return -EINVAL;
4636
4637         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4638                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4639         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4640                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4641                  * for lvds. */
4642                 pipe_config->pipe_bpp = 8*3;
4643         }
4644
4645         if (HAS_IPS(dev))
4646                 hsw_compute_ips_config(crtc, pipe_config);
4647
4648         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4649          * clock survives for now. */
4650         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4651                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4652
4653         if (pipe_config->has_pch_encoder)
4654                 return ironlake_fdi_compute_config(crtc, pipe_config);
4655
4656         return 0;
4657 }
4658
4659 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4660 {
4661         return 400000; /* FIXME */
4662 }
4663
4664 static int i945_get_display_clock_speed(struct drm_device *dev)
4665 {
4666         return 400000;
4667 }
4668
4669 static int i915_get_display_clock_speed(struct drm_device *dev)
4670 {
4671         return 333000;
4672 }
4673
4674 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4675 {
4676         return 200000;
4677 }
4678
4679 static int pnv_get_display_clock_speed(struct drm_device *dev)
4680 {
4681         u16 gcfgc = 0;
4682
4683         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4684
4685         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4686         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4687                 return 267000;
4688         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4689                 return 333000;
4690         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4691                 return 444000;
4692         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4693                 return 200000;
4694         default:
4695                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4696         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4697                 return 133000;
4698         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4699                 return 167000;
4700         }
4701 }
4702
4703 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4704 {
4705         u16 gcfgc = 0;
4706
4707         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4708
4709         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4710                 return 133000;
4711         else {
4712                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4713                 case GC_DISPLAY_CLOCK_333_MHZ:
4714                         return 333000;
4715                 default:
4716                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4717                         return 190000;
4718                 }
4719         }
4720 }
4721
4722 static int i865_get_display_clock_speed(struct drm_device *dev)
4723 {
4724         return 266000;
4725 }
4726
4727 static int i855_get_display_clock_speed(struct drm_device *dev)
4728 {
4729         u16 hpllcc = 0;
4730         /* Assume that the hardware is in the high speed state.  This
4731          * should be the default.
4732          */
4733         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4734         case GC_CLOCK_133_200:
4735         case GC_CLOCK_100_200:
4736                 return 200000;
4737         case GC_CLOCK_166_250:
4738                 return 250000;
4739         case GC_CLOCK_100_133:
4740                 return 133000;
4741         }
4742
4743         /* Shouldn't happen */
4744         return 0;
4745 }
4746
4747 static int i830_get_display_clock_speed(struct drm_device *dev)
4748 {
4749         return 133000;
4750 }
4751
4752 static void
4753 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4754 {
4755         while (*num > DATA_LINK_M_N_MASK ||
4756                *den > DATA_LINK_M_N_MASK) {
4757                 *num >>= 1;
4758                 *den >>= 1;
4759         }
4760 }
4761
4762 static void compute_m_n(unsigned int m, unsigned int n,
4763                         uint32_t *ret_m, uint32_t *ret_n)
4764 {
4765         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4766         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4767         intel_reduce_m_n_ratio(ret_m, ret_n);
4768 }
4769
4770 void
4771 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4772                        int pixel_clock, int link_clock,
4773                        struct intel_link_m_n *m_n)
4774 {
4775         m_n->tu = 64;
4776
4777         compute_m_n(bits_per_pixel * pixel_clock,
4778                     link_clock * nlanes * 8,
4779                     &m_n->gmch_m, &m_n->gmch_n);
4780
4781         compute_m_n(pixel_clock, link_clock,
4782                     &m_n->link_m, &m_n->link_n);
4783 }
4784
4785 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4786 {
4787         if (i915_panel_use_ssc >= 0)
4788                 return i915_panel_use_ssc != 0;
4789         return dev_priv->vbt.lvds_use_ssc
4790                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4791 }
4792
4793 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4794 {
4795         struct drm_device *dev = crtc->dev;
4796         struct drm_i915_private *dev_priv = dev->dev_private;
4797         int refclk;
4798
4799         if (IS_VALLEYVIEW(dev)) {
4800                 refclk = 100000;
4801         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4802             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4803                 refclk = dev_priv->vbt.lvds_ssc_freq;
4804                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
4805         } else if (!IS_GEN2(dev)) {
4806                 refclk = 96000;
4807         } else {
4808                 refclk = 48000;
4809         }
4810
4811         return refclk;
4812 }
4813
4814 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4815 {
4816         return (1 << dpll->n) << 16 | dpll->m2;
4817 }
4818
4819 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4820 {
4821         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4822 }
4823
4824 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4825                                      intel_clock_t *reduced_clock)
4826 {
4827         struct drm_device *dev = crtc->base.dev;
4828         struct drm_i915_private *dev_priv = dev->dev_private;
4829         int pipe = crtc->pipe;
4830         u32 fp, fp2 = 0;
4831
4832         if (IS_PINEVIEW(dev)) {
4833                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4834                 if (reduced_clock)
4835                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4836         } else {
4837                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4838                 if (reduced_clock)
4839                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4840         }
4841
4842         I915_WRITE(FP0(pipe), fp);
4843         crtc->config.dpll_hw_state.fp0 = fp;
4844
4845         crtc->lowfreq_avail = false;
4846         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4847             reduced_clock && i915_powersave) {
4848                 I915_WRITE(FP1(pipe), fp2);
4849                 crtc->config.dpll_hw_state.fp1 = fp2;
4850                 crtc->lowfreq_avail = true;
4851         } else {
4852                 I915_WRITE(FP1(pipe), fp);
4853                 crtc->config.dpll_hw_state.fp1 = fp;
4854         }
4855 }
4856
4857 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4858                 pipe)
4859 {
4860         u32 reg_val;
4861
4862         /*
4863          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4864          * and set it to a reasonable value instead.
4865          */
4866         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4867         reg_val &= 0xffffff00;
4868         reg_val |= 0x00000030;
4869         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4870
4871         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4872         reg_val &= 0x8cffffff;
4873         reg_val = 0x8c000000;
4874         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4875
4876         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4877         reg_val &= 0xffffff00;
4878         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4879
4880         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4881         reg_val &= 0x00ffffff;
4882         reg_val |= 0xb0000000;
4883         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4884 }
4885
4886 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4887                                          struct intel_link_m_n *m_n)
4888 {
4889         struct drm_device *dev = crtc->base.dev;
4890         struct drm_i915_private *dev_priv = dev->dev_private;
4891         int pipe = crtc->pipe;
4892
4893         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4894         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4895         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4896         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4897 }
4898
4899 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4900                                          struct intel_link_m_n *m_n)
4901 {
4902         struct drm_device *dev = crtc->base.dev;
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         int pipe = crtc->pipe;
4905         enum transcoder transcoder = crtc->config.cpu_transcoder;
4906
4907         if (INTEL_INFO(dev)->gen >= 5) {
4908                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4909                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4910                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4911                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4912         } else {
4913                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4914                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4915                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4916                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4917         }
4918 }
4919
4920 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4921 {
4922         if (crtc->config.has_pch_encoder)
4923                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4924         else
4925                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4926 }
4927
4928 static void vlv_update_pll(struct intel_crtc *crtc)
4929 {
4930         struct drm_device *dev = crtc->base.dev;
4931         struct drm_i915_private *dev_priv = dev->dev_private;
4932         int pipe = crtc->pipe;
4933         u32 dpll, mdiv;
4934         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4935         u32 coreclk, reg_val, dpll_md;
4936
4937         mutex_lock(&dev_priv->dpio_lock);
4938
4939         bestn = crtc->config.dpll.n;
4940         bestm1 = crtc->config.dpll.m1;
4941         bestm2 = crtc->config.dpll.m2;
4942         bestp1 = crtc->config.dpll.p1;
4943         bestp2 = crtc->config.dpll.p2;
4944
4945         /* See eDP HDMI DPIO driver vbios notes doc */
4946
4947         /* PLL B needs special handling */
4948         if (pipe)
4949                 vlv_pllb_recal_opamp(dev_priv, pipe);
4950
4951         /* Set up Tx target for periodic Rcomp update */
4952         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4953
4954         /* Disable target IRef on PLL */
4955         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4956         reg_val &= 0x00ffffff;
4957         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4958
4959         /* Disable fast lock */
4960         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4961
4962         /* Set idtafcrecal before PLL is enabled */
4963         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4964         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4965         mdiv |= ((bestn << DPIO_N_SHIFT));
4966         mdiv |= (1 << DPIO_K_SHIFT);
4967
4968         /*
4969          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4970          * but we don't support that).
4971          * Note: don't use the DAC post divider as it seems unstable.
4972          */
4973         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4974         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4975
4976         mdiv |= DPIO_ENABLE_CALIBRATION;
4977         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4978
4979         /* Set HBR and RBR LPF coefficients */
4980         if (crtc->config.port_clock == 162000 ||
4981             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4982             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4983                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4984                                  0x009f0003);
4985         else
4986                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4987                                  0x00d0000f);
4988
4989         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4990             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4991                 /* Use SSC source */
4992                 if (!pipe)
4993                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4994                                          0x0df40000);
4995                 else
4996                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4997                                          0x0df70000);
4998         } else { /* HDMI or VGA */
4999                 /* Use bend source */
5000                 if (!pipe)
5001                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5002                                          0x0df70000);
5003                 else
5004                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5005                                          0x0df40000);
5006         }
5007
5008         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5009         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5010         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5011             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5012                 coreclk |= 0x01000000;
5013         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5014
5015         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5016
5017         /*
5018          * Enable DPIO clock input. We should never disable the reference
5019          * clock for pipe B, since VGA hotplug / manual detection depends
5020          * on it.
5021          */
5022         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5023                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5024         /* We should never disable this, set it here for state tracking */
5025         if (pipe == PIPE_B)
5026                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5027         dpll |= DPLL_VCO_ENABLE;
5028         crtc->config.dpll_hw_state.dpll = dpll;
5029
5030         dpll_md = (crtc->config.pixel_multiplier - 1)
5031                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5032         crtc->config.dpll_hw_state.dpll_md = dpll_md;
5033
5034         if (crtc->config.has_dp_encoder)
5035                 intel_dp_set_m_n(crtc);
5036
5037         mutex_unlock(&dev_priv->dpio_lock);
5038 }
5039
5040 static void i9xx_update_pll(struct intel_crtc *crtc,
5041                             intel_clock_t *reduced_clock,
5042                             int num_connectors)
5043 {
5044         struct drm_device *dev = crtc->base.dev;
5045         struct drm_i915_private *dev_priv = dev->dev_private;
5046         u32 dpll;
5047         bool is_sdvo;
5048         struct dpll *clock = &crtc->config.dpll;
5049
5050         i9xx_update_pll_dividers(crtc, reduced_clock);
5051
5052         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5053                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5054
5055         dpll = DPLL_VGA_MODE_DIS;
5056
5057         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5058                 dpll |= DPLLB_MODE_LVDS;
5059         else
5060                 dpll |= DPLLB_MODE_DAC_SERIAL;
5061
5062         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5063                 dpll |= (crtc->config.pixel_multiplier - 1)
5064                         << SDVO_MULTIPLIER_SHIFT_HIRES;
5065         }
5066
5067         if (is_sdvo)
5068                 dpll |= DPLL_SDVO_HIGH_SPEED;
5069
5070         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5071                 dpll |= DPLL_SDVO_HIGH_SPEED;
5072
5073         /* compute bitmask from p1 value */
5074         if (IS_PINEVIEW(dev))
5075                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5076         else {
5077                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5078                 if (IS_G4X(dev) && reduced_clock)
5079                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5080         }
5081         switch (clock->p2) {
5082         case 5:
5083                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5084                 break;
5085         case 7:
5086                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5087                 break;
5088         case 10:
5089                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5090                 break;
5091         case 14:
5092                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5093                 break;
5094         }
5095         if (INTEL_INFO(dev)->gen >= 4)
5096                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5097
5098         if (crtc->config.sdvo_tv_clock)
5099                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5100         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5101                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5102                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5103         else
5104                 dpll |= PLL_REF_INPUT_DREFCLK;
5105
5106         dpll |= DPLL_VCO_ENABLE;
5107         crtc->config.dpll_hw_state.dpll = dpll;
5108
5109         if (INTEL_INFO(dev)->gen >= 4) {
5110                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5111                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5112                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5113         }
5114
5115         if (crtc->config.has_dp_encoder)
5116                 intel_dp_set_m_n(crtc);
5117 }
5118
5119 static void i8xx_update_pll(struct intel_crtc *crtc,
5120                             intel_clock_t *reduced_clock,
5121                             int num_connectors)
5122 {
5123         struct drm_device *dev = crtc->base.dev;
5124         struct drm_i915_private *dev_priv = dev->dev_private;
5125         u32 dpll;
5126         struct dpll *clock = &crtc->config.dpll;
5127
5128         i9xx_update_pll_dividers(crtc, reduced_clock);
5129
5130         dpll = DPLL_VGA_MODE_DIS;
5131
5132         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5133                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5134         } else {
5135                 if (clock->p1 == 2)
5136                         dpll |= PLL_P1_DIVIDE_BY_TWO;
5137                 else
5138                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5139                 if (clock->p2 == 4)
5140                         dpll |= PLL_P2_DIVIDE_BY_4;
5141         }
5142
5143         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5144                 dpll |= DPLL_DVO_2X_MODE;
5145
5146         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5147                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5148                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5149         else
5150                 dpll |= PLL_REF_INPUT_DREFCLK;
5151
5152         dpll |= DPLL_VCO_ENABLE;
5153         crtc->config.dpll_hw_state.dpll = dpll;
5154 }
5155
5156 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5157 {
5158         struct drm_device *dev = intel_crtc->base.dev;
5159         struct drm_i915_private *dev_priv = dev->dev_private;
5160         enum pipe pipe = intel_crtc->pipe;
5161         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5162         struct drm_display_mode *adjusted_mode =
5163                 &intel_crtc->config.adjusted_mode;
5164         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5165
5166         /* We need to be careful not to changed the adjusted mode, for otherwise
5167          * the hw state checker will get angry at the mismatch. */
5168         crtc_vtotal = adjusted_mode->crtc_vtotal;
5169         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5170
5171         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5172                 /* the chip adds 2 halflines automatically */
5173                 crtc_vtotal -= 1;
5174                 crtc_vblank_end -= 1;
5175                 vsyncshift = adjusted_mode->crtc_hsync_start
5176                              - adjusted_mode->crtc_htotal / 2;
5177         } else {
5178                 vsyncshift = 0;
5179         }
5180
5181         if (INTEL_INFO(dev)->gen > 3)
5182                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5183
5184         I915_WRITE(HTOTAL(cpu_transcoder),
5185                    (adjusted_mode->crtc_hdisplay - 1) |
5186                    ((adjusted_mode->crtc_htotal - 1) << 16));
5187         I915_WRITE(HBLANK(cpu_transcoder),
5188                    (adjusted_mode->crtc_hblank_start - 1) |
5189                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5190         I915_WRITE(HSYNC(cpu_transcoder),
5191                    (adjusted_mode->crtc_hsync_start - 1) |
5192                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5193
5194         I915_WRITE(VTOTAL(cpu_transcoder),
5195                    (adjusted_mode->crtc_vdisplay - 1) |
5196                    ((crtc_vtotal - 1) << 16));
5197         I915_WRITE(VBLANK(cpu_transcoder),
5198                    (adjusted_mode->crtc_vblank_start - 1) |
5199                    ((crtc_vblank_end - 1) << 16));
5200         I915_WRITE(VSYNC(cpu_transcoder),
5201                    (adjusted_mode->crtc_vsync_start - 1) |
5202                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5203
5204         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5205          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5206          * documented on the DDI_FUNC_CTL register description, EDP Input Select
5207          * bits. */
5208         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5209             (pipe == PIPE_B || pipe == PIPE_C))
5210                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5211
5212         /* pipesrc controls the size that is scaled from, which should
5213          * always be the user's requested size.
5214          */
5215         I915_WRITE(PIPESRC(pipe),
5216                    ((intel_crtc->config.pipe_src_w - 1) << 16) |
5217                    (intel_crtc->config.pipe_src_h - 1));
5218 }
5219
5220 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5221                                    struct intel_crtc_config *pipe_config)
5222 {
5223         struct drm_device *dev = crtc->base.dev;
5224         struct drm_i915_private *dev_priv = dev->dev_private;
5225         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5226         uint32_t tmp;
5227
5228         tmp = I915_READ(HTOTAL(cpu_transcoder));
5229         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5230         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5231         tmp = I915_READ(HBLANK(cpu_transcoder));
5232         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5233         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5234         tmp = I915_READ(HSYNC(cpu_transcoder));
5235         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5236         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5237
5238         tmp = I915_READ(VTOTAL(cpu_transcoder));
5239         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5240         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5241         tmp = I915_READ(VBLANK(cpu_transcoder));
5242         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5243         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5244         tmp = I915_READ(VSYNC(cpu_transcoder));
5245         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5246         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5247
5248         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5249                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5250                 pipe_config->adjusted_mode.crtc_vtotal += 1;
5251                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5252         }
5253
5254         tmp = I915_READ(PIPESRC(crtc->pipe));
5255         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5256         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5257
5258         pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5259         pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5260 }
5261
5262 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5263                                              struct intel_crtc_config *pipe_config)
5264 {
5265         struct drm_crtc *crtc = &intel_crtc->base;
5266
5267         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5268         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5269         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5270         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5271
5272         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5273         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5274         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5275         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5276
5277         crtc->mode.flags = pipe_config->adjusted_mode.flags;
5278
5279         crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5280         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5281 }
5282
5283 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5284 {
5285         struct drm_device *dev = intel_crtc->base.dev;
5286         struct drm_i915_private *dev_priv = dev->dev_private;
5287         uint32_t pipeconf;
5288
5289         pipeconf = 0;
5290
5291         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5292             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5293                 pipeconf |= PIPECONF_ENABLE;
5294
5295         if (intel_crtc->config.double_wide)
5296                 pipeconf |= PIPECONF_DOUBLE_WIDE;
5297
5298         /* only g4x and later have fancy bpc/dither controls */
5299         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5300                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5301                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5302                         pipeconf |= PIPECONF_DITHER_EN |
5303                                     PIPECONF_DITHER_TYPE_SP;
5304
5305                 switch (intel_crtc->config.pipe_bpp) {
5306                 case 18:
5307                         pipeconf |= PIPECONF_6BPC;
5308                         break;
5309                 case 24:
5310                         pipeconf |= PIPECONF_8BPC;
5311                         break;
5312                 case 30:
5313                         pipeconf |= PIPECONF_10BPC;
5314                         break;
5315                 default:
5316                         /* Case prevented by intel_choose_pipe_bpp_dither. */
5317                         BUG();
5318                 }
5319         }
5320
5321         if (HAS_PIPE_CXSR(dev)) {
5322                 if (intel_crtc->lowfreq_avail) {
5323                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5324                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5325                 } else {
5326                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5327                 }
5328         }
5329
5330         if (!IS_GEN2(dev) &&
5331             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5332                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5333         else
5334                 pipeconf |= PIPECONF_PROGRESSIVE;
5335
5336         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5337                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5338
5339         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5340         POSTING_READ(PIPECONF(intel_crtc->pipe));
5341 }
5342
5343 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5344                               int x, int y,
5345                               struct drm_framebuffer *fb)
5346 {
5347         struct drm_device *dev = crtc->dev;
5348         struct drm_i915_private *dev_priv = dev->dev_private;
5349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350         int pipe = intel_crtc->pipe;
5351         int plane = intel_crtc->plane;
5352         int refclk, num_connectors = 0;
5353         intel_clock_t clock, reduced_clock;
5354         u32 dspcntr;
5355         bool ok, has_reduced_clock = false;
5356         bool is_lvds = false, is_dsi = false;
5357         struct intel_encoder *encoder;
5358         const intel_limit_t *limit;
5359         int ret;
5360
5361         for_each_encoder_on_crtc(dev, crtc, encoder) {
5362                 switch (encoder->type) {
5363                 case INTEL_OUTPUT_LVDS:
5364                         is_lvds = true;
5365                         break;
5366                 case INTEL_OUTPUT_DSI:
5367                         is_dsi = true;
5368                         break;
5369                 }
5370
5371                 num_connectors++;
5372         }
5373
5374         if (is_dsi)
5375                 goto skip_dpll;
5376
5377         if (!intel_crtc->config.clock_set) {
5378                 refclk = i9xx_get_refclk(crtc, num_connectors);
5379
5380                 /*
5381                  * Returns a set of divisors for the desired target clock with
5382                  * the given refclk, or FALSE.  The returned values represent
5383                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5384                  * 2) / p1 / p2.
5385                  */
5386                 limit = intel_limit(crtc, refclk);
5387                 ok = dev_priv->display.find_dpll(limit, crtc,
5388                                                  intel_crtc->config.port_clock,
5389                                                  refclk, NULL, &clock);
5390                 if (!ok) {
5391                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
5392                         return -EINVAL;
5393                 }
5394
5395                 if (is_lvds && dev_priv->lvds_downclock_avail) {
5396                         /*
5397                          * Ensure we match the reduced clock's P to the target
5398                          * clock.  If the clocks don't match, we can't switch
5399                          * the display clock by using the FP0/FP1. In such case
5400                          * we will disable the LVDS downclock feature.
5401                          */
5402                         has_reduced_clock =
5403                                 dev_priv->display.find_dpll(limit, crtc,
5404                                                             dev_priv->lvds_downclock,
5405                                                             refclk, &clock,
5406                                                             &reduced_clock);
5407                 }
5408                 /* Compat-code for transition, will disappear. */
5409                 intel_crtc->config.dpll.n = clock.n;
5410                 intel_crtc->config.dpll.m1 = clock.m1;
5411                 intel_crtc->config.dpll.m2 = clock.m2;
5412                 intel_crtc->config.dpll.p1 = clock.p1;
5413                 intel_crtc->config.dpll.p2 = clock.p2;
5414         }
5415
5416         if (IS_GEN2(dev)) {
5417                 i8xx_update_pll(intel_crtc,
5418                                 has_reduced_clock ? &reduced_clock : NULL,
5419                                 num_connectors);
5420         } else if (IS_VALLEYVIEW(dev)) {
5421                 vlv_update_pll(intel_crtc);
5422         } else {
5423                 i9xx_update_pll(intel_crtc,
5424                                 has_reduced_clock ? &reduced_clock : NULL,
5425                                 num_connectors);
5426         }
5427
5428 skip_dpll:
5429         /* Set up the display plane register */
5430         dspcntr = DISPPLANE_GAMMA_ENABLE;
5431
5432         if (!IS_VALLEYVIEW(dev)) {
5433                 if (pipe == 0)
5434                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5435                 else
5436                         dspcntr |= DISPPLANE_SEL_PIPE_B;
5437         }
5438
5439         intel_set_pipe_timings(intel_crtc);
5440
5441         /* pipesrc and dspsize control the size that is scaled from,
5442          * which should always be the user's requested size.
5443          */
5444         I915_WRITE(DSPSIZE(plane),
5445                    ((intel_crtc->config.pipe_src_h - 1) << 16) |
5446                    (intel_crtc->config.pipe_src_w - 1));
5447         I915_WRITE(DSPPOS(plane), 0);
5448
5449         i9xx_set_pipeconf(intel_crtc);
5450
5451         I915_WRITE(DSPCNTR(plane), dspcntr);
5452         POSTING_READ(DSPCNTR(plane));
5453
5454         ret = intel_pipe_set_base(crtc, x, y, fb);
5455
5456         return ret;
5457 }
5458
5459 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5460                                  struct intel_crtc_config *pipe_config)
5461 {
5462         struct drm_device *dev = crtc->base.dev;
5463         struct drm_i915_private *dev_priv = dev->dev_private;
5464         uint32_t tmp;
5465
5466         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
5467                 return;
5468
5469         tmp = I915_READ(PFIT_CONTROL);
5470         if (!(tmp & PFIT_ENABLE))
5471                 return;
5472
5473         /* Check whether the pfit is attached to our pipe. */
5474         if (INTEL_INFO(dev)->gen < 4) {
5475                 if (crtc->pipe != PIPE_B)
5476                         return;
5477         } else {
5478                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5479                         return;
5480         }
5481
5482         pipe_config->gmch_pfit.control = tmp;
5483         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5484         if (INTEL_INFO(dev)->gen < 5)
5485                 pipe_config->gmch_pfit.lvds_border_bits =
5486                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5487 }
5488
5489 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5490                                struct intel_crtc_config *pipe_config)
5491 {
5492         struct drm_device *dev = crtc->base.dev;
5493         struct drm_i915_private *dev_priv = dev->dev_private;
5494         int pipe = pipe_config->cpu_transcoder;
5495         intel_clock_t clock;
5496         u32 mdiv;
5497         int refclk = 100000;
5498
5499         mutex_lock(&dev_priv->dpio_lock);
5500         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5501         mutex_unlock(&dev_priv->dpio_lock);
5502
5503         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5504         clock.m2 = mdiv & DPIO_M2DIV_MASK;
5505         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5506         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5507         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5508
5509         vlv_clock(refclk, &clock);
5510
5511         /* clock.dot is the fast clock */
5512         pipe_config->port_clock = clock.dot / 5;
5513 }
5514
5515 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5516                                  struct intel_crtc_config *pipe_config)
5517 {
5518         struct drm_device *dev = crtc->base.dev;
5519         struct drm_i915_private *dev_priv = dev->dev_private;
5520         uint32_t tmp;
5521
5522         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5523         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5524
5525         tmp = I915_READ(PIPECONF(crtc->pipe));
5526         if (!(tmp & PIPECONF_ENABLE))
5527                 return false;
5528
5529         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5530                 switch (tmp & PIPECONF_BPC_MASK) {
5531                 case PIPECONF_6BPC:
5532                         pipe_config->pipe_bpp = 18;
5533                         break;
5534                 case PIPECONF_8BPC:
5535                         pipe_config->pipe_bpp = 24;
5536                         break;
5537                 case PIPECONF_10BPC:
5538                         pipe_config->pipe_bpp = 30;
5539                         break;
5540                 default:
5541                         break;
5542                 }
5543         }
5544
5545         if (INTEL_INFO(dev)->gen < 4)
5546                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5547
5548         intel_get_pipe_timings(crtc, pipe_config);
5549
5550         i9xx_get_pfit_config(crtc, pipe_config);
5551
5552         if (INTEL_INFO(dev)->gen >= 4) {
5553                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5554                 pipe_config->pixel_multiplier =
5555                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5556                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5557                 pipe_config->dpll_hw_state.dpll_md = tmp;
5558         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5559                 tmp = I915_READ(DPLL(crtc->pipe));
5560                 pipe_config->pixel_multiplier =
5561                         ((tmp & SDVO_MULTIPLIER_MASK)
5562                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5563         } else {
5564                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5565                  * port and will be fixed up in the encoder->get_config
5566                  * function. */
5567                 pipe_config->pixel_multiplier = 1;
5568         }
5569         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5570         if (!IS_VALLEYVIEW(dev)) {
5571                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5572                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5573         } else {
5574                 /* Mask out read-only status bits. */
5575                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5576                                                      DPLL_PORTC_READY_MASK |
5577                                                      DPLL_PORTB_READY_MASK);
5578         }
5579
5580         if (IS_VALLEYVIEW(dev))
5581                 vlv_crtc_clock_get(crtc, pipe_config);
5582         else
5583                 i9xx_crtc_clock_get(crtc, pipe_config);
5584
5585         return true;
5586 }
5587
5588 static void ironlake_init_pch_refclk(struct drm_device *dev)
5589 {
5590         struct drm_i915_private *dev_priv = dev->dev_private;
5591         struct drm_mode_config *mode_config = &dev->mode_config;
5592         struct intel_encoder *encoder;
5593         u32 val, final;
5594         bool has_lvds = false;
5595         bool has_cpu_edp = false;
5596         bool has_panel = false;
5597         bool has_ck505 = false;
5598         bool can_ssc = false;
5599
5600         /* We need to take the global config into account */
5601         list_for_each_entry(encoder, &mode_config->encoder_list,
5602                             base.head) {
5603                 switch (encoder->type) {
5604                 case INTEL_OUTPUT_LVDS:
5605                         has_panel = true;
5606                         has_lvds = true;
5607                         break;
5608                 case INTEL_OUTPUT_EDP:
5609                         has_panel = true;
5610                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5611                                 has_cpu_edp = true;
5612                         break;
5613                 }
5614         }
5615
5616         if (HAS_PCH_IBX(dev)) {
5617                 has_ck505 = dev_priv->vbt.display_clock_mode;
5618                 can_ssc = has_ck505;
5619         } else {
5620                 has_ck505 = false;
5621                 can_ssc = true;
5622         }
5623
5624         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5625                       has_panel, has_lvds, has_ck505);
5626
5627         /* Ironlake: try to setup display ref clock before DPLL
5628          * enabling. This is only under driver's control after
5629          * PCH B stepping, previous chipset stepping should be
5630          * ignoring this setting.
5631          */
5632         val = I915_READ(PCH_DREF_CONTROL);
5633
5634         /* As we must carefully and slowly disable/enable each source in turn,
5635          * compute the final state we want first and check if we need to
5636          * make any changes at all.
5637          */
5638         final = val;
5639         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5640         if (has_ck505)
5641                 final |= DREF_NONSPREAD_CK505_ENABLE;
5642         else
5643                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5644
5645         final &= ~DREF_SSC_SOURCE_MASK;
5646         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5647         final &= ~DREF_SSC1_ENABLE;
5648
5649         if (has_panel) {
5650                 final |= DREF_SSC_SOURCE_ENABLE;
5651
5652                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5653                         final |= DREF_SSC1_ENABLE;
5654
5655                 if (has_cpu_edp) {
5656                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5657                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5658                         else
5659                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5660                 } else
5661                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5662         } else {
5663                 final |= DREF_SSC_SOURCE_DISABLE;
5664                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5665         }
5666
5667         if (final == val)
5668                 return;
5669
5670         /* Always enable nonspread source */
5671         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5672
5673         if (has_ck505)
5674                 val |= DREF_NONSPREAD_CK505_ENABLE;
5675         else
5676                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5677
5678         if (has_panel) {
5679                 val &= ~DREF_SSC_SOURCE_MASK;
5680                 val |= DREF_SSC_SOURCE_ENABLE;
5681
5682                 /* SSC must be turned on before enabling the CPU output  */
5683                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5684                         DRM_DEBUG_KMS("Using SSC on panel\n");
5685                         val |= DREF_SSC1_ENABLE;
5686                 } else
5687                         val &= ~DREF_SSC1_ENABLE;
5688
5689                 /* Get SSC going before enabling the outputs */
5690                 I915_WRITE(PCH_DREF_CONTROL, val);
5691                 POSTING_READ(PCH_DREF_CONTROL);
5692                 udelay(200);
5693
5694                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5695
5696                 /* Enable CPU source on CPU attached eDP */
5697                 if (has_cpu_edp) {
5698                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5699                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5700                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5701                         }
5702                         else
5703                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5704                 } else
5705                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5706
5707                 I915_WRITE(PCH_DREF_CONTROL, val);
5708                 POSTING_READ(PCH_DREF_CONTROL);
5709                 udelay(200);
5710         } else {
5711                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5712
5713                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5714
5715                 /* Turn off CPU output */
5716                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5717
5718                 I915_WRITE(PCH_DREF_CONTROL, val);
5719                 POSTING_READ(PCH_DREF_CONTROL);
5720                 udelay(200);
5721
5722                 /* Turn off the SSC source */
5723                 val &= ~DREF_SSC_SOURCE_MASK;
5724                 val |= DREF_SSC_SOURCE_DISABLE;
5725
5726                 /* Turn off SSC1 */
5727                 val &= ~DREF_SSC1_ENABLE;
5728
5729                 I915_WRITE(PCH_DREF_CONTROL, val);
5730                 POSTING_READ(PCH_DREF_CONTROL);
5731                 udelay(200);
5732         }
5733
5734         BUG_ON(val != final);
5735 }
5736
5737 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5738 {
5739         uint32_t tmp;
5740
5741         tmp = I915_READ(SOUTH_CHICKEN2);
5742         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5743         I915_WRITE(SOUTH_CHICKEN2, tmp);
5744
5745         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5746                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5747                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5748
5749         tmp = I915_READ(SOUTH_CHICKEN2);
5750         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5751         I915_WRITE(SOUTH_CHICKEN2, tmp);
5752
5753         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5754                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5755                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5756 }
5757
5758 /* WaMPhyProgramming:hsw */
5759 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5760 {
5761         uint32_t tmp;
5762
5763         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5764         tmp &= ~(0xFF << 24);
5765         tmp |= (0x12 << 24);
5766         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5767
5768         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5769         tmp |= (1 << 11);
5770         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5771
5772         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5773         tmp |= (1 << 11);
5774         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5775
5776         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5777         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5778         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5779
5780         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5781         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5782         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5783
5784         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5785         tmp &= ~(7 << 13);
5786         tmp |= (5 << 13);
5787         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5788
5789         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5790         tmp &= ~(7 << 13);
5791         tmp |= (5 << 13);
5792         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5793
5794         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5795         tmp &= ~0xFF;
5796         tmp |= 0x1C;
5797         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5798
5799         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5800         tmp &= ~0xFF;
5801         tmp |= 0x1C;
5802         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5803
5804         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5805         tmp &= ~(0xFF << 16);
5806         tmp |= (0x1C << 16);
5807         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5808
5809         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5810         tmp &= ~(0xFF << 16);
5811         tmp |= (0x1C << 16);
5812         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5813
5814         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5815         tmp |= (1 << 27);
5816         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5817
5818         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5819         tmp |= (1 << 27);
5820         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5821
5822         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5823         tmp &= ~(0xF << 28);
5824         tmp |= (4 << 28);
5825         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5826
5827         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5828         tmp &= ~(0xF << 28);
5829         tmp |= (4 << 28);
5830         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5831 }
5832
5833 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5834  * Programming" based on the parameters passed:
5835  * - Sequence to enable CLKOUT_DP
5836  * - Sequence to enable CLKOUT_DP without spread
5837  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5838  */
5839 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5840                                  bool with_fdi)
5841 {
5842         struct drm_i915_private *dev_priv = dev->dev_private;
5843         uint32_t reg, tmp;
5844
5845         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5846                 with_spread = true;
5847         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5848                  with_fdi, "LP PCH doesn't have FDI\n"))
5849                 with_fdi = false;
5850
5851         mutex_lock(&dev_priv->dpio_lock);
5852
5853         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5854         tmp &= ~SBI_SSCCTL_DISABLE;
5855         tmp |= SBI_SSCCTL_PATHALT;
5856         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5857
5858         udelay(24);
5859
5860         if (with_spread) {
5861                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5862                 tmp &= ~SBI_SSCCTL_PATHALT;
5863                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5864
5865                 if (with_fdi) {
5866                         lpt_reset_fdi_mphy(dev_priv);
5867                         lpt_program_fdi_mphy(dev_priv);
5868                 }
5869         }
5870
5871         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5872                SBI_GEN0 : SBI_DBUFF0;
5873         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5874         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5875         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5876
5877         mutex_unlock(&dev_priv->dpio_lock);
5878 }
5879
5880 /* Sequence to disable CLKOUT_DP */
5881 static void lpt_disable_clkout_dp(struct drm_device *dev)
5882 {
5883         struct drm_i915_private *dev_priv = dev->dev_private;
5884         uint32_t reg, tmp;
5885
5886         mutex_lock(&dev_priv->dpio_lock);
5887
5888         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5889                SBI_GEN0 : SBI_DBUFF0;
5890         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5891         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5892         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5893
5894         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5895         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5896                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5897                         tmp |= SBI_SSCCTL_PATHALT;
5898                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5899                         udelay(32);
5900                 }
5901                 tmp |= SBI_SSCCTL_DISABLE;
5902                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5903         }
5904
5905         mutex_unlock(&dev_priv->dpio_lock);
5906 }
5907
5908 static void lpt_init_pch_refclk(struct drm_device *dev)
5909 {
5910         struct drm_mode_config *mode_config = &dev->mode_config;
5911         struct intel_encoder *encoder;
5912         bool has_vga = false;
5913
5914         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5915                 switch (encoder->type) {
5916                 case INTEL_OUTPUT_ANALOG:
5917                         has_vga = true;
5918                         break;
5919                 }
5920         }
5921
5922         if (has_vga)
5923                 lpt_enable_clkout_dp(dev, true, true);
5924         else
5925                 lpt_disable_clkout_dp(dev);
5926 }
5927
5928 /*
5929  * Initialize reference clocks when the driver loads
5930  */
5931 void intel_init_pch_refclk(struct drm_device *dev)
5932 {
5933         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5934                 ironlake_init_pch_refclk(dev);
5935         else if (HAS_PCH_LPT(dev))
5936                 lpt_init_pch_refclk(dev);
5937 }
5938
5939 static int ironlake_get_refclk(struct drm_crtc *crtc)
5940 {
5941         struct drm_device *dev = crtc->dev;
5942         struct drm_i915_private *dev_priv = dev->dev_private;
5943         struct intel_encoder *encoder;
5944         int num_connectors = 0;
5945         bool is_lvds = false;
5946
5947         for_each_encoder_on_crtc(dev, crtc, encoder) {
5948                 switch (encoder->type) {
5949                 case INTEL_OUTPUT_LVDS:
5950                         is_lvds = true;
5951                         break;
5952                 }
5953                 num_connectors++;
5954         }
5955
5956         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5957                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
5958                               dev_priv->vbt.lvds_ssc_freq);
5959                 return dev_priv->vbt.lvds_ssc_freq;
5960         }
5961
5962         return 120000;
5963 }
5964
5965 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5966 {
5967         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5968         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5969         int pipe = intel_crtc->pipe;
5970         uint32_t val;
5971
5972         val = 0;
5973
5974         switch (intel_crtc->config.pipe_bpp) {
5975         case 18:
5976                 val |= PIPECONF_6BPC;
5977                 break;
5978         case 24:
5979                 val |= PIPECONF_8BPC;
5980                 break;
5981         case 30:
5982                 val |= PIPECONF_10BPC;
5983                 break;
5984         case 36:
5985                 val |= PIPECONF_12BPC;
5986                 break;
5987         default:
5988                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5989                 BUG();
5990         }
5991
5992         if (intel_crtc->config.dither)
5993                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5994
5995         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5996                 val |= PIPECONF_INTERLACED_ILK;
5997         else
5998                 val |= PIPECONF_PROGRESSIVE;
5999
6000         if (intel_crtc->config.limited_color_range)
6001                 val |= PIPECONF_COLOR_RANGE_SELECT;
6002
6003         I915_WRITE(PIPECONF(pipe), val);
6004         POSTING_READ(PIPECONF(pipe));
6005 }
6006
6007 /*
6008  * Set up the pipe CSC unit.
6009  *
6010  * Currently only full range RGB to limited range RGB conversion
6011  * is supported, but eventually this should handle various
6012  * RGB<->YCbCr scenarios as well.
6013  */
6014 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6015 {
6016         struct drm_device *dev = crtc->dev;
6017         struct drm_i915_private *dev_priv = dev->dev_private;
6018         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6019         int pipe = intel_crtc->pipe;
6020         uint16_t coeff = 0x7800; /* 1.0 */
6021
6022         /*
6023          * TODO: Check what kind of values actually come out of the pipe
6024          * with these coeff/postoff values and adjust to get the best
6025          * accuracy. Perhaps we even need to take the bpc value into
6026          * consideration.
6027          */
6028
6029         if (intel_crtc->config.limited_color_range)
6030                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6031
6032         /*
6033          * GY/GU and RY/RU should be the other way around according
6034          * to BSpec, but reality doesn't agree. Just set them up in
6035          * a way that results in the correct picture.
6036          */
6037         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6038         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6039
6040         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6041         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6042
6043         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6044         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6045
6046         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6047         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6048         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6049
6050         if (INTEL_INFO(dev)->gen > 6) {
6051                 uint16_t postoff = 0;
6052
6053                 if (intel_crtc->config.limited_color_range)
6054                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
6055
6056                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6057                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6058                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6059
6060                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6061         } else {
6062                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6063
6064                 if (intel_crtc->config.limited_color_range)
6065                         mode |= CSC_BLACK_SCREEN_OFFSET;
6066
6067                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6068         }
6069 }
6070
6071 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6072 {
6073         struct drm_device *dev = crtc->dev;
6074         struct drm_i915_private *dev_priv = dev->dev_private;
6075         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6076         enum pipe pipe = intel_crtc->pipe;
6077         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6078         uint32_t val;
6079
6080         val = 0;
6081
6082         if (IS_HASWELL(dev) && intel_crtc->config.dither)
6083                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6084
6085         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6086                 val |= PIPECONF_INTERLACED_ILK;
6087         else
6088                 val |= PIPECONF_PROGRESSIVE;
6089
6090         I915_WRITE(PIPECONF(cpu_transcoder), val);
6091         POSTING_READ(PIPECONF(cpu_transcoder));
6092
6093         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6094         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6095
6096         if (IS_BROADWELL(dev)) {
6097                 val = 0;
6098
6099                 switch (intel_crtc->config.pipe_bpp) {
6100                 case 18:
6101                         val |= PIPEMISC_DITHER_6_BPC;
6102                         break;
6103                 case 24:
6104                         val |= PIPEMISC_DITHER_8_BPC;
6105                         break;
6106                 case 30:
6107                         val |= PIPEMISC_DITHER_10_BPC;
6108                         break;
6109                 case 36:
6110                         val |= PIPEMISC_DITHER_12_BPC;
6111                         break;
6112                 default:
6113                         /* Case prevented by pipe_config_set_bpp. */
6114                         BUG();
6115                 }
6116
6117                 if (intel_crtc->config.dither)
6118                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6119
6120                 I915_WRITE(PIPEMISC(pipe), val);
6121         }
6122 }
6123
6124 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6125                                     intel_clock_t *clock,
6126                                     bool *has_reduced_clock,
6127                                     intel_clock_t *reduced_clock)
6128 {
6129         struct drm_device *dev = crtc->dev;
6130         struct drm_i915_private *dev_priv = dev->dev_private;
6131         struct intel_encoder *intel_encoder;
6132         int refclk;
6133         const intel_limit_t *limit;
6134         bool ret, is_lvds = false;
6135
6136         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6137                 switch (intel_encoder->type) {
6138                 case INTEL_OUTPUT_LVDS:
6139                         is_lvds = true;
6140                         break;
6141                 }
6142         }
6143
6144         refclk = ironlake_get_refclk(crtc);
6145
6146         /*
6147          * Returns a set of divisors for the desired target clock with the given
6148          * refclk, or FALSE.  The returned values represent the clock equation:
6149          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6150          */
6151         limit = intel_limit(crtc, refclk);
6152         ret = dev_priv->display.find_dpll(limit, crtc,
6153                                           to_intel_crtc(crtc)->config.port_clock,
6154                                           refclk, NULL, clock);
6155         if (!ret)
6156                 return false;
6157
6158         if (is_lvds && dev_priv->lvds_downclock_avail) {
6159                 /*
6160                  * Ensure we match the reduced clock's P to the target clock.
6161                  * If the clocks don't match, we can't switch the display clock
6162                  * by using the FP0/FP1. In such case we will disable the LVDS
6163                  * downclock feature.
6164                 */
6165                 *has_reduced_clock =
6166                         dev_priv->display.find_dpll(limit, crtc,
6167                                                     dev_priv->lvds_downclock,
6168                                                     refclk, clock,
6169                                                     reduced_clock);
6170         }
6171
6172         return true;
6173 }
6174
6175 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6176 {
6177         /*
6178          * Account for spread spectrum to avoid
6179          * oversubscribing the link. Max center spread
6180          * is 2.5%; use 5% for safety's sake.
6181          */
6182         u32 bps = target_clock * bpp * 21 / 20;
6183         return bps / (link_bw * 8) + 1;
6184 }
6185
6186 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6187 {
6188         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6189 }
6190
6191 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6192                                       u32 *fp,
6193                                       intel_clock_t *reduced_clock, u32 *fp2)
6194 {
6195         struct drm_crtc *crtc = &intel_crtc->base;
6196         struct drm_device *dev = crtc->dev;
6197         struct drm_i915_private *dev_priv = dev->dev_private;
6198         struct intel_encoder *intel_encoder;
6199         uint32_t dpll;
6200         int factor, num_connectors = 0;
6201         bool is_lvds = false, is_sdvo = false;
6202
6203         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6204                 switch (intel_encoder->type) {
6205                 case INTEL_OUTPUT_LVDS:
6206                         is_lvds = true;
6207                         break;
6208                 case INTEL_OUTPUT_SDVO:
6209                 case INTEL_OUTPUT_HDMI:
6210                         is_sdvo = true;
6211                         break;
6212                 }
6213
6214                 num_connectors++;
6215         }
6216
6217         /* Enable autotuning of the PLL clock (if permissible) */
6218         factor = 21;
6219         if (is_lvds) {
6220                 if ((intel_panel_use_ssc(dev_priv) &&
6221                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
6222                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6223                         factor = 25;
6224         } else if (intel_crtc->config.sdvo_tv_clock)
6225                 factor = 20;
6226
6227         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6228                 *fp |= FP_CB_TUNE;
6229
6230         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6231                 *fp2 |= FP_CB_TUNE;
6232
6233         dpll = 0;
6234
6235         if (is_lvds)
6236                 dpll |= DPLLB_MODE_LVDS;
6237         else
6238                 dpll |= DPLLB_MODE_DAC_SERIAL;
6239
6240         dpll |= (intel_crtc->config.pixel_multiplier - 1)
6241                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6242
6243         if (is_sdvo)
6244                 dpll |= DPLL_SDVO_HIGH_SPEED;
6245         if (intel_crtc->config.has_dp_encoder)
6246                 dpll |= DPLL_SDVO_HIGH_SPEED;
6247
6248         /* compute bitmask from p1 value */
6249         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6250         /* also FPA1 */
6251         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6252
6253         switch (intel_crtc->config.dpll.p2) {
6254         case 5:
6255                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6256                 break;
6257         case 7:
6258                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6259                 break;
6260         case 10:
6261                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6262                 break;
6263         case 14:
6264                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6265                 break;
6266         }
6267
6268         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6269                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6270         else
6271                 dpll |= PLL_REF_INPUT_DREFCLK;
6272
6273         return dpll | DPLL_VCO_ENABLE;
6274 }
6275
6276 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6277                                   int x, int y,
6278                                   struct drm_framebuffer *fb)
6279 {
6280         struct drm_device *dev = crtc->dev;
6281         struct drm_i915_private *dev_priv = dev->dev_private;
6282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6283         int pipe = intel_crtc->pipe;
6284         int plane = intel_crtc->plane;
6285         int num_connectors = 0;
6286         intel_clock_t clock, reduced_clock;
6287         u32 dpll = 0, fp = 0, fp2 = 0;
6288         bool ok, has_reduced_clock = false;
6289         bool is_lvds = false;
6290         struct intel_encoder *encoder;
6291         struct intel_shared_dpll *pll;
6292         int ret;
6293
6294         for_each_encoder_on_crtc(dev, crtc, encoder) {
6295                 switch (encoder->type) {
6296                 case INTEL_OUTPUT_LVDS:
6297                         is_lvds = true;
6298                         break;
6299                 }
6300
6301                 num_connectors++;
6302         }
6303
6304         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6305              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6306
6307         ok = ironlake_compute_clocks(crtc, &clock,
6308                                      &has_reduced_clock, &reduced_clock);
6309         if (!ok && !intel_crtc->config.clock_set) {
6310                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6311                 return -EINVAL;
6312         }
6313         /* Compat-code for transition, will disappear. */
6314         if (!intel_crtc->config.clock_set) {
6315                 intel_crtc->config.dpll.n = clock.n;
6316                 intel_crtc->config.dpll.m1 = clock.m1;
6317                 intel_crtc->config.dpll.m2 = clock.m2;
6318                 intel_crtc->config.dpll.p1 = clock.p1;
6319                 intel_crtc->config.dpll.p2 = clock.p2;
6320         }
6321
6322         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6323         if (intel_crtc->config.has_pch_encoder) {
6324                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6325                 if (has_reduced_clock)
6326                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6327
6328                 dpll = ironlake_compute_dpll(intel_crtc,
6329                                              &fp, &reduced_clock,
6330                                              has_reduced_clock ? &fp2 : NULL);
6331
6332                 intel_crtc->config.dpll_hw_state.dpll = dpll;
6333                 intel_crtc->config.dpll_hw_state.fp0 = fp;
6334                 if (has_reduced_clock)
6335                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
6336                 else
6337                         intel_crtc->config.dpll_hw_state.fp1 = fp;
6338
6339                 pll = intel_get_shared_dpll(intel_crtc);
6340                 if (pll == NULL) {
6341                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6342                                          pipe_name(pipe));
6343                         return -EINVAL;
6344                 }
6345         } else
6346                 intel_put_shared_dpll(intel_crtc);
6347
6348         if (intel_crtc->config.has_dp_encoder)
6349                 intel_dp_set_m_n(intel_crtc);
6350
6351         if (is_lvds && has_reduced_clock && i915_powersave)
6352                 intel_crtc->lowfreq_avail = true;
6353         else
6354                 intel_crtc->lowfreq_avail = false;
6355
6356         intel_set_pipe_timings(intel_crtc);
6357
6358         if (intel_crtc->config.has_pch_encoder) {
6359                 intel_cpu_transcoder_set_m_n(intel_crtc,
6360                                              &intel_crtc->config.fdi_m_n);
6361         }
6362
6363         ironlake_set_pipeconf(crtc);
6364
6365         /* Set up the display plane register */
6366         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6367         POSTING_READ(DSPCNTR(plane));
6368
6369         ret = intel_pipe_set_base(crtc, x, y, fb);
6370
6371         return ret;
6372 }
6373
6374 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6375                                          struct intel_link_m_n *m_n)
6376 {
6377         struct drm_device *dev = crtc->base.dev;
6378         struct drm_i915_private *dev_priv = dev->dev_private;
6379         enum pipe pipe = crtc->pipe;
6380
6381         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6382         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6383         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6384                 & ~TU_SIZE_MASK;
6385         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6386         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6387                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6388 }
6389
6390 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6391                                          enum transcoder transcoder,
6392                                          struct intel_link_m_n *m_n)
6393 {
6394         struct drm_device *dev = crtc->base.dev;
6395         struct drm_i915_private *dev_priv = dev->dev_private;
6396         enum pipe pipe = crtc->pipe;
6397
6398         if (INTEL_INFO(dev)->gen >= 5) {
6399                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6400                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6401                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6402                         & ~TU_SIZE_MASK;
6403                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6404                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6405                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6406         } else {
6407                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6408                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6409                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6410                         & ~TU_SIZE_MASK;
6411                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6412                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6413                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6414         }
6415 }
6416
6417 void intel_dp_get_m_n(struct intel_crtc *crtc,
6418                       struct intel_crtc_config *pipe_config)
6419 {
6420         if (crtc->config.has_pch_encoder)
6421                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6422         else
6423                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6424                                              &pipe_config->dp_m_n);
6425 }
6426
6427 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6428                                         struct intel_crtc_config *pipe_config)
6429 {
6430         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6431                                      &pipe_config->fdi_m_n);
6432 }
6433
6434 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6435                                      struct intel_crtc_config *pipe_config)
6436 {
6437         struct drm_device *dev = crtc->base.dev;
6438         struct drm_i915_private *dev_priv = dev->dev_private;
6439         uint32_t tmp;
6440
6441         tmp = I915_READ(PF_CTL(crtc->pipe));
6442
6443         if (tmp & PF_ENABLE) {
6444                 pipe_config->pch_pfit.enabled = true;
6445                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6446                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6447
6448                 /* We currently do not free assignements of panel fitters on
6449                  * ivb/hsw (since we don't use the higher upscaling modes which
6450                  * differentiates them) so just WARN about this case for now. */
6451                 if (IS_GEN7(dev)) {
6452                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6453                                 PF_PIPE_SEL_IVB(crtc->pipe));
6454                 }
6455         }
6456 }
6457
6458 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6459                                      struct intel_crtc_config *pipe_config)
6460 {
6461         struct drm_device *dev = crtc->base.dev;
6462         struct drm_i915_private *dev_priv = dev->dev_private;
6463         uint32_t tmp;
6464
6465         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6466         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6467
6468         tmp = I915_READ(PIPECONF(crtc->pipe));
6469         if (!(tmp & PIPECONF_ENABLE))
6470                 return false;
6471
6472         switch (tmp & PIPECONF_BPC_MASK) {
6473         case PIPECONF_6BPC:
6474                 pipe_config->pipe_bpp = 18;
6475                 break;
6476         case PIPECONF_8BPC:
6477                 pipe_config->pipe_bpp = 24;
6478                 break;
6479         case PIPECONF_10BPC:
6480                 pipe_config->pipe_bpp = 30;
6481                 break;
6482         case PIPECONF_12BPC:
6483                 pipe_config->pipe_bpp = 36;
6484                 break;
6485         default:
6486                 break;
6487         }
6488
6489         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6490                 struct intel_shared_dpll *pll;
6491
6492                 pipe_config->has_pch_encoder = true;
6493
6494                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6495                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6496                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6497
6498                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6499
6500                 if (HAS_PCH_IBX(dev_priv->dev)) {
6501                         pipe_config->shared_dpll =
6502                                 (enum intel_dpll_id) crtc->pipe;
6503                 } else {
6504                         tmp = I915_READ(PCH_DPLL_SEL);
6505                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6506                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6507                         else
6508                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6509                 }
6510
6511                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6512
6513                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6514                                            &pipe_config->dpll_hw_state));
6515
6516                 tmp = pipe_config->dpll_hw_state.dpll;
6517                 pipe_config->pixel_multiplier =
6518                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6519                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6520
6521                 ironlake_pch_clock_get(crtc, pipe_config);
6522         } else {
6523                 pipe_config->pixel_multiplier = 1;
6524         }
6525
6526         intel_get_pipe_timings(crtc, pipe_config);
6527
6528         ironlake_get_pfit_config(crtc, pipe_config);
6529
6530         return true;
6531 }
6532
6533 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6534 {
6535         struct drm_device *dev = dev_priv->dev;
6536         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6537         struct intel_crtc *crtc;
6538         unsigned long irqflags;
6539         uint32_t val;
6540
6541         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6542                 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6543                      pipe_name(crtc->pipe));
6544
6545         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6546         WARN(plls->spll_refcount, "SPLL enabled\n");
6547         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6548         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6549         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6550         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6551              "CPU PWM1 enabled\n");
6552         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6553              "CPU PWM2 enabled\n");
6554         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6555              "PCH PWM1 enabled\n");
6556         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6557              "Utility pin enabled\n");
6558         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6559
6560         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6561         val = I915_READ(DEIMR);
6562         WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6563              "Unexpected DEIMR bits enabled: 0x%x\n", val);
6564         val = I915_READ(SDEIMR);
6565         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6566              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6567         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6568 }
6569
6570 /*
6571  * This function implements pieces of two sequences from BSpec:
6572  * - Sequence for display software to disable LCPLL
6573  * - Sequence for display software to allow package C8+
6574  * The steps implemented here are just the steps that actually touch the LCPLL
6575  * register. Callers should take care of disabling all the display engine
6576  * functions, doing the mode unset, fixing interrupts, etc.
6577  */
6578 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6579                               bool switch_to_fclk, bool allow_power_down)
6580 {
6581         uint32_t val;
6582
6583         assert_can_disable_lcpll(dev_priv);
6584
6585         val = I915_READ(LCPLL_CTL);
6586
6587         if (switch_to_fclk) {
6588                 val |= LCPLL_CD_SOURCE_FCLK;
6589                 I915_WRITE(LCPLL_CTL, val);
6590
6591                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6592                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6593                         DRM_ERROR("Switching to FCLK failed\n");
6594
6595                 val = I915_READ(LCPLL_CTL);
6596         }
6597
6598         val |= LCPLL_PLL_DISABLE;
6599         I915_WRITE(LCPLL_CTL, val);
6600         POSTING_READ(LCPLL_CTL);
6601
6602         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6603                 DRM_ERROR("LCPLL still locked\n");
6604
6605         val = I915_READ(D_COMP);
6606         val |= D_COMP_COMP_DISABLE;
6607         mutex_lock(&dev_priv->rps.hw_lock);
6608         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6609                 DRM_ERROR("Failed to disable D_COMP\n");
6610         mutex_unlock(&dev_priv->rps.hw_lock);
6611         POSTING_READ(D_COMP);
6612         ndelay(100);
6613
6614         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6615                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6616
6617         if (allow_power_down) {
6618                 val = I915_READ(LCPLL_CTL);
6619                 val |= LCPLL_POWER_DOWN_ALLOW;
6620                 I915_WRITE(LCPLL_CTL, val);
6621                 POSTING_READ(LCPLL_CTL);
6622         }
6623 }
6624
6625 /*
6626  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6627  * source.
6628  */
6629 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6630 {
6631         uint32_t val;
6632
6633         val = I915_READ(LCPLL_CTL);
6634
6635         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6636                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6637                 return;
6638
6639         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6640          * we'll hang the machine! */
6641         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
6642
6643         if (val & LCPLL_POWER_DOWN_ALLOW) {
6644                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6645                 I915_WRITE(LCPLL_CTL, val);
6646                 POSTING_READ(LCPLL_CTL);
6647         }
6648
6649         val = I915_READ(D_COMP);
6650         val |= D_COMP_COMP_FORCE;
6651         val &= ~D_COMP_COMP_DISABLE;
6652         mutex_lock(&dev_priv->rps.hw_lock);
6653         if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6654                 DRM_ERROR("Failed to enable D_COMP\n");
6655         mutex_unlock(&dev_priv->rps.hw_lock);
6656         POSTING_READ(D_COMP);
6657
6658         val = I915_READ(LCPLL_CTL);
6659         val &= ~LCPLL_PLL_DISABLE;
6660         I915_WRITE(LCPLL_CTL, val);
6661
6662         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6663                 DRM_ERROR("LCPLL not locked yet\n");
6664
6665         if (val & LCPLL_CD_SOURCE_FCLK) {
6666                 val = I915_READ(LCPLL_CTL);
6667                 val &= ~LCPLL_CD_SOURCE_FCLK;
6668                 I915_WRITE(LCPLL_CTL, val);
6669
6670                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6671                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6672                         DRM_ERROR("Switching back to LCPLL failed\n");
6673         }
6674
6675         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
6676 }
6677
6678 void hsw_enable_pc8_work(struct work_struct *__work)
6679 {
6680         struct drm_i915_private *dev_priv =
6681                 container_of(to_delayed_work(__work), struct drm_i915_private,
6682                              pc8.enable_work);
6683         struct drm_device *dev = dev_priv->dev;
6684         uint32_t val;
6685
6686         WARN_ON(!HAS_PC8(dev));
6687
6688         if (dev_priv->pc8.enabled)
6689                 return;
6690
6691         DRM_DEBUG_KMS("Enabling package C8+\n");
6692
6693         dev_priv->pc8.enabled = true;
6694
6695         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6696                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6697                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6698                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6699         }
6700
6701         lpt_disable_clkout_dp(dev);
6702         hsw_pc8_disable_interrupts(dev);
6703         hsw_disable_lcpll(dev_priv, true, true);
6704
6705         intel_runtime_pm_put(dev_priv);
6706 }
6707
6708 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6709 {
6710         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6711         WARN(dev_priv->pc8.disable_count < 1,
6712              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6713
6714         dev_priv->pc8.disable_count--;
6715         if (dev_priv->pc8.disable_count != 0)
6716                 return;
6717
6718         schedule_delayed_work(&dev_priv->pc8.enable_work,
6719                               msecs_to_jiffies(i915_pc8_timeout));
6720 }
6721
6722 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6723 {
6724         struct drm_device *dev = dev_priv->dev;
6725         uint32_t val;
6726
6727         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6728         WARN(dev_priv->pc8.disable_count < 0,
6729              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6730
6731         dev_priv->pc8.disable_count++;
6732         if (dev_priv->pc8.disable_count != 1)
6733                 return;
6734
6735         WARN_ON(!HAS_PC8(dev));
6736
6737         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6738         if (!dev_priv->pc8.enabled)
6739                 return;
6740
6741         DRM_DEBUG_KMS("Disabling package C8+\n");
6742
6743         intel_runtime_pm_get(dev_priv);
6744
6745         hsw_restore_lcpll(dev_priv);
6746         hsw_pc8_restore_interrupts(dev);
6747         lpt_init_pch_refclk(dev);
6748
6749         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6750                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6751                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6752                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6753         }
6754
6755         intel_prepare_ddi(dev);
6756         i915_gem_init_swizzling(dev);
6757         mutex_lock(&dev_priv->rps.hw_lock);
6758         gen6_update_ring_freq(dev);
6759         mutex_unlock(&dev_priv->rps.hw_lock);
6760         dev_priv->pc8.enabled = false;
6761 }
6762
6763 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6764 {
6765         if (!HAS_PC8(dev_priv->dev))
6766                 return;
6767
6768         mutex_lock(&dev_priv->pc8.lock);
6769         __hsw_enable_package_c8(dev_priv);
6770         mutex_unlock(&dev_priv->pc8.lock);
6771 }
6772
6773 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6774 {
6775         if (!HAS_PC8(dev_priv->dev))
6776                 return;
6777
6778         mutex_lock(&dev_priv->pc8.lock);
6779         __hsw_disable_package_c8(dev_priv);
6780         mutex_unlock(&dev_priv->pc8.lock);
6781 }
6782
6783 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6784 {
6785         struct drm_device *dev = dev_priv->dev;
6786         struct intel_crtc *crtc;
6787         uint32_t val;
6788
6789         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6790                 if (crtc->base.enabled)
6791                         return false;
6792
6793         /* This case is still possible since we have the i915.disable_power_well
6794          * parameter and also the KVMr or something else might be requesting the
6795          * power well. */
6796         val = I915_READ(HSW_PWR_WELL_DRIVER);
6797         if (val != 0) {
6798                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6799                 return false;
6800         }
6801
6802         return true;
6803 }
6804
6805 /* Since we're called from modeset_global_resources there's no way to
6806  * symmetrically increase and decrease the refcount, so we use
6807  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6808  * or not.
6809  */
6810 static void hsw_update_package_c8(struct drm_device *dev)
6811 {
6812         struct drm_i915_private *dev_priv = dev->dev_private;
6813         bool allow;
6814
6815         if (!HAS_PC8(dev_priv->dev))
6816                 return;
6817
6818         if (!i915_enable_pc8)
6819                 return;
6820
6821         mutex_lock(&dev_priv->pc8.lock);
6822
6823         allow = hsw_can_enable_package_c8(dev_priv);
6824
6825         if (allow == dev_priv->pc8.requirements_met)
6826                 goto done;
6827
6828         dev_priv->pc8.requirements_met = allow;
6829
6830         if (allow)
6831                 __hsw_enable_package_c8(dev_priv);
6832         else
6833                 __hsw_disable_package_c8(dev_priv);
6834
6835 done:
6836         mutex_unlock(&dev_priv->pc8.lock);
6837 }
6838
6839 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6840 {
6841         if (!HAS_PC8(dev_priv->dev))
6842                 return;
6843
6844         mutex_lock(&dev_priv->pc8.lock);
6845         if (!dev_priv->pc8.gpu_idle) {
6846                 dev_priv->pc8.gpu_idle = true;
6847                 __hsw_enable_package_c8(dev_priv);
6848         }
6849         mutex_unlock(&dev_priv->pc8.lock);
6850 }
6851
6852 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6853 {
6854         if (!HAS_PC8(dev_priv->dev))
6855                 return;
6856
6857         mutex_lock(&dev_priv->pc8.lock);
6858         if (dev_priv->pc8.gpu_idle) {
6859                 dev_priv->pc8.gpu_idle = false;
6860                 __hsw_disable_package_c8(dev_priv);
6861         }
6862         mutex_unlock(&dev_priv->pc8.lock);
6863 }
6864
6865 #define for_each_power_domain(domain, mask)                             \
6866         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
6867                 if ((1 << (domain)) & (mask))
6868
6869 static unsigned long get_pipe_power_domains(struct drm_device *dev,
6870                                             enum pipe pipe, bool pfit_enabled)
6871 {
6872         unsigned long mask;
6873         enum transcoder transcoder;
6874
6875         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6876
6877         mask = BIT(POWER_DOMAIN_PIPE(pipe));
6878         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6879         if (pfit_enabled)
6880                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6881
6882         return mask;
6883 }
6884
6885 void intel_display_set_init_power(struct drm_device *dev, bool enable)
6886 {
6887         struct drm_i915_private *dev_priv = dev->dev_private;
6888
6889         if (dev_priv->power_domains.init_power_on == enable)
6890                 return;
6891
6892         if (enable)
6893                 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6894         else
6895                 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6896
6897         dev_priv->power_domains.init_power_on = enable;
6898 }
6899
6900 static void modeset_update_power_wells(struct drm_device *dev)
6901 {
6902         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6903         struct intel_crtc *crtc;
6904
6905         /*
6906          * First get all needed power domains, then put all unneeded, to avoid
6907          * any unnecessary toggling of the power wells.
6908          */
6909         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6910                 enum intel_display_power_domain domain;
6911
6912                 if (!crtc->base.enabled)
6913                         continue;
6914
6915                 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6916                                                 crtc->pipe,
6917                                                 crtc->config.pch_pfit.enabled);
6918
6919                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6920                         intel_display_power_get(dev, domain);
6921         }
6922
6923         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6924                 enum intel_display_power_domain domain;
6925
6926                 for_each_power_domain(domain, crtc->enabled_power_domains)
6927                         intel_display_power_put(dev, domain);
6928
6929                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6930         }
6931
6932         intel_display_set_init_power(dev, false);
6933 }
6934
6935 static void haswell_modeset_global_resources(struct drm_device *dev)
6936 {
6937         modeset_update_power_wells(dev);
6938         hsw_update_package_c8(dev);
6939 }
6940
6941 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6942                                  int x, int y,
6943                                  struct drm_framebuffer *fb)
6944 {
6945         struct drm_device *dev = crtc->dev;
6946         struct drm_i915_private *dev_priv = dev->dev_private;
6947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6948         int plane = intel_crtc->plane;
6949         int ret;
6950
6951         if (!intel_ddi_pll_select(intel_crtc))
6952                 return -EINVAL;
6953         intel_ddi_pll_enable(intel_crtc);
6954
6955         if (intel_crtc->config.has_dp_encoder)
6956                 intel_dp_set_m_n(intel_crtc);
6957
6958         intel_crtc->lowfreq_avail = false;
6959
6960         intel_set_pipe_timings(intel_crtc);
6961
6962         if (intel_crtc->config.has_pch_encoder) {
6963                 intel_cpu_transcoder_set_m_n(intel_crtc,
6964                                              &intel_crtc->config.fdi_m_n);
6965         }
6966
6967         haswell_set_pipeconf(crtc);
6968
6969         intel_set_pipe_csc(crtc);
6970
6971         /* Set up the display plane register */
6972         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6973         POSTING_READ(DSPCNTR(plane));
6974
6975         ret = intel_pipe_set_base(crtc, x, y, fb);
6976
6977         return ret;
6978 }
6979
6980 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6981                                     struct intel_crtc_config *pipe_config)
6982 {
6983         struct drm_device *dev = crtc->base.dev;
6984         struct drm_i915_private *dev_priv = dev->dev_private;
6985         enum intel_display_power_domain pfit_domain;
6986         uint32_t tmp;
6987
6988         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6989         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6990
6991         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6992         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6993                 enum pipe trans_edp_pipe;
6994                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6995                 default:
6996                         WARN(1, "unknown pipe linked to edp transcoder\n");
6997                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6998                 case TRANS_DDI_EDP_INPUT_A_ON:
6999                         trans_edp_pipe = PIPE_A;
7000                         break;
7001                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7002                         trans_edp_pipe = PIPE_B;
7003                         break;
7004                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7005                         trans_edp_pipe = PIPE_C;
7006                         break;
7007                 }
7008
7009                 if (trans_edp_pipe == crtc->pipe)
7010                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
7011         }
7012
7013         if (!intel_display_power_enabled(dev,
7014                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7015                 return false;
7016
7017         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7018         if (!(tmp & PIPECONF_ENABLE))
7019                 return false;
7020
7021         /*
7022          * Haswell has only FDI/PCH transcoder A. It is which is connected to
7023          * DDI E. So just check whether this pipe is wired to DDI E and whether
7024          * the PCH transcoder is on.
7025          */
7026         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7027         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
7028             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7029                 pipe_config->has_pch_encoder = true;
7030
7031                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7032                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7033                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7034
7035                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7036         }
7037
7038         intel_get_pipe_timings(crtc, pipe_config);
7039
7040         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7041         if (intel_display_power_enabled(dev, pfit_domain))
7042                 ironlake_get_pfit_config(crtc, pipe_config);
7043
7044         if (IS_HASWELL(dev))
7045                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7046                         (I915_READ(IPS_CTL) & IPS_ENABLE);
7047
7048         pipe_config->pixel_multiplier = 1;
7049
7050         return true;
7051 }
7052
7053 static int intel_crtc_mode_set(struct drm_crtc *crtc,
7054                                int x, int y,
7055                                struct drm_framebuffer *fb)
7056 {
7057         struct drm_device *dev = crtc->dev;
7058         struct drm_i915_private *dev_priv = dev->dev_private;
7059         struct intel_encoder *encoder;
7060         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7061         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7062         int pipe = intel_crtc->pipe;
7063         int ret;
7064
7065         drm_vblank_pre_modeset(dev, pipe);
7066
7067         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7068
7069         drm_vblank_post_modeset(dev, pipe);
7070
7071         if (ret != 0)
7072                 return ret;
7073
7074         for_each_encoder_on_crtc(dev, crtc, encoder) {
7075                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7076                         encoder->base.base.id,
7077                         drm_get_encoder_name(&encoder->base),
7078                         mode->base.id, mode->name);
7079                 encoder->mode_set(encoder);
7080         }
7081
7082         return 0;
7083 }
7084
7085 static struct {
7086         int clock;
7087         u32 config;
7088 } hdmi_audio_clock[] = {
7089         { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7090         { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7091         { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7092         { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7093         { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7094         { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7095         { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7096         { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7097         { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7098         { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7099 };
7100
7101 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7102 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7103 {
7104         int i;
7105
7106         for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7107                 if (mode->clock == hdmi_audio_clock[i].clock)
7108                         break;
7109         }
7110
7111         if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7112                 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7113                 i = 1;
7114         }
7115
7116         DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7117                       hdmi_audio_clock[i].clock,
7118                       hdmi_audio_clock[i].config);
7119
7120         return hdmi_audio_clock[i].config;
7121 }
7122
7123 static bool intel_eld_uptodate(struct drm_connector *connector,
7124                                int reg_eldv, uint32_t bits_eldv,
7125                                int reg_elda, uint32_t bits_elda,
7126                                int reg_edid)
7127 {
7128         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7129         uint8_t *eld = connector->eld;
7130         uint32_t i;
7131
7132         i = I915_READ(reg_eldv);
7133         i &= bits_eldv;
7134
7135         if (!eld[0])
7136                 return !i;
7137
7138         if (!i)
7139                 return false;
7140
7141         i = I915_READ(reg_elda);
7142         i &= ~bits_elda;
7143         I915_WRITE(reg_elda, i);
7144
7145         for (i = 0; i < eld[2]; i++)
7146                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7147                         return false;
7148
7149         return true;
7150 }
7151
7152 static void g4x_write_eld(struct drm_connector *connector,
7153                           struct drm_crtc *crtc,
7154                           struct drm_display_mode *mode)
7155 {
7156         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7157         uint8_t *eld = connector->eld;
7158         uint32_t eldv;
7159         uint32_t len;
7160         uint32_t i;
7161
7162         i = I915_READ(G4X_AUD_VID_DID);
7163
7164         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7165                 eldv = G4X_ELDV_DEVCL_DEVBLC;
7166         else
7167                 eldv = G4X_ELDV_DEVCTG;
7168
7169         if (intel_eld_uptodate(connector,
7170                                G4X_AUD_CNTL_ST, eldv,
7171                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7172                                G4X_HDMIW_HDMIEDID))
7173                 return;
7174
7175         i = I915_READ(G4X_AUD_CNTL_ST);
7176         i &= ~(eldv | G4X_ELD_ADDR);
7177         len = (i >> 9) & 0x1f;          /* ELD buffer size */
7178         I915_WRITE(G4X_AUD_CNTL_ST, i);
7179
7180         if (!eld[0])
7181                 return;
7182
7183         len = min_t(uint8_t, eld[2], len);
7184         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7185         for (i = 0; i < len; i++)
7186                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7187
7188         i = I915_READ(G4X_AUD_CNTL_ST);
7189         i |= eldv;
7190         I915_WRITE(G4X_AUD_CNTL_ST, i);
7191 }
7192
7193 static void haswell_write_eld(struct drm_connector *connector,
7194                               struct drm_crtc *crtc,
7195                               struct drm_display_mode *mode)
7196 {
7197         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7198         uint8_t *eld = connector->eld;
7199         struct drm_device *dev = crtc->dev;
7200         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7201         uint32_t eldv;
7202         uint32_t i;
7203         int len;
7204         int pipe = to_intel_crtc(crtc)->pipe;
7205         int tmp;
7206
7207         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7208         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7209         int aud_config = HSW_AUD_CFG(pipe);
7210         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7211
7212
7213         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7214
7215         /* Audio output enable */
7216         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7217         tmp = I915_READ(aud_cntrl_st2);
7218         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7219         I915_WRITE(aud_cntrl_st2, tmp);
7220
7221         /* Wait for 1 vertical blank */
7222         intel_wait_for_vblank(dev, pipe);
7223
7224         /* Set ELD valid state */
7225         tmp = I915_READ(aud_cntrl_st2);
7226         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7227         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7228         I915_WRITE(aud_cntrl_st2, tmp);
7229         tmp = I915_READ(aud_cntrl_st2);
7230         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7231
7232         /* Enable HDMI mode */
7233         tmp = I915_READ(aud_config);
7234         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7235         /* clear N_programing_enable and N_value_index */
7236         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7237         I915_WRITE(aud_config, tmp);
7238
7239         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7240
7241         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7242         intel_crtc->eld_vld = true;
7243
7244         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7245                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7246                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7247                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7248         } else {
7249                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7250         }
7251
7252         if (intel_eld_uptodate(connector,
7253                                aud_cntrl_st2, eldv,
7254                                aud_cntl_st, IBX_ELD_ADDRESS,
7255                                hdmiw_hdmiedid))
7256                 return;
7257
7258         i = I915_READ(aud_cntrl_st2);
7259         i &= ~eldv;
7260         I915_WRITE(aud_cntrl_st2, i);
7261
7262         if (!eld[0])
7263                 return;
7264
7265         i = I915_READ(aud_cntl_st);
7266         i &= ~IBX_ELD_ADDRESS;
7267         I915_WRITE(aud_cntl_st, i);
7268         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
7269         DRM_DEBUG_DRIVER("port num:%d\n", i);
7270
7271         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7272         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7273         for (i = 0; i < len; i++)
7274                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7275
7276         i = I915_READ(aud_cntrl_st2);
7277         i |= eldv;
7278         I915_WRITE(aud_cntrl_st2, i);
7279
7280 }
7281
7282 static void ironlake_write_eld(struct drm_connector *connector,
7283                                struct drm_crtc *crtc,
7284                                struct drm_display_mode *mode)
7285 {
7286         struct drm_i915_private *dev_priv = connector->dev->dev_private;
7287         uint8_t *eld = connector->eld;
7288         uint32_t eldv;
7289         uint32_t i;
7290         int len;
7291         int hdmiw_hdmiedid;
7292         int aud_config;
7293         int aud_cntl_st;
7294         int aud_cntrl_st2;
7295         int pipe = to_intel_crtc(crtc)->pipe;
7296
7297         if (HAS_PCH_IBX(connector->dev)) {
7298                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7299                 aud_config = IBX_AUD_CFG(pipe);
7300                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7301                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7302         } else if (IS_VALLEYVIEW(connector->dev)) {
7303                 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7304                 aud_config = VLV_AUD_CFG(pipe);
7305                 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7306                 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7307         } else {
7308                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7309                 aud_config = CPT_AUD_CFG(pipe);
7310                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7311                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7312         }
7313
7314         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7315
7316         if (IS_VALLEYVIEW(connector->dev))  {
7317                 struct intel_encoder *intel_encoder;
7318                 struct intel_digital_port *intel_dig_port;
7319
7320                 intel_encoder = intel_attached_encoder(connector);
7321                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7322                 i = intel_dig_port->port;
7323         } else {
7324                 i = I915_READ(aud_cntl_st);
7325                 i = (i >> 29) & DIP_PORT_SEL_MASK;
7326                 /* DIP_Port_Select, 0x1 = PortB */
7327         }
7328
7329         if (!i) {
7330                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7331                 /* operate blindly on all ports */
7332                 eldv = IBX_ELD_VALIDB;
7333                 eldv |= IBX_ELD_VALIDB << 4;
7334                 eldv |= IBX_ELD_VALIDB << 8;
7335         } else {
7336                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7337                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7338         }
7339
7340         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7341                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7342                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
7343                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7344         } else {
7345                 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7346         }
7347
7348         if (intel_eld_uptodate(connector,
7349                                aud_cntrl_st2, eldv,
7350                                aud_cntl_st, IBX_ELD_ADDRESS,
7351                                hdmiw_hdmiedid))
7352                 return;
7353
7354         i = I915_READ(aud_cntrl_st2);
7355         i &= ~eldv;
7356         I915_WRITE(aud_cntrl_st2, i);
7357
7358         if (!eld[0])
7359                 return;
7360
7361         i = I915_READ(aud_cntl_st);
7362         i &= ~IBX_ELD_ADDRESS;
7363         I915_WRITE(aud_cntl_st, i);
7364
7365         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
7366         DRM_DEBUG_DRIVER("ELD size %d\n", len);
7367         for (i = 0; i < len; i++)
7368                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7369
7370         i = I915_READ(aud_cntrl_st2);
7371         i |= eldv;
7372         I915_WRITE(aud_cntrl_st2, i);
7373 }
7374
7375 void intel_write_eld(struct drm_encoder *encoder,
7376                      struct drm_display_mode *mode)
7377 {
7378         struct drm_crtc *crtc = encoder->crtc;
7379         struct drm_connector *connector;
7380         struct drm_device *dev = encoder->dev;
7381         struct drm_i915_private *dev_priv = dev->dev_private;
7382
7383         connector = drm_select_eld(encoder, mode);
7384         if (!connector)
7385                 return;
7386
7387         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7388                          connector->base.id,
7389                          drm_get_connector_name(connector),
7390                          connector->encoder->base.id,
7391                          drm_get_encoder_name(connector->encoder));
7392
7393         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7394
7395         if (dev_priv->display.write_eld)
7396                 dev_priv->display.write_eld(connector, crtc, mode);
7397 }
7398
7399 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7400 {
7401         struct drm_device *dev = crtc->dev;
7402         struct drm_i915_private *dev_priv = dev->dev_private;
7403         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7404         bool visible = base != 0;
7405         u32 cntl;
7406
7407         if (intel_crtc->cursor_visible == visible)
7408                 return;
7409
7410         cntl = I915_READ(_CURACNTR);
7411         if (visible) {
7412                 /* On these chipsets we can only modify the base whilst
7413                  * the cursor is disabled.
7414                  */
7415                 I915_WRITE(_CURABASE, base);
7416
7417                 cntl &= ~(CURSOR_FORMAT_MASK);
7418                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7419                 cntl |= CURSOR_ENABLE |
7420                         CURSOR_GAMMA_ENABLE |
7421                         CURSOR_FORMAT_ARGB;
7422         } else
7423                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7424         I915_WRITE(_CURACNTR, cntl);
7425
7426         intel_crtc->cursor_visible = visible;
7427 }
7428
7429 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7430 {
7431         struct drm_device *dev = crtc->dev;
7432         struct drm_i915_private *dev_priv = dev->dev_private;
7433         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7434         int pipe = intel_crtc->pipe;
7435         bool visible = base != 0;
7436
7437         if (intel_crtc->cursor_visible != visible) {
7438                 uint32_t cntl = I915_READ(CURCNTR(pipe));
7439                 if (base) {
7440                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7441                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7442                         cntl |= pipe << 28; /* Connect to correct pipe */
7443                 } else {
7444                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7445                         cntl |= CURSOR_MODE_DISABLE;
7446                 }
7447                 I915_WRITE(CURCNTR(pipe), cntl);
7448
7449                 intel_crtc->cursor_visible = visible;
7450         }
7451         /* and commit changes on next vblank */
7452         POSTING_READ(CURCNTR(pipe));
7453         I915_WRITE(CURBASE(pipe), base);
7454         POSTING_READ(CURBASE(pipe));
7455 }
7456
7457 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7458 {
7459         struct drm_device *dev = crtc->dev;
7460         struct drm_i915_private *dev_priv = dev->dev_private;
7461         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7462         int pipe = intel_crtc->pipe;
7463         bool visible = base != 0;
7464
7465         if (intel_crtc->cursor_visible != visible) {
7466                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7467                 if (base) {
7468                         cntl &= ~CURSOR_MODE;
7469                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7470                 } else {
7471                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7472                         cntl |= CURSOR_MODE_DISABLE;
7473                 }
7474                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7475                         cntl |= CURSOR_PIPE_CSC_ENABLE;
7476                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7477                 }
7478                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7479
7480                 intel_crtc->cursor_visible = visible;
7481         }
7482         /* and commit changes on next vblank */
7483         POSTING_READ(CURCNTR_IVB(pipe));
7484         I915_WRITE(CURBASE_IVB(pipe), base);
7485         POSTING_READ(CURBASE_IVB(pipe));
7486 }
7487
7488 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7489 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7490                                      bool on)
7491 {
7492         struct drm_device *dev = crtc->dev;
7493         struct drm_i915_private *dev_priv = dev->dev_private;
7494         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7495         int pipe = intel_crtc->pipe;
7496         int x = intel_crtc->cursor_x;
7497         int y = intel_crtc->cursor_y;
7498         u32 base = 0, pos = 0;
7499         bool visible;
7500
7501         if (on)
7502                 base = intel_crtc->cursor_addr;
7503
7504         if (x >= intel_crtc->config.pipe_src_w)
7505                 base = 0;
7506
7507         if (y >= intel_crtc->config.pipe_src_h)
7508                 base = 0;
7509
7510         if (x < 0) {
7511                 if (x + intel_crtc->cursor_width <= 0)
7512                         base = 0;
7513
7514                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7515                 x = -x;
7516         }
7517         pos |= x << CURSOR_X_SHIFT;
7518
7519         if (y < 0) {
7520                 if (y + intel_crtc->cursor_height <= 0)
7521                         base = 0;
7522
7523                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7524                 y = -y;
7525         }
7526         pos |= y << CURSOR_Y_SHIFT;
7527
7528         visible = base != 0;
7529         if (!visible && !intel_crtc->cursor_visible)
7530                 return;
7531
7532         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7533                 I915_WRITE(CURPOS_IVB(pipe), pos);
7534                 ivb_update_cursor(crtc, base);
7535         } else {
7536                 I915_WRITE(CURPOS(pipe), pos);
7537                 if (IS_845G(dev) || IS_I865G(dev))
7538                         i845_update_cursor(crtc, base);
7539                 else
7540                         i9xx_update_cursor(crtc, base);
7541         }
7542 }
7543
7544 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7545                                  struct drm_file *file,
7546                                  uint32_t handle,
7547                                  uint32_t width, uint32_t height)
7548 {
7549         struct drm_device *dev = crtc->dev;
7550         struct drm_i915_private *dev_priv = dev->dev_private;
7551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7552         struct drm_i915_gem_object *obj;
7553         uint32_t addr;
7554         int ret;
7555
7556         /* if we want to turn off the cursor ignore width and height */
7557         if (!handle) {
7558                 DRM_DEBUG_KMS("cursor off\n");
7559                 addr = 0;
7560                 obj = NULL;
7561                 mutex_lock(&dev->struct_mutex);
7562                 goto finish;
7563         }
7564
7565         /* Currently we only support 64x64 cursors */
7566         if (width != 64 || height != 64) {
7567                 DRM_ERROR("we currently only support 64x64 cursors\n");
7568                 return -EINVAL;
7569         }
7570
7571         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7572         if (&obj->base == NULL)
7573                 return -ENOENT;
7574
7575         if (obj->base.size < width * height * 4) {
7576                 DRM_ERROR("buffer is to small\n");
7577                 ret = -ENOMEM;
7578                 goto fail;
7579         }
7580
7581         /* we only need to pin inside GTT if cursor is non-phy */
7582         mutex_lock(&dev->struct_mutex);
7583         if (!dev_priv->info->cursor_needs_physical) {
7584                 unsigned alignment;
7585
7586                 if (obj->tiling_mode) {
7587                         DRM_ERROR("cursor cannot be tiled\n");
7588                         ret = -EINVAL;
7589                         goto fail_locked;
7590                 }
7591
7592                 /* Note that the w/a also requires 2 PTE of padding following
7593                  * the bo. We currently fill all unused PTE with the shadow
7594                  * page and so we should always have valid PTE following the
7595                  * cursor preventing the VT-d warning.
7596                  */
7597                 alignment = 0;
7598                 if (need_vtd_wa(dev))
7599                         alignment = 64*1024;
7600
7601                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7602                 if (ret) {
7603                         DRM_ERROR("failed to move cursor bo into the GTT\n");
7604                         goto fail_locked;
7605                 }
7606
7607                 ret = i915_gem_object_put_fence(obj);
7608                 if (ret) {
7609                         DRM_ERROR("failed to release fence for cursor");
7610                         goto fail_unpin;
7611                 }
7612
7613                 addr = i915_gem_obj_ggtt_offset(obj);
7614         } else {
7615                 int align = IS_I830(dev) ? 16 * 1024 : 256;
7616                 ret = i915_gem_attach_phys_object(dev, obj,
7617                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7618                                                   align);
7619                 if (ret) {
7620                         DRM_ERROR("failed to attach phys object\n");
7621                         goto fail_locked;
7622                 }
7623                 addr = obj->phys_obj->handle->busaddr;
7624         }
7625
7626         if (IS_GEN2(dev))
7627                 I915_WRITE(CURSIZE, (height << 12) | width);
7628
7629  finish:
7630         if (intel_crtc->cursor_bo) {
7631                 if (dev_priv->info->cursor_needs_physical) {
7632                         if (intel_crtc->cursor_bo != obj)
7633                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7634                 } else
7635                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7636                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7637         }
7638
7639         mutex_unlock(&dev->struct_mutex);
7640
7641         intel_crtc->cursor_addr = addr;
7642         intel_crtc->cursor_bo = obj;
7643         intel_crtc->cursor_width = width;
7644         intel_crtc->cursor_height = height;
7645
7646         if (intel_crtc->active)
7647                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7648
7649         return 0;
7650 fail_unpin:
7651         i915_gem_object_unpin_from_display_plane(obj);
7652 fail_locked:
7653         mutex_unlock(&dev->struct_mutex);
7654 fail:
7655         drm_gem_object_unreference_unlocked(&obj->base);
7656         return ret;
7657 }
7658
7659 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7660 {
7661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7662
7663         intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7664         intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7665
7666         if (intel_crtc->active)
7667                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7668
7669         return 0;
7670 }
7671
7672 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7673                                  u16 *blue, uint32_t start, uint32_t size)
7674 {
7675         int end = (start + size > 256) ? 256 : start + size, i;
7676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7677
7678         for (i = start; i < end; i++) {
7679                 intel_crtc->lut_r[i] = red[i] >> 8;
7680                 intel_crtc->lut_g[i] = green[i] >> 8;
7681                 intel_crtc->lut_b[i] = blue[i] >> 8;
7682         }
7683
7684         intel_crtc_load_lut(crtc);
7685 }
7686
7687 /* VESA 640x480x72Hz mode to set on the pipe */
7688 static struct drm_display_mode load_detect_mode = {
7689         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7690                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7691 };
7692
7693 static struct drm_framebuffer *
7694 intel_framebuffer_create(struct drm_device *dev,
7695                          struct drm_mode_fb_cmd2 *mode_cmd,
7696                          struct drm_i915_gem_object *obj)
7697 {
7698         struct intel_framebuffer *intel_fb;
7699         int ret;
7700
7701         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7702         if (!intel_fb) {
7703                 drm_gem_object_unreference_unlocked(&obj->base);
7704                 return ERR_PTR(-ENOMEM);
7705         }
7706
7707         ret = i915_mutex_lock_interruptible(dev);
7708         if (ret)
7709                 goto err;
7710
7711         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7712         mutex_unlock(&dev->struct_mutex);
7713         if (ret)
7714                 goto err;
7715
7716         return &intel_fb->base;
7717 err:
7718         drm_gem_object_unreference_unlocked(&obj->base);
7719         kfree(intel_fb);
7720
7721         return ERR_PTR(ret);
7722 }
7723
7724 static u32
7725 intel_framebuffer_pitch_for_width(int width, int bpp)
7726 {
7727         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7728         return ALIGN(pitch, 64);
7729 }
7730
7731 static u32
7732 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7733 {
7734         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7735         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7736 }
7737
7738 static struct drm_framebuffer *
7739 intel_framebuffer_create_for_mode(struct drm_device *dev,
7740                                   struct drm_display_mode *mode,
7741                                   int depth, int bpp)
7742 {
7743         struct drm_i915_gem_object *obj;
7744         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7745
7746         obj = i915_gem_alloc_object(dev,
7747                                     intel_framebuffer_size_for_mode(mode, bpp));
7748         if (obj == NULL)
7749                 return ERR_PTR(-ENOMEM);
7750
7751         mode_cmd.width = mode->hdisplay;
7752         mode_cmd.height = mode->vdisplay;
7753         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7754                                                                 bpp);
7755         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7756
7757         return intel_framebuffer_create(dev, &mode_cmd, obj);
7758 }
7759
7760 static struct drm_framebuffer *
7761 mode_fits_in_fbdev(struct drm_device *dev,
7762                    struct drm_display_mode *mode)
7763 {
7764 #ifdef CONFIG_DRM_I915_FBDEV
7765         struct drm_i915_private *dev_priv = dev->dev_private;
7766         struct drm_i915_gem_object *obj;
7767         struct drm_framebuffer *fb;
7768
7769         if (dev_priv->fbdev == NULL)
7770                 return NULL;
7771
7772         obj = dev_priv->fbdev->ifb.obj;
7773         if (obj == NULL)
7774                 return NULL;
7775
7776         fb = &dev_priv->fbdev->ifb.base;
7777         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7778                                                                fb->bits_per_pixel))
7779                 return NULL;
7780
7781         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7782                 return NULL;
7783
7784         return fb;
7785 #else
7786         return NULL;
7787 #endif
7788 }
7789
7790 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7791                                 struct drm_display_mode *mode,
7792                                 struct intel_load_detect_pipe *old)
7793 {
7794         struct intel_crtc *intel_crtc;
7795         struct intel_encoder *intel_encoder =
7796                 intel_attached_encoder(connector);
7797         struct drm_crtc *possible_crtc;
7798         struct drm_encoder *encoder = &intel_encoder->base;
7799         struct drm_crtc *crtc = NULL;
7800         struct drm_device *dev = encoder->dev;
7801         struct drm_framebuffer *fb;
7802         int i = -1;
7803
7804         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7805                       connector->base.id, drm_get_connector_name(connector),
7806                       encoder->base.id, drm_get_encoder_name(encoder));
7807
7808         /*
7809          * Algorithm gets a little messy:
7810          *
7811          *   - if the connector already has an assigned crtc, use it (but make
7812          *     sure it's on first)
7813          *
7814          *   - try to find the first unused crtc that can drive this connector,
7815          *     and use that if we find one
7816          */
7817
7818         /* See if we already have a CRTC for this connector */
7819         if (encoder->crtc) {
7820                 crtc = encoder->crtc;
7821
7822                 mutex_lock(&crtc->mutex);
7823
7824                 old->dpms_mode = connector->dpms;
7825                 old->load_detect_temp = false;
7826
7827                 /* Make sure the crtc and connector are running */
7828                 if (connector->dpms != DRM_MODE_DPMS_ON)
7829                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7830
7831                 return true;
7832         }
7833
7834         /* Find an unused one (if possible) */
7835         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7836                 i++;
7837                 if (!(encoder->possible_crtcs & (1 << i)))
7838                         continue;
7839                 if (!possible_crtc->enabled) {
7840                         crtc = possible_crtc;
7841                         break;
7842                 }
7843         }
7844
7845         /*
7846          * If we didn't find an unused CRTC, don't use any.
7847          */
7848         if (!crtc) {
7849                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7850                 return false;
7851         }
7852
7853         mutex_lock(&crtc->mutex);
7854         intel_encoder->new_crtc = to_intel_crtc(crtc);
7855         to_intel_connector(connector)->new_encoder = intel_encoder;
7856
7857         intel_crtc = to_intel_crtc(crtc);
7858         old->dpms_mode = connector->dpms;
7859         old->load_detect_temp = true;
7860         old->release_fb = NULL;
7861
7862         if (!mode)
7863                 mode = &load_detect_mode;
7864
7865         /* We need a framebuffer large enough to accommodate all accesses
7866          * that the plane may generate whilst we perform load detection.
7867          * We can not rely on the fbcon either being present (we get called
7868          * during its initialisation to detect all boot displays, or it may
7869          * not even exist) or that it is large enough to satisfy the
7870          * requested mode.
7871          */
7872         fb = mode_fits_in_fbdev(dev, mode);
7873         if (fb == NULL) {
7874                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7875                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7876                 old->release_fb = fb;
7877         } else
7878                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7879         if (IS_ERR(fb)) {
7880                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7881                 mutex_unlock(&crtc->mutex);
7882                 return false;
7883         }
7884
7885         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7886                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7887                 if (old->release_fb)
7888                         old->release_fb->funcs->destroy(old->release_fb);
7889                 mutex_unlock(&crtc->mutex);
7890                 return false;
7891         }
7892
7893         /* let the connector get through one full cycle before testing */
7894         intel_wait_for_vblank(dev, intel_crtc->pipe);
7895         return true;
7896 }
7897
7898 void intel_release_load_detect_pipe(struct drm_connector *connector,
7899                                     struct intel_load_detect_pipe *old)
7900 {
7901         struct intel_encoder *intel_encoder =
7902                 intel_attached_encoder(connector);
7903         struct drm_encoder *encoder = &intel_encoder->base;
7904         struct drm_crtc *crtc = encoder->crtc;
7905
7906         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7907                       connector->base.id, drm_get_connector_name(connector),
7908                       encoder->base.id, drm_get_encoder_name(encoder));
7909
7910         if (old->load_detect_temp) {
7911                 to_intel_connector(connector)->new_encoder = NULL;
7912                 intel_encoder->new_crtc = NULL;
7913                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7914
7915                 if (old->release_fb) {
7916                         drm_framebuffer_unregister_private(old->release_fb);
7917                         drm_framebuffer_unreference(old->release_fb);
7918                 }
7919
7920                 mutex_unlock(&crtc->mutex);
7921                 return;
7922         }
7923
7924         /* Switch crtc and encoder back off if necessary */
7925         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7926                 connector->funcs->dpms(connector, old->dpms_mode);
7927
7928         mutex_unlock(&crtc->mutex);
7929 }
7930
7931 static int i9xx_pll_refclk(struct drm_device *dev,
7932                            const struct intel_crtc_config *pipe_config)
7933 {
7934         struct drm_i915_private *dev_priv = dev->dev_private;
7935         u32 dpll = pipe_config->dpll_hw_state.dpll;
7936
7937         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7938                 return dev_priv->vbt.lvds_ssc_freq;
7939         else if (HAS_PCH_SPLIT(dev))
7940                 return 120000;
7941         else if (!IS_GEN2(dev))
7942                 return 96000;
7943         else
7944                 return 48000;
7945 }
7946
7947 /* Returns the clock of the currently programmed mode of the given pipe. */
7948 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7949                                 struct intel_crtc_config *pipe_config)
7950 {
7951         struct drm_device *dev = crtc->base.dev;
7952         struct drm_i915_private *dev_priv = dev->dev_private;
7953         int pipe = pipe_config->cpu_transcoder;
7954         u32 dpll = pipe_config->dpll_hw_state.dpll;
7955         u32 fp;
7956         intel_clock_t clock;
7957         int refclk = i9xx_pll_refclk(dev, pipe_config);
7958
7959         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7960                 fp = pipe_config->dpll_hw_state.fp0;
7961         else
7962                 fp = pipe_config->dpll_hw_state.fp1;
7963
7964         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7965         if (IS_PINEVIEW(dev)) {
7966                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7967                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7968         } else {
7969                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7970                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7971         }
7972
7973         if (!IS_GEN2(dev)) {
7974                 if (IS_PINEVIEW(dev))
7975                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7976                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7977                 else
7978                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7979                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7980
7981                 switch (dpll & DPLL_MODE_MASK) {
7982                 case DPLLB_MODE_DAC_SERIAL:
7983                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7984                                 5 : 10;
7985                         break;
7986                 case DPLLB_MODE_LVDS:
7987                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7988                                 7 : 14;
7989                         break;
7990                 default:
7991                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7992                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7993                         return;
7994                 }
7995
7996                 if (IS_PINEVIEW(dev))
7997                         pineview_clock(refclk, &clock);
7998                 else
7999                         i9xx_clock(refclk, &clock);
8000         } else {
8001                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8002                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8003
8004                 if (is_lvds) {
8005                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8006                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8007
8008                         if (lvds & LVDS_CLKB_POWER_UP)
8009                                 clock.p2 = 7;
8010                         else
8011                                 clock.p2 = 14;
8012                 } else {
8013                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8014                                 clock.p1 = 2;
8015                         else {
8016                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8017                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8018                         }
8019                         if (dpll & PLL_P2_DIVIDE_BY_4)
8020                                 clock.p2 = 4;
8021                         else
8022                                 clock.p2 = 2;
8023                 }
8024
8025                 i9xx_clock(refclk, &clock);
8026         }
8027
8028         /*
8029          * This value includes pixel_multiplier. We will use
8030          * port_clock to compute adjusted_mode.crtc_clock in the
8031          * encoder's get_config() function.
8032          */
8033         pipe_config->port_clock = clock.dot;
8034 }
8035
8036 int intel_dotclock_calculate(int link_freq,
8037                              const struct intel_link_m_n *m_n)
8038 {
8039         /*
8040          * The calculation for the data clock is:
8041          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8042          * But we want to avoid losing precison if possible, so:
8043          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8044          *
8045          * and the link clock is simpler:
8046          * link_clock = (m * link_clock) / n
8047          */
8048
8049         if (!m_n->link_n)
8050                 return 0;
8051
8052         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8053 }
8054
8055 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8056                                    struct intel_crtc_config *pipe_config)
8057 {
8058         struct drm_device *dev = crtc->base.dev;
8059
8060         /* read out port_clock from the DPLL */
8061         i9xx_crtc_clock_get(crtc, pipe_config);
8062
8063         /*
8064          * This value does not include pixel_multiplier.
8065          * We will check that port_clock and adjusted_mode.crtc_clock
8066          * agree once we know their relationship in the encoder's
8067          * get_config() function.
8068          */
8069         pipe_config->adjusted_mode.crtc_clock =
8070                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8071                                          &pipe_config->fdi_m_n);
8072 }
8073
8074 /** Returns the currently programmed mode of the given pipe. */
8075 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8076                                              struct drm_crtc *crtc)
8077 {
8078         struct drm_i915_private *dev_priv = dev->dev_private;
8079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8080         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8081         struct drm_display_mode *mode;
8082         struct intel_crtc_config pipe_config;
8083         int htot = I915_READ(HTOTAL(cpu_transcoder));
8084         int hsync = I915_READ(HSYNC(cpu_transcoder));
8085         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8086         int vsync = I915_READ(VSYNC(cpu_transcoder));
8087         enum pipe pipe = intel_crtc->pipe;
8088
8089         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8090         if (!mode)
8091                 return NULL;
8092
8093         /*
8094          * Construct a pipe_config sufficient for getting the clock info
8095          * back out of crtc_clock_get.
8096          *
8097          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8098          * to use a real value here instead.
8099          */
8100         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8101         pipe_config.pixel_multiplier = 1;
8102         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8103         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8104         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8105         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8106
8107         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8108         mode->hdisplay = (htot & 0xffff) + 1;
8109         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8110         mode->hsync_start = (hsync & 0xffff) + 1;
8111         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8112         mode->vdisplay = (vtot & 0xffff) + 1;
8113         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8114         mode->vsync_start = (vsync & 0xffff) + 1;
8115         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8116
8117         drm_mode_set_name(mode);
8118
8119         return mode;
8120 }
8121
8122 static void intel_increase_pllclock(struct drm_crtc *crtc)
8123 {
8124         struct drm_device *dev = crtc->dev;
8125         drm_i915_private_t *dev_priv = dev->dev_private;
8126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8127         int pipe = intel_crtc->pipe;
8128         int dpll_reg = DPLL(pipe);
8129         int dpll;
8130
8131         if (HAS_PCH_SPLIT(dev))
8132                 return;
8133
8134         if (!dev_priv->lvds_downclock_avail)
8135                 return;
8136
8137         dpll = I915_READ(dpll_reg);
8138         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8139                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8140
8141                 assert_panel_unlocked(dev_priv, pipe);
8142
8143                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8144                 I915_WRITE(dpll_reg, dpll);
8145                 intel_wait_for_vblank(dev, pipe);
8146
8147                 dpll = I915_READ(dpll_reg);
8148                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8149                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8150         }
8151 }
8152
8153 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8154 {
8155         struct drm_device *dev = crtc->dev;
8156         drm_i915_private_t *dev_priv = dev->dev_private;
8157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8158
8159         if (HAS_PCH_SPLIT(dev))
8160                 return;
8161
8162         if (!dev_priv->lvds_downclock_avail)
8163                 return;
8164
8165         /*
8166          * Since this is called by a timer, we should never get here in
8167          * the manual case.
8168          */
8169         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8170                 int pipe = intel_crtc->pipe;
8171                 int dpll_reg = DPLL(pipe);
8172                 int dpll;
8173
8174                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8175
8176                 assert_panel_unlocked(dev_priv, pipe);
8177
8178                 dpll = I915_READ(dpll_reg);
8179                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8180                 I915_WRITE(dpll_reg, dpll);
8181                 intel_wait_for_vblank(dev, pipe);
8182                 dpll = I915_READ(dpll_reg);
8183                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8184                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8185         }
8186
8187 }
8188
8189 void intel_mark_busy(struct drm_device *dev)
8190 {
8191         struct drm_i915_private *dev_priv = dev->dev_private;
8192
8193         hsw_package_c8_gpu_busy(dev_priv);
8194         i915_update_gfx_val(dev_priv);
8195 }
8196
8197 void intel_mark_idle(struct drm_device *dev)
8198 {
8199         struct drm_i915_private *dev_priv = dev->dev_private;
8200         struct drm_crtc *crtc;
8201
8202         hsw_package_c8_gpu_idle(dev_priv);
8203
8204         if (!i915_powersave)
8205                 return;
8206
8207         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8208                 if (!crtc->fb)
8209                         continue;
8210
8211                 intel_decrease_pllclock(crtc);
8212         }
8213
8214         if (dev_priv->info->gen >= 6)
8215                 gen6_rps_idle(dev->dev_private);
8216 }
8217
8218 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8219                         struct intel_ring_buffer *ring)
8220 {
8221         struct drm_device *dev = obj->base.dev;
8222         struct drm_crtc *crtc;
8223
8224         if (!i915_powersave)
8225                 return;
8226
8227         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8228                 if (!crtc->fb)
8229                         continue;
8230
8231                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8232                         continue;
8233
8234                 intel_increase_pllclock(crtc);
8235                 if (ring && intel_fbc_enabled(dev))
8236                         ring->fbc_dirty = true;
8237         }
8238 }
8239
8240 static void intel_crtc_destroy(struct drm_crtc *crtc)
8241 {
8242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8243         struct drm_device *dev = crtc->dev;
8244         struct intel_unpin_work *work;
8245         unsigned long flags;
8246
8247         spin_lock_irqsave(&dev->event_lock, flags);
8248         work = intel_crtc->unpin_work;
8249         intel_crtc->unpin_work = NULL;
8250         spin_unlock_irqrestore(&dev->event_lock, flags);
8251
8252         if (work) {
8253                 cancel_work_sync(&work->work);
8254                 kfree(work);
8255         }
8256
8257         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8258
8259         drm_crtc_cleanup(crtc);
8260
8261         kfree(intel_crtc);
8262 }
8263
8264 static void intel_unpin_work_fn(struct work_struct *__work)
8265 {
8266         struct intel_unpin_work *work =
8267                 container_of(__work, struct intel_unpin_work, work);
8268         struct drm_device *dev = work->crtc->dev;
8269
8270         mutex_lock(&dev->struct_mutex);
8271         intel_unpin_fb_obj(work->old_fb_obj);
8272         drm_gem_object_unreference(&work->pending_flip_obj->base);
8273         drm_gem_object_unreference(&work->old_fb_obj->base);
8274
8275         intel_update_fbc(dev);
8276         mutex_unlock(&dev->struct_mutex);
8277
8278         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8279         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8280
8281         kfree(work);
8282 }
8283
8284 static void do_intel_finish_page_flip(struct drm_device *dev,
8285                                       struct drm_crtc *crtc)
8286 {
8287         drm_i915_private_t *dev_priv = dev->dev_private;
8288         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8289         struct intel_unpin_work *work;
8290         unsigned long flags;
8291
8292         /* Ignore early vblank irqs */
8293         if (intel_crtc == NULL)
8294                 return;
8295
8296         spin_lock_irqsave(&dev->event_lock, flags);
8297         work = intel_crtc->unpin_work;
8298
8299         /* Ensure we don't miss a work->pending update ... */
8300         smp_rmb();
8301
8302         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8303                 spin_unlock_irqrestore(&dev->event_lock, flags);
8304                 return;
8305         }
8306
8307         /* and that the unpin work is consistent wrt ->pending. */
8308         smp_rmb();
8309
8310         intel_crtc->unpin_work = NULL;
8311
8312         if (work->event)
8313                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8314
8315         drm_vblank_put(dev, intel_crtc->pipe);
8316
8317         spin_unlock_irqrestore(&dev->event_lock, flags);
8318
8319         wake_up_all(&dev_priv->pending_flip_queue);
8320
8321         queue_work(dev_priv->wq, &work->work);
8322
8323         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8324 }
8325
8326 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8327 {
8328         drm_i915_private_t *dev_priv = dev->dev_private;
8329         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8330
8331         do_intel_finish_page_flip(dev, crtc);
8332 }
8333
8334 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8335 {
8336         drm_i915_private_t *dev_priv = dev->dev_private;
8337         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8338
8339         do_intel_finish_page_flip(dev, crtc);
8340 }
8341
8342 void intel_prepare_page_flip(struct drm_device *dev, int plane)
8343 {
8344         drm_i915_private_t *dev_priv = dev->dev_private;
8345         struct intel_crtc *intel_crtc =
8346                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8347         unsigned long flags;
8348
8349         /* NB: An MMIO update of the plane base pointer will also
8350          * generate a page-flip completion irq, i.e. every modeset
8351          * is also accompanied by a spurious intel_prepare_page_flip().
8352          */
8353         spin_lock_irqsave(&dev->event_lock, flags);
8354         if (intel_crtc->unpin_work)
8355                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8356         spin_unlock_irqrestore(&dev->event_lock, flags);
8357 }
8358
8359 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8360 {
8361         /* Ensure that the work item is consistent when activating it ... */
8362         smp_wmb();
8363         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8364         /* and that it is marked active as soon as the irq could fire. */
8365         smp_wmb();
8366 }
8367
8368 static int intel_gen2_queue_flip(struct drm_device *dev,
8369                                  struct drm_crtc *crtc,
8370                                  struct drm_framebuffer *fb,
8371                                  struct drm_i915_gem_object *obj,
8372                                  uint32_t flags)
8373 {
8374         struct drm_i915_private *dev_priv = dev->dev_private;
8375         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8376         u32 flip_mask;
8377         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8378         int ret;
8379
8380         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8381         if (ret)
8382                 goto err;
8383
8384         ret = intel_ring_begin(ring, 6);
8385         if (ret)
8386                 goto err_unpin;
8387
8388         /* Can't queue multiple flips, so wait for the previous
8389          * one to finish before executing the next.
8390          */
8391         if (intel_crtc->plane)
8392                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8393         else
8394                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8395         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8396         intel_ring_emit(ring, MI_NOOP);
8397         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8398                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8399         intel_ring_emit(ring, fb->pitches[0]);
8400         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8401         intel_ring_emit(ring, 0); /* aux display base address, unused */
8402
8403         intel_mark_page_flip_active(intel_crtc);
8404         __intel_ring_advance(ring);
8405         return 0;
8406
8407 err_unpin:
8408         intel_unpin_fb_obj(obj);
8409 err:
8410         return ret;
8411 }
8412
8413 static int intel_gen3_queue_flip(struct drm_device *dev,
8414                                  struct drm_crtc *crtc,
8415                                  struct drm_framebuffer *fb,
8416                                  struct drm_i915_gem_object *obj,
8417                                  uint32_t flags)
8418 {
8419         struct drm_i915_private *dev_priv = dev->dev_private;
8420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8421         u32 flip_mask;
8422         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8423         int ret;
8424
8425         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8426         if (ret)
8427                 goto err;
8428
8429         ret = intel_ring_begin(ring, 6);
8430         if (ret)
8431                 goto err_unpin;
8432
8433         if (intel_crtc->plane)
8434                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8435         else
8436                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8437         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8438         intel_ring_emit(ring, MI_NOOP);
8439         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8440                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8441         intel_ring_emit(ring, fb->pitches[0]);
8442         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8443         intel_ring_emit(ring, MI_NOOP);
8444
8445         intel_mark_page_flip_active(intel_crtc);
8446         __intel_ring_advance(ring);
8447         return 0;
8448
8449 err_unpin:
8450         intel_unpin_fb_obj(obj);
8451 err:
8452         return ret;
8453 }
8454
8455 static int intel_gen4_queue_flip(struct drm_device *dev,
8456                                  struct drm_crtc *crtc,
8457                                  struct drm_framebuffer *fb,
8458                                  struct drm_i915_gem_object *obj,
8459                                  uint32_t flags)
8460 {
8461         struct drm_i915_private *dev_priv = dev->dev_private;
8462         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8463         uint32_t pf, pipesrc;
8464         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8465         int ret;
8466
8467         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8468         if (ret)
8469                 goto err;
8470
8471         ret = intel_ring_begin(ring, 4);
8472         if (ret)
8473                 goto err_unpin;
8474
8475         /* i965+ uses the linear or tiled offsets from the
8476          * Display Registers (which do not change across a page-flip)
8477          * so we need only reprogram the base address.
8478          */
8479         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8480                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8481         intel_ring_emit(ring, fb->pitches[0]);
8482         intel_ring_emit(ring,
8483                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8484                         obj->tiling_mode);
8485
8486         /* XXX Enabling the panel-fitter across page-flip is so far
8487          * untested on non-native modes, so ignore it for now.
8488          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8489          */
8490         pf = 0;
8491         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8492         intel_ring_emit(ring, pf | pipesrc);
8493
8494         intel_mark_page_flip_active(intel_crtc);
8495         __intel_ring_advance(ring);
8496         return 0;
8497
8498 err_unpin:
8499         intel_unpin_fb_obj(obj);
8500 err:
8501         return ret;
8502 }
8503
8504 static int intel_gen6_queue_flip(struct drm_device *dev,
8505                                  struct drm_crtc *crtc,
8506                                  struct drm_framebuffer *fb,
8507                                  struct drm_i915_gem_object *obj,
8508                                  uint32_t flags)
8509 {
8510         struct drm_i915_private *dev_priv = dev->dev_private;
8511         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8512         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8513         uint32_t pf, pipesrc;
8514         int ret;
8515
8516         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8517         if (ret)
8518                 goto err;
8519
8520         ret = intel_ring_begin(ring, 4);
8521         if (ret)
8522                 goto err_unpin;
8523
8524         intel_ring_emit(ring, MI_DISPLAY_FLIP |
8525                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8526         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8527         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8528
8529         /* Contrary to the suggestions in the documentation,
8530          * "Enable Panel Fitter" does not seem to be required when page
8531          * flipping with a non-native mode, and worse causes a normal
8532          * modeset to fail.
8533          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8534          */
8535         pf = 0;
8536         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8537         intel_ring_emit(ring, pf | pipesrc);
8538
8539         intel_mark_page_flip_active(intel_crtc);
8540         __intel_ring_advance(ring);
8541         return 0;
8542
8543 err_unpin:
8544         intel_unpin_fb_obj(obj);
8545 err:
8546         return ret;
8547 }
8548
8549 static int intel_gen7_queue_flip(struct drm_device *dev,
8550                                  struct drm_crtc *crtc,
8551                                  struct drm_framebuffer *fb,
8552                                  struct drm_i915_gem_object *obj,
8553                                  uint32_t flags)
8554 {
8555         struct drm_i915_private *dev_priv = dev->dev_private;
8556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8557         struct intel_ring_buffer *ring;
8558         uint32_t plane_bit = 0;
8559         int len, ret;
8560
8561         ring = obj->ring;
8562         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8563                 ring = &dev_priv->ring[BCS];
8564
8565         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8566         if (ret)
8567                 goto err;
8568
8569         switch(intel_crtc->plane) {
8570         case PLANE_A:
8571                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8572                 break;
8573         case PLANE_B:
8574                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8575                 break;
8576         case PLANE_C:
8577                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8578                 break;
8579         default:
8580                 WARN_ONCE(1, "unknown plane in flip command\n");
8581                 ret = -ENODEV;
8582                 goto err_unpin;
8583         }
8584
8585         len = 4;
8586         if (ring->id == RCS)
8587                 len += 6;
8588
8589         /*
8590          * BSpec MI_DISPLAY_FLIP for IVB:
8591          * "The full packet must be contained within the same cache line."
8592          *
8593          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
8594          * cacheline, if we ever start emitting more commands before
8595          * the MI_DISPLAY_FLIP we may need to first emit everything else,
8596          * then do the cacheline alignment, and finally emit the
8597          * MI_DISPLAY_FLIP.
8598          */
8599         ret = intel_ring_cacheline_align(ring);
8600         if (ret)
8601                 goto err_unpin;
8602
8603         ret = intel_ring_begin(ring, len);
8604         if (ret)
8605                 goto err_unpin;
8606
8607         /* Unmask the flip-done completion message. Note that the bspec says that
8608          * we should do this for both the BCS and RCS, and that we must not unmask
8609          * more than one flip event at any time (or ensure that one flip message
8610          * can be sent by waiting for flip-done prior to queueing new flips).
8611          * Experimentation says that BCS works despite DERRMR masking all
8612          * flip-done completion events and that unmasking all planes at once
8613          * for the RCS also doesn't appear to drop events. Setting the DERRMR
8614          * to zero does lead to lockups within MI_DISPLAY_FLIP.
8615          */
8616         if (ring->id == RCS) {
8617                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8618                 intel_ring_emit(ring, DERRMR);
8619                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8620                                         DERRMR_PIPEB_PRI_FLIP_DONE |
8621                                         DERRMR_PIPEC_PRI_FLIP_DONE));
8622                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
8623                                 MI_SRM_LRM_GLOBAL_GTT);
8624                 intel_ring_emit(ring, DERRMR);
8625                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8626         }
8627
8628         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8629         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8630         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8631         intel_ring_emit(ring, (MI_NOOP));
8632
8633         intel_mark_page_flip_active(intel_crtc);
8634         __intel_ring_advance(ring);
8635         return 0;
8636
8637 err_unpin:
8638         intel_unpin_fb_obj(obj);
8639 err:
8640         return ret;
8641 }
8642
8643 static int intel_default_queue_flip(struct drm_device *dev,
8644                                     struct drm_crtc *crtc,
8645                                     struct drm_framebuffer *fb,
8646                                     struct drm_i915_gem_object *obj,
8647                                     uint32_t flags)
8648 {
8649         return -ENODEV;
8650 }
8651
8652 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8653                                 struct drm_framebuffer *fb,
8654                                 struct drm_pending_vblank_event *event,
8655                                 uint32_t page_flip_flags)
8656 {
8657         struct drm_device *dev = crtc->dev;
8658         struct drm_i915_private *dev_priv = dev->dev_private;
8659         struct drm_framebuffer *old_fb = crtc->fb;
8660         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8661         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8662         struct intel_unpin_work *work;
8663         unsigned long flags;
8664         int ret;
8665
8666         /* Can't change pixel format via MI display flips. */
8667         if (fb->pixel_format != crtc->fb->pixel_format)
8668                 return -EINVAL;
8669
8670         /*
8671          * TILEOFF/LINOFF registers can't be changed via MI display flips.
8672          * Note that pitch changes could also affect these register.
8673          */
8674         if (INTEL_INFO(dev)->gen > 3 &&
8675             (fb->offsets[0] != crtc->fb->offsets[0] ||
8676              fb->pitches[0] != crtc->fb->pitches[0]))
8677                 return -EINVAL;
8678
8679         work = kzalloc(sizeof(*work), GFP_KERNEL);
8680         if (work == NULL)
8681                 return -ENOMEM;
8682
8683         work->event = event;
8684         work->crtc = crtc;
8685         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8686         INIT_WORK(&work->work, intel_unpin_work_fn);
8687
8688         ret = drm_vblank_get(dev, intel_crtc->pipe);
8689         if (ret)
8690                 goto free_work;
8691
8692         /* We borrow the event spin lock for protecting unpin_work */
8693         spin_lock_irqsave(&dev->event_lock, flags);
8694         if (intel_crtc->unpin_work) {
8695                 spin_unlock_irqrestore(&dev->event_lock, flags);
8696                 kfree(work);
8697                 drm_vblank_put(dev, intel_crtc->pipe);
8698
8699                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8700                 return -EBUSY;
8701         }
8702         intel_crtc->unpin_work = work;
8703         spin_unlock_irqrestore(&dev->event_lock, flags);
8704
8705         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8706                 flush_workqueue(dev_priv->wq);
8707
8708         ret = i915_mutex_lock_interruptible(dev);
8709         if (ret)
8710                 goto cleanup;
8711
8712         /* Reference the objects for the scheduled work. */
8713         drm_gem_object_reference(&work->old_fb_obj->base);
8714         drm_gem_object_reference(&obj->base);
8715
8716         crtc->fb = fb;
8717
8718         work->pending_flip_obj = obj;
8719
8720         work->enable_stall_check = true;
8721
8722         atomic_inc(&intel_crtc->unpin_work_count);
8723         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8724
8725         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8726         if (ret)
8727                 goto cleanup_pending;
8728
8729         intel_disable_fbc(dev);
8730         intel_mark_fb_busy(obj, NULL);
8731         mutex_unlock(&dev->struct_mutex);
8732
8733         trace_i915_flip_request(intel_crtc->plane, obj);
8734
8735         return 0;
8736
8737 cleanup_pending:
8738         atomic_dec(&intel_crtc->unpin_work_count);
8739         crtc->fb = old_fb;
8740         drm_gem_object_unreference(&work->old_fb_obj->base);
8741         drm_gem_object_unreference(&obj->base);
8742         mutex_unlock(&dev->struct_mutex);
8743
8744 cleanup:
8745         spin_lock_irqsave(&dev->event_lock, flags);
8746         intel_crtc->unpin_work = NULL;
8747         spin_unlock_irqrestore(&dev->event_lock, flags);
8748
8749         drm_vblank_put(dev, intel_crtc->pipe);
8750 free_work:
8751         kfree(work);
8752
8753         return ret;
8754 }
8755
8756 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8757         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8758         .load_lut = intel_crtc_load_lut,
8759 };
8760
8761 /**
8762  * intel_modeset_update_staged_output_state
8763  *
8764  * Updates the staged output configuration state, e.g. after we've read out the
8765  * current hw state.
8766  */
8767 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8768 {
8769         struct intel_encoder *encoder;
8770         struct intel_connector *connector;
8771
8772         list_for_each_entry(connector, &dev->mode_config.connector_list,
8773                             base.head) {
8774                 connector->new_encoder =
8775                         to_intel_encoder(connector->base.encoder);
8776         }
8777
8778         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8779                             base.head) {
8780                 encoder->new_crtc =
8781                         to_intel_crtc(encoder->base.crtc);
8782         }
8783 }
8784
8785 /**
8786  * intel_modeset_commit_output_state
8787  *
8788  * This function copies the stage display pipe configuration to the real one.
8789  */
8790 static void intel_modeset_commit_output_state(struct drm_device *dev)
8791 {
8792         struct intel_encoder *encoder;
8793         struct intel_connector *connector;
8794
8795         list_for_each_entry(connector, &dev->mode_config.connector_list,
8796                             base.head) {
8797                 connector->base.encoder = &connector->new_encoder->base;
8798         }
8799
8800         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8801                             base.head) {
8802                 encoder->base.crtc = &encoder->new_crtc->base;
8803         }
8804 }
8805
8806 static void
8807 connected_sink_compute_bpp(struct intel_connector * connector,
8808                            struct intel_crtc_config *pipe_config)
8809 {
8810         int bpp = pipe_config->pipe_bpp;
8811
8812         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8813                 connector->base.base.id,
8814                 drm_get_connector_name(&connector->base));
8815
8816         /* Don't use an invalid EDID bpc value */
8817         if (connector->base.display_info.bpc &&
8818             connector->base.display_info.bpc * 3 < bpp) {
8819                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8820                               bpp, connector->base.display_info.bpc*3);
8821                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8822         }
8823
8824         /* Clamp bpp to 8 on screens without EDID 1.4 */
8825         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8826                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8827                               bpp);
8828                 pipe_config->pipe_bpp = 24;
8829         }
8830 }
8831
8832 static int
8833 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8834                           struct drm_framebuffer *fb,
8835                           struct intel_crtc_config *pipe_config)
8836 {
8837         struct drm_device *dev = crtc->base.dev;
8838         struct intel_connector *connector;
8839         int bpp;
8840
8841         switch (fb->pixel_format) {
8842         case DRM_FORMAT_C8:
8843                 bpp = 8*3; /* since we go through a colormap */
8844                 break;
8845         case DRM_FORMAT_XRGB1555:
8846         case DRM_FORMAT_ARGB1555:
8847                 /* checked in intel_framebuffer_init already */
8848                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8849                         return -EINVAL;
8850         case DRM_FORMAT_RGB565:
8851                 bpp = 6*3; /* min is 18bpp */
8852                 break;
8853         case DRM_FORMAT_XBGR8888:
8854         case DRM_FORMAT_ABGR8888:
8855                 /* checked in intel_framebuffer_init already */
8856                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8857                         return -EINVAL;
8858         case DRM_FORMAT_XRGB8888:
8859         case DRM_FORMAT_ARGB8888:
8860                 bpp = 8*3;
8861                 break;
8862         case DRM_FORMAT_XRGB2101010:
8863         case DRM_FORMAT_ARGB2101010:
8864         case DRM_FORMAT_XBGR2101010:
8865         case DRM_FORMAT_ABGR2101010:
8866                 /* checked in intel_framebuffer_init already */
8867                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8868                         return -EINVAL;
8869                 bpp = 10*3;
8870                 break;
8871         /* TODO: gen4+ supports 16 bpc floating point, too. */
8872         default:
8873                 DRM_DEBUG_KMS("unsupported depth\n");
8874                 return -EINVAL;
8875         }
8876
8877         pipe_config->pipe_bpp = bpp;
8878
8879         /* Clamp display bpp to EDID value */
8880         list_for_each_entry(connector, &dev->mode_config.connector_list,
8881                             base.head) {
8882                 if (!connector->new_encoder ||
8883                     connector->new_encoder->new_crtc != crtc)
8884                         continue;
8885
8886                 connected_sink_compute_bpp(connector, pipe_config);
8887         }
8888
8889         return bpp;
8890 }
8891
8892 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8893 {
8894         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8895                         "type: 0x%x flags: 0x%x\n",
8896                 mode->crtc_clock,
8897                 mode->crtc_hdisplay, mode->crtc_hsync_start,
8898                 mode->crtc_hsync_end, mode->crtc_htotal,
8899                 mode->crtc_vdisplay, mode->crtc_vsync_start,
8900                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8901 }
8902
8903 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8904                                    struct intel_crtc_config *pipe_config,
8905                                    const char *context)
8906 {
8907         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8908                       context, pipe_name(crtc->pipe));
8909
8910         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8911         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8912                       pipe_config->pipe_bpp, pipe_config->dither);
8913         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8914                       pipe_config->has_pch_encoder,
8915                       pipe_config->fdi_lanes,
8916                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8917                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8918                       pipe_config->fdi_m_n.tu);
8919         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8920                       pipe_config->has_dp_encoder,
8921                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8922                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8923                       pipe_config->dp_m_n.tu);
8924         DRM_DEBUG_KMS("requested mode:\n");
8925         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8926         DRM_DEBUG_KMS("adjusted mode:\n");
8927         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8928         intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8929         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8930         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8931                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8932         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8933                       pipe_config->gmch_pfit.control,
8934                       pipe_config->gmch_pfit.pgm_ratios,
8935                       pipe_config->gmch_pfit.lvds_border_bits);
8936         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8937                       pipe_config->pch_pfit.pos,
8938                       pipe_config->pch_pfit.size,
8939                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8940         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8941         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8942 }
8943
8944 static bool check_encoder_cloning(struct drm_crtc *crtc)
8945 {
8946         int num_encoders = 0;
8947         bool uncloneable_encoders = false;
8948         struct intel_encoder *encoder;
8949
8950         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8951                             base.head) {
8952                 if (&encoder->new_crtc->base != crtc)
8953                         continue;
8954
8955                 num_encoders++;
8956                 if (!encoder->cloneable)
8957                         uncloneable_encoders = true;
8958         }
8959
8960         return !(num_encoders > 1 && uncloneable_encoders);
8961 }
8962
8963 static struct intel_crtc_config *
8964 intel_modeset_pipe_config(struct drm_crtc *crtc,
8965                           struct drm_framebuffer *fb,
8966                           struct drm_display_mode *mode)
8967 {
8968         struct drm_device *dev = crtc->dev;
8969         struct intel_encoder *encoder;
8970         struct intel_crtc_config *pipe_config;
8971         int plane_bpp, ret = -EINVAL;
8972         bool retry = true;
8973
8974         if (!check_encoder_cloning(crtc)) {
8975                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8976                 return ERR_PTR(-EINVAL);
8977         }
8978
8979         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8980         if (!pipe_config)
8981                 return ERR_PTR(-ENOMEM);
8982
8983         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8984         drm_mode_copy(&pipe_config->requested_mode, mode);
8985
8986         pipe_config->cpu_transcoder =
8987                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8988         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8989
8990         /*
8991          * Sanitize sync polarity flags based on requested ones. If neither
8992          * positive or negative polarity is requested, treat this as meaning
8993          * negative polarity.
8994          */
8995         if (!(pipe_config->adjusted_mode.flags &
8996               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8997                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8998
8999         if (!(pipe_config->adjusted_mode.flags &
9000               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
9001                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
9002
9003         /* Compute a starting value for pipe_config->pipe_bpp taking the source
9004          * plane pixel format and any sink constraints into account. Returns the
9005          * source plane bpp so that dithering can be selected on mismatches
9006          * after encoders and crtc also have had their say. */
9007         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
9008                                               fb, pipe_config);
9009         if (plane_bpp < 0)
9010                 goto fail;
9011
9012         /*
9013          * Determine the real pipe dimensions. Note that stereo modes can
9014          * increase the actual pipe size due to the frame doubling and
9015          * insertion of additional space for blanks between the frame. This
9016          * is stored in the crtc timings. We use the requested mode to do this
9017          * computation to clearly distinguish it from the adjusted mode, which
9018          * can be changed by the connectors in the below retry loop.
9019          */
9020         drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
9021         pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
9022         pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
9023
9024 encoder_retry:
9025         /* Ensure the port clock defaults are reset when retrying. */
9026         pipe_config->port_clock = 0;
9027         pipe_config->pixel_multiplier = 1;
9028
9029         /* Fill in default crtc timings, allow encoders to overwrite them. */
9030         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9031
9032         /* Pass our mode to the connectors and the CRTC to give them a chance to
9033          * adjust it according to limitations or connector properties, and also
9034          * a chance to reject the mode entirely.
9035          */
9036         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9037                             base.head) {
9038
9039                 if (&encoder->new_crtc->base != crtc)
9040                         continue;
9041
9042                 if (!(encoder->compute_config(encoder, pipe_config))) {
9043                         DRM_DEBUG_KMS("Encoder config failure\n");
9044                         goto fail;
9045                 }
9046         }
9047
9048         /* Set default port clock if not overwritten by the encoder. Needs to be
9049          * done afterwards in case the encoder adjusts the mode. */
9050         if (!pipe_config->port_clock)
9051                 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9052                         * pipe_config->pixel_multiplier;
9053
9054         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9055         if (ret < 0) {
9056                 DRM_DEBUG_KMS("CRTC fixup failed\n");
9057                 goto fail;
9058         }
9059
9060         if (ret == RETRY) {
9061                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9062                         ret = -EINVAL;
9063                         goto fail;
9064                 }
9065
9066                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9067                 retry = false;
9068                 goto encoder_retry;
9069         }
9070
9071         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9072         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9073                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9074
9075         return pipe_config;
9076 fail:
9077         kfree(pipe_config);
9078         return ERR_PTR(ret);
9079 }
9080
9081 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
9082  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9083 static void
9084 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9085                              unsigned *prepare_pipes, unsigned *disable_pipes)
9086 {
9087         struct intel_crtc *intel_crtc;
9088         struct drm_device *dev = crtc->dev;
9089         struct intel_encoder *encoder;
9090         struct intel_connector *connector;
9091         struct drm_crtc *tmp_crtc;
9092
9093         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9094
9095         /* Check which crtcs have changed outputs connected to them, these need
9096          * to be part of the prepare_pipes mask. We don't (yet) support global
9097          * modeset across multiple crtcs, so modeset_pipes will only have one
9098          * bit set at most. */
9099         list_for_each_entry(connector, &dev->mode_config.connector_list,
9100                             base.head) {
9101                 if (connector->base.encoder == &connector->new_encoder->base)
9102                         continue;
9103
9104                 if (connector->base.encoder) {
9105                         tmp_crtc = connector->base.encoder->crtc;
9106
9107                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9108                 }
9109
9110                 if (connector->new_encoder)
9111                         *prepare_pipes |=
9112                                 1 << connector->new_encoder->new_crtc->pipe;
9113         }
9114
9115         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9116                             base.head) {
9117                 if (encoder->base.crtc == &encoder->new_crtc->base)
9118                         continue;
9119
9120                 if (encoder->base.crtc) {
9121                         tmp_crtc = encoder->base.crtc;
9122
9123                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9124                 }
9125
9126                 if (encoder->new_crtc)
9127                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9128         }
9129
9130         /* Check for any pipes that will be fully disabled ... */
9131         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9132                             base.head) {
9133                 bool used = false;
9134
9135                 /* Don't try to disable disabled crtcs. */
9136                 if (!intel_crtc->base.enabled)
9137                         continue;
9138
9139                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9140                                     base.head) {
9141                         if (encoder->new_crtc == intel_crtc)
9142                                 used = true;
9143                 }
9144
9145                 if (!used)
9146                         *disable_pipes |= 1 << intel_crtc->pipe;
9147         }
9148
9149
9150         /* set_mode is also used to update properties on life display pipes. */
9151         intel_crtc = to_intel_crtc(crtc);
9152         if (crtc->enabled)
9153                 *prepare_pipes |= 1 << intel_crtc->pipe;
9154
9155         /*
9156          * For simplicity do a full modeset on any pipe where the output routing
9157          * changed. We could be more clever, but that would require us to be
9158          * more careful with calling the relevant encoder->mode_set functions.
9159          */
9160         if (*prepare_pipes)
9161                 *modeset_pipes = *prepare_pipes;
9162
9163         /* ... and mask these out. */
9164         *modeset_pipes &= ~(*disable_pipes);
9165         *prepare_pipes &= ~(*disable_pipes);
9166
9167         /*
9168          * HACK: We don't (yet) fully support global modesets. intel_set_config
9169          * obies this rule, but the modeset restore mode of
9170          * intel_modeset_setup_hw_state does not.
9171          */
9172         *modeset_pipes &= 1 << intel_crtc->pipe;
9173         *prepare_pipes &= 1 << intel_crtc->pipe;
9174
9175         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9176                       *modeset_pipes, *prepare_pipes, *disable_pipes);
9177 }
9178
9179 static bool intel_crtc_in_use(struct drm_crtc *crtc)
9180 {
9181         struct drm_encoder *encoder;
9182         struct drm_device *dev = crtc->dev;
9183
9184         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9185                 if (encoder->crtc == crtc)
9186                         return true;
9187
9188         return false;
9189 }
9190
9191 static void
9192 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9193 {
9194         struct intel_encoder *intel_encoder;
9195         struct intel_crtc *intel_crtc;
9196         struct drm_connector *connector;
9197
9198         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9199                             base.head) {
9200                 if (!intel_encoder->base.crtc)
9201                         continue;
9202
9203                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9204
9205                 if (prepare_pipes & (1 << intel_crtc->pipe))
9206                         intel_encoder->connectors_active = false;
9207         }
9208
9209         intel_modeset_commit_output_state(dev);
9210
9211         /* Update computed state. */
9212         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9213                             base.head) {
9214                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9215         }
9216
9217         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9218                 if (!connector->encoder || !connector->encoder->crtc)
9219                         continue;
9220
9221                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9222
9223                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9224                         struct drm_property *dpms_property =
9225                                 dev->mode_config.dpms_property;
9226
9227                         connector->dpms = DRM_MODE_DPMS_ON;
9228                         drm_object_property_set_value(&connector->base,
9229                                                          dpms_property,
9230                                                          DRM_MODE_DPMS_ON);
9231
9232                         intel_encoder = to_intel_encoder(connector->encoder);
9233                         intel_encoder->connectors_active = true;
9234                 }
9235         }
9236
9237 }
9238
9239 static bool intel_fuzzy_clock_check(int clock1, int clock2)
9240 {
9241         int diff;
9242
9243         if (clock1 == clock2)
9244                 return true;
9245
9246         if (!clock1 || !clock2)
9247                 return false;
9248
9249         diff = abs(clock1 - clock2);
9250
9251         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9252                 return true;
9253
9254         return false;
9255 }
9256
9257 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9258         list_for_each_entry((intel_crtc), \
9259                             &(dev)->mode_config.crtc_list, \
9260                             base.head) \
9261                 if (mask & (1 <<(intel_crtc)->pipe))
9262
9263 static bool
9264 intel_pipe_config_compare(struct drm_device *dev,
9265                           struct intel_crtc_config *current_config,
9266                           struct intel_crtc_config *pipe_config)
9267 {
9268 #define PIPE_CONF_CHECK_X(name) \
9269         if (current_config->name != pipe_config->name) { \
9270                 DRM_ERROR("mismatch in " #name " " \
9271                           "(expected 0x%08x, found 0x%08x)\n", \
9272                           current_config->name, \
9273                           pipe_config->name); \
9274                 return false; \
9275         }
9276
9277 #define PIPE_CONF_CHECK_I(name) \
9278         if (current_config->name != pipe_config->name) { \
9279                 DRM_ERROR("mismatch in " #name " " \
9280                           "(expected %i, found %i)\n", \
9281                           current_config->name, \
9282                           pipe_config->name); \
9283                 return false; \
9284         }
9285
9286 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
9287         if ((current_config->name ^ pipe_config->name) & (mask)) { \
9288                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
9289                           "(expected %i, found %i)\n", \
9290                           current_config->name & (mask), \
9291                           pipe_config->name & (mask)); \
9292                 return false; \
9293         }
9294
9295 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9296         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9297                 DRM_ERROR("mismatch in " #name " " \
9298                           "(expected %i, found %i)\n", \
9299                           current_config->name, \
9300                           pipe_config->name); \
9301                 return false; \
9302         }
9303
9304 #define PIPE_CONF_QUIRK(quirk)  \
9305         ((current_config->quirks | pipe_config->quirks) & (quirk))
9306
9307         PIPE_CONF_CHECK_I(cpu_transcoder);
9308
9309         PIPE_CONF_CHECK_I(has_pch_encoder);
9310         PIPE_CONF_CHECK_I(fdi_lanes);
9311         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9312         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9313         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9314         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9315         PIPE_CONF_CHECK_I(fdi_m_n.tu);
9316
9317         PIPE_CONF_CHECK_I(has_dp_encoder);
9318         PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9319         PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9320         PIPE_CONF_CHECK_I(dp_m_n.link_m);
9321         PIPE_CONF_CHECK_I(dp_m_n.link_n);
9322         PIPE_CONF_CHECK_I(dp_m_n.tu);
9323
9324         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9325         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9326         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9327         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9328         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9329         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9330
9331         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9332         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9333         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9334         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9335         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9336         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9337
9338         PIPE_CONF_CHECK_I(pixel_multiplier);
9339
9340         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9341                               DRM_MODE_FLAG_INTERLACE);
9342
9343         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9344                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9345                                       DRM_MODE_FLAG_PHSYNC);
9346                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9347                                       DRM_MODE_FLAG_NHSYNC);
9348                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9349                                       DRM_MODE_FLAG_PVSYNC);
9350                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9351                                       DRM_MODE_FLAG_NVSYNC);
9352         }
9353
9354         PIPE_CONF_CHECK_I(pipe_src_w);
9355         PIPE_CONF_CHECK_I(pipe_src_h);
9356
9357         PIPE_CONF_CHECK_I(gmch_pfit.control);
9358         /* pfit ratios are autocomputed by the hw on gen4+ */
9359         if (INTEL_INFO(dev)->gen < 4)
9360                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9361         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9362         PIPE_CONF_CHECK_I(pch_pfit.enabled);
9363         if (current_config->pch_pfit.enabled) {
9364                 PIPE_CONF_CHECK_I(pch_pfit.pos);
9365                 PIPE_CONF_CHECK_I(pch_pfit.size);
9366         }
9367
9368         /* BDW+ don't expose a synchronous way to read the state */
9369         if (IS_HASWELL(dev))
9370                 PIPE_CONF_CHECK_I(ips_enabled);
9371
9372         PIPE_CONF_CHECK_I(double_wide);
9373
9374         PIPE_CONF_CHECK_I(shared_dpll);
9375         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9376         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9377         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9378         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9379
9380         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9381                 PIPE_CONF_CHECK_I(pipe_bpp);
9382
9383         if (!HAS_DDI(dev)) {
9384                 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9385                 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9386         }
9387
9388 #undef PIPE_CONF_CHECK_X
9389 #undef PIPE_CONF_CHECK_I
9390 #undef PIPE_CONF_CHECK_FLAGS
9391 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
9392 #undef PIPE_CONF_QUIRK
9393
9394         return true;
9395 }
9396
9397 static void
9398 check_connector_state(struct drm_device *dev)
9399 {
9400         struct intel_connector *connector;
9401
9402         list_for_each_entry(connector, &dev->mode_config.connector_list,
9403                             base.head) {
9404                 /* This also checks the encoder/connector hw state with the
9405                  * ->get_hw_state callbacks. */
9406                 intel_connector_check_state(connector);
9407
9408                 WARN(&connector->new_encoder->base != connector->base.encoder,
9409                      "connector's staged encoder doesn't match current encoder\n");
9410         }
9411 }
9412
9413 static void
9414 check_encoder_state(struct drm_device *dev)
9415 {
9416         struct intel_encoder *encoder;
9417         struct intel_connector *connector;
9418
9419         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9420                             base.head) {
9421                 bool enabled = false;
9422                 bool active = false;
9423                 enum pipe pipe, tracked_pipe;
9424
9425                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9426                               encoder->base.base.id,
9427                               drm_get_encoder_name(&encoder->base));
9428
9429                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9430                      "encoder's stage crtc doesn't match current crtc\n");
9431                 WARN(encoder->connectors_active && !encoder->base.crtc,
9432                      "encoder's active_connectors set, but no crtc\n");
9433
9434                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9435                                     base.head) {
9436                         if (connector->base.encoder != &encoder->base)
9437                                 continue;
9438                         enabled = true;
9439                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9440                                 active = true;
9441                 }
9442                 WARN(!!encoder->base.crtc != enabled,
9443                      "encoder's enabled state mismatch "
9444                      "(expected %i, found %i)\n",
9445                      !!encoder->base.crtc, enabled);
9446                 WARN(active && !encoder->base.crtc,
9447                      "active encoder with no crtc\n");
9448
9449                 WARN(encoder->connectors_active != active,
9450                      "encoder's computed active state doesn't match tracked active state "
9451                      "(expected %i, found %i)\n", active, encoder->connectors_active);
9452
9453                 active = encoder->get_hw_state(encoder, &pipe);
9454                 WARN(active != encoder->connectors_active,
9455                      "encoder's hw state doesn't match sw tracking "
9456                      "(expected %i, found %i)\n",
9457                      encoder->connectors_active, active);
9458
9459                 if (!encoder->base.crtc)
9460                         continue;
9461
9462                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9463                 WARN(active && pipe != tracked_pipe,
9464                      "active encoder's pipe doesn't match"
9465                      "(expected %i, found %i)\n",
9466                      tracked_pipe, pipe);
9467
9468         }
9469 }
9470
9471 static void
9472 check_crtc_state(struct drm_device *dev)
9473 {
9474         drm_i915_private_t *dev_priv = dev->dev_private;
9475         struct intel_crtc *crtc;
9476         struct intel_encoder *encoder;
9477         struct intel_crtc_config pipe_config;
9478
9479         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9480                             base.head) {
9481                 bool enabled = false;
9482                 bool active = false;
9483
9484                 memset(&pipe_config, 0, sizeof(pipe_config));
9485
9486                 DRM_DEBUG_KMS("[CRTC:%d]\n",
9487                               crtc->base.base.id);
9488
9489                 WARN(crtc->active && !crtc->base.enabled,
9490                      "active crtc, but not enabled in sw tracking\n");
9491
9492                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9493                                     base.head) {
9494                         if (encoder->base.crtc != &crtc->base)
9495                                 continue;
9496                         enabled = true;
9497                         if (encoder->connectors_active)
9498                                 active = true;
9499                 }
9500
9501                 WARN(active != crtc->active,
9502                      "crtc's computed active state doesn't match tracked active state "
9503                      "(expected %i, found %i)\n", active, crtc->active);
9504                 WARN(enabled != crtc->base.enabled,
9505                      "crtc's computed enabled state doesn't match tracked enabled state "
9506                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9507
9508                 active = dev_priv->display.get_pipe_config(crtc,
9509                                                            &pipe_config);
9510
9511                 /* hw state is inconsistent with the pipe A quirk */
9512                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9513                         active = crtc->active;
9514
9515                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9516                                     base.head) {
9517                         enum pipe pipe;
9518                         if (encoder->base.crtc != &crtc->base)
9519                                 continue;
9520                         if (encoder->get_hw_state(encoder, &pipe))
9521                                 encoder->get_config(encoder, &pipe_config);
9522                 }
9523
9524                 WARN(crtc->active != active,
9525                      "crtc active state doesn't match with hw state "
9526                      "(expected %i, found %i)\n", crtc->active, active);
9527
9528                 if (active &&
9529                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9530                         WARN(1, "pipe state doesn't match!\n");
9531                         intel_dump_pipe_config(crtc, &pipe_config,
9532                                                "[hw state]");
9533                         intel_dump_pipe_config(crtc, &crtc->config,
9534                                                "[sw state]");
9535                 }
9536         }
9537 }
9538
9539 static void
9540 check_shared_dpll_state(struct drm_device *dev)
9541 {
9542         drm_i915_private_t *dev_priv = dev->dev_private;
9543         struct intel_crtc *crtc;
9544         struct intel_dpll_hw_state dpll_hw_state;
9545         int i;
9546
9547         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9548                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9549                 int enabled_crtcs = 0, active_crtcs = 0;
9550                 bool active;
9551
9552                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9553
9554                 DRM_DEBUG_KMS("%s\n", pll->name);
9555
9556                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9557
9558                 WARN(pll->active > pll->refcount,
9559                      "more active pll users than references: %i vs %i\n",
9560                      pll->active, pll->refcount);
9561                 WARN(pll->active && !pll->on,
9562                      "pll in active use but not on in sw tracking\n");
9563                 WARN(pll->on && !pll->active,
9564                      "pll in on but not on in use in sw tracking\n");
9565                 WARN(pll->on != active,
9566                      "pll on state mismatch (expected %i, found %i)\n",
9567                      pll->on, active);
9568
9569                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9570                                     base.head) {
9571                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9572                                 enabled_crtcs++;
9573                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9574                                 active_crtcs++;
9575                 }
9576                 WARN(pll->active != active_crtcs,
9577                      "pll active crtcs mismatch (expected %i, found %i)\n",
9578                      pll->active, active_crtcs);
9579                 WARN(pll->refcount != enabled_crtcs,
9580                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
9581                      pll->refcount, enabled_crtcs);
9582
9583                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9584                                        sizeof(dpll_hw_state)),
9585                      "pll hw state mismatch\n");
9586         }
9587 }
9588
9589 void
9590 intel_modeset_check_state(struct drm_device *dev)
9591 {
9592         check_connector_state(dev);
9593         check_encoder_state(dev);
9594         check_crtc_state(dev);
9595         check_shared_dpll_state(dev);
9596 }
9597
9598 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9599                                      int dotclock)
9600 {
9601         /*
9602          * FDI already provided one idea for the dotclock.
9603          * Yell if the encoder disagrees.
9604          */
9605         WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9606              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9607              pipe_config->adjusted_mode.crtc_clock, dotclock);
9608 }
9609
9610 static int __intel_set_mode(struct drm_crtc *crtc,
9611                             struct drm_display_mode *mode,
9612                             int x, int y, struct drm_framebuffer *fb)
9613 {
9614         struct drm_device *dev = crtc->dev;
9615         drm_i915_private_t *dev_priv = dev->dev_private;
9616         struct drm_display_mode *saved_mode;
9617         struct intel_crtc_config *pipe_config = NULL;
9618         struct intel_crtc *intel_crtc;
9619         unsigned disable_pipes, prepare_pipes, modeset_pipes;
9620         int ret = 0;
9621
9622         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
9623         if (!saved_mode)
9624                 return -ENOMEM;
9625
9626         intel_modeset_affected_pipes(crtc, &modeset_pipes,
9627                                      &prepare_pipes, &disable_pipes);
9628
9629         *saved_mode = crtc->mode;
9630
9631         /* Hack: Because we don't (yet) support global modeset on multiple
9632          * crtcs, we don't keep track of the new mode for more than one crtc.
9633          * Hence simply check whether any bit is set in modeset_pipes in all the
9634          * pieces of code that are not yet converted to deal with mutliple crtcs
9635          * changing their mode at the same time. */
9636         if (modeset_pipes) {
9637                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9638                 if (IS_ERR(pipe_config)) {
9639                         ret = PTR_ERR(pipe_config);
9640                         pipe_config = NULL;
9641
9642                         goto out;
9643                 }
9644                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9645                                        "[modeset]");
9646         }
9647
9648         /*
9649          * See if the config requires any additional preparation, e.g.
9650          * to adjust global state with pipes off.  We need to do this
9651          * here so we can get the modeset_pipe updated config for the new
9652          * mode set on this crtc.  For other crtcs we need to use the
9653          * adjusted_mode bits in the crtc directly.
9654          */
9655         if (IS_VALLEYVIEW(dev)) {
9656                 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9657                                                 modeset_pipes, pipe_config);
9658
9659                 /* may have added more to prepare_pipes than we should */
9660                 prepare_pipes &= ~disable_pipes;
9661         }
9662
9663         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9664                 intel_crtc_disable(&intel_crtc->base);
9665
9666         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9667                 if (intel_crtc->base.enabled)
9668                         dev_priv->display.crtc_disable(&intel_crtc->base);
9669         }
9670
9671         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9672          * to set it here already despite that we pass it down the callchain.
9673          */
9674         if (modeset_pipes) {
9675                 crtc->mode = *mode;
9676                 /* mode_set/enable/disable functions rely on a correct pipe
9677                  * config. */
9678                 to_intel_crtc(crtc)->config = *pipe_config;
9679
9680                 /*
9681                  * Calculate and store various constants which
9682                  * are later needed by vblank and swap-completion
9683                  * timestamping. They are derived from true hwmode.
9684                  */
9685                 drm_calc_timestamping_constants(crtc,
9686                                                 &pipe_config->adjusted_mode);
9687         }
9688
9689         /* Only after disabling all output pipelines that will be changed can we
9690          * update the the output configuration. */
9691         intel_modeset_update_state(dev, prepare_pipes);
9692
9693         if (dev_priv->display.modeset_global_resources)
9694                 dev_priv->display.modeset_global_resources(dev);
9695
9696         /* Set up the DPLL and any encoders state that needs to adjust or depend
9697          * on the DPLL.
9698          */
9699         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9700                 ret = intel_crtc_mode_set(&intel_crtc->base,
9701                                           x, y, fb);
9702                 if (ret)
9703                         goto done;
9704         }
9705
9706         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9707         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9708                 dev_priv->display.crtc_enable(&intel_crtc->base);
9709
9710         /* FIXME: add subpixel order */
9711 done:
9712         if (ret && crtc->enabled)
9713                 crtc->mode = *saved_mode;
9714
9715 out:
9716         kfree(pipe_config);
9717         kfree(saved_mode);
9718         return ret;
9719 }
9720
9721 static int intel_set_mode(struct drm_crtc *crtc,
9722                           struct drm_display_mode *mode,
9723                           int x, int y, struct drm_framebuffer *fb)
9724 {
9725         int ret;
9726
9727         ret = __intel_set_mode(crtc, mode, x, y, fb);
9728
9729         if (ret == 0)
9730                 intel_modeset_check_state(crtc->dev);
9731
9732         return ret;
9733 }
9734
9735 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9736 {
9737         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9738 }
9739
9740 #undef for_each_intel_crtc_masked
9741
9742 static void intel_set_config_free(struct intel_set_config *config)
9743 {
9744         if (!config)
9745                 return;
9746
9747         kfree(config->save_connector_encoders);
9748         kfree(config->save_encoder_crtcs);
9749         kfree(config);
9750 }
9751
9752 static int intel_set_config_save_state(struct drm_device *dev,
9753                                        struct intel_set_config *config)
9754 {
9755         struct drm_encoder *encoder;
9756         struct drm_connector *connector;
9757         int count;
9758
9759         config->save_encoder_crtcs =
9760                 kcalloc(dev->mode_config.num_encoder,
9761                         sizeof(struct drm_crtc *), GFP_KERNEL);
9762         if (!config->save_encoder_crtcs)
9763                 return -ENOMEM;
9764
9765         config->save_connector_encoders =
9766                 kcalloc(dev->mode_config.num_connector,
9767                         sizeof(struct drm_encoder *), GFP_KERNEL);
9768         if (!config->save_connector_encoders)
9769                 return -ENOMEM;
9770
9771         /* Copy data. Note that driver private data is not affected.
9772          * Should anything bad happen only the expected state is
9773          * restored, not the drivers personal bookkeeping.
9774          */
9775         count = 0;
9776         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9777                 config->save_encoder_crtcs[count++] = encoder->crtc;
9778         }
9779
9780         count = 0;
9781         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9782                 config->save_connector_encoders[count++] = connector->encoder;
9783         }
9784
9785         return 0;
9786 }
9787
9788 static void intel_set_config_restore_state(struct drm_device *dev,
9789                                            struct intel_set_config *config)
9790 {
9791         struct intel_encoder *encoder;
9792         struct intel_connector *connector;
9793         int count;
9794
9795         count = 0;
9796         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9797                 encoder->new_crtc =
9798                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9799         }
9800
9801         count = 0;
9802         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9803                 connector->new_encoder =
9804                         to_intel_encoder(config->save_connector_encoders[count++]);
9805         }
9806 }
9807
9808 static bool
9809 is_crtc_connector_off(struct drm_mode_set *set)
9810 {
9811         int i;
9812
9813         if (set->num_connectors == 0)
9814                 return false;
9815
9816         if (WARN_ON(set->connectors == NULL))
9817                 return false;
9818
9819         for (i = 0; i < set->num_connectors; i++)
9820                 if (set->connectors[i]->encoder &&
9821                     set->connectors[i]->encoder->crtc == set->crtc &&
9822                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9823                         return true;
9824
9825         return false;
9826 }
9827
9828 static void
9829 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9830                                       struct intel_set_config *config)
9831 {
9832
9833         /* We should be able to check here if the fb has the same properties
9834          * and then just flip_or_move it */
9835         if (is_crtc_connector_off(set)) {
9836                 config->mode_changed = true;
9837         } else if (set->crtc->fb != set->fb) {
9838                 /* If we have no fb then treat it as a full mode set */
9839                 if (set->crtc->fb == NULL) {
9840                         struct intel_crtc *intel_crtc =
9841                                 to_intel_crtc(set->crtc);
9842
9843                         if (intel_crtc->active && i915_fastboot) {
9844                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9845                                 config->fb_changed = true;
9846                         } else {
9847                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9848                                 config->mode_changed = true;
9849                         }
9850                 } else if (set->fb == NULL) {
9851                         config->mode_changed = true;
9852                 } else if (set->fb->pixel_format !=
9853                            set->crtc->fb->pixel_format) {
9854                         config->mode_changed = true;
9855                 } else {
9856                         config->fb_changed = true;
9857                 }
9858         }
9859
9860         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9861                 config->fb_changed = true;
9862
9863         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9864                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9865                 drm_mode_debug_printmodeline(&set->crtc->mode);
9866                 drm_mode_debug_printmodeline(set->mode);
9867                 config->mode_changed = true;
9868         }
9869
9870         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9871                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9872 }
9873
9874 static int
9875 intel_modeset_stage_output_state(struct drm_device *dev,
9876                                  struct drm_mode_set *set,
9877                                  struct intel_set_config *config)
9878 {
9879         struct drm_crtc *new_crtc;
9880         struct intel_connector *connector;
9881         struct intel_encoder *encoder;
9882         int ro;
9883
9884         /* The upper layers ensure that we either disable a crtc or have a list
9885          * of connectors. For paranoia, double-check this. */
9886         WARN_ON(!set->fb && (set->num_connectors != 0));
9887         WARN_ON(set->fb && (set->num_connectors == 0));
9888
9889         list_for_each_entry(connector, &dev->mode_config.connector_list,
9890                             base.head) {
9891                 /* Otherwise traverse passed in connector list and get encoders
9892                  * for them. */
9893                 for (ro = 0; ro < set->num_connectors; ro++) {
9894                         if (set->connectors[ro] == &connector->base) {
9895                                 connector->new_encoder = connector->encoder;
9896                                 break;
9897                         }
9898                 }
9899
9900                 /* If we disable the crtc, disable all its connectors. Also, if
9901                  * the connector is on the changing crtc but not on the new
9902                  * connector list, disable it. */
9903                 if ((!set->fb || ro == set->num_connectors) &&
9904                     connector->base.encoder &&
9905                     connector->base.encoder->crtc == set->crtc) {
9906                         connector->new_encoder = NULL;
9907
9908                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9909                                 connector->base.base.id,
9910                                 drm_get_connector_name(&connector->base));
9911                 }
9912
9913
9914                 if (&connector->new_encoder->base != connector->base.encoder) {
9915                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9916                         config->mode_changed = true;
9917                 }
9918         }
9919         /* connector->new_encoder is now updated for all connectors. */
9920
9921         /* Update crtc of enabled connectors. */
9922         list_for_each_entry(connector, &dev->mode_config.connector_list,
9923                             base.head) {
9924                 if (!connector->new_encoder)
9925                         continue;
9926
9927                 new_crtc = connector->new_encoder->base.crtc;
9928
9929                 for (ro = 0; ro < set->num_connectors; ro++) {
9930                         if (set->connectors[ro] == &connector->base)
9931                                 new_crtc = set->crtc;
9932                 }
9933
9934                 /* Make sure the new CRTC will work with the encoder */
9935                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
9936                                          new_crtc)) {
9937                         return -EINVAL;
9938                 }
9939                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9940
9941                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9942                         connector->base.base.id,
9943                         drm_get_connector_name(&connector->base),
9944                         new_crtc->base.id);
9945         }
9946
9947         /* Check for any encoders that needs to be disabled. */
9948         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9949                             base.head) {
9950                 int num_connectors = 0;
9951                 list_for_each_entry(connector,
9952                                     &dev->mode_config.connector_list,
9953                                     base.head) {
9954                         if (connector->new_encoder == encoder) {
9955                                 WARN_ON(!connector->new_encoder->new_crtc);
9956                                 num_connectors++;
9957                         }
9958                 }
9959
9960                 if (num_connectors == 0)
9961                         encoder->new_crtc = NULL;
9962                 else if (num_connectors > 1)
9963                         return -EINVAL;
9964
9965                 /* Only now check for crtc changes so we don't miss encoders
9966                  * that will be disabled. */
9967                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9968                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9969                         config->mode_changed = true;
9970                 }
9971         }
9972         /* Now we've also updated encoder->new_crtc for all encoders. */
9973
9974         return 0;
9975 }
9976
9977 static int intel_crtc_set_config(struct drm_mode_set *set)
9978 {
9979         struct drm_device *dev;
9980         struct drm_mode_set save_set;
9981         struct intel_set_config *config;
9982         int ret;
9983
9984         BUG_ON(!set);
9985         BUG_ON(!set->crtc);
9986         BUG_ON(!set->crtc->helper_private);
9987
9988         /* Enforce sane interface api - has been abused by the fb helper. */
9989         BUG_ON(!set->mode && set->fb);
9990         BUG_ON(set->fb && set->num_connectors == 0);
9991
9992         if (set->fb) {
9993                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9994                                 set->crtc->base.id, set->fb->base.id,
9995                                 (int)set->num_connectors, set->x, set->y);
9996         } else {
9997                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9998         }
9999
10000         dev = set->crtc->dev;
10001
10002         ret = -ENOMEM;
10003         config = kzalloc(sizeof(*config), GFP_KERNEL);
10004         if (!config)
10005                 goto out_config;
10006
10007         ret = intel_set_config_save_state(dev, config);
10008         if (ret)
10009                 goto out_config;
10010
10011         save_set.crtc = set->crtc;
10012         save_set.mode = &set->crtc->mode;
10013         save_set.x = set->crtc->x;
10014         save_set.y = set->crtc->y;
10015         save_set.fb = set->crtc->fb;
10016
10017         /* Compute whether we need a full modeset, only an fb base update or no
10018          * change at all. In the future we might also check whether only the
10019          * mode changed, e.g. for LVDS where we only change the panel fitter in
10020          * such cases. */
10021         intel_set_config_compute_mode_changes(set, config);
10022
10023         ret = intel_modeset_stage_output_state(dev, set, config);
10024         if (ret)
10025                 goto fail;
10026
10027         if (config->mode_changed) {
10028                 ret = intel_set_mode(set->crtc, set->mode,
10029                                      set->x, set->y, set->fb);
10030         } else if (config->fb_changed) {
10031                 intel_crtc_wait_for_pending_flips(set->crtc);
10032
10033                 ret = intel_pipe_set_base(set->crtc,
10034                                           set->x, set->y, set->fb);
10035                 /*
10036                  * In the fastboot case this may be our only check of the
10037                  * state after boot.  It would be better to only do it on
10038                  * the first update, but we don't have a nice way of doing that
10039                  * (and really, set_config isn't used much for high freq page
10040                  * flipping, so increasing its cost here shouldn't be a big
10041                  * deal).
10042                  */
10043                 if (i915_fastboot && ret == 0)
10044                         intel_modeset_check_state(set->crtc->dev);
10045         }
10046
10047         if (ret) {
10048                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10049                               set->crtc->base.id, ret);
10050 fail:
10051                 intel_set_config_restore_state(dev, config);
10052
10053                 /* Try to restore the config */
10054                 if (config->mode_changed &&
10055                     intel_set_mode(save_set.crtc, save_set.mode,
10056                                    save_set.x, save_set.y, save_set.fb))
10057                         DRM_ERROR("failed to restore config after modeset failure\n");
10058         }
10059
10060 out_config:
10061         intel_set_config_free(config);
10062         return ret;
10063 }
10064
10065 static const struct drm_crtc_funcs intel_crtc_funcs = {
10066         .cursor_set = intel_crtc_cursor_set,
10067         .cursor_move = intel_crtc_cursor_move,
10068         .gamma_set = intel_crtc_gamma_set,
10069         .set_config = intel_crtc_set_config,
10070         .destroy = intel_crtc_destroy,
10071         .page_flip = intel_crtc_page_flip,
10072 };
10073
10074 static void intel_cpu_pll_init(struct drm_device *dev)
10075 {
10076         if (HAS_DDI(dev))
10077                 intel_ddi_pll_init(dev);
10078 }
10079
10080 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10081                                       struct intel_shared_dpll *pll,
10082                                       struct intel_dpll_hw_state *hw_state)
10083 {
10084         uint32_t val;
10085
10086         val = I915_READ(PCH_DPLL(pll->id));
10087         hw_state->dpll = val;
10088         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10089         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10090
10091         return val & DPLL_VCO_ENABLE;
10092 }
10093
10094 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10095                                   struct intel_shared_dpll *pll)
10096 {
10097         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10098         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10099 }
10100
10101 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10102                                 struct intel_shared_dpll *pll)
10103 {
10104         /* PCH refclock must be enabled first */
10105         ibx_assert_pch_refclk_enabled(dev_priv);
10106
10107         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10108
10109         /* Wait for the clocks to stabilize. */
10110         POSTING_READ(PCH_DPLL(pll->id));
10111         udelay(150);
10112
10113         /* The pixel multiplier can only be updated once the
10114          * DPLL is enabled and the clocks are stable.
10115          *
10116          * So write it again.
10117          */
10118         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10119         POSTING_READ(PCH_DPLL(pll->id));
10120         udelay(200);
10121 }
10122
10123 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10124                                  struct intel_shared_dpll *pll)
10125 {
10126         struct drm_device *dev = dev_priv->dev;
10127         struct intel_crtc *crtc;
10128
10129         /* Make sure no transcoder isn't still depending on us. */
10130         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10131                 if (intel_crtc_to_shared_dpll(crtc) == pll)
10132                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10133         }
10134
10135         I915_WRITE(PCH_DPLL(pll->id), 0);
10136         POSTING_READ(PCH_DPLL(pll->id));
10137         udelay(200);
10138 }
10139
10140 static char *ibx_pch_dpll_names[] = {
10141         "PCH DPLL A",
10142         "PCH DPLL B",
10143 };
10144
10145 static void ibx_pch_dpll_init(struct drm_device *dev)
10146 {
10147         struct drm_i915_private *dev_priv = dev->dev_private;
10148         int i;
10149
10150         dev_priv->num_shared_dpll = 2;
10151
10152         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10153                 dev_priv->shared_dplls[i].id = i;
10154                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10155                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10156                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10157                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10158                 dev_priv->shared_dplls[i].get_hw_state =
10159                         ibx_pch_dpll_get_hw_state;
10160         }
10161 }
10162
10163 static void intel_shared_dpll_init(struct drm_device *dev)
10164 {
10165         struct drm_i915_private *dev_priv = dev->dev_private;
10166
10167         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10168                 ibx_pch_dpll_init(dev);
10169         else
10170                 dev_priv->num_shared_dpll = 0;
10171
10172         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10173 }
10174
10175 static void intel_crtc_init(struct drm_device *dev, int pipe)
10176 {
10177         drm_i915_private_t *dev_priv = dev->dev_private;
10178         struct intel_crtc *intel_crtc;
10179         int i;
10180
10181         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10182         if (intel_crtc == NULL)
10183                 return;
10184
10185         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10186
10187         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10188         for (i = 0; i < 256; i++) {
10189                 intel_crtc->lut_r[i] = i;
10190                 intel_crtc->lut_g[i] = i;
10191                 intel_crtc->lut_b[i] = i;
10192         }
10193
10194         /*
10195          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10196          * is hooked to plane B. Hence we want plane A feeding pipe B.
10197          */
10198         intel_crtc->pipe = pipe;
10199         intel_crtc->plane = pipe;
10200         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10201                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10202                 intel_crtc->plane = !pipe;
10203         }
10204
10205         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10206                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10207         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10208         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10209
10210         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10211 }
10212
10213 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10214 {
10215         struct drm_encoder *encoder = connector->base.encoder;
10216
10217         WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10218
10219         if (!encoder)
10220                 return INVALID_PIPE;
10221
10222         return to_intel_crtc(encoder->crtc)->pipe;
10223 }
10224
10225 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10226                                 struct drm_file *file)
10227 {
10228         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10229         struct drm_mode_object *drmmode_obj;
10230         struct intel_crtc *crtc;
10231
10232         if (!drm_core_check_feature(dev, DRIVER_MODESET))
10233                 return -ENODEV;
10234
10235         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10236                         DRM_MODE_OBJECT_CRTC);
10237
10238         if (!drmmode_obj) {
10239                 DRM_ERROR("no such CRTC id\n");
10240                 return -ENOENT;
10241         }
10242
10243         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10244         pipe_from_crtc_id->pipe = crtc->pipe;
10245
10246         return 0;
10247 }
10248
10249 static int intel_encoder_clones(struct intel_encoder *encoder)
10250 {
10251         struct drm_device *dev = encoder->base.dev;
10252         struct intel_encoder *source_encoder;
10253         int index_mask = 0;
10254         int entry = 0;
10255
10256         list_for_each_entry(source_encoder,
10257                             &dev->mode_config.encoder_list, base.head) {
10258
10259                 if (encoder == source_encoder)
10260                         index_mask |= (1 << entry);
10261
10262                 /* Intel hw has only one MUX where enocoders could be cloned. */
10263                 if (encoder->cloneable && source_encoder->cloneable)
10264                         index_mask |= (1 << entry);
10265
10266                 entry++;
10267         }
10268
10269         return index_mask;
10270 }
10271
10272 static bool has_edp_a(struct drm_device *dev)
10273 {
10274         struct drm_i915_private *dev_priv = dev->dev_private;
10275
10276         if (!IS_MOBILE(dev))
10277                 return false;
10278
10279         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10280                 return false;
10281
10282         if (IS_GEN5(dev) &&
10283             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10284                 return false;
10285
10286         return true;
10287 }
10288
10289 const char *intel_output_name(int output)
10290 {
10291         static const char *names[] = {
10292                 [INTEL_OUTPUT_UNUSED] = "Unused",
10293                 [INTEL_OUTPUT_ANALOG] = "Analog",
10294                 [INTEL_OUTPUT_DVO] = "DVO",
10295                 [INTEL_OUTPUT_SDVO] = "SDVO",
10296                 [INTEL_OUTPUT_LVDS] = "LVDS",
10297                 [INTEL_OUTPUT_TVOUT] = "TV",
10298                 [INTEL_OUTPUT_HDMI] = "HDMI",
10299                 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10300                 [INTEL_OUTPUT_EDP] = "eDP",
10301                 [INTEL_OUTPUT_DSI] = "DSI",
10302                 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10303         };
10304
10305         if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10306                 return "Invalid";
10307
10308         return names[output];
10309 }
10310
10311 static void intel_setup_outputs(struct drm_device *dev)
10312 {
10313         struct drm_i915_private *dev_priv = dev->dev_private;
10314         struct intel_encoder *encoder;
10315         bool dpd_is_edp = false;
10316
10317         intel_lvds_init(dev);
10318
10319         if (!IS_ULT(dev))
10320                 intel_crt_init(dev);
10321
10322         if (HAS_DDI(dev)) {
10323                 int found;
10324
10325                 /* Haswell uses DDI functions to detect digital outputs */
10326                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10327                 /* DDI A only supports eDP */
10328                 if (found)
10329                         intel_ddi_init(dev, PORT_A);
10330
10331                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10332                  * register */
10333                 found = I915_READ(SFUSE_STRAP);
10334
10335                 if (found & SFUSE_STRAP_DDIB_DETECTED)
10336                         intel_ddi_init(dev, PORT_B);
10337                 if (found & SFUSE_STRAP_DDIC_DETECTED)
10338                         intel_ddi_init(dev, PORT_C);
10339                 if (found & SFUSE_STRAP_DDID_DETECTED)
10340                         intel_ddi_init(dev, PORT_D);
10341         } else if (HAS_PCH_SPLIT(dev)) {
10342                 int found;
10343                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
10344
10345                 if (has_edp_a(dev))
10346                         intel_dp_init(dev, DP_A, PORT_A);
10347
10348                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10349                         /* PCH SDVOB multiplex with HDMIB */
10350                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
10351                         if (!found)
10352                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10353                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10354                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
10355                 }
10356
10357                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10358                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10359
10360                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10361                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10362
10363                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10364                         intel_dp_init(dev, PCH_DP_C, PORT_C);
10365
10366                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10367                         intel_dp_init(dev, PCH_DP_D, PORT_D);
10368         } else if (IS_VALLEYVIEW(dev)) {
10369                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10370                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10371                                         PORT_B);
10372                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10373                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10374                 }
10375
10376                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10377                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10378                                         PORT_C);
10379                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10380                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
10381                 }
10382
10383                 intel_dsi_init(dev);
10384         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10385                 bool found = false;
10386
10387                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10388                         DRM_DEBUG_KMS("probing SDVOB\n");
10389                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10390                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10391                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10392                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10393                         }
10394
10395                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
10396                                 intel_dp_init(dev, DP_B, PORT_B);
10397                 }
10398
10399                 /* Before G4X SDVOC doesn't have its own detect register */
10400
10401                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10402                         DRM_DEBUG_KMS("probing SDVOC\n");
10403                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10404                 }
10405
10406                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10407
10408                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10409                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10410                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10411                         }
10412                         if (SUPPORTS_INTEGRATED_DP(dev))
10413                                 intel_dp_init(dev, DP_C, PORT_C);
10414                 }
10415
10416                 if (SUPPORTS_INTEGRATED_DP(dev) &&
10417                     (I915_READ(DP_D) & DP_DETECTED))
10418                         intel_dp_init(dev, DP_D, PORT_D);
10419         } else if (IS_GEN2(dev))
10420                 intel_dvo_init(dev);
10421
10422         if (SUPPORTS_TV(dev))
10423                 intel_tv_init(dev);
10424
10425         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10426                 encoder->base.possible_crtcs = encoder->crtc_mask;
10427                 encoder->base.possible_clones =
10428                         intel_encoder_clones(encoder);
10429         }
10430
10431         intel_init_pch_refclk(dev);
10432
10433         drm_helper_move_panel_connectors_to_head(dev);
10434 }
10435
10436 void intel_framebuffer_fini(struct intel_framebuffer *fb)
10437 {
10438         drm_framebuffer_cleanup(&fb->base);
10439         WARN_ON(!fb->obj->framebuffer_references--);
10440         drm_gem_object_unreference_unlocked(&fb->obj->base);
10441 }
10442
10443 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10444 {
10445         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10446
10447         intel_framebuffer_fini(intel_fb);
10448         kfree(intel_fb);
10449 }
10450
10451 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10452                                                 struct drm_file *file,
10453                                                 unsigned int *handle)
10454 {
10455         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10456         struct drm_i915_gem_object *obj = intel_fb->obj;
10457
10458         return drm_gem_handle_create(file, &obj->base, handle);
10459 }
10460
10461 static const struct drm_framebuffer_funcs intel_fb_funcs = {
10462         .destroy = intel_user_framebuffer_destroy,
10463         .create_handle = intel_user_framebuffer_create_handle,
10464 };
10465
10466 int intel_framebuffer_init(struct drm_device *dev,
10467                            struct intel_framebuffer *intel_fb,
10468                            struct drm_mode_fb_cmd2 *mode_cmd,
10469                            struct drm_i915_gem_object *obj)
10470 {
10471         int aligned_height, tile_height;
10472         int pitch_limit;
10473         int ret;
10474
10475         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10476
10477         if (obj->tiling_mode == I915_TILING_Y) {
10478                 DRM_DEBUG("hardware does not support tiling Y\n");
10479                 return -EINVAL;
10480         }
10481
10482         if (mode_cmd->pitches[0] & 63) {
10483                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10484                           mode_cmd->pitches[0]);
10485                 return -EINVAL;
10486         }
10487
10488         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10489                 pitch_limit = 32*1024;
10490         } else if (INTEL_INFO(dev)->gen >= 4) {
10491                 if (obj->tiling_mode)
10492                         pitch_limit = 16*1024;
10493                 else
10494                         pitch_limit = 32*1024;
10495         } else if (INTEL_INFO(dev)->gen >= 3) {
10496                 if (obj->tiling_mode)
10497                         pitch_limit = 8*1024;
10498                 else
10499                         pitch_limit = 16*1024;
10500         } else
10501                 /* XXX DSPC is limited to 4k tiled */
10502                 pitch_limit = 8*1024;
10503
10504         if (mode_cmd->pitches[0] > pitch_limit) {
10505                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10506                           obj->tiling_mode ? "tiled" : "linear",
10507                           mode_cmd->pitches[0], pitch_limit);
10508                 return -EINVAL;
10509         }
10510
10511         if (obj->tiling_mode != I915_TILING_NONE &&
10512             mode_cmd->pitches[0] != obj->stride) {
10513                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10514                           mode_cmd->pitches[0], obj->stride);
10515                 return -EINVAL;
10516         }
10517
10518         /* Reject formats not supported by any plane early. */
10519         switch (mode_cmd->pixel_format) {
10520         case DRM_FORMAT_C8:
10521         case DRM_FORMAT_RGB565:
10522         case DRM_FORMAT_XRGB8888:
10523         case DRM_FORMAT_ARGB8888:
10524                 break;
10525         case DRM_FORMAT_XRGB1555:
10526         case DRM_FORMAT_ARGB1555:
10527                 if (INTEL_INFO(dev)->gen > 3) {
10528                         DRM_DEBUG("unsupported pixel format: %s\n",
10529                                   drm_get_format_name(mode_cmd->pixel_format));
10530                         return -EINVAL;
10531                 }
10532                 break;
10533         case DRM_FORMAT_XBGR8888:
10534         case DRM_FORMAT_ABGR8888:
10535         case DRM_FORMAT_XRGB2101010:
10536         case DRM_FORMAT_ARGB2101010:
10537         case DRM_FORMAT_XBGR2101010:
10538         case DRM_FORMAT_ABGR2101010:
10539                 if (INTEL_INFO(dev)->gen < 4) {
10540                         DRM_DEBUG("unsupported pixel format: %s\n",
10541                                   drm_get_format_name(mode_cmd->pixel_format));
10542                         return -EINVAL;
10543                 }
10544                 break;
10545         case DRM_FORMAT_YUYV:
10546         case DRM_FORMAT_UYVY:
10547         case DRM_FORMAT_YVYU:
10548         case DRM_FORMAT_VYUY:
10549                 if (INTEL_INFO(dev)->gen < 5) {
10550                         DRM_DEBUG("unsupported pixel format: %s\n",
10551                                   drm_get_format_name(mode_cmd->pixel_format));
10552                         return -EINVAL;
10553                 }
10554                 break;
10555         default:
10556                 DRM_DEBUG("unsupported pixel format: %s\n",
10557                           drm_get_format_name(mode_cmd->pixel_format));
10558                 return -EINVAL;
10559         }
10560
10561         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10562         if (mode_cmd->offsets[0] != 0)
10563                 return -EINVAL;
10564
10565         tile_height = IS_GEN2(dev) ? 16 : 8;
10566         aligned_height = ALIGN(mode_cmd->height,
10567                                obj->tiling_mode ? tile_height : 1);
10568         /* FIXME drm helper for size checks (especially planar formats)? */
10569         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10570                 return -EINVAL;
10571
10572         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10573         intel_fb->obj = obj;
10574         intel_fb->obj->framebuffer_references++;
10575
10576         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10577         if (ret) {
10578                 DRM_ERROR("framebuffer init failed %d\n", ret);
10579                 return ret;
10580         }
10581
10582         return 0;
10583 }
10584
10585 static struct drm_framebuffer *
10586 intel_user_framebuffer_create(struct drm_device *dev,
10587                               struct drm_file *filp,
10588                               struct drm_mode_fb_cmd2 *mode_cmd)
10589 {
10590         struct drm_i915_gem_object *obj;
10591
10592         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10593                                                 mode_cmd->handles[0]));
10594         if (&obj->base == NULL)
10595                 return ERR_PTR(-ENOENT);
10596
10597         return intel_framebuffer_create(dev, mode_cmd, obj);
10598 }
10599
10600 #ifndef CONFIG_DRM_I915_FBDEV
10601 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10602 {
10603 }
10604 #endif
10605
10606 static const struct drm_mode_config_funcs intel_mode_funcs = {
10607         .fb_create = intel_user_framebuffer_create,
10608         .output_poll_changed = intel_fbdev_output_poll_changed,
10609 };
10610
10611 /* Set up chip specific display functions */
10612 static void intel_init_display(struct drm_device *dev)
10613 {
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615
10616         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10617                 dev_priv->display.find_dpll = g4x_find_best_dpll;
10618         else if (IS_VALLEYVIEW(dev))
10619                 dev_priv->display.find_dpll = vlv_find_best_dpll;
10620         else if (IS_PINEVIEW(dev))
10621                 dev_priv->display.find_dpll = pnv_find_best_dpll;
10622         else
10623                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10624
10625         if (HAS_DDI(dev)) {
10626                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10627                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10628                 dev_priv->display.crtc_enable = haswell_crtc_enable;
10629                 dev_priv->display.crtc_disable = haswell_crtc_disable;
10630                 dev_priv->display.off = haswell_crtc_off;
10631                 dev_priv->display.update_plane = ironlake_update_plane;
10632         } else if (HAS_PCH_SPLIT(dev)) {
10633                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10634                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10635                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10636                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10637                 dev_priv->display.off = ironlake_crtc_off;
10638                 dev_priv->display.update_plane = ironlake_update_plane;
10639         } else if (IS_VALLEYVIEW(dev)) {
10640                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10641                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10642                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10643                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10644                 dev_priv->display.off = i9xx_crtc_off;
10645                 dev_priv->display.update_plane = i9xx_update_plane;
10646         } else {
10647                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10648                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10649                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10650                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10651                 dev_priv->display.off = i9xx_crtc_off;
10652                 dev_priv->display.update_plane = i9xx_update_plane;
10653         }
10654
10655         /* Returns the core display clock speed */
10656         if (IS_VALLEYVIEW(dev))
10657                 dev_priv->display.get_display_clock_speed =
10658                         valleyview_get_display_clock_speed;
10659         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10660                 dev_priv->display.get_display_clock_speed =
10661                         i945_get_display_clock_speed;
10662         else if (IS_I915G(dev))
10663                 dev_priv->display.get_display_clock_speed =
10664                         i915_get_display_clock_speed;
10665         else if (IS_I945GM(dev) || IS_845G(dev))
10666                 dev_priv->display.get_display_clock_speed =
10667                         i9xx_misc_get_display_clock_speed;
10668         else if (IS_PINEVIEW(dev))
10669                 dev_priv->display.get_display_clock_speed =
10670                         pnv_get_display_clock_speed;
10671         else if (IS_I915GM(dev))
10672                 dev_priv->display.get_display_clock_speed =
10673                         i915gm_get_display_clock_speed;
10674         else if (IS_I865G(dev))
10675                 dev_priv->display.get_display_clock_speed =
10676                         i865_get_display_clock_speed;
10677         else if (IS_I85X(dev))
10678                 dev_priv->display.get_display_clock_speed =
10679                         i855_get_display_clock_speed;
10680         else /* 852, 830 */
10681                 dev_priv->display.get_display_clock_speed =
10682                         i830_get_display_clock_speed;
10683
10684         if (HAS_PCH_SPLIT(dev)) {
10685                 if (IS_GEN5(dev)) {
10686                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10687                         dev_priv->display.write_eld = ironlake_write_eld;
10688                 } else if (IS_GEN6(dev)) {
10689                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10690                         dev_priv->display.write_eld = ironlake_write_eld;
10691                 } else if (IS_IVYBRIDGE(dev)) {
10692                         /* FIXME: detect B0+ stepping and use auto training */
10693                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10694                         dev_priv->display.write_eld = ironlake_write_eld;
10695                         dev_priv->display.modeset_global_resources =
10696                                 ivb_modeset_global_resources;
10697                 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10698                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10699                         dev_priv->display.write_eld = haswell_write_eld;
10700                         dev_priv->display.modeset_global_resources =
10701                                 haswell_modeset_global_resources;
10702                 }
10703         } else if (IS_G4X(dev)) {
10704                 dev_priv->display.write_eld = g4x_write_eld;
10705         } else if (IS_VALLEYVIEW(dev)) {
10706                 dev_priv->display.modeset_global_resources =
10707                         valleyview_modeset_global_resources;
10708                 dev_priv->display.write_eld = ironlake_write_eld;
10709         }
10710
10711         /* Default just returns -ENODEV to indicate unsupported */
10712         dev_priv->display.queue_flip = intel_default_queue_flip;
10713
10714         switch (INTEL_INFO(dev)->gen) {
10715         case 2:
10716                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10717                 break;
10718
10719         case 3:
10720                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10721                 break;
10722
10723         case 4:
10724         case 5:
10725                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10726                 break;
10727
10728         case 6:
10729                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10730                 break;
10731         case 7:
10732         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10733                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10734                 break;
10735         }
10736
10737         intel_panel_init_backlight_funcs(dev);
10738 }
10739
10740 /*
10741  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10742  * resume, or other times.  This quirk makes sure that's the case for
10743  * affected systems.
10744  */
10745 static void quirk_pipea_force(struct drm_device *dev)
10746 {
10747         struct drm_i915_private *dev_priv = dev->dev_private;
10748
10749         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10750         DRM_INFO("applying pipe a force quirk\n");
10751 }
10752
10753 /*
10754  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10755  */
10756 static void quirk_ssc_force_disable(struct drm_device *dev)
10757 {
10758         struct drm_i915_private *dev_priv = dev->dev_private;
10759         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10760         DRM_INFO("applying lvds SSC disable quirk\n");
10761 }
10762
10763 /*
10764  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10765  * brightness value
10766  */
10767 static void quirk_invert_brightness(struct drm_device *dev)
10768 {
10769         struct drm_i915_private *dev_priv = dev->dev_private;
10770         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10771         DRM_INFO("applying inverted panel brightness quirk\n");
10772 }
10773
10774 struct intel_quirk {
10775         int device;
10776         int subsystem_vendor;
10777         int subsystem_device;
10778         void (*hook)(struct drm_device *dev);
10779 };
10780
10781 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10782 struct intel_dmi_quirk {
10783         void (*hook)(struct drm_device *dev);
10784         const struct dmi_system_id (*dmi_id_list)[];
10785 };
10786
10787 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10788 {
10789         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10790         return 1;
10791 }
10792
10793 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10794         {
10795                 .dmi_id_list = &(const struct dmi_system_id[]) {
10796                         {
10797                                 .callback = intel_dmi_reverse_brightness,
10798                                 .ident = "NCR Corporation",
10799                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10800                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
10801                                 },
10802                         },
10803                         { }  /* terminating entry */
10804                 },
10805                 .hook = quirk_invert_brightness,
10806         },
10807 };
10808
10809 static struct intel_quirk intel_quirks[] = {
10810         /* HP Mini needs pipe A force quirk (LP: #322104) */
10811         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10812
10813         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10814         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10815
10816         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10817         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10818
10819         /* 830 needs to leave pipe A & dpll A up */
10820         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10821
10822         /* Lenovo U160 cannot use SSC on LVDS */
10823         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10824
10825         /* Sony Vaio Y cannot use SSC on LVDS */
10826         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10827
10828         /* Acer Aspire 5734Z must invert backlight brightness */
10829         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10830
10831         /* Acer/eMachines G725 */
10832         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10833
10834         /* Acer/eMachines e725 */
10835         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10836
10837         /* Acer/Packard Bell NCL20 */
10838         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10839
10840         /* Acer Aspire 4736Z */
10841         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10842 };
10843
10844 static void intel_init_quirks(struct drm_device *dev)
10845 {
10846         struct pci_dev *d = dev->pdev;
10847         int i;
10848
10849         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10850                 struct intel_quirk *q = &intel_quirks[i];
10851
10852                 if (d->device == q->device &&
10853                     (d->subsystem_vendor == q->subsystem_vendor ||
10854                      q->subsystem_vendor == PCI_ANY_ID) &&
10855                     (d->subsystem_device == q->subsystem_device ||
10856                      q->subsystem_device == PCI_ANY_ID))
10857                         q->hook(dev);
10858         }
10859         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10860                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10861                         intel_dmi_quirks[i].hook(dev);
10862         }
10863 }
10864
10865 /* Disable the VGA plane that we never use */
10866 static void i915_disable_vga(struct drm_device *dev)
10867 {
10868         struct drm_i915_private *dev_priv = dev->dev_private;
10869         u8 sr1;
10870         u32 vga_reg = i915_vgacntrl_reg(dev);
10871
10872         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10873         outb(SR01, VGA_SR_INDEX);
10874         sr1 = inb(VGA_SR_DATA);
10875         outb(sr1 | 1<<5, VGA_SR_DATA);
10876         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10877         udelay(300);
10878
10879         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10880         POSTING_READ(vga_reg);
10881 }
10882
10883 void intel_modeset_init_hw(struct drm_device *dev)
10884 {
10885         intel_prepare_ddi(dev);
10886
10887         intel_init_clock_gating(dev);
10888
10889         intel_reset_dpio(dev);
10890
10891         mutex_lock(&dev->struct_mutex);
10892         intel_enable_gt_powersave(dev);
10893         mutex_unlock(&dev->struct_mutex);
10894 }
10895
10896 void intel_modeset_suspend_hw(struct drm_device *dev)
10897 {
10898         intel_suspend_hw(dev);
10899 }
10900
10901 void intel_modeset_init(struct drm_device *dev)
10902 {
10903         struct drm_i915_private *dev_priv = dev->dev_private;
10904         int i, j, ret;
10905
10906         drm_mode_config_init(dev);
10907
10908         dev->mode_config.min_width = 0;
10909         dev->mode_config.min_height = 0;
10910
10911         dev->mode_config.preferred_depth = 24;
10912         dev->mode_config.prefer_shadow = 1;
10913
10914         dev->mode_config.funcs = &intel_mode_funcs;
10915
10916         intel_init_quirks(dev);
10917
10918         intel_init_pm(dev);
10919
10920         if (INTEL_INFO(dev)->num_pipes == 0)
10921                 return;
10922
10923         intel_init_display(dev);
10924
10925         if (IS_GEN2(dev)) {
10926                 dev->mode_config.max_width = 2048;
10927                 dev->mode_config.max_height = 2048;
10928         } else if (IS_GEN3(dev)) {
10929                 dev->mode_config.max_width = 4096;
10930                 dev->mode_config.max_height = 4096;
10931         } else {
10932                 dev->mode_config.max_width = 8192;
10933                 dev->mode_config.max_height = 8192;
10934         }
10935         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10936
10937         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10938                       INTEL_INFO(dev)->num_pipes,
10939                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10940
10941         for_each_pipe(i) {
10942                 intel_crtc_init(dev, i);
10943                 for (j = 0; j < dev_priv->num_plane; j++) {
10944                         ret = intel_plane_init(dev, i, j);
10945                         if (ret)
10946                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10947                                               pipe_name(i), sprite_name(i, j), ret);
10948                 }
10949         }
10950
10951         intel_init_dpio(dev);
10952         intel_reset_dpio(dev);
10953
10954         intel_cpu_pll_init(dev);
10955         intel_shared_dpll_init(dev);
10956
10957         /* Just disable it once at startup */
10958         i915_disable_vga(dev);
10959         intel_setup_outputs(dev);
10960
10961         /* Just in case the BIOS is doing something questionable. */
10962         intel_disable_fbc(dev);
10963 }
10964
10965 static void
10966 intel_connector_break_all_links(struct intel_connector *connector)
10967 {
10968         connector->base.dpms = DRM_MODE_DPMS_OFF;
10969         connector->base.encoder = NULL;
10970         connector->encoder->connectors_active = false;
10971         connector->encoder->base.crtc = NULL;
10972 }
10973
10974 static void intel_enable_pipe_a(struct drm_device *dev)
10975 {
10976         struct intel_connector *connector;
10977         struct drm_connector *crt = NULL;
10978         struct intel_load_detect_pipe load_detect_temp;
10979
10980         /* We can't just switch on the pipe A, we need to set things up with a
10981          * proper mode and output configuration. As a gross hack, enable pipe A
10982          * by enabling the load detect pipe once. */
10983         list_for_each_entry(connector,
10984                             &dev->mode_config.connector_list,
10985                             base.head) {
10986                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10987                         crt = &connector->base;
10988                         break;
10989                 }
10990         }
10991
10992         if (!crt)
10993                 return;
10994
10995         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10996                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10997
10998
10999 }
11000
11001 static bool
11002 intel_check_plane_mapping(struct intel_crtc *crtc)
11003 {
11004         struct drm_device *dev = crtc->base.dev;
11005         struct drm_i915_private *dev_priv = dev->dev_private;
11006         u32 reg, val;
11007
11008         if (INTEL_INFO(dev)->num_pipes == 1)
11009                 return true;
11010
11011         reg = DSPCNTR(!crtc->plane);
11012         val = I915_READ(reg);
11013
11014         if ((val & DISPLAY_PLANE_ENABLE) &&
11015             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
11016                 return false;
11017
11018         return true;
11019 }
11020
11021 static void intel_sanitize_crtc(struct intel_crtc *crtc)
11022 {
11023         struct drm_device *dev = crtc->base.dev;
11024         struct drm_i915_private *dev_priv = dev->dev_private;
11025         u32 reg;
11026
11027         /* Clear any frame start delays used for debugging left by the BIOS */
11028         reg = PIPECONF(crtc->config.cpu_transcoder);
11029         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
11030
11031         /* We need to sanitize the plane -> pipe mapping first because this will
11032          * disable the crtc (and hence change the state) if it is wrong. Note
11033          * that gen4+ has a fixed plane -> pipe mapping.  */
11034         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11035                 struct intel_connector *connector;
11036                 bool plane;
11037
11038                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11039                               crtc->base.base.id);
11040
11041                 /* Pipe has the wrong plane attached and the plane is active.
11042                  * Temporarily change the plane mapping and disable everything
11043                  * ...  */
11044                 plane = crtc->plane;
11045                 crtc->plane = !plane;
11046                 dev_priv->display.crtc_disable(&crtc->base);
11047                 crtc->plane = plane;
11048
11049                 /* ... and break all links. */
11050                 list_for_each_entry(connector, &dev->mode_config.connector_list,
11051                                     base.head) {
11052                         if (connector->encoder->base.crtc != &crtc->base)
11053                                 continue;
11054
11055                         intel_connector_break_all_links(connector);
11056                 }
11057
11058                 WARN_ON(crtc->active);
11059                 crtc->base.enabled = false;
11060         }
11061
11062         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11063             crtc->pipe == PIPE_A && !crtc->active) {
11064                 /* BIOS forgot to enable pipe A, this mostly happens after
11065                  * resume. Force-enable the pipe to fix this, the update_dpms
11066                  * call below we restore the pipe to the right state, but leave
11067                  * the required bits on. */
11068                 intel_enable_pipe_a(dev);
11069         }
11070
11071         /* Adjust the state of the output pipe according to whether we
11072          * have active connectors/encoders. */
11073         intel_crtc_update_dpms(&crtc->base);
11074
11075         if (crtc->active != crtc->base.enabled) {
11076                 struct intel_encoder *encoder;
11077
11078                 /* This can happen either due to bugs in the get_hw_state
11079                  * functions or because the pipe is force-enabled due to the
11080                  * pipe A quirk. */
11081                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11082                               crtc->base.base.id,
11083                               crtc->base.enabled ? "enabled" : "disabled",
11084                               crtc->active ? "enabled" : "disabled");
11085
11086                 crtc->base.enabled = crtc->active;
11087
11088                 /* Because we only establish the connector -> encoder ->
11089                  * crtc links if something is active, this means the
11090                  * crtc is now deactivated. Break the links. connector
11091                  * -> encoder links are only establish when things are
11092                  *  actually up, hence no need to break them. */
11093                 WARN_ON(crtc->active);
11094
11095                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11096                         WARN_ON(encoder->connectors_active);
11097                         encoder->base.crtc = NULL;
11098                 }
11099         }
11100 }
11101
11102 static void intel_sanitize_encoder(struct intel_encoder *encoder)
11103 {
11104         struct intel_connector *connector;
11105         struct drm_device *dev = encoder->base.dev;
11106
11107         /* We need to check both for a crtc link (meaning that the
11108          * encoder is active and trying to read from a pipe) and the
11109          * pipe itself being active. */
11110         bool has_active_crtc = encoder->base.crtc &&
11111                 to_intel_crtc(encoder->base.crtc)->active;
11112
11113         if (encoder->connectors_active && !has_active_crtc) {
11114                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11115                               encoder->base.base.id,
11116                               drm_get_encoder_name(&encoder->base));
11117
11118                 /* Connector is active, but has no active pipe. This is
11119                  * fallout from our resume register restoring. Disable
11120                  * the encoder manually again. */
11121                 if (encoder->base.crtc) {
11122                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11123                                       encoder->base.base.id,
11124                                       drm_get_encoder_name(&encoder->base));
11125                         encoder->disable(encoder);
11126                 }
11127
11128                 /* Inconsistent output/port/pipe state happens presumably due to
11129                  * a bug in one of the get_hw_state functions. Or someplace else
11130                  * in our code, like the register restore mess on resume. Clamp
11131                  * things to off as a safer default. */
11132                 list_for_each_entry(connector,
11133                                     &dev->mode_config.connector_list,
11134                                     base.head) {
11135                         if (connector->encoder != encoder)
11136                                 continue;
11137
11138                         intel_connector_break_all_links(connector);
11139                 }
11140         }
11141         /* Enabled encoders without active connectors will be fixed in
11142          * the crtc fixup. */
11143 }
11144
11145 void i915_redisable_vga(struct drm_device *dev)
11146 {
11147         struct drm_i915_private *dev_priv = dev->dev_private;
11148         u32 vga_reg = i915_vgacntrl_reg(dev);
11149
11150         /* This function can be called both from intel_modeset_setup_hw_state or
11151          * at a very early point in our resume sequence, where the power well
11152          * structures are not yet restored. Since this function is at a very
11153          * paranoid "someone might have enabled VGA while we were not looking"
11154          * level, just check if the power well is enabled instead of trying to
11155          * follow the "don't touch the power well if we don't need it" policy
11156          * the rest of the driver uses. */
11157         if ((IS_HASWELL(dev) || IS_BROADWELL(dev)) &&
11158             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11159                 return;
11160
11161         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11162                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11163                 i915_disable_vga(dev);
11164         }
11165 }
11166
11167 static void intel_modeset_readout_hw_state(struct drm_device *dev)
11168 {
11169         struct drm_i915_private *dev_priv = dev->dev_private;
11170         enum pipe pipe;
11171         struct intel_crtc *crtc;
11172         struct intel_encoder *encoder;
11173         struct intel_connector *connector;
11174         int i;
11175
11176         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11177                             base.head) {
11178                 memset(&crtc->config, 0, sizeof(crtc->config));
11179
11180                 crtc->active = dev_priv->display.get_pipe_config(crtc,
11181                                                                  &crtc->config);
11182
11183                 crtc->base.enabled = crtc->active;
11184                 crtc->primary_enabled = crtc->active;
11185
11186                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11187                               crtc->base.base.id,
11188                               crtc->active ? "enabled" : "disabled");
11189         }
11190
11191         /* FIXME: Smash this into the new shared dpll infrastructure. */
11192         if (HAS_DDI(dev))
11193                 intel_ddi_setup_hw_pll_state(dev);
11194
11195         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11196                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11197
11198                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11199                 pll->active = 0;
11200                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11201                                     base.head) {
11202                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11203                                 pll->active++;
11204                 }
11205                 pll->refcount = pll->active;
11206
11207                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11208                               pll->name, pll->refcount, pll->on);
11209         }
11210
11211         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11212                             base.head) {
11213                 pipe = 0;
11214
11215                 if (encoder->get_hw_state(encoder, &pipe)) {
11216                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11217                         encoder->base.crtc = &crtc->base;
11218                         encoder->get_config(encoder, &crtc->config);
11219                 } else {
11220                         encoder->base.crtc = NULL;
11221                 }
11222
11223                 encoder->connectors_active = false;
11224                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11225                               encoder->base.base.id,
11226                               drm_get_encoder_name(&encoder->base),
11227                               encoder->base.crtc ? "enabled" : "disabled",
11228                               pipe_name(pipe));
11229         }
11230
11231         list_for_each_entry(connector, &dev->mode_config.connector_list,
11232                             base.head) {
11233                 if (connector->get_hw_state(connector)) {
11234                         connector->base.dpms = DRM_MODE_DPMS_ON;
11235                         connector->encoder->connectors_active = true;
11236                         connector->base.encoder = &connector->encoder->base;
11237                 } else {
11238                         connector->base.dpms = DRM_MODE_DPMS_OFF;
11239                         connector->base.encoder = NULL;
11240                 }
11241                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11242                               connector->base.base.id,
11243                               drm_get_connector_name(&connector->base),
11244                               connector->base.encoder ? "enabled" : "disabled");
11245         }
11246 }
11247
11248 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11249  * and i915 state tracking structures. */
11250 void intel_modeset_setup_hw_state(struct drm_device *dev,
11251                                   bool force_restore)
11252 {
11253         struct drm_i915_private *dev_priv = dev->dev_private;
11254         enum pipe pipe;
11255         struct intel_crtc *crtc;
11256         struct intel_encoder *encoder;
11257         int i;
11258
11259         intel_modeset_readout_hw_state(dev);
11260
11261         /*
11262          * Now that we have the config, copy it to each CRTC struct
11263          * Note that this could go away if we move to using crtc_config
11264          * checking everywhere.
11265          */
11266         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11267                             base.head) {
11268                 if (crtc->active && i915_fastboot) {
11269                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11270
11271                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11272                                       crtc->base.base.id);
11273                         drm_mode_debug_printmodeline(&crtc->base.mode);
11274                 }
11275         }
11276
11277         /* HW state is read out, now we need to sanitize this mess. */
11278         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11279                             base.head) {
11280                 intel_sanitize_encoder(encoder);
11281         }
11282
11283         for_each_pipe(pipe) {
11284                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11285                 intel_sanitize_crtc(crtc);
11286                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11287         }
11288
11289         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11290                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11291
11292                 if (!pll->on || pll->active)
11293                         continue;
11294
11295                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11296
11297                 pll->disable(dev_priv, pll);
11298                 pll->on = false;
11299         }
11300
11301         if (HAS_PCH_SPLIT(dev))
11302                 ilk_wm_get_hw_state(dev);
11303
11304         if (force_restore) {
11305                 i915_redisable_vga(dev);
11306
11307                 /*
11308                  * We need to use raw interfaces for restoring state to avoid
11309                  * checking (bogus) intermediate states.
11310                  */
11311                 for_each_pipe(pipe) {
11312                         struct drm_crtc *crtc =
11313                                 dev_priv->pipe_to_crtc_mapping[pipe];
11314
11315                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11316                                          crtc->fb);
11317                 }
11318         } else {
11319                 intel_modeset_update_staged_output_state(dev);
11320         }
11321
11322         intel_modeset_check_state(dev);
11323 }
11324
11325 void intel_modeset_gem_init(struct drm_device *dev)
11326 {
11327         intel_modeset_init_hw(dev);
11328
11329         intel_setup_overlay(dev);
11330
11331         mutex_lock(&dev->mode_config.mutex);
11332         drm_mode_config_reset(dev);
11333         intel_modeset_setup_hw_state(dev, false);
11334         mutex_unlock(&dev->mode_config.mutex);
11335 }
11336
11337 void intel_modeset_cleanup(struct drm_device *dev)
11338 {
11339         struct drm_i915_private *dev_priv = dev->dev_private;
11340         struct drm_crtc *crtc;
11341         struct drm_connector *connector;
11342
11343         /*
11344          * Interrupts and polling as the first thing to avoid creating havoc.
11345          * Too much stuff here (turning of rps, connectors, ...) would
11346          * experience fancy races otherwise.
11347          */
11348         drm_irq_uninstall(dev);
11349         cancel_work_sync(&dev_priv->hotplug_work);
11350         /*
11351          * Due to the hpd irq storm handling the hotplug work can re-arm the
11352          * poll handlers. Hence disable polling after hpd handling is shut down.
11353          */
11354         drm_kms_helper_poll_fini(dev);
11355
11356         mutex_lock(&dev->struct_mutex);
11357
11358         intel_unregister_dsm_handler();
11359
11360         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11361                 /* Skip inactive CRTCs */
11362                 if (!crtc->fb)
11363                         continue;
11364
11365                 intel_increase_pllclock(crtc);
11366         }
11367
11368         intel_disable_fbc(dev);
11369
11370         intel_disable_gt_powersave(dev);
11371
11372         ironlake_teardown_rc6(dev);
11373
11374         mutex_unlock(&dev->struct_mutex);
11375
11376         /* flush any delayed tasks or pending work */
11377         flush_scheduled_work();
11378
11379         /* destroy the backlight and sysfs files before encoders/connectors */
11380         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11381                 intel_panel_destroy_backlight(connector);
11382                 drm_sysfs_connector_remove(connector);
11383         }
11384
11385         drm_mode_config_cleanup(dev);
11386
11387         intel_cleanup_overlay(dev);
11388 }
11389
11390 /*
11391  * Return which encoder is currently attached for connector.
11392  */
11393 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11394 {
11395         return &intel_attached_encoder(connector)->base;
11396 }
11397
11398 void intel_connector_attach_encoder(struct intel_connector *connector,
11399                                     struct intel_encoder *encoder)
11400 {
11401         connector->encoder = encoder;
11402         drm_mode_connector_attach_encoder(&connector->base,
11403                                           &encoder->base);
11404 }
11405
11406 /*
11407  * set vga decode state - true == enable VGA decode
11408  */
11409 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11410 {
11411         struct drm_i915_private *dev_priv = dev->dev_private;
11412         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
11413         u16 gmch_ctrl;
11414
11415         pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl);
11416         if (state)
11417                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11418         else
11419                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11420         pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl);
11421         return 0;
11422 }
11423
11424 struct intel_display_error_state {
11425
11426         u32 power_well_driver;
11427
11428         int num_transcoders;
11429
11430         struct intel_cursor_error_state {
11431                 u32 control;
11432                 u32 position;
11433                 u32 base;
11434                 u32 size;
11435         } cursor[I915_MAX_PIPES];
11436
11437         struct intel_pipe_error_state {
11438                 bool power_domain_on;
11439                 u32 source;
11440         } pipe[I915_MAX_PIPES];
11441
11442         struct intel_plane_error_state {
11443                 u32 control;
11444                 u32 stride;
11445                 u32 size;
11446                 u32 pos;
11447                 u32 addr;
11448                 u32 surface;
11449                 u32 tile_offset;
11450         } plane[I915_MAX_PIPES];
11451
11452         struct intel_transcoder_error_state {
11453                 bool power_domain_on;
11454                 enum transcoder cpu_transcoder;
11455
11456                 u32 conf;
11457
11458                 u32 htotal;
11459                 u32 hblank;
11460                 u32 hsync;
11461                 u32 vtotal;
11462                 u32 vblank;
11463                 u32 vsync;
11464         } transcoder[4];
11465 };
11466
11467 struct intel_display_error_state *
11468 intel_display_capture_error_state(struct drm_device *dev)
11469 {
11470         drm_i915_private_t *dev_priv = dev->dev_private;
11471         struct intel_display_error_state *error;
11472         int transcoders[] = {
11473                 TRANSCODER_A,
11474                 TRANSCODER_B,
11475                 TRANSCODER_C,
11476                 TRANSCODER_EDP,
11477         };
11478         int i;
11479
11480         if (INTEL_INFO(dev)->num_pipes == 0)
11481                 return NULL;
11482
11483         error = kzalloc(sizeof(*error), GFP_ATOMIC);
11484         if (error == NULL)
11485                 return NULL;
11486
11487         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11488                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11489
11490         for_each_pipe(i) {
11491                 error->pipe[i].power_domain_on =
11492                         intel_display_power_enabled_sw(dev, POWER_DOMAIN_PIPE(i));
11493                 if (!error->pipe[i].power_domain_on)
11494                         continue;
11495
11496                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11497                         error->cursor[i].control = I915_READ(CURCNTR(i));
11498                         error->cursor[i].position = I915_READ(CURPOS(i));
11499                         error->cursor[i].base = I915_READ(CURBASE(i));
11500                 } else {
11501                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11502                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11503                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11504                 }
11505
11506                 error->plane[i].control = I915_READ(DSPCNTR(i));
11507                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11508                 if (INTEL_INFO(dev)->gen <= 3) {
11509                         error->plane[i].size = I915_READ(DSPSIZE(i));
11510                         error->plane[i].pos = I915_READ(DSPPOS(i));
11511                 }
11512                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11513                         error->plane[i].addr = I915_READ(DSPADDR(i));
11514                 if (INTEL_INFO(dev)->gen >= 4) {
11515                         error->plane[i].surface = I915_READ(DSPSURF(i));
11516                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11517                 }
11518
11519                 error->pipe[i].source = I915_READ(PIPESRC(i));
11520         }
11521
11522         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11523         if (HAS_DDI(dev_priv->dev))
11524                 error->num_transcoders++; /* Account for eDP. */
11525
11526         for (i = 0; i < error->num_transcoders; i++) {
11527                 enum transcoder cpu_transcoder = transcoders[i];
11528
11529                 error->transcoder[i].power_domain_on =
11530                         intel_display_power_enabled_sw(dev,
11531                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11532                 if (!error->transcoder[i].power_domain_on)
11533                         continue;
11534
11535                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11536
11537                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11538                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11539                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11540                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11541                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11542                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11543                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11544         }
11545
11546         return error;
11547 }
11548
11549 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11550
11551 void
11552 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11553                                 struct drm_device *dev,
11554                                 struct intel_display_error_state *error)
11555 {
11556         int i;
11557
11558         if (!error)
11559                 return;
11560
11561         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11562         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11563                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11564                            error->power_well_driver);
11565         for_each_pipe(i) {
11566                 err_printf(m, "Pipe [%d]:\n", i);
11567                 err_printf(m, "  Power: %s\n",
11568                            error->pipe[i].power_domain_on ? "on" : "off");
11569                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
11570
11571                 err_printf(m, "Plane [%d]:\n", i);
11572                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
11573                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
11574                 if (INTEL_INFO(dev)->gen <= 3) {
11575                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
11576                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
11577                 }
11578                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11579                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
11580                 if (INTEL_INFO(dev)->gen >= 4) {
11581                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
11582                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
11583                 }
11584
11585                 err_printf(m, "Cursor [%d]:\n", i);
11586                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
11587                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
11588                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
11589         }
11590
11591         for (i = 0; i < error->num_transcoders; i++) {
11592                 err_printf(m, "CPU transcoder: %c\n",
11593                            transcoder_name(error->transcoder[i].cpu_transcoder));
11594                 err_printf(m, "  Power: %s\n",
11595                            error->transcoder[i].power_domain_on ? "on" : "off");
11596                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
11597                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
11598                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
11599                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
11600                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
11601                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
11602                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
11603         }
11604 }