drm/i915: Add plumbing for digital connector state, v3.
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54         return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59         DRM_FORMAT_C8,
60         DRM_FORMAT_RGB565,
61         DRM_FORMAT_XRGB1555,
62         DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_XRGB2101010,
72         DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76         DRM_FORMAT_C8,
77         DRM_FORMAT_RGB565,
78         DRM_FORMAT_XRGB8888,
79         DRM_FORMAT_XBGR8888,
80         DRM_FORMAT_ARGB8888,
81         DRM_FORMAT_ABGR8888,
82         DRM_FORMAT_XRGB2101010,
83         DRM_FORMAT_XBGR2101010,
84         DRM_FORMAT_YUYV,
85         DRM_FORMAT_YVYU,
86         DRM_FORMAT_UYVY,
87         DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92         DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96                                 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98                                    struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
101                                   struct drm_i915_gem_object *obj,
102                                   struct drm_mode_fb_cmd2 *mode_cmd);
103 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
104 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
106 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
107                                          struct intel_link_m_n *m_n,
108                                          struct intel_link_m_n *m2_n2);
109 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
110 static void haswell_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipemisc(struct drm_crtc *crtc);
112 static void vlv_prepare_pll(struct intel_crtc *crtc,
113                             const struct intel_crtc_state *pipe_config);
114 static void chv_prepare_pll(struct intel_crtc *crtc,
115                             const struct intel_crtc_state *pipe_config);
116 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
117 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
119                                     struct intel_crtc_state *crtc_state);
120 static void skylake_pfit_enable(struct intel_crtc *crtc);
121 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
122 static void ironlake_pfit_enable(struct intel_crtc *crtc);
123 static void intel_modeset_setup_hw_state(struct drm_device *dev);
124 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
125
126 struct intel_limit {
127         struct {
128                 int min, max;
129         } dot, vco, n, m, m1, m2, p, p1;
130
131         struct {
132                 int dot_limit;
133                 int p2_slow, p2_fast;
134         } p2;
135 };
136
137 /* returns HPLL frequency in kHz */
138 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
139 {
140         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142         /* Obtain SKU information */
143         mutex_lock(&dev_priv->sb_lock);
144         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145                 CCK_FUSE_HPLL_FREQ_MASK;
146         mutex_unlock(&dev_priv->sb_lock);
147
148         return vco_freq[hpll_freq] * 1000;
149 }
150
151 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
152                       const char *name, u32 reg, int ref_freq)
153 {
154         u32 val;
155         int divider;
156
157         mutex_lock(&dev_priv->sb_lock);
158         val = vlv_cck_read(dev_priv, reg);
159         mutex_unlock(&dev_priv->sb_lock);
160
161         divider = val & CCK_FREQUENCY_VALUES;
162
163         WARN((val & CCK_FREQUENCY_STATUS) !=
164              (divider << CCK_FREQUENCY_STATUS_SHIFT),
165              "%s change in progress\n", name);
166
167         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
168 }
169
170 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
171                            const char *name, u32 reg)
172 {
173         if (dev_priv->hpll_freq == 0)
174                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
175
176         return vlv_get_cck_clock(dev_priv, name, reg,
177                                  dev_priv->hpll_freq);
178 }
179
180 static void intel_update_czclk(struct drm_i915_private *dev_priv)
181 {
182         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
183                 return;
184
185         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
186                                                       CCK_CZ_CLOCK_CONTROL);
187
188         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
189 }
190
191 static inline u32 /* units of 100MHz */
192 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
193                     const struct intel_crtc_state *pipe_config)
194 {
195         if (HAS_DDI(dev_priv))
196                 return pipe_config->port_clock; /* SPLL */
197         else if (IS_GEN5(dev_priv))
198                 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
199         else
200                 return 270000;
201 }
202
203 static const struct intel_limit intel_limits_i8xx_dac = {
204         .dot = { .min = 25000, .max = 350000 },
205         .vco = { .min = 908000, .max = 1512000 },
206         .n = { .min = 2, .max = 16 },
207         .m = { .min = 96, .max = 140 },
208         .m1 = { .min = 18, .max = 26 },
209         .m2 = { .min = 6, .max = 16 },
210         .p = { .min = 4, .max = 128 },
211         .p1 = { .min = 2, .max = 33 },
212         .p2 = { .dot_limit = 165000,
213                 .p2_slow = 4, .p2_fast = 2 },
214 };
215
216 static const struct intel_limit intel_limits_i8xx_dvo = {
217         .dot = { .min = 25000, .max = 350000 },
218         .vco = { .min = 908000, .max = 1512000 },
219         .n = { .min = 2, .max = 16 },
220         .m = { .min = 96, .max = 140 },
221         .m1 = { .min = 18, .max = 26 },
222         .m2 = { .min = 6, .max = 16 },
223         .p = { .min = 4, .max = 128 },
224         .p1 = { .min = 2, .max = 33 },
225         .p2 = { .dot_limit = 165000,
226                 .p2_slow = 4, .p2_fast = 4 },
227 };
228
229 static const struct intel_limit intel_limits_i8xx_lvds = {
230         .dot = { .min = 25000, .max = 350000 },
231         .vco = { .min = 908000, .max = 1512000 },
232         .n = { .min = 2, .max = 16 },
233         .m = { .min = 96, .max = 140 },
234         .m1 = { .min = 18, .max = 26 },
235         .m2 = { .min = 6, .max = 16 },
236         .p = { .min = 4, .max = 128 },
237         .p1 = { .min = 1, .max = 6 },
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 14, .p2_fast = 7 },
240 };
241
242 static const struct intel_limit intel_limits_i9xx_sdvo = {
243         .dot = { .min = 20000, .max = 400000 },
244         .vco = { .min = 1400000, .max = 2800000 },
245         .n = { .min = 1, .max = 6 },
246         .m = { .min = 70, .max = 120 },
247         .m1 = { .min = 8, .max = 18 },
248         .m2 = { .min = 3, .max = 7 },
249         .p = { .min = 5, .max = 80 },
250         .p1 = { .min = 1, .max = 8 },
251         .p2 = { .dot_limit = 200000,
252                 .p2_slow = 10, .p2_fast = 5 },
253 };
254
255 static const struct intel_limit intel_limits_i9xx_lvds = {
256         .dot = { .min = 20000, .max = 400000 },
257         .vco = { .min = 1400000, .max = 2800000 },
258         .n = { .min = 1, .max = 6 },
259         .m = { .min = 70, .max = 120 },
260         .m1 = { .min = 8, .max = 18 },
261         .m2 = { .min = 3, .max = 7 },
262         .p = { .min = 7, .max = 98 },
263         .p1 = { .min = 1, .max = 8 },
264         .p2 = { .dot_limit = 112000,
265                 .p2_slow = 14, .p2_fast = 7 },
266 };
267
268
269 static const struct intel_limit intel_limits_g4x_sdvo = {
270         .dot = { .min = 25000, .max = 270000 },
271         .vco = { .min = 1750000, .max = 3500000},
272         .n = { .min = 1, .max = 4 },
273         .m = { .min = 104, .max = 138 },
274         .m1 = { .min = 17, .max = 23 },
275         .m2 = { .min = 5, .max = 11 },
276         .p = { .min = 10, .max = 30 },
277         .p1 = { .min = 1, .max = 3},
278         .p2 = { .dot_limit = 270000,
279                 .p2_slow = 10,
280                 .p2_fast = 10
281         },
282 };
283
284 static const struct intel_limit intel_limits_g4x_hdmi = {
285         .dot = { .min = 22000, .max = 400000 },
286         .vco = { .min = 1750000, .max = 3500000},
287         .n = { .min = 1, .max = 4 },
288         .m = { .min = 104, .max = 138 },
289         .m1 = { .min = 16, .max = 23 },
290         .m2 = { .min = 5, .max = 11 },
291         .p = { .min = 5, .max = 80 },
292         .p1 = { .min = 1, .max = 8},
293         .p2 = { .dot_limit = 165000,
294                 .p2_slow = 10, .p2_fast = 5 },
295 };
296
297 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
298         .dot = { .min = 20000, .max = 115000 },
299         .vco = { .min = 1750000, .max = 3500000 },
300         .n = { .min = 1, .max = 3 },
301         .m = { .min = 104, .max = 138 },
302         .m1 = { .min = 17, .max = 23 },
303         .m2 = { .min = 5, .max = 11 },
304         .p = { .min = 28, .max = 112 },
305         .p1 = { .min = 2, .max = 8 },
306         .p2 = { .dot_limit = 0,
307                 .p2_slow = 14, .p2_fast = 14
308         },
309 };
310
311 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
312         .dot = { .min = 80000, .max = 224000 },
313         .vco = { .min = 1750000, .max = 3500000 },
314         .n = { .min = 1, .max = 3 },
315         .m = { .min = 104, .max = 138 },
316         .m1 = { .min = 17, .max = 23 },
317         .m2 = { .min = 5, .max = 11 },
318         .p = { .min = 14, .max = 42 },
319         .p1 = { .min = 2, .max = 6 },
320         .p2 = { .dot_limit = 0,
321                 .p2_slow = 7, .p2_fast = 7
322         },
323 };
324
325 static const struct intel_limit intel_limits_pineview_sdvo = {
326         .dot = { .min = 20000, .max = 400000},
327         .vco = { .min = 1700000, .max = 3500000 },
328         /* Pineview's Ncounter is a ring counter */
329         .n = { .min = 3, .max = 6 },
330         .m = { .min = 2, .max = 256 },
331         /* Pineview only has one combined m divider, which we treat as m2. */
332         .m1 = { .min = 0, .max = 0 },
333         .m2 = { .min = 0, .max = 254 },
334         .p = { .min = 5, .max = 80 },
335         .p1 = { .min = 1, .max = 8 },
336         .p2 = { .dot_limit = 200000,
337                 .p2_slow = 10, .p2_fast = 5 },
338 };
339
340 static const struct intel_limit intel_limits_pineview_lvds = {
341         .dot = { .min = 20000, .max = 400000 },
342         .vco = { .min = 1700000, .max = 3500000 },
343         .n = { .min = 3, .max = 6 },
344         .m = { .min = 2, .max = 256 },
345         .m1 = { .min = 0, .max = 0 },
346         .m2 = { .min = 0, .max = 254 },
347         .p = { .min = 7, .max = 112 },
348         .p1 = { .min = 1, .max = 8 },
349         .p2 = { .dot_limit = 112000,
350                 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 /* Ironlake / Sandybridge
354  *
355  * We calculate clock using (register_value + 2) for N/M1/M2, so here
356  * the range value for them is (actual_value - 2).
357  */
358 static const struct intel_limit intel_limits_ironlake_dac = {
359         .dot = { .min = 25000, .max = 350000 },
360         .vco = { .min = 1760000, .max = 3510000 },
361         .n = { .min = 1, .max = 5 },
362         .m = { .min = 79, .max = 127 },
363         .m1 = { .min = 12, .max = 22 },
364         .m2 = { .min = 5, .max = 9 },
365         .p = { .min = 5, .max = 80 },
366         .p1 = { .min = 1, .max = 8 },
367         .p2 = { .dot_limit = 225000,
368                 .p2_slow = 10, .p2_fast = 5 },
369 };
370
371 static const struct intel_limit intel_limits_ironlake_single_lvds = {
372         .dot = { .min = 25000, .max = 350000 },
373         .vco = { .min = 1760000, .max = 3510000 },
374         .n = { .min = 1, .max = 3 },
375         .m = { .min = 79, .max = 118 },
376         .m1 = { .min = 12, .max = 22 },
377         .m2 = { .min = 5, .max = 9 },
378         .p = { .min = 28, .max = 112 },
379         .p1 = { .min = 2, .max = 8 },
380         .p2 = { .dot_limit = 225000,
381                 .p2_slow = 14, .p2_fast = 14 },
382 };
383
384 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
385         .dot = { .min = 25000, .max = 350000 },
386         .vco = { .min = 1760000, .max = 3510000 },
387         .n = { .min = 1, .max = 3 },
388         .m = { .min = 79, .max = 127 },
389         .m1 = { .min = 12, .max = 22 },
390         .m2 = { .min = 5, .max = 9 },
391         .p = { .min = 14, .max = 56 },
392         .p1 = { .min = 2, .max = 8 },
393         .p2 = { .dot_limit = 225000,
394                 .p2_slow = 7, .p2_fast = 7 },
395 };
396
397 /* LVDS 100mhz refclk limits. */
398 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
399         .dot = { .min = 25000, .max = 350000 },
400         .vco = { .min = 1760000, .max = 3510000 },
401         .n = { .min = 1, .max = 2 },
402         .m = { .min = 79, .max = 126 },
403         .m1 = { .min = 12, .max = 22 },
404         .m2 = { .min = 5, .max = 9 },
405         .p = { .min = 28, .max = 112 },
406         .p1 = { .min = 2, .max = 8 },
407         .p2 = { .dot_limit = 225000,
408                 .p2_slow = 14, .p2_fast = 14 },
409 };
410
411 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
412         .dot = { .min = 25000, .max = 350000 },
413         .vco = { .min = 1760000, .max = 3510000 },
414         .n = { .min = 1, .max = 3 },
415         .m = { .min = 79, .max = 126 },
416         .m1 = { .min = 12, .max = 22 },
417         .m2 = { .min = 5, .max = 9 },
418         .p = { .min = 14, .max = 42 },
419         .p1 = { .min = 2, .max = 6 },
420         .p2 = { .dot_limit = 225000,
421                 .p2_slow = 7, .p2_fast = 7 },
422 };
423
424 static const struct intel_limit intel_limits_vlv = {
425          /*
426           * These are the data rate limits (measured in fast clocks)
427           * since those are the strictest limits we have. The fast
428           * clock and actual rate limits are more relaxed, so checking
429           * them would make no difference.
430           */
431         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
432         .vco = { .min = 4000000, .max = 6000000 },
433         .n = { .min = 1, .max = 7 },
434         .m1 = { .min = 2, .max = 3 },
435         .m2 = { .min = 11, .max = 156 },
436         .p1 = { .min = 2, .max = 3 },
437         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
438 };
439
440 static const struct intel_limit intel_limits_chv = {
441         /*
442          * These are the data rate limits (measured in fast clocks)
443          * since those are the strictest limits we have.  The fast
444          * clock and actual rate limits are more relaxed, so checking
445          * them would make no difference.
446          */
447         .dot = { .min = 25000 * 5, .max = 540000 * 5},
448         .vco = { .min = 4800000, .max = 6480000 },
449         .n = { .min = 1, .max = 1 },
450         .m1 = { .min = 2, .max = 2 },
451         .m2 = { .min = 24 << 22, .max = 175 << 22 },
452         .p1 = { .min = 2, .max = 4 },
453         .p2 = { .p2_slow = 1, .p2_fast = 14 },
454 };
455
456 static const struct intel_limit intel_limits_bxt = {
457         /* FIXME: find real dot limits */
458         .dot = { .min = 0, .max = INT_MAX },
459         .vco = { .min = 4800000, .max = 6700000 },
460         .n = { .min = 1, .max = 1 },
461         .m1 = { .min = 2, .max = 2 },
462         /* FIXME: find real m2 limits */
463         .m2 = { .min = 2 << 22, .max = 255 << 22 },
464         .p1 = { .min = 2, .max = 4 },
465         .p2 = { .p2_slow = 1, .p2_fast = 20 },
466 };
467
468 static bool
469 needs_modeset(struct drm_crtc_state *state)
470 {
471         return drm_atomic_crtc_needs_modeset(state);
472 }
473
474 /*
475  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
476  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
477  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
478  * The helpers' return value is the rate of the clock that is fed to the
479  * display engine's pipe which can be the above fast dot clock rate or a
480  * divided-down version of it.
481  */
482 /* m1 is reserved as 0 in Pineview, n is a ring counter */
483 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
484 {
485         clock->m = clock->m2 + 2;
486         clock->p = clock->p1 * clock->p2;
487         if (WARN_ON(clock->n == 0 || clock->p == 0))
488                 return 0;
489         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
490         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
491
492         return clock->dot;
493 }
494
495 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
496 {
497         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
498 }
499
500 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
501 {
502         clock->m = i9xx_dpll_compute_m(clock);
503         clock->p = clock->p1 * clock->p2;
504         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
505                 return 0;
506         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
507         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
508
509         return clock->dot;
510 }
511
512 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
513 {
514         clock->m = clock->m1 * clock->m2;
515         clock->p = clock->p1 * clock->p2;
516         if (WARN_ON(clock->n == 0 || clock->p == 0))
517                 return 0;
518         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
519         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
520
521         return clock->dot / 5;
522 }
523
524 int chv_calc_dpll_params(int refclk, struct dpll *clock)
525 {
526         clock->m = clock->m1 * clock->m2;
527         clock->p = clock->p1 * clock->p2;
528         if (WARN_ON(clock->n == 0 || clock->p == 0))
529                 return 0;
530         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
531                         clock->n << 22);
532         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534         return clock->dot / 5;
535 }
536
537 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
538 /**
539  * Returns whether the given set of divisors are valid for a given refclk with
540  * the given connectors.
541  */
542
543 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
544                                const struct intel_limit *limit,
545                                const struct dpll *clock)
546 {
547         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
548                 INTELPllInvalid("n out of range\n");
549         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
550                 INTELPllInvalid("p1 out of range\n");
551         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
552                 INTELPllInvalid("m2 out of range\n");
553         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
554                 INTELPllInvalid("m1 out of range\n");
555
556         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
557             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
558                 if (clock->m1 <= clock->m2)
559                         INTELPllInvalid("m1 <= m2\n");
560
561         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
562             !IS_GEN9_LP(dev_priv)) {
563                 if (clock->p < limit->p.min || limit->p.max < clock->p)
564                         INTELPllInvalid("p out of range\n");
565                 if (clock->m < limit->m.min || limit->m.max < clock->m)
566                         INTELPllInvalid("m out of range\n");
567         }
568
569         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
570                 INTELPllInvalid("vco out of range\n");
571         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
572          * connector, etc., rather than just a single range.
573          */
574         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
575                 INTELPllInvalid("dot out of range\n");
576
577         return true;
578 }
579
580 static int
581 i9xx_select_p2_div(const struct intel_limit *limit,
582                    const struct intel_crtc_state *crtc_state,
583                    int target)
584 {
585         struct drm_device *dev = crtc_state->base.crtc->dev;
586
587         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         return limit->p2.p2_fast;
595                 else
596                         return limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         return limit->p2.p2_slow;
600                 else
601                         return limit->p2.p2_fast;
602         }
603 }
604
605 /*
606  * Returns a set of divisors for the desired target clock with the given
607  * refclk, or FALSE.  The returned values represent the clock equation:
608  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
609  *
610  * Target and reference clocks are specified in kHz.
611  *
612  * If match_clock is provided, then best_clock P divider must match the P
613  * divider from @match_clock used for LVDS downclocking.
614  */
615 static bool
616 i9xx_find_best_dpll(const struct intel_limit *limit,
617                     struct intel_crtc_state *crtc_state,
618                     int target, int refclk, struct dpll *match_clock,
619                     struct dpll *best_clock)
620 {
621         struct drm_device *dev = crtc_state->base.crtc->dev;
622         struct dpll clock;
623         int err = target;
624
625         memset(best_clock, 0, sizeof(*best_clock));
626
627         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
628
629         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630              clock.m1++) {
631                 for (clock.m2 = limit->m2.min;
632                      clock.m2 <= limit->m2.max; clock.m2++) {
633                         if (clock.m2 >= clock.m1)
634                                 break;
635                         for (clock.n = limit->n.min;
636                              clock.n <= limit->n.max; clock.n++) {
637                                 for (clock.p1 = limit->p1.min;
638                                         clock.p1 <= limit->p1.max; clock.p1++) {
639                                         int this_err;
640
641                                         i9xx_calc_dpll_params(refclk, &clock);
642                                         if (!intel_PLL_is_valid(to_i915(dev),
643                                                                 limit,
644                                                                 &clock))
645                                                 continue;
646                                         if (match_clock &&
647                                             clock.p != match_clock->p)
648                                                 continue;
649
650                                         this_err = abs(clock.dot - target);
651                                         if (this_err < err) {
652                                                 *best_clock = clock;
653                                                 err = this_err;
654                                         }
655                                 }
656                         }
657                 }
658         }
659
660         return (err != target);
661 }
662
663 /*
664  * Returns a set of divisors for the desired target clock with the given
665  * refclk, or FALSE.  The returned values represent the clock equation:
666  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
667  *
668  * Target and reference clocks are specified in kHz.
669  *
670  * If match_clock is provided, then best_clock P divider must match the P
671  * divider from @match_clock used for LVDS downclocking.
672  */
673 static bool
674 pnv_find_best_dpll(const struct intel_limit *limit,
675                    struct intel_crtc_state *crtc_state,
676                    int target, int refclk, struct dpll *match_clock,
677                    struct dpll *best_clock)
678 {
679         struct drm_device *dev = crtc_state->base.crtc->dev;
680         struct dpll clock;
681         int err = target;
682
683         memset(best_clock, 0, sizeof(*best_clock));
684
685         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
686
687         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688              clock.m1++) {
689                 for (clock.m2 = limit->m2.min;
690                      clock.m2 <= limit->m2.max; clock.m2++) {
691                         for (clock.n = limit->n.min;
692                              clock.n <= limit->n.max; clock.n++) {
693                                 for (clock.p1 = limit->p1.min;
694                                         clock.p1 <= limit->p1.max; clock.p1++) {
695                                         int this_err;
696
697                                         pnv_calc_dpll_params(refclk, &clock);
698                                         if (!intel_PLL_is_valid(to_i915(dev),
699                                                                 limit,
700                                                                 &clock))
701                                                 continue;
702                                         if (match_clock &&
703                                             clock.p != match_clock->p)
704                                                 continue;
705
706                                         this_err = abs(clock.dot - target);
707                                         if (this_err < err) {
708                                                 *best_clock = clock;
709                                                 err = this_err;
710                                         }
711                                 }
712                         }
713                 }
714         }
715
716         return (err != target);
717 }
718
719 /*
720  * Returns a set of divisors for the desired target clock with the given
721  * refclk, or FALSE.  The returned values represent the clock equation:
722  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
723  *
724  * Target and reference clocks are specified in kHz.
725  *
726  * If match_clock is provided, then best_clock P divider must match the P
727  * divider from @match_clock used for LVDS downclocking.
728  */
729 static bool
730 g4x_find_best_dpll(const struct intel_limit *limit,
731                    struct intel_crtc_state *crtc_state,
732                    int target, int refclk, struct dpll *match_clock,
733                    struct dpll *best_clock)
734 {
735         struct drm_device *dev = crtc_state->base.crtc->dev;
736         struct dpll clock;
737         int max_n;
738         bool found = false;
739         /* approximately equals target * 0.00585 */
740         int err_most = (target >> 8) + (target >> 9);
741
742         memset(best_clock, 0, sizeof(*best_clock));
743
744         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
745
746         max_n = limit->n.max;
747         /* based on hardware requirement, prefer smaller n to precision */
748         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749                 /* based on hardware requirement, prefere larger m1,m2 */
750                 for (clock.m1 = limit->m1.max;
751                      clock.m1 >= limit->m1.min; clock.m1--) {
752                         for (clock.m2 = limit->m2.max;
753                              clock.m2 >= limit->m2.min; clock.m2--) {
754                                 for (clock.p1 = limit->p1.max;
755                                      clock.p1 >= limit->p1.min; clock.p1--) {
756                                         int this_err;
757
758                                         i9xx_calc_dpll_params(refclk, &clock);
759                                         if (!intel_PLL_is_valid(to_i915(dev),
760                                                                 limit,
761                                                                 &clock))
762                                                 continue;
763
764                                         this_err = abs(clock.dot - target);
765                                         if (this_err < err_most) {
766                                                 *best_clock = clock;
767                                                 err_most = this_err;
768                                                 max_n = clock.n;
769                                                 found = true;
770                                         }
771                                 }
772                         }
773                 }
774         }
775         return found;
776 }
777
778 /*
779  * Check if the calculated PLL configuration is more optimal compared to the
780  * best configuration and error found so far. Return the calculated error.
781  */
782 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
783                                const struct dpll *calculated_clock,
784                                const struct dpll *best_clock,
785                                unsigned int best_error_ppm,
786                                unsigned int *error_ppm)
787 {
788         /*
789          * For CHV ignore the error and consider only the P value.
790          * Prefer a bigger P value based on HW requirements.
791          */
792         if (IS_CHERRYVIEW(to_i915(dev))) {
793                 *error_ppm = 0;
794
795                 return calculated_clock->p > best_clock->p;
796         }
797
798         if (WARN_ON_ONCE(!target_freq))
799                 return false;
800
801         *error_ppm = div_u64(1000000ULL *
802                                 abs(target_freq - calculated_clock->dot),
803                              target_freq);
804         /*
805          * Prefer a better P value over a better (smaller) error if the error
806          * is small. Ensure this preference for future configurations too by
807          * setting the error to 0.
808          */
809         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
810                 *error_ppm = 0;
811
812                 return true;
813         }
814
815         return *error_ppm + 10 < best_error_ppm;
816 }
817
818 /*
819  * Returns a set of divisors for the desired target clock with the given
820  * refclk, or FALSE.  The returned values represent the clock equation:
821  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
822  */
823 static bool
824 vlv_find_best_dpll(const struct intel_limit *limit,
825                    struct intel_crtc_state *crtc_state,
826                    int target, int refclk, struct dpll *match_clock,
827                    struct dpll *best_clock)
828 {
829         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
830         struct drm_device *dev = crtc->base.dev;
831         struct dpll clock;
832         unsigned int bestppm = 1000000;
833         /* min update 19.2 MHz */
834         int max_n = min(limit->n.max, refclk / 19200);
835         bool found = false;
836
837         target *= 5; /* fast clock */
838
839         memset(best_clock, 0, sizeof(*best_clock));
840
841         /* based on hardware requirement, prefer smaller n to precision */
842         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
843                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
844                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
845                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
846                                 clock.p = clock.p1 * clock.p2;
847                                 /* based on hardware requirement, prefer bigger m1,m2 values */
848                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
849                                         unsigned int ppm;
850
851                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
852                                                                      refclk * clock.m1);
853
854                                         vlv_calc_dpll_params(refclk, &clock);
855
856                                         if (!intel_PLL_is_valid(to_i915(dev),
857                                                                 limit,
858                                                                 &clock))
859                                                 continue;
860
861                                         if (!vlv_PLL_is_optimal(dev, target,
862                                                                 &clock,
863                                                                 best_clock,
864                                                                 bestppm, &ppm))
865                                                 continue;
866
867                                         *best_clock = clock;
868                                         bestppm = ppm;
869                                         found = true;
870                                 }
871                         }
872                 }
873         }
874
875         return found;
876 }
877
878 /*
879  * Returns a set of divisors for the desired target clock with the given
880  * refclk, or FALSE.  The returned values represent the clock equation:
881  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
882  */
883 static bool
884 chv_find_best_dpll(const struct intel_limit *limit,
885                    struct intel_crtc_state *crtc_state,
886                    int target, int refclk, struct dpll *match_clock,
887                    struct dpll *best_clock)
888 {
889         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
890         struct drm_device *dev = crtc->base.dev;
891         unsigned int best_error_ppm;
892         struct dpll clock;
893         uint64_t m2;
894         int found = false;
895
896         memset(best_clock, 0, sizeof(*best_clock));
897         best_error_ppm = 1000000;
898
899         /*
900          * Based on hardware doc, the n always set to 1, and m1 always
901          * set to 2.  If requires to support 200Mhz refclk, we need to
902          * revisit this because n may not 1 anymore.
903          */
904         clock.n = 1, clock.m1 = 2;
905         target *= 5;    /* fast clock */
906
907         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
908                 for (clock.p2 = limit->p2.p2_fast;
909                                 clock.p2 >= limit->p2.p2_slow;
910                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
911                         unsigned int error_ppm;
912
913                         clock.p = clock.p1 * clock.p2;
914
915                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
916                                         clock.n) << 22, refclk * clock.m1);
917
918                         if (m2 > INT_MAX/clock.m1)
919                                 continue;
920
921                         clock.m2 = m2;
922
923                         chv_calc_dpll_params(refclk, &clock);
924
925                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
926                                 continue;
927
928                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
929                                                 best_error_ppm, &error_ppm))
930                                 continue;
931
932                         *best_clock = clock;
933                         best_error_ppm = error_ppm;
934                         found = true;
935                 }
936         }
937
938         return found;
939 }
940
941 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
942                         struct dpll *best_clock)
943 {
944         int refclk = 100000;
945         const struct intel_limit *limit = &intel_limits_bxt;
946
947         return chv_find_best_dpll(limit, crtc_state,
948                                   target_clock, refclk, NULL, best_clock);
949 }
950
951 bool intel_crtc_active(struct intel_crtc *crtc)
952 {
953         /* Be paranoid as we can arrive here with only partial
954          * state retrieved from the hardware during setup.
955          *
956          * We can ditch the adjusted_mode.crtc_clock check as soon
957          * as Haswell has gained clock readout/fastboot support.
958          *
959          * We can ditch the crtc->primary->fb check as soon as we can
960          * properly reconstruct framebuffers.
961          *
962          * FIXME: The intel_crtc->active here should be switched to
963          * crtc->state->active once we have proper CRTC states wired up
964          * for atomic.
965          */
966         return crtc->active && crtc->base.primary->state->fb &&
967                 crtc->config->base.adjusted_mode.crtc_clock;
968 }
969
970 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
971                                              enum pipe pipe)
972 {
973         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
974
975         return crtc->config->cpu_transcoder;
976 }
977
978 static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
979 {
980         i915_reg_t reg = PIPEDSL(pipe);
981         u32 line1, line2;
982         u32 line_mask;
983
984         if (IS_GEN2(dev_priv))
985                 line_mask = DSL_LINEMASK_GEN2;
986         else
987                 line_mask = DSL_LINEMASK_GEN3;
988
989         line1 = I915_READ(reg) & line_mask;
990         msleep(5);
991         line2 = I915_READ(reg) & line_mask;
992
993         return line1 == line2;
994 }
995
996 /*
997  * intel_wait_for_pipe_off - wait for pipe to turn off
998  * @crtc: crtc whose pipe to wait for
999  *
1000  * After disabling a pipe, we can't wait for vblank in the usual way,
1001  * spinning on the vblank interrupt status bit, since we won't actually
1002  * see an interrupt when the pipe is disabled.
1003  *
1004  * On Gen4 and above:
1005  *   wait for the pipe register state bit to turn off
1006  *
1007  * Otherwise:
1008  *   wait for the display line value to settle (it usually
1009  *   ends up stopping at the start of the next frame).
1010  *
1011  */
1012 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1013 {
1014         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1015         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1016         enum pipe pipe = crtc->pipe;
1017
1018         if (INTEL_GEN(dev_priv) >= 4) {
1019                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1020
1021                 /* Wait for the Pipe State to go off */
1022                 if (intel_wait_for_register(dev_priv,
1023                                             reg, I965_PIPECONF_ACTIVE, 0,
1024                                             100))
1025                         WARN(1, "pipe_off wait timed out\n");
1026         } else {
1027                 /* Wait for the display line to settle */
1028                 if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
1029                         WARN(1, "pipe_off wait timed out\n");
1030         }
1031 }
1032
1033 /* Only for pre-ILK configs */
1034 void assert_pll(struct drm_i915_private *dev_priv,
1035                 enum pipe pipe, bool state)
1036 {
1037         u32 val;
1038         bool cur_state;
1039
1040         val = I915_READ(DPLL(pipe));
1041         cur_state = !!(val & DPLL_VCO_ENABLE);
1042         I915_STATE_WARN(cur_state != state,
1043              "PLL state assertion failure (expected %s, current %s)\n",
1044                         onoff(state), onoff(cur_state));
1045 }
1046
1047 /* XXX: the dsi pll is shared between MIPI DSI ports */
1048 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1049 {
1050         u32 val;
1051         bool cur_state;
1052
1053         mutex_lock(&dev_priv->sb_lock);
1054         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1055         mutex_unlock(&dev_priv->sb_lock);
1056
1057         cur_state = val & DSI_PLL_VCO_EN;
1058         I915_STATE_WARN(cur_state != state,
1059              "DSI PLL state assertion failure (expected %s, current %s)\n",
1060                         onoff(state), onoff(cur_state));
1061 }
1062
1063 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1064                           enum pipe pipe, bool state)
1065 {
1066         bool cur_state;
1067         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1068                                                                       pipe);
1069
1070         if (HAS_DDI(dev_priv)) {
1071                 /* DDI does not have a specific FDI_TX register */
1072                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1073                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1074         } else {
1075                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1076                 cur_state = !!(val & FDI_TX_ENABLE);
1077         }
1078         I915_STATE_WARN(cur_state != state,
1079              "FDI TX state assertion failure (expected %s, current %s)\n",
1080                         onoff(state), onoff(cur_state));
1081 }
1082 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1083 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1084
1085 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1086                           enum pipe pipe, bool state)
1087 {
1088         u32 val;
1089         bool cur_state;
1090
1091         val = I915_READ(FDI_RX_CTL(pipe));
1092         cur_state = !!(val & FDI_RX_ENABLE);
1093         I915_STATE_WARN(cur_state != state,
1094              "FDI RX state assertion failure (expected %s, current %s)\n",
1095                         onoff(state), onoff(cur_state));
1096 }
1097 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1098 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1099
1100 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1101                                       enum pipe pipe)
1102 {
1103         u32 val;
1104
1105         /* ILK FDI PLL is always enabled */
1106         if (IS_GEN5(dev_priv))
1107                 return;
1108
1109         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1110         if (HAS_DDI(dev_priv))
1111                 return;
1112
1113         val = I915_READ(FDI_TX_CTL(pipe));
1114         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1115 }
1116
1117 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1118                        enum pipe pipe, bool state)
1119 {
1120         u32 val;
1121         bool cur_state;
1122
1123         val = I915_READ(FDI_RX_CTL(pipe));
1124         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1125         I915_STATE_WARN(cur_state != state,
1126              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1127                         onoff(state), onoff(cur_state));
1128 }
1129
1130 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1131 {
1132         i915_reg_t pp_reg;
1133         u32 val;
1134         enum pipe panel_pipe = PIPE_A;
1135         bool locked = true;
1136
1137         if (WARN_ON(HAS_DDI(dev_priv)))
1138                 return;
1139
1140         if (HAS_PCH_SPLIT(dev_priv)) {
1141                 u32 port_sel;
1142
1143                 pp_reg = PP_CONTROL(0);
1144                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1145
1146                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1147                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1148                         panel_pipe = PIPE_B;
1149                 /* XXX: else fix for eDP */
1150         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1151                 /* presumably write lock depends on pipe, not port select */
1152                 pp_reg = PP_CONTROL(pipe);
1153                 panel_pipe = pipe;
1154         } else {
1155                 pp_reg = PP_CONTROL(0);
1156                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1157                         panel_pipe = PIPE_B;
1158         }
1159
1160         val = I915_READ(pp_reg);
1161         if (!(val & PANEL_POWER_ON) ||
1162             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1163                 locked = false;
1164
1165         I915_STATE_WARN(panel_pipe == pipe && locked,
1166              "panel assertion failure, pipe %c regs locked\n",
1167              pipe_name(pipe));
1168 }
1169
1170 static void assert_cursor(struct drm_i915_private *dev_priv,
1171                           enum pipe pipe, bool state)
1172 {
1173         bool cur_state;
1174
1175         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
1176                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1177         else
1178                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1179
1180         I915_STATE_WARN(cur_state != state,
1181              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1182                         pipe_name(pipe), onoff(state), onoff(cur_state));
1183 }
1184 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1185 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1186
1187 void assert_pipe(struct drm_i915_private *dev_priv,
1188                  enum pipe pipe, bool state)
1189 {
1190         bool cur_state;
1191         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                       pipe);
1193         enum intel_display_power_domain power_domain;
1194
1195         /* if we need the pipe quirk it must be always on */
1196         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1197             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1198                 state = true;
1199
1200         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1201         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1202                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1203                 cur_state = !!(val & PIPECONF_ENABLE);
1204
1205                 intel_display_power_put(dev_priv, power_domain);
1206         } else {
1207                 cur_state = false;
1208         }
1209
1210         I915_STATE_WARN(cur_state != state,
1211              "pipe %c assertion failure (expected %s, current %s)\n",
1212                         pipe_name(pipe), onoff(state), onoff(cur_state));
1213 }
1214
1215 static void assert_plane(struct drm_i915_private *dev_priv,
1216                          enum plane plane, bool state)
1217 {
1218         u32 val;
1219         bool cur_state;
1220
1221         val = I915_READ(DSPCNTR(plane));
1222         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1223         I915_STATE_WARN(cur_state != state,
1224              "plane %c assertion failure (expected %s, current %s)\n",
1225                         plane_name(plane), onoff(state), onoff(cur_state));
1226 }
1227
1228 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1229 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1230
1231 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1232                                    enum pipe pipe)
1233 {
1234         int i;
1235
1236         /* Primary planes are fixed to pipes on gen4+ */
1237         if (INTEL_GEN(dev_priv) >= 4) {
1238                 u32 val = I915_READ(DSPCNTR(pipe));
1239                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1240                      "plane %c assertion failure, should be disabled but not\n",
1241                      plane_name(pipe));
1242                 return;
1243         }
1244
1245         /* Need to check both planes against the pipe */
1246         for_each_pipe(dev_priv, i) {
1247                 u32 val = I915_READ(DSPCNTR(i));
1248                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1249                         DISPPLANE_SEL_PIPE_SHIFT;
1250                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1251                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1252                      plane_name(i), pipe_name(pipe));
1253         }
1254 }
1255
1256 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1257                                     enum pipe pipe)
1258 {
1259         int sprite;
1260
1261         if (INTEL_GEN(dev_priv) >= 9) {
1262                 for_each_sprite(dev_priv, pipe, sprite) {
1263                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1264                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1265                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1266                              sprite, pipe_name(pipe));
1267                 }
1268         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1269                 for_each_sprite(dev_priv, pipe, sprite) {
1270                         u32 val = I915_READ(SPCNTR(pipe, PLANE_SPRITE0 + sprite));
1271                         I915_STATE_WARN(val & SP_ENABLE,
1272                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1273                              sprite_name(pipe, sprite), pipe_name(pipe));
1274                 }
1275         } else if (INTEL_GEN(dev_priv) >= 7) {
1276                 u32 val = I915_READ(SPRCTL(pipe));
1277                 I915_STATE_WARN(val & SPRITE_ENABLE,
1278                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1279                      plane_name(pipe), pipe_name(pipe));
1280         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
1281                 u32 val = I915_READ(DVSCNTR(pipe));
1282                 I915_STATE_WARN(val & DVS_ENABLE,
1283                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1284                      plane_name(pipe), pipe_name(pipe));
1285         }
1286 }
1287
1288 static void assert_vblank_disabled(struct drm_crtc *crtc)
1289 {
1290         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1291                 drm_crtc_vblank_put(crtc);
1292 }
1293
1294 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1295                                     enum pipe pipe)
1296 {
1297         u32 val;
1298         bool enabled;
1299
1300         val = I915_READ(PCH_TRANSCONF(pipe));
1301         enabled = !!(val & TRANS_ENABLE);
1302         I915_STATE_WARN(enabled,
1303              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1304              pipe_name(pipe));
1305 }
1306
1307 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1308                             enum pipe pipe, u32 port_sel, u32 val)
1309 {
1310         if ((val & DP_PORT_EN) == 0)
1311                 return false;
1312
1313         if (HAS_PCH_CPT(dev_priv)) {
1314                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1315                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316                         return false;
1317         } else if (IS_CHERRYVIEW(dev_priv)) {
1318                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1319                         return false;
1320         } else {
1321                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1322                         return false;
1323         }
1324         return true;
1325 }
1326
1327 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1328                               enum pipe pipe, u32 val)
1329 {
1330         if ((val & SDVO_ENABLE) == 0)
1331                 return false;
1332
1333         if (HAS_PCH_CPT(dev_priv)) {
1334                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1335                         return false;
1336         } else if (IS_CHERRYVIEW(dev_priv)) {
1337                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1338                         return false;
1339         } else {
1340                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1341                         return false;
1342         }
1343         return true;
1344 }
1345
1346 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1347                               enum pipe pipe, u32 val)
1348 {
1349         if ((val & LVDS_PORT_EN) == 0)
1350                 return false;
1351
1352         if (HAS_PCH_CPT(dev_priv)) {
1353                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1354                         return false;
1355         } else {
1356                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1357                         return false;
1358         }
1359         return true;
1360 }
1361
1362 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1363                               enum pipe pipe, u32 val)
1364 {
1365         if ((val & ADPA_DAC_ENABLE) == 0)
1366                 return false;
1367         if (HAS_PCH_CPT(dev_priv)) {
1368                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1369                         return false;
1370         } else {
1371                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1372                         return false;
1373         }
1374         return true;
1375 }
1376
1377 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1378                                    enum pipe pipe, i915_reg_t reg,
1379                                    u32 port_sel)
1380 {
1381         u32 val = I915_READ(reg);
1382         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1383              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1384              i915_mmio_reg_offset(reg), pipe_name(pipe));
1385
1386         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1387              && (val & DP_PIPEB_SELECT),
1388              "IBX PCH dp port still using transcoder B\n");
1389 }
1390
1391 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1392                                      enum pipe pipe, i915_reg_t reg)
1393 {
1394         u32 val = I915_READ(reg);
1395         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1396              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1397              i915_mmio_reg_offset(reg), pipe_name(pipe));
1398
1399         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1400              && (val & SDVO_PIPE_B_SELECT),
1401              "IBX PCH hdmi port still using transcoder B\n");
1402 }
1403
1404 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1405                                       enum pipe pipe)
1406 {
1407         u32 val;
1408
1409         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1410         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1411         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1412
1413         val = I915_READ(PCH_ADPA);
1414         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1415              "PCH VGA enabled on transcoder %c, should be disabled\n",
1416              pipe_name(pipe));
1417
1418         val = I915_READ(PCH_LVDS);
1419         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1420              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1421              pipe_name(pipe));
1422
1423         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1424         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1425         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1426 }
1427
1428 static void _vlv_enable_pll(struct intel_crtc *crtc,
1429                             const struct intel_crtc_state *pipe_config)
1430 {
1431         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1432         enum pipe pipe = crtc->pipe;
1433
1434         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1435         POSTING_READ(DPLL(pipe));
1436         udelay(150);
1437
1438         if (intel_wait_for_register(dev_priv,
1439                                     DPLL(pipe),
1440                                     DPLL_LOCK_VLV,
1441                                     DPLL_LOCK_VLV,
1442                                     1))
1443                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1444 }
1445
1446 static void vlv_enable_pll(struct intel_crtc *crtc,
1447                            const struct intel_crtc_state *pipe_config)
1448 {
1449         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1450         enum pipe pipe = crtc->pipe;
1451
1452         assert_pipe_disabled(dev_priv, pipe);
1453
1454         /* PLL is protected by panel, make sure we can write it */
1455         assert_panel_unlocked(dev_priv, pipe);
1456
1457         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1458                 _vlv_enable_pll(crtc, pipe_config);
1459
1460         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1461         POSTING_READ(DPLL_MD(pipe));
1462 }
1463
1464
1465 static void _chv_enable_pll(struct intel_crtc *crtc,
1466                             const struct intel_crtc_state *pipe_config)
1467 {
1468         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1469         enum pipe pipe = crtc->pipe;
1470         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1471         u32 tmp;
1472
1473         mutex_lock(&dev_priv->sb_lock);
1474
1475         /* Enable back the 10bit clock to display controller */
1476         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1477         tmp |= DPIO_DCLKP_EN;
1478         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1479
1480         mutex_unlock(&dev_priv->sb_lock);
1481
1482         /*
1483          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1484          */
1485         udelay(1);
1486
1487         /* Enable PLL */
1488         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1489
1490         /* Check PLL is locked */
1491         if (intel_wait_for_register(dev_priv,
1492                                     DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1493                                     1))
1494                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1495 }
1496
1497 static void chv_enable_pll(struct intel_crtc *crtc,
1498                            const struct intel_crtc_state *pipe_config)
1499 {
1500         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1501         enum pipe pipe = crtc->pipe;
1502
1503         assert_pipe_disabled(dev_priv, pipe);
1504
1505         /* PLL is protected by panel, make sure we can write it */
1506         assert_panel_unlocked(dev_priv, pipe);
1507
1508         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1509                 _chv_enable_pll(crtc, pipe_config);
1510
1511         if (pipe != PIPE_A) {
1512                 /*
1513                  * WaPixelRepeatModeFixForC0:chv
1514                  *
1515                  * DPLLCMD is AWOL. Use chicken bits to propagate
1516                  * the value from DPLLBMD to either pipe B or C.
1517                  */
1518                 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1519                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1520                 I915_WRITE(CBR4_VLV, 0);
1521                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1522
1523                 /*
1524                  * DPLLB VGA mode also seems to cause problems.
1525                  * We should always have it disabled.
1526                  */
1527                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1528         } else {
1529                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1530                 POSTING_READ(DPLL_MD(pipe));
1531         }
1532 }
1533
1534 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1535 {
1536         struct intel_crtc *crtc;
1537         int count = 0;
1538
1539         for_each_intel_crtc(&dev_priv->drm, crtc) {
1540                 count += crtc->base.state->active &&
1541                         intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1542         }
1543
1544         return count;
1545 }
1546
1547 static void i9xx_enable_pll(struct intel_crtc *crtc)
1548 {
1549         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1550         i915_reg_t reg = DPLL(crtc->pipe);
1551         u32 dpll = crtc->config->dpll_hw_state.dpll;
1552
1553         assert_pipe_disabled(dev_priv, crtc->pipe);
1554
1555         /* PLL is protected by panel, make sure we can write it */
1556         if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1557                 assert_panel_unlocked(dev_priv, crtc->pipe);
1558
1559         /* Enable DVO 2x clock on both PLLs if necessary */
1560         if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1561                 /*
1562                  * It appears to be important that we don't enable this
1563                  * for the current pipe before otherwise configuring the
1564                  * PLL. No idea how this should be handled if multiple
1565                  * DVO outputs are enabled simultaneosly.
1566                  */
1567                 dpll |= DPLL_DVO_2X_MODE;
1568                 I915_WRITE(DPLL(!crtc->pipe),
1569                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1570         }
1571
1572         /*
1573          * Apparently we need to have VGA mode enabled prior to changing
1574          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1575          * dividers, even though the register value does change.
1576          */
1577         I915_WRITE(reg, 0);
1578
1579         I915_WRITE(reg, dpll);
1580
1581         /* Wait for the clocks to stabilize. */
1582         POSTING_READ(reg);
1583         udelay(150);
1584
1585         if (INTEL_GEN(dev_priv) >= 4) {
1586                 I915_WRITE(DPLL_MD(crtc->pipe),
1587                            crtc->config->dpll_hw_state.dpll_md);
1588         } else {
1589                 /* The pixel multiplier can only be updated once the
1590                  * DPLL is enabled and the clocks are stable.
1591                  *
1592                  * So write it again.
1593                  */
1594                 I915_WRITE(reg, dpll);
1595         }
1596
1597         /* We do this three times for luck */
1598         I915_WRITE(reg, dpll);
1599         POSTING_READ(reg);
1600         udelay(150); /* wait for warmup */
1601         I915_WRITE(reg, dpll);
1602         POSTING_READ(reg);
1603         udelay(150); /* wait for warmup */
1604         I915_WRITE(reg, dpll);
1605         POSTING_READ(reg);
1606         udelay(150); /* wait for warmup */
1607 }
1608
1609 /**
1610  * i9xx_disable_pll - disable a PLL
1611  * @dev_priv: i915 private structure
1612  * @pipe: pipe PLL to disable
1613  *
1614  * Disable the PLL for @pipe, making sure the pipe is off first.
1615  *
1616  * Note!  This is for pre-ILK only.
1617  */
1618 static void i9xx_disable_pll(struct intel_crtc *crtc)
1619 {
1620         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1621         enum pipe pipe = crtc->pipe;
1622
1623         /* Disable DVO 2x clock on both PLLs if necessary */
1624         if (IS_I830(dev_priv) &&
1625             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1626             !intel_num_dvo_pipes(dev_priv)) {
1627                 I915_WRITE(DPLL(PIPE_B),
1628                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1629                 I915_WRITE(DPLL(PIPE_A),
1630                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1631         }
1632
1633         /* Don't disable pipe or pipe PLLs if needed */
1634         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1635             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1636                 return;
1637
1638         /* Make sure the pipe isn't still relying on us */
1639         assert_pipe_disabled(dev_priv, pipe);
1640
1641         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1642         POSTING_READ(DPLL(pipe));
1643 }
1644
1645 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1646 {
1647         u32 val;
1648
1649         /* Make sure the pipe isn't still relying on us */
1650         assert_pipe_disabled(dev_priv, pipe);
1651
1652         val = DPLL_INTEGRATED_REF_CLK_VLV |
1653                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1654         if (pipe != PIPE_A)
1655                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1656
1657         I915_WRITE(DPLL(pipe), val);
1658         POSTING_READ(DPLL(pipe));
1659 }
1660
1661 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1662 {
1663         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1664         u32 val;
1665
1666         /* Make sure the pipe isn't still relying on us */
1667         assert_pipe_disabled(dev_priv, pipe);
1668
1669         val = DPLL_SSC_REF_CLK_CHV |
1670                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1671         if (pipe != PIPE_A)
1672                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1673
1674         I915_WRITE(DPLL(pipe), val);
1675         POSTING_READ(DPLL(pipe));
1676
1677         mutex_lock(&dev_priv->sb_lock);
1678
1679         /* Disable 10bit clock to display controller */
1680         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1681         val &= ~DPIO_DCLKP_EN;
1682         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1683
1684         mutex_unlock(&dev_priv->sb_lock);
1685 }
1686
1687 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1688                          struct intel_digital_port *dport,
1689                          unsigned int expected_mask)
1690 {
1691         u32 port_mask;
1692         i915_reg_t dpll_reg;
1693
1694         switch (dport->port) {
1695         case PORT_B:
1696                 port_mask = DPLL_PORTB_READY_MASK;
1697                 dpll_reg = DPLL(0);
1698                 break;
1699         case PORT_C:
1700                 port_mask = DPLL_PORTC_READY_MASK;
1701                 dpll_reg = DPLL(0);
1702                 expected_mask <<= 4;
1703                 break;
1704         case PORT_D:
1705                 port_mask = DPLL_PORTD_READY_MASK;
1706                 dpll_reg = DPIO_PHY_STATUS;
1707                 break;
1708         default:
1709                 BUG();
1710         }
1711
1712         if (intel_wait_for_register(dev_priv,
1713                                     dpll_reg, port_mask, expected_mask,
1714                                     1000))
1715                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1716                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1717 }
1718
1719 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1720                                            enum pipe pipe)
1721 {
1722         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1723                                                                 pipe);
1724         i915_reg_t reg;
1725         uint32_t val, pipeconf_val;
1726
1727         /* Make sure PCH DPLL is enabled */
1728         assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1729
1730         /* FDI must be feeding us bits for PCH ports */
1731         assert_fdi_tx_enabled(dev_priv, pipe);
1732         assert_fdi_rx_enabled(dev_priv, pipe);
1733
1734         if (HAS_PCH_CPT(dev_priv)) {
1735                 /* Workaround: Set the timing override bit before enabling the
1736                  * pch transcoder. */
1737                 reg = TRANS_CHICKEN2(pipe);
1738                 val = I915_READ(reg);
1739                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1740                 I915_WRITE(reg, val);
1741         }
1742
1743         reg = PCH_TRANSCONF(pipe);
1744         val = I915_READ(reg);
1745         pipeconf_val = I915_READ(PIPECONF(pipe));
1746
1747         if (HAS_PCH_IBX(dev_priv)) {
1748                 /*
1749                  * Make the BPC in transcoder be consistent with
1750                  * that in pipeconf reg. For HDMI we must use 8bpc
1751                  * here for both 8bpc and 12bpc.
1752                  */
1753                 val &= ~PIPECONF_BPC_MASK;
1754                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1755                         val |= PIPECONF_8BPC;
1756                 else
1757                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1758         }
1759
1760         val &= ~TRANS_INTERLACE_MASK;
1761         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1762                 if (HAS_PCH_IBX(dev_priv) &&
1763                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1764                         val |= TRANS_LEGACY_INTERLACED_ILK;
1765                 else
1766                         val |= TRANS_INTERLACED;
1767         else
1768                 val |= TRANS_PROGRESSIVE;
1769
1770         I915_WRITE(reg, val | TRANS_ENABLE);
1771         if (intel_wait_for_register(dev_priv,
1772                                     reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1773                                     100))
1774                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1775 }
1776
1777 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1778                                       enum transcoder cpu_transcoder)
1779 {
1780         u32 val, pipeconf_val;
1781
1782         /* FDI must be feeding us bits for PCH ports */
1783         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1784         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1785
1786         /* Workaround: set timing override bit. */
1787         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1788         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1789         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1790
1791         val = TRANS_ENABLE;
1792         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1793
1794         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1795             PIPECONF_INTERLACED_ILK)
1796                 val |= TRANS_INTERLACED;
1797         else
1798                 val |= TRANS_PROGRESSIVE;
1799
1800         I915_WRITE(LPT_TRANSCONF, val);
1801         if (intel_wait_for_register(dev_priv,
1802                                     LPT_TRANSCONF,
1803                                     TRANS_STATE_ENABLE,
1804                                     TRANS_STATE_ENABLE,
1805                                     100))
1806                 DRM_ERROR("Failed to enable PCH transcoder\n");
1807 }
1808
1809 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1810                                             enum pipe pipe)
1811 {
1812         i915_reg_t reg;
1813         uint32_t val;
1814
1815         /* FDI relies on the transcoder */
1816         assert_fdi_tx_disabled(dev_priv, pipe);
1817         assert_fdi_rx_disabled(dev_priv, pipe);
1818
1819         /* Ports must be off as well */
1820         assert_pch_ports_disabled(dev_priv, pipe);
1821
1822         reg = PCH_TRANSCONF(pipe);
1823         val = I915_READ(reg);
1824         val &= ~TRANS_ENABLE;
1825         I915_WRITE(reg, val);
1826         /* wait for PCH transcoder off, transcoder state */
1827         if (intel_wait_for_register(dev_priv,
1828                                     reg, TRANS_STATE_ENABLE, 0,
1829                                     50))
1830                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1831
1832         if (HAS_PCH_CPT(dev_priv)) {
1833                 /* Workaround: Clear the timing override chicken bit again. */
1834                 reg = TRANS_CHICKEN2(pipe);
1835                 val = I915_READ(reg);
1836                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1837                 I915_WRITE(reg, val);
1838         }
1839 }
1840
1841 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1842 {
1843         u32 val;
1844
1845         val = I915_READ(LPT_TRANSCONF);
1846         val &= ~TRANS_ENABLE;
1847         I915_WRITE(LPT_TRANSCONF, val);
1848         /* wait for PCH transcoder off, transcoder state */
1849         if (intel_wait_for_register(dev_priv,
1850                                     LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1851                                     50))
1852                 DRM_ERROR("Failed to disable PCH transcoder\n");
1853
1854         /* Workaround: clear timing override bit. */
1855         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1857         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858 }
1859
1860 enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1861 {
1862         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1863
1864         WARN_ON(!crtc->config->has_pch_encoder);
1865
1866         if (HAS_PCH_LPT(dev_priv))
1867                 return TRANSCODER_A;
1868         else
1869                 return (enum transcoder) crtc->pipe;
1870 }
1871
1872 /**
1873  * intel_enable_pipe - enable a pipe, asserting requirements
1874  * @crtc: crtc responsible for the pipe
1875  *
1876  * Enable @crtc's pipe, making sure that various hardware specific requirements
1877  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1878  */
1879 static void intel_enable_pipe(struct intel_crtc *crtc)
1880 {
1881         struct drm_device *dev = crtc->base.dev;
1882         struct drm_i915_private *dev_priv = to_i915(dev);
1883         enum pipe pipe = crtc->pipe;
1884         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1885         i915_reg_t reg;
1886         u32 val;
1887
1888         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1889
1890         assert_planes_disabled(dev_priv, pipe);
1891         assert_cursor_disabled(dev_priv, pipe);
1892         assert_sprites_disabled(dev_priv, pipe);
1893
1894         /*
1895          * A pipe without a PLL won't actually be able to drive bits from
1896          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1897          * need the check.
1898          */
1899         if (HAS_GMCH_DISPLAY(dev_priv)) {
1900                 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1901                         assert_dsi_pll_enabled(dev_priv);
1902                 else
1903                         assert_pll_enabled(dev_priv, pipe);
1904         } else {
1905                 if (crtc->config->has_pch_encoder) {
1906                         /* if driving the PCH, we need FDI enabled */
1907                         assert_fdi_rx_pll_enabled(dev_priv,
1908                                                   (enum pipe) intel_crtc_pch_transcoder(crtc));
1909                         assert_fdi_tx_pll_enabled(dev_priv,
1910                                                   (enum pipe) cpu_transcoder);
1911                 }
1912                 /* FIXME: assert CPU port conditions for SNB+ */
1913         }
1914
1915         reg = PIPECONF(cpu_transcoder);
1916         val = I915_READ(reg);
1917         if (val & PIPECONF_ENABLE) {
1918                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1919                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1920                 return;
1921         }
1922
1923         I915_WRITE(reg, val | PIPECONF_ENABLE);
1924         POSTING_READ(reg);
1925
1926         /*
1927          * Until the pipe starts DSL will read as 0, which would cause
1928          * an apparent vblank timestamp jump, which messes up also the
1929          * frame count when it's derived from the timestamps. So let's
1930          * wait for the pipe to start properly before we call
1931          * drm_crtc_vblank_on()
1932          */
1933         if (dev->max_vblank_count == 0 &&
1934             wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1935                 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1936 }
1937
1938 /**
1939  * intel_disable_pipe - disable a pipe, asserting requirements
1940  * @crtc: crtc whose pipes is to be disabled
1941  *
1942  * Disable the pipe of @crtc, making sure that various hardware
1943  * specific requirements are met, if applicable, e.g. plane
1944  * disabled, panel fitter off, etc.
1945  *
1946  * Will wait until the pipe has shut down before returning.
1947  */
1948 static void intel_disable_pipe(struct intel_crtc *crtc)
1949 {
1950         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1951         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1952         enum pipe pipe = crtc->pipe;
1953         i915_reg_t reg;
1954         u32 val;
1955
1956         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1957
1958         /*
1959          * Make sure planes won't keep trying to pump pixels to us,
1960          * or we might hang the display.
1961          */
1962         assert_planes_disabled(dev_priv, pipe);
1963         assert_cursor_disabled(dev_priv, pipe);
1964         assert_sprites_disabled(dev_priv, pipe);
1965
1966         reg = PIPECONF(cpu_transcoder);
1967         val = I915_READ(reg);
1968         if ((val & PIPECONF_ENABLE) == 0)
1969                 return;
1970
1971         /*
1972          * Double wide has implications for planes
1973          * so best keep it disabled when not needed.
1974          */
1975         if (crtc->config->double_wide)
1976                 val &= ~PIPECONF_DOUBLE_WIDE;
1977
1978         /* Don't disable pipe or pipe PLLs if needed */
1979         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
1980             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1981                 val &= ~PIPECONF_ENABLE;
1982
1983         I915_WRITE(reg, val);
1984         if ((val & PIPECONF_ENABLE) == 0)
1985                 intel_wait_for_pipe_off(crtc);
1986 }
1987
1988 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1989 {
1990         return IS_GEN2(dev_priv) ? 2048 : 4096;
1991 }
1992
1993 static unsigned int
1994 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1995 {
1996         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1997         unsigned int cpp = fb->format->cpp[plane];
1998
1999         switch (fb->modifier) {
2000         case DRM_FORMAT_MOD_LINEAR:
2001                 return cpp;
2002         case I915_FORMAT_MOD_X_TILED:
2003                 if (IS_GEN2(dev_priv))
2004                         return 128;
2005                 else
2006                         return 512;
2007         case I915_FORMAT_MOD_Y_TILED:
2008                 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2009                         return 128;
2010                 else
2011                         return 512;
2012         case I915_FORMAT_MOD_Yf_TILED:
2013                 switch (cpp) {
2014                 case 1:
2015                         return 64;
2016                 case 2:
2017                 case 4:
2018                         return 128;
2019                 case 8:
2020                 case 16:
2021                         return 256;
2022                 default:
2023                         MISSING_CASE(cpp);
2024                         return cpp;
2025                 }
2026                 break;
2027         default:
2028                 MISSING_CASE(fb->modifier);
2029                 return cpp;
2030         }
2031 }
2032
2033 static unsigned int
2034 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2035 {
2036         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2037                 return 1;
2038         else
2039                 return intel_tile_size(to_i915(fb->dev)) /
2040                         intel_tile_width_bytes(fb, plane);
2041 }
2042
2043 /* Return the tile dimensions in pixel units */
2044 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2045                             unsigned int *tile_width,
2046                             unsigned int *tile_height)
2047 {
2048         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2049         unsigned int cpp = fb->format->cpp[plane];
2050
2051         *tile_width = tile_width_bytes / cpp;
2052         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2053 }
2054
2055 unsigned int
2056 intel_fb_align_height(const struct drm_framebuffer *fb,
2057                       int plane, unsigned int height)
2058 {
2059         unsigned int tile_height = intel_tile_height(fb, plane);
2060
2061         return ALIGN(height, tile_height);
2062 }
2063
2064 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2065 {
2066         unsigned int size = 0;
2067         int i;
2068
2069         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2070                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2071
2072         return size;
2073 }
2074
2075 static void
2076 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2077                         const struct drm_framebuffer *fb,
2078                         unsigned int rotation)
2079 {
2080         view->type = I915_GGTT_VIEW_NORMAL;
2081         if (drm_rotation_90_or_270(rotation)) {
2082                 view->type = I915_GGTT_VIEW_ROTATED;
2083                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2084         }
2085 }
2086
2087 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2088 {
2089         if (IS_I830(dev_priv))
2090                 return 16 * 1024;
2091         else if (IS_I85X(dev_priv))
2092                 return 256;
2093         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2094                 return 32;
2095         else
2096                 return 4 * 1024;
2097 }
2098
2099 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2100 {
2101         if (INTEL_INFO(dev_priv)->gen >= 9)
2102                 return 256 * 1024;
2103         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2104                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2105                 return 128 * 1024;
2106         else if (INTEL_INFO(dev_priv)->gen >= 4)
2107                 return 4 * 1024;
2108         else
2109                 return 0;
2110 }
2111
2112 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2113                                          int plane)
2114 {
2115         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2116
2117         /* AUX_DIST needs only 4K alignment */
2118         if (fb->format->format == DRM_FORMAT_NV12 && plane == 1)
2119                 return 4096;
2120
2121         switch (fb->modifier) {
2122         case DRM_FORMAT_MOD_LINEAR:
2123                 return intel_linear_alignment(dev_priv);
2124         case I915_FORMAT_MOD_X_TILED:
2125                 if (INTEL_GEN(dev_priv) >= 9)
2126                         return 256 * 1024;
2127                 return 0;
2128         case I915_FORMAT_MOD_Y_TILED:
2129         case I915_FORMAT_MOD_Yf_TILED:
2130                 return 1 * 1024 * 1024;
2131         default:
2132                 MISSING_CASE(fb->modifier);
2133                 return 0;
2134         }
2135 }
2136
2137 struct i915_vma *
2138 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2139 {
2140         struct drm_device *dev = fb->dev;
2141         struct drm_i915_private *dev_priv = to_i915(dev);
2142         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2143         struct i915_ggtt_view view;
2144         struct i915_vma *vma;
2145         u32 alignment;
2146
2147         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2148
2149         alignment = intel_surf_alignment(fb, 0);
2150
2151         intel_fill_fb_ggtt_view(&view, fb, rotation);
2152
2153         /* Note that the w/a also requires 64 PTE of padding following the
2154          * bo. We currently fill all unused PTE with the shadow page and so
2155          * we should always have valid PTE following the scanout preventing
2156          * the VT-d warning.
2157          */
2158         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2159                 alignment = 256 * 1024;
2160
2161         /*
2162          * Global gtt pte registers are special registers which actually forward
2163          * writes to a chunk of system memory. Which means that there is no risk
2164          * that the register values disappear as soon as we call
2165          * intel_runtime_pm_put(), so it is correct to wrap only the
2166          * pin/unpin/fence and not more.
2167          */
2168         intel_runtime_pm_get(dev_priv);
2169
2170         vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2171         if (IS_ERR(vma))
2172                 goto err;
2173
2174         if (i915_vma_is_map_and_fenceable(vma)) {
2175                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2176                  * fence, whereas 965+ only requires a fence if using
2177                  * framebuffer compression.  For simplicity, we always, when
2178                  * possible, install a fence as the cost is not that onerous.
2179                  *
2180                  * If we fail to fence the tiled scanout, then either the
2181                  * modeset will reject the change (which is highly unlikely as
2182                  * the affected systems, all but one, do not have unmappable
2183                  * space) or we will not be able to enable full powersaving
2184                  * techniques (also likely not to apply due to various limits
2185                  * FBC and the like impose on the size of the buffer, which
2186                  * presumably we violated anyway with this unmappable buffer).
2187                  * Anyway, it is presumably better to stumble onwards with
2188                  * something and try to run the system in a "less than optimal"
2189                  * mode that matches the user configuration.
2190                  */
2191                 if (i915_vma_get_fence(vma) == 0)
2192                         i915_vma_pin_fence(vma);
2193         }
2194
2195         i915_vma_get(vma);
2196 err:
2197         intel_runtime_pm_put(dev_priv);
2198         return vma;
2199 }
2200
2201 void intel_unpin_fb_vma(struct i915_vma *vma)
2202 {
2203         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2204
2205         i915_vma_unpin_fence(vma);
2206         i915_gem_object_unpin_from_display_plane(vma);
2207         i915_vma_put(vma);
2208 }
2209
2210 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2211                           unsigned int rotation)
2212 {
2213         if (drm_rotation_90_or_270(rotation))
2214                 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2215         else
2216                 return fb->pitches[plane];
2217 }
2218
2219 /*
2220  * Convert the x/y offsets into a linear offset.
2221  * Only valid with 0/180 degree rotation, which is fine since linear
2222  * offset is only used with linear buffers on pre-hsw and tiled buffers
2223  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2224  */
2225 u32 intel_fb_xy_to_linear(int x, int y,
2226                           const struct intel_plane_state *state,
2227                           int plane)
2228 {
2229         const struct drm_framebuffer *fb = state->base.fb;
2230         unsigned int cpp = fb->format->cpp[plane];
2231         unsigned int pitch = fb->pitches[plane];
2232
2233         return y * pitch + x * cpp;
2234 }
2235
2236 /*
2237  * Add the x/y offsets derived from fb->offsets[] to the user
2238  * specified plane src x/y offsets. The resulting x/y offsets
2239  * specify the start of scanout from the beginning of the gtt mapping.
2240  */
2241 void intel_add_fb_offsets(int *x, int *y,
2242                           const struct intel_plane_state *state,
2243                           int plane)
2244
2245 {
2246         const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2247         unsigned int rotation = state->base.rotation;
2248
2249         if (drm_rotation_90_or_270(rotation)) {
2250                 *x += intel_fb->rotated[plane].x;
2251                 *y += intel_fb->rotated[plane].y;
2252         } else {
2253                 *x += intel_fb->normal[plane].x;
2254                 *y += intel_fb->normal[plane].y;
2255         }
2256 }
2257
2258 /*
2259  * Input tile dimensions and pitch must already be
2260  * rotated to match x and y, and in pixel units.
2261  */
2262 static u32 _intel_adjust_tile_offset(int *x, int *y,
2263                                      unsigned int tile_width,
2264                                      unsigned int tile_height,
2265                                      unsigned int tile_size,
2266                                      unsigned int pitch_tiles,
2267                                      u32 old_offset,
2268                                      u32 new_offset)
2269 {
2270         unsigned int pitch_pixels = pitch_tiles * tile_width;
2271         unsigned int tiles;
2272
2273         WARN_ON(old_offset & (tile_size - 1));
2274         WARN_ON(new_offset & (tile_size - 1));
2275         WARN_ON(new_offset > old_offset);
2276
2277         tiles = (old_offset - new_offset) / tile_size;
2278
2279         *y += tiles / pitch_tiles * tile_height;
2280         *x += tiles % pitch_tiles * tile_width;
2281
2282         /* minimize x in case it got needlessly big */
2283         *y += *x / pitch_pixels * tile_height;
2284         *x %= pitch_pixels;
2285
2286         return new_offset;
2287 }
2288
2289 /*
2290  * Adjust the tile offset by moving the difference into
2291  * the x/y offsets.
2292  */
2293 static u32 intel_adjust_tile_offset(int *x, int *y,
2294                                     const struct intel_plane_state *state, int plane,
2295                                     u32 old_offset, u32 new_offset)
2296 {
2297         const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2298         const struct drm_framebuffer *fb = state->base.fb;
2299         unsigned int cpp = fb->format->cpp[plane];
2300         unsigned int rotation = state->base.rotation;
2301         unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2302
2303         WARN_ON(new_offset > old_offset);
2304
2305         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2306                 unsigned int tile_size, tile_width, tile_height;
2307                 unsigned int pitch_tiles;
2308
2309                 tile_size = intel_tile_size(dev_priv);
2310                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2311
2312                 if (drm_rotation_90_or_270(rotation)) {
2313                         pitch_tiles = pitch / tile_height;
2314                         swap(tile_width, tile_height);
2315                 } else {
2316                         pitch_tiles = pitch / (tile_width * cpp);
2317                 }
2318
2319                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2320                                           tile_size, pitch_tiles,
2321                                           old_offset, new_offset);
2322         } else {
2323                 old_offset += *y * pitch + *x * cpp;
2324
2325                 *y = (old_offset - new_offset) / pitch;
2326                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2327         }
2328
2329         return new_offset;
2330 }
2331
2332 /*
2333  * Computes the linear offset to the base tile and adjusts
2334  * x, y. bytes per pixel is assumed to be a power-of-two.
2335  *
2336  * In the 90/270 rotated case, x and y are assumed
2337  * to be already rotated to match the rotated GTT view, and
2338  * pitch is the tile_height aligned framebuffer height.
2339  *
2340  * This function is used when computing the derived information
2341  * under intel_framebuffer, so using any of that information
2342  * here is not allowed. Anything under drm_framebuffer can be
2343  * used. This is why the user has to pass in the pitch since it
2344  * is specified in the rotated orientation.
2345  */
2346 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2347                                       int *x, int *y,
2348                                       const struct drm_framebuffer *fb, int plane,
2349                                       unsigned int pitch,
2350                                       unsigned int rotation,
2351                                       u32 alignment)
2352 {
2353         uint64_t fb_modifier = fb->modifier;
2354         unsigned int cpp = fb->format->cpp[plane];
2355         u32 offset, offset_aligned;
2356
2357         if (alignment)
2358                 alignment--;
2359
2360         if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2361                 unsigned int tile_size, tile_width, tile_height;
2362                 unsigned int tile_rows, tiles, pitch_tiles;
2363
2364                 tile_size = intel_tile_size(dev_priv);
2365                 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2366
2367                 if (drm_rotation_90_or_270(rotation)) {
2368                         pitch_tiles = pitch / tile_height;
2369                         swap(tile_width, tile_height);
2370                 } else {
2371                         pitch_tiles = pitch / (tile_width * cpp);
2372                 }
2373
2374                 tile_rows = *y / tile_height;
2375                 *y %= tile_height;
2376
2377                 tiles = *x / tile_width;
2378                 *x %= tile_width;
2379
2380                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2381                 offset_aligned = offset & ~alignment;
2382
2383                 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2384                                           tile_size, pitch_tiles,
2385                                           offset, offset_aligned);
2386         } else {
2387                 offset = *y * pitch + *x * cpp;
2388                 offset_aligned = offset & ~alignment;
2389
2390                 *y = (offset & alignment) / pitch;
2391                 *x = ((offset & alignment) - *y * pitch) / cpp;
2392         }
2393
2394         return offset_aligned;
2395 }
2396
2397 u32 intel_compute_tile_offset(int *x, int *y,
2398                               const struct intel_plane_state *state,
2399                               int plane)
2400 {
2401         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2402         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2403         const struct drm_framebuffer *fb = state->base.fb;
2404         unsigned int rotation = state->base.rotation;
2405         int pitch = intel_fb_pitch(fb, plane, rotation);
2406         u32 alignment;
2407
2408         if (intel_plane->id == PLANE_CURSOR)
2409                 alignment = intel_cursor_alignment(dev_priv);
2410         else
2411                 alignment = intel_surf_alignment(fb, plane);
2412
2413         return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2414                                           rotation, alignment);
2415 }
2416
2417 /* Convert the fb->offset[] linear offset into x/y offsets */
2418 static void intel_fb_offset_to_xy(int *x, int *y,
2419                                   const struct drm_framebuffer *fb, int plane)
2420 {
2421         unsigned int cpp = fb->format->cpp[plane];
2422         unsigned int pitch = fb->pitches[plane];
2423         u32 linear_offset = fb->offsets[plane];
2424
2425         *y = linear_offset / pitch;
2426         *x = linear_offset % pitch / cpp;
2427 }
2428
2429 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2430 {
2431         switch (fb_modifier) {
2432         case I915_FORMAT_MOD_X_TILED:
2433                 return I915_TILING_X;
2434         case I915_FORMAT_MOD_Y_TILED:
2435                 return I915_TILING_Y;
2436         default:
2437                 return I915_TILING_NONE;
2438         }
2439 }
2440
2441 static int
2442 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2443                    struct drm_framebuffer *fb)
2444 {
2445         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2446         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2447         u32 gtt_offset_rotated = 0;
2448         unsigned int max_size = 0;
2449         int i, num_planes = fb->format->num_planes;
2450         unsigned int tile_size = intel_tile_size(dev_priv);
2451
2452         for (i = 0; i < num_planes; i++) {
2453                 unsigned int width, height;
2454                 unsigned int cpp, size;
2455                 u32 offset;
2456                 int x, y;
2457
2458                 cpp = fb->format->cpp[i];
2459                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2460                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2461
2462                 intel_fb_offset_to_xy(&x, &y, fb, i);
2463
2464                 /*
2465                  * The fence (if used) is aligned to the start of the object
2466                  * so having the framebuffer wrap around across the edge of the
2467                  * fenced region doesn't really work. We have no API to configure
2468                  * the fence start offset within the object (nor could we probably
2469                  * on gen2/3). So it's just easier if we just require that the
2470                  * fb layout agrees with the fence layout. We already check that the
2471                  * fb stride matches the fence stride elsewhere.
2472                  */
2473                 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2474                     (x + width) * cpp > fb->pitches[i]) {
2475                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2476                                       i, fb->offsets[i]);
2477                         return -EINVAL;
2478                 }
2479
2480                 /*
2481                  * First pixel of the framebuffer from
2482                  * the start of the normal gtt mapping.
2483                  */
2484                 intel_fb->normal[i].x = x;
2485                 intel_fb->normal[i].y = y;
2486
2487                 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2488                                                     fb, i, fb->pitches[i],
2489                                                     DRM_MODE_ROTATE_0, tile_size);
2490                 offset /= tile_size;
2491
2492                 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2493                         unsigned int tile_width, tile_height;
2494                         unsigned int pitch_tiles;
2495                         struct drm_rect r;
2496
2497                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2498
2499                         rot_info->plane[i].offset = offset;
2500                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2501                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2502                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2503
2504                         intel_fb->rotated[i].pitch =
2505                                 rot_info->plane[i].height * tile_height;
2506
2507                         /* how many tiles does this plane need */
2508                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2509                         /*
2510                          * If the plane isn't horizontally tile aligned,
2511                          * we need one more tile.
2512                          */
2513                         if (x != 0)
2514                                 size++;
2515
2516                         /* rotate the x/y offsets to match the GTT view */
2517                         r.x1 = x;
2518                         r.y1 = y;
2519                         r.x2 = x + width;
2520                         r.y2 = y + height;
2521                         drm_rect_rotate(&r,
2522                                         rot_info->plane[i].width * tile_width,
2523                                         rot_info->plane[i].height * tile_height,
2524                                         DRM_MODE_ROTATE_270);
2525                         x = r.x1;
2526                         y = r.y1;
2527
2528                         /* rotate the tile dimensions to match the GTT view */
2529                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2530                         swap(tile_width, tile_height);
2531
2532                         /*
2533                          * We only keep the x/y offsets, so push all of the
2534                          * gtt offset into the x/y offsets.
2535                          */
2536                         _intel_adjust_tile_offset(&x, &y,
2537                                                   tile_width, tile_height,
2538                                                   tile_size, pitch_tiles,
2539                                                   gtt_offset_rotated * tile_size, 0);
2540
2541                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2542
2543                         /*
2544                          * First pixel of the framebuffer from
2545                          * the start of the rotated gtt mapping.
2546                          */
2547                         intel_fb->rotated[i].x = x;
2548                         intel_fb->rotated[i].y = y;
2549                 } else {
2550                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2551                                             x * cpp, tile_size);
2552                 }
2553
2554                 /* how many tiles in total needed in the bo */
2555                 max_size = max(max_size, offset + size);
2556         }
2557
2558         if (max_size * tile_size > intel_fb->obj->base.size) {
2559                 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2560                               max_size * tile_size, intel_fb->obj->base.size);
2561                 return -EINVAL;
2562         }
2563
2564         return 0;
2565 }
2566
2567 static int i9xx_format_to_fourcc(int format)
2568 {
2569         switch (format) {
2570         case DISPPLANE_8BPP:
2571                 return DRM_FORMAT_C8;
2572         case DISPPLANE_BGRX555:
2573                 return DRM_FORMAT_XRGB1555;
2574         case DISPPLANE_BGRX565:
2575                 return DRM_FORMAT_RGB565;
2576         default:
2577         case DISPPLANE_BGRX888:
2578                 return DRM_FORMAT_XRGB8888;
2579         case DISPPLANE_RGBX888:
2580                 return DRM_FORMAT_XBGR8888;
2581         case DISPPLANE_BGRX101010:
2582                 return DRM_FORMAT_XRGB2101010;
2583         case DISPPLANE_RGBX101010:
2584                 return DRM_FORMAT_XBGR2101010;
2585         }
2586 }
2587
2588 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2589 {
2590         switch (format) {
2591         case PLANE_CTL_FORMAT_RGB_565:
2592                 return DRM_FORMAT_RGB565;
2593         default:
2594         case PLANE_CTL_FORMAT_XRGB_8888:
2595                 if (rgb_order) {
2596                         if (alpha)
2597                                 return DRM_FORMAT_ABGR8888;
2598                         else
2599                                 return DRM_FORMAT_XBGR8888;
2600                 } else {
2601                         if (alpha)
2602                                 return DRM_FORMAT_ARGB8888;
2603                         else
2604                                 return DRM_FORMAT_XRGB8888;
2605                 }
2606         case PLANE_CTL_FORMAT_XRGB_2101010:
2607                 if (rgb_order)
2608                         return DRM_FORMAT_XBGR2101010;
2609                 else
2610                         return DRM_FORMAT_XRGB2101010;
2611         }
2612 }
2613
2614 static bool
2615 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2616                               struct intel_initial_plane_config *plane_config)
2617 {
2618         struct drm_device *dev = crtc->base.dev;
2619         struct drm_i915_private *dev_priv = to_i915(dev);
2620         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2621         struct drm_i915_gem_object *obj = NULL;
2622         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2623         struct drm_framebuffer *fb = &plane_config->fb->base;
2624         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2625         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2626                                     PAGE_SIZE);
2627
2628         size_aligned -= base_aligned;
2629
2630         if (plane_config->size == 0)
2631                 return false;
2632
2633         /* If the FB is too big, just don't use it since fbdev is not very
2634          * important and we should probably use that space with FBC or other
2635          * features. */
2636         if (size_aligned * 2 > ggtt->stolen_usable_size)
2637                 return false;
2638
2639         mutex_lock(&dev->struct_mutex);
2640         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2641                                                              base_aligned,
2642                                                              base_aligned,
2643                                                              size_aligned);
2644         mutex_unlock(&dev->struct_mutex);
2645         if (!obj)
2646                 return false;
2647
2648         if (plane_config->tiling == I915_TILING_X)
2649                 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2650
2651         mode_cmd.pixel_format = fb->format->format;
2652         mode_cmd.width = fb->width;
2653         mode_cmd.height = fb->height;
2654         mode_cmd.pitches[0] = fb->pitches[0];
2655         mode_cmd.modifier[0] = fb->modifier;
2656         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2657
2658         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2659                 DRM_DEBUG_KMS("intel fb init failed\n");
2660                 goto out_unref_obj;
2661         }
2662
2663
2664         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2665         return true;
2666
2667 out_unref_obj:
2668         i915_gem_object_put(obj);
2669         return false;
2670 }
2671
2672 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2673 static void
2674 update_state_fb(struct drm_plane *plane)
2675 {
2676         if (plane->fb == plane->state->fb)
2677                 return;
2678
2679         if (plane->state->fb)
2680                 drm_framebuffer_unreference(plane->state->fb);
2681         plane->state->fb = plane->fb;
2682         if (plane->state->fb)
2683                 drm_framebuffer_reference(plane->state->fb);
2684 }
2685
2686 static void
2687 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2688                         struct intel_plane_state *plane_state,
2689                         bool visible)
2690 {
2691         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2692
2693         plane_state->base.visible = visible;
2694
2695         /* FIXME pre-g4x don't work like this */
2696         if (visible) {
2697                 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2698                 crtc_state->active_planes |= BIT(plane->id);
2699         } else {
2700                 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2701                 crtc_state->active_planes &= ~BIT(plane->id);
2702         }
2703
2704         DRM_DEBUG_KMS("%s active planes 0x%x\n",
2705                       crtc_state->base.crtc->name,
2706                       crtc_state->active_planes);
2707 }
2708
2709 static void
2710 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2711                              struct intel_initial_plane_config *plane_config)
2712 {
2713         struct drm_device *dev = intel_crtc->base.dev;
2714         struct drm_i915_private *dev_priv = to_i915(dev);
2715         struct drm_crtc *c;
2716         struct drm_i915_gem_object *obj;
2717         struct drm_plane *primary = intel_crtc->base.primary;
2718         struct drm_plane_state *plane_state = primary->state;
2719         struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2720         struct intel_plane *intel_plane = to_intel_plane(primary);
2721         struct intel_plane_state *intel_state =
2722                 to_intel_plane_state(plane_state);
2723         struct drm_framebuffer *fb;
2724
2725         if (!plane_config->fb)
2726                 return;
2727
2728         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2729                 fb = &plane_config->fb->base;
2730                 goto valid_fb;
2731         }
2732
2733         kfree(plane_config->fb);
2734
2735         /*
2736          * Failed to alloc the obj, check to see if we should share
2737          * an fb with another CRTC instead
2738          */
2739         for_each_crtc(dev, c) {
2740                 struct intel_plane_state *state;
2741
2742                 if (c == &intel_crtc->base)
2743                         continue;
2744
2745                 if (!to_intel_crtc(c)->active)
2746                         continue;
2747
2748                 state = to_intel_plane_state(c->primary->state);
2749                 if (!state->vma)
2750                         continue;
2751
2752                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2753                         fb = c->primary->fb;
2754                         drm_framebuffer_reference(fb);
2755                         goto valid_fb;
2756                 }
2757         }
2758
2759         /*
2760          * We've failed to reconstruct the BIOS FB.  Current display state
2761          * indicates that the primary plane is visible, but has a NULL FB,
2762          * which will lead to problems later if we don't fix it up.  The
2763          * simplest solution is to just disable the primary plane now and
2764          * pretend the BIOS never had it enabled.
2765          */
2766         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2767                                 to_intel_plane_state(plane_state),
2768                                 false);
2769         intel_pre_disable_primary_noatomic(&intel_crtc->base);
2770         trace_intel_disable_plane(primary, intel_crtc);
2771         intel_plane->disable_plane(intel_plane, intel_crtc);
2772
2773         return;
2774
2775 valid_fb:
2776         mutex_lock(&dev->struct_mutex);
2777         intel_state->vma =
2778                 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2779         mutex_unlock(&dev->struct_mutex);
2780         if (IS_ERR(intel_state->vma)) {
2781                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2782                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
2783
2784                 intel_state->vma = NULL;
2785                 drm_framebuffer_unreference(fb);
2786                 return;
2787         }
2788
2789         plane_state->src_x = 0;
2790         plane_state->src_y = 0;
2791         plane_state->src_w = fb->width << 16;
2792         plane_state->src_h = fb->height << 16;
2793
2794         plane_state->crtc_x = 0;
2795         plane_state->crtc_y = 0;
2796         plane_state->crtc_w = fb->width;
2797         plane_state->crtc_h = fb->height;
2798
2799         intel_state->base.src = drm_plane_state_src(plane_state);
2800         intel_state->base.dst = drm_plane_state_dest(plane_state);
2801
2802         obj = intel_fb_obj(fb);
2803         if (i915_gem_object_is_tiled(obj))
2804                 dev_priv->preserve_bios_swizzle = true;
2805
2806         drm_framebuffer_reference(fb);
2807         primary->fb = primary->state->fb = fb;
2808         primary->crtc = primary->state->crtc = &intel_crtc->base;
2809
2810         intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2811                                 to_intel_plane_state(plane_state),
2812                                 true);
2813
2814         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2815                   &obj->frontbuffer_bits);
2816 }
2817
2818 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2819                                unsigned int rotation)
2820 {
2821         int cpp = fb->format->cpp[plane];
2822
2823         switch (fb->modifier) {
2824         case DRM_FORMAT_MOD_LINEAR:
2825         case I915_FORMAT_MOD_X_TILED:
2826                 switch (cpp) {
2827                 case 8:
2828                         return 4096;
2829                 case 4:
2830                 case 2:
2831                 case 1:
2832                         return 8192;
2833                 default:
2834                         MISSING_CASE(cpp);
2835                         break;
2836                 }
2837                 break;
2838         case I915_FORMAT_MOD_Y_TILED:
2839         case I915_FORMAT_MOD_Yf_TILED:
2840                 switch (cpp) {
2841                 case 8:
2842                         return 2048;
2843                 case 4:
2844                         return 4096;
2845                 case 2:
2846                 case 1:
2847                         return 8192;
2848                 default:
2849                         MISSING_CASE(cpp);
2850                         break;
2851                 }
2852                 break;
2853         default:
2854                 MISSING_CASE(fb->modifier);
2855         }
2856
2857         return 2048;
2858 }
2859
2860 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2861 {
2862         const struct drm_framebuffer *fb = plane_state->base.fb;
2863         unsigned int rotation = plane_state->base.rotation;
2864         int x = plane_state->base.src.x1 >> 16;
2865         int y = plane_state->base.src.y1 >> 16;
2866         int w = drm_rect_width(&plane_state->base.src) >> 16;
2867         int h = drm_rect_height(&plane_state->base.src) >> 16;
2868         int max_width = skl_max_plane_width(fb, 0, rotation);
2869         int max_height = 4096;
2870         u32 alignment, offset, aux_offset = plane_state->aux.offset;
2871
2872         if (w > max_width || h > max_height) {
2873                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2874                               w, h, max_width, max_height);
2875                 return -EINVAL;
2876         }
2877
2878         intel_add_fb_offsets(&x, &y, plane_state, 0);
2879         offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2880         alignment = intel_surf_alignment(fb, 0);
2881
2882         /*
2883          * AUX surface offset is specified as the distance from the
2884          * main surface offset, and it must be non-negative. Make
2885          * sure that is what we will get.
2886          */
2887         if (offset > aux_offset)
2888                 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2889                                                   offset, aux_offset & ~(alignment - 1));
2890
2891         /*
2892          * When using an X-tiled surface, the plane blows up
2893          * if the x offset + width exceed the stride.
2894          *
2895          * TODO: linear and Y-tiled seem fine, Yf untested,
2896          */
2897         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
2898                 int cpp = fb->format->cpp[0];
2899
2900                 while ((x + w) * cpp > fb->pitches[0]) {
2901                         if (offset == 0) {
2902                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2903                                 return -EINVAL;
2904                         }
2905
2906                         offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2907                                                           offset, offset - alignment);
2908                 }
2909         }
2910
2911         plane_state->main.offset = offset;
2912         plane_state->main.x = x;
2913         plane_state->main.y = y;
2914
2915         return 0;
2916 }
2917
2918 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2919 {
2920         const struct drm_framebuffer *fb = plane_state->base.fb;
2921         unsigned int rotation = plane_state->base.rotation;
2922         int max_width = skl_max_plane_width(fb, 1, rotation);
2923         int max_height = 4096;
2924         int x = plane_state->base.src.x1 >> 17;
2925         int y = plane_state->base.src.y1 >> 17;
2926         int w = drm_rect_width(&plane_state->base.src) >> 17;
2927         int h = drm_rect_height(&plane_state->base.src) >> 17;
2928         u32 offset;
2929
2930         intel_add_fb_offsets(&x, &y, plane_state, 1);
2931         offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2932
2933         /* FIXME not quite sure how/if these apply to the chroma plane */
2934         if (w > max_width || h > max_height) {
2935                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2936                               w, h, max_width, max_height);
2937                 return -EINVAL;
2938         }
2939
2940         plane_state->aux.offset = offset;
2941         plane_state->aux.x = x;
2942         plane_state->aux.y = y;
2943
2944         return 0;
2945 }
2946
2947 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2948 {
2949         const struct drm_framebuffer *fb = plane_state->base.fb;
2950         unsigned int rotation = plane_state->base.rotation;
2951         int ret;
2952
2953         if (!plane_state->base.visible)
2954                 return 0;
2955
2956         /* Rotate src coordinates to match rotated GTT view */
2957         if (drm_rotation_90_or_270(rotation))
2958                 drm_rect_rotate(&plane_state->base.src,
2959                                 fb->width << 16, fb->height << 16,
2960                                 DRM_MODE_ROTATE_270);
2961
2962         /*
2963          * Handle the AUX surface first since
2964          * the main surface setup depends on it.
2965          */
2966         if (fb->format->format == DRM_FORMAT_NV12) {
2967                 ret = skl_check_nv12_aux_surface(plane_state);
2968                 if (ret)
2969                         return ret;
2970         } else {
2971                 plane_state->aux.offset = ~0xfff;
2972                 plane_state->aux.x = 0;
2973                 plane_state->aux.y = 0;
2974         }
2975
2976         ret = skl_check_main_surface(plane_state);
2977         if (ret)
2978                 return ret;
2979
2980         return 0;
2981 }
2982
2983 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
2984                           const struct intel_plane_state *plane_state)
2985 {
2986         struct drm_i915_private *dev_priv =
2987                 to_i915(plane_state->base.plane->dev);
2988         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2989         const struct drm_framebuffer *fb = plane_state->base.fb;
2990         unsigned int rotation = plane_state->base.rotation;
2991         u32 dspcntr;
2992
2993         dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
2994
2995         if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
2996             IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
2997                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2998
2999         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3000                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3001
3002         if (INTEL_GEN(dev_priv) < 4)
3003                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3004
3005         switch (fb->format->format) {
3006         case DRM_FORMAT_C8:
3007                 dspcntr |= DISPPLANE_8BPP;
3008                 break;
3009         case DRM_FORMAT_XRGB1555:
3010                 dspcntr |= DISPPLANE_BGRX555;
3011                 break;
3012         case DRM_FORMAT_RGB565:
3013                 dspcntr |= DISPPLANE_BGRX565;
3014                 break;
3015         case DRM_FORMAT_XRGB8888:
3016                 dspcntr |= DISPPLANE_BGRX888;
3017                 break;
3018         case DRM_FORMAT_XBGR8888:
3019                 dspcntr |= DISPPLANE_RGBX888;
3020                 break;
3021         case DRM_FORMAT_XRGB2101010:
3022                 dspcntr |= DISPPLANE_BGRX101010;
3023                 break;
3024         case DRM_FORMAT_XBGR2101010:
3025                 dspcntr |= DISPPLANE_RGBX101010;
3026                 break;
3027         default:
3028                 MISSING_CASE(fb->format->format);
3029                 return 0;
3030         }
3031
3032         if (INTEL_GEN(dev_priv) >= 4 &&
3033             fb->modifier == I915_FORMAT_MOD_X_TILED)
3034                 dspcntr |= DISPPLANE_TILED;
3035
3036         if (rotation & DRM_MODE_ROTATE_180)
3037                 dspcntr |= DISPPLANE_ROTATE_180;
3038
3039         if (rotation & DRM_MODE_REFLECT_X)
3040                 dspcntr |= DISPPLANE_MIRROR;
3041
3042         return dspcntr;
3043 }
3044
3045 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3046 {
3047         struct drm_i915_private *dev_priv =
3048                 to_i915(plane_state->base.plane->dev);
3049         int src_x = plane_state->base.src.x1 >> 16;
3050         int src_y = plane_state->base.src.y1 >> 16;
3051         u32 offset;
3052
3053         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3054
3055         if (INTEL_GEN(dev_priv) >= 4)
3056                 offset = intel_compute_tile_offset(&src_x, &src_y,
3057                                                    plane_state, 0);
3058         else
3059                 offset = 0;
3060
3061         /* HSW/BDW do this automagically in hardware */
3062         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3063                 unsigned int rotation = plane_state->base.rotation;
3064                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3065                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3066
3067                 if (rotation & DRM_MODE_ROTATE_180) {
3068                         src_x += src_w - 1;
3069                         src_y += src_h - 1;
3070                 } else if (rotation & DRM_MODE_REFLECT_X) {
3071                         src_x += src_w - 1;
3072                 }
3073         }
3074
3075         plane_state->main.offset = offset;
3076         plane_state->main.x = src_x;
3077         plane_state->main.y = src_y;
3078
3079         return 0;
3080 }
3081
3082 static void i9xx_update_primary_plane(struct intel_plane *primary,
3083                                       const struct intel_crtc_state *crtc_state,
3084                                       const struct intel_plane_state *plane_state)
3085 {
3086         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3087         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3088         const struct drm_framebuffer *fb = plane_state->base.fb;
3089         enum plane plane = primary->plane;
3090         u32 linear_offset;
3091         u32 dspcntr = plane_state->ctl;
3092         i915_reg_t reg = DSPCNTR(plane);
3093         int x = plane_state->main.x;
3094         int y = plane_state->main.y;
3095         unsigned long irqflags;
3096
3097         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3098
3099         if (INTEL_GEN(dev_priv) >= 4)
3100                 crtc->dspaddr_offset = plane_state->main.offset;
3101         else
3102                 crtc->dspaddr_offset = linear_offset;
3103
3104         crtc->adjusted_x = x;
3105         crtc->adjusted_y = y;
3106
3107         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3108
3109         if (INTEL_GEN(dev_priv) < 4) {
3110                 /* pipesrc and dspsize control the size that is scaled from,
3111                  * which should always be the user's requested size.
3112                  */
3113                 I915_WRITE_FW(DSPSIZE(plane),
3114                               ((crtc_state->pipe_src_h - 1) << 16) |
3115                               (crtc_state->pipe_src_w - 1));
3116                 I915_WRITE_FW(DSPPOS(plane), 0);
3117         } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3118                 I915_WRITE_FW(PRIMSIZE(plane),
3119                               ((crtc_state->pipe_src_h - 1) << 16) |
3120                               (crtc_state->pipe_src_w - 1));
3121                 I915_WRITE_FW(PRIMPOS(plane), 0);
3122                 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3123         }
3124
3125         I915_WRITE_FW(reg, dspcntr);
3126
3127         I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3128         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3129                 I915_WRITE_FW(DSPSURF(plane),
3130                               intel_plane_ggtt_offset(plane_state) +
3131                               crtc->dspaddr_offset);
3132                 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3133         } else if (INTEL_GEN(dev_priv) >= 4) {
3134                 I915_WRITE_FW(DSPSURF(plane),
3135                               intel_plane_ggtt_offset(plane_state) +
3136                               crtc->dspaddr_offset);
3137                 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3138                 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3139         } else {
3140                 I915_WRITE_FW(DSPADDR(plane),
3141                               intel_plane_ggtt_offset(plane_state) +
3142                               crtc->dspaddr_offset);
3143         }
3144         POSTING_READ_FW(reg);
3145
3146         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3147 }
3148
3149 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3150                                        struct intel_crtc *crtc)
3151 {
3152         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3153         enum plane plane = primary->plane;
3154         unsigned long irqflags;
3155
3156         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3157
3158         I915_WRITE_FW(DSPCNTR(plane), 0);
3159         if (INTEL_INFO(dev_priv)->gen >= 4)
3160                 I915_WRITE_FW(DSPSURF(plane), 0);
3161         else
3162                 I915_WRITE_FW(DSPADDR(plane), 0);
3163         POSTING_READ_FW(DSPCNTR(plane));
3164
3165         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3166 }
3167
3168 static u32
3169 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3170 {
3171         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3172                 return 64;
3173         else
3174                 return intel_tile_width_bytes(fb, plane);
3175 }
3176
3177 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3178 {
3179         struct drm_device *dev = intel_crtc->base.dev;
3180         struct drm_i915_private *dev_priv = to_i915(dev);
3181
3182         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3183         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3184         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3185 }
3186
3187 /*
3188  * This function detaches (aka. unbinds) unused scalers in hardware
3189  */
3190 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3191 {
3192         struct intel_crtc_scaler_state *scaler_state;
3193         int i;
3194
3195         scaler_state = &intel_crtc->config->scaler_state;
3196
3197         /* loop through and disable scalers that aren't in use */
3198         for (i = 0; i < intel_crtc->num_scalers; i++) {
3199                 if (!scaler_state->scalers[i].in_use)
3200                         skl_detach_scaler(intel_crtc, i);
3201         }
3202 }
3203
3204 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3205                      unsigned int rotation)
3206 {
3207         u32 stride;
3208
3209         if (plane >= fb->format->num_planes)
3210                 return 0;
3211
3212         stride = intel_fb_pitch(fb, plane, rotation);
3213
3214         /*
3215          * The stride is either expressed as a multiple of 64 bytes chunks for
3216          * linear buffers or in number of tiles for tiled buffers.
3217          */
3218         if (drm_rotation_90_or_270(rotation))
3219                 stride /= intel_tile_height(fb, plane);
3220         else
3221                 stride /= intel_fb_stride_alignment(fb, plane);
3222
3223         return stride;
3224 }
3225
3226 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3227 {
3228         switch (pixel_format) {
3229         case DRM_FORMAT_C8:
3230                 return PLANE_CTL_FORMAT_INDEXED;
3231         case DRM_FORMAT_RGB565:
3232                 return PLANE_CTL_FORMAT_RGB_565;
3233         case DRM_FORMAT_XBGR8888:
3234                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3235         case DRM_FORMAT_XRGB8888:
3236                 return PLANE_CTL_FORMAT_XRGB_8888;
3237         /*
3238          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3239          * to be already pre-multiplied. We need to add a knob (or a different
3240          * DRM_FORMAT) for user-space to configure that.
3241          */
3242         case DRM_FORMAT_ABGR8888:
3243                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3244                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3245         case DRM_FORMAT_ARGB8888:
3246                 return PLANE_CTL_FORMAT_XRGB_8888 |
3247                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3248         case DRM_FORMAT_XRGB2101010:
3249                 return PLANE_CTL_FORMAT_XRGB_2101010;
3250         case DRM_FORMAT_XBGR2101010:
3251                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3252         case DRM_FORMAT_YUYV:
3253                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3254         case DRM_FORMAT_YVYU:
3255                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3256         case DRM_FORMAT_UYVY:
3257                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3258         case DRM_FORMAT_VYUY:
3259                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3260         default:
3261                 MISSING_CASE(pixel_format);
3262         }
3263
3264         return 0;
3265 }
3266
3267 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3268 {
3269         switch (fb_modifier) {
3270         case DRM_FORMAT_MOD_LINEAR:
3271                 break;
3272         case I915_FORMAT_MOD_X_TILED:
3273                 return PLANE_CTL_TILED_X;
3274         case I915_FORMAT_MOD_Y_TILED:
3275                 return PLANE_CTL_TILED_Y;
3276         case I915_FORMAT_MOD_Yf_TILED:
3277                 return PLANE_CTL_TILED_YF;
3278         default:
3279                 MISSING_CASE(fb_modifier);
3280         }
3281
3282         return 0;
3283 }
3284
3285 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3286 {
3287         switch (rotation) {
3288         case DRM_MODE_ROTATE_0:
3289                 break;
3290         /*
3291          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3292          * while i915 HW rotation is clockwise, thats why this swapping.
3293          */
3294         case DRM_MODE_ROTATE_90:
3295                 return PLANE_CTL_ROTATE_270;
3296         case DRM_MODE_ROTATE_180:
3297                 return PLANE_CTL_ROTATE_180;
3298         case DRM_MODE_ROTATE_270:
3299                 return PLANE_CTL_ROTATE_90;
3300         default:
3301                 MISSING_CASE(rotation);
3302         }
3303
3304         return 0;
3305 }
3306
3307 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3308                   const struct intel_plane_state *plane_state)
3309 {
3310         struct drm_i915_private *dev_priv =
3311                 to_i915(plane_state->base.plane->dev);
3312         const struct drm_framebuffer *fb = plane_state->base.fb;
3313         unsigned int rotation = plane_state->base.rotation;
3314         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3315         u32 plane_ctl;
3316
3317         plane_ctl = PLANE_CTL_ENABLE;
3318
3319         if (!IS_GEMINILAKE(dev_priv)) {
3320                 plane_ctl |=
3321                         PLANE_CTL_PIPE_GAMMA_ENABLE |
3322                         PLANE_CTL_PIPE_CSC_ENABLE |
3323                         PLANE_CTL_PLANE_GAMMA_DISABLE;
3324         }
3325
3326         plane_ctl |= skl_plane_ctl_format(fb->format->format);
3327         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3328         plane_ctl |= skl_plane_ctl_rotation(rotation);
3329
3330         if (key->flags & I915_SET_COLORKEY_DESTINATION)
3331                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3332         else if (key->flags & I915_SET_COLORKEY_SOURCE)
3333                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3334
3335         return plane_ctl;
3336 }
3337
3338 static void skylake_update_primary_plane(struct intel_plane *plane,
3339                                          const struct intel_crtc_state *crtc_state,
3340                                          const struct intel_plane_state *plane_state)
3341 {
3342         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3343         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3344         const struct drm_framebuffer *fb = plane_state->base.fb;
3345         enum plane_id plane_id = plane->id;
3346         enum pipe pipe = plane->pipe;
3347         u32 plane_ctl = plane_state->ctl;
3348         unsigned int rotation = plane_state->base.rotation;
3349         u32 stride = skl_plane_stride(fb, 0, rotation);
3350         u32 surf_addr = plane_state->main.offset;
3351         int scaler_id = plane_state->scaler_id;
3352         int src_x = plane_state->main.x;
3353         int src_y = plane_state->main.y;
3354         int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3355         int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3356         int dst_x = plane_state->base.dst.x1;
3357         int dst_y = plane_state->base.dst.y1;
3358         int dst_w = drm_rect_width(&plane_state->base.dst);
3359         int dst_h = drm_rect_height(&plane_state->base.dst);
3360         unsigned long irqflags;
3361
3362         /* Sizes are 0 based */
3363         src_w--;
3364         src_h--;
3365         dst_w--;
3366         dst_h--;
3367
3368         crtc->dspaddr_offset = surf_addr;
3369
3370         crtc->adjusted_x = src_x;
3371         crtc->adjusted_y = src_y;
3372
3373         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3374
3375         if (IS_GEMINILAKE(dev_priv)) {
3376                 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3377                               PLANE_COLOR_PIPE_GAMMA_ENABLE |
3378                               PLANE_COLOR_PIPE_CSC_ENABLE |
3379                               PLANE_COLOR_PLANE_GAMMA_DISABLE);
3380         }
3381
3382         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3383         I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3384         I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3385         I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3386
3387         if (scaler_id >= 0) {
3388                 uint32_t ps_ctrl = 0;
3389
3390                 WARN_ON(!dst_w || !dst_h);
3391                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3392                         crtc_state->scaler_state.scalers[scaler_id].mode;
3393                 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3394                 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3395                 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3396                 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3397                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3398         } else {
3399                 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3400         }
3401
3402         I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3403                       intel_plane_ggtt_offset(plane_state) + surf_addr);
3404
3405         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3406
3407         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3408 }
3409
3410 static void skylake_disable_primary_plane(struct intel_plane *primary,
3411                                           struct intel_crtc *crtc)
3412 {
3413         struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3414         enum plane_id plane_id = primary->id;
3415         enum pipe pipe = primary->pipe;
3416         unsigned long irqflags;
3417
3418         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3419
3420         I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3421         I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3422         POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3423
3424         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3425 }
3426
3427 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3428 {
3429         struct intel_crtc *crtc;
3430
3431         for_each_intel_crtc(&dev_priv->drm, crtc)
3432                 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3433 }
3434
3435 static void intel_update_primary_planes(struct drm_device *dev)
3436 {
3437         struct drm_crtc *crtc;
3438
3439         for_each_crtc(dev, crtc) {
3440                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3441                 struct intel_plane_state *plane_state =
3442                         to_intel_plane_state(plane->base.state);
3443
3444                 if (plane_state->base.visible) {
3445                         trace_intel_update_plane(&plane->base,
3446                                                  to_intel_crtc(crtc));
3447
3448                         plane->update_plane(plane,
3449                                             to_intel_crtc_state(crtc->state),
3450                                             plane_state);
3451                 }
3452         }
3453 }
3454
3455 static int
3456 __intel_display_resume(struct drm_device *dev,
3457                        struct drm_atomic_state *state,
3458                        struct drm_modeset_acquire_ctx *ctx)
3459 {
3460         struct drm_crtc_state *crtc_state;
3461         struct drm_crtc *crtc;
3462         int i, ret;
3463
3464         intel_modeset_setup_hw_state(dev);
3465         i915_redisable_vga(to_i915(dev));
3466
3467         if (!state)
3468                 return 0;
3469
3470         /*
3471          * We've duplicated the state, pointers to the old state are invalid.
3472          *
3473          * Don't attempt to use the old state until we commit the duplicated state.
3474          */
3475         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3476                 /*
3477                  * Force recalculation even if we restore
3478                  * current state. With fast modeset this may not result
3479                  * in a modeset when the state is compatible.
3480                  */
3481                 crtc_state->mode_changed = true;
3482         }
3483
3484         /* ignore any reset values/BIOS leftovers in the WM registers */
3485         if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3486                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3487
3488         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3489
3490         WARN_ON(ret == -EDEADLK);
3491         return ret;
3492 }
3493
3494 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3495 {
3496         return intel_has_gpu_reset(dev_priv) &&
3497                 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3498 }
3499
3500 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3501 {
3502         struct drm_device *dev = &dev_priv->drm;
3503         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3504         struct drm_atomic_state *state;
3505         int ret;
3506
3507         /*
3508          * Need mode_config.mutex so that we don't
3509          * trample ongoing ->detect() and whatnot.
3510          */
3511         mutex_lock(&dev->mode_config.mutex);
3512         drm_modeset_acquire_init(ctx, 0);
3513         while (1) {
3514                 ret = drm_modeset_lock_all_ctx(dev, ctx);
3515                 if (ret != -EDEADLK)
3516                         break;
3517
3518                 drm_modeset_backoff(ctx);
3519         }
3520
3521         /* reset doesn't touch the display, but flips might get nuked anyway, */
3522         if (!i915.force_reset_modeset_test &&
3523             !gpu_reset_clobbers_display(dev_priv))
3524                 return;
3525
3526         /*
3527          * Disabling the crtcs gracefully seems nicer. Also the
3528          * g33 docs say we should at least disable all the planes.
3529          */
3530         state = drm_atomic_helper_duplicate_state(dev, ctx);
3531         if (IS_ERR(state)) {
3532                 ret = PTR_ERR(state);
3533                 DRM_ERROR("Duplicating state failed with %i\n", ret);
3534                 return;
3535         }
3536
3537         ret = drm_atomic_helper_disable_all(dev, ctx);
3538         if (ret) {
3539                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3540                 drm_atomic_state_put(state);
3541                 return;
3542         }
3543
3544         dev_priv->modeset_restore_state = state;
3545         state->acquire_ctx = ctx;
3546 }
3547
3548 void intel_finish_reset(struct drm_i915_private *dev_priv)
3549 {
3550         struct drm_device *dev = &dev_priv->drm;
3551         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3552         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3553         int ret;
3554
3555         /*
3556          * Flips in the rings will be nuked by the reset,
3557          * so complete all pending flips so that user space
3558          * will get its events and not get stuck.
3559          */
3560         intel_complete_page_flips(dev_priv);
3561
3562         dev_priv->modeset_restore_state = NULL;
3563
3564         /* reset doesn't touch the display */
3565         if (!gpu_reset_clobbers_display(dev_priv)) {
3566                 if (!state) {
3567                         /*
3568                          * Flips in the rings have been nuked by the reset,
3569                          * so update the base address of all primary
3570                          * planes to the the last fb to make sure we're
3571                          * showing the correct fb after a reset.
3572                          *
3573                          * FIXME: Atomic will make this obsolete since we won't schedule
3574                          * CS-based flips (which might get lost in gpu resets) any more.
3575                          */
3576                         intel_update_primary_planes(dev);
3577                 } else {
3578                         ret = __intel_display_resume(dev, state, ctx);
3579                         if (ret)
3580                                 DRM_ERROR("Restoring old state failed with %i\n", ret);
3581                 }
3582         } else {
3583                 /*
3584                  * The display has been reset as well,
3585                  * so need a full re-initialization.
3586                  */
3587                 intel_runtime_pm_disable_interrupts(dev_priv);
3588                 intel_runtime_pm_enable_interrupts(dev_priv);
3589
3590                 intel_pps_unlock_regs_wa(dev_priv);
3591                 intel_modeset_init_hw(dev);
3592
3593                 spin_lock_irq(&dev_priv->irq_lock);
3594                 if (dev_priv->display.hpd_irq_setup)
3595                         dev_priv->display.hpd_irq_setup(dev_priv);
3596                 spin_unlock_irq(&dev_priv->irq_lock);
3597
3598                 ret = __intel_display_resume(dev, state, ctx);
3599                 if (ret)
3600                         DRM_ERROR("Restoring old state failed with %i\n", ret);
3601
3602                 intel_hpd_init(dev_priv);
3603         }
3604
3605         if (state)
3606                 drm_atomic_state_put(state);
3607         drm_modeset_drop_locks(ctx);
3608         drm_modeset_acquire_fini(ctx);
3609         mutex_unlock(&dev->mode_config.mutex);
3610 }
3611
3612 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3613 {
3614         struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3615
3616         if (i915_reset_backoff(error))
3617                 return true;
3618
3619         if (crtc->reset_count != i915_reset_count(error))
3620                 return true;
3621
3622         return false;
3623 }
3624
3625 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3626 {
3627         struct drm_device *dev = crtc->dev;
3628         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629         bool pending;
3630
3631         if (abort_flip_on_reset(intel_crtc))
3632                 return false;
3633
3634         spin_lock_irq(&dev->event_lock);
3635         pending = to_intel_crtc(crtc)->flip_work != NULL;
3636         spin_unlock_irq(&dev->event_lock);
3637
3638         return pending;
3639 }
3640
3641 static void intel_update_pipe_config(struct intel_crtc *crtc,
3642                                      struct intel_crtc_state *old_crtc_state)
3643 {
3644         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3645         struct intel_crtc_state *pipe_config =
3646                 to_intel_crtc_state(crtc->base.state);
3647
3648         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3649         crtc->base.mode = crtc->base.state->mode;
3650
3651         /*
3652          * Update pipe size and adjust fitter if needed: the reason for this is
3653          * that in compute_mode_changes we check the native mode (not the pfit
3654          * mode) to see if we can flip rather than do a full mode set. In the
3655          * fastboot case, we'll flip, but if we don't update the pipesrc and
3656          * pfit state, we'll end up with a big fb scanned out into the wrong
3657          * sized surface.
3658          */
3659
3660         I915_WRITE(PIPESRC(crtc->pipe),
3661                    ((pipe_config->pipe_src_w - 1) << 16) |
3662                    (pipe_config->pipe_src_h - 1));
3663
3664         /* on skylake this is done by detaching scalers */
3665         if (INTEL_GEN(dev_priv) >= 9) {
3666                 skl_detach_scalers(crtc);
3667
3668                 if (pipe_config->pch_pfit.enabled)
3669                         skylake_pfit_enable(crtc);
3670         } else if (HAS_PCH_SPLIT(dev_priv)) {
3671                 if (pipe_config->pch_pfit.enabled)
3672                         ironlake_pfit_enable(crtc);
3673                 else if (old_crtc_state->pch_pfit.enabled)
3674                         ironlake_pfit_disable(crtc, true);
3675         }
3676 }
3677
3678 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3679 {
3680         struct drm_device *dev = crtc->base.dev;
3681         struct drm_i915_private *dev_priv = to_i915(dev);
3682         int pipe = crtc->pipe;
3683         i915_reg_t reg;
3684         u32 temp;
3685
3686         /* enable normal train */
3687         reg = FDI_TX_CTL(pipe);
3688         temp = I915_READ(reg);
3689         if (IS_IVYBRIDGE(dev_priv)) {
3690                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3691                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3692         } else {
3693                 temp &= ~FDI_LINK_TRAIN_NONE;
3694                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3695         }
3696         I915_WRITE(reg, temp);
3697
3698         reg = FDI_RX_CTL(pipe);
3699         temp = I915_READ(reg);
3700         if (HAS_PCH_CPT(dev_priv)) {
3701                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3702                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3703         } else {
3704                 temp &= ~FDI_LINK_TRAIN_NONE;
3705                 temp |= FDI_LINK_TRAIN_NONE;
3706         }
3707         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3708
3709         /* wait one idle pattern time */
3710         POSTING_READ(reg);
3711         udelay(1000);
3712
3713         /* IVB wants error correction enabled */
3714         if (IS_IVYBRIDGE(dev_priv))
3715                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3716                            FDI_FE_ERRC_ENABLE);
3717 }
3718
3719 /* The FDI link training functions for ILK/Ibexpeak. */
3720 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3721                                     const struct intel_crtc_state *crtc_state)
3722 {
3723         struct drm_device *dev = crtc->base.dev;
3724         struct drm_i915_private *dev_priv = to_i915(dev);
3725         int pipe = crtc->pipe;
3726         i915_reg_t reg;
3727         u32 temp, tries;
3728
3729         /* FDI needs bits from pipe first */
3730         assert_pipe_enabled(dev_priv, pipe);
3731
3732         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3733            for train result */
3734         reg = FDI_RX_IMR(pipe);
3735         temp = I915_READ(reg);
3736         temp &= ~FDI_RX_SYMBOL_LOCK;
3737         temp &= ~FDI_RX_BIT_LOCK;
3738         I915_WRITE(reg, temp);
3739         I915_READ(reg);
3740         udelay(150);
3741
3742         /* enable CPU FDI TX and PCH FDI RX */
3743         reg = FDI_TX_CTL(pipe);
3744         temp = I915_READ(reg);
3745         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3746         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3747         temp &= ~FDI_LINK_TRAIN_NONE;
3748         temp |= FDI_LINK_TRAIN_PATTERN_1;
3749         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3750
3751         reg = FDI_RX_CTL(pipe);
3752         temp = I915_READ(reg);
3753         temp &= ~FDI_LINK_TRAIN_NONE;
3754         temp |= FDI_LINK_TRAIN_PATTERN_1;
3755         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3756
3757         POSTING_READ(reg);
3758         udelay(150);
3759
3760         /* Ironlake workaround, enable clock pointer after FDI enable*/
3761         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3762         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3763                    FDI_RX_PHASE_SYNC_POINTER_EN);
3764
3765         reg = FDI_RX_IIR(pipe);
3766         for (tries = 0; tries < 5; tries++) {
3767                 temp = I915_READ(reg);
3768                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3769
3770                 if ((temp & FDI_RX_BIT_LOCK)) {
3771                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3772                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3773                         break;
3774                 }
3775         }
3776         if (tries == 5)
3777                 DRM_ERROR("FDI train 1 fail!\n");
3778
3779         /* Train 2 */
3780         reg = FDI_TX_CTL(pipe);
3781         temp = I915_READ(reg);
3782         temp &= ~FDI_LINK_TRAIN_NONE;
3783         temp |= FDI_LINK_TRAIN_PATTERN_2;
3784         I915_WRITE(reg, temp);
3785
3786         reg = FDI_RX_CTL(pipe);
3787         temp = I915_READ(reg);
3788         temp &= ~FDI_LINK_TRAIN_NONE;
3789         temp |= FDI_LINK_TRAIN_PATTERN_2;
3790         I915_WRITE(reg, temp);
3791
3792         POSTING_READ(reg);
3793         udelay(150);
3794
3795         reg = FDI_RX_IIR(pipe);
3796         for (tries = 0; tries < 5; tries++) {
3797                 temp = I915_READ(reg);
3798                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3799
3800                 if (temp & FDI_RX_SYMBOL_LOCK) {
3801                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3802                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3803                         break;
3804                 }
3805         }
3806         if (tries == 5)
3807                 DRM_ERROR("FDI train 2 fail!\n");
3808
3809         DRM_DEBUG_KMS("FDI train done\n");
3810
3811 }
3812
3813 static const int snb_b_fdi_train_param[] = {
3814         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3815         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3816         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3817         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3818 };
3819
3820 /* The FDI link training functions for SNB/Cougarpoint. */
3821 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3822                                 const struct intel_crtc_state *crtc_state)
3823 {
3824         struct drm_device *dev = crtc->base.dev;
3825         struct drm_i915_private *dev_priv = to_i915(dev);
3826         int pipe = crtc->pipe;
3827         i915_reg_t reg;
3828         u32 temp, i, retry;
3829
3830         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3831            for train result */
3832         reg = FDI_RX_IMR(pipe);
3833         temp = I915_READ(reg);
3834         temp &= ~FDI_RX_SYMBOL_LOCK;
3835         temp &= ~FDI_RX_BIT_LOCK;
3836         I915_WRITE(reg, temp);
3837
3838         POSTING_READ(reg);
3839         udelay(150);
3840
3841         /* enable CPU FDI TX and PCH FDI RX */
3842         reg = FDI_TX_CTL(pipe);
3843         temp = I915_READ(reg);
3844         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3845         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3846         temp &= ~FDI_LINK_TRAIN_NONE;
3847         temp |= FDI_LINK_TRAIN_PATTERN_1;
3848         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3849         /* SNB-B */
3850         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3851         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3852
3853         I915_WRITE(FDI_RX_MISC(pipe),
3854                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3855
3856         reg = FDI_RX_CTL(pipe);
3857         temp = I915_READ(reg);
3858         if (HAS_PCH_CPT(dev_priv)) {
3859                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3860                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3861         } else {
3862                 temp &= ~FDI_LINK_TRAIN_NONE;
3863                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3864         }
3865         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3866
3867         POSTING_READ(reg);
3868         udelay(150);
3869
3870         for (i = 0; i < 4; i++) {
3871                 reg = FDI_TX_CTL(pipe);
3872                 temp = I915_READ(reg);
3873                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3874                 temp |= snb_b_fdi_train_param[i];
3875                 I915_WRITE(reg, temp);
3876
3877                 POSTING_READ(reg);
3878                 udelay(500);
3879
3880                 for (retry = 0; retry < 5; retry++) {
3881                         reg = FDI_RX_IIR(pipe);
3882                         temp = I915_READ(reg);
3883                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3884                         if (temp & FDI_RX_BIT_LOCK) {
3885                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3886                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3887                                 break;
3888                         }
3889                         udelay(50);
3890                 }
3891                 if (retry < 5)
3892                         break;
3893         }
3894         if (i == 4)
3895                 DRM_ERROR("FDI train 1 fail!\n");
3896
3897         /* Train 2 */
3898         reg = FDI_TX_CTL(pipe);
3899         temp = I915_READ(reg);
3900         temp &= ~FDI_LINK_TRAIN_NONE;
3901         temp |= FDI_LINK_TRAIN_PATTERN_2;
3902         if (IS_GEN6(dev_priv)) {
3903                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3904                 /* SNB-B */
3905                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3906         }
3907         I915_WRITE(reg, temp);
3908
3909         reg = FDI_RX_CTL(pipe);
3910         temp = I915_READ(reg);
3911         if (HAS_PCH_CPT(dev_priv)) {
3912                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3913                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3914         } else {
3915                 temp &= ~FDI_LINK_TRAIN_NONE;
3916                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3917         }
3918         I915_WRITE(reg, temp);
3919
3920         POSTING_READ(reg);
3921         udelay(150);
3922
3923         for (i = 0; i < 4; i++) {
3924                 reg = FDI_TX_CTL(pipe);
3925                 temp = I915_READ(reg);
3926                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3927                 temp |= snb_b_fdi_train_param[i];
3928                 I915_WRITE(reg, temp);
3929
3930                 POSTING_READ(reg);
3931                 udelay(500);
3932
3933                 for (retry = 0; retry < 5; retry++) {
3934                         reg = FDI_RX_IIR(pipe);
3935                         temp = I915_READ(reg);
3936                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3937                         if (temp & FDI_RX_SYMBOL_LOCK) {
3938                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3939                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3940                                 break;
3941                         }
3942                         udelay(50);
3943                 }
3944                 if (retry < 5)
3945                         break;
3946         }
3947         if (i == 4)
3948                 DRM_ERROR("FDI train 2 fail!\n");
3949
3950         DRM_DEBUG_KMS("FDI train done.\n");
3951 }
3952
3953 /* Manual link training for Ivy Bridge A0 parts */
3954 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
3955                                       const struct intel_crtc_state *crtc_state)
3956 {
3957         struct drm_device *dev = crtc->base.dev;
3958         struct drm_i915_private *dev_priv = to_i915(dev);
3959         int pipe = crtc->pipe;
3960         i915_reg_t reg;
3961         u32 temp, i, j;
3962
3963         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3964            for train result */
3965         reg = FDI_RX_IMR(pipe);
3966         temp = I915_READ(reg);
3967         temp &= ~FDI_RX_SYMBOL_LOCK;
3968         temp &= ~FDI_RX_BIT_LOCK;
3969         I915_WRITE(reg, temp);
3970
3971         POSTING_READ(reg);
3972         udelay(150);
3973
3974         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3975                       I915_READ(FDI_RX_IIR(pipe)));
3976
3977         /* Try each vswing and preemphasis setting twice before moving on */
3978         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3979                 /* disable first in case we need to retry */
3980                 reg = FDI_TX_CTL(pipe);
3981                 temp = I915_READ(reg);
3982                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3983                 temp &= ~FDI_TX_ENABLE;
3984                 I915_WRITE(reg, temp);
3985
3986                 reg = FDI_RX_CTL(pipe);
3987                 temp = I915_READ(reg);
3988                 temp &= ~FDI_LINK_TRAIN_AUTO;
3989                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3990                 temp &= ~FDI_RX_ENABLE;
3991                 I915_WRITE(reg, temp);
3992
3993                 /* enable CPU FDI TX and PCH FDI RX */
3994                 reg = FDI_TX_CTL(pipe);
3995                 temp = I915_READ(reg);
3996                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3997                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3998                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3999                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4000                 temp |= snb_b_fdi_train_param[j/2];
4001                 temp |= FDI_COMPOSITE_SYNC;
4002                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4003
4004                 I915_WRITE(FDI_RX_MISC(pipe),
4005                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4006
4007                 reg = FDI_RX_CTL(pipe);
4008                 temp = I915_READ(reg);
4009                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4010                 temp |= FDI_COMPOSITE_SYNC;
4011                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4012
4013                 POSTING_READ(reg);
4014                 udelay(1); /* should be 0.5us */
4015
4016                 for (i = 0; i < 4; i++) {
4017                         reg = FDI_RX_IIR(pipe);
4018                         temp = I915_READ(reg);
4019                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4020
4021                         if (temp & FDI_RX_BIT_LOCK ||
4022                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4023                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4024                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4025                                               i);
4026                                 break;
4027                         }
4028                         udelay(1); /* should be 0.5us */
4029                 }
4030                 if (i == 4) {
4031                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4032                         continue;
4033                 }
4034
4035                 /* Train 2 */
4036                 reg = FDI_TX_CTL(pipe);
4037                 temp = I915_READ(reg);
4038                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4039                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4040                 I915_WRITE(reg, temp);
4041
4042                 reg = FDI_RX_CTL(pipe);
4043                 temp = I915_READ(reg);
4044                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4045                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4046                 I915_WRITE(reg, temp);
4047
4048                 POSTING_READ(reg);
4049                 udelay(2); /* should be 1.5us */
4050
4051                 for (i = 0; i < 4; i++) {
4052                         reg = FDI_RX_IIR(pipe);
4053                         temp = I915_READ(reg);
4054                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4055
4056                         if (temp & FDI_RX_SYMBOL_LOCK ||
4057                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4058                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4059                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4060                                               i);
4061                                 goto train_done;
4062                         }
4063                         udelay(2); /* should be 1.5us */
4064                 }
4065                 if (i == 4)
4066                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4067         }
4068
4069 train_done:
4070         DRM_DEBUG_KMS("FDI train done.\n");
4071 }
4072
4073 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4074 {
4075         struct drm_device *dev = intel_crtc->base.dev;
4076         struct drm_i915_private *dev_priv = to_i915(dev);
4077         int pipe = intel_crtc->pipe;
4078         i915_reg_t reg;
4079         u32 temp;
4080
4081         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4082         reg = FDI_RX_CTL(pipe);
4083         temp = I915_READ(reg);
4084         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4085         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4086         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4087         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4088
4089         POSTING_READ(reg);
4090         udelay(200);
4091
4092         /* Switch from Rawclk to PCDclk */
4093         temp = I915_READ(reg);
4094         I915_WRITE(reg, temp | FDI_PCDCLK);
4095
4096         POSTING_READ(reg);
4097         udelay(200);
4098
4099         /* Enable CPU FDI TX PLL, always on for Ironlake */
4100         reg = FDI_TX_CTL(pipe);
4101         temp = I915_READ(reg);
4102         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4103                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4104
4105                 POSTING_READ(reg);
4106                 udelay(100);
4107         }
4108 }
4109
4110 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4111 {
4112         struct drm_device *dev = intel_crtc->base.dev;
4113         struct drm_i915_private *dev_priv = to_i915(dev);
4114         int pipe = intel_crtc->pipe;
4115         i915_reg_t reg;
4116         u32 temp;
4117
4118         /* Switch from PCDclk to Rawclk */
4119         reg = FDI_RX_CTL(pipe);
4120         temp = I915_READ(reg);
4121         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4122
4123         /* Disable CPU FDI TX PLL */
4124         reg = FDI_TX_CTL(pipe);
4125         temp = I915_READ(reg);
4126         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4127
4128         POSTING_READ(reg);
4129         udelay(100);
4130
4131         reg = FDI_RX_CTL(pipe);
4132         temp = I915_READ(reg);
4133         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4134
4135         /* Wait for the clocks to turn off. */
4136         POSTING_READ(reg);
4137         udelay(100);
4138 }
4139
4140 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4141 {
4142         struct drm_device *dev = crtc->dev;
4143         struct drm_i915_private *dev_priv = to_i915(dev);
4144         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4145         int pipe = intel_crtc->pipe;
4146         i915_reg_t reg;
4147         u32 temp;
4148
4149         /* disable CPU FDI tx and PCH FDI rx */
4150         reg = FDI_TX_CTL(pipe);
4151         temp = I915_READ(reg);
4152         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4153         POSTING_READ(reg);
4154
4155         reg = FDI_RX_CTL(pipe);
4156         temp = I915_READ(reg);
4157         temp &= ~(0x7 << 16);
4158         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4159         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4160
4161         POSTING_READ(reg);
4162         udelay(100);
4163
4164         /* Ironlake workaround, disable clock pointer after downing FDI */
4165         if (HAS_PCH_IBX(dev_priv))
4166                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4167
4168         /* still set train pattern 1 */
4169         reg = FDI_TX_CTL(pipe);
4170         temp = I915_READ(reg);
4171         temp &= ~FDI_LINK_TRAIN_NONE;
4172         temp |= FDI_LINK_TRAIN_PATTERN_1;
4173         I915_WRITE(reg, temp);
4174
4175         reg = FDI_RX_CTL(pipe);
4176         temp = I915_READ(reg);
4177         if (HAS_PCH_CPT(dev_priv)) {
4178                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4179                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4180         } else {
4181                 temp &= ~FDI_LINK_TRAIN_NONE;
4182                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4183         }
4184         /* BPC in FDI rx is consistent with that in PIPECONF */
4185         temp &= ~(0x07 << 16);
4186         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4187         I915_WRITE(reg, temp);
4188
4189         POSTING_READ(reg);
4190         udelay(100);
4191 }
4192
4193 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4194 {
4195         struct intel_crtc *crtc;
4196
4197         /* Note that we don't need to be called with mode_config.lock here
4198          * as our list of CRTC objects is static for the lifetime of the
4199          * device and so cannot disappear as we iterate. Similarly, we can
4200          * happily treat the predicates as racy, atomic checks as userspace
4201          * cannot claim and pin a new fb without at least acquring the
4202          * struct_mutex and so serialising with us.
4203          */
4204         for_each_intel_crtc(&dev_priv->drm, crtc) {
4205                 if (atomic_read(&crtc->unpin_work_count) == 0)
4206                         continue;
4207
4208                 if (crtc->flip_work)
4209                         intel_wait_for_vblank(dev_priv, crtc->pipe);
4210
4211                 return true;
4212         }
4213
4214         return false;
4215 }
4216
4217 static void page_flip_completed(struct intel_crtc *intel_crtc)
4218 {
4219         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4220         struct intel_flip_work *work = intel_crtc->flip_work;
4221
4222         intel_crtc->flip_work = NULL;
4223
4224         if (work->event)
4225                 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4226
4227         drm_crtc_vblank_put(&intel_crtc->base);
4228
4229         wake_up_all(&dev_priv->pending_flip_queue);
4230         trace_i915_flip_complete(intel_crtc->plane,
4231                                  work->pending_flip_obj);
4232
4233         queue_work(dev_priv->wq, &work->unpin_work);
4234 }
4235
4236 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4237 {
4238         struct drm_device *dev = crtc->dev;
4239         struct drm_i915_private *dev_priv = to_i915(dev);
4240         long ret;
4241
4242         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4243
4244         ret = wait_event_interruptible_timeout(
4245                                         dev_priv->pending_flip_queue,
4246                                         !intel_crtc_has_pending_flip(crtc),
4247                                         60*HZ);
4248
4249         if (ret < 0)
4250                 return ret;
4251
4252         if (ret == 0) {
4253                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4254                 struct intel_flip_work *work;
4255
4256                 spin_lock_irq(&dev->event_lock);
4257                 work = intel_crtc->flip_work;
4258                 if (work && !is_mmio_work(work)) {
4259                         WARN_ONCE(1, "Removing stuck page flip\n");
4260                         page_flip_completed(intel_crtc);
4261                 }
4262                 spin_unlock_irq(&dev->event_lock);
4263         }
4264
4265         return 0;
4266 }
4267
4268 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4269 {
4270         u32 temp;
4271
4272         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4273
4274         mutex_lock(&dev_priv->sb_lock);
4275
4276         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4277         temp |= SBI_SSCCTL_DISABLE;
4278         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4279
4280         mutex_unlock(&dev_priv->sb_lock);
4281 }
4282
4283 /* Program iCLKIP clock to the desired frequency */
4284 static void lpt_program_iclkip(struct intel_crtc *crtc)
4285 {
4286         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4287         int clock = crtc->config->base.adjusted_mode.crtc_clock;
4288         u32 divsel, phaseinc, auxdiv, phasedir = 0;
4289         u32 temp;
4290
4291         lpt_disable_iclkip(dev_priv);
4292
4293         /* The iCLK virtual clock root frequency is in MHz,
4294          * but the adjusted_mode->crtc_clock in in KHz. To get the
4295          * divisors, it is necessary to divide one by another, so we
4296          * convert the virtual clock precision to KHz here for higher
4297          * precision.
4298          */
4299         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4300                 u32 iclk_virtual_root_freq = 172800 * 1000;
4301                 u32 iclk_pi_range = 64;
4302                 u32 desired_divisor;
4303
4304                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4305                                                     clock << auxdiv);
4306                 divsel = (desired_divisor / iclk_pi_range) - 2;
4307                 phaseinc = desired_divisor % iclk_pi_range;
4308
4309                 /*
4310                  * Near 20MHz is a corner case which is
4311                  * out of range for the 7-bit divisor
4312                  */
4313                 if (divsel <= 0x7f)
4314                         break;
4315         }
4316
4317         /* This should not happen with any sane values */
4318         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4319                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4320         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4321                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4322
4323         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4324                         clock,
4325                         auxdiv,
4326                         divsel,
4327                         phasedir,
4328                         phaseinc);
4329
4330         mutex_lock(&dev_priv->sb_lock);
4331
4332         /* Program SSCDIVINTPHASE6 */
4333         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4334         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4335         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4336         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4337         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4338         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4339         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4340         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4341
4342         /* Program SSCAUXDIV */
4343         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4344         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4345         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4346         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4347
4348         /* Enable modulator and associated divider */
4349         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4350         temp &= ~SBI_SSCCTL_DISABLE;
4351         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4352
4353         mutex_unlock(&dev_priv->sb_lock);
4354
4355         /* Wait for initialization time */
4356         udelay(24);
4357
4358         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4359 }
4360
4361 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4362 {
4363         u32 divsel, phaseinc, auxdiv;
4364         u32 iclk_virtual_root_freq = 172800 * 1000;
4365         u32 iclk_pi_range = 64;
4366         u32 desired_divisor;
4367         u32 temp;
4368
4369         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4370                 return 0;
4371
4372         mutex_lock(&dev_priv->sb_lock);
4373
4374         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4375         if (temp & SBI_SSCCTL_DISABLE) {
4376                 mutex_unlock(&dev_priv->sb_lock);
4377                 return 0;
4378         }
4379
4380         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4381         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4382                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4383         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4384                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4385
4386         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4387         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4388                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4389
4390         mutex_unlock(&dev_priv->sb_lock);
4391
4392         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4393
4394         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4395                                  desired_divisor << auxdiv);
4396 }
4397
4398 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4399                                                 enum pipe pch_transcoder)
4400 {
4401         struct drm_device *dev = crtc->base.dev;
4402         struct drm_i915_private *dev_priv = to_i915(dev);
4403         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4404
4405         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4406                    I915_READ(HTOTAL(cpu_transcoder)));
4407         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4408                    I915_READ(HBLANK(cpu_transcoder)));
4409         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4410                    I915_READ(HSYNC(cpu_transcoder)));
4411
4412         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4413                    I915_READ(VTOTAL(cpu_transcoder)));
4414         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4415                    I915_READ(VBLANK(cpu_transcoder)));
4416         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4417                    I915_READ(VSYNC(cpu_transcoder)));
4418         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4419                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4420 }
4421
4422 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4423 {
4424         struct drm_i915_private *dev_priv = to_i915(dev);
4425         uint32_t temp;
4426
4427         temp = I915_READ(SOUTH_CHICKEN1);
4428         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4429                 return;
4430
4431         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4432         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4433
4434         temp &= ~FDI_BC_BIFURCATION_SELECT;
4435         if (enable)
4436                 temp |= FDI_BC_BIFURCATION_SELECT;
4437
4438         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4439         I915_WRITE(SOUTH_CHICKEN1, temp);
4440         POSTING_READ(SOUTH_CHICKEN1);
4441 }
4442
4443 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4444 {
4445         struct drm_device *dev = intel_crtc->base.dev;
4446
4447         switch (intel_crtc->pipe) {
4448         case PIPE_A:
4449                 break;
4450         case PIPE_B:
4451                 if (intel_crtc->config->fdi_lanes > 2)
4452                         cpt_set_fdi_bc_bifurcation(dev, false);
4453                 else
4454                         cpt_set_fdi_bc_bifurcation(dev, true);
4455
4456                 break;
4457         case PIPE_C:
4458                 cpt_set_fdi_bc_bifurcation(dev, true);
4459
4460                 break;
4461         default:
4462                 BUG();
4463         }
4464 }
4465
4466 /* Return which DP Port should be selected for Transcoder DP control */
4467 static enum port
4468 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4469 {
4470         struct drm_device *dev = crtc->base.dev;
4471         struct intel_encoder *encoder;
4472
4473         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4474                 if (encoder->type == INTEL_OUTPUT_DP ||
4475                     encoder->type == INTEL_OUTPUT_EDP)
4476                         return enc_to_dig_port(&encoder->base)->port;
4477         }
4478
4479         return -1;
4480 }
4481
4482 /*
4483  * Enable PCH resources required for PCH ports:
4484  *   - PCH PLLs
4485  *   - FDI training & RX/TX
4486  *   - update transcoder timings
4487  *   - DP transcoding bits
4488  *   - transcoder
4489  */
4490 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4491 {
4492         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4493         struct drm_device *dev = crtc->base.dev;
4494         struct drm_i915_private *dev_priv = to_i915(dev);
4495         int pipe = crtc->pipe;
4496         u32 temp;
4497
4498         assert_pch_transcoder_disabled(dev_priv, pipe);
4499
4500         if (IS_IVYBRIDGE(dev_priv))
4501                 ivybridge_update_fdi_bc_bifurcation(crtc);
4502
4503         /* Write the TU size bits before fdi link training, so that error
4504          * detection works. */
4505         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4506                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4507
4508         /* For PCH output, training FDI link */
4509         dev_priv->display.fdi_link_train(crtc, crtc_state);
4510
4511         /* We need to program the right clock selection before writing the pixel
4512          * mutliplier into the DPLL. */
4513         if (HAS_PCH_CPT(dev_priv)) {
4514                 u32 sel;
4515
4516                 temp = I915_READ(PCH_DPLL_SEL);
4517                 temp |= TRANS_DPLL_ENABLE(pipe);
4518                 sel = TRANS_DPLLB_SEL(pipe);
4519                 if (crtc_state->shared_dpll ==
4520                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4521                         temp |= sel;
4522                 else
4523                         temp &= ~sel;
4524                 I915_WRITE(PCH_DPLL_SEL, temp);
4525         }
4526
4527         /* XXX: pch pll's can be enabled any time before we enable the PCH
4528          * transcoder, and we actually should do this to not upset any PCH
4529          * transcoder that already use the clock when we share it.
4530          *
4531          * Note that enable_shared_dpll tries to do the right thing, but
4532          * get_shared_dpll unconditionally resets the pll - we need that to have
4533          * the right LVDS enable sequence. */
4534         intel_enable_shared_dpll(crtc);
4535
4536         /* set transcoder timing, panel must allow it */
4537         assert_panel_unlocked(dev_priv, pipe);
4538         ironlake_pch_transcoder_set_timings(crtc, pipe);
4539
4540         intel_fdi_normal_train(crtc);
4541
4542         /* For PCH DP, enable TRANS_DP_CTL */
4543         if (HAS_PCH_CPT(dev_priv) &&
4544             intel_crtc_has_dp_encoder(crtc_state)) {
4545                 const struct drm_display_mode *adjusted_mode =
4546                         &crtc_state->base.adjusted_mode;
4547                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4548                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4549                 temp = I915_READ(reg);
4550                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4551                           TRANS_DP_SYNC_MASK |
4552                           TRANS_DP_BPC_MASK);
4553                 temp |= TRANS_DP_OUTPUT_ENABLE;
4554                 temp |= bpc << 9; /* same format but at 11:9 */
4555
4556                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4557                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4558                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4559                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4560
4561                 switch (intel_trans_dp_port_sel(crtc)) {
4562                 case PORT_B:
4563                         temp |= TRANS_DP_PORT_SEL_B;
4564                         break;
4565                 case PORT_C:
4566                         temp |= TRANS_DP_PORT_SEL_C;
4567                         break;
4568                 case PORT_D:
4569                         temp |= TRANS_DP_PORT_SEL_D;
4570                         break;
4571                 default:
4572                         BUG();
4573                 }
4574
4575                 I915_WRITE(reg, temp);
4576         }
4577
4578         ironlake_enable_pch_transcoder(dev_priv, pipe);
4579 }
4580
4581 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4582 {
4583         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4584         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4585         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4586
4587         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4588
4589         lpt_program_iclkip(crtc);
4590
4591         /* Set transcoder timing. */
4592         ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4593
4594         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4595 }
4596
4597 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4598 {
4599         struct drm_i915_private *dev_priv = to_i915(dev);
4600         i915_reg_t dslreg = PIPEDSL(pipe);
4601         u32 temp;
4602
4603         temp = I915_READ(dslreg);
4604         udelay(500);
4605         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4606                 if (wait_for(I915_READ(dslreg) != temp, 5))
4607                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4608         }
4609 }
4610
4611 static int
4612 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4613                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4614                   int src_w, int src_h, int dst_w, int dst_h)
4615 {
4616         struct intel_crtc_scaler_state *scaler_state =
4617                 &crtc_state->scaler_state;
4618         struct intel_crtc *intel_crtc =
4619                 to_intel_crtc(crtc_state->base.crtc);
4620         int need_scaling;
4621
4622         need_scaling = drm_rotation_90_or_270(rotation) ?
4623                 (src_h != dst_w || src_w != dst_h):
4624                 (src_w != dst_w || src_h != dst_h);
4625
4626         /*
4627          * if plane is being disabled or scaler is no more required or force detach
4628          *  - free scaler binded to this plane/crtc
4629          *  - in order to do this, update crtc->scaler_usage
4630          *
4631          * Here scaler state in crtc_state is set free so that
4632          * scaler can be assigned to other user. Actual register
4633          * update to free the scaler is done in plane/panel-fit programming.
4634          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4635          */
4636         if (force_detach || !need_scaling) {
4637                 if (*scaler_id >= 0) {
4638                         scaler_state->scaler_users &= ~(1 << scaler_user);
4639                         scaler_state->scalers[*scaler_id].in_use = 0;
4640
4641                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4642                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4643                                 intel_crtc->pipe, scaler_user, *scaler_id,
4644                                 scaler_state->scaler_users);
4645                         *scaler_id = -1;
4646                 }
4647                 return 0;
4648         }
4649
4650         /* range checks */
4651         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4652                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4653
4654                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4655                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4656                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4657                         "size is out of scaler range\n",
4658                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4659                 return -EINVAL;
4660         }
4661
4662         /* mark this plane as a scaler user in crtc_state */
4663         scaler_state->scaler_users |= (1 << scaler_user);
4664         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4665                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4666                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4667                 scaler_state->scaler_users);
4668
4669         return 0;
4670 }
4671
4672 /**
4673  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4674  *
4675  * @state: crtc's scaler state
4676  *
4677  * Return
4678  *     0 - scaler_usage updated successfully
4679  *    error - requested scaling cannot be supported or other error condition
4680  */
4681 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4682 {
4683         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4684
4685         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4686                 &state->scaler_state.scaler_id, DRM_MODE_ROTATE_0,
4687                 state->pipe_src_w, state->pipe_src_h,
4688                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4689 }
4690
4691 /**
4692  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4693  *
4694  * @state: crtc's scaler state
4695  * @plane_state: atomic plane state to update
4696  *
4697  * Return
4698  *     0 - scaler_usage updated successfully
4699  *    error - requested scaling cannot be supported or other error condition
4700  */
4701 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4702                                    struct intel_plane_state *plane_state)
4703 {
4704
4705         struct intel_plane *intel_plane =
4706                 to_intel_plane(plane_state->base.plane);
4707         struct drm_framebuffer *fb = plane_state->base.fb;
4708         int ret;
4709
4710         bool force_detach = !fb || !plane_state->base.visible;
4711
4712         ret = skl_update_scaler(crtc_state, force_detach,
4713                                 drm_plane_index(&intel_plane->base),
4714                                 &plane_state->scaler_id,
4715                                 plane_state->base.rotation,
4716                                 drm_rect_width(&plane_state->base.src) >> 16,
4717                                 drm_rect_height(&plane_state->base.src) >> 16,
4718                                 drm_rect_width(&plane_state->base.dst),
4719                                 drm_rect_height(&plane_state->base.dst));
4720
4721         if (ret || plane_state->scaler_id < 0)
4722                 return ret;
4723
4724         /* check colorkey */
4725         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4726                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4727                               intel_plane->base.base.id,
4728                               intel_plane->base.name);
4729                 return -EINVAL;
4730         }
4731
4732         /* Check src format */
4733         switch (fb->format->format) {
4734         case DRM_FORMAT_RGB565:
4735         case DRM_FORMAT_XBGR8888:
4736         case DRM_FORMAT_XRGB8888:
4737         case DRM_FORMAT_ABGR8888:
4738         case DRM_FORMAT_ARGB8888:
4739         case DRM_FORMAT_XRGB2101010:
4740         case DRM_FORMAT_XBGR2101010:
4741         case DRM_FORMAT_YUYV:
4742         case DRM_FORMAT_YVYU:
4743         case DRM_FORMAT_UYVY:
4744         case DRM_FORMAT_VYUY:
4745                 break;
4746         default:
4747                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4748                               intel_plane->base.base.id, intel_plane->base.name,
4749                               fb->base.id, fb->format->format);
4750                 return -EINVAL;
4751         }
4752
4753         return 0;
4754 }
4755
4756 static void skylake_scaler_disable(struct intel_crtc *crtc)
4757 {
4758         int i;
4759
4760         for (i = 0; i < crtc->num_scalers; i++)
4761                 skl_detach_scaler(crtc, i);
4762 }
4763
4764 static void skylake_pfit_enable(struct intel_crtc *crtc)
4765 {
4766         struct drm_device *dev = crtc->base.dev;
4767         struct drm_i915_private *dev_priv = to_i915(dev);
4768         int pipe = crtc->pipe;
4769         struct intel_crtc_scaler_state *scaler_state =
4770                 &crtc->config->scaler_state;
4771
4772         if (crtc->config->pch_pfit.enabled) {
4773                 int id;
4774
4775                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4776                         return;
4777
4778                 id = scaler_state->scaler_id;
4779                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4780                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4781                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4782                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4783         }
4784 }
4785
4786 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4787 {
4788         struct drm_device *dev = crtc->base.dev;
4789         struct drm_i915_private *dev_priv = to_i915(dev);
4790         int pipe = crtc->pipe;
4791
4792         if (crtc->config->pch_pfit.enabled) {
4793                 /* Force use of hard-coded filter coefficients
4794                  * as some pre-programmed values are broken,
4795                  * e.g. x201.
4796                  */
4797                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4798                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4799                                                  PF_PIPE_SEL_IVB(pipe));
4800                 else
4801                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4802                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4803                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4804         }
4805 }
4806
4807 void hsw_enable_ips(struct intel_crtc *crtc)
4808 {
4809         struct drm_device *dev = crtc->base.dev;
4810         struct drm_i915_private *dev_priv = to_i915(dev);
4811
4812         if (!crtc->config->ips_enabled)
4813                 return;
4814
4815         /*
4816          * We can only enable IPS after we enable a plane and wait for a vblank
4817          * This function is called from post_plane_update, which is run after
4818          * a vblank wait.
4819          */
4820
4821         assert_plane_enabled(dev_priv, crtc->plane);
4822         if (IS_BROADWELL(dev_priv)) {
4823                 mutex_lock(&dev_priv->rps.hw_lock);
4824                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4825                 mutex_unlock(&dev_priv->rps.hw_lock);
4826                 /* Quoting Art Runyan: "its not safe to expect any particular
4827                  * value in IPS_CTL bit 31 after enabling IPS through the
4828                  * mailbox." Moreover, the mailbox may return a bogus state,
4829                  * so we need to just enable it and continue on.
4830                  */
4831         } else {
4832                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4833                 /* The bit only becomes 1 in the next vblank, so this wait here
4834                  * is essentially intel_wait_for_vblank. If we don't have this
4835                  * and don't wait for vblanks until the end of crtc_enable, then
4836                  * the HW state readout code will complain that the expected
4837                  * IPS_CTL value is not the one we read. */
4838                 if (intel_wait_for_register(dev_priv,
4839                                             IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4840                                             50))
4841                         DRM_ERROR("Timed out waiting for IPS enable\n");
4842         }
4843 }
4844
4845 void hsw_disable_ips(struct intel_crtc *crtc)
4846 {
4847         struct drm_device *dev = crtc->base.dev;
4848         struct drm_i915_private *dev_priv = to_i915(dev);
4849
4850         if (!crtc->config->ips_enabled)
4851                 return;
4852
4853         assert_plane_enabled(dev_priv, crtc->plane);
4854         if (IS_BROADWELL(dev_priv)) {
4855                 mutex_lock(&dev_priv->rps.hw_lock);
4856                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4857                 mutex_unlock(&dev_priv->rps.hw_lock);
4858                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4859                 if (intel_wait_for_register(dev_priv,
4860                                             IPS_CTL, IPS_ENABLE, 0,
4861                                             42))
4862                         DRM_ERROR("Timed out waiting for IPS disable\n");
4863         } else {
4864                 I915_WRITE(IPS_CTL, 0);
4865                 POSTING_READ(IPS_CTL);
4866         }
4867
4868         /* We need to wait for a vblank before we can disable the plane. */
4869         intel_wait_for_vblank(dev_priv, crtc->pipe);
4870 }
4871
4872 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4873 {
4874         if (intel_crtc->overlay) {
4875                 struct drm_device *dev = intel_crtc->base.dev;
4876
4877                 mutex_lock(&dev->struct_mutex);
4878                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4879                 mutex_unlock(&dev->struct_mutex);
4880         }
4881
4882         /* Let userspace switch the overlay on again. In most cases userspace
4883          * has to recompute where to put it anyway.
4884          */
4885 }
4886
4887 /**
4888  * intel_post_enable_primary - Perform operations after enabling primary plane
4889  * @crtc: the CRTC whose primary plane was just enabled
4890  *
4891  * Performs potentially sleeping operations that must be done after the primary
4892  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4893  * called due to an explicit primary plane update, or due to an implicit
4894  * re-enable that is caused when a sprite plane is updated to no longer
4895  * completely hide the primary plane.
4896  */
4897 static void
4898 intel_post_enable_primary(struct drm_crtc *crtc)
4899 {
4900         struct drm_device *dev = crtc->dev;
4901         struct drm_i915_private *dev_priv = to_i915(dev);
4902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4903         int pipe = intel_crtc->pipe;
4904
4905         /*
4906          * FIXME IPS should be fine as long as one plane is
4907          * enabled, but in practice it seems to have problems
4908          * when going from primary only to sprite only and vice
4909          * versa.
4910          */
4911         hsw_enable_ips(intel_crtc);
4912
4913         /*
4914          * Gen2 reports pipe underruns whenever all planes are disabled.
4915          * So don't enable underrun reporting before at least some planes
4916          * are enabled.
4917          * FIXME: Need to fix the logic to work when we turn off all planes
4918          * but leave the pipe running.
4919          */
4920         if (IS_GEN2(dev_priv))
4921                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4922
4923         /* Underruns don't always raise interrupts, so check manually. */
4924         intel_check_cpu_fifo_underruns(dev_priv);
4925         intel_check_pch_fifo_underruns(dev_priv);
4926 }
4927
4928 /* FIXME move all this to pre_plane_update() with proper state tracking */
4929 static void
4930 intel_pre_disable_primary(struct drm_crtc *crtc)
4931 {
4932         struct drm_device *dev = crtc->dev;
4933         struct drm_i915_private *dev_priv = to_i915(dev);
4934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4935         int pipe = intel_crtc->pipe;
4936
4937         /*
4938          * Gen2 reports pipe underruns whenever all planes are disabled.
4939          * So diasble underrun reporting before all the planes get disabled.
4940          * FIXME: Need to fix the logic to work when we turn off all planes
4941          * but leave the pipe running.
4942          */
4943         if (IS_GEN2(dev_priv))
4944                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4945
4946         /*
4947          * FIXME IPS should be fine as long as one plane is
4948          * enabled, but in practice it seems to have problems
4949          * when going from primary only to sprite only and vice
4950          * versa.
4951          */
4952         hsw_disable_ips(intel_crtc);
4953 }
4954
4955 /* FIXME get rid of this and use pre_plane_update */
4956 static void
4957 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4958 {
4959         struct drm_device *dev = crtc->dev;
4960         struct drm_i915_private *dev_priv = to_i915(dev);
4961         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4962         int pipe = intel_crtc->pipe;
4963
4964         intel_pre_disable_primary(crtc);
4965
4966         /*
4967          * Vblank time updates from the shadow to live plane control register
4968          * are blocked if the memory self-refresh mode is active at that
4969          * moment. So to make sure the plane gets truly disabled, disable
4970          * first the self-refresh mode. The self-refresh enable bit in turn
4971          * will be checked/applied by the HW only at the next frame start
4972          * event which is after the vblank start event, so we need to have a
4973          * wait-for-vblank between disabling the plane and the pipe.
4974          */
4975         if (HAS_GMCH_DISPLAY(dev_priv) &&
4976             intel_set_memory_cxsr(dev_priv, false))
4977                 intel_wait_for_vblank(dev_priv, pipe);
4978 }
4979
4980 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4981 {
4982         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4983         struct drm_atomic_state *old_state = old_crtc_state->base.state;
4984         struct intel_crtc_state *pipe_config =
4985                 to_intel_crtc_state(crtc->base.state);
4986         struct drm_plane *primary = crtc->base.primary;
4987         struct drm_plane_state *old_pri_state =
4988                 drm_atomic_get_existing_plane_state(old_state, primary);
4989
4990         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
4991
4992         if (pipe_config->update_wm_post && pipe_config->base.active)
4993                 intel_update_watermarks(crtc);
4994
4995         if (old_pri_state) {
4996                 struct intel_plane_state *primary_state =
4997                         to_intel_plane_state(primary->state);
4998                 struct intel_plane_state *old_primary_state =
4999                         to_intel_plane_state(old_pri_state);
5000
5001                 intel_fbc_post_update(crtc);
5002
5003                 if (primary_state->base.visible &&
5004                     (needs_modeset(&pipe_config->base) ||
5005                      !old_primary_state->base.visible))
5006                         intel_post_enable_primary(&crtc->base);
5007         }
5008 }
5009
5010 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5011                                    struct intel_crtc_state *pipe_config)
5012 {
5013         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5014         struct drm_device *dev = crtc->base.dev;
5015         struct drm_i915_private *dev_priv = to_i915(dev);
5016         struct drm_atomic_state *old_state = old_crtc_state->base.state;
5017         struct drm_plane *primary = crtc->base.primary;
5018         struct drm_plane_state *old_pri_state =
5019                 drm_atomic_get_existing_plane_state(old_state, primary);
5020         bool modeset = needs_modeset(&pipe_config->base);
5021         struct intel_atomic_state *old_intel_state =
5022                 to_intel_atomic_state(old_state);
5023
5024         if (old_pri_state) {
5025                 struct intel_plane_state *primary_state =
5026                         to_intel_plane_state(primary->state);
5027                 struct intel_plane_state *old_primary_state =
5028                         to_intel_plane_state(old_pri_state);
5029
5030                 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5031
5032                 if (old_primary_state->base.visible &&
5033                     (modeset || !primary_state->base.visible))
5034                         intel_pre_disable_primary(&crtc->base);
5035         }
5036
5037         /*
5038          * Vblank time updates from the shadow to live plane control register
5039          * are blocked if the memory self-refresh mode is active at that
5040          * moment. So to make sure the plane gets truly disabled, disable
5041          * first the self-refresh mode. The self-refresh enable bit in turn
5042          * will be checked/applied by the HW only at the next frame start
5043          * event which is after the vblank start event, so we need to have a
5044          * wait-for-vblank between disabling the plane and the pipe.
5045          */
5046         if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5047             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5048                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5049
5050         /*
5051          * IVB workaround: must disable low power watermarks for at least
5052          * one frame before enabling scaling.  LP watermarks can be re-enabled
5053          * when scaling is disabled.
5054          *
5055          * WaCxSRDisabledForSpriteScaling:ivb
5056          */
5057         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5058                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5059
5060         /*
5061          * If we're doing a modeset, we're done.  No need to do any pre-vblank
5062          * watermark programming here.
5063          */
5064         if (needs_modeset(&pipe_config->base))
5065                 return;
5066
5067         /*
5068          * For platforms that support atomic watermarks, program the
5069          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5070          * will be the intermediate values that are safe for both pre- and
5071          * post- vblank; when vblank happens, the 'active' values will be set
5072          * to the final 'target' values and we'll do this again to get the
5073          * optimal watermarks.  For gen9+ platforms, the values we program here
5074          * will be the final target values which will get automatically latched
5075          * at vblank time; no further programming will be necessary.
5076          *
5077          * If a platform hasn't been transitioned to atomic watermarks yet,
5078          * we'll continue to update watermarks the old way, if flags tell
5079          * us to.
5080          */
5081         if (dev_priv->display.initial_watermarks != NULL)
5082                 dev_priv->display.initial_watermarks(old_intel_state,
5083                                                      pipe_config);
5084         else if (pipe_config->update_wm_pre)
5085                 intel_update_watermarks(crtc);
5086 }
5087
5088 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5089 {
5090         struct drm_device *dev = crtc->dev;
5091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5092         struct drm_plane *p;
5093         int pipe = intel_crtc->pipe;
5094
5095         intel_crtc_dpms_overlay_disable(intel_crtc);
5096
5097         drm_for_each_plane_mask(p, dev, plane_mask)
5098                 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5099
5100         /*
5101          * FIXME: Once we grow proper nuclear flip support out of this we need
5102          * to compute the mask of flip planes precisely. For the time being
5103          * consider this a flip to a NULL plane.
5104          */
5105         intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5106 }
5107
5108 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5109                                           struct intel_crtc_state *crtc_state,
5110                                           struct drm_atomic_state *old_state)
5111 {
5112         struct drm_connector_state *conn_state;
5113         struct drm_connector *conn;
5114         int i;
5115
5116         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5117                 struct intel_encoder *encoder =
5118                         to_intel_encoder(conn_state->best_encoder);
5119
5120                 if (conn_state->crtc != crtc)
5121                         continue;
5122
5123                 if (encoder->pre_pll_enable)
5124                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5125         }
5126 }
5127
5128 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5129                                       struct intel_crtc_state *crtc_state,
5130                                       struct drm_atomic_state *old_state)
5131 {
5132         struct drm_connector_state *conn_state;
5133         struct drm_connector *conn;
5134         int i;
5135
5136         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5137                 struct intel_encoder *encoder =
5138                         to_intel_encoder(conn_state->best_encoder);
5139
5140                 if (conn_state->crtc != crtc)
5141                         continue;
5142
5143                 if (encoder->pre_enable)
5144                         encoder->pre_enable(encoder, crtc_state, conn_state);
5145         }
5146 }
5147
5148 static void intel_encoders_enable(struct drm_crtc *crtc,
5149                                   struct intel_crtc_state *crtc_state,
5150                                   struct drm_atomic_state *old_state)
5151 {
5152         struct drm_connector_state *conn_state;
5153         struct drm_connector *conn;
5154         int i;
5155
5156         for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5157                 struct intel_encoder *encoder =
5158                         to_intel_encoder(conn_state->best_encoder);
5159
5160                 if (conn_state->crtc != crtc)
5161                         continue;
5162
5163                 encoder->enable(encoder, crtc_state, conn_state);
5164                 intel_opregion_notify_encoder(encoder, true);
5165         }
5166 }
5167
5168 static void intel_encoders_disable(struct drm_crtc *crtc,
5169                                    struct intel_crtc_state *old_crtc_state,
5170                                    struct drm_atomic_state *old_state)
5171 {
5172         struct drm_connector_state *old_conn_state;
5173         struct drm_connector *conn;
5174         int i;
5175
5176         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5177                 struct intel_encoder *encoder =
5178                         to_intel_encoder(old_conn_state->best_encoder);
5179
5180                 if (old_conn_state->crtc != crtc)
5181                         continue;
5182
5183                 intel_opregion_notify_encoder(encoder, false);
5184                 encoder->disable(encoder, old_crtc_state, old_conn_state);
5185         }
5186 }
5187
5188 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5189                                         struct intel_crtc_state *old_crtc_state,
5190                                         struct drm_atomic_state *old_state)
5191 {
5192         struct drm_connector_state *old_conn_state;
5193         struct drm_connector *conn;
5194         int i;
5195
5196         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5197                 struct intel_encoder *encoder =
5198                         to_intel_encoder(old_conn_state->best_encoder);
5199
5200                 if (old_conn_state->crtc != crtc)
5201                         continue;
5202
5203                 if (encoder->post_disable)
5204                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5205         }
5206 }
5207
5208 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5209                                             struct intel_crtc_state *old_crtc_state,
5210                                             struct drm_atomic_state *old_state)
5211 {
5212         struct drm_connector_state *old_conn_state;
5213         struct drm_connector *conn;
5214         int i;
5215
5216         for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5217                 struct intel_encoder *encoder =
5218                         to_intel_encoder(old_conn_state->best_encoder);
5219
5220                 if (old_conn_state->crtc != crtc)
5221                         continue;
5222
5223                 if (encoder->post_pll_disable)
5224                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5225         }
5226 }
5227
5228 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5229                                  struct drm_atomic_state *old_state)
5230 {
5231         struct drm_crtc *crtc = pipe_config->base.crtc;
5232         struct drm_device *dev = crtc->dev;
5233         struct drm_i915_private *dev_priv = to_i915(dev);
5234         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5235         int pipe = intel_crtc->pipe;
5236         struct intel_atomic_state *old_intel_state =
5237                 to_intel_atomic_state(old_state);
5238
5239         if (WARN_ON(intel_crtc->active))
5240                 return;
5241
5242         /*
5243          * Sometimes spurious CPU pipe underruns happen during FDI
5244          * training, at least with VGA+HDMI cloning. Suppress them.
5245          *
5246          * On ILK we get an occasional spurious CPU pipe underruns
5247          * between eDP port A enable and vdd enable. Also PCH port
5248          * enable seems to result in the occasional CPU pipe underrun.
5249          *
5250          * Spurious PCH underruns also occur during PCH enabling.
5251          */
5252         if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5253                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5254         if (intel_crtc->config->has_pch_encoder)
5255                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5256
5257         if (intel_crtc->config->has_pch_encoder)
5258                 intel_prepare_shared_dpll(intel_crtc);
5259
5260         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5261                 intel_dp_set_m_n(intel_crtc, M1_N1);
5262
5263         intel_set_pipe_timings(intel_crtc);
5264         intel_set_pipe_src_size(intel_crtc);
5265
5266         if (intel_crtc->config->has_pch_encoder) {
5267                 intel_cpu_transcoder_set_m_n(intel_crtc,
5268                                      &intel_crtc->config->fdi_m_n, NULL);
5269         }
5270
5271         ironlake_set_pipeconf(crtc);
5272
5273         intel_crtc->active = true;
5274
5275         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5276
5277         if (intel_crtc->config->has_pch_encoder) {
5278                 /* Note: FDI PLL enabling _must_ be done before we enable the
5279                  * cpu pipes, hence this is separate from all the other fdi/pch
5280                  * enabling. */
5281                 ironlake_fdi_pll_enable(intel_crtc);
5282         } else {
5283                 assert_fdi_tx_disabled(dev_priv, pipe);
5284                 assert_fdi_rx_disabled(dev_priv, pipe);
5285         }
5286
5287         ironlake_pfit_enable(intel_crtc);
5288
5289         /*
5290          * On ILK+ LUT must be loaded before the pipe is running but with
5291          * clocks enabled
5292          */
5293         intel_color_load_luts(&pipe_config->base);
5294
5295         if (dev_priv->display.initial_watermarks != NULL)
5296                 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5297         intel_enable_pipe(intel_crtc);
5298
5299         if (intel_crtc->config->has_pch_encoder)
5300                 ironlake_pch_enable(pipe_config);
5301
5302         assert_vblank_disabled(crtc);
5303         drm_crtc_vblank_on(crtc);
5304
5305         intel_encoders_enable(crtc, pipe_config, old_state);
5306
5307         if (HAS_PCH_CPT(dev_priv))
5308                 cpt_verify_modeset(dev, intel_crtc->pipe);
5309
5310         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5311         if (intel_crtc->config->has_pch_encoder)
5312                 intel_wait_for_vblank(dev_priv, pipe);
5313         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5314         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5315 }
5316
5317 /* IPS only exists on ULT machines and is tied to pipe A. */
5318 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5319 {
5320         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5321 }
5322
5323 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5324                                 struct drm_atomic_state *old_state)
5325 {
5326         struct drm_crtc *crtc = pipe_config->base.crtc;
5327         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5328         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5329         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5330         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5331         struct intel_atomic_state *old_intel_state =
5332                 to_intel_atomic_state(old_state);
5333
5334         if (WARN_ON(intel_crtc->active))
5335                 return;
5336
5337         if (intel_crtc->config->has_pch_encoder)
5338                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5339                                                       false);
5340
5341         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5342
5343         if (intel_crtc->config->shared_dpll)
5344                 intel_enable_shared_dpll(intel_crtc);
5345
5346         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5347                 intel_dp_set_m_n(intel_crtc, M1_N1);
5348
5349         if (!transcoder_is_dsi(cpu_transcoder))
5350                 intel_set_pipe_timings(intel_crtc);
5351
5352         intel_set_pipe_src_size(intel_crtc);
5353
5354         if (cpu_transcoder != TRANSCODER_EDP &&
5355             !transcoder_is_dsi(cpu_transcoder)) {
5356                 I915_WRITE(PIPE_MULT(cpu_transcoder),
5357                            intel_crtc->config->pixel_multiplier - 1);
5358         }
5359
5360         if (intel_crtc->config->has_pch_encoder) {
5361                 intel_cpu_transcoder_set_m_n(intel_crtc,
5362                                      &intel_crtc->config->fdi_m_n, NULL);
5363         }
5364
5365         if (!transcoder_is_dsi(cpu_transcoder))
5366                 haswell_set_pipeconf(crtc);
5367
5368         haswell_set_pipemisc(crtc);
5369
5370         intel_color_set_csc(&pipe_config->base);
5371
5372         intel_crtc->active = true;
5373
5374         if (intel_crtc->config->has_pch_encoder)
5375                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5376         else
5377                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5378
5379         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5380
5381         if (intel_crtc->config->has_pch_encoder)
5382                 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5383
5384         if (!transcoder_is_dsi(cpu_transcoder))
5385                 intel_ddi_enable_pipe_clock(pipe_config);
5386
5387         if (INTEL_GEN(dev_priv) >= 9)
5388                 skylake_pfit_enable(intel_crtc);
5389         else
5390                 ironlake_pfit_enable(intel_crtc);
5391
5392         /*
5393          * On ILK+ LUT must be loaded before the pipe is running but with
5394          * clocks enabled
5395          */
5396         intel_color_load_luts(&pipe_config->base);
5397
5398         intel_ddi_set_pipe_settings(pipe_config);
5399         if (!transcoder_is_dsi(cpu_transcoder))
5400                 intel_ddi_enable_transcoder_func(pipe_config);
5401
5402         if (dev_priv->display.initial_watermarks != NULL)
5403                 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5404
5405         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5406         if (!transcoder_is_dsi(cpu_transcoder))
5407                 intel_enable_pipe(intel_crtc);
5408
5409         if (intel_crtc->config->has_pch_encoder)
5410                 lpt_pch_enable(pipe_config);
5411
5412         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5413                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5414
5415         assert_vblank_disabled(crtc);
5416         drm_crtc_vblank_on(crtc);
5417
5418         intel_encoders_enable(crtc, pipe_config, old_state);
5419
5420         if (intel_crtc->config->has_pch_encoder) {
5421                 intel_wait_for_vblank(dev_priv, pipe);
5422                 intel_wait_for_vblank(dev_priv, pipe);
5423                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5424                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5425                                                       true);
5426         }
5427
5428         /* If we change the relative order between pipe/planes enabling, we need
5429          * to change the workaround. */
5430         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5431         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5432                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5433                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5434         }
5435 }
5436
5437 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5438 {
5439         struct drm_device *dev = crtc->base.dev;
5440         struct drm_i915_private *dev_priv = to_i915(dev);
5441         int pipe = crtc->pipe;
5442
5443         /* To avoid upsetting the power well on haswell only disable the pfit if
5444          * it's in use. The hw state code will make sure we get this right. */
5445         if (force || crtc->config->pch_pfit.enabled) {
5446                 I915_WRITE(PF_CTL(pipe), 0);
5447                 I915_WRITE(PF_WIN_POS(pipe), 0);
5448                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5449         }
5450 }
5451
5452 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5453                                   struct drm_atomic_state *old_state)
5454 {
5455         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5456         struct drm_device *dev = crtc->dev;
5457         struct drm_i915_private *dev_priv = to_i915(dev);
5458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5459         int pipe = intel_crtc->pipe;
5460
5461         /*
5462          * Sometimes spurious CPU pipe underruns happen when the
5463          * pipe is already disabled, but FDI RX/TX is still enabled.
5464          * Happens at least with VGA+HDMI cloning. Suppress them.
5465          */
5466         if (intel_crtc->config->has_pch_encoder) {
5467                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5468                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5469         }
5470
5471         intel_encoders_disable(crtc, old_crtc_state, old_state);
5472
5473         drm_crtc_vblank_off(crtc);
5474         assert_vblank_disabled(crtc);
5475
5476         intel_disable_pipe(intel_crtc);
5477
5478         ironlake_pfit_disable(intel_crtc, false);
5479
5480         if (intel_crtc->config->has_pch_encoder)
5481                 ironlake_fdi_disable(crtc);
5482
5483         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5484
5485         if (intel_crtc->config->has_pch_encoder) {
5486                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5487
5488                 if (HAS_PCH_CPT(dev_priv)) {
5489                         i915_reg_t reg;
5490                         u32 temp;
5491
5492                         /* disable TRANS_DP_CTL */
5493                         reg = TRANS_DP_CTL(pipe);
5494                         temp = I915_READ(reg);
5495                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5496                                   TRANS_DP_PORT_SEL_MASK);
5497                         temp |= TRANS_DP_PORT_SEL_NONE;
5498                         I915_WRITE(reg, temp);
5499
5500                         /* disable DPLL_SEL */
5501                         temp = I915_READ(PCH_DPLL_SEL);
5502                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5503                         I915_WRITE(PCH_DPLL_SEL, temp);
5504                 }
5505
5506                 ironlake_fdi_pll_disable(intel_crtc);
5507         }
5508
5509         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5510         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5511 }
5512
5513 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5514                                  struct drm_atomic_state *old_state)
5515 {
5516         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5517         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5519         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5520
5521         if (intel_crtc->config->has_pch_encoder)
5522                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5523                                                       false);
5524
5525         intel_encoders_disable(crtc, old_crtc_state, old_state);
5526
5527         drm_crtc_vblank_off(crtc);
5528         assert_vblank_disabled(crtc);
5529
5530         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5531         if (!transcoder_is_dsi(cpu_transcoder))
5532                 intel_disable_pipe(intel_crtc);
5533
5534         if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5535                 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5536
5537         if (!transcoder_is_dsi(cpu_transcoder))
5538                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5539
5540         if (INTEL_GEN(dev_priv) >= 9)
5541                 skylake_scaler_disable(intel_crtc);
5542         else
5543                 ironlake_pfit_disable(intel_crtc, false);
5544
5545         if (!transcoder_is_dsi(cpu_transcoder))
5546                 intel_ddi_disable_pipe_clock(intel_crtc->config);
5547
5548         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5549
5550         if (old_crtc_state->has_pch_encoder)
5551                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5552                                                       true);
5553 }
5554
5555 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5556 {
5557         struct drm_device *dev = crtc->base.dev;
5558         struct drm_i915_private *dev_priv = to_i915(dev);
5559         struct intel_crtc_state *pipe_config = crtc->config;
5560
5561         if (!pipe_config->gmch_pfit.control)
5562                 return;
5563
5564         /*
5565          * The panel fitter should only be adjusted whilst the pipe is disabled,
5566          * according to register description and PRM.
5567          */
5568         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5569         assert_pipe_disabled(dev_priv, crtc->pipe);
5570
5571         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5572         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5573
5574         /* Border color in case we don't scale up to the full screen. Black by
5575          * default, change to something else for debugging. */
5576         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5577 }
5578
5579 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5580 {
5581         switch (port) {
5582         case PORT_A:
5583                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5584         case PORT_B:
5585                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5586         case PORT_C:
5587                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5588         case PORT_D:
5589                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5590         case PORT_E:
5591                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5592         default:
5593                 MISSING_CASE(port);
5594                 return POWER_DOMAIN_PORT_OTHER;
5595         }
5596 }
5597
5598 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5599                                   struct intel_crtc_state *crtc_state)
5600 {
5601         struct drm_device *dev = crtc->dev;
5602         struct drm_i915_private *dev_priv = to_i915(dev);
5603         struct drm_encoder *encoder;
5604         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5605         enum pipe pipe = intel_crtc->pipe;
5606         u64 mask;
5607         enum transcoder transcoder = crtc_state->cpu_transcoder;
5608
5609         if (!crtc_state->base.active)
5610                 return 0;
5611
5612         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5613         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5614         if (crtc_state->pch_pfit.enabled ||
5615             crtc_state->pch_pfit.force_thru)
5616                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5617
5618         drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5619                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5620
5621                 mask |= BIT_ULL(intel_encoder->power_domain);
5622         }
5623
5624         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5625                 mask |= BIT(POWER_DOMAIN_AUDIO);
5626
5627         if (crtc_state->shared_dpll)
5628                 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5629
5630         return mask;
5631 }
5632
5633 static u64
5634 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5635                                struct intel_crtc_state *crtc_state)
5636 {
5637         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5639         enum intel_display_power_domain domain;
5640         u64 domains, new_domains, old_domains;
5641
5642         old_domains = intel_crtc->enabled_power_domains;
5643         intel_crtc->enabled_power_domains = new_domains =
5644                 get_crtc_power_domains(crtc, crtc_state);
5645
5646         domains = new_domains & ~old_domains;
5647
5648         for_each_power_domain(domain, domains)
5649                 intel_display_power_get(dev_priv, domain);
5650
5651         return old_domains & ~new_domains;
5652 }
5653
5654 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5655                                       u64 domains)
5656 {
5657         enum intel_display_power_domain domain;
5658
5659         for_each_power_domain(domain, domains)
5660                 intel_display_power_put(dev_priv, domain);
5661 }
5662
5663 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5664                                    struct drm_atomic_state *old_state)
5665 {
5666         struct intel_atomic_state *old_intel_state =
5667                 to_intel_atomic_state(old_state);
5668         struct drm_crtc *crtc = pipe_config->base.crtc;
5669         struct drm_device *dev = crtc->dev;
5670         struct drm_i915_private *dev_priv = to_i915(dev);
5671         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5672         int pipe = intel_crtc->pipe;
5673
5674         if (WARN_ON(intel_crtc->active))
5675                 return;
5676
5677         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5678                 intel_dp_set_m_n(intel_crtc, M1_N1);
5679
5680         intel_set_pipe_timings(intel_crtc);
5681         intel_set_pipe_src_size(intel_crtc);
5682
5683         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5684                 struct drm_i915_private *dev_priv = to_i915(dev);
5685
5686                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5687                 I915_WRITE(CHV_CANVAS(pipe), 0);
5688         }
5689
5690         i9xx_set_pipeconf(intel_crtc);
5691
5692         intel_crtc->active = true;
5693
5694         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5695
5696         intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5697
5698         if (IS_CHERRYVIEW(dev_priv)) {
5699                 chv_prepare_pll(intel_crtc, intel_crtc->config);
5700                 chv_enable_pll(intel_crtc, intel_crtc->config);
5701         } else {
5702                 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5703                 vlv_enable_pll(intel_crtc, intel_crtc->config);
5704         }
5705
5706         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5707
5708         i9xx_pfit_enable(intel_crtc);
5709
5710         intel_color_load_luts(&pipe_config->base);
5711
5712         dev_priv->display.initial_watermarks(old_intel_state,
5713                                              pipe_config);
5714         intel_enable_pipe(intel_crtc);
5715
5716         assert_vblank_disabled(crtc);
5717         drm_crtc_vblank_on(crtc);
5718
5719         intel_encoders_enable(crtc, pipe_config, old_state);
5720 }
5721
5722 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5723 {
5724         struct drm_device *dev = crtc->base.dev;
5725         struct drm_i915_private *dev_priv = to_i915(dev);
5726
5727         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5728         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5729 }
5730
5731 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5732                              struct drm_atomic_state *old_state)
5733 {
5734         struct intel_atomic_state *old_intel_state =
5735                 to_intel_atomic_state(old_state);
5736         struct drm_crtc *crtc = pipe_config->base.crtc;
5737         struct drm_device *dev = crtc->dev;
5738         struct drm_i915_private *dev_priv = to_i915(dev);
5739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5740         enum pipe pipe = intel_crtc->pipe;
5741
5742         if (WARN_ON(intel_crtc->active))
5743                 return;
5744
5745         i9xx_set_pll_dividers(intel_crtc);
5746
5747         if (intel_crtc_has_dp_encoder(intel_crtc->config))
5748                 intel_dp_set_m_n(intel_crtc, M1_N1);
5749
5750         intel_set_pipe_timings(intel_crtc);
5751         intel_set_pipe_src_size(intel_crtc);
5752
5753         i9xx_set_pipeconf(intel_crtc);
5754
5755         intel_crtc->active = true;
5756
5757         if (!IS_GEN2(dev_priv))
5758                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5759
5760         intel_encoders_pre_enable(crtc, pipe_config, old_state);
5761
5762         i9xx_enable_pll(intel_crtc);
5763
5764         i9xx_pfit_enable(intel_crtc);
5765
5766         intel_color_load_luts(&pipe_config->base);
5767
5768         if (dev_priv->display.initial_watermarks != NULL)
5769                 dev_priv->display.initial_watermarks(old_intel_state,
5770                                                      intel_crtc->config);
5771         else
5772                 intel_update_watermarks(intel_crtc);
5773         intel_enable_pipe(intel_crtc);
5774
5775         assert_vblank_disabled(crtc);
5776         drm_crtc_vblank_on(crtc);
5777
5778         intel_encoders_enable(crtc, pipe_config, old_state);
5779 }
5780
5781 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5782 {
5783         struct drm_device *dev = crtc->base.dev;
5784         struct drm_i915_private *dev_priv = to_i915(dev);
5785
5786         if (!crtc->config->gmch_pfit.control)
5787                 return;
5788
5789         assert_pipe_disabled(dev_priv, crtc->pipe);
5790
5791         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5792                          I915_READ(PFIT_CONTROL));
5793         I915_WRITE(PFIT_CONTROL, 0);
5794 }
5795
5796 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5797                               struct drm_atomic_state *old_state)
5798 {
5799         struct drm_crtc *crtc = old_crtc_state->base.crtc;
5800         struct drm_device *dev = crtc->dev;
5801         struct drm_i915_private *dev_priv = to_i915(dev);
5802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5803         int pipe = intel_crtc->pipe;
5804
5805         /*
5806          * On gen2 planes are double buffered but the pipe isn't, so we must
5807          * wait for planes to fully turn off before disabling the pipe.
5808          */
5809         if (IS_GEN2(dev_priv))
5810                 intel_wait_for_vblank(dev_priv, pipe);
5811
5812         intel_encoders_disable(crtc, old_crtc_state, old_state);
5813
5814         drm_crtc_vblank_off(crtc);
5815         assert_vblank_disabled(crtc);
5816
5817         intel_disable_pipe(intel_crtc);
5818
5819         i9xx_pfit_disable(intel_crtc);
5820
5821         intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5822
5823         if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5824                 if (IS_CHERRYVIEW(dev_priv))
5825                         chv_disable_pll(dev_priv, pipe);
5826                 else if (IS_VALLEYVIEW(dev_priv))
5827                         vlv_disable_pll(dev_priv, pipe);
5828                 else
5829                         i9xx_disable_pll(intel_crtc);
5830         }
5831
5832         intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5833
5834         if (!IS_GEN2(dev_priv))
5835                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5836
5837         if (!dev_priv->display.initial_watermarks)
5838                 intel_update_watermarks(intel_crtc);
5839 }
5840
5841 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
5842 {
5843         struct intel_encoder *encoder;
5844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5845         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5846         enum intel_display_power_domain domain;
5847         u64 domains;
5848         struct drm_atomic_state *state;
5849         struct intel_crtc_state *crtc_state;
5850         int ret;
5851
5852         if (!intel_crtc->active)
5853                 return;
5854
5855         if (crtc->primary->state->visible) {
5856                 WARN_ON(intel_crtc->flip_work);
5857
5858                 intel_pre_disable_primary_noatomic(crtc);
5859
5860                 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
5861                 crtc->primary->state->visible = false;
5862         }
5863
5864         state = drm_atomic_state_alloc(crtc->dev);
5865         if (!state) {
5866                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5867                               crtc->base.id, crtc->name);
5868                 return;
5869         }
5870
5871         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
5872
5873         /* Everything's already locked, -EDEADLK can't happen. */
5874         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5875         ret = drm_atomic_add_affected_connectors(state, crtc);
5876
5877         WARN_ON(IS_ERR(crtc_state) || ret);
5878
5879         dev_priv->display.crtc_disable(crtc_state, state);
5880
5881         drm_atomic_state_put(state);
5882
5883         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
5884                       crtc->base.id, crtc->name);
5885
5886         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
5887         crtc->state->active = false;
5888         intel_crtc->active = false;
5889         crtc->enabled = false;
5890         crtc->state->connector_mask = 0;
5891         crtc->state->encoder_mask = 0;
5892
5893         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
5894                 encoder->base.crtc = NULL;
5895
5896         intel_fbc_disable(intel_crtc);
5897         intel_update_watermarks(intel_crtc);
5898         intel_disable_shared_dpll(intel_crtc);
5899
5900         domains = intel_crtc->enabled_power_domains;
5901         for_each_power_domain(domain, domains)
5902                 intel_display_power_put(dev_priv, domain);
5903         intel_crtc->enabled_power_domains = 0;
5904
5905         dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
5906         dev_priv->min_pixclk[intel_crtc->pipe] = 0;
5907 }
5908
5909 /*
5910  * turn all crtc's off, but do not adjust state
5911  * This has to be paired with a call to intel_modeset_setup_hw_state.
5912  */
5913 int intel_display_suspend(struct drm_device *dev)
5914 {
5915         struct drm_i915_private *dev_priv = to_i915(dev);
5916         struct drm_atomic_state *state;
5917         int ret;
5918
5919         state = drm_atomic_helper_suspend(dev);
5920         ret = PTR_ERR_OR_ZERO(state);
5921         if (ret)
5922                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
5923         else
5924                 dev_priv->modeset_restore_state = state;
5925         return ret;
5926 }
5927
5928 void intel_encoder_destroy(struct drm_encoder *encoder)
5929 {
5930         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5931
5932         drm_encoder_cleanup(encoder);
5933         kfree(intel_encoder);
5934 }
5935
5936 /* Cross check the actual hw state with our own modeset state tracking (and it's
5937  * internal consistency). */
5938 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
5939                                          struct drm_connector_state *conn_state)
5940 {
5941         struct intel_connector *connector = to_intel_connector(conn_state->connector);
5942
5943         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5944                       connector->base.base.id,
5945                       connector->base.name);
5946
5947         if (connector->get_hw_state(connector)) {
5948                 struct intel_encoder *encoder = connector->encoder;
5949
5950                 I915_STATE_WARN(!crtc_state,
5951                          "connector enabled without attached crtc\n");
5952
5953                 if (!crtc_state)
5954                         return;
5955
5956                 I915_STATE_WARN(!crtc_state->active,
5957                       "connector is active, but attached crtc isn't\n");
5958
5959                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
5960                         return;
5961
5962                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
5963                         "atomic encoder doesn't match attached encoder\n");
5964
5965                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
5966                         "attached encoder crtc differs from connector crtc\n");
5967         } else {
5968                 I915_STATE_WARN(crtc_state && crtc_state->active,
5969                         "attached crtc is active, but connector isn't\n");
5970                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
5971                         "best encoder set without crtc!\n");
5972         }
5973 }
5974
5975 int intel_connector_init(struct intel_connector *connector)
5976 {
5977         struct intel_digital_connector_state *conn_state;
5978
5979         /*
5980          * Allocate enough memory to hold intel_digital_connector_state,
5981          * This might be a few bytes too many, but for connectors that don't
5982          * need it we'll free the state and allocate a smaller one on the first
5983          * succesful commit anyway.
5984          */
5985         conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
5986         if (!conn_state)
5987                 return -ENOMEM;
5988
5989         __drm_atomic_helper_connector_reset(&connector->base,
5990                                             &conn_state->base);
5991
5992         return 0;
5993 }
5994
5995 struct intel_connector *intel_connector_alloc(void)
5996 {
5997         struct intel_connector *connector;
5998
5999         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6000         if (!connector)
6001                 return NULL;
6002
6003         if (intel_connector_init(connector) < 0) {
6004                 kfree(connector);
6005                 return NULL;
6006         }
6007
6008         return connector;
6009 }
6010
6011 /* Simple connector->get_hw_state implementation for encoders that support only
6012  * one connector and no cloning and hence the encoder state determines the state
6013  * of the connector. */
6014 bool intel_connector_get_hw_state(struct intel_connector *connector)
6015 {
6016         enum pipe pipe = 0;
6017         struct intel_encoder *encoder = connector->encoder;
6018
6019         return encoder->get_hw_state(encoder, &pipe);
6020 }
6021
6022 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6023 {
6024         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6025                 return crtc_state->fdi_lanes;
6026
6027         return 0;
6028 }
6029
6030 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6031                                      struct intel_crtc_state *pipe_config)
6032 {
6033         struct drm_i915_private *dev_priv = to_i915(dev);
6034         struct drm_atomic_state *state = pipe_config->base.state;
6035         struct intel_crtc *other_crtc;
6036         struct intel_crtc_state *other_crtc_state;
6037
6038         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6039                       pipe_name(pipe), pipe_config->fdi_lanes);
6040         if (pipe_config->fdi_lanes > 4) {
6041                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6042                               pipe_name(pipe), pipe_config->fdi_lanes);
6043                 return -EINVAL;
6044         }
6045
6046         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6047                 if (pipe_config->fdi_lanes > 2) {
6048                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6049                                       pipe_config->fdi_lanes);
6050                         return -EINVAL;
6051                 } else {
6052                         return 0;
6053                 }
6054         }
6055
6056         if (INTEL_INFO(dev_priv)->num_pipes == 2)
6057                 return 0;
6058
6059         /* Ivybridge 3 pipe is really complicated */
6060         switch (pipe) {
6061         case PIPE_A:
6062                 return 0;
6063         case PIPE_B:
6064                 if (pipe_config->fdi_lanes <= 2)
6065                         return 0;
6066
6067                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6068                 other_crtc_state =
6069                         intel_atomic_get_crtc_state(state, other_crtc);
6070                 if (IS_ERR(other_crtc_state))
6071                         return PTR_ERR(other_crtc_state);
6072
6073                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6074                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6075                                       pipe_name(pipe), pipe_config->fdi_lanes);
6076                         return -EINVAL;
6077                 }
6078                 return 0;
6079         case PIPE_C:
6080                 if (pipe_config->fdi_lanes > 2) {
6081                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6082                                       pipe_name(pipe), pipe_config->fdi_lanes);
6083                         return -EINVAL;
6084                 }
6085
6086                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6087                 other_crtc_state =
6088                         intel_atomic_get_crtc_state(state, other_crtc);
6089                 if (IS_ERR(other_crtc_state))
6090                         return PTR_ERR(other_crtc_state);
6091
6092                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6093                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6094                         return -EINVAL;
6095                 }
6096                 return 0;
6097         default:
6098                 BUG();
6099         }
6100 }
6101
6102 #define RETRY 1
6103 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6104                                        struct intel_crtc_state *pipe_config)
6105 {
6106         struct drm_device *dev = intel_crtc->base.dev;
6107         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6108         int lane, link_bw, fdi_dotclock, ret;
6109         bool needs_recompute = false;
6110
6111 retry:
6112         /* FDI is a binary signal running at ~2.7GHz, encoding
6113          * each output octet as 10 bits. The actual frequency
6114          * is stored as a divider into a 100MHz clock, and the
6115          * mode pixel clock is stored in units of 1KHz.
6116          * Hence the bw of each lane in terms of the mode signal
6117          * is:
6118          */
6119         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6120
6121         fdi_dotclock = adjusted_mode->crtc_clock;
6122
6123         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6124                                            pipe_config->pipe_bpp);
6125
6126         pipe_config->fdi_lanes = lane;
6127
6128         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6129                                link_bw, &pipe_config->fdi_m_n);
6130
6131         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6132         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6133                 pipe_config->pipe_bpp -= 2*3;
6134                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6135                               pipe_config->pipe_bpp);
6136                 needs_recompute = true;
6137                 pipe_config->bw_constrained = true;
6138
6139                 goto retry;
6140         }
6141
6142         if (needs_recompute)
6143                 return RETRY;
6144
6145         return ret;
6146 }
6147
6148 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6149                                      struct intel_crtc_state *pipe_config)
6150 {
6151         if (pipe_config->pipe_bpp > 24)
6152                 return false;
6153
6154         /* HSW can handle pixel rate up to cdclk? */
6155         if (IS_HASWELL(dev_priv))
6156                 return true;
6157
6158         /*
6159          * We compare against max which means we must take
6160          * the increased cdclk requirement into account when
6161          * calculating the new cdclk.
6162          *
6163          * Should measure whether using a lower cdclk w/o IPS
6164          */
6165         return pipe_config->pixel_rate <=
6166                 dev_priv->max_cdclk_freq * 95 / 100;
6167 }
6168
6169 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6170                                    struct intel_crtc_state *pipe_config)
6171 {
6172         struct drm_device *dev = crtc->base.dev;
6173         struct drm_i915_private *dev_priv = to_i915(dev);
6174
6175         pipe_config->ips_enabled = i915.enable_ips &&
6176                 hsw_crtc_supports_ips(crtc) &&
6177                 pipe_config_supports_ips(dev_priv, pipe_config);
6178 }
6179
6180 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6181 {
6182         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6183
6184         /* GDG double wide on either pipe, otherwise pipe A only */
6185         return INTEL_INFO(dev_priv)->gen < 4 &&
6186                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6187 }
6188
6189 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6190 {
6191         uint32_t pixel_rate;
6192
6193         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6194
6195         /*
6196          * We only use IF-ID interlacing. If we ever use
6197          * PF-ID we'll need to adjust the pixel_rate here.
6198          */
6199
6200         if (pipe_config->pch_pfit.enabled) {
6201                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6202                 uint32_t pfit_size = pipe_config->pch_pfit.size;
6203
6204                 pipe_w = pipe_config->pipe_src_w;
6205                 pipe_h = pipe_config->pipe_src_h;
6206
6207                 pfit_w = (pfit_size >> 16) & 0xFFFF;
6208                 pfit_h = pfit_size & 0xFFFF;
6209                 if (pipe_w < pfit_w)
6210                         pipe_w = pfit_w;
6211                 if (pipe_h < pfit_h)
6212                         pipe_h = pfit_h;
6213
6214                 if (WARN_ON(!pfit_w || !pfit_h))
6215                         return pixel_rate;
6216
6217                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6218                                      pfit_w * pfit_h);
6219         }
6220
6221         return pixel_rate;
6222 }
6223
6224 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6225 {
6226         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6227
6228         if (HAS_GMCH_DISPLAY(dev_priv))
6229                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6230                 crtc_state->pixel_rate =
6231                         crtc_state->base.adjusted_mode.crtc_clock;
6232         else
6233                 crtc_state->pixel_rate =
6234                         ilk_pipe_pixel_rate(crtc_state);
6235 }
6236
6237 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6238                                      struct intel_crtc_state *pipe_config)
6239 {
6240         struct drm_device *dev = crtc->base.dev;
6241         struct drm_i915_private *dev_priv = to_i915(dev);
6242         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6243         int clock_limit = dev_priv->max_dotclk_freq;
6244
6245         if (INTEL_GEN(dev_priv) < 4) {
6246                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6247
6248                 /*
6249                  * Enable double wide mode when the dot clock
6250                  * is > 90% of the (display) core speed.
6251                  */
6252                 if (intel_crtc_supports_double_wide(crtc) &&
6253                     adjusted_mode->crtc_clock > clock_limit) {
6254                         clock_limit = dev_priv->max_dotclk_freq;
6255                         pipe_config->double_wide = true;
6256                 }
6257         }
6258
6259         if (adjusted_mode->crtc_clock > clock_limit) {
6260                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6261                               adjusted_mode->crtc_clock, clock_limit,
6262                               yesno(pipe_config->double_wide));
6263                 return -EINVAL;
6264         }
6265
6266         /*
6267          * Pipe horizontal size must be even in:
6268          * - DVO ganged mode
6269          * - LVDS dual channel mode
6270          * - Double wide pipe
6271          */
6272         if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6273              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6274                 pipe_config->pipe_src_w &= ~1;
6275
6276         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6277          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6278          */
6279         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6280                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6281                 return -EINVAL;
6282
6283         intel_crtc_compute_pixel_rate(pipe_config);
6284
6285         if (HAS_IPS(dev_priv))
6286                 hsw_compute_ips_config(crtc, pipe_config);
6287
6288         if (pipe_config->has_pch_encoder)
6289                 return ironlake_fdi_compute_config(crtc, pipe_config);
6290
6291         return 0;
6292 }
6293
6294 static void
6295 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6296 {
6297         while (*num > DATA_LINK_M_N_MASK ||
6298                *den > DATA_LINK_M_N_MASK) {
6299                 *num >>= 1;
6300                 *den >>= 1;
6301         }
6302 }
6303
6304 static void compute_m_n(unsigned int m, unsigned int n,
6305                         uint32_t *ret_m, uint32_t *ret_n)
6306 {
6307         /*
6308          * Reduce M/N as much as possible without loss in precision. Several DP
6309          * dongles in particular seem to be fussy about too large *link* M/N
6310          * values. The passed in values are more likely to have the least
6311          * significant bits zero than M after rounding below, so do this first.
6312          */
6313         while ((m & 1) == 0 && (n & 1) == 0) {
6314                 m >>= 1;
6315                 n >>= 1;
6316         }
6317
6318         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6319         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6320         intel_reduce_m_n_ratio(ret_m, ret_n);
6321 }
6322
6323 void
6324 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6325                        int pixel_clock, int link_clock,
6326                        struct intel_link_m_n *m_n)
6327 {
6328         m_n->tu = 64;
6329
6330         compute_m_n(bits_per_pixel * pixel_clock,
6331                     link_clock * nlanes * 8,
6332                     &m_n->gmch_m, &m_n->gmch_n);
6333
6334         compute_m_n(pixel_clock, link_clock,
6335                     &m_n->link_m, &m_n->link_n);
6336 }
6337
6338 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6339 {
6340         if (i915.panel_use_ssc >= 0)
6341                 return i915.panel_use_ssc != 0;
6342         return dev_priv->vbt.lvds_use_ssc
6343                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6344 }
6345
6346 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6347 {
6348         return (1 << dpll->n) << 16 | dpll->m2;
6349 }
6350
6351 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6352 {
6353         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6354 }
6355
6356 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6357                                      struct intel_crtc_state *crtc_state,
6358                                      struct dpll *reduced_clock)
6359 {
6360         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6361         u32 fp, fp2 = 0;
6362
6363         if (IS_PINEVIEW(dev_priv)) {
6364                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6365                 if (reduced_clock)
6366                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6367         } else {
6368                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6369                 if (reduced_clock)
6370                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6371         }
6372
6373         crtc_state->dpll_hw_state.fp0 = fp;
6374
6375         crtc->lowfreq_avail = false;
6376         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6377             reduced_clock) {
6378                 crtc_state->dpll_hw_state.fp1 = fp2;
6379                 crtc->lowfreq_avail = true;
6380         } else {
6381                 crtc_state->dpll_hw_state.fp1 = fp;
6382         }
6383 }
6384
6385 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6386                 pipe)
6387 {
6388         u32 reg_val;
6389
6390         /*
6391          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6392          * and set it to a reasonable value instead.
6393          */
6394         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6395         reg_val &= 0xffffff00;
6396         reg_val |= 0x00000030;
6397         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6398
6399         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6400         reg_val &= 0x00ffffff;
6401         reg_val |= 0x8c000000;
6402         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6403
6404         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6405         reg_val &= 0xffffff00;
6406         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6407
6408         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6409         reg_val &= 0x00ffffff;
6410         reg_val |= 0xb0000000;
6411         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6412 }
6413
6414 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6415                                          struct intel_link_m_n *m_n)
6416 {
6417         struct drm_device *dev = crtc->base.dev;
6418         struct drm_i915_private *dev_priv = to_i915(dev);
6419         int pipe = crtc->pipe;
6420
6421         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6422         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6423         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6424         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6425 }
6426
6427 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6428                                          struct intel_link_m_n *m_n,
6429                                          struct intel_link_m_n *m2_n2)
6430 {
6431         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6432         int pipe = crtc->pipe;
6433         enum transcoder transcoder = crtc->config->cpu_transcoder;
6434
6435         if (INTEL_GEN(dev_priv) >= 5) {
6436                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6437                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6438                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6439                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6440                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6441                  * for gen < 8) and if DRRS is supported (to make sure the
6442                  * registers are not unnecessarily accessed).
6443                  */
6444                 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6445                     INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6446                         I915_WRITE(PIPE_DATA_M2(transcoder),
6447                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6448                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6449                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6450                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6451                 }
6452         } else {
6453                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6454                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6455                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6456                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6457         }
6458 }
6459
6460 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6461 {
6462         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6463
6464         if (m_n == M1_N1) {
6465                 dp_m_n = &crtc->config->dp_m_n;
6466                 dp_m2_n2 = &crtc->config->dp_m2_n2;
6467         } else if (m_n == M2_N2) {
6468
6469                 /*
6470                  * M2_N2 registers are not supported. Hence m2_n2 divider value
6471                  * needs to be programmed into M1_N1.
6472                  */
6473                 dp_m_n = &crtc->config->dp_m2_n2;
6474         } else {
6475                 DRM_ERROR("Unsupported divider value\n");
6476                 return;
6477         }
6478
6479         if (crtc->config->has_pch_encoder)
6480                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6481         else
6482                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6483 }
6484
6485 static void vlv_compute_dpll(struct intel_crtc *crtc,
6486                              struct intel_crtc_state *pipe_config)
6487 {
6488         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6489                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6490         if (crtc->pipe != PIPE_A)
6491                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6492
6493         /* DPLL not used with DSI, but still need the rest set up */
6494         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6495                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6496                         DPLL_EXT_BUFFER_ENABLE_VLV;
6497
6498         pipe_config->dpll_hw_state.dpll_md =
6499                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6500 }
6501
6502 static void chv_compute_dpll(struct intel_crtc *crtc,
6503                              struct intel_crtc_state *pipe_config)
6504 {
6505         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6506                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6507         if (crtc->pipe != PIPE_A)
6508                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6509
6510         /* DPLL not used with DSI, but still need the rest set up */
6511         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6512                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6513
6514         pipe_config->dpll_hw_state.dpll_md =
6515                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6516 }
6517
6518 static void vlv_prepare_pll(struct intel_crtc *crtc,
6519                             const struct intel_crtc_state *pipe_config)
6520 {
6521         struct drm_device *dev = crtc->base.dev;
6522         struct drm_i915_private *dev_priv = to_i915(dev);
6523         enum pipe pipe = crtc->pipe;
6524         u32 mdiv;
6525         u32 bestn, bestm1, bestm2, bestp1, bestp2;
6526         u32 coreclk, reg_val;
6527
6528         /* Enable Refclk */
6529         I915_WRITE(DPLL(pipe),
6530                    pipe_config->dpll_hw_state.dpll &
6531                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6532
6533         /* No need to actually set up the DPLL with DSI */
6534         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6535                 return;
6536
6537         mutex_lock(&dev_priv->sb_lock);
6538
6539         bestn = pipe_config->dpll.n;
6540         bestm1 = pipe_config->dpll.m1;
6541         bestm2 = pipe_config->dpll.m2;
6542         bestp1 = pipe_config->dpll.p1;
6543         bestp2 = pipe_config->dpll.p2;
6544
6545         /* See eDP HDMI DPIO driver vbios notes doc */
6546
6547         /* PLL B needs special handling */
6548         if (pipe == PIPE_B)
6549                 vlv_pllb_recal_opamp(dev_priv, pipe);
6550
6551         /* Set up Tx target for periodic Rcomp update */
6552         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6553
6554         /* Disable target IRef on PLL */
6555         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6556         reg_val &= 0x00ffffff;
6557         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6558
6559         /* Disable fast lock */
6560         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6561
6562         /* Set idtafcrecal before PLL is enabled */
6563         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6564         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6565         mdiv |= ((bestn << DPIO_N_SHIFT));
6566         mdiv |= (1 << DPIO_K_SHIFT);
6567
6568         /*
6569          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6570          * but we don't support that).
6571          * Note: don't use the DAC post divider as it seems unstable.
6572          */
6573         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6574         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6575
6576         mdiv |= DPIO_ENABLE_CALIBRATION;
6577         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6578
6579         /* Set HBR and RBR LPF coefficients */
6580         if (pipe_config->port_clock == 162000 ||
6581             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6582             intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6583                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6584                                  0x009f0003);
6585         else
6586                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6587                                  0x00d0000f);
6588
6589         if (intel_crtc_has_dp_encoder(pipe_config)) {
6590                 /* Use SSC source */
6591                 if (pipe == PIPE_A)
6592                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6593                                          0x0df40000);
6594                 else
6595                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6596                                          0x0df70000);
6597         } else { /* HDMI or VGA */
6598                 /* Use bend source */
6599                 if (pipe == PIPE_A)
6600                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6601                                          0x0df70000);
6602                 else
6603                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6604                                          0x0df40000);
6605         }
6606
6607         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6608         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6609         if (intel_crtc_has_dp_encoder(crtc->config))
6610                 coreclk |= 0x01000000;
6611         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6612
6613         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6614         mutex_unlock(&dev_priv->sb_lock);
6615 }
6616
6617 static void chv_prepare_pll(struct intel_crtc *crtc,
6618                             const struct intel_crtc_state *pipe_config)
6619 {
6620         struct drm_device *dev = crtc->base.dev;
6621         struct drm_i915_private *dev_priv = to_i915(dev);
6622         enum pipe pipe = crtc->pipe;
6623         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6624         u32 loopfilter, tribuf_calcntr;
6625         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6626         u32 dpio_val;
6627         int vco;
6628
6629         /* Enable Refclk and SSC */
6630         I915_WRITE(DPLL(pipe),
6631                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6632
6633         /* No need to actually set up the DPLL with DSI */
6634         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6635                 return;
6636
6637         bestn = pipe_config->dpll.n;
6638         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6639         bestm1 = pipe_config->dpll.m1;
6640         bestm2 = pipe_config->dpll.m2 >> 22;
6641         bestp1 = pipe_config->dpll.p1;
6642         bestp2 = pipe_config->dpll.p2;
6643         vco = pipe_config->dpll.vco;
6644         dpio_val = 0;
6645         loopfilter = 0;
6646
6647         mutex_lock(&dev_priv->sb_lock);
6648
6649         /* p1 and p2 divider */
6650         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6651                         5 << DPIO_CHV_S1_DIV_SHIFT |
6652                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6653                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6654                         1 << DPIO_CHV_K_DIV_SHIFT);
6655
6656         /* Feedback post-divider - m2 */
6657         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6658
6659         /* Feedback refclk divider - n and m1 */
6660         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6661                         DPIO_CHV_M1_DIV_BY_2 |
6662                         1 << DPIO_CHV_N_DIV_SHIFT);
6663
6664         /* M2 fraction division */
6665         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6666
6667         /* M2 fraction division enable */
6668         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6669         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6670         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6671         if (bestm2_frac)
6672                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6673         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6674
6675         /* Program digital lock detect threshold */
6676         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6677         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6678                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6679         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6680         if (!bestm2_frac)
6681                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6682         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6683
6684         /* Loop filter */
6685         if (vco == 5400000) {
6686                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6687                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6688                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6689                 tribuf_calcntr = 0x9;
6690         } else if (vco <= 6200000) {
6691                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6692                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6693                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6694                 tribuf_calcntr = 0x9;
6695         } else if (vco <= 6480000) {
6696                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6697                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6698                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6699                 tribuf_calcntr = 0x8;
6700         } else {
6701                 /* Not supported. Apply the same limits as in the max case */
6702                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6703                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6704                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6705                 tribuf_calcntr = 0;
6706         }
6707         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6708
6709         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6710         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6711         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6712         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6713
6714         /* AFC Recal */
6715         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6716                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6717                         DPIO_AFC_RECAL);
6718
6719         mutex_unlock(&dev_priv->sb_lock);
6720 }
6721
6722 /**
6723  * vlv_force_pll_on - forcibly enable just the PLL
6724  * @dev_priv: i915 private structure
6725  * @pipe: pipe PLL to enable
6726  * @dpll: PLL configuration
6727  *
6728  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6729  * in cases where we need the PLL enabled even when @pipe is not going to
6730  * be enabled.
6731  */
6732 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6733                      const struct dpll *dpll)
6734 {
6735         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6736         struct intel_crtc_state *pipe_config;
6737
6738         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6739         if (!pipe_config)
6740                 return -ENOMEM;
6741
6742         pipe_config->base.crtc = &crtc->base;
6743         pipe_config->pixel_multiplier = 1;
6744         pipe_config->dpll = *dpll;
6745
6746         if (IS_CHERRYVIEW(dev_priv)) {
6747                 chv_compute_dpll(crtc, pipe_config);
6748                 chv_prepare_pll(crtc, pipe_config);
6749                 chv_enable_pll(crtc, pipe_config);
6750         } else {
6751                 vlv_compute_dpll(crtc, pipe_config);
6752                 vlv_prepare_pll(crtc, pipe_config);
6753                 vlv_enable_pll(crtc, pipe_config);
6754         }
6755
6756         kfree(pipe_config);
6757
6758         return 0;
6759 }
6760
6761 /**
6762  * vlv_force_pll_off - forcibly disable just the PLL
6763  * @dev_priv: i915 private structure
6764  * @pipe: pipe PLL to disable
6765  *
6766  * Disable the PLL for @pipe. To be used in cases where we need
6767  * the PLL enabled even when @pipe is not going to be enabled.
6768  */
6769 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6770 {
6771         if (IS_CHERRYVIEW(dev_priv))
6772                 chv_disable_pll(dev_priv, pipe);
6773         else
6774                 vlv_disable_pll(dev_priv, pipe);
6775 }
6776
6777 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6778                               struct intel_crtc_state *crtc_state,
6779                               struct dpll *reduced_clock)
6780 {
6781         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6782         u32 dpll;
6783         struct dpll *clock = &crtc_state->dpll;
6784
6785         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6786
6787         dpll = DPLL_VGA_MODE_DIS;
6788
6789         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6790                 dpll |= DPLLB_MODE_LVDS;
6791         else
6792                 dpll |= DPLLB_MODE_DAC_SERIAL;
6793
6794         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6795             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6796                 dpll |= (crtc_state->pixel_multiplier - 1)
6797                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6798         }
6799
6800         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6801             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6802                 dpll |= DPLL_SDVO_HIGH_SPEED;
6803
6804         if (intel_crtc_has_dp_encoder(crtc_state))
6805                 dpll |= DPLL_SDVO_HIGH_SPEED;
6806
6807         /* compute bitmask from p1 value */
6808         if (IS_PINEVIEW(dev_priv))
6809                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6810         else {
6811                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6812                 if (IS_G4X(dev_priv) && reduced_clock)
6813                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6814         }
6815         switch (clock->p2) {
6816         case 5:
6817                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6818                 break;
6819         case 7:
6820                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6821                 break;
6822         case 10:
6823                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6824                 break;
6825         case 14:
6826                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6827                 break;
6828         }
6829         if (INTEL_GEN(dev_priv) >= 4)
6830                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6831
6832         if (crtc_state->sdvo_tv_clock)
6833                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6834         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6835                  intel_panel_use_ssc(dev_priv))
6836                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6837         else
6838                 dpll |= PLL_REF_INPUT_DREFCLK;
6839
6840         dpll |= DPLL_VCO_ENABLE;
6841         crtc_state->dpll_hw_state.dpll = dpll;
6842
6843         if (INTEL_GEN(dev_priv) >= 4) {
6844                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6845                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6846                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6847         }
6848 }
6849
6850 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6851                               struct intel_crtc_state *crtc_state,
6852                               struct dpll *reduced_clock)
6853 {
6854         struct drm_device *dev = crtc->base.dev;
6855         struct drm_i915_private *dev_priv = to_i915(dev);
6856         u32 dpll;
6857         struct dpll *clock = &crtc_state->dpll;
6858
6859         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6860
6861         dpll = DPLL_VGA_MODE_DIS;
6862
6863         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
6864                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6865         } else {
6866                 if (clock->p1 == 2)
6867                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6868                 else
6869                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6870                 if (clock->p2 == 4)
6871                         dpll |= PLL_P2_DIVIDE_BY_4;
6872         }
6873
6874         if (!IS_I830(dev_priv) &&
6875             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
6876                 dpll |= DPLL_DVO_2X_MODE;
6877
6878         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6879             intel_panel_use_ssc(dev_priv))
6880                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6881         else
6882                 dpll |= PLL_REF_INPUT_DREFCLK;
6883
6884         dpll |= DPLL_VCO_ENABLE;
6885         crtc_state->dpll_hw_state.dpll = dpll;
6886 }
6887
6888 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6889 {
6890         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
6891         enum pipe pipe = intel_crtc->pipe;
6892         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6893         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
6894         uint32_t crtc_vtotal, crtc_vblank_end;
6895         int vsyncshift = 0;
6896
6897         /* We need to be careful not to changed the adjusted mode, for otherwise
6898          * the hw state checker will get angry at the mismatch. */
6899         crtc_vtotal = adjusted_mode->crtc_vtotal;
6900         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6901
6902         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6903                 /* the chip adds 2 halflines automatically */
6904                 crtc_vtotal -= 1;
6905                 crtc_vblank_end -= 1;
6906
6907                 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
6908                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6909                 else
6910                         vsyncshift = adjusted_mode->crtc_hsync_start -
6911                                 adjusted_mode->crtc_htotal / 2;
6912                 if (vsyncshift < 0)
6913                         vsyncshift += adjusted_mode->crtc_htotal;
6914         }
6915
6916         if (INTEL_GEN(dev_priv) > 3)
6917                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6918
6919         I915_WRITE(HTOTAL(cpu_transcoder),
6920                    (adjusted_mode->crtc_hdisplay - 1) |
6921                    ((adjusted_mode->crtc_htotal - 1) << 16));
6922         I915_WRITE(HBLANK(cpu_transcoder),
6923                    (adjusted_mode->crtc_hblank_start - 1) |
6924                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6925         I915_WRITE(HSYNC(cpu_transcoder),
6926                    (adjusted_mode->crtc_hsync_start - 1) |
6927                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6928
6929         I915_WRITE(VTOTAL(cpu_transcoder),
6930                    (adjusted_mode->crtc_vdisplay - 1) |
6931                    ((crtc_vtotal - 1) << 16));
6932         I915_WRITE(VBLANK(cpu_transcoder),
6933                    (adjusted_mode->crtc_vblank_start - 1) |
6934                    ((crtc_vblank_end - 1) << 16));
6935         I915_WRITE(VSYNC(cpu_transcoder),
6936                    (adjusted_mode->crtc_vsync_start - 1) |
6937                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6938
6939         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6940          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6941          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6942          * bits. */
6943         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
6944             (pipe == PIPE_B || pipe == PIPE_C))
6945                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6946
6947 }
6948
6949 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
6950 {
6951         struct drm_device *dev = intel_crtc->base.dev;
6952         struct drm_i915_private *dev_priv = to_i915(dev);
6953         enum pipe pipe = intel_crtc->pipe;
6954
6955         /* pipesrc controls the size that is scaled from, which should
6956          * always be the user's requested size.
6957          */
6958         I915_WRITE(PIPESRC(pipe),
6959                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6960                    (intel_crtc->config->pipe_src_h - 1));
6961 }
6962
6963 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6964                                    struct intel_crtc_state *pipe_config)
6965 {
6966         struct drm_device *dev = crtc->base.dev;
6967         struct drm_i915_private *dev_priv = to_i915(dev);
6968         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6969         uint32_t tmp;
6970
6971         tmp = I915_READ(HTOTAL(cpu_transcoder));
6972         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6973         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6974         tmp = I915_READ(HBLANK(cpu_transcoder));
6975         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6976         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6977         tmp = I915_READ(HSYNC(cpu_transcoder));
6978         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6979         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6980
6981         tmp = I915_READ(VTOTAL(cpu_transcoder));
6982         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6983         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6984         tmp = I915_READ(VBLANK(cpu_transcoder));
6985         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6986         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6987         tmp = I915_READ(VSYNC(cpu_transcoder));
6988         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6989         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6990
6991         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6992                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6993                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6994                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6995         }
6996 }
6997
6998 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
6999                                     struct intel_crtc_state *pipe_config)
7000 {
7001         struct drm_device *dev = crtc->base.dev;
7002         struct drm_i915_private *dev_priv = to_i915(dev);
7003         u32 tmp;
7004
7005         tmp = I915_READ(PIPESRC(crtc->pipe));
7006         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7007         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7008
7009         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7010         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7011 }
7012
7013 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7014                                  struct intel_crtc_state *pipe_config)
7015 {
7016         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7017         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7018         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7019         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7020
7021         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7022         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7023         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7024         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7025
7026         mode->flags = pipe_config->base.adjusted_mode.flags;
7027         mode->type = DRM_MODE_TYPE_DRIVER;
7028
7029         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7030
7031         mode->hsync = drm_mode_hsync(mode);
7032         mode->vrefresh = drm_mode_vrefresh(mode);
7033         drm_mode_set_name(mode);
7034 }
7035
7036 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7037 {
7038         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7039         uint32_t pipeconf;
7040
7041         pipeconf = 0;
7042
7043         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7044             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7045                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7046
7047         if (intel_crtc->config->double_wide)
7048                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7049
7050         /* only g4x and later have fancy bpc/dither controls */
7051         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7052             IS_CHERRYVIEW(dev_priv)) {
7053                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7054                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7055                         pipeconf |= PIPECONF_DITHER_EN |
7056                                     PIPECONF_DITHER_TYPE_SP;
7057
7058                 switch (intel_crtc->config->pipe_bpp) {
7059                 case 18:
7060                         pipeconf |= PIPECONF_6BPC;
7061                         break;
7062                 case 24:
7063                         pipeconf |= PIPECONF_8BPC;
7064                         break;
7065                 case 30:
7066                         pipeconf |= PIPECONF_10BPC;
7067                         break;
7068                 default:
7069                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7070                         BUG();
7071                 }
7072         }
7073
7074         if (HAS_PIPE_CXSR(dev_priv)) {
7075                 if (intel_crtc->lowfreq_avail) {
7076                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7077                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7078                 } else {
7079                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7080                 }
7081         }
7082
7083         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7084                 if (INTEL_GEN(dev_priv) < 4 ||
7085                     intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7086                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7087                 else
7088                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7089         } else
7090                 pipeconf |= PIPECONF_PROGRESSIVE;
7091
7092         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7093              intel_crtc->config->limited_color_range)
7094                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7095
7096         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7097         POSTING_READ(PIPECONF(intel_crtc->pipe));
7098 }
7099
7100 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7101                                    struct intel_crtc_state *crtc_state)
7102 {
7103         struct drm_device *dev = crtc->base.dev;
7104         struct drm_i915_private *dev_priv = to_i915(dev);
7105         const struct intel_limit *limit;
7106         int refclk = 48000;
7107
7108         memset(&crtc_state->dpll_hw_state, 0,
7109                sizeof(crtc_state->dpll_hw_state));
7110
7111         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7112                 if (intel_panel_use_ssc(dev_priv)) {
7113                         refclk = dev_priv->vbt.lvds_ssc_freq;
7114                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7115                 }
7116
7117                 limit = &intel_limits_i8xx_lvds;
7118         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7119                 limit = &intel_limits_i8xx_dvo;
7120         } else {
7121                 limit = &intel_limits_i8xx_dac;
7122         }
7123
7124         if (!crtc_state->clock_set &&
7125             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7126                                  refclk, NULL, &crtc_state->dpll)) {
7127                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7128                 return -EINVAL;
7129         }
7130
7131         i8xx_compute_dpll(crtc, crtc_state, NULL);
7132
7133         return 0;
7134 }
7135
7136 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7137                                   struct intel_crtc_state *crtc_state)
7138 {
7139         struct drm_device *dev = crtc->base.dev;
7140         struct drm_i915_private *dev_priv = to_i915(dev);
7141         const struct intel_limit *limit;
7142         int refclk = 96000;
7143
7144         memset(&crtc_state->dpll_hw_state, 0,
7145                sizeof(crtc_state->dpll_hw_state));
7146
7147         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7148                 if (intel_panel_use_ssc(dev_priv)) {
7149                         refclk = dev_priv->vbt.lvds_ssc_freq;
7150                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7151                 }
7152
7153                 if (intel_is_dual_link_lvds(dev))
7154                         limit = &intel_limits_g4x_dual_channel_lvds;
7155                 else
7156                         limit = &intel_limits_g4x_single_channel_lvds;
7157         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7158                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7159                 limit = &intel_limits_g4x_hdmi;
7160         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7161                 limit = &intel_limits_g4x_sdvo;
7162         } else {
7163                 /* The option is for other outputs */
7164                 limit = &intel_limits_i9xx_sdvo;
7165         }
7166
7167         if (!crtc_state->clock_set &&
7168             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7169                                 refclk, NULL, &crtc_state->dpll)) {
7170                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7171                 return -EINVAL;
7172         }
7173
7174         i9xx_compute_dpll(crtc, crtc_state, NULL);
7175
7176         return 0;
7177 }
7178
7179 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7180                                   struct intel_crtc_state *crtc_state)
7181 {
7182         struct drm_device *dev = crtc->base.dev;
7183         struct drm_i915_private *dev_priv = to_i915(dev);
7184         const struct intel_limit *limit;
7185         int refclk = 96000;
7186
7187         memset(&crtc_state->dpll_hw_state, 0,
7188                sizeof(crtc_state->dpll_hw_state));
7189
7190         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7191                 if (intel_panel_use_ssc(dev_priv)) {
7192                         refclk = dev_priv->vbt.lvds_ssc_freq;
7193                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7194                 }
7195
7196                 limit = &intel_limits_pineview_lvds;
7197         } else {
7198                 limit = &intel_limits_pineview_sdvo;
7199         }
7200
7201         if (!crtc_state->clock_set &&
7202             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7203                                 refclk, NULL, &crtc_state->dpll)) {
7204                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7205                 return -EINVAL;
7206         }
7207
7208         i9xx_compute_dpll(crtc, crtc_state, NULL);
7209
7210         return 0;
7211 }
7212
7213 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7214                                    struct intel_crtc_state *crtc_state)
7215 {
7216         struct drm_device *dev = crtc->base.dev;
7217         struct drm_i915_private *dev_priv = to_i915(dev);
7218         const struct intel_limit *limit;
7219         int refclk = 96000;
7220
7221         memset(&crtc_state->dpll_hw_state, 0,
7222                sizeof(crtc_state->dpll_hw_state));
7223
7224         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7225                 if (intel_panel_use_ssc(dev_priv)) {
7226                         refclk = dev_priv->vbt.lvds_ssc_freq;
7227                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7228                 }
7229
7230                 limit = &intel_limits_i9xx_lvds;
7231         } else {
7232                 limit = &intel_limits_i9xx_sdvo;
7233         }
7234
7235         if (!crtc_state->clock_set &&
7236             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7237                                  refclk, NULL, &crtc_state->dpll)) {
7238                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7239                 return -EINVAL;
7240         }
7241
7242         i9xx_compute_dpll(crtc, crtc_state, NULL);
7243
7244         return 0;
7245 }
7246
7247 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7248                                   struct intel_crtc_state *crtc_state)
7249 {
7250         int refclk = 100000;
7251         const struct intel_limit *limit = &intel_limits_chv;
7252
7253         memset(&crtc_state->dpll_hw_state, 0,
7254                sizeof(crtc_state->dpll_hw_state));
7255
7256         if (!crtc_state->clock_set &&
7257             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7258                                 refclk, NULL, &crtc_state->dpll)) {
7259                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7260                 return -EINVAL;
7261         }
7262
7263         chv_compute_dpll(crtc, crtc_state);
7264
7265         return 0;
7266 }
7267
7268 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7269                                   struct intel_crtc_state *crtc_state)
7270 {
7271         int refclk = 100000;
7272         const struct intel_limit *limit = &intel_limits_vlv;
7273
7274         memset(&crtc_state->dpll_hw_state, 0,
7275                sizeof(crtc_state->dpll_hw_state));
7276
7277         if (!crtc_state->clock_set &&
7278             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7279                                 refclk, NULL, &crtc_state->dpll)) {
7280                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7281                 return -EINVAL;
7282         }
7283
7284         vlv_compute_dpll(crtc, crtc_state);
7285
7286         return 0;
7287 }
7288
7289 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7290                                  struct intel_crtc_state *pipe_config)
7291 {
7292         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7293         uint32_t tmp;
7294
7295         if (INTEL_GEN(dev_priv) <= 3 &&
7296             (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7297                 return;
7298
7299         tmp = I915_READ(PFIT_CONTROL);
7300         if (!(tmp & PFIT_ENABLE))
7301                 return;
7302
7303         /* Check whether the pfit is attached to our pipe. */
7304         if (INTEL_GEN(dev_priv) < 4) {
7305                 if (crtc->pipe != PIPE_B)
7306                         return;
7307         } else {
7308                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7309                         return;
7310         }
7311
7312         pipe_config->gmch_pfit.control = tmp;
7313         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7314 }
7315
7316 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7317                                struct intel_crtc_state *pipe_config)
7318 {
7319         struct drm_device *dev = crtc->base.dev;
7320         struct drm_i915_private *dev_priv = to_i915(dev);
7321         int pipe = pipe_config->cpu_transcoder;
7322         struct dpll clock;
7323         u32 mdiv;
7324         int refclk = 100000;
7325
7326         /* In case of DSI, DPLL will not be used */
7327         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7328                 return;
7329
7330         mutex_lock(&dev_priv->sb_lock);
7331         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7332         mutex_unlock(&dev_priv->sb_lock);
7333
7334         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7335         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7336         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7337         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7338         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7339
7340         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7341 }
7342
7343 static void
7344 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7345                               struct intel_initial_plane_config *plane_config)
7346 {
7347         struct drm_device *dev = crtc->base.dev;
7348         struct drm_i915_private *dev_priv = to_i915(dev);
7349         u32 val, base, offset;
7350         int pipe = crtc->pipe, plane = crtc->plane;
7351         int fourcc, pixel_format;
7352         unsigned int aligned_height;
7353         struct drm_framebuffer *fb;
7354         struct intel_framebuffer *intel_fb;
7355
7356         val = I915_READ(DSPCNTR(plane));
7357         if (!(val & DISPLAY_PLANE_ENABLE))
7358                 return;
7359
7360         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7361         if (!intel_fb) {
7362                 DRM_DEBUG_KMS("failed to alloc fb\n");
7363                 return;
7364         }
7365
7366         fb = &intel_fb->base;
7367
7368         fb->dev = dev;
7369
7370         if (INTEL_GEN(dev_priv) >= 4) {
7371                 if (val & DISPPLANE_TILED) {
7372                         plane_config->tiling = I915_TILING_X;
7373                         fb->modifier = I915_FORMAT_MOD_X_TILED;
7374                 }
7375         }
7376
7377         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7378         fourcc = i9xx_format_to_fourcc(pixel_format);
7379         fb->format = drm_format_info(fourcc);
7380
7381         if (INTEL_GEN(dev_priv) >= 4) {
7382                 if (plane_config->tiling)
7383                         offset = I915_READ(DSPTILEOFF(plane));
7384                 else
7385                         offset = I915_READ(DSPLINOFF(plane));
7386                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7387         } else {
7388                 base = I915_READ(DSPADDR(plane));
7389         }
7390         plane_config->base = base;
7391
7392         val = I915_READ(PIPESRC(pipe));
7393         fb->width = ((val >> 16) & 0xfff) + 1;
7394         fb->height = ((val >> 0) & 0xfff) + 1;
7395
7396         val = I915_READ(DSPSTRIDE(pipe));
7397         fb->pitches[0] = val & 0xffffffc0;
7398
7399         aligned_height = intel_fb_align_height(fb, 0, fb->height);
7400
7401         plane_config->size = fb->pitches[0] * aligned_height;
7402
7403         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7404                       pipe_name(pipe), plane, fb->width, fb->height,
7405                       fb->format->cpp[0] * 8, base, fb->pitches[0],
7406                       plane_config->size);
7407
7408         plane_config->fb = intel_fb;
7409 }
7410
7411 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7412                                struct intel_crtc_state *pipe_config)
7413 {
7414         struct drm_device *dev = crtc->base.dev;
7415         struct drm_i915_private *dev_priv = to_i915(dev);
7416         int pipe = pipe_config->cpu_transcoder;
7417         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7418         struct dpll clock;
7419         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7420         int refclk = 100000;
7421
7422         /* In case of DSI, DPLL will not be used */
7423         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7424                 return;
7425
7426         mutex_lock(&dev_priv->sb_lock);
7427         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7428         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7429         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7430         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7431         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7432         mutex_unlock(&dev_priv->sb_lock);
7433
7434         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7435         clock.m2 = (pll_dw0 & 0xff) << 22;
7436         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7437                 clock.m2 |= pll_dw2 & 0x3fffff;
7438         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7439         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7440         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7441
7442         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7443 }
7444
7445 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7446                                  struct intel_crtc_state *pipe_config)
7447 {
7448         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7449         enum intel_display_power_domain power_domain;
7450         uint32_t tmp;
7451         bool ret;
7452
7453         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7454         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7455                 return false;
7456
7457         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7458         pipe_config->shared_dpll = NULL;
7459
7460         ret = false;
7461
7462         tmp = I915_READ(PIPECONF(crtc->pipe));
7463         if (!(tmp & PIPECONF_ENABLE))
7464                 goto out;
7465
7466         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7467             IS_CHERRYVIEW(dev_priv)) {
7468                 switch (tmp & PIPECONF_BPC_MASK) {
7469                 case PIPECONF_6BPC:
7470                         pipe_config->pipe_bpp = 18;
7471                         break;
7472                 case PIPECONF_8BPC:
7473                         pipe_config->pipe_bpp = 24;
7474                         break;
7475                 case PIPECONF_10BPC:
7476                         pipe_config->pipe_bpp = 30;
7477                         break;
7478                 default:
7479                         break;
7480                 }
7481         }
7482
7483         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7484             (tmp & PIPECONF_COLOR_RANGE_SELECT))
7485                 pipe_config->limited_color_range = true;
7486
7487         if (INTEL_GEN(dev_priv) < 4)
7488                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7489
7490         intel_get_pipe_timings(crtc, pipe_config);
7491         intel_get_pipe_src_size(crtc, pipe_config);
7492
7493         i9xx_get_pfit_config(crtc, pipe_config);
7494
7495         if (INTEL_GEN(dev_priv) >= 4) {
7496                 /* No way to read it out on pipes B and C */
7497                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7498                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
7499                 else
7500                         tmp = I915_READ(DPLL_MD(crtc->pipe));
7501                 pipe_config->pixel_multiplier =
7502                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7503                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7504                 pipe_config->dpll_hw_state.dpll_md = tmp;
7505         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7506                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7507                 tmp = I915_READ(DPLL(crtc->pipe));
7508                 pipe_config->pixel_multiplier =
7509                         ((tmp & SDVO_MULTIPLIER_MASK)
7510                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7511         } else {
7512                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7513                  * port and will be fixed up in the encoder->get_config
7514                  * function. */
7515                 pipe_config->pixel_multiplier = 1;
7516         }
7517         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7518         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7519                 /*
7520                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7521                  * on 830. Filter it out here so that we don't
7522                  * report errors due to that.
7523                  */
7524                 if (IS_I830(dev_priv))
7525                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7526
7527                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7528                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7529         } else {
7530                 /* Mask out read-only status bits. */
7531                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7532                                                      DPLL_PORTC_READY_MASK |
7533                                                      DPLL_PORTB_READY_MASK);
7534         }
7535
7536         if (IS_CHERRYVIEW(dev_priv))
7537                 chv_crtc_clock_get(crtc, pipe_config);
7538         else if (IS_VALLEYVIEW(dev_priv))
7539                 vlv_crtc_clock_get(crtc, pipe_config);
7540         else
7541                 i9xx_crtc_clock_get(crtc, pipe_config);
7542
7543         /*
7544          * Normally the dotclock is filled in by the encoder .get_config()
7545          * but in case the pipe is enabled w/o any ports we need a sane
7546          * default.
7547          */
7548         pipe_config->base.adjusted_mode.crtc_clock =
7549                 pipe_config->port_clock / pipe_config->pixel_multiplier;
7550
7551         ret = true;
7552
7553 out:
7554         intel_display_power_put(dev_priv, power_domain);
7555
7556         return ret;
7557 }
7558
7559 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7560 {
7561         struct intel_encoder *encoder;
7562         int i;
7563         u32 val, final;
7564         bool has_lvds = false;
7565         bool has_cpu_edp = false;
7566         bool has_panel = false;
7567         bool has_ck505 = false;
7568         bool can_ssc = false;
7569         bool using_ssc_source = false;
7570
7571         /* We need to take the global config into account */
7572         for_each_intel_encoder(&dev_priv->drm, encoder) {
7573                 switch (encoder->type) {
7574                 case INTEL_OUTPUT_LVDS:
7575                         has_panel = true;
7576                         has_lvds = true;
7577                         break;
7578                 case INTEL_OUTPUT_EDP:
7579                         has_panel = true;
7580                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7581                                 has_cpu_edp = true;
7582                         break;
7583                 default:
7584                         break;
7585                 }
7586         }
7587
7588         if (HAS_PCH_IBX(dev_priv)) {
7589                 has_ck505 = dev_priv->vbt.display_clock_mode;
7590                 can_ssc = has_ck505;
7591         } else {
7592                 has_ck505 = false;
7593                 can_ssc = true;
7594         }
7595
7596         /* Check if any DPLLs are using the SSC source */
7597         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7598                 u32 temp = I915_READ(PCH_DPLL(i));
7599
7600                 if (!(temp & DPLL_VCO_ENABLE))
7601                         continue;
7602
7603                 if ((temp & PLL_REF_INPUT_MASK) ==
7604                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7605                         using_ssc_source = true;
7606                         break;
7607                 }
7608         }
7609
7610         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7611                       has_panel, has_lvds, has_ck505, using_ssc_source);
7612
7613         /* Ironlake: try to setup display ref clock before DPLL
7614          * enabling. This is only under driver's control after
7615          * PCH B stepping, previous chipset stepping should be
7616          * ignoring this setting.
7617          */
7618         val = I915_READ(PCH_DREF_CONTROL);
7619
7620         /* As we must carefully and slowly disable/enable each source in turn,
7621          * compute the final state we want first and check if we need to
7622          * make any changes at all.
7623          */
7624         final = val;
7625         final &= ~DREF_NONSPREAD_SOURCE_MASK;
7626         if (has_ck505)
7627                 final |= DREF_NONSPREAD_CK505_ENABLE;
7628         else
7629                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7630
7631         final &= ~DREF_SSC_SOURCE_MASK;
7632         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7633         final &= ~DREF_SSC1_ENABLE;
7634
7635         if (has_panel) {
7636                 final |= DREF_SSC_SOURCE_ENABLE;
7637
7638                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7639                         final |= DREF_SSC1_ENABLE;
7640
7641                 if (has_cpu_edp) {
7642                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
7643                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7644                         else
7645                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7646                 } else
7647                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7648         } else if (using_ssc_source) {
7649                 final |= DREF_SSC_SOURCE_ENABLE;
7650                 final |= DREF_SSC1_ENABLE;
7651         }
7652
7653         if (final == val)
7654                 return;
7655
7656         /* Always enable nonspread source */
7657         val &= ~DREF_NONSPREAD_SOURCE_MASK;
7658
7659         if (has_ck505)
7660                 val |= DREF_NONSPREAD_CK505_ENABLE;
7661         else
7662                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7663
7664         if (has_panel) {
7665                 val &= ~DREF_SSC_SOURCE_MASK;
7666                 val |= DREF_SSC_SOURCE_ENABLE;
7667
7668                 /* SSC must be turned on before enabling the CPU output  */
7669                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7670                         DRM_DEBUG_KMS("Using SSC on panel\n");
7671                         val |= DREF_SSC1_ENABLE;
7672                 } else
7673                         val &= ~DREF_SSC1_ENABLE;
7674
7675                 /* Get SSC going before enabling the outputs */
7676                 I915_WRITE(PCH_DREF_CONTROL, val);
7677                 POSTING_READ(PCH_DREF_CONTROL);
7678                 udelay(200);
7679
7680                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7681
7682                 /* Enable CPU source on CPU attached eDP */
7683                 if (has_cpu_edp) {
7684                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7685                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
7686                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7687                         } else
7688                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7689                 } else
7690                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7691
7692                 I915_WRITE(PCH_DREF_CONTROL, val);
7693                 POSTING_READ(PCH_DREF_CONTROL);
7694                 udelay(200);
7695         } else {
7696                 DRM_DEBUG_KMS("Disabling CPU source output\n");
7697
7698                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7699
7700                 /* Turn off CPU output */
7701                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7702
7703                 I915_WRITE(PCH_DREF_CONTROL, val);
7704                 POSTING_READ(PCH_DREF_CONTROL);
7705                 udelay(200);
7706
7707                 if (!using_ssc_source) {
7708                         DRM_DEBUG_KMS("Disabling SSC source\n");
7709
7710                         /* Turn off the SSC source */
7711                         val &= ~DREF_SSC_SOURCE_MASK;
7712                         val |= DREF_SSC_SOURCE_DISABLE;
7713
7714                         /* Turn off SSC1 */
7715                         val &= ~DREF_SSC1_ENABLE;
7716
7717                         I915_WRITE(PCH_DREF_CONTROL, val);
7718                         POSTING_READ(PCH_DREF_CONTROL);
7719                         udelay(200);
7720                 }
7721         }
7722
7723         BUG_ON(val != final);
7724 }
7725
7726 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7727 {
7728         uint32_t tmp;
7729
7730         tmp = I915_READ(SOUTH_CHICKEN2);
7731         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7732         I915_WRITE(SOUTH_CHICKEN2, tmp);
7733
7734         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7735                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7736                 DRM_ERROR("FDI mPHY reset assert timeout\n");
7737
7738         tmp = I915_READ(SOUTH_CHICKEN2);
7739         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7740         I915_WRITE(SOUTH_CHICKEN2, tmp);
7741
7742         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7743                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7744                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7745 }
7746
7747 /* WaMPhyProgramming:hsw */
7748 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7749 {
7750         uint32_t tmp;
7751
7752         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7753         tmp &= ~(0xFF << 24);
7754         tmp |= (0x12 << 24);
7755         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7756
7757         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7758         tmp |= (1 << 11);
7759         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7760
7761         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7762         tmp |= (1 << 11);
7763         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7764
7765         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7766         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7767         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7768
7769         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7770         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7771         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7772
7773         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7774         tmp &= ~(7 << 13);
7775         tmp |= (5 << 13);
7776         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7777
7778         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7779         tmp &= ~(7 << 13);
7780         tmp |= (5 << 13);
7781         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7782
7783         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7784         tmp &= ~0xFF;
7785         tmp |= 0x1C;
7786         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7787
7788         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7789         tmp &= ~0xFF;
7790         tmp |= 0x1C;
7791         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7792
7793         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7794         tmp &= ~(0xFF << 16);
7795         tmp |= (0x1C << 16);
7796         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7797
7798         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7799         tmp &= ~(0xFF << 16);
7800         tmp |= (0x1C << 16);
7801         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7802
7803         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7804         tmp |= (1 << 27);
7805         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7806
7807         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7808         tmp |= (1 << 27);
7809         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7810
7811         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7812         tmp &= ~(0xF << 28);
7813         tmp |= (4 << 28);
7814         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7815
7816         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7817         tmp &= ~(0xF << 28);
7818         tmp |= (4 << 28);
7819         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7820 }
7821
7822 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7823  * Programming" based on the parameters passed:
7824  * - Sequence to enable CLKOUT_DP
7825  * - Sequence to enable CLKOUT_DP without spread
7826  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7827  */
7828 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7829                                  bool with_spread, bool with_fdi)
7830 {
7831         uint32_t reg, tmp;
7832
7833         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7834                 with_spread = true;
7835         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7836             with_fdi, "LP PCH doesn't have FDI\n"))
7837                 with_fdi = false;
7838
7839         mutex_lock(&dev_priv->sb_lock);
7840
7841         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7842         tmp &= ~SBI_SSCCTL_DISABLE;
7843         tmp |= SBI_SSCCTL_PATHALT;
7844         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7845
7846         udelay(24);
7847
7848         if (with_spread) {
7849                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7850                 tmp &= ~SBI_SSCCTL_PATHALT;
7851                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7852
7853                 if (with_fdi) {
7854                         lpt_reset_fdi_mphy(dev_priv);
7855                         lpt_program_fdi_mphy(dev_priv);
7856                 }
7857         }
7858
7859         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7860         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7861         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7862         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7863
7864         mutex_unlock(&dev_priv->sb_lock);
7865 }
7866
7867 /* Sequence to disable CLKOUT_DP */
7868 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
7869 {
7870         uint32_t reg, tmp;
7871
7872         mutex_lock(&dev_priv->sb_lock);
7873
7874         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7875         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7876         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7877         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7878
7879         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7880         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7881                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7882                         tmp |= SBI_SSCCTL_PATHALT;
7883                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7884                         udelay(32);
7885                 }
7886                 tmp |= SBI_SSCCTL_DISABLE;
7887                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7888         }
7889
7890         mutex_unlock(&dev_priv->sb_lock);
7891 }
7892
7893 #define BEND_IDX(steps) ((50 + (steps)) / 5)
7894
7895 static const uint16_t sscdivintphase[] = {
7896         [BEND_IDX( 50)] = 0x3B23,
7897         [BEND_IDX( 45)] = 0x3B23,
7898         [BEND_IDX( 40)] = 0x3C23,
7899         [BEND_IDX( 35)] = 0x3C23,
7900         [BEND_IDX( 30)] = 0x3D23,
7901         [BEND_IDX( 25)] = 0x3D23,
7902         [BEND_IDX( 20)] = 0x3E23,
7903         [BEND_IDX( 15)] = 0x3E23,
7904         [BEND_IDX( 10)] = 0x3F23,
7905         [BEND_IDX(  5)] = 0x3F23,
7906         [BEND_IDX(  0)] = 0x0025,
7907         [BEND_IDX( -5)] = 0x0025,
7908         [BEND_IDX(-10)] = 0x0125,
7909         [BEND_IDX(-15)] = 0x0125,
7910         [BEND_IDX(-20)] = 0x0225,
7911         [BEND_IDX(-25)] = 0x0225,
7912         [BEND_IDX(-30)] = 0x0325,
7913         [BEND_IDX(-35)] = 0x0325,
7914         [BEND_IDX(-40)] = 0x0425,
7915         [BEND_IDX(-45)] = 0x0425,
7916         [BEND_IDX(-50)] = 0x0525,
7917 };
7918
7919 /*
7920  * Bend CLKOUT_DP
7921  * steps -50 to 50 inclusive, in steps of 5
7922  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
7923  * change in clock period = -(steps / 10) * 5.787 ps
7924  */
7925 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
7926 {
7927         uint32_t tmp;
7928         int idx = BEND_IDX(steps);
7929
7930         if (WARN_ON(steps % 5 != 0))
7931                 return;
7932
7933         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
7934                 return;
7935
7936         mutex_lock(&dev_priv->sb_lock);
7937
7938         if (steps % 10 != 0)
7939                 tmp = 0xAAAAAAAB;
7940         else
7941                 tmp = 0x00000000;
7942         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
7943
7944         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
7945         tmp &= 0xffff0000;
7946         tmp |= sscdivintphase[idx];
7947         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
7948
7949         mutex_unlock(&dev_priv->sb_lock);
7950 }
7951
7952 #undef BEND_IDX
7953
7954 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
7955 {
7956         struct intel_encoder *encoder;
7957         bool has_vga = false;
7958
7959         for_each_intel_encoder(&dev_priv->drm, encoder) {
7960                 switch (encoder->type) {
7961                 case INTEL_OUTPUT_ANALOG:
7962                         has_vga = true;
7963                         break;
7964                 default:
7965                         break;
7966                 }
7967         }
7968
7969         if (has_vga) {
7970                 lpt_bend_clkout_dp(dev_priv, 0);
7971                 lpt_enable_clkout_dp(dev_priv, true, true);
7972         } else {
7973                 lpt_disable_clkout_dp(dev_priv);
7974         }
7975 }
7976
7977 /*
7978  * Initialize reference clocks when the driver loads
7979  */
7980 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
7981 {
7982         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
7983                 ironlake_init_pch_refclk(dev_priv);
7984         else if (HAS_PCH_LPT(dev_priv))
7985                 lpt_init_pch_refclk(dev_priv);
7986 }
7987
7988 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7989 {
7990         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7991         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7992         int pipe = intel_crtc->pipe;
7993         uint32_t val;
7994
7995         val = 0;
7996
7997         switch (intel_crtc->config->pipe_bpp) {
7998         case 18:
7999                 val |= PIPECONF_6BPC;
8000                 break;
8001         case 24:
8002                 val |= PIPECONF_8BPC;
8003                 break;
8004         case 30:
8005                 val |= PIPECONF_10BPC;
8006                 break;
8007         case 36:
8008                 val |= PIPECONF_12BPC;
8009                 break;
8010         default:
8011                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8012                 BUG();
8013         }
8014
8015         if (intel_crtc->config->dither)
8016                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8017
8018         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8019                 val |= PIPECONF_INTERLACED_ILK;
8020         else
8021                 val |= PIPECONF_PROGRESSIVE;
8022
8023         if (intel_crtc->config->limited_color_range)
8024                 val |= PIPECONF_COLOR_RANGE_SELECT;
8025
8026         I915_WRITE(PIPECONF(pipe), val);
8027         POSTING_READ(PIPECONF(pipe));
8028 }
8029
8030 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8031 {
8032         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8034         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8035         u32 val = 0;
8036
8037         if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8038                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8039
8040         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8041                 val |= PIPECONF_INTERLACED_ILK;
8042         else
8043                 val |= PIPECONF_PROGRESSIVE;
8044
8045         I915_WRITE(PIPECONF(cpu_transcoder), val);
8046         POSTING_READ(PIPECONF(cpu_transcoder));
8047 }
8048
8049 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8050 {
8051         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8053
8054         if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8055                 u32 val = 0;
8056
8057                 switch (intel_crtc->config->pipe_bpp) {
8058                 case 18:
8059                         val |= PIPEMISC_DITHER_6_BPC;
8060                         break;
8061                 case 24:
8062                         val |= PIPEMISC_DITHER_8_BPC;
8063                         break;
8064                 case 30:
8065                         val |= PIPEMISC_DITHER_10_BPC;
8066                         break;
8067                 case 36:
8068                         val |= PIPEMISC_DITHER_12_BPC;
8069                         break;
8070                 default:
8071                         /* Case prevented by pipe_config_set_bpp. */
8072                         BUG();
8073                 }
8074
8075                 if (intel_crtc->config->dither)
8076                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8077
8078                 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8079         }
8080 }
8081
8082 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8083 {
8084         /*
8085          * Account for spread spectrum to avoid
8086          * oversubscribing the link. Max center spread
8087          * is 2.5%; use 5% for safety's sake.
8088          */
8089         u32 bps = target_clock * bpp * 21 / 20;
8090         return DIV_ROUND_UP(bps, link_bw * 8);
8091 }
8092
8093 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8094 {
8095         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8096 }
8097
8098 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8099                                   struct intel_crtc_state *crtc_state,
8100                                   struct dpll *reduced_clock)
8101 {
8102         struct drm_crtc *crtc = &intel_crtc->base;
8103         struct drm_device *dev = crtc->dev;
8104         struct drm_i915_private *dev_priv = to_i915(dev);
8105         u32 dpll, fp, fp2;
8106         int factor;
8107
8108         /* Enable autotuning of the PLL clock (if permissible) */
8109         factor = 21;
8110         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8111                 if ((intel_panel_use_ssc(dev_priv) &&
8112                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8113                     (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8114                         factor = 25;
8115         } else if (crtc_state->sdvo_tv_clock)
8116                 factor = 20;
8117
8118         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8119
8120         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8121                 fp |= FP_CB_TUNE;
8122
8123         if (reduced_clock) {
8124                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8125
8126                 if (reduced_clock->m < factor * reduced_clock->n)
8127                         fp2 |= FP_CB_TUNE;
8128         } else {
8129                 fp2 = fp;
8130         }
8131
8132         dpll = 0;
8133
8134         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8135                 dpll |= DPLLB_MODE_LVDS;
8136         else
8137                 dpll |= DPLLB_MODE_DAC_SERIAL;
8138
8139         dpll |= (crtc_state->pixel_multiplier - 1)
8140                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8141
8142         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8143             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8144                 dpll |= DPLL_SDVO_HIGH_SPEED;
8145
8146         if (intel_crtc_has_dp_encoder(crtc_state))
8147                 dpll |= DPLL_SDVO_HIGH_SPEED;
8148
8149         /*
8150          * The high speed IO clock is only really required for
8151          * SDVO/HDMI/DP, but we also enable it for CRT to make it
8152          * possible to share the DPLL between CRT and HDMI. Enabling
8153          * the clock needlessly does no real harm, except use up a
8154          * bit of power potentially.
8155          *
8156          * We'll limit this to IVB with 3 pipes, since it has only two
8157          * DPLLs and so DPLL sharing is the only way to get three pipes
8158          * driving PCH ports at the same time. On SNB we could do this,
8159          * and potentially avoid enabling the second DPLL, but it's not
8160          * clear if it''s a win or loss power wise. No point in doing
8161          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8162          */
8163         if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8164             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8165                 dpll |= DPLL_SDVO_HIGH_SPEED;
8166
8167         /* compute bitmask from p1 value */
8168         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8169         /* also FPA1 */
8170         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8171
8172         switch (crtc_state->dpll.p2) {
8173         case 5:
8174                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8175                 break;
8176         case 7:
8177                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8178                 break;
8179         case 10:
8180                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8181                 break;
8182         case 14:
8183                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8184                 break;
8185         }
8186
8187         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8188             intel_panel_use_ssc(dev_priv))
8189                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8190         else
8191                 dpll |= PLL_REF_INPUT_DREFCLK;
8192
8193         dpll |= DPLL_VCO_ENABLE;
8194
8195         crtc_state->dpll_hw_state.dpll = dpll;
8196         crtc_state->dpll_hw_state.fp0 = fp;
8197         crtc_state->dpll_hw_state.fp1 = fp2;
8198 }
8199
8200 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8201                                        struct intel_crtc_state *crtc_state)
8202 {
8203         struct drm_device *dev = crtc->base.dev;
8204         struct drm_i915_private *dev_priv = to_i915(dev);
8205         const struct intel_limit *limit;
8206         int refclk = 120000;
8207
8208         memset(&crtc_state->dpll_hw_state, 0,
8209                sizeof(crtc_state->dpll_hw_state));
8210
8211         crtc->lowfreq_avail = false;
8212
8213         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8214         if (!crtc_state->has_pch_encoder)
8215                 return 0;
8216
8217         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8218                 if (intel_panel_use_ssc(dev_priv)) {
8219                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8220                                       dev_priv->vbt.lvds_ssc_freq);
8221                         refclk = dev_priv->vbt.lvds_ssc_freq;
8222                 }
8223
8224                 if (intel_is_dual_link_lvds(dev)) {
8225                         if (refclk == 100000)
8226                                 limit = &intel_limits_ironlake_dual_lvds_100m;
8227                         else
8228                                 limit = &intel_limits_ironlake_dual_lvds;
8229                 } else {
8230                         if (refclk == 100000)
8231                                 limit = &intel_limits_ironlake_single_lvds_100m;
8232                         else
8233                                 limit = &intel_limits_ironlake_single_lvds;
8234                 }
8235         } else {
8236                 limit = &intel_limits_ironlake_dac;
8237         }
8238
8239         if (!crtc_state->clock_set &&
8240             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8241                                 refclk, NULL, &crtc_state->dpll)) {
8242                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8243                 return -EINVAL;
8244         }
8245
8246         ironlake_compute_dpll(crtc, crtc_state, NULL);
8247
8248         if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8249                 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8250                                  pipe_name(crtc->pipe));
8251                 return -EINVAL;
8252         }
8253
8254         return 0;
8255 }
8256
8257 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8258                                          struct intel_link_m_n *m_n)
8259 {
8260         struct drm_device *dev = crtc->base.dev;
8261         struct drm_i915_private *dev_priv = to_i915(dev);
8262         enum pipe pipe = crtc->pipe;
8263
8264         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8265         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8266         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8267                 & ~TU_SIZE_MASK;
8268         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8269         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8270                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8271 }
8272
8273 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8274                                          enum transcoder transcoder,
8275                                          struct intel_link_m_n *m_n,
8276                                          struct intel_link_m_n *m2_n2)
8277 {
8278         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8279         enum pipe pipe = crtc->pipe;
8280
8281         if (INTEL_GEN(dev_priv) >= 5) {
8282                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8283                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8284                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8285                         & ~TU_SIZE_MASK;
8286                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8287                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8288                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8289                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8290                  * gen < 8) and if DRRS is supported (to make sure the
8291                  * registers are not unnecessarily read).
8292                  */
8293                 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8294                         crtc->config->has_drrs) {
8295                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8296                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8297                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8298                                         & ~TU_SIZE_MASK;
8299                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8300                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8301                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8302                 }
8303         } else {
8304                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8305                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8306                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8307                         & ~TU_SIZE_MASK;
8308                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8309                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8310                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8311         }
8312 }
8313
8314 void intel_dp_get_m_n(struct intel_crtc *crtc,
8315                       struct intel_crtc_state *pipe_config)
8316 {
8317         if (pipe_config->has_pch_encoder)
8318                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8319         else
8320                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8321                                              &pipe_config->dp_m_n,
8322                                              &pipe_config->dp_m2_n2);
8323 }
8324
8325 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8326                                         struct intel_crtc_state *pipe_config)
8327 {
8328         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8329                                      &pipe_config->fdi_m_n, NULL);
8330 }
8331
8332 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8333                                     struct intel_crtc_state *pipe_config)
8334 {
8335         struct drm_device *dev = crtc->base.dev;
8336         struct drm_i915_private *dev_priv = to_i915(dev);
8337         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8338         uint32_t ps_ctrl = 0;
8339         int id = -1;
8340         int i;
8341
8342         /* find scaler attached to this pipe */
8343         for (i = 0; i < crtc->num_scalers; i++) {
8344                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8345                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8346                         id = i;
8347                         pipe_config->pch_pfit.enabled = true;
8348                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8349                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8350                         break;
8351                 }
8352         }
8353
8354         scaler_state->scaler_id = id;
8355         if (id >= 0) {
8356                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8357         } else {
8358                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8359         }
8360 }
8361
8362 static void
8363 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8364                                  struct intel_initial_plane_config *plane_config)
8365 {
8366         struct drm_device *dev = crtc->base.dev;
8367         struct drm_i915_private *dev_priv = to_i915(dev);
8368         u32 val, base, offset, stride_mult, tiling;
8369         int pipe = crtc->pipe;
8370         int fourcc, pixel_format;
8371         unsigned int aligned_height;
8372         struct drm_framebuffer *fb;
8373         struct intel_framebuffer *intel_fb;
8374
8375         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8376         if (!intel_fb) {
8377                 DRM_DEBUG_KMS("failed to alloc fb\n");
8378                 return;
8379         }
8380
8381         fb = &intel_fb->base;
8382
8383         fb->dev = dev;
8384
8385         val = I915_READ(PLANE_CTL(pipe, 0));
8386         if (!(val & PLANE_CTL_ENABLE))
8387                 goto error;
8388
8389         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8390         fourcc = skl_format_to_fourcc(pixel_format,
8391                                       val & PLANE_CTL_ORDER_RGBX,
8392                                       val & PLANE_CTL_ALPHA_MASK);
8393         fb->format = drm_format_info(fourcc);
8394
8395         tiling = val & PLANE_CTL_TILED_MASK;
8396         switch (tiling) {
8397         case PLANE_CTL_TILED_LINEAR:
8398                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8399                 break;
8400         case PLANE_CTL_TILED_X:
8401                 plane_config->tiling = I915_TILING_X;
8402                 fb->modifier = I915_FORMAT_MOD_X_TILED;
8403                 break;
8404         case PLANE_CTL_TILED_Y:
8405                 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8406                 break;
8407         case PLANE_CTL_TILED_YF:
8408                 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8409                 break;
8410         default:
8411                 MISSING_CASE(tiling);
8412                 goto error;
8413         }
8414
8415         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8416         plane_config->base = base;
8417
8418         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8419
8420         val = I915_READ(PLANE_SIZE(pipe, 0));
8421         fb->height = ((val >> 16) & 0xfff) + 1;
8422         fb->width = ((val >> 0) & 0x1fff) + 1;
8423
8424         val = I915_READ(PLANE_STRIDE(pipe, 0));
8425         stride_mult = intel_fb_stride_alignment(fb, 0);
8426         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8427
8428         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8429
8430         plane_config->size = fb->pitches[0] * aligned_height;
8431
8432         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8433                       pipe_name(pipe), fb->width, fb->height,
8434                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8435                       plane_config->size);
8436
8437         plane_config->fb = intel_fb;
8438         return;
8439
8440 error:
8441         kfree(intel_fb);
8442 }
8443
8444 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8445                                      struct intel_crtc_state *pipe_config)
8446 {
8447         struct drm_device *dev = crtc->base.dev;
8448         struct drm_i915_private *dev_priv = to_i915(dev);
8449         uint32_t tmp;
8450
8451         tmp = I915_READ(PF_CTL(crtc->pipe));
8452
8453         if (tmp & PF_ENABLE) {
8454                 pipe_config->pch_pfit.enabled = true;
8455                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8456                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8457
8458                 /* We currently do not free assignements of panel fitters on
8459                  * ivb/hsw (since we don't use the higher upscaling modes which
8460                  * differentiates them) so just WARN about this case for now. */
8461                 if (IS_GEN7(dev_priv)) {
8462                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8463                                 PF_PIPE_SEL_IVB(crtc->pipe));
8464                 }
8465         }
8466 }
8467
8468 static void
8469 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8470                                   struct intel_initial_plane_config *plane_config)
8471 {
8472         struct drm_device *dev = crtc->base.dev;
8473         struct drm_i915_private *dev_priv = to_i915(dev);
8474         u32 val, base, offset;
8475         int pipe = crtc->pipe;
8476         int fourcc, pixel_format;
8477         unsigned int aligned_height;
8478         struct drm_framebuffer *fb;
8479         struct intel_framebuffer *intel_fb;
8480
8481         val = I915_READ(DSPCNTR(pipe));
8482         if (!(val & DISPLAY_PLANE_ENABLE))
8483                 return;
8484
8485         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8486         if (!intel_fb) {
8487                 DRM_DEBUG_KMS("failed to alloc fb\n");
8488                 return;
8489         }
8490
8491         fb = &intel_fb->base;
8492
8493         fb->dev = dev;
8494
8495         if (INTEL_GEN(dev_priv) >= 4) {
8496                 if (val & DISPPLANE_TILED) {
8497                         plane_config->tiling = I915_TILING_X;
8498                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8499                 }
8500         }
8501
8502         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8503         fourcc = i9xx_format_to_fourcc(pixel_format);
8504         fb->format = drm_format_info(fourcc);
8505
8506         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8507         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8508                 offset = I915_READ(DSPOFFSET(pipe));
8509         } else {
8510                 if (plane_config->tiling)
8511                         offset = I915_READ(DSPTILEOFF(pipe));
8512                 else
8513                         offset = I915_READ(DSPLINOFF(pipe));
8514         }
8515         plane_config->base = base;
8516
8517         val = I915_READ(PIPESRC(pipe));
8518         fb->width = ((val >> 16) & 0xfff) + 1;
8519         fb->height = ((val >> 0) & 0xfff) + 1;
8520
8521         val = I915_READ(DSPSTRIDE(pipe));
8522         fb->pitches[0] = val & 0xffffffc0;
8523
8524         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8525
8526         plane_config->size = fb->pitches[0] * aligned_height;
8527
8528         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8529                       pipe_name(pipe), fb->width, fb->height,
8530                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8531                       plane_config->size);
8532
8533         plane_config->fb = intel_fb;
8534 }
8535
8536 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8537                                      struct intel_crtc_state *pipe_config)
8538 {
8539         struct drm_device *dev = crtc->base.dev;
8540         struct drm_i915_private *dev_priv = to_i915(dev);
8541         enum intel_display_power_domain power_domain;
8542         uint32_t tmp;
8543         bool ret;
8544
8545         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8546         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8547                 return false;
8548
8549         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8550         pipe_config->shared_dpll = NULL;
8551
8552         ret = false;
8553         tmp = I915_READ(PIPECONF(crtc->pipe));
8554         if (!(tmp & PIPECONF_ENABLE))
8555                 goto out;
8556
8557         switch (tmp & PIPECONF_BPC_MASK) {
8558         case PIPECONF_6BPC:
8559                 pipe_config->pipe_bpp = 18;
8560                 break;
8561         case PIPECONF_8BPC:
8562                 pipe_config->pipe_bpp = 24;
8563                 break;
8564         case PIPECONF_10BPC:
8565                 pipe_config->pipe_bpp = 30;
8566                 break;
8567         case PIPECONF_12BPC:
8568                 pipe_config->pipe_bpp = 36;
8569                 break;
8570         default:
8571                 break;
8572         }
8573
8574         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8575                 pipe_config->limited_color_range = true;
8576
8577         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8578                 struct intel_shared_dpll *pll;
8579                 enum intel_dpll_id pll_id;
8580
8581                 pipe_config->has_pch_encoder = true;
8582
8583                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8584                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8585                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8586
8587                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8588
8589                 if (HAS_PCH_IBX(dev_priv)) {
8590                         /*
8591                          * The pipe->pch transcoder and pch transcoder->pll
8592                          * mapping is fixed.
8593                          */
8594                         pll_id = (enum intel_dpll_id) crtc->pipe;
8595                 } else {
8596                         tmp = I915_READ(PCH_DPLL_SEL);
8597                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8598                                 pll_id = DPLL_ID_PCH_PLL_B;
8599                         else
8600                                 pll_id= DPLL_ID_PCH_PLL_A;
8601                 }
8602
8603                 pipe_config->shared_dpll =
8604                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
8605                 pll = pipe_config->shared_dpll;
8606
8607                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8608                                                  &pipe_config->dpll_hw_state));
8609
8610                 tmp = pipe_config->dpll_hw_state.dpll;
8611                 pipe_config->pixel_multiplier =
8612                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8613                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8614
8615                 ironlake_pch_clock_get(crtc, pipe_config);
8616         } else {
8617                 pipe_config->pixel_multiplier = 1;
8618         }
8619
8620         intel_get_pipe_timings(crtc, pipe_config);
8621         intel_get_pipe_src_size(crtc, pipe_config);
8622
8623         ironlake_get_pfit_config(crtc, pipe_config);
8624
8625         ret = true;
8626
8627 out:
8628         intel_display_power_put(dev_priv, power_domain);
8629
8630         return ret;
8631 }
8632
8633 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8634 {
8635         struct drm_device *dev = &dev_priv->drm;
8636         struct intel_crtc *crtc;
8637
8638         for_each_intel_crtc(dev, crtc)
8639                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8640                      pipe_name(crtc->pipe));
8641
8642         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8643         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8644         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8645         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8646         I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8647         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8648              "CPU PWM1 enabled\n");
8649         if (IS_HASWELL(dev_priv))
8650                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8651                      "CPU PWM2 enabled\n");
8652         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8653              "PCH PWM1 enabled\n");
8654         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8655              "Utility pin enabled\n");
8656         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8657
8658         /*
8659          * In theory we can still leave IRQs enabled, as long as only the HPD
8660          * interrupts remain enabled. We used to check for that, but since it's
8661          * gen-specific and since we only disable LCPLL after we fully disable
8662          * the interrupts, the check below should be enough.
8663          */
8664         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8665 }
8666
8667 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8668 {
8669         if (IS_HASWELL(dev_priv))
8670                 return I915_READ(D_COMP_HSW);
8671         else
8672                 return I915_READ(D_COMP_BDW);
8673 }
8674
8675 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8676 {
8677         if (IS_HASWELL(dev_priv)) {
8678                 mutex_lock(&dev_priv->rps.hw_lock);
8679                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8680                                             val))
8681                         DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8682                 mutex_unlock(&dev_priv->rps.hw_lock);
8683         } else {
8684                 I915_WRITE(D_COMP_BDW, val);
8685                 POSTING_READ(D_COMP_BDW);
8686         }
8687 }
8688
8689 /*
8690  * This function implements pieces of two sequences from BSpec:
8691  * - Sequence for display software to disable LCPLL
8692  * - Sequence for display software to allow package C8+
8693  * The steps implemented here are just the steps that actually touch the LCPLL
8694  * register. Callers should take care of disabling all the display engine
8695  * functions, doing the mode unset, fixing interrupts, etc.
8696  */
8697 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8698                               bool switch_to_fclk, bool allow_power_down)
8699 {
8700         uint32_t val;
8701
8702         assert_can_disable_lcpll(dev_priv);
8703
8704         val = I915_READ(LCPLL_CTL);
8705
8706         if (switch_to_fclk) {
8707                 val |= LCPLL_CD_SOURCE_FCLK;
8708                 I915_WRITE(LCPLL_CTL, val);
8709
8710                 if (wait_for_us(I915_READ(LCPLL_CTL) &
8711                                 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8712                         DRM_ERROR("Switching to FCLK failed\n");
8713
8714                 val = I915_READ(LCPLL_CTL);
8715         }
8716
8717         val |= LCPLL_PLL_DISABLE;
8718         I915_WRITE(LCPLL_CTL, val);
8719         POSTING_READ(LCPLL_CTL);
8720
8721         if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8722                 DRM_ERROR("LCPLL still locked\n");
8723
8724         val = hsw_read_dcomp(dev_priv);
8725         val |= D_COMP_COMP_DISABLE;
8726         hsw_write_dcomp(dev_priv, val);
8727         ndelay(100);
8728
8729         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8730                      1))
8731                 DRM_ERROR("D_COMP RCOMP still in progress\n");
8732
8733         if (allow_power_down) {
8734                 val = I915_READ(LCPLL_CTL);
8735                 val |= LCPLL_POWER_DOWN_ALLOW;
8736                 I915_WRITE(LCPLL_CTL, val);
8737                 POSTING_READ(LCPLL_CTL);
8738         }
8739 }
8740
8741 /*
8742  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8743  * source.
8744  */
8745 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8746 {
8747         uint32_t val;
8748
8749         val = I915_READ(LCPLL_CTL);
8750
8751         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8752                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8753                 return;
8754
8755         /*
8756          * Make sure we're not on PC8 state before disabling PC8, otherwise
8757          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8758          */
8759         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8760
8761         if (val & LCPLL_POWER_DOWN_ALLOW) {
8762                 val &= ~LCPLL_POWER_DOWN_ALLOW;
8763                 I915_WRITE(LCPLL_CTL, val);
8764                 POSTING_READ(LCPLL_CTL);
8765         }
8766
8767         val = hsw_read_dcomp(dev_priv);
8768         val |= D_COMP_COMP_FORCE;
8769         val &= ~D_COMP_COMP_DISABLE;
8770         hsw_write_dcomp(dev_priv, val);
8771
8772         val = I915_READ(LCPLL_CTL);
8773         val &= ~LCPLL_PLL_DISABLE;
8774         I915_WRITE(LCPLL_CTL, val);
8775
8776         if (intel_wait_for_register(dev_priv,
8777                                     LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8778                                     5))
8779                 DRM_ERROR("LCPLL not locked yet\n");
8780
8781         if (val & LCPLL_CD_SOURCE_FCLK) {
8782                 val = I915_READ(LCPLL_CTL);
8783                 val &= ~LCPLL_CD_SOURCE_FCLK;
8784                 I915_WRITE(LCPLL_CTL, val);
8785
8786                 if (wait_for_us((I915_READ(LCPLL_CTL) &
8787                                  LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8788                         DRM_ERROR("Switching back to LCPLL failed\n");
8789         }
8790
8791         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8792         intel_update_cdclk(dev_priv);
8793 }
8794
8795 /*
8796  * Package states C8 and deeper are really deep PC states that can only be
8797  * reached when all the devices on the system allow it, so even if the graphics
8798  * device allows PC8+, it doesn't mean the system will actually get to these
8799  * states. Our driver only allows PC8+ when going into runtime PM.
8800  *
8801  * The requirements for PC8+ are that all the outputs are disabled, the power
8802  * well is disabled and most interrupts are disabled, and these are also
8803  * requirements for runtime PM. When these conditions are met, we manually do
8804  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8805  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8806  * hang the machine.
8807  *
8808  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8809  * the state of some registers, so when we come back from PC8+ we need to
8810  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8811  * need to take care of the registers kept by RC6. Notice that this happens even
8812  * if we don't put the device in PCI D3 state (which is what currently happens
8813  * because of the runtime PM support).
8814  *
8815  * For more, read "Display Sequences for Package C8" on the hardware
8816  * documentation.
8817  */
8818 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8819 {
8820         uint32_t val;
8821
8822         DRM_DEBUG_KMS("Enabling package C8+\n");
8823
8824         if (HAS_PCH_LPT_LP(dev_priv)) {
8825                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8826                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8827                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8828         }
8829
8830         lpt_disable_clkout_dp(dev_priv);
8831         hsw_disable_lcpll(dev_priv, true, true);
8832 }
8833
8834 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8835 {
8836         uint32_t val;
8837
8838         DRM_DEBUG_KMS("Disabling package C8+\n");
8839
8840         hsw_restore_lcpll(dev_priv);
8841         lpt_init_pch_refclk(dev_priv);
8842
8843         if (HAS_PCH_LPT_LP(dev_priv)) {
8844                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8845                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8846                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8847         }
8848 }
8849
8850 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8851                                       struct intel_crtc_state *crtc_state)
8852 {
8853         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
8854                 struct intel_encoder *encoder =
8855                         intel_ddi_get_crtc_new_encoder(crtc_state);
8856
8857                 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
8858                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8859                                          pipe_name(crtc->pipe));
8860                         return -EINVAL;
8861                 }
8862         }
8863
8864         crtc->lowfreq_avail = false;
8865
8866         return 0;
8867 }
8868
8869 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
8870                                 enum port port,
8871                                 struct intel_crtc_state *pipe_config)
8872 {
8873         enum intel_dpll_id id;
8874
8875         switch (port) {
8876         case PORT_A:
8877                 id = DPLL_ID_SKL_DPLL0;
8878                 break;
8879         case PORT_B:
8880                 id = DPLL_ID_SKL_DPLL1;
8881                 break;
8882         case PORT_C:
8883                 id = DPLL_ID_SKL_DPLL2;
8884                 break;
8885         default:
8886                 DRM_ERROR("Incorrect port type\n");
8887                 return;
8888         }
8889
8890         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8891 }
8892
8893 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8894                                 enum port port,
8895                                 struct intel_crtc_state *pipe_config)
8896 {
8897         enum intel_dpll_id id;
8898         u32 temp;
8899
8900         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8901         id = temp >> (port * 3 + 1);
8902
8903         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
8904                 return;
8905
8906         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8907 }
8908
8909 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8910                                 enum port port,
8911                                 struct intel_crtc_state *pipe_config)
8912 {
8913         enum intel_dpll_id id;
8914         uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8915
8916         switch (ddi_pll_sel) {
8917         case PORT_CLK_SEL_WRPLL1:
8918                 id = DPLL_ID_WRPLL1;
8919                 break;
8920         case PORT_CLK_SEL_WRPLL2:
8921                 id = DPLL_ID_WRPLL2;
8922                 break;
8923         case PORT_CLK_SEL_SPLL:
8924                 id = DPLL_ID_SPLL;
8925                 break;
8926         case PORT_CLK_SEL_LCPLL_810:
8927                 id = DPLL_ID_LCPLL_810;
8928                 break;
8929         case PORT_CLK_SEL_LCPLL_1350:
8930                 id = DPLL_ID_LCPLL_1350;
8931                 break;
8932         case PORT_CLK_SEL_LCPLL_2700:
8933                 id = DPLL_ID_LCPLL_2700;
8934                 break;
8935         default:
8936                 MISSING_CASE(ddi_pll_sel);
8937                 /* fall through */
8938         case PORT_CLK_SEL_NONE:
8939                 return;
8940         }
8941
8942         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
8943 }
8944
8945 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
8946                                      struct intel_crtc_state *pipe_config,
8947                                      u64 *power_domain_mask)
8948 {
8949         struct drm_device *dev = crtc->base.dev;
8950         struct drm_i915_private *dev_priv = to_i915(dev);
8951         enum intel_display_power_domain power_domain;
8952         u32 tmp;
8953
8954         /*
8955          * The pipe->transcoder mapping is fixed with the exception of the eDP
8956          * transcoder handled below.
8957          */
8958         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8959
8960         /*
8961          * XXX: Do intel_display_power_get_if_enabled before reading this (for
8962          * consistency and less surprising code; it's in always on power).
8963          */
8964         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8965         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8966                 enum pipe trans_edp_pipe;
8967                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8968                 default:
8969                         WARN(1, "unknown pipe linked to edp transcoder\n");
8970                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8971                 case TRANS_DDI_EDP_INPUT_A_ON:
8972                         trans_edp_pipe = PIPE_A;
8973                         break;
8974                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8975                         trans_edp_pipe = PIPE_B;
8976                         break;
8977                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8978                         trans_edp_pipe = PIPE_C;
8979                         break;
8980                 }
8981
8982                 if (trans_edp_pipe == crtc->pipe)
8983                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8984         }
8985
8986         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
8987         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8988                 return false;
8989         *power_domain_mask |= BIT_ULL(power_domain);
8990
8991         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8992
8993         return tmp & PIPECONF_ENABLE;
8994 }
8995
8996 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
8997                                          struct intel_crtc_state *pipe_config,
8998                                          u64 *power_domain_mask)
8999 {
9000         struct drm_device *dev = crtc->base.dev;
9001         struct drm_i915_private *dev_priv = to_i915(dev);
9002         enum intel_display_power_domain power_domain;
9003         enum port port;
9004         enum transcoder cpu_transcoder;
9005         u32 tmp;
9006
9007         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9008                 if (port == PORT_A)
9009                         cpu_transcoder = TRANSCODER_DSI_A;
9010                 else
9011                         cpu_transcoder = TRANSCODER_DSI_C;
9012
9013                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9014                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9015                         continue;
9016                 *power_domain_mask |= BIT_ULL(power_domain);
9017
9018                 /*
9019                  * The PLL needs to be enabled with a valid divider
9020                  * configuration, otherwise accessing DSI registers will hang
9021                  * the machine. See BSpec North Display Engine
9022                  * registers/MIPI[BXT]. We can break out here early, since we
9023                  * need the same DSI PLL to be enabled for both DSI ports.
9024                  */
9025                 if (!intel_dsi_pll_is_enabled(dev_priv))
9026                         break;
9027
9028                 /* XXX: this works for video mode only */
9029                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9030                 if (!(tmp & DPI_ENABLE))
9031                         continue;
9032
9033                 tmp = I915_READ(MIPI_CTRL(port));
9034                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9035                         continue;
9036
9037                 pipe_config->cpu_transcoder = cpu_transcoder;
9038                 break;
9039         }
9040
9041         return transcoder_is_dsi(pipe_config->cpu_transcoder);
9042 }
9043
9044 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9045                                        struct intel_crtc_state *pipe_config)
9046 {
9047         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9048         struct intel_shared_dpll *pll;
9049         enum port port;
9050         uint32_t tmp;
9051
9052         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9053
9054         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9055
9056         if (IS_GEN9_BC(dev_priv))
9057                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9058         else if (IS_GEN9_LP(dev_priv))
9059                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9060         else
9061                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9062
9063         pll = pipe_config->shared_dpll;
9064         if (pll) {
9065                 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9066                                                  &pipe_config->dpll_hw_state));
9067         }
9068
9069         /*
9070          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9071          * DDI E. So just check whether this pipe is wired to DDI E and whether
9072          * the PCH transcoder is on.
9073          */
9074         if (INTEL_GEN(dev_priv) < 9 &&
9075             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9076                 pipe_config->has_pch_encoder = true;
9077
9078                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9079                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9080                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9081
9082                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9083         }
9084 }
9085
9086 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9087                                     struct intel_crtc_state *pipe_config)
9088 {
9089         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9090         enum intel_display_power_domain power_domain;
9091         u64 power_domain_mask;
9092         bool active;
9093
9094         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9095         if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9096                 return false;
9097         power_domain_mask = BIT_ULL(power_domain);
9098
9099         pipe_config->shared_dpll = NULL;
9100
9101         active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9102
9103         if (IS_GEN9_LP(dev_priv) &&
9104             bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9105                 WARN_ON(active);
9106                 active = true;
9107         }
9108
9109         if (!active)
9110                 goto out;
9111
9112         if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9113                 haswell_get_ddi_port_state(crtc, pipe_config);
9114                 intel_get_pipe_timings(crtc, pipe_config);
9115         }
9116
9117         intel_get_pipe_src_size(crtc, pipe_config);
9118
9119         pipe_config->gamma_mode =
9120                 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9121
9122         if (INTEL_GEN(dev_priv) >= 9) {
9123                 intel_crtc_init_scalers(crtc, pipe_config);
9124
9125                 pipe_config->scaler_state.scaler_id = -1;
9126                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9127         }
9128
9129         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9130         if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9131                 power_domain_mask |= BIT_ULL(power_domain);
9132                 if (INTEL_GEN(dev_priv) >= 9)
9133                         skylake_get_pfit_config(crtc, pipe_config);
9134                 else
9135                         ironlake_get_pfit_config(crtc, pipe_config);
9136         }
9137
9138         if (IS_HASWELL(dev_priv))
9139                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9140                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9141
9142         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9143             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9144                 pipe_config->pixel_multiplier =
9145                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9146         } else {
9147                 pipe_config->pixel_multiplier = 1;
9148         }
9149
9150 out:
9151         for_each_power_domain(power_domain, power_domain_mask)
9152                 intel_display_power_put(dev_priv, power_domain);
9153
9154         return active;
9155 }
9156
9157 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9158 {
9159         struct drm_i915_private *dev_priv =
9160                 to_i915(plane_state->base.plane->dev);
9161         const struct drm_framebuffer *fb = plane_state->base.fb;
9162         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9163         u32 base;
9164
9165         if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9166                 base = obj->phys_handle->busaddr;
9167         else
9168                 base = intel_plane_ggtt_offset(plane_state);
9169
9170         base += plane_state->main.offset;
9171
9172         /* ILK+ do this automagically */
9173         if (HAS_GMCH_DISPLAY(dev_priv) &&
9174             plane_state->base.rotation & DRM_MODE_ROTATE_180)
9175                 base += (plane_state->base.crtc_h *
9176                          plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9177
9178         return base;
9179 }
9180
9181 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9182 {
9183         int x = plane_state->base.crtc_x;
9184         int y = plane_state->base.crtc_y;
9185         u32 pos = 0;
9186
9187         if (x < 0) {
9188                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9189                 x = -x;
9190         }
9191         pos |= x << CURSOR_X_SHIFT;
9192
9193         if (y < 0) {
9194                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9195                 y = -y;
9196         }
9197         pos |= y << CURSOR_Y_SHIFT;
9198
9199         return pos;
9200 }
9201
9202 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9203 {
9204         const struct drm_mode_config *config =
9205                 &plane_state->base.plane->dev->mode_config;
9206         int width = plane_state->base.crtc_w;
9207         int height = plane_state->base.crtc_h;
9208
9209         return width > 0 && width <= config->cursor_width &&
9210                 height > 0 && height <= config->cursor_height;
9211 }
9212
9213 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9214                               struct intel_plane_state *plane_state)
9215 {
9216         const struct drm_framebuffer *fb = plane_state->base.fb;
9217         int src_x, src_y;
9218         u32 offset;
9219         int ret;
9220
9221         ret = drm_plane_helper_check_state(&plane_state->base,
9222                                            &plane_state->clip,
9223                                            DRM_PLANE_HELPER_NO_SCALING,
9224                                            DRM_PLANE_HELPER_NO_SCALING,
9225                                            true, true);
9226         if (ret)
9227                 return ret;
9228
9229         if (!fb)
9230                 return 0;
9231
9232         if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9233                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9234                 return -EINVAL;
9235         }
9236
9237         src_x = plane_state->base.src_x >> 16;
9238         src_y = plane_state->base.src_y >> 16;
9239
9240         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9241         offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9242
9243         if (src_x != 0 || src_y != 0) {
9244                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9245                 return -EINVAL;
9246         }
9247
9248         plane_state->main.offset = offset;
9249
9250         return 0;
9251 }
9252
9253 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9254                            const struct intel_plane_state *plane_state)
9255 {
9256         const struct drm_framebuffer *fb = plane_state->base.fb;
9257
9258         return CURSOR_ENABLE |
9259                 CURSOR_GAMMA_ENABLE |
9260                 CURSOR_FORMAT_ARGB |
9261                 CURSOR_STRIDE(fb->pitches[0]);
9262 }
9263
9264 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9265 {
9266         int width = plane_state->base.crtc_w;
9267
9268         /*
9269          * 845g/865g are only limited by the width of their cursors,
9270          * the height is arbitrary up to the precision of the register.
9271          */
9272         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9273 }
9274
9275 static int i845_check_cursor(struct intel_plane *plane,
9276                              struct intel_crtc_state *crtc_state,
9277                              struct intel_plane_state *plane_state)
9278 {
9279         const struct drm_framebuffer *fb = plane_state->base.fb;
9280         int ret;
9281
9282         ret = intel_check_cursor(crtc_state, plane_state);
9283         if (ret)
9284                 return ret;
9285
9286         /* if we want to turn off the cursor ignore width and height */
9287         if (!fb)
9288                 return 0;
9289
9290         /* Check for which cursor types we support */
9291         if (!i845_cursor_size_ok(plane_state)) {
9292                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9293                           plane_state->base.crtc_w,
9294                           plane_state->base.crtc_h);
9295                 return -EINVAL;
9296         }
9297
9298         switch (fb->pitches[0]) {
9299         case 256:
9300         case 512:
9301         case 1024:
9302         case 2048:
9303                 break;
9304         default:
9305                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9306                               fb->pitches[0]);
9307                 return -EINVAL;
9308         }
9309
9310         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9311
9312         return 0;
9313 }
9314
9315 static void i845_update_cursor(struct intel_plane *plane,
9316                                const struct intel_crtc_state *crtc_state,
9317                                const struct intel_plane_state *plane_state)
9318 {
9319         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9320         u32 cntl = 0, base = 0, pos = 0, size = 0;
9321         unsigned long irqflags;
9322
9323         if (plane_state && plane_state->base.visible) {
9324                 unsigned int width = plane_state->base.crtc_w;
9325                 unsigned int height = plane_state->base.crtc_h;
9326
9327                 cntl = plane_state->ctl;
9328                 size = (height << 12) | width;
9329
9330                 base = intel_cursor_base(plane_state);
9331                 pos = intel_cursor_position(plane_state);
9332         }
9333
9334         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9335
9336         /* On these chipsets we can only modify the base/size/stride
9337          * whilst the cursor is disabled.
9338          */
9339         if (plane->cursor.base != base ||
9340             plane->cursor.size != size ||
9341             plane->cursor.cntl != cntl) {
9342                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9343                 I915_WRITE_FW(CURBASE(PIPE_A), base);
9344                 I915_WRITE_FW(CURSIZE, size);
9345                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9346                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9347
9348                 plane->cursor.base = base;
9349                 plane->cursor.size = size;
9350                 plane->cursor.cntl = cntl;
9351         } else {
9352                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9353         }
9354
9355         POSTING_READ_FW(CURCNTR(PIPE_A));
9356
9357         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9358 }
9359
9360 static void i845_disable_cursor(struct intel_plane *plane,
9361                                 struct intel_crtc *crtc)
9362 {
9363         i845_update_cursor(plane, NULL, NULL);
9364 }
9365
9366 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9367                            const struct intel_plane_state *plane_state)
9368 {
9369         struct drm_i915_private *dev_priv =
9370                 to_i915(plane_state->base.plane->dev);
9371         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9372         u32 cntl;
9373
9374         cntl = MCURSOR_GAMMA_ENABLE;
9375
9376         if (HAS_DDI(dev_priv))
9377                 cntl |= CURSOR_PIPE_CSC_ENABLE;
9378
9379         cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9380
9381         switch (plane_state->base.crtc_w) {
9382         case 64:
9383                 cntl |= CURSOR_MODE_64_ARGB_AX;
9384                 break;
9385         case 128:
9386                 cntl |= CURSOR_MODE_128_ARGB_AX;
9387                 break;
9388         case 256:
9389                 cntl |= CURSOR_MODE_256_ARGB_AX;
9390                 break;
9391         default:
9392                 MISSING_CASE(plane_state->base.crtc_w);
9393                 return 0;
9394         }
9395
9396         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9397                 cntl |= CURSOR_ROTATE_180;
9398
9399         return cntl;
9400 }
9401
9402 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9403 {
9404         struct drm_i915_private *dev_priv =
9405                 to_i915(plane_state->base.plane->dev);
9406         int width = plane_state->base.crtc_w;
9407         int height = plane_state->base.crtc_h;
9408
9409         if (!intel_cursor_size_ok(plane_state))
9410                 return false;
9411
9412         /* Cursor width is limited to a few power-of-two sizes */
9413         switch (width) {
9414         case 256:
9415         case 128:
9416         case 64:
9417                 break;
9418         default:
9419                 return false;
9420         }
9421
9422         /*
9423          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9424          * height from 8 lines up to the cursor width, when the
9425          * cursor is not rotated. Everything else requires square
9426          * cursors.
9427          */
9428         if (HAS_CUR_FBC(dev_priv) &&
9429             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9430                 if (height < 8 || height > width)
9431                         return false;
9432         } else {
9433                 if (height != width)
9434                         return false;
9435         }
9436
9437         return true;
9438 }
9439
9440 static int i9xx_check_cursor(struct intel_plane *plane,
9441                              struct intel_crtc_state *crtc_state,
9442                              struct intel_plane_state *plane_state)
9443 {
9444         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9445         const struct drm_framebuffer *fb = plane_state->base.fb;
9446         enum pipe pipe = plane->pipe;
9447         int ret;
9448
9449         ret = intel_check_cursor(crtc_state, plane_state);
9450         if (ret)
9451                 return ret;
9452
9453         /* if we want to turn off the cursor ignore width and height */
9454         if (!fb)
9455                 return 0;
9456
9457         /* Check for which cursor types we support */
9458         if (!i9xx_cursor_size_ok(plane_state)) {
9459                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9460                           plane_state->base.crtc_w,
9461                           plane_state->base.crtc_h);
9462                 return -EINVAL;
9463         }
9464
9465         if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9466                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9467                               fb->pitches[0], plane_state->base.crtc_w);
9468                 return -EINVAL;
9469         }
9470
9471         /*
9472          * There's something wrong with the cursor on CHV pipe C.
9473          * If it straddles the left edge of the screen then
9474          * moving it away from the edge or disabling it often
9475          * results in a pipe underrun, and often that can lead to
9476          * dead pipe (constant underrun reported, and it scans
9477          * out just a solid color). To recover from that, the
9478          * display power well must be turned off and on again.
9479          * Refuse the put the cursor into that compromised position.
9480          */
9481         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9482             plane_state->base.visible && plane_state->base.crtc_x < 0) {
9483                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9484                 return -EINVAL;
9485         }
9486
9487         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9488
9489         return 0;
9490 }
9491
9492 static void i9xx_update_cursor(struct intel_plane *plane,
9493                                const struct intel_crtc_state *crtc_state,
9494                                const struct intel_plane_state *plane_state)
9495 {
9496         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9497         enum pipe pipe = plane->pipe;
9498         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9499         unsigned long irqflags;
9500
9501         if (plane_state && plane_state->base.visible) {
9502                 cntl = plane_state->ctl;
9503
9504                 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9505                         fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9506
9507                 base = intel_cursor_base(plane_state);
9508                 pos = intel_cursor_position(plane_state);
9509         }
9510
9511         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9512
9513         /*
9514          * On some platforms writing CURCNTR first will also
9515          * cause CURPOS to be armed by the CURBASE write.
9516          * Without the CURCNTR write the CURPOS write would
9517          * arm itself.
9518          *
9519          * CURCNTR and CUR_FBC_CTL are always
9520          * armed by the CURBASE write only.
9521          */
9522         if (plane->cursor.base != base ||
9523             plane->cursor.size != fbc_ctl ||
9524             plane->cursor.cntl != cntl) {
9525                 I915_WRITE_FW(CURCNTR(pipe), cntl);
9526                 if (HAS_CUR_FBC(dev_priv))
9527                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9528                 I915_WRITE_FW(CURPOS(pipe), pos);
9529                 I915_WRITE_FW(CURBASE(pipe), base);
9530
9531                 plane->cursor.base = base;
9532                 plane->cursor.size = fbc_ctl;
9533                 plane->cursor.cntl = cntl;
9534         } else {
9535                 I915_WRITE_FW(CURPOS(pipe), pos);
9536         }
9537
9538         POSTING_READ_FW(CURBASE(pipe));
9539
9540         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9541 }
9542
9543 static void i9xx_disable_cursor(struct intel_plane *plane,
9544                                 struct intel_crtc *crtc)
9545 {
9546         i9xx_update_cursor(plane, NULL, NULL);
9547 }
9548
9549
9550 /* VESA 640x480x72Hz mode to set on the pipe */
9551 static struct drm_display_mode load_detect_mode = {
9552         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9553                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9554 };
9555
9556 struct drm_framebuffer *
9557 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9558                          struct drm_mode_fb_cmd2 *mode_cmd)
9559 {
9560         struct intel_framebuffer *intel_fb;
9561         int ret;
9562
9563         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9564         if (!intel_fb)
9565                 return ERR_PTR(-ENOMEM);
9566
9567         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9568         if (ret)
9569                 goto err;
9570
9571         return &intel_fb->base;
9572
9573 err:
9574         kfree(intel_fb);
9575         return ERR_PTR(ret);
9576 }
9577
9578 static u32
9579 intel_framebuffer_pitch_for_width(int width, int bpp)
9580 {
9581         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9582         return ALIGN(pitch, 64);
9583 }
9584
9585 static u32
9586 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9587 {
9588         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9589         return PAGE_ALIGN(pitch * mode->vdisplay);
9590 }
9591
9592 static struct drm_framebuffer *
9593 intel_framebuffer_create_for_mode(struct drm_device *dev,
9594                                   struct drm_display_mode *mode,
9595                                   int depth, int bpp)
9596 {
9597         struct drm_framebuffer *fb;
9598         struct drm_i915_gem_object *obj;
9599         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9600
9601         obj = i915_gem_object_create(to_i915(dev),
9602                                     intel_framebuffer_size_for_mode(mode, bpp));
9603         if (IS_ERR(obj))
9604                 return ERR_CAST(obj);
9605
9606         mode_cmd.width = mode->hdisplay;
9607         mode_cmd.height = mode->vdisplay;
9608         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9609                                                                 bpp);
9610         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9611
9612         fb = intel_framebuffer_create(obj, &mode_cmd);
9613         if (IS_ERR(fb))
9614                 i915_gem_object_put(obj);
9615
9616         return fb;
9617 }
9618
9619 static struct drm_framebuffer *
9620 mode_fits_in_fbdev(struct drm_device *dev,
9621                    struct drm_display_mode *mode)
9622 {
9623 #ifdef CONFIG_DRM_FBDEV_EMULATION
9624         struct drm_i915_private *dev_priv = to_i915(dev);
9625         struct drm_i915_gem_object *obj;
9626         struct drm_framebuffer *fb;
9627
9628         if (!dev_priv->fbdev)
9629                 return NULL;
9630
9631         if (!dev_priv->fbdev->fb)
9632                 return NULL;
9633
9634         obj = dev_priv->fbdev->fb->obj;
9635         BUG_ON(!obj);
9636
9637         fb = &dev_priv->fbdev->fb->base;
9638         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9639                                                                fb->format->cpp[0] * 8))
9640                 return NULL;
9641
9642         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9643                 return NULL;
9644
9645         drm_framebuffer_reference(fb);
9646         return fb;
9647 #else
9648         return NULL;
9649 #endif
9650 }
9651
9652 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9653                                            struct drm_crtc *crtc,
9654                                            struct drm_display_mode *mode,
9655                                            struct drm_framebuffer *fb,
9656                                            int x, int y)
9657 {
9658         struct drm_plane_state *plane_state;
9659         int hdisplay, vdisplay;
9660         int ret;
9661
9662         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9663         if (IS_ERR(plane_state))
9664                 return PTR_ERR(plane_state);
9665
9666         if (mode)
9667                 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9668         else
9669                 hdisplay = vdisplay = 0;
9670
9671         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9672         if (ret)
9673                 return ret;
9674         drm_atomic_set_fb_for_plane(plane_state, fb);
9675         plane_state->crtc_x = 0;
9676         plane_state->crtc_y = 0;
9677         plane_state->crtc_w = hdisplay;
9678         plane_state->crtc_h = vdisplay;
9679         plane_state->src_x = x << 16;
9680         plane_state->src_y = y << 16;
9681         plane_state->src_w = hdisplay << 16;
9682         plane_state->src_h = vdisplay << 16;
9683
9684         return 0;
9685 }
9686
9687 int intel_get_load_detect_pipe(struct drm_connector *connector,
9688                                struct drm_display_mode *mode,
9689                                struct intel_load_detect_pipe *old,
9690                                struct drm_modeset_acquire_ctx *ctx)
9691 {
9692         struct intel_crtc *intel_crtc;
9693         struct intel_encoder *intel_encoder =
9694                 intel_attached_encoder(connector);
9695         struct drm_crtc *possible_crtc;
9696         struct drm_encoder *encoder = &intel_encoder->base;
9697         struct drm_crtc *crtc = NULL;
9698         struct drm_device *dev = encoder->dev;
9699         struct drm_i915_private *dev_priv = to_i915(dev);
9700         struct drm_framebuffer *fb;
9701         struct drm_mode_config *config = &dev->mode_config;
9702         struct drm_atomic_state *state = NULL, *restore_state = NULL;
9703         struct drm_connector_state *connector_state;
9704         struct intel_crtc_state *crtc_state;
9705         int ret, i = -1;
9706
9707         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9708                       connector->base.id, connector->name,
9709                       encoder->base.id, encoder->name);
9710
9711         old->restore_state = NULL;
9712
9713         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9714
9715         /*
9716          * Algorithm gets a little messy:
9717          *
9718          *   - if the connector already has an assigned crtc, use it (but make
9719          *     sure it's on first)
9720          *
9721          *   - try to find the first unused crtc that can drive this connector,
9722          *     and use that if we find one
9723          */
9724
9725         /* See if we already have a CRTC for this connector */
9726         if (connector->state->crtc) {
9727                 crtc = connector->state->crtc;
9728
9729                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9730                 if (ret)
9731                         goto fail;
9732
9733                 /* Make sure the crtc and connector are running */
9734                 goto found;
9735         }
9736
9737         /* Find an unused one (if possible) */
9738         for_each_crtc(dev, possible_crtc) {
9739                 i++;
9740                 if (!(encoder->possible_crtcs & (1 << i)))
9741                         continue;
9742
9743                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9744                 if (ret)
9745                         goto fail;
9746
9747                 if (possible_crtc->state->enable) {
9748                         drm_modeset_unlock(&possible_crtc->mutex);
9749                         continue;
9750                 }
9751
9752                 crtc = possible_crtc;
9753                 break;
9754         }
9755
9756         /*
9757          * If we didn't find an unused CRTC, don't use any.
9758          */
9759         if (!crtc) {
9760                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9761                 ret = -ENODEV;
9762                 goto fail;
9763         }
9764
9765 found:
9766         intel_crtc = to_intel_crtc(crtc);
9767
9768         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9769         if (ret)
9770                 goto fail;
9771
9772         state = drm_atomic_state_alloc(dev);
9773         restore_state = drm_atomic_state_alloc(dev);
9774         if (!state || !restore_state) {
9775                 ret = -ENOMEM;
9776                 goto fail;
9777         }
9778
9779         state->acquire_ctx = ctx;
9780         restore_state->acquire_ctx = ctx;
9781
9782         connector_state = drm_atomic_get_connector_state(state, connector);
9783         if (IS_ERR(connector_state)) {
9784                 ret = PTR_ERR(connector_state);
9785                 goto fail;
9786         }
9787
9788         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
9789         if (ret)
9790                 goto fail;
9791
9792         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9793         if (IS_ERR(crtc_state)) {
9794                 ret = PTR_ERR(crtc_state);
9795                 goto fail;
9796         }
9797
9798         crtc_state->base.active = crtc_state->base.enable = true;
9799
9800         if (!mode)
9801                 mode = &load_detect_mode;
9802
9803         /* We need a framebuffer large enough to accommodate all accesses
9804          * that the plane may generate whilst we perform load detection.
9805          * We can not rely on the fbcon either being present (we get called
9806          * during its initialisation to detect all boot displays, or it may
9807          * not even exist) or that it is large enough to satisfy the
9808          * requested mode.
9809          */
9810         fb = mode_fits_in_fbdev(dev, mode);
9811         if (fb == NULL) {
9812                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9813                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9814         } else
9815                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9816         if (IS_ERR(fb)) {
9817                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9818                 ret = PTR_ERR(fb);
9819                 goto fail;
9820         }
9821
9822         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
9823         if (ret)
9824                 goto fail;
9825
9826         drm_framebuffer_unreference(fb);
9827
9828         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
9829         if (ret)
9830                 goto fail;
9831
9832         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
9833         if (!ret)
9834                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
9835         if (!ret)
9836                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
9837         if (ret) {
9838                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
9839                 goto fail;
9840         }
9841
9842         ret = drm_atomic_commit(state);
9843         if (ret) {
9844                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9845                 goto fail;
9846         }
9847
9848         old->restore_state = restore_state;
9849         drm_atomic_state_put(state);
9850
9851         /* let the connector get through one full cycle before testing */
9852         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
9853         return true;
9854
9855 fail:
9856         if (state) {
9857                 drm_atomic_state_put(state);
9858                 state = NULL;
9859         }
9860         if (restore_state) {
9861                 drm_atomic_state_put(restore_state);
9862                 restore_state = NULL;
9863         }
9864
9865         if (ret == -EDEADLK)
9866                 return ret;
9867
9868         return false;
9869 }
9870
9871 void intel_release_load_detect_pipe(struct drm_connector *connector,
9872                                     struct intel_load_detect_pipe *old,
9873                                     struct drm_modeset_acquire_ctx *ctx)
9874 {
9875         struct intel_encoder *intel_encoder =
9876                 intel_attached_encoder(connector);
9877         struct drm_encoder *encoder = &intel_encoder->base;
9878         struct drm_atomic_state *state = old->restore_state;
9879         int ret;
9880
9881         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9882                       connector->base.id, connector->name,
9883                       encoder->base.id, encoder->name);
9884
9885         if (!state)
9886                 return;
9887
9888         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
9889         if (ret)
9890                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
9891         drm_atomic_state_put(state);
9892 }
9893
9894 static int i9xx_pll_refclk(struct drm_device *dev,
9895                            const struct intel_crtc_state *pipe_config)
9896 {
9897         struct drm_i915_private *dev_priv = to_i915(dev);
9898         u32 dpll = pipe_config->dpll_hw_state.dpll;
9899
9900         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9901                 return dev_priv->vbt.lvds_ssc_freq;
9902         else if (HAS_PCH_SPLIT(dev_priv))
9903                 return 120000;
9904         else if (!IS_GEN2(dev_priv))
9905                 return 96000;
9906         else
9907                 return 48000;
9908 }
9909
9910 /* Returns the clock of the currently programmed mode of the given pipe. */
9911 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9912                                 struct intel_crtc_state *pipe_config)
9913 {
9914         struct drm_device *dev = crtc->base.dev;
9915         struct drm_i915_private *dev_priv = to_i915(dev);
9916         int pipe = pipe_config->cpu_transcoder;
9917         u32 dpll = pipe_config->dpll_hw_state.dpll;
9918         u32 fp;
9919         struct dpll clock;
9920         int port_clock;
9921         int refclk = i9xx_pll_refclk(dev, pipe_config);
9922
9923         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9924                 fp = pipe_config->dpll_hw_state.fp0;
9925         else
9926                 fp = pipe_config->dpll_hw_state.fp1;
9927
9928         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9929         if (IS_PINEVIEW(dev_priv)) {
9930                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9931                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9932         } else {
9933                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9934                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9935         }
9936
9937         if (!IS_GEN2(dev_priv)) {
9938                 if (IS_PINEVIEW(dev_priv))
9939                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9940                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9941                 else
9942                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9943                                DPLL_FPA01_P1_POST_DIV_SHIFT);
9944
9945                 switch (dpll & DPLL_MODE_MASK) {
9946                 case DPLLB_MODE_DAC_SERIAL:
9947                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9948                                 5 : 10;
9949                         break;
9950                 case DPLLB_MODE_LVDS:
9951                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9952                                 7 : 14;
9953                         break;
9954                 default:
9955                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9956                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
9957                         return;
9958                 }
9959
9960                 if (IS_PINEVIEW(dev_priv))
9961                         port_clock = pnv_calc_dpll_params(refclk, &clock);
9962                 else
9963                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
9964         } else {
9965                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
9966                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9967
9968                 if (is_lvds) {
9969                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9970                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
9971
9972                         if (lvds & LVDS_CLKB_POWER_UP)
9973                                 clock.p2 = 7;
9974                         else
9975                                 clock.p2 = 14;
9976                 } else {
9977                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
9978                                 clock.p1 = 2;
9979                         else {
9980                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9981                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9982                         }
9983                         if (dpll & PLL_P2_DIVIDE_BY_4)
9984                                 clock.p2 = 4;
9985                         else
9986                                 clock.p2 = 2;
9987                 }
9988
9989                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
9990         }
9991
9992         /*
9993          * This value includes pixel_multiplier. We will use
9994          * port_clock to compute adjusted_mode.crtc_clock in the
9995          * encoder's get_config() function.
9996          */
9997         pipe_config->port_clock = port_clock;
9998 }
9999
10000 int intel_dotclock_calculate(int link_freq,
10001                              const struct intel_link_m_n *m_n)
10002 {
10003         /*
10004          * The calculation for the data clock is:
10005          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10006          * But we want to avoid losing precison if possible, so:
10007          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10008          *
10009          * and the link clock is simpler:
10010          * link_clock = (m * link_clock) / n
10011          */
10012
10013         if (!m_n->link_n)
10014                 return 0;
10015
10016         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10017 }
10018
10019 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10020                                    struct intel_crtc_state *pipe_config)
10021 {
10022         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10023
10024         /* read out port_clock from the DPLL */
10025         i9xx_crtc_clock_get(crtc, pipe_config);
10026
10027         /*
10028          * In case there is an active pipe without active ports,
10029          * we may need some idea for the dotclock anyway.
10030          * Calculate one based on the FDI configuration.
10031          */
10032         pipe_config->base.adjusted_mode.crtc_clock =
10033                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10034                                          &pipe_config->fdi_m_n);
10035 }
10036
10037 /** Returns the currently programmed mode of the given pipe. */
10038 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10039                                              struct drm_crtc *crtc)
10040 {
10041         struct drm_i915_private *dev_priv = to_i915(dev);
10042         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10043         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10044         struct drm_display_mode *mode;
10045         struct intel_crtc_state *pipe_config;
10046         int htot = I915_READ(HTOTAL(cpu_transcoder));
10047         int hsync = I915_READ(HSYNC(cpu_transcoder));
10048         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10049         int vsync = I915_READ(VSYNC(cpu_transcoder));
10050         enum pipe pipe = intel_crtc->pipe;
10051
10052         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10053         if (!mode)
10054                 return NULL;
10055
10056         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10057         if (!pipe_config) {
10058                 kfree(mode);
10059                 return NULL;
10060         }
10061
10062         /*
10063          * Construct a pipe_config sufficient for getting the clock info
10064          * back out of crtc_clock_get.
10065          *
10066          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10067          * to use a real value here instead.
10068          */
10069         pipe_config->cpu_transcoder = (enum transcoder) pipe;
10070         pipe_config->pixel_multiplier = 1;
10071         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10072         pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10073         pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10074         i9xx_crtc_clock_get(intel_crtc, pipe_config);
10075
10076         mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10077         mode->hdisplay = (htot & 0xffff) + 1;
10078         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10079         mode->hsync_start = (hsync & 0xffff) + 1;
10080         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10081         mode->vdisplay = (vtot & 0xffff) + 1;
10082         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10083         mode->vsync_start = (vsync & 0xffff) + 1;
10084         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10085
10086         drm_mode_set_name(mode);
10087
10088         kfree(pipe_config);
10089
10090         return mode;
10091 }
10092
10093 static void intel_crtc_destroy(struct drm_crtc *crtc)
10094 {
10095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10096         struct drm_device *dev = crtc->dev;
10097         struct intel_flip_work *work;
10098
10099         spin_lock_irq(&dev->event_lock);
10100         work = intel_crtc->flip_work;
10101         intel_crtc->flip_work = NULL;
10102         spin_unlock_irq(&dev->event_lock);
10103
10104         if (work) {
10105                 cancel_work_sync(&work->mmio_work);
10106                 cancel_work_sync(&work->unpin_work);
10107                 kfree(work);
10108         }
10109
10110         drm_crtc_cleanup(crtc);
10111
10112         kfree(intel_crtc);
10113 }
10114
10115 static void intel_unpin_work_fn(struct work_struct *__work)
10116 {
10117         struct intel_flip_work *work =
10118                 container_of(__work, struct intel_flip_work, unpin_work);
10119         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10120         struct drm_device *dev = crtc->base.dev;
10121         struct drm_plane *primary = crtc->base.primary;
10122
10123         if (is_mmio_work(work))
10124                 flush_work(&work->mmio_work);
10125
10126         mutex_lock(&dev->struct_mutex);
10127         intel_unpin_fb_vma(work->old_vma);
10128         i915_gem_object_put(work->pending_flip_obj);
10129         mutex_unlock(&dev->struct_mutex);
10130
10131         i915_gem_request_put(work->flip_queued_req);
10132
10133         intel_frontbuffer_flip_complete(to_i915(dev),
10134                                         to_intel_plane(primary)->frontbuffer_bit);
10135         intel_fbc_post_update(crtc);
10136         drm_framebuffer_unreference(work->old_fb);
10137
10138         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10139         atomic_dec(&crtc->unpin_work_count);
10140
10141         kfree(work);
10142 }
10143
10144 /* Is 'a' after or equal to 'b'? */
10145 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10146 {
10147         return !((a - b) & 0x80000000);
10148 }
10149
10150 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
10151                                    struct intel_flip_work *work)
10152 {
10153         struct drm_device *dev = crtc->base.dev;
10154         struct drm_i915_private *dev_priv = to_i915(dev);
10155
10156         if (abort_flip_on_reset(crtc))
10157                 return true;
10158
10159         /*
10160          * The relevant registers doen't exist on pre-ctg.
10161          * As the flip done interrupt doesn't trigger for mmio
10162          * flips on gmch platforms, a flip count check isn't
10163          * really needed there. But since ctg has the registers,
10164          * include it in the check anyway.
10165          */
10166         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10167                 return true;
10168
10169         /*
10170          * BDW signals flip done immediately if the plane
10171          * is disabled, even if the plane enable is already
10172          * armed to occur at the next vblank :(
10173          */
10174
10175         /*
10176          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10177          * used the same base address. In that case the mmio flip might
10178          * have completed, but the CS hasn't even executed the flip yet.
10179          *
10180          * A flip count check isn't enough as the CS might have updated
10181          * the base address just after start of vblank, but before we
10182          * managed to process the interrupt. This means we'd complete the
10183          * CS flip too soon.
10184          *
10185          * Combining both checks should get us a good enough result. It may
10186          * still happen that the CS flip has been executed, but has not
10187          * yet actually completed. But in case the base address is the same
10188          * anyway, we don't really care.
10189          */
10190         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10191                 crtc->flip_work->gtt_offset &&
10192                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10193                                     crtc->flip_work->flip_count);
10194 }
10195
10196 static bool
10197 __pageflip_finished_mmio(struct intel_crtc *crtc,
10198                                struct intel_flip_work *work)
10199 {
10200         /*
10201          * MMIO work completes when vblank is different from
10202          * flip_queued_vblank.
10203          *
10204          * Reset counter value doesn't matter, this is handled by
10205          * i915_wait_request finishing early, so no need to handle
10206          * reset here.
10207          */
10208         return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
10209 }
10210
10211
10212 static bool pageflip_finished(struct intel_crtc *crtc,
10213                               struct intel_flip_work *work)
10214 {
10215         if (!atomic_read(&work->pending))
10216                 return false;
10217
10218         smp_rmb();
10219
10220         if (is_mmio_work(work))
10221                 return __pageflip_finished_mmio(crtc, work);
10222         else
10223                 return __pageflip_finished_cs(crtc, work);
10224 }
10225
10226 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
10227 {
10228         struct drm_device *dev = &dev_priv->drm;
10229         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10230         struct intel_flip_work *work;
10231         unsigned long flags;
10232
10233         /* Ignore early vblank irqs */
10234         if (!crtc)
10235                 return;
10236
10237         /*
10238          * This is called both by irq handlers and the reset code (to complete
10239          * lost pageflips) so needs the full irqsave spinlocks.
10240          */
10241         spin_lock_irqsave(&dev->event_lock, flags);
10242         work = crtc->flip_work;
10243
10244         if (work != NULL &&
10245             !is_mmio_work(work) &&
10246             pageflip_finished(crtc, work))
10247                 page_flip_completed(crtc);
10248
10249         spin_unlock_irqrestore(&dev->event_lock, flags);
10250 }
10251
10252 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
10253 {
10254         struct drm_device *dev = &dev_priv->drm;
10255         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10256         struct intel_flip_work *work;
10257         unsigned long flags;
10258
10259         /* Ignore early vblank irqs */
10260         if (!crtc)
10261                 return;
10262
10263         /*
10264          * This is called both by irq handlers and the reset code (to complete
10265          * lost pageflips) so needs the full irqsave spinlocks.
10266          */
10267         spin_lock_irqsave(&dev->event_lock, flags);
10268         work = crtc->flip_work;
10269
10270         if (work != NULL &&
10271             is_mmio_work(work) &&
10272             pageflip_finished(crtc, work))
10273                 page_flip_completed(crtc);
10274
10275         spin_unlock_irqrestore(&dev->event_lock, flags);
10276 }
10277
10278 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
10279                                                struct intel_flip_work *work)
10280 {
10281         work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
10282
10283         /* Ensure that the work item is consistent when activating it ... */
10284         smp_mb__before_atomic();
10285         atomic_set(&work->pending, 1);
10286 }
10287
10288 static int intel_gen2_queue_flip(struct drm_device *dev,
10289                                  struct drm_crtc *crtc,
10290                                  struct drm_framebuffer *fb,
10291                                  struct drm_i915_gem_object *obj,
10292                                  struct drm_i915_gem_request *req,
10293                                  uint32_t flags)
10294 {
10295         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10296         u32 flip_mask, *cs;
10297
10298         cs = intel_ring_begin(req, 6);
10299         if (IS_ERR(cs))
10300                 return PTR_ERR(cs);
10301
10302         /* Can't queue multiple flips, so wait for the previous
10303          * one to finish before executing the next.
10304          */
10305         if (intel_crtc->plane)
10306                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10307         else
10308                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10309         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10310         *cs++ = MI_NOOP;
10311         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10312         *cs++ = fb->pitches[0];
10313         *cs++ = intel_crtc->flip_work->gtt_offset;
10314         *cs++ = 0; /* aux display base address, unused */
10315
10316         return 0;
10317 }
10318
10319 static int intel_gen3_queue_flip(struct drm_device *dev,
10320                                  struct drm_crtc *crtc,
10321                                  struct drm_framebuffer *fb,
10322                                  struct drm_i915_gem_object *obj,
10323                                  struct drm_i915_gem_request *req,
10324                                  uint32_t flags)
10325 {
10326         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10327         u32 flip_mask, *cs;
10328
10329         cs = intel_ring_begin(req, 6);
10330         if (IS_ERR(cs))
10331                 return PTR_ERR(cs);
10332
10333         if (intel_crtc->plane)
10334                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10335         else
10336                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10337         *cs++ = MI_WAIT_FOR_EVENT | flip_mask;
10338         *cs++ = MI_NOOP;
10339         *cs++ = MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10340         *cs++ = fb->pitches[0];
10341         *cs++ = intel_crtc->flip_work->gtt_offset;
10342         *cs++ = MI_NOOP;
10343
10344         return 0;
10345 }
10346
10347 static int intel_gen4_queue_flip(struct drm_device *dev,
10348                                  struct drm_crtc *crtc,
10349                                  struct drm_framebuffer *fb,
10350                                  struct drm_i915_gem_object *obj,
10351                                  struct drm_i915_gem_request *req,
10352                                  uint32_t flags)
10353 {
10354         struct drm_i915_private *dev_priv = to_i915(dev);
10355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10356         u32 pf, pipesrc, *cs;
10357
10358         cs = intel_ring_begin(req, 4);
10359         if (IS_ERR(cs))
10360                 return PTR_ERR(cs);
10361
10362         /* i965+ uses the linear or tiled offsets from the
10363          * Display Registers (which do not change across a page-flip)
10364          * so we need only reprogram the base address.
10365          */
10366         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10367         *cs++ = fb->pitches[0];
10368         *cs++ = intel_crtc->flip_work->gtt_offset |
10369                 intel_fb_modifier_to_tiling(fb->modifier);
10370
10371         /* XXX Enabling the panel-fitter across page-flip is so far
10372          * untested on non-native modes, so ignore it for now.
10373          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10374          */
10375         pf = 0;
10376         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10377         *cs++ = pf | pipesrc;
10378
10379         return 0;
10380 }
10381
10382 static int intel_gen6_queue_flip(struct drm_device *dev,
10383                                  struct drm_crtc *crtc,
10384                                  struct drm_framebuffer *fb,
10385                                  struct drm_i915_gem_object *obj,
10386                                  struct drm_i915_gem_request *req,
10387                                  uint32_t flags)
10388 {
10389         struct drm_i915_private *dev_priv = to_i915(dev);
10390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10391         u32 pf, pipesrc, *cs;
10392
10393         cs = intel_ring_begin(req, 4);
10394         if (IS_ERR(cs))
10395                 return PTR_ERR(cs);
10396
10397         *cs++ = MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane);
10398         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10399         *cs++ = intel_crtc->flip_work->gtt_offset;
10400
10401         /* Contrary to the suggestions in the documentation,
10402          * "Enable Panel Fitter" does not seem to be required when page
10403          * flipping with a non-native mode, and worse causes a normal
10404          * modeset to fail.
10405          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10406          */
10407         pf = 0;
10408         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10409         *cs++ = pf | pipesrc;
10410
10411         return 0;
10412 }
10413
10414 static int intel_gen7_queue_flip(struct drm_device *dev,
10415                                  struct drm_crtc *crtc,
10416                                  struct drm_framebuffer *fb,
10417                                  struct drm_i915_gem_object *obj,
10418                                  struct drm_i915_gem_request *req,
10419                                  uint32_t flags)
10420 {
10421         struct drm_i915_private *dev_priv = to_i915(dev);
10422         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10423         u32 *cs, plane_bit = 0;
10424         int len, ret;
10425
10426         switch (intel_crtc->plane) {
10427         case PLANE_A:
10428                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10429                 break;
10430         case PLANE_B:
10431                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10432                 break;
10433         case PLANE_C:
10434                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10435                 break;
10436         default:
10437                 WARN_ONCE(1, "unknown plane in flip command\n");
10438                 return -ENODEV;
10439         }
10440
10441         len = 4;
10442         if (req->engine->id == RCS) {
10443                 len += 6;
10444                 /*
10445                  * On Gen 8, SRM is now taking an extra dword to accommodate
10446                  * 48bits addresses, and we need a NOOP for the batch size to
10447                  * stay even.
10448                  */
10449                 if (IS_GEN8(dev_priv))
10450                         len += 2;
10451         }
10452
10453         /*
10454          * BSpec MI_DISPLAY_FLIP for IVB:
10455          * "The full packet must be contained within the same cache line."
10456          *
10457          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10458          * cacheline, if we ever start emitting more commands before
10459          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10460          * then do the cacheline alignment, and finally emit the
10461          * MI_DISPLAY_FLIP.
10462          */
10463         ret = intel_ring_cacheline_align(req);
10464         if (ret)
10465                 return ret;
10466
10467         cs = intel_ring_begin(req, len);
10468         if (IS_ERR(cs))
10469                 return PTR_ERR(cs);
10470
10471         /* Unmask the flip-done completion message. Note that the bspec says that
10472          * we should do this for both the BCS and RCS, and that we must not unmask
10473          * more than one flip event at any time (or ensure that one flip message
10474          * can be sent by waiting for flip-done prior to queueing new flips).
10475          * Experimentation says that BCS works despite DERRMR masking all
10476          * flip-done completion events and that unmasking all planes at once
10477          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10478          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10479          */
10480         if (req->engine->id == RCS) {
10481                 *cs++ = MI_LOAD_REGISTER_IMM(1);
10482                 *cs++ = i915_mmio_reg_offset(DERRMR);
10483                 *cs++ = ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10484                           DERRMR_PIPEB_PRI_FLIP_DONE |
10485                           DERRMR_PIPEC_PRI_FLIP_DONE);
10486                 if (IS_GEN8(dev_priv))
10487                         *cs++ = MI_STORE_REGISTER_MEM_GEN8 |
10488                                 MI_SRM_LRM_GLOBAL_GTT;
10489                 else
10490                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
10491                 *cs++ = i915_mmio_reg_offset(DERRMR);
10492                 *cs++ = i915_ggtt_offset(req->engine->scratch) + 256;
10493                 if (IS_GEN8(dev_priv)) {
10494                         *cs++ = 0;
10495                         *cs++ = MI_NOOP;
10496                 }
10497         }
10498
10499         *cs++ = MI_DISPLAY_FLIP_I915 | plane_bit;
10500         *cs++ = fb->pitches[0] | intel_fb_modifier_to_tiling(fb->modifier);
10501         *cs++ = intel_crtc->flip_work->gtt_offset;
10502         *cs++ = MI_NOOP;
10503
10504         return 0;
10505 }
10506
10507 static bool use_mmio_flip(struct intel_engine_cs *engine,
10508                           struct drm_i915_gem_object *obj)
10509 {
10510         /*
10511          * This is not being used for older platforms, because
10512          * non-availability of flip done interrupt forces us to use
10513          * CS flips. Older platforms derive flip done using some clever
10514          * tricks involving the flip_pending status bits and vblank irqs.
10515          * So using MMIO flips there would disrupt this mechanism.
10516          */
10517
10518         if (engine == NULL)
10519                 return true;
10520
10521         if (INTEL_GEN(engine->i915) < 5)
10522                 return false;
10523
10524         if (i915.use_mmio_flip < 0)
10525                 return false;
10526         else if (i915.use_mmio_flip > 0)
10527                 return true;
10528         else if (i915.enable_execlists)
10529                 return true;
10530
10531         return engine != i915_gem_object_last_write_engine(obj);
10532 }
10533
10534 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
10535                              unsigned int rotation,
10536                              struct intel_flip_work *work)
10537 {
10538         struct drm_device *dev = intel_crtc->base.dev;
10539         struct drm_i915_private *dev_priv = to_i915(dev);
10540         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10541         const enum pipe pipe = intel_crtc->pipe;
10542         u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
10543
10544         ctl = I915_READ(PLANE_CTL(pipe, 0));
10545         ctl &= ~PLANE_CTL_TILED_MASK;
10546         switch (fb->modifier) {
10547         case DRM_FORMAT_MOD_LINEAR:
10548                 break;
10549         case I915_FORMAT_MOD_X_TILED:
10550                 ctl |= PLANE_CTL_TILED_X;
10551                 break;
10552         case I915_FORMAT_MOD_Y_TILED:
10553                 ctl |= PLANE_CTL_TILED_Y;
10554                 break;
10555         case I915_FORMAT_MOD_Yf_TILED:
10556                 ctl |= PLANE_CTL_TILED_YF;
10557                 break;
10558         default:
10559                 MISSING_CASE(fb->modifier);
10560         }
10561
10562         /*
10563          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10564          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10565          */
10566         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10567         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10568
10569         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
10570         POSTING_READ(PLANE_SURF(pipe, 0));
10571 }
10572
10573 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
10574                              struct intel_flip_work *work)
10575 {
10576         struct drm_device *dev = intel_crtc->base.dev;
10577         struct drm_i915_private *dev_priv = to_i915(dev);
10578         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10579         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
10580         u32 dspcntr;
10581
10582         dspcntr = I915_READ(reg);
10583
10584         if (fb->modifier == I915_FORMAT_MOD_X_TILED)
10585                 dspcntr |= DISPPLANE_TILED;
10586         else
10587                 dspcntr &= ~DISPPLANE_TILED;
10588
10589         I915_WRITE(reg, dspcntr);
10590
10591         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
10592         POSTING_READ(DSPSURF(intel_crtc->plane));
10593 }
10594
10595 static void intel_mmio_flip_work_func(struct work_struct *w)
10596 {
10597         struct intel_flip_work *work =
10598                 container_of(w, struct intel_flip_work, mmio_work);
10599         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10600         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10601         struct intel_framebuffer *intel_fb =
10602                 to_intel_framebuffer(crtc->base.primary->fb);
10603         struct drm_i915_gem_object *obj = intel_fb->obj;
10604
10605         WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
10606
10607         intel_pipe_update_start(crtc);
10608
10609         if (INTEL_GEN(dev_priv) >= 9)
10610                 skl_do_mmio_flip(crtc, work->rotation, work);
10611         else
10612                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10613                 ilk_do_mmio_flip(crtc, work);
10614
10615         intel_pipe_update_end(crtc, work);
10616 }
10617
10618 static int intel_default_queue_flip(struct drm_device *dev,
10619                                     struct drm_crtc *crtc,
10620                                     struct drm_framebuffer *fb,
10621                                     struct drm_i915_gem_object *obj,
10622                                     struct drm_i915_gem_request *req,
10623                                     uint32_t flags)
10624 {
10625         return -ENODEV;
10626 }
10627
10628 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
10629                                       struct intel_crtc *intel_crtc,
10630                                       struct intel_flip_work *work)
10631 {
10632         u32 addr, vblank;
10633
10634         if (!atomic_read(&work->pending))
10635                 return false;
10636
10637         smp_rmb();
10638
10639         vblank = intel_crtc_get_vblank_counter(intel_crtc);
10640         if (work->flip_ready_vblank == 0) {
10641                 if (work->flip_queued_req &&
10642                     !i915_gem_request_completed(work->flip_queued_req))
10643                         return false;
10644
10645                 work->flip_ready_vblank = vblank;
10646         }
10647
10648         if (vblank - work->flip_ready_vblank < 3)
10649                 return false;
10650
10651         /* Potential stall - if we see that the flip has happened,
10652          * assume a missed interrupt. */
10653         if (INTEL_GEN(dev_priv) >= 4)
10654                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10655         else
10656                 addr = I915_READ(DSPADDR(intel_crtc->plane));
10657
10658         /* There is a potential issue here with a false positive after a flip
10659          * to the same address. We could address this by checking for a
10660          * non-incrementing frame counter.
10661          */
10662         return addr == work->gtt_offset;
10663 }
10664
10665 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
10666 {
10667         struct drm_device *dev = &dev_priv->drm;
10668         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
10669         struct intel_flip_work *work;
10670
10671         WARN_ON(!in_interrupt());
10672
10673         if (crtc == NULL)
10674                 return;
10675
10676         spin_lock(&dev->event_lock);
10677         work = crtc->flip_work;
10678
10679         if (work != NULL && !is_mmio_work(work) &&
10680             __pageflip_stall_check_cs(dev_priv, crtc, work)) {
10681                 WARN_ONCE(1,
10682                           "Kicking stuck page flip: queued at %d, now %d\n",
10683                         work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
10684                 page_flip_completed(crtc);
10685                 work = NULL;
10686         }
10687
10688         if (work != NULL && !is_mmio_work(work) &&
10689             intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
10690                 intel_queue_rps_boost_for_request(work->flip_queued_req);
10691         spin_unlock(&dev->event_lock);
10692 }
10693
10694 __maybe_unused
10695 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10696                                 struct drm_framebuffer *fb,
10697                                 struct drm_pending_vblank_event *event,
10698                                 uint32_t page_flip_flags)
10699 {
10700         struct drm_device *dev = crtc->dev;
10701         struct drm_i915_private *dev_priv = to_i915(dev);
10702         struct drm_framebuffer *old_fb = crtc->primary->fb;
10703         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10705         struct drm_plane *primary = crtc->primary;
10706         enum pipe pipe = intel_crtc->pipe;
10707         struct intel_flip_work *work;
10708         struct intel_engine_cs *engine;
10709         bool mmio_flip;
10710         struct drm_i915_gem_request *request;
10711         struct i915_vma *vma;
10712         int ret;
10713
10714         /*
10715          * drm_mode_page_flip_ioctl() should already catch this, but double
10716          * check to be safe.  In the future we may enable pageflipping from
10717          * a disabled primary plane.
10718          */
10719         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10720                 return -EBUSY;
10721
10722         /* Can't change pixel format via MI display flips. */
10723         if (fb->format != crtc->primary->fb->format)
10724                 return -EINVAL;
10725
10726         /*
10727          * TILEOFF/LINOFF registers can't be changed via MI display flips.
10728          * Note that pitch changes could also affect these register.
10729          */
10730         if (INTEL_GEN(dev_priv) > 3 &&
10731             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10732              fb->pitches[0] != crtc->primary->fb->pitches[0]))
10733                 return -EINVAL;
10734
10735         if (i915_terminally_wedged(&dev_priv->gpu_error))
10736                 goto out_hang;
10737
10738         work = kzalloc(sizeof(*work), GFP_KERNEL);
10739         if (work == NULL)
10740                 return -ENOMEM;
10741
10742         work->event = event;
10743         work->crtc = crtc;
10744         work->old_fb = old_fb;
10745         INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
10746
10747         ret = drm_crtc_vblank_get(crtc);
10748         if (ret)
10749                 goto free_work;
10750
10751         /* We borrow the event spin lock for protecting flip_work */
10752         spin_lock_irq(&dev->event_lock);
10753         if (intel_crtc->flip_work) {
10754                 /* Before declaring the flip queue wedged, check if
10755                  * the hardware completed the operation behind our backs.
10756                  */
10757                 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
10758                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10759                         page_flip_completed(intel_crtc);
10760                 } else {
10761                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10762                         spin_unlock_irq(&dev->event_lock);
10763
10764                         drm_crtc_vblank_put(crtc);
10765                         kfree(work);
10766                         return -EBUSY;
10767                 }
10768         }
10769         intel_crtc->flip_work = work;
10770         spin_unlock_irq(&dev->event_lock);
10771
10772         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10773                 flush_workqueue(dev_priv->wq);
10774
10775         /* Reference the objects for the scheduled work. */
10776         drm_framebuffer_reference(work->old_fb);
10777
10778         crtc->primary->fb = fb;
10779         update_state_fb(crtc->primary);
10780
10781         work->pending_flip_obj = i915_gem_object_get(obj);
10782
10783         ret = i915_mutex_lock_interruptible(dev);
10784         if (ret)
10785                 goto cleanup;
10786
10787         intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
10788         if (i915_reset_backoff_or_wedged(&dev_priv->gpu_error)) {
10789                 ret = -EIO;
10790                 goto unlock;
10791         }
10792
10793         atomic_inc(&intel_crtc->unpin_work_count);
10794
10795         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
10796                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
10797
10798         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
10799                 engine = dev_priv->engine[BCS];
10800                 if (fb->modifier != old_fb->modifier)
10801                         /* vlv: DISPLAY_FLIP fails to change tiling */
10802                         engine = NULL;
10803         } else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
10804                 engine = dev_priv->engine[BCS];
10805         } else if (INTEL_GEN(dev_priv) >= 7) {
10806                 engine = i915_gem_object_last_write_engine(obj);
10807                 if (engine == NULL || engine->id != RCS)
10808                         engine = dev_priv->engine[BCS];
10809         } else {
10810                 engine = dev_priv->engine[RCS];
10811         }
10812
10813         mmio_flip = use_mmio_flip(engine, obj);
10814
10815         vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
10816         if (IS_ERR(vma)) {
10817                 ret = PTR_ERR(vma);
10818                 goto cleanup_pending;
10819         }
10820
10821         work->old_vma = to_intel_plane_state(primary->state)->vma;
10822         to_intel_plane_state(primary->state)->vma = vma;
10823
10824         work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
10825         work->rotation = crtc->primary->state->rotation;
10826
10827         /*
10828          * There's the potential that the next frame will not be compatible with
10829          * FBC, so we want to call pre_update() before the actual page flip.
10830          * The problem is that pre_update() caches some information about the fb
10831          * object, so we want to do this only after the object is pinned. Let's
10832          * be on the safe side and do this immediately before scheduling the
10833          * flip.
10834          */
10835         intel_fbc_pre_update(intel_crtc, intel_crtc->config,
10836                              to_intel_plane_state(primary->state));
10837
10838         if (mmio_flip) {
10839                 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
10840                 queue_work(system_unbound_wq, &work->mmio_work);
10841         } else {
10842                 request = i915_gem_request_alloc(engine,
10843                                                  dev_priv->kernel_context);
10844                 if (IS_ERR(request)) {
10845                         ret = PTR_ERR(request);
10846                         goto cleanup_unpin;
10847                 }
10848
10849                 ret = i915_gem_request_await_object(request, obj, false);
10850                 if (ret)
10851                         goto cleanup_request;
10852
10853                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
10854                                                    page_flip_flags);
10855                 if (ret)
10856                         goto cleanup_request;
10857
10858                 intel_mark_page_flip_active(intel_crtc, work);
10859
10860                 work->flip_queued_req = i915_gem_request_get(request);
10861                 i915_add_request(request);
10862         }
10863
10864         i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
10865         i915_gem_track_fb(intel_fb_obj(old_fb), obj,
10866                           to_intel_plane(primary)->frontbuffer_bit);
10867         mutex_unlock(&dev->struct_mutex);
10868
10869         intel_frontbuffer_flip_prepare(to_i915(dev),
10870                                        to_intel_plane(primary)->frontbuffer_bit);
10871
10872         trace_i915_flip_request(intel_crtc->plane, obj);
10873
10874         return 0;
10875
10876 cleanup_request:
10877         i915_add_request(request);
10878 cleanup_unpin:
10879         to_intel_plane_state(primary->state)->vma = work->old_vma;
10880         intel_unpin_fb_vma(vma);
10881 cleanup_pending:
10882         atomic_dec(&intel_crtc->unpin_work_count);
10883 unlock:
10884         mutex_unlock(&dev->struct_mutex);
10885 cleanup:
10886         crtc->primary->fb = old_fb;
10887         update_state_fb(crtc->primary);
10888
10889         i915_gem_object_put(obj);
10890         drm_framebuffer_unreference(work->old_fb);
10891
10892         spin_lock_irq(&dev->event_lock);
10893         intel_crtc->flip_work = NULL;
10894         spin_unlock_irq(&dev->event_lock);
10895
10896         drm_crtc_vblank_put(crtc);
10897 free_work:
10898         kfree(work);
10899
10900         if (ret == -EIO) {
10901                 struct drm_atomic_state *state;
10902                 struct drm_plane_state *plane_state;
10903
10904 out_hang:
10905                 state = drm_atomic_state_alloc(dev);
10906                 if (!state)
10907                         return -ENOMEM;
10908                 state->acquire_ctx = dev->mode_config.acquire_ctx;
10909
10910 retry:
10911                 plane_state = drm_atomic_get_plane_state(state, primary);
10912                 ret = PTR_ERR_OR_ZERO(plane_state);
10913                 if (!ret) {
10914                         drm_atomic_set_fb_for_plane(plane_state, fb);
10915
10916                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
10917                         if (!ret)
10918                                 ret = drm_atomic_commit(state);
10919                 }
10920
10921                 if (ret == -EDEADLK) {
10922                         drm_modeset_backoff(state->acquire_ctx);
10923                         drm_atomic_state_clear(state);
10924                         goto retry;
10925                 }
10926
10927                 drm_atomic_state_put(state);
10928
10929                 if (ret == 0 && event) {
10930                         spin_lock_irq(&dev->event_lock);
10931                         drm_crtc_send_vblank_event(crtc, event);
10932                         spin_unlock_irq(&dev->event_lock);
10933                 }
10934         }
10935         return ret;
10936 }
10937
10938
10939 /**
10940  * intel_wm_need_update - Check whether watermarks need updating
10941  * @plane: drm plane
10942  * @state: new plane state
10943  *
10944  * Check current plane state versus the new one to determine whether
10945  * watermarks need to be recalculated.
10946  *
10947  * Returns true or false.
10948  */
10949 static bool intel_wm_need_update(struct drm_plane *plane,
10950                                  struct drm_plane_state *state)
10951 {
10952         struct intel_plane_state *new = to_intel_plane_state(state);
10953         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10954
10955         /* Update watermarks on tiling or size changes. */
10956         if (new->base.visible != cur->base.visible)
10957                 return true;
10958
10959         if (!cur->base.fb || !new->base.fb)
10960                 return false;
10961
10962         if (cur->base.fb->modifier != new->base.fb->modifier ||
10963             cur->base.rotation != new->base.rotation ||
10964             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10965             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10966             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10967             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10968                 return true;
10969
10970         return false;
10971 }
10972
10973 static bool needs_scaling(struct intel_plane_state *state)
10974 {
10975         int src_w = drm_rect_width(&state->base.src) >> 16;
10976         int src_h = drm_rect_height(&state->base.src) >> 16;
10977         int dst_w = drm_rect_width(&state->base.dst);
10978         int dst_h = drm_rect_height(&state->base.dst);
10979
10980         return (src_w != dst_w || src_h != dst_h);
10981 }
10982
10983 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10984                                     struct drm_plane_state *plane_state)
10985 {
10986         struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10987         struct drm_crtc *crtc = crtc_state->crtc;
10988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10989         struct intel_plane *plane = to_intel_plane(plane_state->plane);
10990         struct drm_device *dev = crtc->dev;
10991         struct drm_i915_private *dev_priv = to_i915(dev);
10992         struct intel_plane_state *old_plane_state =
10993                 to_intel_plane_state(plane->base.state);
10994         bool mode_changed = needs_modeset(crtc_state);
10995         bool was_crtc_enabled = crtc->state->active;
10996         bool is_crtc_enabled = crtc_state->active;
10997         bool turn_off, turn_on, visible, was_visible;
10998         struct drm_framebuffer *fb = plane_state->fb;
10999         int ret;
11000
11001         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11002                 ret = skl_update_scaler_plane(
11003                         to_intel_crtc_state(crtc_state),
11004                         to_intel_plane_state(plane_state));
11005                 if (ret)
11006                         return ret;
11007         }
11008
11009         was_visible = old_plane_state->base.visible;
11010         visible = plane_state->visible;
11011
11012         if (!was_crtc_enabled && WARN_ON(was_visible))
11013                 was_visible = false;
11014
11015         /*
11016          * Visibility is calculated as if the crtc was on, but
11017          * after scaler setup everything depends on it being off
11018          * when the crtc isn't active.
11019          *
11020          * FIXME this is wrong for watermarks. Watermarks should also
11021          * be computed as if the pipe would be active. Perhaps move
11022          * per-plane wm computation to the .check_plane() hook, and
11023          * only combine the results from all planes in the current place?
11024          */
11025         if (!is_crtc_enabled) {
11026                 plane_state->visible = visible = false;
11027                 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
11028         }
11029
11030         if (!was_visible && !visible)
11031                 return 0;
11032
11033         if (fb != old_plane_state->base.fb)
11034                 pipe_config->fb_changed = true;
11035
11036         turn_off = was_visible && (!visible || mode_changed);
11037         turn_on = visible && (!was_visible || mode_changed);
11038
11039         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
11040                          intel_crtc->base.base.id, intel_crtc->base.name,
11041                          plane->base.base.id, plane->base.name,
11042                          fb ? fb->base.id : -1);
11043
11044         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11045                          plane->base.base.id, plane->base.name,
11046                          was_visible, visible,
11047                          turn_off, turn_on, mode_changed);
11048
11049         if (turn_on) {
11050                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11051                         pipe_config->update_wm_pre = true;
11052
11053                 /* must disable cxsr around plane enable/disable */
11054                 if (plane->id != PLANE_CURSOR)
11055                         pipe_config->disable_cxsr = true;
11056         } else if (turn_off) {
11057                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11058                         pipe_config->update_wm_post = true;
11059
11060                 /* must disable cxsr around plane enable/disable */
11061                 if (plane->id != PLANE_CURSOR)
11062                         pipe_config->disable_cxsr = true;
11063         } else if (intel_wm_need_update(&plane->base, plane_state)) {
11064                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11065                         /* FIXME bollocks */
11066                         pipe_config->update_wm_pre = true;
11067                         pipe_config->update_wm_post = true;
11068                 }
11069         }
11070
11071         if (visible || was_visible)
11072                 pipe_config->fb_bits |= plane->frontbuffer_bit;
11073
11074         /*
11075          * WaCxSRDisabledForSpriteScaling:ivb
11076          *
11077          * cstate->update_wm was already set above, so this flag will
11078          * take effect when we commit and program watermarks.
11079          */
11080         if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
11081             needs_scaling(to_intel_plane_state(plane_state)) &&
11082             !needs_scaling(old_plane_state))
11083                 pipe_config->disable_lp_wm = true;
11084
11085         return 0;
11086 }
11087
11088 static bool encoders_cloneable(const struct intel_encoder *a,
11089                                const struct intel_encoder *b)
11090 {
11091         /* masks could be asymmetric, so check both ways */
11092         return a == b || (a->cloneable & (1 << b->type) &&
11093                           b->cloneable & (1 << a->type));
11094 }
11095
11096 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11097                                          struct intel_crtc *crtc,
11098                                          struct intel_encoder *encoder)
11099 {
11100         struct intel_encoder *source_encoder;
11101         struct drm_connector *connector;
11102         struct drm_connector_state *connector_state;
11103         int i;
11104
11105         for_each_new_connector_in_state(state, connector, connector_state, i) {
11106                 if (connector_state->crtc != &crtc->base)
11107                         continue;
11108
11109                 source_encoder =
11110                         to_intel_encoder(connector_state->best_encoder);
11111                 if (!encoders_cloneable(encoder, source_encoder))
11112                         return false;
11113         }
11114
11115         return true;
11116 }
11117
11118 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11119                                    struct drm_crtc_state *crtc_state)
11120 {
11121         struct drm_device *dev = crtc->dev;
11122         struct drm_i915_private *dev_priv = to_i915(dev);
11123         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11124         struct intel_crtc_state *pipe_config =
11125                 to_intel_crtc_state(crtc_state);
11126         struct drm_atomic_state *state = crtc_state->state;
11127         int ret;
11128         bool mode_changed = needs_modeset(crtc_state);
11129
11130         if (mode_changed && !crtc_state->active)
11131                 pipe_config->update_wm_post = true;
11132
11133         if (mode_changed && crtc_state->enable &&
11134             dev_priv->display.crtc_compute_clock &&
11135             !WARN_ON(pipe_config->shared_dpll)) {
11136                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11137                                                            pipe_config);
11138                 if (ret)
11139                         return ret;
11140         }
11141
11142         if (crtc_state->color_mgmt_changed) {
11143                 ret = intel_color_check(crtc, crtc_state);
11144                 if (ret)
11145                         return ret;
11146
11147                 /*
11148                  * Changing color management on Intel hardware is
11149                  * handled as part of planes update.
11150                  */
11151                 crtc_state->planes_changed = true;
11152         }
11153
11154         ret = 0;
11155         if (dev_priv->display.compute_pipe_wm) {
11156                 ret = dev_priv->display.compute_pipe_wm(pipe_config);
11157                 if (ret) {
11158                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11159                         return ret;
11160                 }
11161         }
11162
11163         if (dev_priv->display.compute_intermediate_wm &&
11164             !to_intel_atomic_state(state)->skip_intermediate_wm) {
11165                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11166                         return 0;
11167
11168                 /*
11169                  * Calculate 'intermediate' watermarks that satisfy both the
11170                  * old state and the new state.  We can program these
11171                  * immediately.
11172                  */
11173                 ret = dev_priv->display.compute_intermediate_wm(dev,
11174                                                                 intel_crtc,
11175                                                                 pipe_config);
11176                 if (ret) {
11177                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
11178                         return ret;
11179                 }
11180         } else if (dev_priv->display.compute_intermediate_wm) {
11181                 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
11182                         pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
11183         }
11184
11185         if (INTEL_GEN(dev_priv) >= 9) {
11186                 if (mode_changed)
11187                         ret = skl_update_scaler_crtc(pipe_config);
11188
11189                 if (!ret)
11190                         ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
11191                                                          pipe_config);
11192         }
11193
11194         return ret;
11195 }
11196
11197 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11198         .atomic_begin = intel_begin_crtc_commit,
11199         .atomic_flush = intel_finish_crtc_commit,
11200         .atomic_check = intel_crtc_atomic_check,
11201 };
11202
11203 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11204 {
11205         struct intel_connector *connector;
11206         struct drm_connector_list_iter conn_iter;
11207
11208         drm_connector_list_iter_begin(dev, &conn_iter);
11209         for_each_intel_connector_iter(connector, &conn_iter) {
11210                 if (connector->base.state->crtc)
11211                         drm_connector_unreference(&connector->base);
11212
11213                 if (connector->base.encoder) {
11214                         connector->base.state->best_encoder =
11215                                 connector->base.encoder;
11216                         connector->base.state->crtc =
11217                                 connector->base.encoder->crtc;
11218
11219                         drm_connector_reference(&connector->base);
11220                 } else {
11221                         connector->base.state->best_encoder = NULL;
11222                         connector->base.state->crtc = NULL;
11223                 }
11224         }
11225         drm_connector_list_iter_end(&conn_iter);
11226 }
11227
11228 static void
11229 connected_sink_compute_bpp(struct intel_connector *connector,
11230                            struct intel_crtc_state *pipe_config)
11231 {
11232         const struct drm_display_info *info = &connector->base.display_info;
11233         int bpp = pipe_config->pipe_bpp;
11234
11235         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11236                       connector->base.base.id,
11237                       connector->base.name);
11238
11239         /* Don't use an invalid EDID bpc value */
11240         if (info->bpc != 0 && info->bpc * 3 < bpp) {
11241                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11242                               bpp, info->bpc * 3);
11243                 pipe_config->pipe_bpp = info->bpc * 3;
11244         }
11245
11246         /* Clamp bpp to 8 on screens without EDID 1.4 */
11247         if (info->bpc == 0 && bpp > 24) {
11248                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11249                               bpp);
11250                 pipe_config->pipe_bpp = 24;
11251         }
11252 }
11253
11254 static int
11255 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11256                           struct intel_crtc_state *pipe_config)
11257 {
11258         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11259         struct drm_atomic_state *state;
11260         struct drm_connector *connector;
11261         struct drm_connector_state *connector_state;
11262         int bpp, i;
11263
11264         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
11265             IS_CHERRYVIEW(dev_priv)))
11266                 bpp = 10*3;
11267         else if (INTEL_GEN(dev_priv) >= 5)
11268                 bpp = 12*3;
11269         else
11270                 bpp = 8*3;
11271
11272
11273         pipe_config->pipe_bpp = bpp;
11274
11275         state = pipe_config->base.state;
11276
11277         /* Clamp display bpp to EDID value */
11278         for_each_new_connector_in_state(state, connector, connector_state, i) {
11279                 if (connector_state->crtc != &crtc->base)
11280                         continue;
11281
11282                 connected_sink_compute_bpp(to_intel_connector(connector),
11283                                            pipe_config);
11284         }
11285
11286         return bpp;
11287 }
11288
11289 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11290 {
11291         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11292                         "type: 0x%x flags: 0x%x\n",
11293                 mode->crtc_clock,
11294                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11295                 mode->crtc_hsync_end, mode->crtc_htotal,
11296                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11297                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11298 }
11299
11300 static inline void
11301 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
11302                       unsigned int lane_count, struct intel_link_m_n *m_n)
11303 {
11304         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11305                       id, lane_count,
11306                       m_n->gmch_m, m_n->gmch_n,
11307                       m_n->link_m, m_n->link_n, m_n->tu);
11308 }
11309
11310 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11311                                    struct intel_crtc_state *pipe_config,
11312                                    const char *context)
11313 {
11314         struct drm_device *dev = crtc->base.dev;
11315         struct drm_i915_private *dev_priv = to_i915(dev);
11316         struct drm_plane *plane;
11317         struct intel_plane *intel_plane;
11318         struct intel_plane_state *state;
11319         struct drm_framebuffer *fb;
11320
11321         DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
11322                       crtc->base.base.id, crtc->base.name, context);
11323
11324         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
11325                       transcoder_name(pipe_config->cpu_transcoder),
11326                       pipe_config->pipe_bpp, pipe_config->dither);
11327
11328         if (pipe_config->has_pch_encoder)
11329                 intel_dump_m_n_config(pipe_config, "fdi",
11330                                       pipe_config->fdi_lanes,
11331                                       &pipe_config->fdi_m_n);
11332
11333         if (intel_crtc_has_dp_encoder(pipe_config)) {
11334                 intel_dump_m_n_config(pipe_config, "dp m_n",
11335                                 pipe_config->lane_count, &pipe_config->dp_m_n);
11336                 if (pipe_config->has_drrs)
11337                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
11338                                               pipe_config->lane_count,
11339                                               &pipe_config->dp_m2_n2);
11340         }
11341
11342         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11343                       pipe_config->has_audio, pipe_config->has_infoframe);
11344
11345         DRM_DEBUG_KMS("requested mode:\n");
11346         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11347         DRM_DEBUG_KMS("adjusted mode:\n");
11348         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11349         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11350         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
11351                       pipe_config->port_clock,
11352                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
11353                       pipe_config->pixel_rate);
11354
11355         if (INTEL_GEN(dev_priv) >= 9)
11356                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11357                               crtc->num_scalers,
11358                               pipe_config->scaler_state.scaler_users,
11359                               pipe_config->scaler_state.scaler_id);
11360
11361         if (HAS_GMCH_DISPLAY(dev_priv))
11362                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11363                               pipe_config->gmch_pfit.control,
11364                               pipe_config->gmch_pfit.pgm_ratios,
11365                               pipe_config->gmch_pfit.lvds_border_bits);
11366         else
11367                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11368                               pipe_config->pch_pfit.pos,
11369                               pipe_config->pch_pfit.size,
11370                               enableddisabled(pipe_config->pch_pfit.enabled));
11371
11372         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
11373                       pipe_config->ips_enabled, pipe_config->double_wide);
11374
11375         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
11376
11377         DRM_DEBUG_KMS("planes on this crtc\n");
11378         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11379                 struct drm_format_name_buf format_name;
11380                 intel_plane = to_intel_plane(plane);
11381                 if (intel_plane->pipe != crtc->pipe)
11382                         continue;
11383
11384                 state = to_intel_plane_state(plane->state);
11385                 fb = state->base.fb;
11386                 if (!fb) {
11387                         DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
11388                                       plane->base.id, plane->name, state->scaler_id);
11389                         continue;
11390                 }
11391
11392                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
11393                               plane->base.id, plane->name,
11394                               fb->base.id, fb->width, fb->height,
11395                               drm_get_format_name(fb->format->format, &format_name));
11396                 if (INTEL_GEN(dev_priv) >= 9)
11397                         DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
11398                                       state->scaler_id,
11399                                       state->base.src.x1 >> 16,
11400                                       state->base.src.y1 >> 16,
11401                                       drm_rect_width(&state->base.src) >> 16,
11402                                       drm_rect_height(&state->base.src) >> 16,
11403                                       state->base.dst.x1, state->base.dst.y1,
11404                                       drm_rect_width(&state->base.dst),
11405                                       drm_rect_height(&state->base.dst));
11406         }
11407 }
11408
11409 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11410 {
11411         struct drm_device *dev = state->dev;
11412         struct drm_connector *connector;
11413         unsigned int used_ports = 0;
11414         unsigned int used_mst_ports = 0;
11415
11416         /*
11417          * Walk the connector list instead of the encoder
11418          * list to detect the problem on ddi platforms
11419          * where there's just one encoder per digital port.
11420          */
11421         drm_for_each_connector(connector, dev) {
11422                 struct drm_connector_state *connector_state;
11423                 struct intel_encoder *encoder;
11424
11425                 connector_state = drm_atomic_get_existing_connector_state(state, connector);
11426                 if (!connector_state)
11427                         connector_state = connector->state;
11428
11429                 if (!connector_state->best_encoder)
11430                         continue;
11431
11432                 encoder = to_intel_encoder(connector_state->best_encoder);
11433
11434                 WARN_ON(!connector_state->crtc);
11435
11436                 switch (encoder->type) {
11437                         unsigned int port_mask;
11438                 case INTEL_OUTPUT_UNKNOWN:
11439                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
11440                                 break;
11441                 case INTEL_OUTPUT_DP:
11442                 case INTEL_OUTPUT_HDMI:
11443                 case INTEL_OUTPUT_EDP:
11444                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11445
11446                         /* the same port mustn't appear more than once */
11447                         if (used_ports & port_mask)
11448                                 return false;
11449
11450                         used_ports |= port_mask;
11451                         break;
11452                 case INTEL_OUTPUT_DP_MST:
11453                         used_mst_ports |=
11454                                 1 << enc_to_mst(&encoder->base)->primary->port;
11455                         break;
11456                 default:
11457                         break;
11458                 }
11459         }
11460
11461         /* can't mix MST and SST/HDMI on the same port */
11462         if (used_ports & used_mst_ports)
11463                 return false;
11464
11465         return true;
11466 }
11467
11468 static void
11469 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11470 {
11471         struct drm_i915_private *dev_priv =
11472                 to_i915(crtc_state->base.crtc->dev);
11473         struct intel_crtc_scaler_state scaler_state;
11474         struct intel_dpll_hw_state dpll_hw_state;
11475         struct intel_shared_dpll *shared_dpll;
11476         struct intel_crtc_wm_state wm_state;
11477         bool force_thru;
11478
11479         /* FIXME: before the switch to atomic started, a new pipe_config was
11480          * kzalloc'd. Code that depends on any field being zero should be
11481          * fixed, so that the crtc_state can be safely duplicated. For now,
11482          * only fields that are know to not cause problems are preserved. */
11483
11484         scaler_state = crtc_state->scaler_state;
11485         shared_dpll = crtc_state->shared_dpll;
11486         dpll_hw_state = crtc_state->dpll_hw_state;
11487         force_thru = crtc_state->pch_pfit.force_thru;
11488         if (IS_G4X(dev_priv) ||
11489             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11490                 wm_state = crtc_state->wm;
11491
11492         /* Keep base drm_crtc_state intact, only clear our extended struct */
11493         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
11494         memset(&crtc_state->base + 1, 0,
11495                sizeof(*crtc_state) - sizeof(crtc_state->base));
11496
11497         crtc_state->scaler_state = scaler_state;
11498         crtc_state->shared_dpll = shared_dpll;
11499         crtc_state->dpll_hw_state = dpll_hw_state;
11500         crtc_state->pch_pfit.force_thru = force_thru;
11501         if (IS_G4X(dev_priv) ||
11502             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11503                 crtc_state->wm = wm_state;
11504 }
11505
11506 static int
11507 intel_modeset_pipe_config(struct drm_crtc *crtc,
11508                           struct intel_crtc_state *pipe_config)
11509 {
11510         struct drm_atomic_state *state = pipe_config->base.state;
11511         struct intel_encoder *encoder;
11512         struct drm_connector *connector;
11513         struct drm_connector_state *connector_state;
11514         int base_bpp, ret = -EINVAL;
11515         int i;
11516         bool retry = true;
11517
11518         clear_intel_crtc_state(pipe_config);
11519
11520         pipe_config->cpu_transcoder =
11521                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11522
11523         /*
11524          * Sanitize sync polarity flags based on requested ones. If neither
11525          * positive or negative polarity is requested, treat this as meaning
11526          * negative polarity.
11527          */
11528         if (!(pipe_config->base.adjusted_mode.flags &
11529               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11530                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11531
11532         if (!(pipe_config->base.adjusted_mode.flags &
11533               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11534                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11535
11536         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11537                                              pipe_config);
11538         if (base_bpp < 0)
11539                 goto fail;
11540
11541         /*
11542          * Determine the real pipe dimensions. Note that stereo modes can
11543          * increase the actual pipe size due to the frame doubling and
11544          * insertion of additional space for blanks between the frame. This
11545          * is stored in the crtc timings. We use the requested mode to do this
11546          * computation to clearly distinguish it from the adjusted mode, which
11547          * can be changed by the connectors in the below retry loop.
11548          */
11549         drm_mode_get_hv_timing(&pipe_config->base.mode,
11550                                &pipe_config->pipe_src_w,
11551                                &pipe_config->pipe_src_h);
11552
11553         for_each_new_connector_in_state(state, connector, connector_state, i) {
11554                 if (connector_state->crtc != crtc)
11555                         continue;
11556
11557                 encoder = to_intel_encoder(connector_state->best_encoder);
11558
11559                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
11560                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11561                         goto fail;
11562                 }
11563
11564                 /*
11565                  * Determine output_types before calling the .compute_config()
11566                  * hooks so that the hooks can use this information safely.
11567                  */
11568                 pipe_config->output_types |= 1 << encoder->type;
11569         }
11570
11571 encoder_retry:
11572         /* Ensure the port clock defaults are reset when retrying. */
11573         pipe_config->port_clock = 0;
11574         pipe_config->pixel_multiplier = 1;
11575
11576         /* Fill in default crtc timings, allow encoders to overwrite them. */
11577         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11578                               CRTC_STEREO_DOUBLE);
11579
11580         /* Pass our mode to the connectors and the CRTC to give them a chance to
11581          * adjust it according to limitations or connector properties, and also
11582          * a chance to reject the mode entirely.
11583          */
11584         for_each_new_connector_in_state(state, connector, connector_state, i) {
11585                 if (connector_state->crtc != crtc)
11586                         continue;
11587
11588                 encoder = to_intel_encoder(connector_state->best_encoder);
11589
11590                 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
11591                         DRM_DEBUG_KMS("Encoder config failure\n");
11592                         goto fail;
11593                 }
11594         }
11595
11596         /* Set default port clock if not overwritten by the encoder. Needs to be
11597          * done afterwards in case the encoder adjusts the mode. */
11598         if (!pipe_config->port_clock)
11599                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11600                         * pipe_config->pixel_multiplier;
11601
11602         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11603         if (ret < 0) {
11604                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11605                 goto fail;
11606         }
11607
11608         if (ret == RETRY) {
11609                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11610                         ret = -EINVAL;
11611                         goto fail;
11612                 }
11613
11614                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11615                 retry = false;
11616                 goto encoder_retry;
11617         }
11618
11619         /* Dithering seems to not pass-through bits correctly when it should, so
11620          * only enable it on 6bpc panels and when its not a compliance
11621          * test requesting 6bpc video pattern.
11622          */
11623         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11624                 !pipe_config->dither_force_disable;
11625         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11626                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11627
11628 fail:
11629         return ret;
11630 }
11631
11632 static void
11633 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11634 {
11635         struct drm_crtc *crtc;
11636         struct drm_crtc_state *new_crtc_state;
11637         int i;
11638
11639         /* Double check state. */
11640         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11641                 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11642
11643                 /*
11644                  * Update legacy state to satisfy fbc code. This can
11645                  * be removed when fbc uses the atomic state.
11646                  */
11647                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11648                         struct drm_plane_state *plane_state = crtc->primary->state;
11649
11650                         crtc->primary->fb = plane_state->fb;
11651                         crtc->x = plane_state->src_x >> 16;
11652                         crtc->y = plane_state->src_y >> 16;
11653                 }
11654         }
11655 }
11656
11657 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11658 {
11659         int diff;
11660
11661         if (clock1 == clock2)
11662                 return true;
11663
11664         if (!clock1 || !clock2)
11665                 return false;
11666
11667         diff = abs(clock1 - clock2);
11668
11669         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11670                 return true;
11671
11672         return false;
11673 }
11674
11675 static bool
11676 intel_compare_m_n(unsigned int m, unsigned int n,
11677                   unsigned int m2, unsigned int n2,
11678                   bool exact)
11679 {
11680         if (m == m2 && n == n2)
11681                 return true;
11682
11683         if (exact || !m || !n || !m2 || !n2)
11684                 return false;
11685
11686         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11687
11688         if (n > n2) {
11689                 while (n > n2) {
11690                         m2 <<= 1;
11691                         n2 <<= 1;
11692                 }
11693         } else if (n < n2) {
11694                 while (n < n2) {
11695                         m <<= 1;
11696                         n <<= 1;
11697                 }
11698         }
11699
11700         if (n != n2)
11701                 return false;
11702
11703         return intel_fuzzy_clock_check(m, m2);
11704 }
11705
11706 static bool
11707 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11708                        struct intel_link_m_n *m2_n2,
11709                        bool adjust)
11710 {
11711         if (m_n->tu == m2_n2->tu &&
11712             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11713                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11714             intel_compare_m_n(m_n->link_m, m_n->link_n,
11715                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
11716                 if (adjust)
11717                         *m2_n2 = *m_n;
11718
11719                 return true;
11720         }
11721
11722         return false;
11723 }
11724
11725 static void __printf(3, 4)
11726 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11727 {
11728         char *level;
11729         unsigned int category;
11730         struct va_format vaf;
11731         va_list args;
11732
11733         if (adjust) {
11734                 level = KERN_DEBUG;
11735                 category = DRM_UT_KMS;
11736         } else {
11737                 level = KERN_ERR;
11738                 category = DRM_UT_NONE;
11739         }
11740
11741         va_start(args, format);
11742         vaf.fmt = format;
11743         vaf.va = &args;
11744
11745         drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11746
11747         va_end(args);
11748 }
11749
11750 static bool
11751 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11752                           struct intel_crtc_state *current_config,
11753                           struct intel_crtc_state *pipe_config,
11754                           bool adjust)
11755 {
11756         bool ret = true;
11757
11758 #define PIPE_CONF_CHECK_X(name) \
11759         if (current_config->name != pipe_config->name) { \
11760                 pipe_config_err(adjust, __stringify(name), \
11761                           "(expected 0x%08x, found 0x%08x)\n", \
11762                           current_config->name, \
11763                           pipe_config->name); \
11764                 ret = false; \
11765         }
11766
11767 #define PIPE_CONF_CHECK_I(name) \
11768         if (current_config->name != pipe_config->name) { \
11769                 pipe_config_err(adjust, __stringify(name), \
11770                           "(expected %i, found %i)\n", \
11771                           current_config->name, \
11772                           pipe_config->name); \
11773                 ret = false; \
11774         }
11775
11776 #define PIPE_CONF_CHECK_P(name) \
11777         if (current_config->name != pipe_config->name) { \
11778                 pipe_config_err(adjust, __stringify(name), \
11779                           "(expected %p, found %p)\n", \
11780                           current_config->name, \
11781                           pipe_config->name); \
11782                 ret = false; \
11783         }
11784
11785 #define PIPE_CONF_CHECK_M_N(name) \
11786         if (!intel_compare_link_m_n(&current_config->name, \
11787                                     &pipe_config->name,\
11788                                     adjust)) { \
11789                 pipe_config_err(adjust, __stringify(name), \
11790                           "(expected tu %i gmch %i/%i link %i/%i, " \
11791                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11792                           current_config->name.tu, \
11793                           current_config->name.gmch_m, \
11794                           current_config->name.gmch_n, \
11795                           current_config->name.link_m, \
11796                           current_config->name.link_n, \
11797                           pipe_config->name.tu, \
11798                           pipe_config->name.gmch_m, \
11799                           pipe_config->name.gmch_n, \
11800                           pipe_config->name.link_m, \
11801                           pipe_config->name.link_n); \
11802                 ret = false; \
11803         }
11804
11805 /* This is required for BDW+ where there is only one set of registers for
11806  * switching between high and low RR.
11807  * This macro can be used whenever a comparison has to be made between one
11808  * hw state and multiple sw state variables.
11809  */
11810 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11811         if (!intel_compare_link_m_n(&current_config->name, \
11812                                     &pipe_config->name, adjust) && \
11813             !intel_compare_link_m_n(&current_config->alt_name, \
11814                                     &pipe_config->name, adjust)) { \
11815                 pipe_config_err(adjust, __stringify(name), \
11816                           "(expected tu %i gmch %i/%i link %i/%i, " \
11817                           "or tu %i gmch %i/%i link %i/%i, " \
11818                           "found tu %i, gmch %i/%i link %i/%i)\n", \
11819                           current_config->name.tu, \
11820                           current_config->name.gmch_m, \
11821                           current_config->name.gmch_n, \
11822                           current_config->name.link_m, \
11823                           current_config->name.link_n, \
11824                           current_config->alt_name.tu, \
11825                           current_config->alt_name.gmch_m, \
11826                           current_config->alt_name.gmch_n, \
11827                           current_config->alt_name.link_m, \
11828                           current_config->alt_name.link_n, \
11829                           pipe_config->name.tu, \
11830                           pipe_config->name.gmch_m, \
11831                           pipe_config->name.gmch_n, \
11832                           pipe_config->name.link_m, \
11833                           pipe_config->name.link_n); \
11834                 ret = false; \
11835         }
11836
11837 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11838         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11839                 pipe_config_err(adjust, __stringify(name), \
11840                           "(%x) (expected %i, found %i)\n", \
11841                           (mask), \
11842                           current_config->name & (mask), \
11843                           pipe_config->name & (mask)); \
11844                 ret = false; \
11845         }
11846
11847 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11848         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11849                 pipe_config_err(adjust, __stringify(name), \
11850                           "(expected %i, found %i)\n", \
11851                           current_config->name, \
11852                           pipe_config->name); \
11853                 ret = false; \
11854         }
11855
11856 #define PIPE_CONF_QUIRK(quirk)  \
11857         ((current_config->quirks | pipe_config->quirks) & (quirk))
11858
11859         PIPE_CONF_CHECK_I(cpu_transcoder);
11860
11861         PIPE_CONF_CHECK_I(has_pch_encoder);
11862         PIPE_CONF_CHECK_I(fdi_lanes);
11863         PIPE_CONF_CHECK_M_N(fdi_m_n);
11864
11865         PIPE_CONF_CHECK_I(lane_count);
11866         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11867
11868         if (INTEL_GEN(dev_priv) < 8) {
11869                 PIPE_CONF_CHECK_M_N(dp_m_n);
11870
11871                 if (current_config->has_drrs)
11872                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
11873         } else
11874                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11875
11876         PIPE_CONF_CHECK_X(output_types);
11877
11878         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11879         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11880         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11881         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11882         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11883         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11884
11885         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11886         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11887         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11888         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11889         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11890         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11891
11892         PIPE_CONF_CHECK_I(pixel_multiplier);
11893         PIPE_CONF_CHECK_I(has_hdmi_sink);
11894         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11895             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11896                 PIPE_CONF_CHECK_I(limited_color_range);
11897
11898         PIPE_CONF_CHECK_I(hdmi_scrambling);
11899         PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11900         PIPE_CONF_CHECK_I(has_infoframe);
11901
11902         PIPE_CONF_CHECK_I(has_audio);
11903
11904         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11905                               DRM_MODE_FLAG_INTERLACE);
11906
11907         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11908                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11909                                       DRM_MODE_FLAG_PHSYNC);
11910                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11911                                       DRM_MODE_FLAG_NHSYNC);
11912                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11913                                       DRM_MODE_FLAG_PVSYNC);
11914                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11915                                       DRM_MODE_FLAG_NVSYNC);
11916         }
11917
11918         PIPE_CONF_CHECK_X(gmch_pfit.control);
11919         /* pfit ratios are autocomputed by the hw on gen4+ */
11920         if (INTEL_GEN(dev_priv) < 4)
11921                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11922         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11923
11924         if (!adjust) {
11925                 PIPE_CONF_CHECK_I(pipe_src_w);
11926                 PIPE_CONF_CHECK_I(pipe_src_h);
11927
11928                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11929                 if (current_config->pch_pfit.enabled) {
11930                         PIPE_CONF_CHECK_X(pch_pfit.pos);
11931                         PIPE_CONF_CHECK_X(pch_pfit.size);
11932                 }
11933
11934                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11935                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11936         }
11937
11938         /* BDW+ don't expose a synchronous way to read the state */
11939         if (IS_HASWELL(dev_priv))
11940                 PIPE_CONF_CHECK_I(ips_enabled);
11941
11942         PIPE_CONF_CHECK_I(double_wide);
11943
11944         PIPE_CONF_CHECK_P(shared_dpll);
11945         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11946         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11947         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11948         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11949         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11950         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11951         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11952         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11953         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11954
11955         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11956         PIPE_CONF_CHECK_X(dsi_pll.div);
11957
11958         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11959                 PIPE_CONF_CHECK_I(pipe_bpp);
11960
11961         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11962         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11963
11964 #undef PIPE_CONF_CHECK_X
11965 #undef PIPE_CONF_CHECK_I
11966 #undef PIPE_CONF_CHECK_P
11967 #undef PIPE_CONF_CHECK_FLAGS
11968 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11969 #undef PIPE_CONF_QUIRK
11970
11971         return ret;
11972 }
11973
11974 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11975                                            const struct intel_crtc_state *pipe_config)
11976 {
11977         if (pipe_config->has_pch_encoder) {
11978                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11979                                                             &pipe_config->fdi_m_n);
11980                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11981
11982                 /*
11983                  * FDI already provided one idea for the dotclock.
11984                  * Yell if the encoder disagrees.
11985                  */
11986                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11987                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11988                      fdi_dotclock, dotclock);
11989         }
11990 }
11991
11992 static void verify_wm_state(struct drm_crtc *crtc,
11993                             struct drm_crtc_state *new_state)
11994 {
11995         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11996         struct skl_ddb_allocation hw_ddb, *sw_ddb;
11997         struct skl_pipe_wm hw_wm, *sw_wm;
11998         struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11999         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
12000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12001         const enum pipe pipe = intel_crtc->pipe;
12002         int plane, level, max_level = ilk_wm_max_level(dev_priv);
12003
12004         if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
12005                 return;
12006
12007         skl_pipe_wm_get_hw_state(crtc, &hw_wm);
12008         sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
12009
12010         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12011         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12012
12013         /* planes */
12014         for_each_universal_plane(dev_priv, pipe, plane) {
12015                 hw_plane_wm = &hw_wm.planes[plane];
12016                 sw_plane_wm = &sw_wm->planes[plane];
12017
12018                 /* Watermarks */
12019                 for (level = 0; level <= max_level; level++) {
12020                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12021                                                 &sw_plane_wm->wm[level]))
12022                                 continue;
12023
12024                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12025                                   pipe_name(pipe), plane + 1, level,
12026                                   sw_plane_wm->wm[level].plane_en,
12027                                   sw_plane_wm->wm[level].plane_res_b,
12028                                   sw_plane_wm->wm[level].plane_res_l,
12029                                   hw_plane_wm->wm[level].plane_en,
12030                                   hw_plane_wm->wm[level].plane_res_b,
12031                                   hw_plane_wm->wm[level].plane_res_l);
12032                 }
12033
12034                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12035                                          &sw_plane_wm->trans_wm)) {
12036                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12037                                   pipe_name(pipe), plane + 1,
12038                                   sw_plane_wm->trans_wm.plane_en,
12039                                   sw_plane_wm->trans_wm.plane_res_b,
12040                                   sw_plane_wm->trans_wm.plane_res_l,
12041                                   hw_plane_wm->trans_wm.plane_en,
12042                                   hw_plane_wm->trans_wm.plane_res_b,
12043                                   hw_plane_wm->trans_wm.plane_res_l);
12044                 }
12045
12046                 /* DDB */
12047                 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
12048                 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
12049
12050                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12051                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
12052                                   pipe_name(pipe), plane + 1,
12053                                   sw_ddb_entry->start, sw_ddb_entry->end,
12054                                   hw_ddb_entry->start, hw_ddb_entry->end);
12055                 }
12056         }
12057
12058         /*
12059          * cursor
12060          * If the cursor plane isn't active, we may not have updated it's ddb
12061          * allocation. In that case since the ddb allocation will be updated
12062          * once the plane becomes visible, we can skip this check
12063          */
12064         if (1) {
12065                 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
12066                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
12067
12068                 /* Watermarks */
12069                 for (level = 0; level <= max_level; level++) {
12070                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
12071                                                 &sw_plane_wm->wm[level]))
12072                                 continue;
12073
12074                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12075                                   pipe_name(pipe), level,
12076                                   sw_plane_wm->wm[level].plane_en,
12077                                   sw_plane_wm->wm[level].plane_res_b,
12078                                   sw_plane_wm->wm[level].plane_res_l,
12079                                   hw_plane_wm->wm[level].plane_en,
12080                                   hw_plane_wm->wm[level].plane_res_b,
12081                                   hw_plane_wm->wm[level].plane_res_l);
12082                 }
12083
12084                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
12085                                          &sw_plane_wm->trans_wm)) {
12086                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
12087                                   pipe_name(pipe),
12088                                   sw_plane_wm->trans_wm.plane_en,
12089                                   sw_plane_wm->trans_wm.plane_res_b,
12090                                   sw_plane_wm->trans_wm.plane_res_l,
12091                                   hw_plane_wm->trans_wm.plane_en,
12092                                   hw_plane_wm->trans_wm.plane_res_b,
12093                                   hw_plane_wm->trans_wm.plane_res_l);
12094                 }
12095
12096                 /* DDB */
12097                 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12098                 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12099
12100                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
12101                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
12102                                   pipe_name(pipe),
12103                                   sw_ddb_entry->start, sw_ddb_entry->end,
12104                                   hw_ddb_entry->start, hw_ddb_entry->end);
12105                 }
12106         }
12107 }
12108
12109 static void
12110 verify_connector_state(struct drm_device *dev,
12111                        struct drm_atomic_state *state,
12112                        struct drm_crtc *crtc)
12113 {
12114         struct drm_connector *connector;
12115         struct drm_connector_state *new_conn_state;
12116         int i;
12117
12118         for_each_new_connector_in_state(state, connector, new_conn_state, i) {
12119                 struct drm_encoder *encoder = connector->encoder;
12120                 struct drm_crtc_state *crtc_state = NULL;
12121
12122                 if (new_conn_state->crtc != crtc)
12123                         continue;
12124
12125                 if (crtc)
12126                         crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
12127
12128                 intel_connector_verify_state(crtc_state, new_conn_state);
12129
12130                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
12131                      "connector's atomic encoder doesn't match legacy encoder\n");
12132         }
12133 }
12134
12135 static void
12136 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
12137 {
12138         struct intel_encoder *encoder;
12139         struct drm_connector *connector;
12140         struct drm_connector_state *old_conn_state, *new_conn_state;
12141         int i;
12142
12143         for_each_intel_encoder(dev, encoder) {
12144                 bool enabled = false, found = false;
12145                 enum pipe pipe;
12146
12147                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12148                               encoder->base.base.id,
12149                               encoder->base.name);
12150
12151                 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
12152                                                    new_conn_state, i) {
12153                         if (old_conn_state->best_encoder == &encoder->base)
12154                                 found = true;
12155
12156                         if (new_conn_state->best_encoder != &encoder->base)
12157                                 continue;
12158                         found = enabled = true;
12159
12160                         I915_STATE_WARN(new_conn_state->crtc !=
12161                                         encoder->base.crtc,
12162                              "connector's crtc doesn't match encoder crtc\n");
12163                 }
12164
12165                 if (!found)
12166                         continue;
12167
12168                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12169                      "encoder's enabled state mismatch "
12170                      "(expected %i, found %i)\n",
12171                      !!encoder->base.crtc, enabled);
12172
12173                 if (!encoder->base.crtc) {
12174                         bool active;
12175
12176                         active = encoder->get_hw_state(encoder, &pipe);
12177                         I915_STATE_WARN(active,
12178                              "encoder detached but still enabled on pipe %c.\n",
12179                              pipe_name(pipe));
12180                 }
12181         }
12182 }
12183
12184 static void
12185 verify_crtc_state(struct drm_crtc *crtc,
12186                   struct drm_crtc_state *old_crtc_state,
12187                   struct drm_crtc_state *new_crtc_state)
12188 {
12189         struct drm_device *dev = crtc->dev;
12190         struct drm_i915_private *dev_priv = to_i915(dev);
12191         struct intel_encoder *encoder;
12192         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12193         struct intel_crtc_state *pipe_config, *sw_config;
12194         struct drm_atomic_state *old_state;
12195         bool active;
12196
12197         old_state = old_crtc_state->state;
12198         __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12199         pipe_config = to_intel_crtc_state(old_crtc_state);
12200         memset(pipe_config, 0, sizeof(*pipe_config));
12201         pipe_config->base.crtc = crtc;
12202         pipe_config->base.state = old_state;
12203
12204         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
12205
12206         active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12207
12208         /* hw state is inconsistent with the pipe quirk */
12209         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12210             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12211                 active = new_crtc_state->active;
12212
12213         I915_STATE_WARN(new_crtc_state->active != active,
12214              "crtc active state doesn't match with hw state "
12215              "(expected %i, found %i)\n", new_crtc_state->active, active);
12216
12217         I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12218              "transitional active state does not match atomic hw state "
12219              "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12220
12221         for_each_encoder_on_crtc(dev, crtc, encoder) {
12222                 enum pipe pipe;
12223
12224                 active = encoder->get_hw_state(encoder, &pipe);
12225                 I915_STATE_WARN(active != new_crtc_state->active,
12226                         "[ENCODER:%i] active %i with crtc active %i\n",
12227                         encoder->base.base.id, active, new_crtc_state->active);
12228
12229                 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12230                                 "Encoder connected to wrong pipe %c\n",
12231                                 pipe_name(pipe));
12232
12233                 if (active) {
12234                         pipe_config->output_types |= 1 << encoder->type;
12235                         encoder->get_config(encoder, pipe_config);
12236                 }
12237         }
12238
12239         intel_crtc_compute_pixel_rate(pipe_config);
12240
12241         if (!new_crtc_state->active)
12242                 return;
12243
12244         intel_pipe_config_sanity_check(dev_priv, pipe_config);
12245
12246         sw_config = to_intel_crtc_state(new_crtc_state);
12247         if (!intel_pipe_config_compare(dev_priv, sw_config,
12248                                        pipe_config, false)) {
12249                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12250                 intel_dump_pipe_config(intel_crtc, pipe_config,
12251                                        "[hw state]");
12252                 intel_dump_pipe_config(intel_crtc, sw_config,
12253                                        "[sw state]");
12254         }
12255 }
12256
12257 static void
12258 verify_single_dpll_state(struct drm_i915_private *dev_priv,
12259                          struct intel_shared_dpll *pll,
12260                          struct drm_crtc *crtc,
12261                          struct drm_crtc_state *new_state)
12262 {
12263         struct intel_dpll_hw_state dpll_hw_state;
12264         unsigned crtc_mask;
12265         bool active;
12266
12267         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12268
12269         DRM_DEBUG_KMS("%s\n", pll->name);
12270
12271         active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
12272
12273         if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12274                 I915_STATE_WARN(!pll->on && pll->active_mask,
12275                      "pll in active use but not on in sw tracking\n");
12276                 I915_STATE_WARN(pll->on && !pll->active_mask,
12277                      "pll is on but not used by any active crtc\n");
12278                 I915_STATE_WARN(pll->on != active,
12279                      "pll on state mismatch (expected %i, found %i)\n",
12280                      pll->on, active);
12281         }
12282
12283         if (!crtc) {
12284                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
12285                                 "more active pll users than references: %x vs %x\n",
12286                                 pll->active_mask, pll->state.crtc_mask);
12287
12288                 return;
12289         }
12290
12291         crtc_mask = 1 << drm_crtc_index(crtc);
12292
12293         if (new_state->active)
12294                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
12295                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
12296                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12297         else
12298                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12299                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
12300                                 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
12301
12302         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
12303                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
12304                         crtc_mask, pll->state.crtc_mask);
12305
12306         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
12307                                           &dpll_hw_state,
12308                                           sizeof(dpll_hw_state)),
12309                         "pll hw state mismatch\n");
12310 }
12311
12312 static void
12313 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
12314                          struct drm_crtc_state *old_crtc_state,
12315                          struct drm_crtc_state *new_crtc_state)
12316 {
12317         struct drm_i915_private *dev_priv = to_i915(dev);
12318         struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
12319         struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
12320
12321         if (new_state->shared_dpll)
12322                 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
12323
12324         if (old_state->shared_dpll &&
12325             old_state->shared_dpll != new_state->shared_dpll) {
12326                 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
12327                 struct intel_shared_dpll *pll = old_state->shared_dpll;
12328
12329                 I915_STATE_WARN(pll->active_mask & crtc_mask,
12330                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
12331                                 pipe_name(drm_crtc_index(crtc)));
12332                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
12333                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
12334                                 pipe_name(drm_crtc_index(crtc)));
12335         }
12336 }
12337
12338 static void
12339 intel_modeset_verify_crtc(struct drm_crtc *crtc,
12340                           struct drm_atomic_state *state,
12341                           struct drm_crtc_state *old_state,
12342                           struct drm_crtc_state *new_state)
12343 {
12344         if (!needs_modeset(new_state) &&
12345             !to_intel_crtc_state(new_state)->update_pipe)
12346                 return;
12347
12348         verify_wm_state(crtc, new_state);
12349         verify_connector_state(crtc->dev, state, crtc);
12350         verify_crtc_state(crtc, old_state, new_state);
12351         verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
12352 }
12353
12354 static void
12355 verify_disabled_dpll_state(struct drm_device *dev)
12356 {
12357         struct drm_i915_private *dev_priv = to_i915(dev);
12358         int i;
12359
12360         for (i = 0; i < dev_priv->num_shared_dpll; i++)
12361                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
12362 }
12363
12364 static void
12365 intel_modeset_verify_disabled(struct drm_device *dev,
12366                               struct drm_atomic_state *state)
12367 {
12368         verify_encoder_state(dev, state);
12369         verify_connector_state(dev, state, NULL);
12370         verify_disabled_dpll_state(dev);
12371 }
12372
12373 static void update_scanline_offset(struct intel_crtc *crtc)
12374 {
12375         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12376
12377         /*
12378          * The scanline counter increments at the leading edge of hsync.
12379          *
12380          * On most platforms it starts counting from vtotal-1 on the
12381          * first active line. That means the scanline counter value is
12382          * always one less than what we would expect. Ie. just after
12383          * start of vblank, which also occurs at start of hsync (on the
12384          * last active line), the scanline counter will read vblank_start-1.
12385          *
12386          * On gen2 the scanline counter starts counting from 1 instead
12387          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12388          * to keep the value positive), instead of adding one.
12389          *
12390          * On HSW+ the behaviour of the scanline counter depends on the output
12391          * type. For DP ports it behaves like most other platforms, but on HDMI
12392          * there's an extra 1 line difference. So we need to add two instead of
12393          * one to the value.
12394          */
12395         if (IS_GEN2(dev_priv)) {
12396                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12397                 int vtotal;
12398
12399                 vtotal = adjusted_mode->crtc_vtotal;
12400                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12401                         vtotal /= 2;
12402
12403                 crtc->scanline_offset = vtotal - 1;
12404         } else if (HAS_DDI(dev_priv) &&
12405                    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
12406                 crtc->scanline_offset = 2;
12407         } else
12408                 crtc->scanline_offset = 1;
12409 }
12410
12411 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12412 {
12413         struct drm_device *dev = state->dev;
12414         struct drm_i915_private *dev_priv = to_i915(dev);
12415         struct drm_crtc *crtc;
12416         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12417         int i;
12418
12419         if (!dev_priv->display.crtc_compute_clock)
12420                 return;
12421
12422         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12423                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12424                 struct intel_shared_dpll *old_dpll =
12425                         to_intel_crtc_state(old_crtc_state)->shared_dpll;
12426
12427                 if (!needs_modeset(new_crtc_state))
12428                         continue;
12429
12430                 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
12431
12432                 if (!old_dpll)
12433                         continue;
12434
12435                 intel_release_shared_dpll(old_dpll, intel_crtc, state);
12436         }
12437 }
12438
12439 /*
12440  * This implements the workaround described in the "notes" section of the mode
12441  * set sequence documentation. When going from no pipes or single pipe to
12442  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12443  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12444  */
12445 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12446 {
12447         struct drm_crtc_state *crtc_state;
12448         struct intel_crtc *intel_crtc;
12449         struct drm_crtc *crtc;
12450         struct intel_crtc_state *first_crtc_state = NULL;
12451         struct intel_crtc_state *other_crtc_state = NULL;
12452         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12453         int i;
12454
12455         /* look at all crtc's that are going to be enabled in during modeset */
12456         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12457                 intel_crtc = to_intel_crtc(crtc);
12458
12459                 if (!crtc_state->active || !needs_modeset(crtc_state))
12460                         continue;
12461
12462                 if (first_crtc_state) {
12463                         other_crtc_state = to_intel_crtc_state(crtc_state);
12464                         break;
12465                 } else {
12466                         first_crtc_state = to_intel_crtc_state(crtc_state);
12467                         first_pipe = intel_crtc->pipe;
12468                 }
12469         }
12470
12471         /* No workaround needed? */
12472         if (!first_crtc_state)
12473                 return 0;
12474
12475         /* w/a possibly needed, check how many crtc's are already enabled. */
12476         for_each_intel_crtc(state->dev, intel_crtc) {
12477                 struct intel_crtc_state *pipe_config;
12478
12479                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12480                 if (IS_ERR(pipe_config))
12481                         return PTR_ERR(pipe_config);
12482
12483                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12484
12485                 if (!pipe_config->base.active ||
12486                     needs_modeset(&pipe_config->base))
12487                         continue;
12488
12489                 /* 2 or more enabled crtcs means no need for w/a */
12490                 if (enabled_pipe != INVALID_PIPE)
12491                         return 0;
12492
12493                 enabled_pipe = intel_crtc->pipe;
12494         }
12495
12496         if (enabled_pipe != INVALID_PIPE)
12497                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12498         else if (other_crtc_state)
12499                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12500
12501         return 0;
12502 }
12503
12504 static int intel_lock_all_pipes(struct drm_atomic_state *state)
12505 {
12506         struct drm_crtc *crtc;
12507
12508         /* Add all pipes to the state */
12509         for_each_crtc(state->dev, crtc) {
12510                 struct drm_crtc_state *crtc_state;
12511
12512                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12513                 if (IS_ERR(crtc_state))
12514                         return PTR_ERR(crtc_state);
12515         }
12516
12517         return 0;
12518 }
12519
12520 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12521 {
12522         struct drm_crtc *crtc;
12523
12524         /*
12525          * Add all pipes to the state, and force
12526          * a modeset on all the active ones.
12527          */
12528         for_each_crtc(state->dev, crtc) {
12529                 struct drm_crtc_state *crtc_state;
12530                 int ret;
12531
12532                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12533                 if (IS_ERR(crtc_state))
12534                         return PTR_ERR(crtc_state);
12535
12536                 if (!crtc_state->active || needs_modeset(crtc_state))
12537                         continue;
12538
12539                 crtc_state->mode_changed = true;
12540
12541                 ret = drm_atomic_add_affected_connectors(state, crtc);
12542                 if (ret)
12543                         return ret;
12544
12545                 ret = drm_atomic_add_affected_planes(state, crtc);
12546                 if (ret)
12547                         return ret;
12548         }
12549
12550         return 0;
12551 }
12552
12553 static int intel_modeset_checks(struct drm_atomic_state *state)
12554 {
12555         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12556         struct drm_i915_private *dev_priv = to_i915(state->dev);
12557         struct drm_crtc *crtc;
12558         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12559         int ret = 0, i;
12560
12561         if (!check_digital_port_conflicts(state)) {
12562                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12563                 return -EINVAL;
12564         }
12565
12566         intel_state->modeset = true;
12567         intel_state->active_crtcs = dev_priv->active_crtcs;
12568         intel_state->cdclk.logical = dev_priv->cdclk.logical;
12569         intel_state->cdclk.actual = dev_priv->cdclk.actual;
12570
12571         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12572                 if (new_crtc_state->active)
12573                         intel_state->active_crtcs |= 1 << i;
12574                 else
12575                         intel_state->active_crtcs &= ~(1 << i);
12576
12577                 if (old_crtc_state->active != new_crtc_state->active)
12578                         intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
12579         }
12580
12581         /*
12582          * See if the config requires any additional preparation, e.g.
12583          * to adjust global state with pipes off.  We need to do this
12584          * here so we can get the modeset_pipe updated config for the new
12585          * mode set on this crtc.  For other crtcs we need to use the
12586          * adjusted_mode bits in the crtc directly.
12587          */
12588         if (dev_priv->display.modeset_calc_cdclk) {
12589                 ret = dev_priv->display.modeset_calc_cdclk(state);
12590                 if (ret < 0)
12591                         return ret;
12592
12593                 /*
12594                  * Writes to dev_priv->cdclk.logical must protected by
12595                  * holding all the crtc locks, even if we don't end up
12596                  * touching the hardware
12597                  */
12598                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12599                                                &intel_state->cdclk.logical)) {
12600                         ret = intel_lock_all_pipes(state);
12601                         if (ret < 0)
12602                                 return ret;
12603                 }
12604
12605                 /* All pipes must be switched off while we change the cdclk. */
12606                 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12607                                                &intel_state->cdclk.actual)) {
12608                         ret = intel_modeset_all_pipes(state);
12609                         if (ret < 0)
12610                                 return ret;
12611                 }
12612
12613                 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12614                               intel_state->cdclk.logical.cdclk,
12615                               intel_state->cdclk.actual.cdclk);
12616         } else {
12617                 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12618         }
12619
12620         intel_modeset_clear_plls(state);
12621
12622         if (IS_HASWELL(dev_priv))
12623                 return haswell_mode_set_planes_workaround(state);
12624
12625         return 0;
12626 }
12627
12628 /*
12629  * Handle calculation of various watermark data at the end of the atomic check
12630  * phase.  The code here should be run after the per-crtc and per-plane 'check'
12631  * handlers to ensure that all derived state has been updated.
12632  */
12633 static int calc_watermark_data(struct drm_atomic_state *state)
12634 {
12635         struct drm_device *dev = state->dev;
12636         struct drm_i915_private *dev_priv = to_i915(dev);
12637
12638         /* Is there platform-specific watermark information to calculate? */
12639         if (dev_priv->display.compute_global_watermarks)
12640                 return dev_priv->display.compute_global_watermarks(state);
12641
12642         return 0;
12643 }
12644
12645 /**
12646  * intel_atomic_check - validate state object
12647  * @dev: drm device
12648  * @state: state to validate
12649  */
12650 static int intel_atomic_check(struct drm_device *dev,
12651                               struct drm_atomic_state *state)
12652 {
12653         struct drm_i915_private *dev_priv = to_i915(dev);
12654         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12655         struct drm_crtc *crtc;
12656         struct drm_crtc_state *old_crtc_state, *crtc_state;
12657         int ret, i;
12658         bool any_ms = false;
12659
12660         ret = drm_atomic_helper_check_modeset(dev, state);
12661         if (ret)
12662                 return ret;
12663
12664         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12665                 struct intel_crtc_state *pipe_config =
12666                         to_intel_crtc_state(crtc_state);
12667
12668                 /* Catch I915_MODE_FLAG_INHERITED */
12669                 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12670                         crtc_state->mode_changed = true;
12671
12672                 if (!needs_modeset(crtc_state))
12673                         continue;
12674
12675                 if (!crtc_state->enable) {
12676                         any_ms = true;
12677                         continue;
12678                 }
12679
12680                 /* FIXME: For only active_changed we shouldn't need to do any
12681                  * state recomputation at all. */
12682
12683                 ret = drm_atomic_add_affected_connectors(state, crtc);
12684                 if (ret)
12685                         return ret;
12686
12687                 ret = intel_modeset_pipe_config(crtc, pipe_config);
12688                 if (ret) {
12689                         intel_dump_pipe_config(to_intel_crtc(crtc),
12690                                                pipe_config, "[failed]");
12691                         return ret;
12692                 }
12693
12694                 if (i915.fastboot &&
12695                     intel_pipe_config_compare(dev_priv,
12696                                         to_intel_crtc_state(old_crtc_state),
12697                                         pipe_config, true)) {
12698                         crtc_state->mode_changed = false;
12699                         pipe_config->update_pipe = true;
12700                 }
12701
12702                 if (needs_modeset(crtc_state))
12703                         any_ms = true;
12704
12705                 ret = drm_atomic_add_affected_planes(state, crtc);
12706                 if (ret)
12707                         return ret;
12708
12709                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12710                                        needs_modeset(crtc_state) ?
12711                                        "[modeset]" : "[fastset]");
12712         }
12713
12714         if (any_ms) {
12715                 ret = intel_modeset_checks(state);
12716
12717                 if (ret)
12718                         return ret;
12719         } else {
12720                 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12721         }
12722
12723         ret = drm_atomic_helper_check_planes(dev, state);
12724         if (ret)
12725                 return ret;
12726
12727         intel_fbc_choose_crtc(dev_priv, state);
12728         return calc_watermark_data(state);
12729 }
12730
12731 static int intel_atomic_prepare_commit(struct drm_device *dev,
12732                                        struct drm_atomic_state *state)
12733 {
12734         struct drm_i915_private *dev_priv = to_i915(dev);
12735         struct drm_crtc_state *crtc_state;
12736         struct drm_crtc *crtc;
12737         int i, ret;
12738
12739         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
12740                 if (state->legacy_cursor_update)
12741                         continue;
12742
12743                 ret = intel_crtc_wait_for_pending_flips(crtc);
12744                 if (ret)
12745                         return ret;
12746
12747                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
12748                         flush_workqueue(dev_priv->wq);
12749         }
12750
12751         ret = mutex_lock_interruptible(&dev->struct_mutex);
12752         if (ret)
12753                 return ret;
12754
12755         ret = drm_atomic_helper_prepare_planes(dev, state);
12756         mutex_unlock(&dev->struct_mutex);
12757
12758         return ret;
12759 }
12760
12761 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12762 {
12763         struct drm_device *dev = crtc->base.dev;
12764
12765         if (!dev->max_vblank_count)
12766                 return drm_accurate_vblank_count(&crtc->base);
12767
12768         return dev->driver->get_vblank_counter(dev, crtc->pipe);
12769 }
12770
12771 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12772                                           struct drm_i915_private *dev_priv,
12773                                           unsigned crtc_mask)
12774 {
12775         unsigned last_vblank_count[I915_MAX_PIPES];
12776         enum pipe pipe;
12777         int ret;
12778
12779         if (!crtc_mask)
12780                 return;
12781
12782         for_each_pipe(dev_priv, pipe) {
12783                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12784                                                                   pipe);
12785
12786                 if (!((1 << pipe) & crtc_mask))
12787                         continue;
12788
12789                 ret = drm_crtc_vblank_get(&crtc->base);
12790                 if (WARN_ON(ret != 0)) {
12791                         crtc_mask &= ~(1 << pipe);
12792                         continue;
12793                 }
12794
12795                 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12796         }
12797
12798         for_each_pipe(dev_priv, pipe) {
12799                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12800                                                                   pipe);
12801                 long lret;
12802
12803                 if (!((1 << pipe) & crtc_mask))
12804                         continue;
12805
12806                 lret = wait_event_timeout(dev->vblank[pipe].queue,
12807                                 last_vblank_count[pipe] !=
12808                                         drm_crtc_vblank_count(&crtc->base),
12809                                 msecs_to_jiffies(50));
12810
12811                 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12812
12813                 drm_crtc_vblank_put(&crtc->base);
12814         }
12815 }
12816
12817 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12818 {
12819         /* fb updated, need to unpin old fb */
12820         if (crtc_state->fb_changed)
12821                 return true;
12822
12823         /* wm changes, need vblank before final wm's */
12824         if (crtc_state->update_wm_post)
12825                 return true;
12826
12827         if (crtc_state->wm.need_postvbl_update)
12828                 return true;
12829
12830         return false;
12831 }
12832
12833 static void intel_update_crtc(struct drm_crtc *crtc,
12834                               struct drm_atomic_state *state,
12835                               struct drm_crtc_state *old_crtc_state,
12836                               struct drm_crtc_state *new_crtc_state,
12837                               unsigned int *crtc_vblank_mask)
12838 {
12839         struct drm_device *dev = crtc->dev;
12840         struct drm_i915_private *dev_priv = to_i915(dev);
12841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12842         struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12843         bool modeset = needs_modeset(new_crtc_state);
12844
12845         if (modeset) {
12846                 update_scanline_offset(intel_crtc);
12847                 dev_priv->display.crtc_enable(pipe_config, state);
12848         } else {
12849                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12850                                        pipe_config);
12851         }
12852
12853         if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12854                 intel_fbc_enable(
12855                     intel_crtc, pipe_config,
12856                     to_intel_plane_state(crtc->primary->state));
12857         }
12858
12859         drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12860
12861         if (needs_vblank_wait(pipe_config))
12862                 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12863 }
12864
12865 static void intel_update_crtcs(struct drm_atomic_state *state,
12866                                unsigned int *crtc_vblank_mask)
12867 {
12868         struct drm_crtc *crtc;
12869         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12870         int i;
12871
12872         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12873                 if (!new_crtc_state->active)
12874                         continue;
12875
12876                 intel_update_crtc(crtc, state, old_crtc_state,
12877                                   new_crtc_state, crtc_vblank_mask);
12878         }
12879 }
12880
12881 static void skl_update_crtcs(struct drm_atomic_state *state,
12882                              unsigned int *crtc_vblank_mask)
12883 {
12884         struct drm_i915_private *dev_priv = to_i915(state->dev);
12885         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12886         struct drm_crtc *crtc;
12887         struct intel_crtc *intel_crtc;
12888         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12889         struct intel_crtc_state *cstate;
12890         unsigned int updated = 0;
12891         bool progress;
12892         enum pipe pipe;
12893         int i;
12894
12895         const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12896
12897         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12898                 /* ignore allocations for crtc's that have been turned off. */
12899                 if (new_crtc_state->active)
12900                         entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12901
12902         /*
12903          * Whenever the number of active pipes changes, we need to make sure we
12904          * update the pipes in the right order so that their ddb allocations
12905          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12906          * cause pipe underruns and other bad stuff.
12907          */
12908         do {
12909                 progress = false;
12910
12911                 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12912                         bool vbl_wait = false;
12913                         unsigned int cmask = drm_crtc_mask(crtc);
12914
12915                         intel_crtc = to_intel_crtc(crtc);
12916                         cstate = to_intel_crtc_state(crtc->state);
12917                         pipe = intel_crtc->pipe;
12918
12919                         if (updated & cmask || !cstate->base.active)
12920                                 continue;
12921
12922                         if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12923                                 continue;
12924
12925                         updated |= cmask;
12926                         entries[i] = &cstate->wm.skl.ddb;
12927
12928                         /*
12929                          * If this is an already active pipe, it's DDB changed,
12930                          * and this isn't the last pipe that needs updating
12931                          * then we need to wait for a vblank to pass for the
12932                          * new ddb allocation to take effect.
12933                          */
12934                         if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12935                                                  &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12936                             !new_crtc_state->active_changed &&
12937                             intel_state->wm_results.dirty_pipes != updated)
12938                                 vbl_wait = true;
12939
12940                         intel_update_crtc(crtc, state, old_crtc_state,
12941                                           new_crtc_state, crtc_vblank_mask);
12942
12943                         if (vbl_wait)
12944                                 intel_wait_for_vblank(dev_priv, pipe);
12945
12946                         progress = true;
12947                 }
12948         } while (progress);
12949 }
12950
12951 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12952 {
12953         struct intel_atomic_state *state, *next;
12954         struct llist_node *freed;
12955
12956         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12957         llist_for_each_entry_safe(state, next, freed, freed)
12958                 drm_atomic_state_put(&state->base);
12959 }
12960
12961 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12962 {
12963         struct drm_i915_private *dev_priv =
12964                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12965
12966         intel_atomic_helper_free_state(dev_priv);
12967 }
12968
12969 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12970 {
12971         struct drm_device *dev = state->dev;
12972         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12973         struct drm_i915_private *dev_priv = to_i915(dev);
12974         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12975         struct drm_crtc *crtc;
12976         struct intel_crtc_state *intel_cstate;
12977         bool hw_check = intel_state->modeset;
12978         u64 put_domains[I915_MAX_PIPES] = {};
12979         unsigned crtc_vblank_mask = 0;
12980         int i;
12981
12982         drm_atomic_helper_wait_for_dependencies(state);
12983
12984         if (intel_state->modeset)
12985                 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12986
12987         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12988                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12989
12990                 if (needs_modeset(new_crtc_state) ||
12991                     to_intel_crtc_state(new_crtc_state)->update_pipe) {
12992                         hw_check = true;
12993
12994                         put_domains[to_intel_crtc(crtc)->pipe] =
12995                                 modeset_get_crtc_power_domains(crtc,
12996                                         to_intel_crtc_state(new_crtc_state));
12997                 }
12998
12999                 if (!needs_modeset(new_crtc_state))
13000                         continue;
13001
13002                 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
13003                                        to_intel_crtc_state(new_crtc_state));
13004
13005                 if (old_crtc_state->active) {
13006                         intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13007                         dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
13008                         intel_crtc->active = false;
13009                         intel_fbc_disable(intel_crtc);
13010                         intel_disable_shared_dpll(intel_crtc);
13011
13012                         /*
13013                          * Underruns don't always raise
13014                          * interrupts, so check manually.
13015                          */
13016                         intel_check_cpu_fifo_underruns(dev_priv);
13017                         intel_check_pch_fifo_underruns(dev_priv);
13018
13019                         if (!crtc->state->active) {
13020                                 /*
13021                                  * Make sure we don't call initial_watermarks
13022                                  * for ILK-style watermark updates.
13023                                  *
13024                                  * No clue what this is supposed to achieve.
13025                                  */
13026                                 if (INTEL_GEN(dev_priv) >= 9)
13027                                         dev_priv->display.initial_watermarks(intel_state,
13028                                                                              to_intel_crtc_state(crtc->state));
13029                         }
13030                 }
13031         }
13032
13033         /* Only after disabling all output pipelines that will be changed can we
13034          * update the the output configuration. */
13035         intel_modeset_update_crtc_state(state);
13036
13037         if (intel_state->modeset) {
13038                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13039
13040                 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
13041
13042                 /*
13043                  * SKL workaround: bspec recommends we disable the SAGV when we
13044                  * have more then one pipe enabled
13045                  */
13046                 if (!intel_can_enable_sagv(state))
13047                         intel_disable_sagv(dev_priv);
13048
13049                 intel_modeset_verify_disabled(dev, state);
13050         }
13051
13052         /* Complete the events for pipes that have now been disabled */
13053         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13054                 bool modeset = needs_modeset(new_crtc_state);
13055
13056                 /* Complete events for now disable pipes here. */
13057                 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
13058                         spin_lock_irq(&dev->event_lock);
13059                         drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
13060                         spin_unlock_irq(&dev->event_lock);
13061
13062                         new_crtc_state->event = NULL;
13063                 }
13064         }
13065
13066         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13067         dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
13068
13069         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
13070          * already, but still need the state for the delayed optimization. To
13071          * fix this:
13072          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
13073          * - schedule that vblank worker _before_ calling hw_done
13074          * - at the start of commit_tail, cancel it _synchrously
13075          * - switch over to the vblank wait helper in the core after that since
13076          *   we don't need out special handling any more.
13077          */
13078         if (!state->legacy_cursor_update)
13079                 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13080
13081         /*
13082          * Now that the vblank has passed, we can go ahead and program the
13083          * optimal watermarks on platforms that need two-step watermark
13084          * programming.
13085          *
13086          * TODO: Move this (and other cleanup) to an async worker eventually.
13087          */
13088         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
13089                 intel_cstate = to_intel_crtc_state(new_crtc_state);
13090
13091                 if (dev_priv->display.optimize_watermarks)
13092                         dev_priv->display.optimize_watermarks(intel_state,
13093                                                               intel_cstate);
13094         }
13095
13096         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
13097                 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13098
13099                 if (put_domains[i])
13100                         modeset_put_power_domains(dev_priv, put_domains[i]);
13101
13102                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
13103         }
13104
13105         if (intel_state->modeset && intel_can_enable_sagv(state))
13106                 intel_enable_sagv(dev_priv);
13107
13108         drm_atomic_helper_commit_hw_done(state);
13109
13110         if (intel_state->modeset)
13111                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13112
13113         mutex_lock(&dev->struct_mutex);
13114         drm_atomic_helper_cleanup_planes(dev, state);
13115         mutex_unlock(&dev->struct_mutex);
13116
13117         drm_atomic_helper_commit_cleanup_done(state);
13118
13119         drm_atomic_state_put(state);
13120
13121         /* As one of the primary mmio accessors, KMS has a high likelihood
13122          * of triggering bugs in unclaimed access. After we finish
13123          * modesetting, see if an error has been flagged, and if so
13124          * enable debugging for the next modeset - and hope we catch
13125          * the culprit.
13126          *
13127          * XXX note that we assume display power is on at this point.
13128          * This might hold true now but we need to add pm helper to check
13129          * unclaimed only when the hardware is on, as atomic commits
13130          * can happen also when the device is completely off.
13131          */
13132         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13133
13134         intel_atomic_helper_free_state(dev_priv);
13135 }
13136
13137 static void intel_atomic_commit_work(struct work_struct *work)
13138 {
13139         struct drm_atomic_state *state =
13140                 container_of(work, struct drm_atomic_state, commit_work);
13141
13142         intel_atomic_commit_tail(state);
13143 }
13144
13145 static int __i915_sw_fence_call
13146 intel_atomic_commit_ready(struct i915_sw_fence *fence,
13147                           enum i915_sw_fence_notify notify)
13148 {
13149         struct intel_atomic_state *state =
13150                 container_of(fence, struct intel_atomic_state, commit_ready);
13151
13152         switch (notify) {
13153         case FENCE_COMPLETE:
13154                 if (state->base.commit_work.func)
13155                         queue_work(system_unbound_wq, &state->base.commit_work);
13156                 break;
13157
13158         case FENCE_FREE:
13159                 {
13160                         struct intel_atomic_helper *helper =
13161                                 &to_i915(state->base.dev)->atomic_helper;
13162
13163                         if (llist_add(&state->freed, &helper->free_list))
13164                                 schedule_work(&helper->free_work);
13165                         break;
13166                 }
13167         }
13168
13169         return NOTIFY_DONE;
13170 }
13171
13172 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
13173 {
13174         struct drm_plane_state *old_plane_state, *new_plane_state;
13175         struct drm_plane *plane;
13176         int i;
13177
13178         for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
13179                 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
13180                                   intel_fb_obj(new_plane_state->fb),
13181                                   to_intel_plane(plane)->frontbuffer_bit);
13182 }
13183
13184 /**
13185  * intel_atomic_commit - commit validated state object
13186  * @dev: DRM device
13187  * @state: the top-level driver state object
13188  * @nonblock: nonblocking commit
13189  *
13190  * This function commits a top-level state object that has been validated
13191  * with drm_atomic_helper_check().
13192  *
13193  * RETURNS
13194  * Zero for success or -errno.
13195  */
13196 static int intel_atomic_commit(struct drm_device *dev,
13197                                struct drm_atomic_state *state,
13198                                bool nonblock)
13199 {
13200         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13201         struct drm_i915_private *dev_priv = to_i915(dev);
13202         int ret = 0;
13203
13204         ret = drm_atomic_helper_setup_commit(state, nonblock);
13205         if (ret)
13206                 return ret;
13207
13208         drm_atomic_state_get(state);
13209         i915_sw_fence_init(&intel_state->commit_ready,
13210                            intel_atomic_commit_ready);
13211
13212         ret = intel_atomic_prepare_commit(dev, state);
13213         if (ret) {
13214                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13215                 i915_sw_fence_commit(&intel_state->commit_ready);
13216                 return ret;
13217         }
13218
13219         /*
13220          * The intel_legacy_cursor_update() fast path takes care
13221          * of avoiding the vblank waits for simple cursor
13222          * movement and flips. For cursor on/off and size changes,
13223          * we want to perform the vblank waits so that watermark
13224          * updates happen during the correct frames. Gen9+ have
13225          * double buffered watermarks and so shouldn't need this.
13226          *
13227          * Do this after drm_atomic_helper_setup_commit() and
13228          * intel_atomic_prepare_commit() because we still want
13229          * to skip the flip and fb cleanup waits. Although that
13230          * does risk yanking the mapping from under the display
13231          * engine.
13232          *
13233          * FIXME doing watermarks and fb cleanup from a vblank worker
13234          * (assuming we had any) would solve these problems.
13235          */
13236         if (INTEL_GEN(dev_priv) < 9)
13237                 state->legacy_cursor_update = false;
13238
13239         drm_atomic_helper_swap_state(state, true);
13240         dev_priv->wm.distrust_bios_wm = false;
13241         intel_shared_dpll_swap_state(state);
13242         intel_atomic_track_fbs(state);
13243
13244         if (intel_state->modeset) {
13245                 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13246                        sizeof(intel_state->min_pixclk));
13247                 dev_priv->active_crtcs = intel_state->active_crtcs;
13248                 dev_priv->cdclk.logical = intel_state->cdclk.logical;
13249                 dev_priv->cdclk.actual = intel_state->cdclk.actual;
13250         }
13251
13252         drm_atomic_state_get(state);
13253         INIT_WORK(&state->commit_work,
13254                   nonblock ? intel_atomic_commit_work : NULL);
13255
13256         i915_sw_fence_commit(&intel_state->commit_ready);
13257         if (!nonblock) {
13258                 i915_sw_fence_wait(&intel_state->commit_ready);
13259                 intel_atomic_commit_tail(state);
13260         }
13261
13262         return 0;
13263 }
13264
13265 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13266 {
13267         struct drm_device *dev = crtc->dev;
13268         struct drm_atomic_state *state;
13269         struct drm_crtc_state *crtc_state;
13270         int ret;
13271
13272         state = drm_atomic_state_alloc(dev);
13273         if (!state) {
13274                 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
13275                               crtc->base.id, crtc->name);
13276                 return;
13277         }
13278
13279         state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
13280
13281 retry:
13282         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13283         ret = PTR_ERR_OR_ZERO(crtc_state);
13284         if (!ret) {
13285                 if (!crtc_state->active)
13286                         goto out;
13287
13288                 crtc_state->mode_changed = true;
13289                 ret = drm_atomic_commit(state);
13290         }
13291
13292         if (ret == -EDEADLK) {
13293                 drm_atomic_state_clear(state);
13294                 drm_modeset_backoff(state->acquire_ctx);
13295                 goto retry;
13296         }
13297
13298 out:
13299         drm_atomic_state_put(state);
13300 }
13301
13302 static const struct drm_crtc_funcs intel_crtc_funcs = {
13303         .gamma_set = drm_atomic_helper_legacy_gamma_set,
13304         .set_config = drm_atomic_helper_set_config,
13305         .set_property = drm_atomic_helper_crtc_set_property,
13306         .destroy = intel_crtc_destroy,
13307         .page_flip = drm_atomic_helper_page_flip,
13308         .atomic_duplicate_state = intel_crtc_duplicate_state,
13309         .atomic_destroy_state = intel_crtc_destroy_state,
13310         .set_crc_source = intel_crtc_set_crc_source,
13311 };
13312
13313 /**
13314  * intel_prepare_plane_fb - Prepare fb for usage on plane
13315  * @plane: drm plane to prepare for
13316  * @fb: framebuffer to prepare for presentation
13317  *
13318  * Prepares a framebuffer for usage on a display plane.  Generally this
13319  * involves pinning the underlying object and updating the frontbuffer tracking
13320  * bits.  Some older platforms need special physical address handling for
13321  * cursor planes.
13322  *
13323  * Must be called with struct_mutex held.
13324  *
13325  * Returns 0 on success, negative error code on failure.
13326  */
13327 int
13328 intel_prepare_plane_fb(struct drm_plane *plane,
13329                        struct drm_plane_state *new_state)
13330 {
13331         struct intel_atomic_state *intel_state =
13332                 to_intel_atomic_state(new_state->state);
13333         struct drm_i915_private *dev_priv = to_i915(plane->dev);
13334         struct drm_framebuffer *fb = new_state->fb;
13335         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13336         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13337         int ret;
13338
13339         if (obj) {
13340                 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13341                     INTEL_INFO(dev_priv)->cursor_needs_physical) {
13342                         const int align = intel_cursor_alignment(dev_priv);
13343
13344                         ret = i915_gem_object_attach_phys(obj, align);
13345                         if (ret) {
13346                                 DRM_DEBUG_KMS("failed to attach phys object\n");
13347                                 return ret;
13348                         }
13349                 } else {
13350                         struct i915_vma *vma;
13351
13352                         vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13353                         if (IS_ERR(vma)) {
13354                                 DRM_DEBUG_KMS("failed to pin object\n");
13355                                 return PTR_ERR(vma);
13356                         }
13357
13358                         to_intel_plane_state(new_state)->vma = vma;
13359                 }
13360         }
13361
13362         if (!obj && !old_obj)
13363                 return 0;
13364
13365         if (old_obj) {
13366                 struct drm_crtc_state *crtc_state =
13367                         drm_atomic_get_existing_crtc_state(new_state->state,
13368                                                            plane->state->crtc);
13369
13370                 /* Big Hammer, we also need to ensure that any pending
13371                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13372                  * current scanout is retired before unpinning the old
13373                  * framebuffer. Note that we rely on userspace rendering
13374                  * into the buffer attached to the pipe they are waiting
13375                  * on. If not, userspace generates a GPU hang with IPEHR
13376                  * point to the MI_WAIT_FOR_EVENT.
13377                  *
13378                  * This should only fail upon a hung GPU, in which case we
13379                  * can safely continue.
13380                  */
13381                 if (needs_modeset(crtc_state)) {
13382                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13383                                                               old_obj->resv, NULL,
13384                                                               false, 0,
13385                                                               GFP_KERNEL);
13386                         if (ret < 0)
13387                                 return ret;
13388                 }
13389         }
13390
13391         if (new_state->fence) { /* explicit fencing */
13392                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
13393                                                     new_state->fence,
13394                                                     I915_FENCE_TIMEOUT,
13395                                                     GFP_KERNEL);
13396                 if (ret < 0)
13397                         return ret;
13398         }
13399
13400         if (!obj)
13401                 return 0;
13402
13403         if (!new_state->fence) { /* implicit fencing */
13404                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
13405                                                       obj->resv, NULL,
13406                                                       false, I915_FENCE_TIMEOUT,
13407                                                       GFP_KERNEL);
13408                 if (ret < 0)
13409                         return ret;
13410
13411                 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
13412         }
13413
13414         return 0;
13415 }
13416
13417 /**
13418  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13419  * @plane: drm plane to clean up for
13420  * @fb: old framebuffer that was on plane
13421  *
13422  * Cleans up a framebuffer that has just been removed from a plane.
13423  *
13424  * Must be called with struct_mutex held.
13425  */
13426 void
13427 intel_cleanup_plane_fb(struct drm_plane *plane,
13428                        struct drm_plane_state *old_state)
13429 {
13430         struct i915_vma *vma;
13431
13432         /* Should only be called after a successful intel_prepare_plane_fb()! */
13433         vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
13434         if (vma)
13435                 intel_unpin_fb_vma(vma);
13436 }
13437
13438 int
13439 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13440 {
13441         struct drm_i915_private *dev_priv;
13442         int max_scale;
13443         int crtc_clock, max_dotclk;
13444
13445         if (!intel_crtc || !crtc_state->base.enable)
13446                 return DRM_PLANE_HELPER_NO_SCALING;
13447
13448         dev_priv = to_i915(intel_crtc->base.dev);
13449
13450         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13451         max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
13452
13453         if (IS_GEMINILAKE(dev_priv))
13454                 max_dotclk *= 2;
13455
13456         if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
13457                 return DRM_PLANE_HELPER_NO_SCALING;
13458
13459         /*
13460          * skl max scale is lower of:
13461          *    close to 3 but not 3, -1 is for that purpose
13462          *            or
13463          *    cdclk/crtc_clock
13464          */
13465         max_scale = min((1 << 16) * 3 - 1,
13466                         (1 << 8) * ((max_dotclk << 8) / crtc_clock));
13467
13468         return max_scale;
13469 }
13470
13471 static int
13472 intel_check_primary_plane(struct intel_plane *plane,
13473                           struct intel_crtc_state *crtc_state,
13474                           struct intel_plane_state *state)
13475 {
13476         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
13477         struct drm_crtc *crtc = state->base.crtc;
13478         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13479         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13480         bool can_position = false;
13481         int ret;
13482
13483         if (INTEL_GEN(dev_priv) >= 9) {
13484                 /* use scaler when colorkey is not required */
13485                 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13486                         min_scale = 1;
13487                         max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13488                 }
13489                 can_position = true;
13490         }
13491
13492         ret = drm_plane_helper_check_state(&state->base,
13493                                            &state->clip,
13494                                            min_scale, max_scale,
13495                                            can_position, true);
13496         if (ret)
13497                 return ret;
13498
13499         if (!state->base.fb)
13500                 return 0;
13501
13502         if (INTEL_GEN(dev_priv) >= 9) {
13503                 ret = skl_check_plane_surface(state);
13504                 if (ret)
13505                         return ret;
13506
13507                 state->ctl = skl_plane_ctl(crtc_state, state);
13508         } else {
13509                 ret = i9xx_check_plane_surface(state);
13510                 if (ret)
13511                         return ret;
13512
13513                 state->ctl = i9xx_plane_ctl(crtc_state, state);
13514         }
13515
13516         return 0;
13517 }
13518
13519 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13520                                     struct drm_crtc_state *old_crtc_state)
13521 {
13522         struct drm_device *dev = crtc->dev;
13523         struct drm_i915_private *dev_priv = to_i915(dev);
13524         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13525         struct intel_crtc_state *intel_cstate =
13526                 to_intel_crtc_state(crtc->state);
13527         struct intel_crtc_state *old_intel_cstate =
13528                 to_intel_crtc_state(old_crtc_state);
13529         struct intel_atomic_state *old_intel_state =
13530                 to_intel_atomic_state(old_crtc_state->state);
13531         bool modeset = needs_modeset(crtc->state);
13532
13533         if (!modeset &&
13534             (intel_cstate->base.color_mgmt_changed ||
13535              intel_cstate->update_pipe)) {
13536                 intel_color_set_csc(crtc->state);
13537                 intel_color_load_luts(crtc->state);
13538         }
13539
13540         /* Perform vblank evasion around commit operation */
13541         intel_pipe_update_start(intel_crtc);
13542
13543         if (modeset)
13544                 goto out;
13545
13546         if (intel_cstate->update_pipe)
13547                 intel_update_pipe_config(intel_crtc, old_intel_cstate);
13548         else if (INTEL_GEN(dev_priv) >= 9)
13549                 skl_detach_scalers(intel_crtc);
13550
13551 out:
13552         if (dev_priv->display.atomic_update_watermarks)
13553                 dev_priv->display.atomic_update_watermarks(old_intel_state,
13554                                                            intel_cstate);
13555 }
13556
13557 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13558                                      struct drm_crtc_state *old_crtc_state)
13559 {
13560         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13561
13562         intel_pipe_update_end(intel_crtc, NULL);
13563 }
13564
13565 /**
13566  * intel_plane_destroy - destroy a plane
13567  * @plane: plane to destroy
13568  *
13569  * Common destruction function for all types of planes (primary, cursor,
13570  * sprite).
13571  */
13572 void intel_plane_destroy(struct drm_plane *plane)
13573 {
13574         drm_plane_cleanup(plane);
13575         kfree(to_intel_plane(plane));
13576 }
13577
13578 const struct drm_plane_funcs intel_plane_funcs = {
13579         .update_plane = drm_atomic_helper_update_plane,
13580         .disable_plane = drm_atomic_helper_disable_plane,
13581         .destroy = intel_plane_destroy,
13582         .set_property = drm_atomic_helper_plane_set_property,
13583         .atomic_get_property = intel_plane_atomic_get_property,
13584         .atomic_set_property = intel_plane_atomic_set_property,
13585         .atomic_duplicate_state = intel_plane_duplicate_state,
13586         .atomic_destroy_state = intel_plane_destroy_state,
13587 };
13588
13589 static int
13590 intel_legacy_cursor_update(struct drm_plane *plane,
13591                            struct drm_crtc *crtc,
13592                            struct drm_framebuffer *fb,
13593                            int crtc_x, int crtc_y,
13594                            unsigned int crtc_w, unsigned int crtc_h,
13595                            uint32_t src_x, uint32_t src_y,
13596                            uint32_t src_w, uint32_t src_h,
13597                            struct drm_modeset_acquire_ctx *ctx)
13598 {
13599         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13600         int ret;
13601         struct drm_plane_state *old_plane_state, *new_plane_state;
13602         struct intel_plane *intel_plane = to_intel_plane(plane);
13603         struct drm_framebuffer *old_fb;
13604         struct drm_crtc_state *crtc_state = crtc->state;
13605         struct i915_vma *old_vma;
13606
13607         /*
13608          * When crtc is inactive or there is a modeset pending,
13609          * wait for it to complete in the slowpath
13610          */
13611         if (!crtc_state->active || needs_modeset(crtc_state) ||
13612             to_intel_crtc_state(crtc_state)->update_pipe)
13613                 goto slow;
13614
13615         old_plane_state = plane->state;
13616
13617         /*
13618          * If any parameters change that may affect watermarks,
13619          * take the slowpath. Only changing fb or position should be
13620          * in the fastpath.
13621          */
13622         if (old_plane_state->crtc != crtc ||
13623             old_plane_state->src_w != src_w ||
13624             old_plane_state->src_h != src_h ||
13625             old_plane_state->crtc_w != crtc_w ||
13626             old_plane_state->crtc_h != crtc_h ||
13627             !old_plane_state->fb != !fb)
13628                 goto slow;
13629
13630         new_plane_state = intel_plane_duplicate_state(plane);
13631         if (!new_plane_state)
13632                 return -ENOMEM;
13633
13634         drm_atomic_set_fb_for_plane(new_plane_state, fb);
13635
13636         new_plane_state->src_x = src_x;
13637         new_plane_state->src_y = src_y;
13638         new_plane_state->src_w = src_w;
13639         new_plane_state->src_h = src_h;
13640         new_plane_state->crtc_x = crtc_x;
13641         new_plane_state->crtc_y = crtc_y;
13642         new_plane_state->crtc_w = crtc_w;
13643         new_plane_state->crtc_h = crtc_h;
13644
13645         ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13646                                                   to_intel_plane_state(new_plane_state));
13647         if (ret)
13648                 goto out_free;
13649
13650         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13651         if (ret)
13652                 goto out_free;
13653
13654         if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13655                 int align = intel_cursor_alignment(dev_priv);
13656
13657                 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13658                 if (ret) {
13659                         DRM_DEBUG_KMS("failed to attach phys object\n");
13660                         goto out_unlock;
13661                 }
13662         } else {
13663                 struct i915_vma *vma;
13664
13665                 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13666                 if (IS_ERR(vma)) {
13667                         DRM_DEBUG_KMS("failed to pin object\n");
13668
13669                         ret = PTR_ERR(vma);
13670                         goto out_unlock;
13671                 }
13672
13673                 to_intel_plane_state(new_plane_state)->vma = vma;
13674         }
13675
13676         old_fb = old_plane_state->fb;
13677         old_vma = to_intel_plane_state(old_plane_state)->vma;
13678
13679         i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13680                           intel_plane->frontbuffer_bit);
13681
13682         /* Swap plane state */
13683         new_plane_state->fence = old_plane_state->fence;
13684         *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13685         new_plane_state->fence = NULL;
13686         new_plane_state->fb = old_fb;
13687         to_intel_plane_state(new_plane_state)->vma = old_vma;
13688
13689         if (plane->state->visible) {
13690                 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13691                 intel_plane->update_plane(intel_plane,
13692                                           to_intel_crtc_state(crtc->state),
13693                                           to_intel_plane_state(plane->state));
13694         } else {
13695                 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13696                 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13697         }
13698
13699         intel_cleanup_plane_fb(plane, new_plane_state);
13700
13701 out_unlock:
13702         mutex_unlock(&dev_priv->drm.struct_mutex);
13703 out_free:
13704         intel_plane_destroy_state(plane, new_plane_state);
13705         return ret;
13706
13707 slow:
13708         return drm_atomic_helper_update_plane(plane, crtc, fb,
13709                                               crtc_x, crtc_y, crtc_w, crtc_h,
13710                                               src_x, src_y, src_w, src_h, ctx);
13711 }
13712
13713 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13714         .update_plane = intel_legacy_cursor_update,
13715         .disable_plane = drm_atomic_helper_disable_plane,
13716         .destroy = intel_plane_destroy,
13717         .set_property = drm_atomic_helper_plane_set_property,
13718         .atomic_get_property = intel_plane_atomic_get_property,
13719         .atomic_set_property = intel_plane_atomic_set_property,
13720         .atomic_duplicate_state = intel_plane_duplicate_state,
13721         .atomic_destroy_state = intel_plane_destroy_state,
13722 };
13723
13724 static struct intel_plane *
13725 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13726 {
13727         struct intel_plane *primary = NULL;
13728         struct intel_plane_state *state = NULL;
13729         const uint32_t *intel_primary_formats;
13730         unsigned int supported_rotations;
13731         unsigned int num_formats;
13732         int ret;
13733
13734         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13735         if (!primary) {
13736                 ret = -ENOMEM;
13737                 goto fail;
13738         }
13739
13740         state = intel_create_plane_state(&primary->base);
13741         if (!state) {
13742                 ret = -ENOMEM;
13743                 goto fail;
13744         }
13745
13746         primary->base.state = &state->base;
13747
13748         primary->can_scale = false;
13749         primary->max_downscale = 1;
13750         if (INTEL_GEN(dev_priv) >= 9) {
13751                 primary->can_scale = true;
13752                 state->scaler_id = -1;
13753         }
13754         primary->pipe = pipe;
13755         /*
13756          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13757          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13758          */
13759         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13760                 primary->plane = (enum plane) !pipe;
13761         else
13762                 primary->plane = (enum plane) pipe;
13763         primary->id = PLANE_PRIMARY;
13764         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13765         primary->check_plane = intel_check_primary_plane;
13766
13767         if (INTEL_GEN(dev_priv) >= 9) {
13768                 intel_primary_formats = skl_primary_formats;
13769                 num_formats = ARRAY_SIZE(skl_primary_formats);
13770
13771                 primary->update_plane = skylake_update_primary_plane;
13772                 primary->disable_plane = skylake_disable_primary_plane;
13773         } else if (INTEL_GEN(dev_priv) >= 4) {
13774                 intel_primary_formats = i965_primary_formats;
13775                 num_formats = ARRAY_SIZE(i965_primary_formats);
13776
13777                 primary->update_plane = i9xx_update_primary_plane;
13778                 primary->disable_plane = i9xx_disable_primary_plane;
13779         } else {
13780                 intel_primary_formats = i8xx_primary_formats;
13781                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13782
13783                 primary->update_plane = i9xx_update_primary_plane;
13784                 primary->disable_plane = i9xx_disable_primary_plane;
13785         }
13786
13787         if (INTEL_GEN(dev_priv) >= 9)
13788                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13789                                                0, &intel_plane_funcs,
13790                                                intel_primary_formats, num_formats,
13791                                                DRM_PLANE_TYPE_PRIMARY,
13792                                                "plane 1%c", pipe_name(pipe));
13793         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13794                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13795                                                0, &intel_plane_funcs,
13796                                                intel_primary_formats, num_formats,
13797                                                DRM_PLANE_TYPE_PRIMARY,
13798                                                "primary %c", pipe_name(pipe));
13799         else
13800                 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13801                                                0, &intel_plane_funcs,
13802                                                intel_primary_formats, num_formats,
13803                                                DRM_PLANE_TYPE_PRIMARY,
13804                                                "plane %c", plane_name(primary->plane));
13805         if (ret)
13806                 goto fail;
13807
13808         if (INTEL_GEN(dev_priv) >= 9) {
13809                 supported_rotations =
13810                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13811                         DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13812         } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13813                 supported_rotations =
13814                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13815                         DRM_MODE_REFLECT_X;
13816         } else if (INTEL_GEN(dev_priv) >= 4) {
13817                 supported_rotations =
13818                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13819         } else {
13820                 supported_rotations = DRM_MODE_ROTATE_0;
13821         }
13822
13823         if (INTEL_GEN(dev_priv) >= 4)
13824                 drm_plane_create_rotation_property(&primary->base,
13825                                                    DRM_MODE_ROTATE_0,
13826                                                    supported_rotations);
13827
13828         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13829
13830         return primary;
13831
13832 fail:
13833         kfree(state);
13834         kfree(primary);
13835
13836         return ERR_PTR(ret);
13837 }
13838
13839 static struct intel_plane *
13840 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13841                           enum pipe pipe)
13842 {
13843         struct intel_plane *cursor = NULL;
13844         struct intel_plane_state *state = NULL;
13845         int ret;
13846
13847         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13848         if (!cursor) {
13849                 ret = -ENOMEM;
13850                 goto fail;
13851         }
13852
13853         state = intel_create_plane_state(&cursor->base);
13854         if (!state) {
13855                 ret = -ENOMEM;
13856                 goto fail;
13857         }
13858
13859         cursor->base.state = &state->base;
13860
13861         cursor->can_scale = false;
13862         cursor->max_downscale = 1;
13863         cursor->pipe = pipe;
13864         cursor->plane = pipe;
13865         cursor->id = PLANE_CURSOR;
13866         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13867
13868         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13869                 cursor->update_plane = i845_update_cursor;
13870                 cursor->disable_plane = i845_disable_cursor;
13871                 cursor->check_plane = i845_check_cursor;
13872         } else {
13873                 cursor->update_plane = i9xx_update_cursor;
13874                 cursor->disable_plane = i9xx_disable_cursor;
13875                 cursor->check_plane = i9xx_check_cursor;
13876         }
13877
13878         cursor->cursor.base = ~0;
13879         cursor->cursor.cntl = ~0;
13880
13881         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13882                 cursor->cursor.size = ~0;
13883
13884         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13885                                        0, &intel_cursor_plane_funcs,
13886                                        intel_cursor_formats,
13887                                        ARRAY_SIZE(intel_cursor_formats),
13888                                        DRM_PLANE_TYPE_CURSOR,
13889                                        "cursor %c", pipe_name(pipe));
13890         if (ret)
13891                 goto fail;
13892
13893         if (INTEL_GEN(dev_priv) >= 4)
13894                 drm_plane_create_rotation_property(&cursor->base,
13895                                                    DRM_MODE_ROTATE_0,
13896                                                    DRM_MODE_ROTATE_0 |
13897                                                    DRM_MODE_ROTATE_180);
13898
13899         if (INTEL_GEN(dev_priv) >= 9)
13900                 state->scaler_id = -1;
13901
13902         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13903
13904         return cursor;
13905
13906 fail:
13907         kfree(state);
13908         kfree(cursor);
13909
13910         return ERR_PTR(ret);
13911 }
13912
13913 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13914                                     struct intel_crtc_state *crtc_state)
13915 {
13916         struct intel_crtc_scaler_state *scaler_state =
13917                 &crtc_state->scaler_state;
13918         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13919         int i;
13920
13921         crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13922         if (!crtc->num_scalers)
13923                 return;
13924
13925         for (i = 0; i < crtc->num_scalers; i++) {
13926                 struct intel_scaler *scaler = &scaler_state->scalers[i];
13927
13928                 scaler->in_use = 0;
13929                 scaler->mode = PS_SCALER_MODE_DYN;
13930         }
13931
13932         scaler_state->scaler_id = -1;
13933 }
13934
13935 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13936 {
13937         struct intel_crtc *intel_crtc;
13938         struct intel_crtc_state *crtc_state = NULL;
13939         struct intel_plane *primary = NULL;
13940         struct intel_plane *cursor = NULL;
13941         int sprite, ret;
13942
13943         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13944         if (!intel_crtc)
13945                 return -ENOMEM;
13946
13947         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13948         if (!crtc_state) {
13949                 ret = -ENOMEM;
13950                 goto fail;
13951         }
13952         intel_crtc->config = crtc_state;
13953         intel_crtc->base.state = &crtc_state->base;
13954         crtc_state->base.crtc = &intel_crtc->base;
13955
13956         primary = intel_primary_plane_create(dev_priv, pipe);
13957         if (IS_ERR(primary)) {
13958                 ret = PTR_ERR(primary);
13959                 goto fail;
13960         }
13961         intel_crtc->plane_ids_mask |= BIT(primary->id);
13962
13963         for_each_sprite(dev_priv, pipe, sprite) {
13964                 struct intel_plane *plane;
13965
13966                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13967                 if (IS_ERR(plane)) {
13968                         ret = PTR_ERR(plane);
13969                         goto fail;
13970                 }
13971                 intel_crtc->plane_ids_mask |= BIT(plane->id);
13972         }
13973
13974         cursor = intel_cursor_plane_create(dev_priv, pipe);
13975         if (IS_ERR(cursor)) {
13976                 ret = PTR_ERR(cursor);
13977                 goto fail;
13978         }
13979         intel_crtc->plane_ids_mask |= BIT(cursor->id);
13980
13981         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13982                                         &primary->base, &cursor->base,
13983                                         &intel_crtc_funcs,
13984                                         "pipe %c", pipe_name(pipe));
13985         if (ret)
13986                 goto fail;
13987
13988         intel_crtc->pipe = pipe;
13989         intel_crtc->plane = primary->plane;
13990
13991         /* initialize shared scalers */
13992         intel_crtc_init_scalers(intel_crtc, crtc_state);
13993
13994         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13995                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13996         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13997         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13998
13999         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14000
14001         intel_color_init(&intel_crtc->base);
14002
14003         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14004
14005         return 0;
14006
14007 fail:
14008         /*
14009          * drm_mode_config_cleanup() will free up any
14010          * crtcs/planes already initialized.
14011          */
14012         kfree(crtc_state);
14013         kfree(intel_crtc);
14014
14015         return ret;
14016 }
14017
14018 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14019 {
14020         struct drm_device *dev = connector->base.dev;
14021
14022         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14023
14024         if (!connector->base.state->crtc)
14025                 return INVALID_PIPE;
14026
14027         return to_intel_crtc(connector->base.state->crtc)->pipe;
14028 }
14029
14030 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14031                                 struct drm_file *file)
14032 {
14033         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14034         struct drm_crtc *drmmode_crtc;
14035         struct intel_crtc *crtc;
14036
14037         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14038         if (!drmmode_crtc)
14039                 return -ENOENT;
14040
14041         crtc = to_intel_crtc(drmmode_crtc);
14042         pipe_from_crtc_id->pipe = crtc->pipe;
14043
14044         return 0;
14045 }
14046
14047 static int intel_encoder_clones(struct intel_encoder *encoder)
14048 {
14049         struct drm_device *dev = encoder->base.dev;
14050         struct intel_encoder *source_encoder;
14051         int index_mask = 0;
14052         int entry = 0;
14053
14054         for_each_intel_encoder(dev, source_encoder) {
14055                 if (encoders_cloneable(encoder, source_encoder))
14056                         index_mask |= (1 << entry);
14057
14058                 entry++;
14059         }
14060
14061         return index_mask;
14062 }
14063
14064 static bool has_edp_a(struct drm_i915_private *dev_priv)
14065 {
14066         if (!IS_MOBILE(dev_priv))
14067                 return false;
14068
14069         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14070                 return false;
14071
14072         if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14073                 return false;
14074
14075         return true;
14076 }
14077
14078 static bool intel_crt_present(struct drm_i915_private *dev_priv)
14079 {
14080         if (INTEL_GEN(dev_priv) >= 9)
14081                 return false;
14082
14083         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
14084                 return false;
14085
14086         if (IS_CHERRYVIEW(dev_priv))
14087                 return false;
14088
14089         if (HAS_PCH_LPT_H(dev_priv) &&
14090             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14091                 return false;
14092
14093         /* DDI E can't be used if DDI A requires 4 lanes */
14094         if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14095                 return false;
14096
14097         if (!dev_priv->vbt.int_crt_support)
14098                 return false;
14099
14100         return true;
14101 }
14102
14103 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
14104 {
14105         int pps_num;
14106         int pps_idx;
14107
14108         if (HAS_DDI(dev_priv))
14109                 return;
14110         /*
14111          * This w/a is needed at least on CPT/PPT, but to be sure apply it
14112          * everywhere where registers can be write protected.
14113          */
14114         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14115                 pps_num = 2;
14116         else
14117                 pps_num = 1;
14118
14119         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
14120                 u32 val = I915_READ(PP_CONTROL(pps_idx));
14121
14122                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
14123                 I915_WRITE(PP_CONTROL(pps_idx), val);
14124         }
14125 }
14126
14127 static void intel_pps_init(struct drm_i915_private *dev_priv)
14128 {
14129         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
14130                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
14131         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
14132                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
14133         else
14134                 dev_priv->pps_mmio_base = PPS_BASE;
14135
14136         intel_pps_unlock_regs_wa(dev_priv);
14137 }
14138
14139 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
14140 {
14141         struct intel_encoder *encoder;
14142         bool dpd_is_edp = false;
14143
14144         intel_pps_init(dev_priv);
14145
14146         /*
14147          * intel_edp_init_connector() depends on this completing first, to
14148          * prevent the registeration of both eDP and LVDS and the incorrect
14149          * sharing of the PPS.
14150          */
14151         intel_lvds_init(dev_priv);
14152
14153         if (intel_crt_present(dev_priv))
14154                 intel_crt_init(dev_priv);
14155
14156         if (IS_GEN9_LP(dev_priv)) {
14157                 /*
14158                  * FIXME: Broxton doesn't support port detection via the
14159                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14160                  * detect the ports.
14161                  */
14162                 intel_ddi_init(dev_priv, PORT_A);
14163                 intel_ddi_init(dev_priv, PORT_B);
14164                 intel_ddi_init(dev_priv, PORT_C);
14165
14166                 intel_dsi_init(dev_priv);
14167         } else if (HAS_DDI(dev_priv)) {
14168                 int found;
14169
14170                 /*
14171                  * Haswell uses DDI functions to detect digital outputs.
14172                  * On SKL pre-D0 the strap isn't connected, so we assume
14173                  * it's there.
14174                  */
14175                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14176                 /* WaIgnoreDDIAStrap: skl */
14177                 if (found || IS_GEN9_BC(dev_priv))
14178                         intel_ddi_init(dev_priv, PORT_A);
14179
14180                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14181                  * register */
14182                 found = I915_READ(SFUSE_STRAP);
14183
14184                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14185                         intel_ddi_init(dev_priv, PORT_B);
14186                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14187                         intel_ddi_init(dev_priv, PORT_C);
14188                 if (found & SFUSE_STRAP_DDID_DETECTED)
14189                         intel_ddi_init(dev_priv, PORT_D);
14190                 /*
14191                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14192                  */
14193                 if (IS_GEN9_BC(dev_priv) &&
14194                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14195                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14196                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14197                         intel_ddi_init(dev_priv, PORT_E);
14198
14199         } else if (HAS_PCH_SPLIT(dev_priv)) {
14200                 int found;
14201                 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
14202
14203                 if (has_edp_a(dev_priv))
14204                         intel_dp_init(dev_priv, DP_A, PORT_A);
14205
14206                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14207                         /* PCH SDVOB multiplex with HDMIB */
14208                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
14209                         if (!found)
14210                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
14211                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14212                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
14213                 }
14214
14215                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14216                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
14217
14218                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14219                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
14220
14221                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14222                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
14223
14224                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14225                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
14226         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
14227                 bool has_edp, has_port;
14228
14229                 /*
14230                  * The DP_DETECTED bit is the latched state of the DDC
14231                  * SDA pin at boot. However since eDP doesn't require DDC
14232                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14233                  * eDP ports may have been muxed to an alternate function.
14234                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14235                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14236                  * detect eDP ports.
14237                  *
14238                  * Sadly the straps seem to be missing sometimes even for HDMI
14239                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14240                  * and VBT for the presence of the port. Additionally we can't
14241                  * trust the port type the VBT declares as we've seen at least
14242                  * HDMI ports that the VBT claim are DP or eDP.
14243                  */
14244                 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
14245                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14246                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14247                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
14248                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14249                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
14250
14251                 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
14252                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14253                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14254                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
14255                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14256                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
14257
14258                 if (IS_CHERRYVIEW(dev_priv)) {
14259                         /*
14260                          * eDP not supported on port D,
14261                          * so no need to worry about it
14262                          */
14263                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14264                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14265                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
14266                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14267                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
14268                 }
14269
14270                 intel_dsi_init(dev_priv);
14271         } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
14272                 bool found = false;
14273
14274                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14275                         DRM_DEBUG_KMS("probing SDVOB\n");
14276                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
14277                         if (!found && IS_G4X(dev_priv)) {
14278                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14279                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
14280                         }
14281
14282                         if (!found && IS_G4X(dev_priv))
14283                                 intel_dp_init(dev_priv, DP_B, PORT_B);
14284                 }
14285
14286                 /* Before G4X SDVOC doesn't have its own detect register */
14287
14288                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14289                         DRM_DEBUG_KMS("probing SDVOC\n");
14290                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
14291                 }
14292
14293                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14294
14295                         if (IS_G4X(dev_priv)) {
14296                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14297                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
14298                         }
14299                         if (IS_G4X(dev_priv))
14300                                 intel_dp_init(dev_priv, DP_C, PORT_C);
14301                 }
14302
14303                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
14304                         intel_dp_init(dev_priv, DP_D, PORT_D);
14305         } else if (IS_GEN2(dev_priv))
14306                 intel_dvo_init(dev_priv);
14307
14308         if (SUPPORTS_TV(dev_priv))
14309                 intel_tv_init(dev_priv);
14310
14311         intel_psr_init(dev_priv);
14312
14313         for_each_intel_encoder(&dev_priv->drm, encoder) {
14314                 encoder->base.possible_crtcs = encoder->crtc_mask;
14315                 encoder->base.possible_clones =
14316                         intel_encoder_clones(encoder);
14317         }
14318
14319         intel_init_pch_refclk(dev_priv);
14320
14321         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
14322 }
14323
14324 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14325 {
14326         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14327
14328         drm_framebuffer_cleanup(fb);
14329
14330         i915_gem_object_lock(intel_fb->obj);
14331         WARN_ON(!intel_fb->obj->framebuffer_references--);
14332         i915_gem_object_unlock(intel_fb->obj);
14333
14334         i915_gem_object_put(intel_fb->obj);
14335
14336         kfree(intel_fb);
14337 }
14338
14339 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14340                                                 struct drm_file *file,
14341                                                 unsigned int *handle)
14342 {
14343         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14344         struct drm_i915_gem_object *obj = intel_fb->obj;
14345
14346         if (obj->userptr.mm) {
14347                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14348                 return -EINVAL;
14349         }
14350
14351         return drm_gem_handle_create(file, &obj->base, handle);
14352 }
14353
14354 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14355                                         struct drm_file *file,
14356                                         unsigned flags, unsigned color,
14357                                         struct drm_clip_rect *clips,
14358                                         unsigned num_clips)
14359 {
14360         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14361
14362         i915_gem_object_flush_if_display(obj);
14363         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
14364
14365         return 0;
14366 }
14367
14368 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14369         .destroy = intel_user_framebuffer_destroy,
14370         .create_handle = intel_user_framebuffer_create_handle,
14371         .dirty = intel_user_framebuffer_dirty,
14372 };
14373
14374 static
14375 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
14376                          uint64_t fb_modifier, uint32_t pixel_format)
14377 {
14378         u32 gen = INTEL_GEN(dev_priv);
14379
14380         if (gen >= 9) {
14381                 int cpp = drm_format_plane_cpp(pixel_format, 0);
14382
14383                 /* "The stride in bytes must not exceed the of the size of 8K
14384                  *  pixels and 32K bytes."
14385                  */
14386                 return min(8192 * cpp, 32768);
14387         } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
14388                 return 32*1024;
14389         } else if (gen >= 4) {
14390                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14391                         return 16*1024;
14392                 else
14393                         return 32*1024;
14394         } else if (gen >= 3) {
14395                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14396                         return 8*1024;
14397                 else
14398                         return 16*1024;
14399         } else {
14400                 /* XXX DSPC is limited to 4k tiled */
14401                 return 8*1024;
14402         }
14403 }
14404
14405 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
14406                                   struct drm_i915_gem_object *obj,
14407                                   struct drm_mode_fb_cmd2 *mode_cmd)
14408 {
14409         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14410         struct drm_format_name_buf format_name;
14411         u32 pitch_limit, stride_alignment;
14412         unsigned int tiling, stride;
14413         int ret = -EINVAL;
14414
14415         i915_gem_object_lock(obj);
14416         obj->framebuffer_references++;
14417         tiling = i915_gem_object_get_tiling(obj);
14418         stride = i915_gem_object_get_stride(obj);
14419         i915_gem_object_unlock(obj);
14420
14421         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14422                 /*
14423                  * If there's a fence, enforce that
14424                  * the fb modifier and tiling mode match.
14425                  */
14426                 if (tiling != I915_TILING_NONE &&
14427                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14428                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
14429                         goto err;
14430                 }
14431         } else {
14432                 if (tiling == I915_TILING_X) {
14433                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14434                 } else if (tiling == I915_TILING_Y) {
14435                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
14436                         goto err;
14437                 }
14438         }
14439
14440         /* Passed in modifier sanity checking. */
14441         switch (mode_cmd->modifier[0]) {
14442         case I915_FORMAT_MOD_Y_TILED:
14443         case I915_FORMAT_MOD_Yf_TILED:
14444                 if (INTEL_GEN(dev_priv) < 9) {
14445                         DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
14446                                       mode_cmd->modifier[0]);
14447                         goto err;
14448                 }
14449         case DRM_FORMAT_MOD_LINEAR:
14450         case I915_FORMAT_MOD_X_TILED:
14451                 break;
14452         default:
14453                 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
14454                               mode_cmd->modifier[0]);
14455                 goto err;
14456         }
14457
14458         /*
14459          * gen2/3 display engine uses the fence if present,
14460          * so the tiling mode must match the fb modifier exactly.
14461          */
14462         if (INTEL_INFO(dev_priv)->gen < 4 &&
14463             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
14464                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
14465                 goto err;
14466         }
14467
14468         pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
14469                                            mode_cmd->pixel_format);
14470         if (mode_cmd->pitches[0] > pitch_limit) {
14471                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
14472                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
14473                               "tiled" : "linear",
14474                               mode_cmd->pitches[0], pitch_limit);
14475                 goto err;
14476         }
14477
14478         /*
14479          * If there's a fence, enforce that
14480          * the fb pitch and fence stride match.
14481          */
14482         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
14483                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
14484                               mode_cmd->pitches[0], stride);
14485                 goto err;
14486         }
14487
14488         /* Reject formats not supported by any plane early. */
14489         switch (mode_cmd->pixel_format) {
14490         case DRM_FORMAT_C8:
14491         case DRM_FORMAT_RGB565:
14492         case DRM_FORMAT_XRGB8888:
14493         case DRM_FORMAT_ARGB8888:
14494                 break;
14495         case DRM_FORMAT_XRGB1555:
14496                 if (INTEL_GEN(dev_priv) > 3) {
14497                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14498                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14499                         goto err;
14500                 }
14501                 break;
14502         case DRM_FORMAT_ABGR8888:
14503                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14504                     INTEL_GEN(dev_priv) < 9) {
14505                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14506                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14507                         goto err;
14508                 }
14509                 break;
14510         case DRM_FORMAT_XBGR8888:
14511         case DRM_FORMAT_XRGB2101010:
14512         case DRM_FORMAT_XBGR2101010:
14513                 if (INTEL_GEN(dev_priv) < 4) {
14514                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14515                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14516                         goto err;
14517                 }
14518                 break;
14519         case DRM_FORMAT_ABGR2101010:
14520                 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14521                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14522                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14523                         goto err;
14524                 }
14525                 break;
14526         case DRM_FORMAT_YUYV:
14527         case DRM_FORMAT_UYVY:
14528         case DRM_FORMAT_YVYU:
14529         case DRM_FORMAT_VYUY:
14530                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14531                         DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14532                                       drm_get_format_name(mode_cmd->pixel_format, &format_name));
14533                         goto err;
14534                 }
14535                 break;
14536         default:
14537                 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14538                               drm_get_format_name(mode_cmd->pixel_format, &format_name));
14539                 goto err;
14540         }
14541
14542         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14543         if (mode_cmd->offsets[0] != 0)
14544                 goto err;
14545
14546         drm_helper_mode_fill_fb_struct(&dev_priv->drm,
14547                                        &intel_fb->base, mode_cmd);
14548
14549         stride_alignment = intel_fb_stride_alignment(&intel_fb->base, 0);
14550         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14551                 DRM_DEBUG_KMS("pitch (%d) must be at least %u byte aligned\n",
14552                               mode_cmd->pitches[0], stride_alignment);
14553                 goto err;
14554         }
14555
14556         intel_fb->obj = obj;
14557
14558         ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
14559         if (ret)
14560                 goto err;
14561
14562         ret = drm_framebuffer_init(obj->base.dev,
14563                                    &intel_fb->base,
14564                                    &intel_fb_funcs);
14565         if (ret) {
14566                 DRM_ERROR("framebuffer init failed %d\n", ret);
14567                 goto err;
14568         }
14569
14570         return 0;
14571
14572 err:
14573         i915_gem_object_lock(obj);
14574         obj->framebuffer_references--;
14575         i915_gem_object_unlock(obj);
14576         return ret;
14577 }
14578
14579 static struct drm_framebuffer *
14580 intel_user_framebuffer_create(struct drm_device *dev,
14581                               struct drm_file *filp,
14582                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
14583 {
14584         struct drm_framebuffer *fb;
14585         struct drm_i915_gem_object *obj;
14586         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14587
14588         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14589         if (!obj)
14590                 return ERR_PTR(-ENOENT);
14591
14592         fb = intel_framebuffer_create(obj, &mode_cmd);
14593         if (IS_ERR(fb))
14594                 i915_gem_object_put(obj);
14595
14596         return fb;
14597 }
14598
14599 static void intel_atomic_state_free(struct drm_atomic_state *state)
14600 {
14601         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14602
14603         drm_atomic_state_default_release(state);
14604
14605         i915_sw_fence_fini(&intel_state->commit_ready);
14606
14607         kfree(state);
14608 }
14609
14610 static const struct drm_mode_config_funcs intel_mode_funcs = {
14611         .fb_create = intel_user_framebuffer_create,
14612         .output_poll_changed = intel_fbdev_output_poll_changed,
14613         .atomic_check = intel_atomic_check,
14614         .atomic_commit = intel_atomic_commit,
14615         .atomic_state_alloc = intel_atomic_state_alloc,
14616         .atomic_state_clear = intel_atomic_state_clear,
14617         .atomic_state_free = intel_atomic_state_free,
14618 };
14619
14620 /**
14621  * intel_init_display_hooks - initialize the display modesetting hooks
14622  * @dev_priv: device private
14623  */
14624 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14625 {
14626         intel_init_cdclk_hooks(dev_priv);
14627
14628         if (INTEL_INFO(dev_priv)->gen >= 9) {
14629                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14630                 dev_priv->display.get_initial_plane_config =
14631                         skylake_get_initial_plane_config;
14632                 dev_priv->display.crtc_compute_clock =
14633                         haswell_crtc_compute_clock;
14634                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14635                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14636         } else if (HAS_DDI(dev_priv)) {
14637                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14638                 dev_priv->display.get_initial_plane_config =
14639                         ironlake_get_initial_plane_config;
14640                 dev_priv->display.crtc_compute_clock =
14641                         haswell_crtc_compute_clock;
14642                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14643                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14644         } else if (HAS_PCH_SPLIT(dev_priv)) {
14645                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14646                 dev_priv->display.get_initial_plane_config =
14647                         ironlake_get_initial_plane_config;
14648                 dev_priv->display.crtc_compute_clock =
14649                         ironlake_crtc_compute_clock;
14650                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14651                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14652         } else if (IS_CHERRYVIEW(dev_priv)) {
14653                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14654                 dev_priv->display.get_initial_plane_config =
14655                         i9xx_get_initial_plane_config;
14656                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14657                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14658                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14659         } else if (IS_VALLEYVIEW(dev_priv)) {
14660                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14661                 dev_priv->display.get_initial_plane_config =
14662                         i9xx_get_initial_plane_config;
14663                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14664                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14665                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14666         } else if (IS_G4X(dev_priv)) {
14667                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14668                 dev_priv->display.get_initial_plane_config =
14669                         i9xx_get_initial_plane_config;
14670                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14671                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14672                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14673         } else if (IS_PINEVIEW(dev_priv)) {
14674                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14675                 dev_priv->display.get_initial_plane_config =
14676                         i9xx_get_initial_plane_config;
14677                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14678                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14679                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14680         } else if (!IS_GEN2(dev_priv)) {
14681                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14682                 dev_priv->display.get_initial_plane_config =
14683                         i9xx_get_initial_plane_config;
14684                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14685                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14686                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14687         } else {
14688                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14689                 dev_priv->display.get_initial_plane_config =
14690                         i9xx_get_initial_plane_config;
14691                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14692                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14693                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14694         }
14695
14696         if (IS_GEN5(dev_priv)) {
14697                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14698         } else if (IS_GEN6(dev_priv)) {
14699                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14700         } else if (IS_IVYBRIDGE(dev_priv)) {
14701                 /* FIXME: detect B0+ stepping and use auto training */
14702                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14703         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14704                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14705         }
14706
14707         if (dev_priv->info.gen >= 9)
14708                 dev_priv->display.update_crtcs = skl_update_crtcs;
14709         else
14710                 dev_priv->display.update_crtcs = intel_update_crtcs;
14711
14712         switch (INTEL_INFO(dev_priv)->gen) {
14713         case 2:
14714                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14715                 break;
14716
14717         case 3:
14718                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14719                 break;
14720
14721         case 4:
14722         case 5:
14723                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14724                 break;
14725
14726         case 6:
14727                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14728                 break;
14729         case 7:
14730         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14731                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14732                 break;
14733         case 9:
14734                 /* Drop through - unsupported since execlist only. */
14735         default:
14736                 /* Default just returns -ENODEV to indicate unsupported */
14737                 dev_priv->display.queue_flip = intel_default_queue_flip;
14738         }
14739 }
14740
14741 /*
14742  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14743  * resume, or other times.  This quirk makes sure that's the case for
14744  * affected systems.
14745  */
14746 static void quirk_pipea_force(struct drm_device *dev)
14747 {
14748         struct drm_i915_private *dev_priv = to_i915(dev);
14749
14750         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14751         DRM_INFO("applying pipe a force quirk\n");
14752 }
14753
14754 static void quirk_pipeb_force(struct drm_device *dev)
14755 {
14756         struct drm_i915_private *dev_priv = to_i915(dev);
14757
14758         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14759         DRM_INFO("applying pipe b force quirk\n");
14760 }
14761
14762 /*
14763  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14764  */
14765 static void quirk_ssc_force_disable(struct drm_device *dev)
14766 {
14767         struct drm_i915_private *dev_priv = to_i915(dev);
14768         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14769         DRM_INFO("applying lvds SSC disable quirk\n");
14770 }
14771
14772 /*
14773  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14774  * brightness value
14775  */
14776 static void quirk_invert_brightness(struct drm_device *dev)
14777 {
14778         struct drm_i915_private *dev_priv = to_i915(dev);
14779         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14780         DRM_INFO("applying inverted panel brightness quirk\n");
14781 }
14782
14783 /* Some VBT's incorrectly indicate no backlight is present */
14784 static void quirk_backlight_present(struct drm_device *dev)
14785 {
14786         struct drm_i915_private *dev_priv = to_i915(dev);
14787         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14788         DRM_INFO("applying backlight present quirk\n");
14789 }
14790
14791 struct intel_quirk {
14792         int device;
14793         int subsystem_vendor;
14794         int subsystem_device;
14795         void (*hook)(struct drm_device *dev);
14796 };
14797
14798 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14799 struct intel_dmi_quirk {
14800         void (*hook)(struct drm_device *dev);
14801         const struct dmi_system_id (*dmi_id_list)[];
14802 };
14803
14804 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14805 {
14806         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14807         return 1;
14808 }
14809
14810 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14811         {
14812                 .dmi_id_list = &(const struct dmi_system_id[]) {
14813                         {
14814                                 .callback = intel_dmi_reverse_brightness,
14815                                 .ident = "NCR Corporation",
14816                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14817                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14818                                 },
14819                         },
14820                         { }  /* terminating entry */
14821                 },
14822                 .hook = quirk_invert_brightness,
14823         },
14824 };
14825
14826 static struct intel_quirk intel_quirks[] = {
14827         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14828         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14829
14830         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14831         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14832
14833         /* 830 needs to leave pipe A & dpll A up */
14834         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14835
14836         /* 830 needs to leave pipe B & dpll B up */
14837         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14838
14839         /* Lenovo U160 cannot use SSC on LVDS */
14840         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14841
14842         /* Sony Vaio Y cannot use SSC on LVDS */
14843         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14844
14845         /* Acer Aspire 5734Z must invert backlight brightness */
14846         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14847
14848         /* Acer/eMachines G725 */
14849         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14850
14851         /* Acer/eMachines e725 */
14852         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14853
14854         /* Acer/Packard Bell NCL20 */
14855         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14856
14857         /* Acer Aspire 4736Z */
14858         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14859
14860         /* Acer Aspire 5336 */
14861         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14862
14863         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14864         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14865
14866         /* Acer C720 Chromebook (Core i3 4005U) */
14867         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14868
14869         /* Apple Macbook 2,1 (Core 2 T7400) */
14870         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14871
14872         /* Apple Macbook 4,1 */
14873         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14874
14875         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14876         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14877
14878         /* HP Chromebook 14 (Celeron 2955U) */
14879         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14880
14881         /* Dell Chromebook 11 */
14882         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14883
14884         /* Dell Chromebook 11 (2015 version) */
14885         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14886 };
14887
14888 static void intel_init_quirks(struct drm_device *dev)
14889 {
14890         struct pci_dev *d = dev->pdev;
14891         int i;
14892
14893         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14894                 struct intel_quirk *q = &intel_quirks[i];
14895
14896                 if (d->device == q->device &&
14897                     (d->subsystem_vendor == q->subsystem_vendor ||
14898                      q->subsystem_vendor == PCI_ANY_ID) &&
14899                     (d->subsystem_device == q->subsystem_device ||
14900                      q->subsystem_device == PCI_ANY_ID))
14901                         q->hook(dev);
14902         }
14903         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14904                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14905                         intel_dmi_quirks[i].hook(dev);
14906         }
14907 }
14908
14909 /* Disable the VGA plane that we never use */
14910 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14911 {
14912         struct pci_dev *pdev = dev_priv->drm.pdev;
14913         u8 sr1;
14914         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14915
14916         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14917         vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14918         outb(SR01, VGA_SR_INDEX);
14919         sr1 = inb(VGA_SR_DATA);
14920         outb(sr1 | 1<<5, VGA_SR_DATA);
14921         vga_put(pdev, VGA_RSRC_LEGACY_IO);
14922         udelay(300);
14923
14924         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14925         POSTING_READ(vga_reg);
14926 }
14927
14928 void intel_modeset_init_hw(struct drm_device *dev)
14929 {
14930         struct drm_i915_private *dev_priv = to_i915(dev);
14931
14932         intel_update_cdclk(dev_priv);
14933         dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14934
14935         intel_init_clock_gating(dev_priv);
14936 }
14937
14938 /*
14939  * Calculate what we think the watermarks should be for the state we've read
14940  * out of the hardware and then immediately program those watermarks so that
14941  * we ensure the hardware settings match our internal state.
14942  *
14943  * We can calculate what we think WM's should be by creating a duplicate of the
14944  * current state (which was constructed during hardware readout) and running it
14945  * through the atomic check code to calculate new watermark values in the
14946  * state object.
14947  */
14948 static void sanitize_watermarks(struct drm_device *dev)
14949 {
14950         struct drm_i915_private *dev_priv = to_i915(dev);
14951         struct drm_atomic_state *state;
14952         struct intel_atomic_state *intel_state;
14953         struct drm_crtc *crtc;
14954         struct drm_crtc_state *cstate;
14955         struct drm_modeset_acquire_ctx ctx;
14956         int ret;
14957         int i;
14958
14959         /* Only supported on platforms that use atomic watermark design */
14960         if (!dev_priv->display.optimize_watermarks)
14961                 return;
14962
14963         /*
14964          * We need to hold connection_mutex before calling duplicate_state so
14965          * that the connector loop is protected.
14966          */
14967         drm_modeset_acquire_init(&ctx, 0);
14968 retry:
14969         ret = drm_modeset_lock_all_ctx(dev, &ctx);
14970         if (ret == -EDEADLK) {
14971                 drm_modeset_backoff(&ctx);
14972                 goto retry;
14973         } else if (WARN_ON(ret)) {
14974                 goto fail;
14975         }
14976
14977         state = drm_atomic_helper_duplicate_state(dev, &ctx);
14978         if (WARN_ON(IS_ERR(state)))
14979                 goto fail;
14980
14981         intel_state = to_intel_atomic_state(state);
14982
14983         /*
14984          * Hardware readout is the only time we don't want to calculate
14985          * intermediate watermarks (since we don't trust the current
14986          * watermarks).
14987          */
14988         if (!HAS_GMCH_DISPLAY(dev_priv))
14989                 intel_state->skip_intermediate_wm = true;
14990
14991         ret = intel_atomic_check(dev, state);
14992         if (ret) {
14993                 /*
14994                  * If we fail here, it means that the hardware appears to be
14995                  * programmed in a way that shouldn't be possible, given our
14996                  * understanding of watermark requirements.  This might mean a
14997                  * mistake in the hardware readout code or a mistake in the
14998                  * watermark calculations for a given platform.  Raise a WARN
14999                  * so that this is noticeable.
15000                  *
15001                  * If this actually happens, we'll have to just leave the
15002                  * BIOS-programmed watermarks untouched and hope for the best.
15003                  */
15004                 WARN(true, "Could not determine valid watermarks for inherited state\n");
15005                 goto put_state;
15006         }
15007
15008         /* Write calculated watermark values back */
15009         for_each_new_crtc_in_state(state, crtc, cstate, i) {
15010                 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15011
15012                 cs->wm.need_postvbl_update = true;
15013                 dev_priv->display.optimize_watermarks(intel_state, cs);
15014         }
15015
15016 put_state:
15017         drm_atomic_state_put(state);
15018 fail:
15019         drm_modeset_drop_locks(&ctx);
15020         drm_modeset_acquire_fini(&ctx);
15021 }
15022
15023 int intel_modeset_init(struct drm_device *dev)
15024 {
15025         struct drm_i915_private *dev_priv = to_i915(dev);
15026         struct i915_ggtt *ggtt = &dev_priv->ggtt;
15027         enum pipe pipe;
15028         struct intel_crtc *crtc;
15029
15030         drm_mode_config_init(dev);
15031
15032         dev->mode_config.min_width = 0;
15033         dev->mode_config.min_height = 0;
15034
15035         dev->mode_config.preferred_depth = 24;
15036         dev->mode_config.prefer_shadow = 1;
15037
15038         dev->mode_config.allow_fb_modifiers = true;
15039
15040         dev->mode_config.funcs = &intel_mode_funcs;
15041
15042         init_llist_head(&dev_priv->atomic_helper.free_list);
15043         INIT_WORK(&dev_priv->atomic_helper.free_work,
15044                   intel_atomic_helper_free_state_worker);
15045
15046         intel_init_quirks(dev);
15047
15048         intel_init_pm(dev_priv);
15049
15050         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15051                 return 0;
15052
15053         /*
15054          * There may be no VBT; and if the BIOS enabled SSC we can
15055          * just keep using it to avoid unnecessary flicker.  Whereas if the
15056          * BIOS isn't using it, don't assume it will work even if the VBT
15057          * indicates as much.
15058          */
15059         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
15060                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15061                                             DREF_SSC1_ENABLE);
15062
15063                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15064                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15065                                      bios_lvds_use_ssc ? "en" : "dis",
15066                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15067                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15068                 }
15069         }
15070
15071         if (IS_GEN2(dev_priv)) {
15072                 dev->mode_config.max_width = 2048;
15073                 dev->mode_config.max_height = 2048;
15074         } else if (IS_GEN3(dev_priv)) {
15075                 dev->mode_config.max_width = 4096;
15076                 dev->mode_config.max_height = 4096;
15077         } else {
15078                 dev->mode_config.max_width = 8192;
15079                 dev->mode_config.max_height = 8192;
15080         }
15081
15082         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15083                 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
15084                 dev->mode_config.cursor_height = 1023;
15085         } else if (IS_GEN2(dev_priv)) {
15086                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15087                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15088         } else {
15089                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15090                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15091         }
15092
15093         dev->mode_config.fb_base = ggtt->mappable_base;
15094
15095         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15096                       INTEL_INFO(dev_priv)->num_pipes,
15097                       INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
15098
15099         for_each_pipe(dev_priv, pipe) {
15100                 int ret;
15101
15102                 ret = intel_crtc_init(dev_priv, pipe);
15103                 if (ret) {
15104                         drm_mode_config_cleanup(dev);
15105                         return ret;
15106                 }
15107         }
15108
15109         intel_shared_dpll_init(dev);
15110
15111         intel_update_czclk(dev_priv);
15112         intel_modeset_init_hw(dev);
15113
15114         if (dev_priv->max_cdclk_freq == 0)
15115                 intel_update_max_cdclk(dev_priv);
15116
15117         /* Just disable it once at startup */
15118         i915_disable_vga(dev_priv);
15119         intel_setup_outputs(dev_priv);
15120
15121         drm_modeset_lock_all(dev);
15122         intel_modeset_setup_hw_state(dev);
15123         drm_modeset_unlock_all(dev);
15124
15125         for_each_intel_crtc(dev, crtc) {
15126                 struct intel_initial_plane_config plane_config = {};
15127
15128                 if (!crtc->active)
15129                         continue;
15130
15131                 /*
15132                  * Note that reserving the BIOS fb up front prevents us
15133                  * from stuffing other stolen allocations like the ring
15134                  * on top.  This prevents some ugliness at boot time, and
15135                  * can even allow for smooth boot transitions if the BIOS
15136                  * fb is large enough for the active pipe configuration.
15137                  */
15138                 dev_priv->display.get_initial_plane_config(crtc,
15139                                                            &plane_config);
15140
15141                 /*
15142                  * If the fb is shared between multiple heads, we'll
15143                  * just get the first one.
15144                  */
15145                 intel_find_initial_plane_obj(crtc, &plane_config);
15146         }
15147
15148         /*
15149          * Make sure hardware watermarks really match the state we read out.
15150          * Note that we need to do this after reconstructing the BIOS fb's
15151          * since the watermark calculation done here will use pstate->fb.
15152          */
15153         if (!HAS_GMCH_DISPLAY(dev_priv))
15154                 sanitize_watermarks(dev);
15155
15156         return 0;
15157 }
15158
15159 static void intel_enable_pipe_a(struct drm_device *dev)
15160 {
15161         struct intel_connector *connector;
15162         struct drm_connector_list_iter conn_iter;
15163         struct drm_connector *crt = NULL;
15164         struct intel_load_detect_pipe load_detect_temp;
15165         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15166         int ret;
15167
15168         /* We can't just switch on the pipe A, we need to set things up with a
15169          * proper mode and output configuration. As a gross hack, enable pipe A
15170          * by enabling the load detect pipe once. */
15171         drm_connector_list_iter_begin(dev, &conn_iter);
15172         for_each_intel_connector_iter(connector, &conn_iter) {
15173                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15174                         crt = &connector->base;
15175                         break;
15176                 }
15177         }
15178         drm_connector_list_iter_end(&conn_iter);
15179
15180         if (!crt)
15181                 return;
15182
15183         ret = intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx);
15184         WARN(ret < 0, "All modeset mutexes are locked, but intel_get_load_detect_pipe failed\n");
15185
15186         if (ret > 0)
15187                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15188 }
15189
15190 static bool
15191 intel_check_plane_mapping(struct intel_crtc *crtc)
15192 {
15193         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15194         u32 val;
15195
15196         if (INTEL_INFO(dev_priv)->num_pipes == 1)
15197                 return true;
15198
15199         val = I915_READ(DSPCNTR(!crtc->plane));
15200
15201         if ((val & DISPLAY_PLANE_ENABLE) &&
15202             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15203                 return false;
15204
15205         return true;
15206 }
15207
15208 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15209 {
15210         struct drm_device *dev = crtc->base.dev;
15211         struct intel_encoder *encoder;
15212
15213         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15214                 return true;
15215
15216         return false;
15217 }
15218
15219 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
15220 {
15221         struct drm_device *dev = encoder->base.dev;
15222         struct intel_connector *connector;
15223
15224         for_each_connector_on_encoder(dev, &encoder->base, connector)
15225                 return connector;
15226
15227         return NULL;
15228 }
15229
15230 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
15231                               enum transcoder pch_transcoder)
15232 {
15233         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
15234                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
15235 }
15236
15237 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15238 {
15239         struct drm_device *dev = crtc->base.dev;
15240         struct drm_i915_private *dev_priv = to_i915(dev);
15241         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15242
15243         /* Clear any frame start delays used for debugging left by the BIOS */
15244         if (!transcoder_is_dsi(cpu_transcoder)) {
15245                 i915_reg_t reg = PIPECONF(cpu_transcoder);
15246
15247                 I915_WRITE(reg,
15248                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15249         }
15250
15251         /* restore vblank interrupts to correct state */
15252         drm_crtc_vblank_reset(&crtc->base);
15253         if (crtc->active) {
15254                 struct intel_plane *plane;
15255
15256                 drm_crtc_vblank_on(&crtc->base);
15257
15258                 /* Disable everything but the primary plane */
15259                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15260                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15261                                 continue;
15262
15263                         trace_intel_disable_plane(&plane->base, crtc);
15264                         plane->disable_plane(plane, crtc);
15265                 }
15266         }
15267
15268         /* We need to sanitize the plane -> pipe mapping first because this will
15269          * disable the crtc (and hence change the state) if it is wrong. Note
15270          * that gen4+ has a fixed plane -> pipe mapping.  */
15271         if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
15272                 bool plane;
15273
15274                 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
15275                               crtc->base.base.id, crtc->base.name);
15276
15277                 /* Pipe has the wrong plane attached and the plane is active.
15278                  * Temporarily change the plane mapping and disable everything
15279                  * ...  */
15280                 plane = crtc->plane;
15281                 crtc->base.primary->state->visible = true;
15282                 crtc->plane = !plane;
15283                 intel_crtc_disable_noatomic(&crtc->base);
15284                 crtc->plane = plane;
15285         }
15286
15287         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15288             crtc->pipe == PIPE_A && !crtc->active) {
15289                 /* BIOS forgot to enable pipe A, this mostly happens after
15290                  * resume. Force-enable the pipe to fix this, the update_dpms
15291                  * call below we restore the pipe to the right state, but leave
15292                  * the required bits on. */
15293                 intel_enable_pipe_a(dev);
15294         }
15295
15296         /* Adjust the state of the output pipe according to whether we
15297          * have active connectors/encoders. */
15298         if (crtc->active && !intel_crtc_has_encoders(crtc))
15299                 intel_crtc_disable_noatomic(&crtc->base);
15300
15301         if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
15302                 /*
15303                  * We start out with underrun reporting disabled to avoid races.
15304                  * For correct bookkeeping mark this on active crtcs.
15305                  *
15306                  * Also on gmch platforms we dont have any hardware bits to
15307                  * disable the underrun reporting. Which means we need to start
15308                  * out with underrun reporting disabled also on inactive pipes,
15309                  * since otherwise we'll complain about the garbage we read when
15310                  * e.g. coming up after runtime pm.
15311                  *
15312                  * No protection against concurrent access is required - at
15313                  * worst a fifo underrun happens which also sets this to false.
15314                  */
15315                 crtc->cpu_fifo_underrun_disabled = true;
15316                 /*
15317                  * We track the PCH trancoder underrun reporting state
15318                  * within the crtc. With crtc for pipe A housing the underrun
15319                  * reporting state for PCH transcoder A, crtc for pipe B housing
15320                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
15321                  * and marking underrun reporting as disabled for the non-existing
15322                  * PCH transcoders B and C would prevent enabling the south
15323                  * error interrupt (see cpt_can_enable_serr_int()).
15324                  */
15325                 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
15326                         crtc->pch_fifo_underrun_disabled = true;
15327         }
15328 }
15329
15330 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15331 {
15332         struct intel_connector *connector;
15333
15334         /* We need to check both for a crtc link (meaning that the
15335          * encoder is active and trying to read from a pipe) and the
15336          * pipe itself being active. */
15337         bool has_active_crtc = encoder->base.crtc &&
15338                 to_intel_crtc(encoder->base.crtc)->active;
15339
15340         connector = intel_encoder_find_connector(encoder);
15341         if (connector && !has_active_crtc) {
15342                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15343                               encoder->base.base.id,
15344                               encoder->base.name);
15345
15346                 /* Connector is active, but has no active pipe. This is
15347                  * fallout from our resume register restoring. Disable
15348                  * the encoder manually again. */
15349                 if (encoder->base.crtc) {
15350                         struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
15351
15352                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15353                                       encoder->base.base.id,
15354                                       encoder->base.name);
15355                         encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15356                         if (encoder->post_disable)
15357                                 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
15358                 }
15359                 encoder->base.crtc = NULL;
15360
15361                 /* Inconsistent output/port/pipe state happens presumably due to
15362                  * a bug in one of the get_hw_state functions. Or someplace else
15363                  * in our code, like the register restore mess on resume. Clamp
15364                  * things to off as a safer default. */
15365
15366                 connector->base.dpms = DRM_MODE_DPMS_OFF;
15367                 connector->base.encoder = NULL;
15368         }
15369         /* Enabled encoders without active connectors will be fixed in
15370          * the crtc fixup. */
15371 }
15372
15373 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
15374 {
15375         i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
15376
15377         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15378                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15379                 i915_disable_vga(dev_priv);
15380         }
15381 }
15382
15383 void i915_redisable_vga(struct drm_i915_private *dev_priv)
15384 {
15385         /* This function can be called both from intel_modeset_setup_hw_state or
15386          * at a very early point in our resume sequence, where the power well
15387          * structures are not yet restored. Since this function is at a very
15388          * paranoid "someone might have enabled VGA while we were not looking"
15389          * level, just check if the power well is enabled instead of trying to
15390          * follow the "don't touch the power well if we don't need it" policy
15391          * the rest of the driver uses. */
15392         if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15393                 return;
15394
15395         i915_redisable_vga_power_on(dev_priv);
15396
15397         intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15398 }
15399
15400 static bool primary_get_hw_state(struct intel_plane *plane)
15401 {
15402         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15403
15404         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15405 }
15406
15407 /* FIXME read out full plane state for all planes */
15408 static void readout_plane_state(struct intel_crtc *crtc)
15409 {
15410         struct intel_plane *primary = to_intel_plane(crtc->base.primary);
15411         bool visible;
15412
15413         visible = crtc->active && primary_get_hw_state(primary);
15414
15415         intel_set_plane_visible(to_intel_crtc_state(crtc->base.state),
15416                                 to_intel_plane_state(primary->base.state),
15417                                 visible);
15418 }
15419
15420 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15421 {
15422         struct drm_i915_private *dev_priv = to_i915(dev);
15423         enum pipe pipe;
15424         struct intel_crtc *crtc;
15425         struct intel_encoder *encoder;
15426         struct intel_connector *connector;
15427         struct drm_connector_list_iter conn_iter;
15428         int i;
15429
15430         dev_priv->active_crtcs = 0;
15431
15432         for_each_intel_crtc(dev, crtc) {
15433                 struct intel_crtc_state *crtc_state =
15434                         to_intel_crtc_state(crtc->base.state);
15435
15436                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15437                 memset(crtc_state, 0, sizeof(*crtc_state));
15438                 crtc_state->base.crtc = &crtc->base;
15439
15440                 crtc_state->base.active = crtc_state->base.enable =
15441                         dev_priv->display.get_pipe_config(crtc, crtc_state);
15442
15443                 crtc->base.enabled = crtc_state->base.enable;
15444                 crtc->active = crtc_state->base.active;
15445
15446                 if (crtc_state->base.active)
15447                         dev_priv->active_crtcs |= 1 << crtc->pipe;
15448
15449                 readout_plane_state(crtc);
15450
15451                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
15452                               crtc->base.base.id, crtc->base.name,
15453                               enableddisabled(crtc_state->base.active));
15454         }
15455
15456         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15457                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15458
15459                 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15460                                                   &pll->state.hw_state);
15461                 pll->state.crtc_mask = 0;
15462                 for_each_intel_crtc(dev, crtc) {
15463                         struct intel_crtc_state *crtc_state =
15464                                 to_intel_crtc_state(crtc->base.state);
15465
15466                         if (crtc_state->base.active &&
15467                             crtc_state->shared_dpll == pll)
15468                                 pll->state.crtc_mask |= 1 << crtc->pipe;
15469                 }
15470                 pll->active_mask = pll->state.crtc_mask;
15471
15472                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15473                               pll->name, pll->state.crtc_mask, pll->on);
15474         }
15475
15476         for_each_intel_encoder(dev, encoder) {
15477                 pipe = 0;
15478
15479                 if (encoder->get_hw_state(encoder, &pipe)) {
15480                         struct intel_crtc_state *crtc_state;
15481
15482                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15483                         crtc_state = to_intel_crtc_state(crtc->base.state);
15484
15485                         encoder->base.crtc = &crtc->base;
15486                         crtc_state->output_types |= 1 << encoder->type;
15487                         encoder->get_config(encoder, crtc_state);
15488                 } else {
15489                         encoder->base.crtc = NULL;
15490                 }
15491
15492                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15493                               encoder->base.base.id, encoder->base.name,
15494                               enableddisabled(encoder->base.crtc),
15495                               pipe_name(pipe));
15496         }
15497
15498         drm_connector_list_iter_begin(dev, &conn_iter);
15499         for_each_intel_connector_iter(connector, &conn_iter) {
15500                 if (connector->get_hw_state(connector)) {
15501                         connector->base.dpms = DRM_MODE_DPMS_ON;
15502
15503                         encoder = connector->encoder;
15504                         connector->base.encoder = &encoder->base;
15505
15506                         if (encoder->base.crtc &&
15507                             encoder->base.crtc->state->active) {
15508                                 /*
15509                                  * This has to be done during hardware readout
15510                                  * because anything calling .crtc_disable may
15511                                  * rely on the connector_mask being accurate.
15512                                  */
15513                                 encoder->base.crtc->state->connector_mask |=
15514                                         1 << drm_connector_index(&connector->base);
15515                                 encoder->base.crtc->state->encoder_mask |=
15516                                         1 << drm_encoder_index(&encoder->base);
15517                         }
15518
15519                 } else {
15520                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15521                         connector->base.encoder = NULL;
15522                 }
15523                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15524                               connector->base.base.id, connector->base.name,
15525                               enableddisabled(connector->base.encoder));
15526         }
15527         drm_connector_list_iter_end(&conn_iter);
15528
15529         for_each_intel_crtc(dev, crtc) {
15530                 struct intel_crtc_state *crtc_state =
15531                         to_intel_crtc_state(crtc->base.state);
15532                 int pixclk = 0;
15533
15534                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15535                 if (crtc_state->base.active) {
15536                         intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15537                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15538                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15539
15540                         /*
15541                          * The initial mode needs to be set in order to keep
15542                          * the atomic core happy. It wants a valid mode if the
15543                          * crtc's enabled, so we do the above call.
15544                          *
15545                          * But we don't set all the derived state fully, hence
15546                          * set a flag to indicate that a full recalculation is
15547                          * needed on the next commit.
15548                          */
15549                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15550
15551                         intel_crtc_compute_pixel_rate(crtc_state);
15552
15553                         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15554                             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15555                                 pixclk = crtc_state->pixel_rate;
15556                         else
15557                                 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15558
15559                         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15560                         if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15561                                 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15562
15563                         drm_calc_timestamping_constants(&crtc->base,
15564                                                         &crtc_state->base.adjusted_mode);
15565                         update_scanline_offset(crtc);
15566                 }
15567
15568                 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15569
15570                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15571         }
15572 }
15573
15574 static void
15575 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15576 {
15577         struct intel_encoder *encoder;
15578
15579         for_each_intel_encoder(&dev_priv->drm, encoder) {
15580                 u64 get_domains;
15581                 enum intel_display_power_domain domain;
15582
15583                 if (!encoder->get_power_domains)
15584                         continue;
15585
15586                 get_domains = encoder->get_power_domains(encoder);
15587                 for_each_power_domain(domain, get_domains)
15588                         intel_display_power_get(dev_priv, domain);
15589         }
15590 }
15591
15592 /* Scan out the current hw modeset state,
15593  * and sanitizes it to the current state
15594  */
15595 static void
15596 intel_modeset_setup_hw_state(struct drm_device *dev)
15597 {
15598         struct drm_i915_private *dev_priv = to_i915(dev);
15599         enum pipe pipe;
15600         struct intel_crtc *crtc;
15601         struct intel_encoder *encoder;
15602         int i;
15603
15604         intel_modeset_readout_hw_state(dev);
15605
15606         /* HW state is read out, now we need to sanitize this mess. */
15607         get_encoder_power_domains(dev_priv);
15608
15609         for_each_intel_encoder(dev, encoder) {
15610                 intel_sanitize_encoder(encoder);
15611         }
15612
15613         for_each_pipe(dev_priv, pipe) {
15614                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15615
15616                 intel_sanitize_crtc(crtc);
15617                 intel_dump_pipe_config(crtc, crtc->config,
15618                                        "[setup_hw_state]");
15619         }
15620
15621         intel_modeset_update_connector_atomic_state(dev);
15622
15623         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15624                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15625
15626                 if (!pll->on || pll->active_mask)
15627                         continue;
15628
15629                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15630
15631                 pll->funcs.disable(dev_priv, pll);
15632                 pll->on = false;
15633         }
15634
15635         if (IS_G4X(dev_priv)) {
15636                 g4x_wm_get_hw_state(dev);
15637                 g4x_wm_sanitize(dev_priv);
15638         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15639                 vlv_wm_get_hw_state(dev);
15640                 vlv_wm_sanitize(dev_priv);
15641         } else if (IS_GEN9(dev_priv)) {
15642                 skl_wm_get_hw_state(dev);
15643         } else if (HAS_PCH_SPLIT(dev_priv)) {
15644                 ilk_wm_get_hw_state(dev);
15645         }
15646
15647         for_each_intel_crtc(dev, crtc) {
15648                 u64 put_domains;
15649
15650                 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15651                 if (WARN_ON(put_domains))
15652                         modeset_put_power_domains(dev_priv, put_domains);
15653         }
15654         intel_display_set_init_power(dev_priv, false);
15655
15656         intel_power_domains_verify_state(dev_priv);
15657
15658         intel_fbc_init_pipe_state(dev_priv);
15659 }
15660
15661 void intel_display_resume(struct drm_device *dev)
15662 {
15663         struct drm_i915_private *dev_priv = to_i915(dev);
15664         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15665         struct drm_modeset_acquire_ctx ctx;
15666         int ret;
15667
15668         dev_priv->modeset_restore_state = NULL;
15669         if (state)
15670                 state->acquire_ctx = &ctx;
15671
15672         drm_modeset_acquire_init(&ctx, 0);
15673
15674         while (1) {
15675                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15676                 if (ret != -EDEADLK)
15677                         break;
15678
15679                 drm_modeset_backoff(&ctx);
15680         }
15681
15682         if (!ret)
15683                 ret = __intel_display_resume(dev, state, &ctx);
15684
15685         drm_modeset_drop_locks(&ctx);
15686         drm_modeset_acquire_fini(&ctx);
15687
15688         if (ret)
15689                 DRM_ERROR("Restoring old state failed with %i\n", ret);
15690         if (state)
15691                 drm_atomic_state_put(state);
15692 }
15693
15694 void intel_modeset_gem_init(struct drm_device *dev)
15695 {
15696         struct drm_i915_private *dev_priv = to_i915(dev);
15697
15698         intel_init_gt_powersave(dev_priv);
15699
15700         intel_setup_overlay(dev_priv);
15701 }
15702
15703 int intel_connector_register(struct drm_connector *connector)
15704 {
15705         struct intel_connector *intel_connector = to_intel_connector(connector);
15706         int ret;
15707
15708         ret = intel_backlight_device_register(intel_connector);
15709         if (ret)
15710                 goto err;
15711
15712         return 0;
15713
15714 err:
15715         return ret;
15716 }
15717
15718 void intel_connector_unregister(struct drm_connector *connector)
15719 {
15720         struct intel_connector *intel_connector = to_intel_connector(connector);
15721
15722         intel_backlight_device_unregister(intel_connector);
15723         intel_panel_destroy_backlight(connector);
15724 }
15725
15726 void intel_modeset_cleanup(struct drm_device *dev)
15727 {
15728         struct drm_i915_private *dev_priv = to_i915(dev);
15729
15730         flush_work(&dev_priv->atomic_helper.free_work);
15731         WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15732
15733         intel_disable_gt_powersave(dev_priv);
15734
15735         /*
15736          * Interrupts and polling as the first thing to avoid creating havoc.
15737          * Too much stuff here (turning of connectors, ...) would
15738          * experience fancy races otherwise.
15739          */
15740         intel_irq_uninstall(dev_priv);
15741
15742         /*
15743          * Due to the hpd irq storm handling the hotplug work can re-arm the
15744          * poll handlers. Hence disable polling after hpd handling is shut down.
15745          */
15746         drm_kms_helper_poll_fini(dev);
15747
15748         intel_unregister_dsm_handler();
15749
15750         intel_fbc_global_disable(dev_priv);
15751
15752         /* flush any delayed tasks or pending work */
15753         flush_scheduled_work();
15754
15755         drm_mode_config_cleanup(dev);
15756
15757         intel_cleanup_overlay(dev_priv);
15758
15759         intel_cleanup_gt_powersave(dev_priv);
15760
15761         intel_teardown_gmbus(dev_priv);
15762 }
15763
15764 void intel_connector_attach_encoder(struct intel_connector *connector,
15765                                     struct intel_encoder *encoder)
15766 {
15767         connector->encoder = encoder;
15768         drm_mode_connector_attach_encoder(&connector->base,
15769                                           &encoder->base);
15770 }
15771
15772 /*
15773  * set vga decode state - true == enable VGA decode
15774  */
15775 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15776 {
15777         unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15778         u16 gmch_ctrl;
15779
15780         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15781                 DRM_ERROR("failed to read control word\n");
15782                 return -EIO;
15783         }
15784
15785         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15786                 return 0;
15787
15788         if (state)
15789                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15790         else
15791                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15792
15793         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15794                 DRM_ERROR("failed to write control word\n");
15795                 return -EIO;
15796         }
15797
15798         return 0;
15799 }
15800
15801 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15802
15803 struct intel_display_error_state {
15804
15805         u32 power_well_driver;
15806
15807         int num_transcoders;
15808
15809         struct intel_cursor_error_state {
15810                 u32 control;
15811                 u32 position;
15812                 u32 base;
15813                 u32 size;
15814         } cursor[I915_MAX_PIPES];
15815
15816         struct intel_pipe_error_state {
15817                 bool power_domain_on;
15818                 u32 source;
15819                 u32 stat;
15820         } pipe[I915_MAX_PIPES];
15821
15822         struct intel_plane_error_state {
15823                 u32 control;
15824                 u32 stride;
15825                 u32 size;
15826                 u32 pos;
15827                 u32 addr;
15828                 u32 surface;
15829                 u32 tile_offset;
15830         } plane[I915_MAX_PIPES];
15831
15832         struct intel_transcoder_error_state {
15833                 bool power_domain_on;
15834                 enum transcoder cpu_transcoder;
15835
15836                 u32 conf;
15837
15838                 u32 htotal;
15839                 u32 hblank;
15840                 u32 hsync;
15841                 u32 vtotal;
15842                 u32 vblank;
15843                 u32 vsync;
15844         } transcoder[4];
15845 };
15846
15847 struct intel_display_error_state *
15848 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15849 {
15850         struct intel_display_error_state *error;
15851         int transcoders[] = {
15852                 TRANSCODER_A,
15853                 TRANSCODER_B,
15854                 TRANSCODER_C,
15855                 TRANSCODER_EDP,
15856         };
15857         int i;
15858
15859         if (INTEL_INFO(dev_priv)->num_pipes == 0)
15860                 return NULL;
15861
15862         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15863         if (error == NULL)
15864                 return NULL;
15865
15866         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15867                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15868
15869         for_each_pipe(dev_priv, i) {
15870                 error->pipe[i].power_domain_on =
15871                         __intel_display_power_is_enabled(dev_priv,
15872                                                          POWER_DOMAIN_PIPE(i));
15873                 if (!error->pipe[i].power_domain_on)
15874                         continue;
15875
15876                 error->cursor[i].control = I915_READ(CURCNTR(i));
15877                 error->cursor[i].position = I915_READ(CURPOS(i));
15878                 error->cursor[i].base = I915_READ(CURBASE(i));
15879
15880                 error->plane[i].control = I915_READ(DSPCNTR(i));
15881                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15882                 if (INTEL_GEN(dev_priv) <= 3) {
15883                         error->plane[i].size = I915_READ(DSPSIZE(i));
15884                         error->plane[i].pos = I915_READ(DSPPOS(i));
15885                 }
15886                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15887                         error->plane[i].addr = I915_READ(DSPADDR(i));
15888                 if (INTEL_GEN(dev_priv) >= 4) {
15889                         error->plane[i].surface = I915_READ(DSPSURF(i));
15890                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15891                 }
15892
15893                 error->pipe[i].source = I915_READ(PIPESRC(i));
15894
15895                 if (HAS_GMCH_DISPLAY(dev_priv))
15896                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15897         }
15898
15899         /* Note: this does not include DSI transcoders. */
15900         error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15901         if (HAS_DDI(dev_priv))
15902                 error->num_transcoders++; /* Account for eDP. */
15903
15904         for (i = 0; i < error->num_transcoders; i++) {
15905                 enum transcoder cpu_transcoder = transcoders[i];
15906
15907                 error->transcoder[i].power_domain_on =
15908                         __intel_display_power_is_enabled(dev_priv,
15909                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15910                 if (!error->transcoder[i].power_domain_on)
15911                         continue;
15912
15913                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15914
15915                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15916                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15917                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15918                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15919                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15920                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15921                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15922         }
15923
15924         return error;
15925 }
15926
15927 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15928
15929 void
15930 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15931                                 struct intel_display_error_state *error)
15932 {
15933         struct drm_i915_private *dev_priv = m->i915;
15934         int i;
15935
15936         if (!error)
15937                 return;
15938
15939         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15940         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15941                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15942                            error->power_well_driver);
15943         for_each_pipe(dev_priv, i) {
15944                 err_printf(m, "Pipe [%d]:\n", i);
15945                 err_printf(m, "  Power: %s\n",
15946                            onoff(error->pipe[i].power_domain_on));
15947                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15948                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15949
15950                 err_printf(m, "Plane [%d]:\n", i);
15951                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15952                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15953                 if (INTEL_GEN(dev_priv) <= 3) {
15954                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15955                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15956                 }
15957                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15958                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15959                 if (INTEL_GEN(dev_priv) >= 4) {
15960                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15961                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15962                 }
15963
15964                 err_printf(m, "Cursor [%d]:\n", i);
15965                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15966                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15967                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15968         }
15969
15970         for (i = 0; i < error->num_transcoders; i++) {
15971                 err_printf(m, "CPU transcoder: %s\n",
15972                            transcoder_name(error->transcoder[i].cpu_transcoder));
15973                 err_printf(m, "  Power: %s\n",
15974                            onoff(error->transcoder[i].power_domain_on));
15975                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15976                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15977                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15978                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15979                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15980                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15981                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15982         }
15983 }
15984
15985 #endif