Merge branches 'misc', 'vdso' and 'fixes' into for-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_dp_helper.h>
42 #include <drm/drm_crtc_helper.h>
43 #include <drm/drm_plane_helper.h>
44 #include <drm/drm_rect.h>
45 #include <linux/dma_remapping.h>
46
47 /* Primary plane formats supported by all gen */
48 #define COMMON_PRIMARY_FORMATS \
49         DRM_FORMAT_C8, \
50         DRM_FORMAT_RGB565, \
51         DRM_FORMAT_XRGB8888, \
52         DRM_FORMAT_ARGB8888
53
54 /* Primary plane formats for gen <= 3 */
55 static const uint32_t intel_primary_formats_gen2[] = {
56         COMMON_PRIMARY_FORMATS,
57         DRM_FORMAT_XRGB1555,
58         DRM_FORMAT_ARGB1555,
59 };
60
61 /* Primary plane formats for gen >= 4 */
62 static const uint32_t intel_primary_formats_gen4[] = {
63         COMMON_PRIMARY_FORMATS, \
64         DRM_FORMAT_XBGR8888,
65         DRM_FORMAT_ABGR8888,
66         DRM_FORMAT_XRGB2101010,
67         DRM_FORMAT_ARGB2101010,
68         DRM_FORMAT_XBGR2101010,
69         DRM_FORMAT_ABGR2101010,
70 };
71
72 /* Cursor formats */
73 static const uint32_t intel_cursor_formats[] = {
74         DRM_FORMAT_ARGB8888,
75 };
76
77 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
78
79 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80                                 struct intel_crtc_state *pipe_config);
81 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82                                    struct intel_crtc_state *pipe_config);
83
84 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85                           int x, int y, struct drm_framebuffer *old_fb);
86 static int intel_framebuffer_init(struct drm_device *dev,
87                                   struct intel_framebuffer *ifb,
88                                   struct drm_mode_fb_cmd2 *mode_cmd,
89                                   struct drm_i915_gem_object *obj);
90 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93                                          struct intel_link_m_n *m_n,
94                                          struct intel_link_m_n *m2_n2);
95 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96 static void haswell_set_pipeconf(struct drm_crtc *crtc);
97 static void intel_set_pipe_csc(struct drm_crtc *crtc);
98 static void vlv_prepare_pll(struct intel_crtc *crtc,
99                             const struct intel_crtc_state *pipe_config);
100 static void chv_prepare_pll(struct intel_crtc *crtc,
101                             const struct intel_crtc_state *pipe_config);
102 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107         if (!connector->mst_port)
108                 return connector->encoder;
109         else
110                 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4860000, .max = 6700000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403         clock->m = clock->m1 * clock->m2;
404         clock->p = clock->p1 * clock->p2;
405         if (WARN_ON(clock->n == 0 || clock->p == 0))
406                 return;
407         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412  * Returns whether any output on the specified pipe is of the specified type
413  */
414 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
415 {
416         struct drm_device *dev = crtc->base.dev;
417         struct intel_encoder *encoder;
418
419         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420                 if (encoder->type == type)
421                         return true;
422
423         return false;
424 }
425
426 /**
427  * Returns whether any output on the specified pipe will have the specified
428  * type after a staged modeset is complete, i.e., the same as
429  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430  * encoder->crtc.
431  */
432 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433 {
434         struct drm_device *dev = crtc->base.dev;
435         struct intel_encoder *encoder;
436
437         for_each_intel_encoder(dev, encoder)
438                 if (encoder->new_crtc == crtc && encoder->type == type)
439                         return true;
440
441         return false;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445                                                 int refclk)
446 {
447         struct drm_device *dev = crtc->base.dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev)) {
452                         if (refclk == 100000)
453                                 limit = &intel_limits_ironlake_dual_lvds_100m;
454                         else
455                                 limit = &intel_limits_ironlake_dual_lvds;
456                 } else {
457                         if (refclk == 100000)
458                                 limit = &intel_limits_ironlake_single_lvds_100m;
459                         else
460                                 limit = &intel_limits_ironlake_single_lvds;
461                 }
462         } else
463                 limit = &intel_limits_ironlake_dac;
464
465         return limit;
466 }
467
468 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
469 {
470         struct drm_device *dev = crtc->base.dev;
471         const intel_limit_t *limit;
472
473         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474                 if (intel_is_dual_link_lvds(dev))
475                         limit = &intel_limits_g4x_dual_channel_lvds;
476                 else
477                         limit = &intel_limits_g4x_single_channel_lvds;
478         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479                    intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480                 limit = &intel_limits_g4x_hdmi;
481         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482                 limit = &intel_limits_g4x_sdvo;
483         } else /* The option is for other outputs */
484                 limit = &intel_limits_i9xx_sdvo;
485
486         return limit;
487 }
488
489 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
490 {
491         struct drm_device *dev = crtc->base.dev;
492         const intel_limit_t *limit;
493
494         if (HAS_PCH_SPLIT(dev))
495                 limit = intel_ironlake_limit(crtc, refclk);
496         else if (IS_G4X(dev)) {
497                 limit = intel_g4x_limit(crtc);
498         } else if (IS_PINEVIEW(dev)) {
499                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500                         limit = &intel_limits_pineview_lvds;
501                 else
502                         limit = &intel_limits_pineview_sdvo;
503         } else if (IS_CHERRYVIEW(dev)) {
504                 limit = &intel_limits_chv;
505         } else if (IS_VALLEYVIEW(dev)) {
506                 limit = &intel_limits_vlv;
507         } else if (!IS_GEN2(dev)) {
508                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509                         limit = &intel_limits_i9xx_lvds;
510                 else
511                         limit = &intel_limits_i9xx_sdvo;
512         } else {
513                 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514                         limit = &intel_limits_i8xx_lvds;
515                 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516                         limit = &intel_limits_i8xx_dvo;
517                 else
518                         limit = &intel_limits_i8xx_dac;
519         }
520         return limit;
521 }
522
523 /* m1 is reserved as 0 in Pineview, n is a ring counter */
524 static void pineview_clock(int refclk, intel_clock_t *clock)
525 {
526         clock->m = clock->m2 + 2;
527         clock->p = clock->p1 * clock->p2;
528         if (WARN_ON(clock->n == 0 || clock->p == 0))
529                 return;
530         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
532 }
533
534 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535 {
536         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537 }
538
539 static void i9xx_clock(int refclk, intel_clock_t *clock)
540 {
541         clock->m = i9xx_dpll_compute_m(clock);
542         clock->p = clock->p1 * clock->p2;
543         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544                 return;
545         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
547 }
548
549 static void chv_clock(int refclk, intel_clock_t *clock)
550 {
551         clock->m = clock->m1 * clock->m2;
552         clock->p = clock->p1 * clock->p2;
553         if (WARN_ON(clock->n == 0 || clock->p == 0))
554                 return;
555         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556                         clock->n << 22);
557         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 }
559
560 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
561 /**
562  * Returns whether the given set of divisors are valid for a given refclk with
563  * the given connectors.
564  */
565
566 static bool intel_PLL_is_valid(struct drm_device *dev,
567                                const intel_limit_t *limit,
568                                const intel_clock_t *clock)
569 {
570         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
571                 INTELPllInvalid("n out of range\n");
572         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
573                 INTELPllInvalid("p1 out of range\n");
574         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
575                 INTELPllInvalid("m2 out of range\n");
576         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
577                 INTELPllInvalid("m1 out of range\n");
578
579         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580                 if (clock->m1 <= clock->m2)
581                         INTELPllInvalid("m1 <= m2\n");
582
583         if (!IS_VALLEYVIEW(dev)) {
584                 if (clock->p < limit->p.min || limit->p.max < clock->p)
585                         INTELPllInvalid("p out of range\n");
586                 if (clock->m < limit->m.min || limit->m.max < clock->m)
587                         INTELPllInvalid("m out of range\n");
588         }
589
590         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591                 INTELPllInvalid("vco out of range\n");
592         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593          * connector, etc., rather than just a single range.
594          */
595         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596                 INTELPllInvalid("dot out of range\n");
597
598         return true;
599 }
600
601 static bool
602 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603                     int target, int refclk, intel_clock_t *match_clock,
604                     intel_clock_t *best_clock)
605 {
606         struct drm_device *dev = crtc->base.dev;
607         intel_clock_t clock;
608         int err = target;
609
610         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
611                 /*
612                  * For LVDS just rely on its current settings for dual-channel.
613                  * We haven't figured out how to reliably set up different
614                  * single/dual channel state, if we even can.
615                  */
616                 if (intel_is_dual_link_lvds(dev))
617                         clock.p2 = limit->p2.p2_fast;
618                 else
619                         clock.p2 = limit->p2.p2_slow;
620         } else {
621                 if (target < limit->p2.dot_limit)
622                         clock.p2 = limit->p2.p2_slow;
623                 else
624                         clock.p2 = limit->p2.p2_fast;
625         }
626
627         memset(best_clock, 0, sizeof(*best_clock));
628
629         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630              clock.m1++) {
631                 for (clock.m2 = limit->m2.min;
632                      clock.m2 <= limit->m2.max; clock.m2++) {
633                         if (clock.m2 >= clock.m1)
634                                 break;
635                         for (clock.n = limit->n.min;
636                              clock.n <= limit->n.max; clock.n++) {
637                                 for (clock.p1 = limit->p1.min;
638                                         clock.p1 <= limit->p1.max; clock.p1++) {
639                                         int this_err;
640
641                                         i9xx_clock(refclk, &clock);
642                                         if (!intel_PLL_is_valid(dev, limit,
643                                                                 &clock))
644                                                 continue;
645                                         if (match_clock &&
646                                             clock.p != match_clock->p)
647                                                 continue;
648
649                                         this_err = abs(clock.dot - target);
650                                         if (this_err < err) {
651                                                 *best_clock = clock;
652                                                 err = this_err;
653                                         }
654                                 }
655                         }
656                 }
657         }
658
659         return (err != target);
660 }
661
662 static bool
663 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664                    int target, int refclk, intel_clock_t *match_clock,
665                    intel_clock_t *best_clock)
666 {
667         struct drm_device *dev = crtc->base.dev;
668         intel_clock_t clock;
669         int err = target;
670
671         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
672                 /*
673                  * For LVDS just rely on its current settings for dual-channel.
674                  * We haven't figured out how to reliably set up different
675                  * single/dual channel state, if we even can.
676                  */
677                 if (intel_is_dual_link_lvds(dev))
678                         clock.p2 = limit->p2.p2_fast;
679                 else
680                         clock.p2 = limit->p2.p2_slow;
681         } else {
682                 if (target < limit->p2.dot_limit)
683                         clock.p2 = limit->p2.p2_slow;
684                 else
685                         clock.p2 = limit->p2.p2_fast;
686         }
687
688         memset(best_clock, 0, sizeof(*best_clock));
689
690         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691              clock.m1++) {
692                 for (clock.m2 = limit->m2.min;
693                      clock.m2 <= limit->m2.max; clock.m2++) {
694                         for (clock.n = limit->n.min;
695                              clock.n <= limit->n.max; clock.n++) {
696                                 for (clock.p1 = limit->p1.min;
697                                         clock.p1 <= limit->p1.max; clock.p1++) {
698                                         int this_err;
699
700                                         pineview_clock(refclk, &clock);
701                                         if (!intel_PLL_is_valid(dev, limit,
702                                                                 &clock))
703                                                 continue;
704                                         if (match_clock &&
705                                             clock.p != match_clock->p)
706                                                 continue;
707
708                                         this_err = abs(clock.dot - target);
709                                         if (this_err < err) {
710                                                 *best_clock = clock;
711                                                 err = this_err;
712                                         }
713                                 }
714                         }
715                 }
716         }
717
718         return (err != target);
719 }
720
721 static bool
722 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723                    int target, int refclk, intel_clock_t *match_clock,
724                    intel_clock_t *best_clock)
725 {
726         struct drm_device *dev = crtc->base.dev;
727         intel_clock_t clock;
728         int max_n;
729         bool found;
730         /* approximately equals target * 0.00585 */
731         int err_most = (target >> 8) + (target >> 9);
732         found = false;
733
734         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735                 if (intel_is_dual_link_lvds(dev))
736                         clock.p2 = limit->p2.p2_fast;
737                 else
738                         clock.p2 = limit->p2.p2_slow;
739         } else {
740                 if (target < limit->p2.dot_limit)
741                         clock.p2 = limit->p2.p2_slow;
742                 else
743                         clock.p2 = limit->p2.p2_fast;
744         }
745
746         memset(best_clock, 0, sizeof(*best_clock));
747         max_n = limit->n.max;
748         /* based on hardware requirement, prefer smaller n to precision */
749         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750                 /* based on hardware requirement, prefere larger m1,m2 */
751                 for (clock.m1 = limit->m1.max;
752                      clock.m1 >= limit->m1.min; clock.m1--) {
753                         for (clock.m2 = limit->m2.max;
754                              clock.m2 >= limit->m2.min; clock.m2--) {
755                                 for (clock.p1 = limit->p1.max;
756                                      clock.p1 >= limit->p1.min; clock.p1--) {
757                                         int this_err;
758
759                                         i9xx_clock(refclk, &clock);
760                                         if (!intel_PLL_is_valid(dev, limit,
761                                                                 &clock))
762                                                 continue;
763
764                                         this_err = abs(clock.dot - target);
765                                         if (this_err < err_most) {
766                                                 *best_clock = clock;
767                                                 err_most = this_err;
768                                                 max_n = clock.n;
769                                                 found = true;
770                                         }
771                                 }
772                         }
773                 }
774         }
775         return found;
776 }
777
778 static bool
779 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780                    int target, int refclk, intel_clock_t *match_clock,
781                    intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->base.dev;
784         intel_clock_t clock;
785         unsigned int bestppm = 1000000;
786         /* min update 19.2 MHz */
787         int max_n = min(limit->n.max, refclk / 19200);
788         bool found = false;
789
790         target *= 5; /* fast clock */
791
792         memset(best_clock, 0, sizeof(*best_clock));
793
794         /* based on hardware requirement, prefer smaller n to precision */
795         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799                                 clock.p = clock.p1 * clock.p2;
800                                 /* based on hardware requirement, prefer bigger m1,m2 values */
801                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802                                         unsigned int ppm, diff;
803
804                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805                                                                      refclk * clock.m1);
806
807                                         vlv_clock(refclk, &clock);
808
809                                         if (!intel_PLL_is_valid(dev, limit,
810                                                                 &clock))
811                                                 continue;
812
813                                         diff = abs(clock.dot - target);
814                                         ppm = div_u64(1000000ULL * diff, target);
815
816                                         if (ppm < 100 && clock.p > best_clock->p) {
817                                                 bestppm = 0;
818                                                 *best_clock = clock;
819                                                 found = true;
820                                         }
821
822                                         if (bestppm >= 10 && ppm < bestppm - 10) {
823                                                 bestppm = ppm;
824                                                 *best_clock = clock;
825                                                 found = true;
826                                         }
827                                 }
828                         }
829                 }
830         }
831
832         return found;
833 }
834
835 static bool
836 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837                    int target, int refclk, intel_clock_t *match_clock,
838                    intel_clock_t *best_clock)
839 {
840         struct drm_device *dev = crtc->base.dev;
841         intel_clock_t clock;
842         uint64_t m2;
843         int found = false;
844
845         memset(best_clock, 0, sizeof(*best_clock));
846
847         /*
848          * Based on hardware doc, the n always set to 1, and m1 always
849          * set to 2.  If requires to support 200Mhz refclk, we need to
850          * revisit this because n may not 1 anymore.
851          */
852         clock.n = 1, clock.m1 = 2;
853         target *= 5;    /* fast clock */
854
855         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856                 for (clock.p2 = limit->p2.p2_fast;
857                                 clock.p2 >= limit->p2.p2_slow;
858                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860                         clock.p = clock.p1 * clock.p2;
861
862                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863                                         clock.n) << 22, refclk * clock.m1);
864
865                         if (m2 > INT_MAX/clock.m1)
866                                 continue;
867
868                         clock.m2 = m2;
869
870                         chv_clock(refclk, &clock);
871
872                         if (!intel_PLL_is_valid(dev, limit, &clock))
873                                 continue;
874
875                         /* based on hardware requirement, prefer bigger p
876                          */
877                         if (clock.p > best_clock->p) {
878                                 *best_clock = clock;
879                                 found = true;
880                         }
881                 }
882         }
883
884         return found;
885 }
886
887 bool intel_crtc_active(struct drm_crtc *crtc)
888 {
889         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891         /* Be paranoid as we can arrive here with only partial
892          * state retrieved from the hardware during setup.
893          *
894          * We can ditch the adjusted_mode.crtc_clock check as soon
895          * as Haswell has gained clock readout/fastboot support.
896          *
897          * We can ditch the crtc->primary->fb check as soon as we can
898          * properly reconstruct framebuffers.
899          */
900         return intel_crtc->active && crtc->primary->fb &&
901                 intel_crtc->config->base.adjusted_mode.crtc_clock;
902 }
903
904 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905                                              enum pipe pipe)
906 {
907         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
910         return intel_crtc->config->cpu_transcoder;
911 }
912
913 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914 {
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         u32 reg = PIPEDSL(pipe);
917         u32 line1, line2;
918         u32 line_mask;
919
920         if (IS_GEN2(dev))
921                 line_mask = DSL_LINEMASK_GEN2;
922         else
923                 line_mask = DSL_LINEMASK_GEN3;
924
925         line1 = I915_READ(reg) & line_mask;
926         mdelay(5);
927         line2 = I915_READ(reg) & line_mask;
928
929         return line1 == line2;
930 }
931
932 /*
933  * intel_wait_for_pipe_off - wait for pipe to turn off
934  * @crtc: crtc whose pipe to wait for
935  *
936  * After disabling a pipe, we can't wait for vblank in the usual way,
937  * spinning on the vblank interrupt status bit, since we won't actually
938  * see an interrupt when the pipe is disabled.
939  *
940  * On Gen4 and above:
941  *   wait for the pipe register state bit to turn off
942  *
943  * Otherwise:
944  *   wait for the display line value to settle (it usually
945  *   ends up stopping at the start of the next frame).
946  *
947  */
948 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
949 {
950         struct drm_device *dev = crtc->base.dev;
951         struct drm_i915_private *dev_priv = dev->dev_private;
952         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
953         enum pipe pipe = crtc->pipe;
954
955         if (INTEL_INFO(dev)->gen >= 4) {
956                 int reg = PIPECONF(cpu_transcoder);
957
958                 /* Wait for the Pipe State to go off */
959                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960                              100))
961                         WARN(1, "pipe_off wait timed out\n");
962         } else {
963                 /* Wait for the display line to settle */
964                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
965                         WARN(1, "pipe_off wait timed out\n");
966         }
967 }
968
969 /*
970  * ibx_digital_port_connected - is the specified port connected?
971  * @dev_priv: i915 private structure
972  * @port: the port to test
973  *
974  * Returns true if @port is connected, false otherwise.
975  */
976 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977                                 struct intel_digital_port *port)
978 {
979         u32 bit;
980
981         if (HAS_PCH_IBX(dev_priv->dev)) {
982                 switch (port->port) {
983                 case PORT_B:
984                         bit = SDE_PORTB_HOTPLUG;
985                         break;
986                 case PORT_C:
987                         bit = SDE_PORTC_HOTPLUG;
988                         break;
989                 case PORT_D:
990                         bit = SDE_PORTD_HOTPLUG;
991                         break;
992                 default:
993                         return true;
994                 }
995         } else {
996                 switch (port->port) {
997                 case PORT_B:
998                         bit = SDE_PORTB_HOTPLUG_CPT;
999                         break;
1000                 case PORT_C:
1001                         bit = SDE_PORTC_HOTPLUG_CPT;
1002                         break;
1003                 case PORT_D:
1004                         bit = SDE_PORTD_HOTPLUG_CPT;
1005                         break;
1006                 default:
1007                         return true;
1008                 }
1009         }
1010
1011         return I915_READ(SDEISR) & bit;
1012 }
1013
1014 static const char *state_string(bool enabled)
1015 {
1016         return enabled ? "on" : "off";
1017 }
1018
1019 /* Only for pre-ILK configs */
1020 void assert_pll(struct drm_i915_private *dev_priv,
1021                 enum pipe pipe, bool state)
1022 {
1023         int reg;
1024         u32 val;
1025         bool cur_state;
1026
1027         reg = DPLL(pipe);
1028         val = I915_READ(reg);
1029         cur_state = !!(val & DPLL_VCO_ENABLE);
1030         I915_STATE_WARN(cur_state != state,
1031              "PLL state assertion failure (expected %s, current %s)\n",
1032              state_string(state), state_string(cur_state));
1033 }
1034
1035 /* XXX: the dsi pll is shared between MIPI DSI ports */
1036 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037 {
1038         u32 val;
1039         bool cur_state;
1040
1041         mutex_lock(&dev_priv->dpio_lock);
1042         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043         mutex_unlock(&dev_priv->dpio_lock);
1044
1045         cur_state = val & DSI_PLL_VCO_EN;
1046         I915_STATE_WARN(cur_state != state,
1047              "DSI PLL state assertion failure (expected %s, current %s)\n",
1048              state_string(state), state_string(cur_state));
1049 }
1050 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
1053 struct intel_shared_dpll *
1054 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055 {
1056         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
1058         if (crtc->config->shared_dpll < 0)
1059                 return NULL;
1060
1061         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1062 }
1063
1064 /* For ILK+ */
1065 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066                         struct intel_shared_dpll *pll,
1067                         bool state)
1068 {
1069         bool cur_state;
1070         struct intel_dpll_hw_state hw_state;
1071
1072         if (WARN (!pll,
1073                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1074                 return;
1075
1076         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1077         I915_STATE_WARN(cur_state != state,
1078              "%s assertion failure (expected %s, current %s)\n",
1079              pll->name, state_string(state), state_string(cur_state));
1080 }
1081
1082 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083                           enum pipe pipe, bool state)
1084 {
1085         int reg;
1086         u32 val;
1087         bool cur_state;
1088         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089                                                                       pipe);
1090
1091         if (HAS_DDI(dev_priv->dev)) {
1092                 /* DDI does not have a specific FDI_TX register */
1093                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1094                 val = I915_READ(reg);
1095                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1096         } else {
1097                 reg = FDI_TX_CTL(pipe);
1098                 val = I915_READ(reg);
1099                 cur_state = !!(val & FDI_TX_ENABLE);
1100         }
1101         I915_STATE_WARN(cur_state != state,
1102              "FDI TX state assertion failure (expected %s, current %s)\n",
1103              state_string(state), state_string(cur_state));
1104 }
1105 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109                           enum pipe pipe, bool state)
1110 {
1111         int reg;
1112         u32 val;
1113         bool cur_state;
1114
1115         reg = FDI_RX_CTL(pipe);
1116         val = I915_READ(reg);
1117         cur_state = !!(val & FDI_RX_ENABLE);
1118         I915_STATE_WARN(cur_state != state,
1119              "FDI RX state assertion failure (expected %s, current %s)\n",
1120              state_string(state), state_string(cur_state));
1121 }
1122 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126                                       enum pipe pipe)
1127 {
1128         int reg;
1129         u32 val;
1130
1131         /* ILK FDI PLL is always enabled */
1132         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1133                 return;
1134
1135         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1136         if (HAS_DDI(dev_priv->dev))
1137                 return;
1138
1139         reg = FDI_TX_CTL(pipe);
1140         val = I915_READ(reg);
1141         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1142 }
1143
1144 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145                        enum pipe pipe, bool state)
1146 {
1147         int reg;
1148         u32 val;
1149         bool cur_state;
1150
1151         reg = FDI_RX_CTL(pipe);
1152         val = I915_READ(reg);
1153         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1154         I915_STATE_WARN(cur_state != state,
1155              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156              state_string(state), state_string(cur_state));
1157 }
1158
1159 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160                            enum pipe pipe)
1161 {
1162         struct drm_device *dev = dev_priv->dev;
1163         int pp_reg;
1164         u32 val;
1165         enum pipe panel_pipe = PIPE_A;
1166         bool locked = true;
1167
1168         if (WARN_ON(HAS_DDI(dev)))
1169                 return;
1170
1171         if (HAS_PCH_SPLIT(dev)) {
1172                 u32 port_sel;
1173
1174                 pp_reg = PCH_PP_CONTROL;
1175                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179                         panel_pipe = PIPE_B;
1180                 /* XXX: else fix for eDP */
1181         } else if (IS_VALLEYVIEW(dev)) {
1182                 /* presumably write lock depends on pipe, not port select */
1183                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184                 panel_pipe = pipe;
1185         } else {
1186                 pp_reg = PP_CONTROL;
1187                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188                         panel_pipe = PIPE_B;
1189         }
1190
1191         val = I915_READ(pp_reg);
1192         if (!(val & PANEL_POWER_ON) ||
1193             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1194                 locked = false;
1195
1196         I915_STATE_WARN(panel_pipe == pipe && locked,
1197              "panel assertion failure, pipe %c regs locked\n",
1198              pipe_name(pipe));
1199 }
1200
1201 static void assert_cursor(struct drm_i915_private *dev_priv,
1202                           enum pipe pipe, bool state)
1203 {
1204         struct drm_device *dev = dev_priv->dev;
1205         bool cur_state;
1206
1207         if (IS_845G(dev) || IS_I865G(dev))
1208                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1209         else
1210                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1211
1212         I915_STATE_WARN(cur_state != state,
1213              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214              pipe_name(pipe), state_string(state), state_string(cur_state));
1215 }
1216 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
1219 void assert_pipe(struct drm_i915_private *dev_priv,
1220                  enum pipe pipe, bool state)
1221 {
1222         int reg;
1223         u32 val;
1224         bool cur_state;
1225         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226                                                                       pipe);
1227
1228         /* if we need the pipe quirk it must be always on */
1229         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1231                 state = true;
1232
1233         if (!intel_display_power_is_enabled(dev_priv,
1234                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1235                 cur_state = false;
1236         } else {
1237                 reg = PIPECONF(cpu_transcoder);
1238                 val = I915_READ(reg);
1239                 cur_state = !!(val & PIPECONF_ENABLE);
1240         }
1241
1242         I915_STATE_WARN(cur_state != state,
1243              "pipe %c assertion failure (expected %s, current %s)\n",
1244              pipe_name(pipe), state_string(state), state_string(cur_state));
1245 }
1246
1247 static void assert_plane(struct drm_i915_private *dev_priv,
1248                          enum plane plane, bool state)
1249 {
1250         int reg;
1251         u32 val;
1252         bool cur_state;
1253
1254         reg = DSPCNTR(plane);
1255         val = I915_READ(reg);
1256         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1257         I915_STATE_WARN(cur_state != state,
1258              "plane %c assertion failure (expected %s, current %s)\n",
1259              plane_name(plane), state_string(state), state_string(cur_state));
1260 }
1261
1262 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
1265 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266                                    enum pipe pipe)
1267 {
1268         struct drm_device *dev = dev_priv->dev;
1269         int reg, i;
1270         u32 val;
1271         int cur_pipe;
1272
1273         /* Primary planes are fixed to pipes on gen4+ */
1274         if (INTEL_INFO(dev)->gen >= 4) {
1275                 reg = DSPCNTR(pipe);
1276                 val = I915_READ(reg);
1277                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1278                      "plane %c assertion failure, should be disabled but not\n",
1279                      plane_name(pipe));
1280                 return;
1281         }
1282
1283         /* Need to check both planes against the pipe */
1284         for_each_pipe(dev_priv, i) {
1285                 reg = DSPCNTR(i);
1286                 val = I915_READ(reg);
1287                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288                         DISPPLANE_SEL_PIPE_SHIFT;
1289                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1290                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291                      plane_name(i), pipe_name(pipe));
1292         }
1293 }
1294
1295 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296                                     enum pipe pipe)
1297 {
1298         struct drm_device *dev = dev_priv->dev;
1299         int reg, sprite;
1300         u32 val;
1301
1302         if (INTEL_INFO(dev)->gen >= 9) {
1303                 for_each_sprite(pipe, sprite) {
1304                         val = I915_READ(PLANE_CTL(pipe, sprite));
1305                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1306                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307                              sprite, pipe_name(pipe));
1308                 }
1309         } else if (IS_VALLEYVIEW(dev)) {
1310                 for_each_sprite(pipe, sprite) {
1311                         reg = SPCNTR(pipe, sprite);
1312                         val = I915_READ(reg);
1313                         I915_STATE_WARN(val & SP_ENABLE,
1314                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1315                              sprite_name(pipe, sprite), pipe_name(pipe));
1316                 }
1317         } else if (INTEL_INFO(dev)->gen >= 7) {
1318                 reg = SPRCTL(pipe);
1319                 val = I915_READ(reg);
1320                 I915_STATE_WARN(val & SPRITE_ENABLE,
1321                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1322                      plane_name(pipe), pipe_name(pipe));
1323         } else if (INTEL_INFO(dev)->gen >= 5) {
1324                 reg = DVSCNTR(pipe);
1325                 val = I915_READ(reg);
1326                 I915_STATE_WARN(val & DVS_ENABLE,
1327                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1328                      plane_name(pipe), pipe_name(pipe));
1329         }
1330 }
1331
1332 static void assert_vblank_disabled(struct drm_crtc *crtc)
1333 {
1334         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1335                 drm_crtc_vblank_put(crtc);
1336 }
1337
1338 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1339 {
1340         u32 val;
1341         bool enabled;
1342
1343         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1344
1345         val = I915_READ(PCH_DREF_CONTROL);
1346         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347                             DREF_SUPERSPREAD_SOURCE_MASK));
1348         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1349 }
1350
1351 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352                                            enum pipe pipe)
1353 {
1354         int reg;
1355         u32 val;
1356         bool enabled;
1357
1358         reg = PCH_TRANSCONF(pipe);
1359         val = I915_READ(reg);
1360         enabled = !!(val & TRANS_ENABLE);
1361         I915_STATE_WARN(enabled,
1362              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363              pipe_name(pipe));
1364 }
1365
1366 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367                             enum pipe pipe, u32 port_sel, u32 val)
1368 {
1369         if ((val & DP_PORT_EN) == 0)
1370                 return false;
1371
1372         if (HAS_PCH_CPT(dev_priv->dev)) {
1373                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376                         return false;
1377         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388                               enum pipe pipe, u32 val)
1389 {
1390         if ((val & SDVO_ENABLE) == 0)
1391                 return false;
1392
1393         if (HAS_PCH_CPT(dev_priv->dev)) {
1394                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395                         return false;
1396         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398                         return false;
1399         } else {
1400                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401                         return false;
1402         }
1403         return true;
1404 }
1405
1406 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407                               enum pipe pipe, u32 val)
1408 {
1409         if ((val & LVDS_PORT_EN) == 0)
1410                 return false;
1411
1412         if (HAS_PCH_CPT(dev_priv->dev)) {
1413                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414                         return false;
1415         } else {
1416                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417                         return false;
1418         }
1419         return true;
1420 }
1421
1422 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423                               enum pipe pipe, u32 val)
1424 {
1425         if ((val & ADPA_DAC_ENABLE) == 0)
1426                 return false;
1427         if (HAS_PCH_CPT(dev_priv->dev)) {
1428                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429                         return false;
1430         } else {
1431                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432                         return false;
1433         }
1434         return true;
1435 }
1436
1437 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438                                    enum pipe pipe, int reg, u32 port_sel)
1439 {
1440         u32 val = I915_READ(reg);
1441         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1442              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1443              reg, pipe_name(pipe));
1444
1445         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1446              && (val & DP_PIPEB_SELECT),
1447              "IBX PCH dp port still using transcoder B\n");
1448 }
1449
1450 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451                                      enum pipe pipe, int reg)
1452 {
1453         u32 val = I915_READ(reg);
1454         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1455              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1456              reg, pipe_name(pipe));
1457
1458         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1459              && (val & SDVO_PIPE_B_SELECT),
1460              "IBX PCH hdmi port still using transcoder B\n");
1461 }
1462
1463 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464                                       enum pipe pipe)
1465 {
1466         int reg;
1467         u32 val;
1468
1469         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473         reg = PCH_ADPA;
1474         val = I915_READ(reg);
1475         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1476              "PCH VGA enabled on transcoder %c, should be disabled\n",
1477              pipe_name(pipe));
1478
1479         reg = PCH_LVDS;
1480         val = I915_READ(reg);
1481         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1482              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1483              pipe_name(pipe));
1484
1485         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1488 }
1489
1490 static void intel_init_dpio(struct drm_device *dev)
1491 {
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494         if (!IS_VALLEYVIEW(dev))
1495                 return;
1496
1497         /*
1498          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499          * CHV x1 PHY (DP/HDMI D)
1500          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501          */
1502         if (IS_CHERRYVIEW(dev)) {
1503                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505         } else {
1506                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507         }
1508 }
1509
1510 static void vlv_enable_pll(struct intel_crtc *crtc,
1511                            const struct intel_crtc_state *pipe_config)
1512 {
1513         struct drm_device *dev = crtc->base.dev;
1514         struct drm_i915_private *dev_priv = dev->dev_private;
1515         int reg = DPLL(crtc->pipe);
1516         u32 dpll = pipe_config->dpll_hw_state.dpll;
1517
1518         assert_pipe_disabled(dev_priv, crtc->pipe);
1519
1520         /* No really, not for ILK+ */
1521         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523         /* PLL is protected by panel, make sure we can write it */
1524         if (IS_MOBILE(dev_priv->dev))
1525                 assert_panel_unlocked(dev_priv, crtc->pipe);
1526
1527         I915_WRITE(reg, dpll);
1528         POSTING_READ(reg);
1529         udelay(150);
1530
1531         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
1534         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1535         POSTING_READ(DPLL_MD(crtc->pipe));
1536
1537         /* We do this three times for luck */
1538         I915_WRITE(reg, dpll);
1539         POSTING_READ(reg);
1540         udelay(150); /* wait for warmup */
1541         I915_WRITE(reg, dpll);
1542         POSTING_READ(reg);
1543         udelay(150); /* wait for warmup */
1544         I915_WRITE(reg, dpll);
1545         POSTING_READ(reg);
1546         udelay(150); /* wait for warmup */
1547 }
1548
1549 static void chv_enable_pll(struct intel_crtc *crtc,
1550                            const struct intel_crtc_state *pipe_config)
1551 {
1552         struct drm_device *dev = crtc->base.dev;
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554         int pipe = crtc->pipe;
1555         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1556         u32 tmp;
1557
1558         assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562         mutex_lock(&dev_priv->dpio_lock);
1563
1564         /* Enable back the 10bit clock to display controller */
1565         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566         tmp |= DPIO_DCLKP_EN;
1567         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569         /*
1570          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571          */
1572         udelay(1);
1573
1574         /* Enable PLL */
1575         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1576
1577         /* Check PLL is locked */
1578         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1579                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
1581         /* not sure when this should be written */
1582         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1583         POSTING_READ(DPLL_MD(pipe));
1584
1585         mutex_unlock(&dev_priv->dpio_lock);
1586 }
1587
1588 static int intel_num_dvo_pipes(struct drm_device *dev)
1589 {
1590         struct intel_crtc *crtc;
1591         int count = 0;
1592
1593         for_each_intel_crtc(dev, crtc)
1594                 count += crtc->active &&
1595                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1596
1597         return count;
1598 }
1599
1600 static void i9xx_enable_pll(struct intel_crtc *crtc)
1601 {
1602         struct drm_device *dev = crtc->base.dev;
1603         struct drm_i915_private *dev_priv = dev->dev_private;
1604         int reg = DPLL(crtc->pipe);
1605         u32 dpll = crtc->config->dpll_hw_state.dpll;
1606
1607         assert_pipe_disabled(dev_priv, crtc->pipe);
1608
1609         /* No really, not for ILK+ */
1610         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1611
1612         /* PLL is protected by panel, make sure we can write it */
1613         if (IS_MOBILE(dev) && !IS_I830(dev))
1614                 assert_panel_unlocked(dev_priv, crtc->pipe);
1615
1616         /* Enable DVO 2x clock on both PLLs if necessary */
1617         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618                 /*
1619                  * It appears to be important that we don't enable this
1620                  * for the current pipe before otherwise configuring the
1621                  * PLL. No idea how this should be handled if multiple
1622                  * DVO outputs are enabled simultaneosly.
1623                  */
1624                 dpll |= DPLL_DVO_2X_MODE;
1625                 I915_WRITE(DPLL(!crtc->pipe),
1626                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627         }
1628
1629         /* Wait for the clocks to stabilize. */
1630         POSTING_READ(reg);
1631         udelay(150);
1632
1633         if (INTEL_INFO(dev)->gen >= 4) {
1634                 I915_WRITE(DPLL_MD(crtc->pipe),
1635                            crtc->config->dpll_hw_state.dpll_md);
1636         } else {
1637                 /* The pixel multiplier can only be updated once the
1638                  * DPLL is enabled and the clocks are stable.
1639                  *
1640                  * So write it again.
1641                  */
1642                 I915_WRITE(reg, dpll);
1643         }
1644
1645         /* We do this three times for luck */
1646         I915_WRITE(reg, dpll);
1647         POSTING_READ(reg);
1648         udelay(150); /* wait for warmup */
1649         I915_WRITE(reg, dpll);
1650         POSTING_READ(reg);
1651         udelay(150); /* wait for warmup */
1652         I915_WRITE(reg, dpll);
1653         POSTING_READ(reg);
1654         udelay(150); /* wait for warmup */
1655 }
1656
1657 /**
1658  * i9xx_disable_pll - disable a PLL
1659  * @dev_priv: i915 private structure
1660  * @pipe: pipe PLL to disable
1661  *
1662  * Disable the PLL for @pipe, making sure the pipe is off first.
1663  *
1664  * Note!  This is for pre-ILK only.
1665  */
1666 static void i9xx_disable_pll(struct intel_crtc *crtc)
1667 {
1668         struct drm_device *dev = crtc->base.dev;
1669         struct drm_i915_private *dev_priv = dev->dev_private;
1670         enum pipe pipe = crtc->pipe;
1671
1672         /* Disable DVO 2x clock on both PLLs if necessary */
1673         if (IS_I830(dev) &&
1674             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1675             intel_num_dvo_pipes(dev) == 1) {
1676                 I915_WRITE(DPLL(PIPE_B),
1677                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678                 I915_WRITE(DPLL(PIPE_A),
1679                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680         }
1681
1682         /* Don't disable pipe or pipe PLLs if needed */
1683         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1685                 return;
1686
1687         /* Make sure the pipe isn't still relying on us */
1688         assert_pipe_disabled(dev_priv, pipe);
1689
1690         I915_WRITE(DPLL(pipe), 0);
1691         POSTING_READ(DPLL(pipe));
1692 }
1693
1694 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695 {
1696         u32 val = 0;
1697
1698         /* Make sure the pipe isn't still relying on us */
1699         assert_pipe_disabled(dev_priv, pipe);
1700
1701         /*
1702          * Leave integrated clock source and reference clock enabled for pipe B.
1703          * The latter is needed for VGA hotplug / manual detection.
1704          */
1705         if (pipe == PIPE_B)
1706                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1707         I915_WRITE(DPLL(pipe), val);
1708         POSTING_READ(DPLL(pipe));
1709
1710 }
1711
1712 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1715         u32 val;
1716
1717         /* Make sure the pipe isn't still relying on us */
1718         assert_pipe_disabled(dev_priv, pipe);
1719
1720         /* Set PLL en = 0 */
1721         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1722         if (pipe != PIPE_A)
1723                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724         I915_WRITE(DPLL(pipe), val);
1725         POSTING_READ(DPLL(pipe));
1726
1727         mutex_lock(&dev_priv->dpio_lock);
1728
1729         /* Disable 10bit clock to display controller */
1730         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731         val &= ~DPIO_DCLKP_EN;
1732         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
1734         /* disable left/right clock distribution */
1735         if (pipe != PIPE_B) {
1736                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739         } else {
1740                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743         }
1744
1745         mutex_unlock(&dev_priv->dpio_lock);
1746 }
1747
1748 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749                 struct intel_digital_port *dport)
1750 {
1751         u32 port_mask;
1752         int dpll_reg;
1753
1754         switch (dport->port) {
1755         case PORT_B:
1756                 port_mask = DPLL_PORTB_READY_MASK;
1757                 dpll_reg = DPLL(0);
1758                 break;
1759         case PORT_C:
1760                 port_mask = DPLL_PORTC_READY_MASK;
1761                 dpll_reg = DPLL(0);
1762                 break;
1763         case PORT_D:
1764                 port_mask = DPLL_PORTD_READY_MASK;
1765                 dpll_reg = DPIO_PHY_STATUS;
1766                 break;
1767         default:
1768                 BUG();
1769         }
1770
1771         if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1772                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1773                      port_name(dport->port), I915_READ(dpll_reg));
1774 }
1775
1776 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777 {
1778         struct drm_device *dev = crtc->base.dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
1782         if (WARN_ON(pll == NULL))
1783                 return;
1784
1785         WARN_ON(!pll->config.crtc_mask);
1786         if (pll->active == 0) {
1787                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788                 WARN_ON(pll->on);
1789                 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791                 pll->mode_set(dev_priv, pll);
1792         }
1793 }
1794
1795 /**
1796  * intel_enable_shared_dpll - enable PCH PLL
1797  * @dev_priv: i915 private structure
1798  * @pipe: pipe PLL to enable
1799  *
1800  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801  * drives the transcoder clock.
1802  */
1803 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1804 {
1805         struct drm_device *dev = crtc->base.dev;
1806         struct drm_i915_private *dev_priv = dev->dev_private;
1807         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809         if (WARN_ON(pll == NULL))
1810                 return;
1811
1812         if (WARN_ON(pll->config.crtc_mask == 0))
1813                 return;
1814
1815         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1816                       pll->name, pll->active, pll->on,
1817                       crtc->base.base.id);
1818
1819         if (pll->active++) {
1820                 WARN_ON(!pll->on);
1821                 assert_shared_dpll_enabled(dev_priv, pll);
1822                 return;
1823         }
1824         WARN_ON(pll->on);
1825
1826         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
1828         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1829         pll->enable(dev_priv, pll);
1830         pll->on = true;
1831 }
1832
1833 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1834 {
1835         struct drm_device *dev = crtc->base.dev;
1836         struct drm_i915_private *dev_priv = dev->dev_private;
1837         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1838
1839         /* PCH only available on ILK+ */
1840         BUG_ON(INTEL_INFO(dev)->gen < 5);
1841         if (WARN_ON(pll == NULL))
1842                return;
1843
1844         if (WARN_ON(pll->config.crtc_mask == 0))
1845                 return;
1846
1847         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848                       pll->name, pll->active, pll->on,
1849                       crtc->base.base.id);
1850
1851         if (WARN_ON(pll->active == 0)) {
1852                 assert_shared_dpll_disabled(dev_priv, pll);
1853                 return;
1854         }
1855
1856         assert_shared_dpll_enabled(dev_priv, pll);
1857         WARN_ON(!pll->on);
1858         if (--pll->active)
1859                 return;
1860
1861         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1862         pll->disable(dev_priv, pll);
1863         pll->on = false;
1864
1865         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1866 }
1867
1868 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869                                            enum pipe pipe)
1870 {
1871         struct drm_device *dev = dev_priv->dev;
1872         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1873         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1874         uint32_t reg, val, pipeconf_val;
1875
1876         /* PCH only available on ILK+ */
1877         BUG_ON(!HAS_PCH_SPLIT(dev));
1878
1879         /* Make sure PCH DPLL is enabled */
1880         assert_shared_dpll_enabled(dev_priv,
1881                                    intel_crtc_to_shared_dpll(intel_crtc));
1882
1883         /* FDI must be feeding us bits for PCH ports */
1884         assert_fdi_tx_enabled(dev_priv, pipe);
1885         assert_fdi_rx_enabled(dev_priv, pipe);
1886
1887         if (HAS_PCH_CPT(dev)) {
1888                 /* Workaround: Set the timing override bit before enabling the
1889                  * pch transcoder. */
1890                 reg = TRANS_CHICKEN2(pipe);
1891                 val = I915_READ(reg);
1892                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893                 I915_WRITE(reg, val);
1894         }
1895
1896         reg = PCH_TRANSCONF(pipe);
1897         val = I915_READ(reg);
1898         pipeconf_val = I915_READ(PIPECONF(pipe));
1899
1900         if (HAS_PCH_IBX(dev_priv->dev)) {
1901                 /*
1902                  * make the BPC in transcoder be consistent with
1903                  * that in pipeconf reg.
1904                  */
1905                 val &= ~PIPECONF_BPC_MASK;
1906                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1907         }
1908
1909         val &= ~TRANS_INTERLACE_MASK;
1910         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1911                 if (HAS_PCH_IBX(dev_priv->dev) &&
1912                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1913                         val |= TRANS_LEGACY_INTERLACED_ILK;
1914                 else
1915                         val |= TRANS_INTERLACED;
1916         else
1917                 val |= TRANS_PROGRESSIVE;
1918
1919         I915_WRITE(reg, val | TRANS_ENABLE);
1920         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1921                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1922 }
1923
1924 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1925                                       enum transcoder cpu_transcoder)
1926 {
1927         u32 val, pipeconf_val;
1928
1929         /* PCH only available on ILK+ */
1930         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1931
1932         /* FDI must be feeding us bits for PCH ports */
1933         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1934         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1935
1936         /* Workaround: set timing override bit. */
1937         val = I915_READ(_TRANSA_CHICKEN2);
1938         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1939         I915_WRITE(_TRANSA_CHICKEN2, val);
1940
1941         val = TRANS_ENABLE;
1942         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1943
1944         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945             PIPECONF_INTERLACED_ILK)
1946                 val |= TRANS_INTERLACED;
1947         else
1948                 val |= TRANS_PROGRESSIVE;
1949
1950         I915_WRITE(LPT_TRANSCONF, val);
1951         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1952                 DRM_ERROR("Failed to enable PCH transcoder\n");
1953 }
1954
1955 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956                                             enum pipe pipe)
1957 {
1958         struct drm_device *dev = dev_priv->dev;
1959         uint32_t reg, val;
1960
1961         /* FDI relies on the transcoder */
1962         assert_fdi_tx_disabled(dev_priv, pipe);
1963         assert_fdi_rx_disabled(dev_priv, pipe);
1964
1965         /* Ports must be off as well */
1966         assert_pch_ports_disabled(dev_priv, pipe);
1967
1968         reg = PCH_TRANSCONF(pipe);
1969         val = I915_READ(reg);
1970         val &= ~TRANS_ENABLE;
1971         I915_WRITE(reg, val);
1972         /* wait for PCH transcoder off, transcoder state */
1973         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1974                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1975
1976         if (!HAS_PCH_IBX(dev)) {
1977                 /* Workaround: Clear the timing override chicken bit again. */
1978                 reg = TRANS_CHICKEN2(pipe);
1979                 val = I915_READ(reg);
1980                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981                 I915_WRITE(reg, val);
1982         }
1983 }
1984
1985 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1986 {
1987         u32 val;
1988
1989         val = I915_READ(LPT_TRANSCONF);
1990         val &= ~TRANS_ENABLE;
1991         I915_WRITE(LPT_TRANSCONF, val);
1992         /* wait for PCH transcoder off, transcoder state */
1993         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1994                 DRM_ERROR("Failed to disable PCH transcoder\n");
1995
1996         /* Workaround: clear timing override bit. */
1997         val = I915_READ(_TRANSA_CHICKEN2);
1998         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1999         I915_WRITE(_TRANSA_CHICKEN2, val);
2000 }
2001
2002 /**
2003  * intel_enable_pipe - enable a pipe, asserting requirements
2004  * @crtc: crtc responsible for the pipe
2005  *
2006  * Enable @crtc's pipe, making sure that various hardware specific requirements
2007  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2008  */
2009 static void intel_enable_pipe(struct intel_crtc *crtc)
2010 {
2011         struct drm_device *dev = crtc->base.dev;
2012         struct drm_i915_private *dev_priv = dev->dev_private;
2013         enum pipe pipe = crtc->pipe;
2014         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015                                                                       pipe);
2016         enum pipe pch_transcoder;
2017         int reg;
2018         u32 val;
2019
2020         assert_planes_disabled(dev_priv, pipe);
2021         assert_cursor_disabled(dev_priv, pipe);
2022         assert_sprites_disabled(dev_priv, pipe);
2023
2024         if (HAS_PCH_LPT(dev_priv->dev))
2025                 pch_transcoder = TRANSCODER_A;
2026         else
2027                 pch_transcoder = pipe;
2028
2029         /*
2030          * A pipe without a PLL won't actually be able to drive bits from
2031          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2032          * need the check.
2033          */
2034         if (!HAS_PCH_SPLIT(dev_priv->dev))
2035                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2036                         assert_dsi_pll_enabled(dev_priv);
2037                 else
2038                         assert_pll_enabled(dev_priv, pipe);
2039         else {
2040                 if (crtc->config->has_pch_encoder) {
2041                         /* if driving the PCH, we need FDI enabled */
2042                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2043                         assert_fdi_tx_pll_enabled(dev_priv,
2044                                                   (enum pipe) cpu_transcoder);
2045                 }
2046                 /* FIXME: assert CPU port conditions for SNB+ */
2047         }
2048
2049         reg = PIPECONF(cpu_transcoder);
2050         val = I915_READ(reg);
2051         if (val & PIPECONF_ENABLE) {
2052                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2054                 return;
2055         }
2056
2057         I915_WRITE(reg, val | PIPECONF_ENABLE);
2058         POSTING_READ(reg);
2059 }
2060
2061 /**
2062  * intel_disable_pipe - disable a pipe, asserting requirements
2063  * @crtc: crtc whose pipes is to be disabled
2064  *
2065  * Disable the pipe of @crtc, making sure that various hardware
2066  * specific requirements are met, if applicable, e.g. plane
2067  * disabled, panel fitter off, etc.
2068  *
2069  * Will wait until the pipe has shut down before returning.
2070  */
2071 static void intel_disable_pipe(struct intel_crtc *crtc)
2072 {
2073         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2074         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2075         enum pipe pipe = crtc->pipe;
2076         int reg;
2077         u32 val;
2078
2079         /*
2080          * Make sure planes won't keep trying to pump pixels to us,
2081          * or we might hang the display.
2082          */
2083         assert_planes_disabled(dev_priv, pipe);
2084         assert_cursor_disabled(dev_priv, pipe);
2085         assert_sprites_disabled(dev_priv, pipe);
2086
2087         reg = PIPECONF(cpu_transcoder);
2088         val = I915_READ(reg);
2089         if ((val & PIPECONF_ENABLE) == 0)
2090                 return;
2091
2092         /*
2093          * Double wide has implications for planes
2094          * so best keep it disabled when not needed.
2095          */
2096         if (crtc->config->double_wide)
2097                 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099         /* Don't disable pipe or pipe PLLs if needed */
2100         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2102                 val &= ~PIPECONF_ENABLE;
2103
2104         I915_WRITE(reg, val);
2105         if ((val & PIPECONF_ENABLE) == 0)
2106                 intel_wait_for_pipe_off(crtc);
2107 }
2108
2109 /*
2110  * Plane regs are double buffered, going from enabled->disabled needs a
2111  * trigger in order to latch.  The display address reg provides this.
2112  */
2113 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114                                enum plane plane)
2115 {
2116         struct drm_device *dev = dev_priv->dev;
2117         u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2118
2119         I915_WRITE(reg, I915_READ(reg));
2120         POSTING_READ(reg);
2121 }
2122
2123 /**
2124  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2125  * @plane:  plane to be enabled
2126  * @crtc: crtc for the plane
2127  *
2128  * Enable @plane on @crtc, making sure that the pipe is running first.
2129  */
2130 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131                                           struct drm_crtc *crtc)
2132 {
2133         struct drm_device *dev = plane->dev;
2134         struct drm_i915_private *dev_priv = dev->dev_private;
2135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136
2137         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2138         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2139
2140         if (intel_crtc->primary_enabled)
2141                 return;
2142
2143         intel_crtc->primary_enabled = true;
2144
2145         dev_priv->display.update_primary_plane(crtc, plane->fb,
2146                                                crtc->x, crtc->y);
2147
2148         /*
2149          * BDW signals flip done immediately if the plane
2150          * is disabled, even if the plane enable is already
2151          * armed to occur at the next vblank :(
2152          */
2153         if (IS_BROADWELL(dev))
2154                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2155 }
2156
2157 /**
2158  * intel_disable_primary_hw_plane - disable the primary hardware plane
2159  * @plane: plane to be disabled
2160  * @crtc: crtc for the plane
2161  *
2162  * Disable @plane on @crtc, making sure that the pipe is running first.
2163  */
2164 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165                                            struct drm_crtc *crtc)
2166 {
2167         struct drm_device *dev = plane->dev;
2168         struct drm_i915_private *dev_priv = dev->dev_private;
2169         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
2171         if (WARN_ON(!intel_crtc->active))
2172                 return;
2173
2174         if (!intel_crtc->primary_enabled)
2175                 return;
2176
2177         intel_crtc->primary_enabled = false;
2178
2179         dev_priv->display.update_primary_plane(crtc, plane->fb,
2180                                                crtc->x, crtc->y);
2181 }
2182
2183 static bool need_vtd_wa(struct drm_device *dev)
2184 {
2185 #ifdef CONFIG_INTEL_IOMMU
2186         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187                 return true;
2188 #endif
2189         return false;
2190 }
2191
2192 int
2193 intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
2194 {
2195         int tile_height;
2196
2197         tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
2198         return ALIGN(height, tile_height);
2199 }
2200
2201 int
2202 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2203                            struct drm_framebuffer *fb,
2204                            struct intel_engine_cs *pipelined)
2205 {
2206         struct drm_device *dev = fb->dev;
2207         struct drm_i915_private *dev_priv = dev->dev_private;
2208         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2209         u32 alignment;
2210         int ret;
2211
2212         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2213
2214         switch (obj->tiling_mode) {
2215         case I915_TILING_NONE:
2216                 if (INTEL_INFO(dev)->gen >= 9)
2217                         alignment = 256 * 1024;
2218                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2219                         alignment = 128 * 1024;
2220                 else if (INTEL_INFO(dev)->gen >= 4)
2221                         alignment = 4 * 1024;
2222                 else
2223                         alignment = 64 * 1024;
2224                 break;
2225         case I915_TILING_X:
2226                 if (INTEL_INFO(dev)->gen >= 9)
2227                         alignment = 256 * 1024;
2228                 else {
2229                         /* pin() will align the object as required by fence */
2230                         alignment = 0;
2231                 }
2232                 break;
2233         case I915_TILING_Y:
2234                 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2235                 return -EINVAL;
2236         default:
2237                 BUG();
2238         }
2239
2240         /* Note that the w/a also requires 64 PTE of padding following the
2241          * bo. We currently fill all unused PTE with the shadow page and so
2242          * we should always have valid PTE following the scanout preventing
2243          * the VT-d warning.
2244          */
2245         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246                 alignment = 256 * 1024;
2247
2248         /*
2249          * Global gtt pte registers are special registers which actually forward
2250          * writes to a chunk of system memory. Which means that there is no risk
2251          * that the register values disappear as soon as we call
2252          * intel_runtime_pm_put(), so it is correct to wrap only the
2253          * pin/unpin/fence and not more.
2254          */
2255         intel_runtime_pm_get(dev_priv);
2256
2257         dev_priv->mm.interruptible = false;
2258         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2259         if (ret)
2260                 goto err_interruptible;
2261
2262         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263          * fence, whereas 965+ only requires a fence if using
2264          * framebuffer compression.  For simplicity, we always install
2265          * a fence as the cost is not that onerous.
2266          */
2267         ret = i915_gem_object_get_fence(obj);
2268         if (ret)
2269                 goto err_unpin;
2270
2271         i915_gem_object_pin_fence(obj);
2272
2273         dev_priv->mm.interruptible = true;
2274         intel_runtime_pm_put(dev_priv);
2275         return 0;
2276
2277 err_unpin:
2278         i915_gem_object_unpin_from_display_plane(obj);
2279 err_interruptible:
2280         dev_priv->mm.interruptible = true;
2281         intel_runtime_pm_put(dev_priv);
2282         return ret;
2283 }
2284
2285 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2286 {
2287         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2288
2289         i915_gem_object_unpin_fence(obj);
2290         i915_gem_object_unpin_from_display_plane(obj);
2291 }
2292
2293 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2294  * is assumed to be a power-of-two. */
2295 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2296                                              unsigned int tiling_mode,
2297                                              unsigned int cpp,
2298                                              unsigned int pitch)
2299 {
2300         if (tiling_mode != I915_TILING_NONE) {
2301                 unsigned int tile_rows, tiles;
2302
2303                 tile_rows = *y / 8;
2304                 *y %= 8;
2305
2306                 tiles = *x / (512/cpp);
2307                 *x %= 512/cpp;
2308
2309                 return tile_rows * pitch * 8 + tiles * 4096;
2310         } else {
2311                 unsigned int offset;
2312
2313                 offset = *y * pitch + *x * cpp;
2314                 *y = 0;
2315                 *x = (offset & 4095) / cpp;
2316                 return offset & -4096;
2317         }
2318 }
2319
2320 static int i9xx_format_to_fourcc(int format)
2321 {
2322         switch (format) {
2323         case DISPPLANE_8BPP:
2324                 return DRM_FORMAT_C8;
2325         case DISPPLANE_BGRX555:
2326                 return DRM_FORMAT_XRGB1555;
2327         case DISPPLANE_BGRX565:
2328                 return DRM_FORMAT_RGB565;
2329         default:
2330         case DISPPLANE_BGRX888:
2331                 return DRM_FORMAT_XRGB8888;
2332         case DISPPLANE_RGBX888:
2333                 return DRM_FORMAT_XBGR8888;
2334         case DISPPLANE_BGRX101010:
2335                 return DRM_FORMAT_XRGB2101010;
2336         case DISPPLANE_RGBX101010:
2337                 return DRM_FORMAT_XBGR2101010;
2338         }
2339 }
2340
2341 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2342 {
2343         switch (format) {
2344         case PLANE_CTL_FORMAT_RGB_565:
2345                 return DRM_FORMAT_RGB565;
2346         default:
2347         case PLANE_CTL_FORMAT_XRGB_8888:
2348                 if (rgb_order) {
2349                         if (alpha)
2350                                 return DRM_FORMAT_ABGR8888;
2351                         else
2352                                 return DRM_FORMAT_XBGR8888;
2353                 } else {
2354                         if (alpha)
2355                                 return DRM_FORMAT_ARGB8888;
2356                         else
2357                                 return DRM_FORMAT_XRGB8888;
2358                 }
2359         case PLANE_CTL_FORMAT_XRGB_2101010:
2360                 if (rgb_order)
2361                         return DRM_FORMAT_XBGR2101010;
2362                 else
2363                         return DRM_FORMAT_XRGB2101010;
2364         }
2365 }
2366
2367 static bool
2368 intel_alloc_plane_obj(struct intel_crtc *crtc,
2369                       struct intel_initial_plane_config *plane_config)
2370 {
2371         struct drm_device *dev = crtc->base.dev;
2372         struct drm_i915_gem_object *obj = NULL;
2373         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2374         u32 base = plane_config->base;
2375
2376         if (plane_config->size == 0)
2377                 return false;
2378
2379         obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2380                                                              plane_config->size);
2381         if (!obj)
2382                 return false;
2383
2384         obj->tiling_mode = plane_config->tiling;
2385         if (obj->tiling_mode == I915_TILING_X)
2386                 obj->stride = crtc->base.primary->fb->pitches[0];
2387
2388         mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2389         mode_cmd.width = crtc->base.primary->fb->width;
2390         mode_cmd.height = crtc->base.primary->fb->height;
2391         mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2392
2393         mutex_lock(&dev->struct_mutex);
2394
2395         if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2396                                    &mode_cmd, obj)) {
2397                 DRM_DEBUG_KMS("intel fb init failed\n");
2398                 goto out_unref_obj;
2399         }
2400
2401         obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2402         mutex_unlock(&dev->struct_mutex);
2403
2404         DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2405         return true;
2406
2407 out_unref_obj:
2408         drm_gem_object_unreference(&obj->base);
2409         mutex_unlock(&dev->struct_mutex);
2410         return false;
2411 }
2412
2413 static void
2414 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2415                      struct intel_initial_plane_config *plane_config)
2416 {
2417         struct drm_device *dev = intel_crtc->base.dev;
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419         struct drm_crtc *c;
2420         struct intel_crtc *i;
2421         struct drm_i915_gem_object *obj;
2422
2423         if (!intel_crtc->base.primary->fb)
2424                 return;
2425
2426         if (intel_alloc_plane_obj(intel_crtc, plane_config))
2427                 return;
2428
2429         kfree(intel_crtc->base.primary->fb);
2430         intel_crtc->base.primary->fb = NULL;
2431
2432         /*
2433          * Failed to alloc the obj, check to see if we should share
2434          * an fb with another CRTC instead
2435          */
2436         for_each_crtc(dev, c) {
2437                 i = to_intel_crtc(c);
2438
2439                 if (c == &intel_crtc->base)
2440                         continue;
2441
2442                 if (!i->active)
2443                         continue;
2444
2445                 obj = intel_fb_obj(c->primary->fb);
2446                 if (obj == NULL)
2447                         continue;
2448
2449                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2450                         if (obj->tiling_mode != I915_TILING_NONE)
2451                                 dev_priv->preserve_bios_swizzle = true;
2452
2453                         drm_framebuffer_reference(c->primary->fb);
2454                         intel_crtc->base.primary->fb = c->primary->fb;
2455                         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2456                         break;
2457                 }
2458         }
2459 }
2460
2461 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2462                                       struct drm_framebuffer *fb,
2463                                       int x, int y)
2464 {
2465         struct drm_device *dev = crtc->dev;
2466         struct drm_i915_private *dev_priv = dev->dev_private;
2467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468         struct drm_i915_gem_object *obj;
2469         int plane = intel_crtc->plane;
2470         unsigned long linear_offset;
2471         u32 dspcntr;
2472         u32 reg = DSPCNTR(plane);
2473         int pixel_size;
2474
2475         if (!intel_crtc->primary_enabled) {
2476                 I915_WRITE(reg, 0);
2477                 if (INTEL_INFO(dev)->gen >= 4)
2478                         I915_WRITE(DSPSURF(plane), 0);
2479                 else
2480                         I915_WRITE(DSPADDR(plane), 0);
2481                 POSTING_READ(reg);
2482                 return;
2483         }
2484
2485         obj = intel_fb_obj(fb);
2486         if (WARN_ON(obj == NULL))
2487                 return;
2488
2489         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2490
2491         dspcntr = DISPPLANE_GAMMA_ENABLE;
2492
2493         dspcntr |= DISPLAY_PLANE_ENABLE;
2494
2495         if (INTEL_INFO(dev)->gen < 4) {
2496                 if (intel_crtc->pipe == PIPE_B)
2497                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2498
2499                 /* pipesrc and dspsize control the size that is scaled from,
2500                  * which should always be the user's requested size.
2501                  */
2502                 I915_WRITE(DSPSIZE(plane),
2503                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2504                            (intel_crtc->config->pipe_src_w - 1));
2505                 I915_WRITE(DSPPOS(plane), 0);
2506         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2507                 I915_WRITE(PRIMSIZE(plane),
2508                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2509                            (intel_crtc->config->pipe_src_w - 1));
2510                 I915_WRITE(PRIMPOS(plane), 0);
2511                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2512         }
2513
2514         switch (fb->pixel_format) {
2515         case DRM_FORMAT_C8:
2516                 dspcntr |= DISPPLANE_8BPP;
2517                 break;
2518         case DRM_FORMAT_XRGB1555:
2519         case DRM_FORMAT_ARGB1555:
2520                 dspcntr |= DISPPLANE_BGRX555;
2521                 break;
2522         case DRM_FORMAT_RGB565:
2523                 dspcntr |= DISPPLANE_BGRX565;
2524                 break;
2525         case DRM_FORMAT_XRGB8888:
2526         case DRM_FORMAT_ARGB8888:
2527                 dspcntr |= DISPPLANE_BGRX888;
2528                 break;
2529         case DRM_FORMAT_XBGR8888:
2530         case DRM_FORMAT_ABGR8888:
2531                 dspcntr |= DISPPLANE_RGBX888;
2532                 break;
2533         case DRM_FORMAT_XRGB2101010:
2534         case DRM_FORMAT_ARGB2101010:
2535                 dspcntr |= DISPPLANE_BGRX101010;
2536                 break;
2537         case DRM_FORMAT_XBGR2101010:
2538         case DRM_FORMAT_ABGR2101010:
2539                 dspcntr |= DISPPLANE_RGBX101010;
2540                 break;
2541         default:
2542                 BUG();
2543         }
2544
2545         if (INTEL_INFO(dev)->gen >= 4 &&
2546             obj->tiling_mode != I915_TILING_NONE)
2547                 dspcntr |= DISPPLANE_TILED;
2548
2549         if (IS_G4X(dev))
2550                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2551
2552         linear_offset = y * fb->pitches[0] + x * pixel_size;
2553
2554         if (INTEL_INFO(dev)->gen >= 4) {
2555                 intel_crtc->dspaddr_offset =
2556                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2557                                                        pixel_size,
2558                                                        fb->pitches[0]);
2559                 linear_offset -= intel_crtc->dspaddr_offset;
2560         } else {
2561                 intel_crtc->dspaddr_offset = linear_offset;
2562         }
2563
2564         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2565                 dspcntr |= DISPPLANE_ROTATE_180;
2566
2567                 x += (intel_crtc->config->pipe_src_w - 1);
2568                 y += (intel_crtc->config->pipe_src_h - 1);
2569
2570                 /* Finding the last pixel of the last line of the display
2571                 data and adding to linear_offset*/
2572                 linear_offset +=
2573                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2574                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2575         }
2576
2577         I915_WRITE(reg, dspcntr);
2578
2579         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2580                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2581                       fb->pitches[0]);
2582         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2583         if (INTEL_INFO(dev)->gen >= 4) {
2584                 I915_WRITE(DSPSURF(plane),
2585                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2586                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2587                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2588         } else
2589                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2590         POSTING_READ(reg);
2591 }
2592
2593 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2594                                           struct drm_framebuffer *fb,
2595                                           int x, int y)
2596 {
2597         struct drm_device *dev = crtc->dev;
2598         struct drm_i915_private *dev_priv = dev->dev_private;
2599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2600         struct drm_i915_gem_object *obj;
2601         int plane = intel_crtc->plane;
2602         unsigned long linear_offset;
2603         u32 dspcntr;
2604         u32 reg = DSPCNTR(plane);
2605         int pixel_size;
2606
2607         if (!intel_crtc->primary_enabled) {
2608                 I915_WRITE(reg, 0);
2609                 I915_WRITE(DSPSURF(plane), 0);
2610                 POSTING_READ(reg);
2611                 return;
2612         }
2613
2614         obj = intel_fb_obj(fb);
2615         if (WARN_ON(obj == NULL))
2616                 return;
2617
2618         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2619
2620         dspcntr = DISPPLANE_GAMMA_ENABLE;
2621
2622         dspcntr |= DISPLAY_PLANE_ENABLE;
2623
2624         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2625                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2626
2627         switch (fb->pixel_format) {
2628         case DRM_FORMAT_C8:
2629                 dspcntr |= DISPPLANE_8BPP;
2630                 break;
2631         case DRM_FORMAT_RGB565:
2632                 dspcntr |= DISPPLANE_BGRX565;
2633                 break;
2634         case DRM_FORMAT_XRGB8888:
2635         case DRM_FORMAT_ARGB8888:
2636                 dspcntr |= DISPPLANE_BGRX888;
2637                 break;
2638         case DRM_FORMAT_XBGR8888:
2639         case DRM_FORMAT_ABGR8888:
2640                 dspcntr |= DISPPLANE_RGBX888;
2641                 break;
2642         case DRM_FORMAT_XRGB2101010:
2643         case DRM_FORMAT_ARGB2101010:
2644                 dspcntr |= DISPPLANE_BGRX101010;
2645                 break;
2646         case DRM_FORMAT_XBGR2101010:
2647         case DRM_FORMAT_ABGR2101010:
2648                 dspcntr |= DISPPLANE_RGBX101010;
2649                 break;
2650         default:
2651                 BUG();
2652         }
2653
2654         if (obj->tiling_mode != I915_TILING_NONE)
2655                 dspcntr |= DISPPLANE_TILED;
2656
2657         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2658                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2659
2660         linear_offset = y * fb->pitches[0] + x * pixel_size;
2661         intel_crtc->dspaddr_offset =
2662                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2663                                                pixel_size,
2664                                                fb->pitches[0]);
2665         linear_offset -= intel_crtc->dspaddr_offset;
2666         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2667                 dspcntr |= DISPPLANE_ROTATE_180;
2668
2669                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2670                         x += (intel_crtc->config->pipe_src_w - 1);
2671                         y += (intel_crtc->config->pipe_src_h - 1);
2672
2673                         /* Finding the last pixel of the last line of the display
2674                         data and adding to linear_offset*/
2675                         linear_offset +=
2676                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2677                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2678                 }
2679         }
2680
2681         I915_WRITE(reg, dspcntr);
2682
2683         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2684                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2685                       fb->pitches[0]);
2686         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2687         I915_WRITE(DSPSURF(plane),
2688                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2689         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2690                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2691         } else {
2692                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2693                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2694         }
2695         POSTING_READ(reg);
2696 }
2697
2698 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2699                                          struct drm_framebuffer *fb,
2700                                          int x, int y)
2701 {
2702         struct drm_device *dev = crtc->dev;
2703         struct drm_i915_private *dev_priv = dev->dev_private;
2704         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2705         struct intel_framebuffer *intel_fb;
2706         struct drm_i915_gem_object *obj;
2707         int pipe = intel_crtc->pipe;
2708         u32 plane_ctl, stride;
2709
2710         if (!intel_crtc->primary_enabled) {
2711                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2712                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2713                 POSTING_READ(PLANE_CTL(pipe, 0));
2714                 return;
2715         }
2716
2717         plane_ctl = PLANE_CTL_ENABLE |
2718                     PLANE_CTL_PIPE_GAMMA_ENABLE |
2719                     PLANE_CTL_PIPE_CSC_ENABLE;
2720
2721         switch (fb->pixel_format) {
2722         case DRM_FORMAT_RGB565:
2723                 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2724                 break;
2725         case DRM_FORMAT_XRGB8888:
2726                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2727                 break;
2728         case DRM_FORMAT_XBGR8888:
2729                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2730                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2731                 break;
2732         case DRM_FORMAT_XRGB2101010:
2733                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2734                 break;
2735         case DRM_FORMAT_XBGR2101010:
2736                 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2737                 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2738                 break;
2739         default:
2740                 BUG();
2741         }
2742
2743         intel_fb = to_intel_framebuffer(fb);
2744         obj = intel_fb->obj;
2745
2746         /*
2747          * The stride is either expressed as a multiple of 64 bytes chunks for
2748          * linear buffers or in number of tiles for tiled buffers.
2749          */
2750         switch (obj->tiling_mode) {
2751         case I915_TILING_NONE:
2752                 stride = fb->pitches[0] >> 6;
2753                 break;
2754         case I915_TILING_X:
2755                 plane_ctl |= PLANE_CTL_TILED_X;
2756                 stride = fb->pitches[0] >> 9;
2757                 break;
2758         default:
2759                 BUG();
2760         }
2761
2762         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2763         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2764                 plane_ctl |= PLANE_CTL_ROTATE_180;
2765
2766         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2767
2768         DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2769                       i915_gem_obj_ggtt_offset(obj),
2770                       x, y, fb->width, fb->height,
2771                       fb->pitches[0]);
2772
2773         I915_WRITE(PLANE_POS(pipe, 0), 0);
2774         I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2775         I915_WRITE(PLANE_SIZE(pipe, 0),
2776                    (intel_crtc->config->pipe_src_h - 1) << 16 |
2777                    (intel_crtc->config->pipe_src_w - 1));
2778         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2779         I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2780
2781         POSTING_READ(PLANE_SURF(pipe, 0));
2782 }
2783
2784 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2785 static int
2786 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2787                            int x, int y, enum mode_set_atomic state)
2788 {
2789         struct drm_device *dev = crtc->dev;
2790         struct drm_i915_private *dev_priv = dev->dev_private;
2791
2792         if (dev_priv->display.disable_fbc)
2793                 dev_priv->display.disable_fbc(dev);
2794
2795         dev_priv->display.update_primary_plane(crtc, fb, x, y);
2796
2797         return 0;
2798 }
2799
2800 static void intel_complete_page_flips(struct drm_device *dev)
2801 {
2802         struct drm_crtc *crtc;
2803
2804         for_each_crtc(dev, crtc) {
2805                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2806                 enum plane plane = intel_crtc->plane;
2807
2808                 intel_prepare_page_flip(dev, plane);
2809                 intel_finish_page_flip_plane(dev, plane);
2810         }
2811 }
2812
2813 static void intel_update_primary_planes(struct drm_device *dev)
2814 {
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816         struct drm_crtc *crtc;
2817
2818         for_each_crtc(dev, crtc) {
2819                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2820
2821                 drm_modeset_lock(&crtc->mutex, NULL);
2822                 /*
2823                  * FIXME: Once we have proper support for primary planes (and
2824                  * disabling them without disabling the entire crtc) allow again
2825                  * a NULL crtc->primary->fb.
2826                  */
2827                 if (intel_crtc->active && crtc->primary->fb)
2828                         dev_priv->display.update_primary_plane(crtc,
2829                                                                crtc->primary->fb,
2830                                                                crtc->x,
2831                                                                crtc->y);
2832                 drm_modeset_unlock(&crtc->mutex);
2833         }
2834 }
2835
2836 void intel_prepare_reset(struct drm_device *dev)
2837 {
2838         struct drm_i915_private *dev_priv = to_i915(dev);
2839         struct intel_crtc *crtc;
2840
2841         /* no reset support for gen2 */
2842         if (IS_GEN2(dev))
2843                 return;
2844
2845         /* reset doesn't touch the display */
2846         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2847                 return;
2848
2849         drm_modeset_lock_all(dev);
2850
2851         /*
2852          * Disabling the crtcs gracefully seems nicer. Also the
2853          * g33 docs say we should at least disable all the planes.
2854          */
2855         for_each_intel_crtc(dev, crtc) {
2856                 if (crtc->active)
2857                         dev_priv->display.crtc_disable(&crtc->base);
2858         }
2859 }
2860
2861 void intel_finish_reset(struct drm_device *dev)
2862 {
2863         struct drm_i915_private *dev_priv = to_i915(dev);
2864
2865         /*
2866          * Flips in the rings will be nuked by the reset,
2867          * so complete all pending flips so that user space
2868          * will get its events and not get stuck.
2869          */
2870         intel_complete_page_flips(dev);
2871
2872         /* no reset support for gen2 */
2873         if (IS_GEN2(dev))
2874                 return;
2875
2876         /* reset doesn't touch the display */
2877         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2878                 /*
2879                  * Flips in the rings have been nuked by the reset,
2880                  * so update the base address of all primary
2881                  * planes to the the last fb to make sure we're
2882                  * showing the correct fb after a reset.
2883                  */
2884                 intel_update_primary_planes(dev);
2885                 return;
2886         }
2887
2888         /*
2889          * The display has been reset as well,
2890          * so need a full re-initialization.
2891          */
2892         intel_runtime_pm_disable_interrupts(dev_priv);
2893         intel_runtime_pm_enable_interrupts(dev_priv);
2894
2895         intel_modeset_init_hw(dev);
2896
2897         spin_lock_irq(&dev_priv->irq_lock);
2898         if (dev_priv->display.hpd_irq_setup)
2899                 dev_priv->display.hpd_irq_setup(dev);
2900         spin_unlock_irq(&dev_priv->irq_lock);
2901
2902         intel_modeset_setup_hw_state(dev, true);
2903
2904         intel_hpd_init(dev_priv);
2905
2906         drm_modeset_unlock_all(dev);
2907 }
2908
2909 static int
2910 intel_finish_fb(struct drm_framebuffer *old_fb)
2911 {
2912         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2913         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2914         bool was_interruptible = dev_priv->mm.interruptible;
2915         int ret;
2916
2917         /* Big Hammer, we also need to ensure that any pending
2918          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2919          * current scanout is retired before unpinning the old
2920          * framebuffer.
2921          *
2922          * This should only fail upon a hung GPU, in which case we
2923          * can safely continue.
2924          */
2925         dev_priv->mm.interruptible = false;
2926         ret = i915_gem_object_finish_gpu(obj);
2927         dev_priv->mm.interruptible = was_interruptible;
2928
2929         return ret;
2930 }
2931
2932 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2933 {
2934         struct drm_device *dev = crtc->dev;
2935         struct drm_i915_private *dev_priv = dev->dev_private;
2936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2937         bool pending;
2938
2939         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2940             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2941                 return false;
2942
2943         spin_lock_irq(&dev->event_lock);
2944         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2945         spin_unlock_irq(&dev->event_lock);
2946
2947         return pending;
2948 }
2949
2950 static void intel_update_pipe_size(struct intel_crtc *crtc)
2951 {
2952         struct drm_device *dev = crtc->base.dev;
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         const struct drm_display_mode *adjusted_mode;
2955
2956         if (!i915.fastboot)
2957                 return;
2958
2959         /*
2960          * Update pipe size and adjust fitter if needed: the reason for this is
2961          * that in compute_mode_changes we check the native mode (not the pfit
2962          * mode) to see if we can flip rather than do a full mode set. In the
2963          * fastboot case, we'll flip, but if we don't update the pipesrc and
2964          * pfit state, we'll end up with a big fb scanned out into the wrong
2965          * sized surface.
2966          *
2967          * To fix this properly, we need to hoist the checks up into
2968          * compute_mode_changes (or above), check the actual pfit state and
2969          * whether the platform allows pfit disable with pipe active, and only
2970          * then update the pipesrc and pfit state, even on the flip path.
2971          */
2972
2973         adjusted_mode = &crtc->config->base.adjusted_mode;
2974
2975         I915_WRITE(PIPESRC(crtc->pipe),
2976                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2977                    (adjusted_mode->crtc_vdisplay - 1));
2978         if (!crtc->config->pch_pfit.enabled &&
2979             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2980              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2981                 I915_WRITE(PF_CTL(crtc->pipe), 0);
2982                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2983                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2984         }
2985         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2986         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
2987 }
2988
2989 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2990 {
2991         struct drm_device *dev = crtc->dev;
2992         struct drm_i915_private *dev_priv = dev->dev_private;
2993         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994         int pipe = intel_crtc->pipe;
2995         u32 reg, temp;
2996
2997         /* enable normal train */
2998         reg = FDI_TX_CTL(pipe);
2999         temp = I915_READ(reg);
3000         if (IS_IVYBRIDGE(dev)) {
3001                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3002                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3003         } else {
3004                 temp &= ~FDI_LINK_TRAIN_NONE;
3005                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3006         }
3007         I915_WRITE(reg, temp);
3008
3009         reg = FDI_RX_CTL(pipe);
3010         temp = I915_READ(reg);
3011         if (HAS_PCH_CPT(dev)) {
3012                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3013                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3014         } else {
3015                 temp &= ~FDI_LINK_TRAIN_NONE;
3016                 temp |= FDI_LINK_TRAIN_NONE;
3017         }
3018         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3019
3020         /* wait one idle pattern time */
3021         POSTING_READ(reg);
3022         udelay(1000);
3023
3024         /* IVB wants error correction enabled */
3025         if (IS_IVYBRIDGE(dev))
3026                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3027                            FDI_FE_ERRC_ENABLE);
3028 }
3029
3030 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3031 {
3032         return crtc->base.enabled && crtc->active &&
3033                 crtc->config->has_pch_encoder;
3034 }
3035
3036 static void ivb_modeset_global_resources(struct drm_device *dev)
3037 {
3038         struct drm_i915_private *dev_priv = dev->dev_private;
3039         struct intel_crtc *pipe_B_crtc =
3040                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3041         struct intel_crtc *pipe_C_crtc =
3042                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3043         uint32_t temp;
3044
3045         /*
3046          * When everything is off disable fdi C so that we could enable fdi B
3047          * with all lanes. Note that we don't care about enabled pipes without
3048          * an enabled pch encoder.
3049          */
3050         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3051             !pipe_has_enabled_pch(pipe_C_crtc)) {
3052                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3053                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3054
3055                 temp = I915_READ(SOUTH_CHICKEN1);
3056                 temp &= ~FDI_BC_BIFURCATION_SELECT;
3057                 DRM_DEBUG_KMS("disabling fdi C rx\n");
3058                 I915_WRITE(SOUTH_CHICKEN1, temp);
3059         }
3060 }
3061
3062 /* The FDI link training functions for ILK/Ibexpeak. */
3063 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3064 {
3065         struct drm_device *dev = crtc->dev;
3066         struct drm_i915_private *dev_priv = dev->dev_private;
3067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068         int pipe = intel_crtc->pipe;
3069         u32 reg, temp, tries;
3070
3071         /* FDI needs bits from pipe first */
3072         assert_pipe_enabled(dev_priv, pipe);
3073
3074         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3075            for train result */
3076         reg = FDI_RX_IMR(pipe);
3077         temp = I915_READ(reg);
3078         temp &= ~FDI_RX_SYMBOL_LOCK;
3079         temp &= ~FDI_RX_BIT_LOCK;
3080         I915_WRITE(reg, temp);
3081         I915_READ(reg);
3082         udelay(150);
3083
3084         /* enable CPU FDI TX and PCH FDI RX */
3085         reg = FDI_TX_CTL(pipe);
3086         temp = I915_READ(reg);
3087         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3088         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3089         temp &= ~FDI_LINK_TRAIN_NONE;
3090         temp |= FDI_LINK_TRAIN_PATTERN_1;
3091         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3092
3093         reg = FDI_RX_CTL(pipe);
3094         temp = I915_READ(reg);
3095         temp &= ~FDI_LINK_TRAIN_NONE;
3096         temp |= FDI_LINK_TRAIN_PATTERN_1;
3097         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3098
3099         POSTING_READ(reg);
3100         udelay(150);
3101
3102         /* Ironlake workaround, enable clock pointer after FDI enable*/
3103         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3104         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3105                    FDI_RX_PHASE_SYNC_POINTER_EN);
3106
3107         reg = FDI_RX_IIR(pipe);
3108         for (tries = 0; tries < 5; tries++) {
3109                 temp = I915_READ(reg);
3110                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112                 if ((temp & FDI_RX_BIT_LOCK)) {
3113                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3114                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3115                         break;
3116                 }
3117         }
3118         if (tries == 5)
3119                 DRM_ERROR("FDI train 1 fail!\n");
3120
3121         /* Train 2 */
3122         reg = FDI_TX_CTL(pipe);
3123         temp = I915_READ(reg);
3124         temp &= ~FDI_LINK_TRAIN_NONE;
3125         temp |= FDI_LINK_TRAIN_PATTERN_2;
3126         I915_WRITE(reg, temp);
3127
3128         reg = FDI_RX_CTL(pipe);
3129         temp = I915_READ(reg);
3130         temp &= ~FDI_LINK_TRAIN_NONE;
3131         temp |= FDI_LINK_TRAIN_PATTERN_2;
3132         I915_WRITE(reg, temp);
3133
3134         POSTING_READ(reg);
3135         udelay(150);
3136
3137         reg = FDI_RX_IIR(pipe);
3138         for (tries = 0; tries < 5; tries++) {
3139                 temp = I915_READ(reg);
3140                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3141
3142                 if (temp & FDI_RX_SYMBOL_LOCK) {
3143                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3144                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3145                         break;
3146                 }
3147         }
3148         if (tries == 5)
3149                 DRM_ERROR("FDI train 2 fail!\n");
3150
3151         DRM_DEBUG_KMS("FDI train done\n");
3152
3153 }
3154
3155 static const int snb_b_fdi_train_param[] = {
3156         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3157         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3158         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3159         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3160 };
3161
3162 /* The FDI link training functions for SNB/Cougarpoint. */
3163 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3164 {
3165         struct drm_device *dev = crtc->dev;
3166         struct drm_i915_private *dev_priv = dev->dev_private;
3167         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168         int pipe = intel_crtc->pipe;
3169         u32 reg, temp, i, retry;
3170
3171         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3172            for train result */
3173         reg = FDI_RX_IMR(pipe);
3174         temp = I915_READ(reg);
3175         temp &= ~FDI_RX_SYMBOL_LOCK;
3176         temp &= ~FDI_RX_BIT_LOCK;
3177         I915_WRITE(reg, temp);
3178
3179         POSTING_READ(reg);
3180         udelay(150);
3181
3182         /* enable CPU FDI TX and PCH FDI RX */
3183         reg = FDI_TX_CTL(pipe);
3184         temp = I915_READ(reg);
3185         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3186         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3187         temp &= ~FDI_LINK_TRAIN_NONE;
3188         temp |= FDI_LINK_TRAIN_PATTERN_1;
3189         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3190         /* SNB-B */
3191         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3192         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3193
3194         I915_WRITE(FDI_RX_MISC(pipe),
3195                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3196
3197         reg = FDI_RX_CTL(pipe);
3198         temp = I915_READ(reg);
3199         if (HAS_PCH_CPT(dev)) {
3200                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3201                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3202         } else {
3203                 temp &= ~FDI_LINK_TRAIN_NONE;
3204                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3205         }
3206         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3207
3208         POSTING_READ(reg);
3209         udelay(150);
3210
3211         for (i = 0; i < 4; i++) {
3212                 reg = FDI_TX_CTL(pipe);
3213                 temp = I915_READ(reg);
3214                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215                 temp |= snb_b_fdi_train_param[i];
3216                 I915_WRITE(reg, temp);
3217
3218                 POSTING_READ(reg);
3219                 udelay(500);
3220
3221                 for (retry = 0; retry < 5; retry++) {
3222                         reg = FDI_RX_IIR(pipe);
3223                         temp = I915_READ(reg);
3224                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3225                         if (temp & FDI_RX_BIT_LOCK) {
3226                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3227                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3228                                 break;
3229                         }
3230                         udelay(50);
3231                 }
3232                 if (retry < 5)
3233                         break;
3234         }
3235         if (i == 4)
3236                 DRM_ERROR("FDI train 1 fail!\n");
3237
3238         /* Train 2 */
3239         reg = FDI_TX_CTL(pipe);
3240         temp = I915_READ(reg);
3241         temp &= ~FDI_LINK_TRAIN_NONE;
3242         temp |= FDI_LINK_TRAIN_PATTERN_2;
3243         if (IS_GEN6(dev)) {
3244                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3245                 /* SNB-B */
3246                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3247         }
3248         I915_WRITE(reg, temp);
3249
3250         reg = FDI_RX_CTL(pipe);
3251         temp = I915_READ(reg);
3252         if (HAS_PCH_CPT(dev)) {
3253                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3254                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3255         } else {
3256                 temp &= ~FDI_LINK_TRAIN_NONE;
3257                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3258         }
3259         I915_WRITE(reg, temp);
3260
3261         POSTING_READ(reg);
3262         udelay(150);
3263
3264         for (i = 0; i < 4; i++) {
3265                 reg = FDI_TX_CTL(pipe);
3266                 temp = I915_READ(reg);
3267                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3268                 temp |= snb_b_fdi_train_param[i];
3269                 I915_WRITE(reg, temp);
3270
3271                 POSTING_READ(reg);
3272                 udelay(500);
3273
3274                 for (retry = 0; retry < 5; retry++) {
3275                         reg = FDI_RX_IIR(pipe);
3276                         temp = I915_READ(reg);
3277                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3278                         if (temp & FDI_RX_SYMBOL_LOCK) {
3279                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3280                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3281                                 break;
3282                         }
3283                         udelay(50);
3284                 }
3285                 if (retry < 5)
3286                         break;
3287         }
3288         if (i == 4)
3289                 DRM_ERROR("FDI train 2 fail!\n");
3290
3291         DRM_DEBUG_KMS("FDI train done.\n");
3292 }
3293
3294 /* Manual link training for Ivy Bridge A0 parts */
3295 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3296 {
3297         struct drm_device *dev = crtc->dev;
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3300         int pipe = intel_crtc->pipe;
3301         u32 reg, temp, i, j;
3302
3303         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3304            for train result */
3305         reg = FDI_RX_IMR(pipe);
3306         temp = I915_READ(reg);
3307         temp &= ~FDI_RX_SYMBOL_LOCK;
3308         temp &= ~FDI_RX_BIT_LOCK;
3309         I915_WRITE(reg, temp);
3310
3311         POSTING_READ(reg);
3312         udelay(150);
3313
3314         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3315                       I915_READ(FDI_RX_IIR(pipe)));
3316
3317         /* Try each vswing and preemphasis setting twice before moving on */
3318         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3319                 /* disable first in case we need to retry */
3320                 reg = FDI_TX_CTL(pipe);
3321                 temp = I915_READ(reg);
3322                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3323                 temp &= ~FDI_TX_ENABLE;
3324                 I915_WRITE(reg, temp);
3325
3326                 reg = FDI_RX_CTL(pipe);
3327                 temp = I915_READ(reg);
3328                 temp &= ~FDI_LINK_TRAIN_AUTO;
3329                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3330                 temp &= ~FDI_RX_ENABLE;
3331                 I915_WRITE(reg, temp);
3332
3333                 /* enable CPU FDI TX and PCH FDI RX */
3334                 reg = FDI_TX_CTL(pipe);
3335                 temp = I915_READ(reg);
3336                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3337                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3338                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3339                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3340                 temp |= snb_b_fdi_train_param[j/2];
3341                 temp |= FDI_COMPOSITE_SYNC;
3342                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3343
3344                 I915_WRITE(FDI_RX_MISC(pipe),
3345                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3346
3347                 reg = FDI_RX_CTL(pipe);
3348                 temp = I915_READ(reg);
3349                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3350                 temp |= FDI_COMPOSITE_SYNC;
3351                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3352
3353                 POSTING_READ(reg);
3354                 udelay(1); /* should be 0.5us */
3355
3356                 for (i = 0; i < 4; i++) {
3357                         reg = FDI_RX_IIR(pipe);
3358                         temp = I915_READ(reg);
3359                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3360
3361                         if (temp & FDI_RX_BIT_LOCK ||
3362                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3363                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3364                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3365                                               i);
3366                                 break;
3367                         }
3368                         udelay(1); /* should be 0.5us */
3369                 }
3370                 if (i == 4) {
3371                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3372                         continue;
3373                 }
3374
3375                 /* Train 2 */
3376                 reg = FDI_TX_CTL(pipe);
3377                 temp = I915_READ(reg);
3378                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3379                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3380                 I915_WRITE(reg, temp);
3381
3382                 reg = FDI_RX_CTL(pipe);
3383                 temp = I915_READ(reg);
3384                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3385                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3386                 I915_WRITE(reg, temp);
3387
3388                 POSTING_READ(reg);
3389                 udelay(2); /* should be 1.5us */
3390
3391                 for (i = 0; i < 4; i++) {
3392                         reg = FDI_RX_IIR(pipe);
3393                         temp = I915_READ(reg);
3394                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3395
3396                         if (temp & FDI_RX_SYMBOL_LOCK ||
3397                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3398                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3399                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3400                                               i);
3401                                 goto train_done;
3402                         }
3403                         udelay(2); /* should be 1.5us */
3404                 }
3405                 if (i == 4)
3406                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3407         }
3408
3409 train_done:
3410         DRM_DEBUG_KMS("FDI train done.\n");
3411 }
3412
3413 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3414 {
3415         struct drm_device *dev = intel_crtc->base.dev;
3416         struct drm_i915_private *dev_priv = dev->dev_private;
3417         int pipe = intel_crtc->pipe;
3418         u32 reg, temp;
3419
3420
3421         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3422         reg = FDI_RX_CTL(pipe);
3423         temp = I915_READ(reg);
3424         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3425         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3426         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3427         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3428
3429         POSTING_READ(reg);
3430         udelay(200);
3431
3432         /* Switch from Rawclk to PCDclk */
3433         temp = I915_READ(reg);
3434         I915_WRITE(reg, temp | FDI_PCDCLK);
3435
3436         POSTING_READ(reg);
3437         udelay(200);
3438
3439         /* Enable CPU FDI TX PLL, always on for Ironlake */
3440         reg = FDI_TX_CTL(pipe);
3441         temp = I915_READ(reg);
3442         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3443                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3444
3445                 POSTING_READ(reg);
3446                 udelay(100);
3447         }
3448 }
3449
3450 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3451 {
3452         struct drm_device *dev = intel_crtc->base.dev;
3453         struct drm_i915_private *dev_priv = dev->dev_private;
3454         int pipe = intel_crtc->pipe;
3455         u32 reg, temp;
3456
3457         /* Switch from PCDclk to Rawclk */
3458         reg = FDI_RX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3461
3462         /* Disable CPU FDI TX PLL */
3463         reg = FDI_TX_CTL(pipe);
3464         temp = I915_READ(reg);
3465         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3466
3467         POSTING_READ(reg);
3468         udelay(100);
3469
3470         reg = FDI_RX_CTL(pipe);
3471         temp = I915_READ(reg);
3472         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3473
3474         /* Wait for the clocks to turn off. */
3475         POSTING_READ(reg);
3476         udelay(100);
3477 }
3478
3479 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3480 {
3481         struct drm_device *dev = crtc->dev;
3482         struct drm_i915_private *dev_priv = dev->dev_private;
3483         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484         int pipe = intel_crtc->pipe;
3485         u32 reg, temp;
3486
3487         /* disable CPU FDI tx and PCH FDI rx */
3488         reg = FDI_TX_CTL(pipe);
3489         temp = I915_READ(reg);
3490         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3491         POSTING_READ(reg);
3492
3493         reg = FDI_RX_CTL(pipe);
3494         temp = I915_READ(reg);
3495         temp &= ~(0x7 << 16);
3496         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3497         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3498
3499         POSTING_READ(reg);
3500         udelay(100);
3501
3502         /* Ironlake workaround, disable clock pointer after downing FDI */
3503         if (HAS_PCH_IBX(dev))
3504                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3505
3506         /* still set train pattern 1 */
3507         reg = FDI_TX_CTL(pipe);
3508         temp = I915_READ(reg);
3509         temp &= ~FDI_LINK_TRAIN_NONE;
3510         temp |= FDI_LINK_TRAIN_PATTERN_1;
3511         I915_WRITE(reg, temp);
3512
3513         reg = FDI_RX_CTL(pipe);
3514         temp = I915_READ(reg);
3515         if (HAS_PCH_CPT(dev)) {
3516                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3517                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3518         } else {
3519                 temp &= ~FDI_LINK_TRAIN_NONE;
3520                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3521         }
3522         /* BPC in FDI rx is consistent with that in PIPECONF */
3523         temp &= ~(0x07 << 16);
3524         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3525         I915_WRITE(reg, temp);
3526
3527         POSTING_READ(reg);
3528         udelay(100);
3529 }
3530
3531 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3532 {
3533         struct intel_crtc *crtc;
3534
3535         /* Note that we don't need to be called with mode_config.lock here
3536          * as our list of CRTC objects is static for the lifetime of the
3537          * device and so cannot disappear as we iterate. Similarly, we can
3538          * happily treat the predicates as racy, atomic checks as userspace
3539          * cannot claim and pin a new fb without at least acquring the
3540          * struct_mutex and so serialising with us.
3541          */
3542         for_each_intel_crtc(dev, crtc) {
3543                 if (atomic_read(&crtc->unpin_work_count) == 0)
3544                         continue;
3545
3546                 if (crtc->unpin_work)
3547                         intel_wait_for_vblank(dev, crtc->pipe);
3548
3549                 return true;
3550         }
3551
3552         return false;
3553 }
3554
3555 static void page_flip_completed(struct intel_crtc *intel_crtc)
3556 {
3557         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3558         struct intel_unpin_work *work = intel_crtc->unpin_work;
3559
3560         /* ensure that the unpin work is consistent wrt ->pending. */
3561         smp_rmb();
3562         intel_crtc->unpin_work = NULL;
3563
3564         if (work->event)
3565                 drm_send_vblank_event(intel_crtc->base.dev,
3566                                       intel_crtc->pipe,
3567                                       work->event);
3568
3569         drm_crtc_vblank_put(&intel_crtc->base);
3570
3571         wake_up_all(&dev_priv->pending_flip_queue);
3572         queue_work(dev_priv->wq, &work->work);
3573
3574         trace_i915_flip_complete(intel_crtc->plane,
3575                                  work->pending_flip_obj);
3576 }
3577
3578 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3579 {
3580         struct drm_device *dev = crtc->dev;
3581         struct drm_i915_private *dev_priv = dev->dev_private;
3582
3583         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3584         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3585                                        !intel_crtc_has_pending_flip(crtc),
3586                                        60*HZ) == 0)) {
3587                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3588
3589                 spin_lock_irq(&dev->event_lock);
3590                 if (intel_crtc->unpin_work) {
3591                         WARN_ONCE(1, "Removing stuck page flip\n");
3592                         page_flip_completed(intel_crtc);
3593                 }
3594                 spin_unlock_irq(&dev->event_lock);
3595         }
3596
3597         if (crtc->primary->fb) {
3598                 mutex_lock(&dev->struct_mutex);
3599                 intel_finish_fb(crtc->primary->fb);
3600                 mutex_unlock(&dev->struct_mutex);
3601         }
3602 }
3603
3604 /* Program iCLKIP clock to the desired frequency */
3605 static void lpt_program_iclkip(struct drm_crtc *crtc)
3606 {
3607         struct drm_device *dev = crtc->dev;
3608         struct drm_i915_private *dev_priv = dev->dev_private;
3609         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3610         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3611         u32 temp;
3612
3613         mutex_lock(&dev_priv->dpio_lock);
3614
3615         /* It is necessary to ungate the pixclk gate prior to programming
3616          * the divisors, and gate it back when it is done.
3617          */
3618         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3619
3620         /* Disable SSCCTL */
3621         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3622                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3623                                 SBI_SSCCTL_DISABLE,
3624                         SBI_ICLK);
3625
3626         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3627         if (clock == 20000) {
3628                 auxdiv = 1;
3629                 divsel = 0x41;
3630                 phaseinc = 0x20;
3631         } else {
3632                 /* The iCLK virtual clock root frequency is in MHz,
3633                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3634                  * divisors, it is necessary to divide one by another, so we
3635                  * convert the virtual clock precision to KHz here for higher
3636                  * precision.
3637                  */
3638                 u32 iclk_virtual_root_freq = 172800 * 1000;
3639                 u32 iclk_pi_range = 64;
3640                 u32 desired_divisor, msb_divisor_value, pi_value;
3641
3642                 desired_divisor = (iclk_virtual_root_freq / clock);
3643                 msb_divisor_value = desired_divisor / iclk_pi_range;
3644                 pi_value = desired_divisor % iclk_pi_range;
3645
3646                 auxdiv = 0;
3647                 divsel = msb_divisor_value - 2;
3648                 phaseinc = pi_value;
3649         }
3650
3651         /* This should not happen with any sane values */
3652         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3653                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3654         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3655                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3656
3657         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3658                         clock,
3659                         auxdiv,
3660                         divsel,
3661                         phasedir,
3662                         phaseinc);
3663
3664         /* Program SSCDIVINTPHASE6 */
3665         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3666         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3667         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3668         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3669         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3670         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3671         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3672         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3673
3674         /* Program SSCAUXDIV */
3675         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3676         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3677         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3678         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3679
3680         /* Enable modulator and associated divider */
3681         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3682         temp &= ~SBI_SSCCTL_DISABLE;
3683         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3684
3685         /* Wait for initialization time */
3686         udelay(24);
3687
3688         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3689
3690         mutex_unlock(&dev_priv->dpio_lock);
3691 }
3692
3693 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3694                                                 enum pipe pch_transcoder)
3695 {
3696         struct drm_device *dev = crtc->base.dev;
3697         struct drm_i915_private *dev_priv = dev->dev_private;
3698         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3699
3700         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3701                    I915_READ(HTOTAL(cpu_transcoder)));
3702         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3703                    I915_READ(HBLANK(cpu_transcoder)));
3704         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3705                    I915_READ(HSYNC(cpu_transcoder)));
3706
3707         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3708                    I915_READ(VTOTAL(cpu_transcoder)));
3709         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3710                    I915_READ(VBLANK(cpu_transcoder)));
3711         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3712                    I915_READ(VSYNC(cpu_transcoder)));
3713         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3714                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
3715 }
3716
3717 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3718 {
3719         struct drm_i915_private *dev_priv = dev->dev_private;
3720         uint32_t temp;
3721
3722         temp = I915_READ(SOUTH_CHICKEN1);
3723         if (temp & FDI_BC_BIFURCATION_SELECT)
3724                 return;
3725
3726         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3727         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3728
3729         temp |= FDI_BC_BIFURCATION_SELECT;
3730         DRM_DEBUG_KMS("enabling fdi C rx\n");
3731         I915_WRITE(SOUTH_CHICKEN1, temp);
3732         POSTING_READ(SOUTH_CHICKEN1);
3733 }
3734
3735 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3736 {
3737         struct drm_device *dev = intel_crtc->base.dev;
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739
3740         switch (intel_crtc->pipe) {
3741         case PIPE_A:
3742                 break;
3743         case PIPE_B:
3744                 if (intel_crtc->config->fdi_lanes > 2)
3745                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3746                 else
3747                         cpt_enable_fdi_bc_bifurcation(dev);
3748
3749                 break;
3750         case PIPE_C:
3751                 cpt_enable_fdi_bc_bifurcation(dev);
3752
3753                 break;
3754         default:
3755                 BUG();
3756         }
3757 }
3758
3759 /*
3760  * Enable PCH resources required for PCH ports:
3761  *   - PCH PLLs
3762  *   - FDI training & RX/TX
3763  *   - update transcoder timings
3764  *   - DP transcoding bits
3765  *   - transcoder
3766  */
3767 static void ironlake_pch_enable(struct drm_crtc *crtc)
3768 {
3769         struct drm_device *dev = crtc->dev;
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772         int pipe = intel_crtc->pipe;
3773         u32 reg, temp;
3774
3775         assert_pch_transcoder_disabled(dev_priv, pipe);
3776
3777         if (IS_IVYBRIDGE(dev))
3778                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3779
3780         /* Write the TU size bits before fdi link training, so that error
3781          * detection works. */
3782         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3783                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3784
3785         /* For PCH output, training FDI link */
3786         dev_priv->display.fdi_link_train(crtc);
3787
3788         /* We need to program the right clock selection before writing the pixel
3789          * mutliplier into the DPLL. */
3790         if (HAS_PCH_CPT(dev)) {
3791                 u32 sel;
3792
3793                 temp = I915_READ(PCH_DPLL_SEL);
3794                 temp |= TRANS_DPLL_ENABLE(pipe);
3795                 sel = TRANS_DPLLB_SEL(pipe);
3796                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3797                         temp |= sel;
3798                 else
3799                         temp &= ~sel;
3800                 I915_WRITE(PCH_DPLL_SEL, temp);
3801         }
3802
3803         /* XXX: pch pll's can be enabled any time before we enable the PCH
3804          * transcoder, and we actually should do this to not upset any PCH
3805          * transcoder that already use the clock when we share it.
3806          *
3807          * Note that enable_shared_dpll tries to do the right thing, but
3808          * get_shared_dpll unconditionally resets the pll - we need that to have
3809          * the right LVDS enable sequence. */
3810         intel_enable_shared_dpll(intel_crtc);
3811
3812         /* set transcoder timing, panel must allow it */
3813         assert_panel_unlocked(dev_priv, pipe);
3814         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3815
3816         intel_fdi_normal_train(crtc);
3817
3818         /* For PCH DP, enable TRANS_DP_CTL */
3819         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3820                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3821                 reg = TRANS_DP_CTL(pipe);
3822                 temp = I915_READ(reg);
3823                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3824                           TRANS_DP_SYNC_MASK |
3825                           TRANS_DP_BPC_MASK);
3826                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3827                          TRANS_DP_ENH_FRAMING);
3828                 temp |= bpc << 9; /* same format but at 11:9 */
3829
3830                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3831                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3832                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3833                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3834
3835                 switch (intel_trans_dp_port_sel(crtc)) {
3836                 case PCH_DP_B:
3837                         temp |= TRANS_DP_PORT_SEL_B;
3838                         break;
3839                 case PCH_DP_C:
3840                         temp |= TRANS_DP_PORT_SEL_C;
3841                         break;
3842                 case PCH_DP_D:
3843                         temp |= TRANS_DP_PORT_SEL_D;
3844                         break;
3845                 default:
3846                         BUG();
3847                 }
3848
3849                 I915_WRITE(reg, temp);
3850         }
3851
3852         ironlake_enable_pch_transcoder(dev_priv, pipe);
3853 }
3854
3855 static void lpt_pch_enable(struct drm_crtc *crtc)
3856 {
3857         struct drm_device *dev = crtc->dev;
3858         struct drm_i915_private *dev_priv = dev->dev_private;
3859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3860         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3861
3862         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3863
3864         lpt_program_iclkip(crtc);
3865
3866         /* Set transcoder timing. */
3867         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3868
3869         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3870 }
3871
3872 void intel_put_shared_dpll(struct intel_crtc *crtc)
3873 {
3874         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3875
3876         if (pll == NULL)
3877                 return;
3878
3879         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3880                 WARN(1, "bad %s crtc mask\n", pll->name);
3881                 return;
3882         }
3883
3884         pll->config.crtc_mask &= ~(1 << crtc->pipe);
3885         if (pll->config.crtc_mask == 0) {
3886                 WARN_ON(pll->on);
3887                 WARN_ON(pll->active);
3888         }
3889
3890         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3891 }
3892
3893 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3894                                                 struct intel_crtc_state *crtc_state)
3895 {
3896         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3897         struct intel_shared_dpll *pll;
3898         enum intel_dpll_id i;
3899
3900         if (HAS_PCH_IBX(dev_priv->dev)) {
3901                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3902                 i = (enum intel_dpll_id) crtc->pipe;
3903                 pll = &dev_priv->shared_dplls[i];
3904
3905                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3906                               crtc->base.base.id, pll->name);
3907
3908                 WARN_ON(pll->new_config->crtc_mask);
3909
3910                 goto found;
3911         }
3912
3913         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3914                 pll = &dev_priv->shared_dplls[i];
3915
3916                 /* Only want to check enabled timings first */
3917                 if (pll->new_config->crtc_mask == 0)
3918                         continue;
3919
3920                 if (memcmp(&crtc_state->dpll_hw_state,
3921                            &pll->new_config->hw_state,
3922                            sizeof(pll->new_config->hw_state)) == 0) {
3923                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3924                                       crtc->base.base.id, pll->name,
3925                                       pll->new_config->crtc_mask,
3926                                       pll->active);
3927                         goto found;
3928                 }
3929         }
3930
3931         /* Ok no matching timings, maybe there's a free one? */
3932         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3933                 pll = &dev_priv->shared_dplls[i];
3934                 if (pll->new_config->crtc_mask == 0) {
3935                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3936                                       crtc->base.base.id, pll->name);
3937                         goto found;
3938                 }
3939         }
3940
3941         return NULL;
3942
3943 found:
3944         if (pll->new_config->crtc_mask == 0)
3945                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3946
3947         crtc_state->shared_dpll = i;
3948         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3949                          pipe_name(crtc->pipe));
3950
3951         pll->new_config->crtc_mask |= 1 << crtc->pipe;
3952
3953         return pll;
3954 }
3955
3956 /**
3957  * intel_shared_dpll_start_config - start a new PLL staged config
3958  * @dev_priv: DRM device
3959  * @clear_pipes: mask of pipes that will have their PLLs freed
3960  *
3961  * Starts a new PLL staged config, copying the current config but
3962  * releasing the references of pipes specified in clear_pipes.
3963  */
3964 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3965                                           unsigned clear_pipes)
3966 {
3967         struct intel_shared_dpll *pll;
3968         enum intel_dpll_id i;
3969
3970         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3971                 pll = &dev_priv->shared_dplls[i];
3972
3973                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3974                                           GFP_KERNEL);
3975                 if (!pll->new_config)
3976                         goto cleanup;
3977
3978                 pll->new_config->crtc_mask &= ~clear_pipes;
3979         }
3980
3981         return 0;
3982
3983 cleanup:
3984         while (--i >= 0) {
3985                 pll = &dev_priv->shared_dplls[i];
3986                 kfree(pll->new_config);
3987                 pll->new_config = NULL;
3988         }
3989
3990         return -ENOMEM;
3991 }
3992
3993 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3994 {
3995         struct intel_shared_dpll *pll;
3996         enum intel_dpll_id i;
3997
3998         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3999                 pll = &dev_priv->shared_dplls[i];
4000
4001                 WARN_ON(pll->new_config == &pll->config);
4002
4003                 pll->config = *pll->new_config;
4004                 kfree(pll->new_config);
4005                 pll->new_config = NULL;
4006         }
4007 }
4008
4009 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4010 {
4011         struct intel_shared_dpll *pll;
4012         enum intel_dpll_id i;
4013
4014         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4015                 pll = &dev_priv->shared_dplls[i];
4016
4017                 WARN_ON(pll->new_config == &pll->config);
4018
4019                 kfree(pll->new_config);
4020                 pll->new_config = NULL;
4021         }
4022 }
4023
4024 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4025 {
4026         struct drm_i915_private *dev_priv = dev->dev_private;
4027         int dslreg = PIPEDSL(pipe);
4028         u32 temp;
4029
4030         temp = I915_READ(dslreg);
4031         udelay(500);
4032         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4033                 if (wait_for(I915_READ(dslreg) != temp, 5))
4034                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4035         }
4036 }
4037
4038 static void skylake_pfit_enable(struct intel_crtc *crtc)
4039 {
4040         struct drm_device *dev = crtc->base.dev;
4041         struct drm_i915_private *dev_priv = dev->dev_private;
4042         int pipe = crtc->pipe;
4043
4044         if (crtc->config->pch_pfit.enabled) {
4045                 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4046                 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4047                 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4048         }
4049 }
4050
4051 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4052 {
4053         struct drm_device *dev = crtc->base.dev;
4054         struct drm_i915_private *dev_priv = dev->dev_private;
4055         int pipe = crtc->pipe;
4056
4057         if (crtc->config->pch_pfit.enabled) {
4058                 /* Force use of hard-coded filter coefficients
4059                  * as some pre-programmed values are broken,
4060                  * e.g. x201.
4061                  */
4062                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4063                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4064                                                  PF_PIPE_SEL_IVB(pipe));
4065                 else
4066                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4067                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4068                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4069         }
4070 }
4071
4072 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4073 {
4074         struct drm_device *dev = crtc->dev;
4075         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4076         struct drm_plane *plane;
4077         struct intel_plane *intel_plane;
4078
4079         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4080                 intel_plane = to_intel_plane(plane);
4081                 if (intel_plane->pipe == pipe)
4082                         intel_plane_restore(&intel_plane->base);
4083         }
4084 }
4085
4086 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4087 {
4088         struct drm_device *dev = crtc->dev;
4089         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4090         struct drm_plane *plane;
4091         struct intel_plane *intel_plane;
4092
4093         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4094                 intel_plane = to_intel_plane(plane);
4095                 if (intel_plane->pipe == pipe)
4096                         plane->funcs->disable_plane(plane);
4097         }
4098 }
4099
4100 void hsw_enable_ips(struct intel_crtc *crtc)
4101 {
4102         struct drm_device *dev = crtc->base.dev;
4103         struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105         if (!crtc->config->ips_enabled)
4106                 return;
4107
4108         /* We can only enable IPS after we enable a plane and wait for a vblank */
4109         intel_wait_for_vblank(dev, crtc->pipe);
4110
4111         assert_plane_enabled(dev_priv, crtc->plane);
4112         if (IS_BROADWELL(dev)) {
4113                 mutex_lock(&dev_priv->rps.hw_lock);
4114                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4115                 mutex_unlock(&dev_priv->rps.hw_lock);
4116                 /* Quoting Art Runyan: "its not safe to expect any particular
4117                  * value in IPS_CTL bit 31 after enabling IPS through the
4118                  * mailbox." Moreover, the mailbox may return a bogus state,
4119                  * so we need to just enable it and continue on.
4120                  */
4121         } else {
4122                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4123                 /* The bit only becomes 1 in the next vblank, so this wait here
4124                  * is essentially intel_wait_for_vblank. If we don't have this
4125                  * and don't wait for vblanks until the end of crtc_enable, then
4126                  * the HW state readout code will complain that the expected
4127                  * IPS_CTL value is not the one we read. */
4128                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4129                         DRM_ERROR("Timed out waiting for IPS enable\n");
4130         }
4131 }
4132
4133 void hsw_disable_ips(struct intel_crtc *crtc)
4134 {
4135         struct drm_device *dev = crtc->base.dev;
4136         struct drm_i915_private *dev_priv = dev->dev_private;
4137
4138         if (!crtc->config->ips_enabled)
4139                 return;
4140
4141         assert_plane_enabled(dev_priv, crtc->plane);
4142         if (IS_BROADWELL(dev)) {
4143                 mutex_lock(&dev_priv->rps.hw_lock);
4144                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4145                 mutex_unlock(&dev_priv->rps.hw_lock);
4146                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4147                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4148                         DRM_ERROR("Timed out waiting for IPS disable\n");
4149         } else {
4150                 I915_WRITE(IPS_CTL, 0);
4151                 POSTING_READ(IPS_CTL);
4152         }
4153
4154         /* We need to wait for a vblank before we can disable the plane. */
4155         intel_wait_for_vblank(dev, crtc->pipe);
4156 }
4157
4158 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4159 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4160 {
4161         struct drm_device *dev = crtc->dev;
4162         struct drm_i915_private *dev_priv = dev->dev_private;
4163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4164         enum pipe pipe = intel_crtc->pipe;
4165         int palreg = PALETTE(pipe);
4166         int i;
4167         bool reenable_ips = false;
4168
4169         /* The clocks have to be on to load the palette. */
4170         if (!crtc->enabled || !intel_crtc->active)
4171                 return;
4172
4173         if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4174                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4175                         assert_dsi_pll_enabled(dev_priv);
4176                 else
4177                         assert_pll_enabled(dev_priv, pipe);
4178         }
4179
4180         /* use legacy palette for Ironlake */
4181         if (!HAS_GMCH_DISPLAY(dev))
4182                 palreg = LGC_PALETTE(pipe);
4183
4184         /* Workaround : Do not read or write the pipe palette/gamma data while
4185          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4186          */
4187         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4188             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4189              GAMMA_MODE_MODE_SPLIT)) {
4190                 hsw_disable_ips(intel_crtc);
4191                 reenable_ips = true;
4192         }
4193
4194         for (i = 0; i < 256; i++) {
4195                 I915_WRITE(palreg + 4 * i,
4196                            (intel_crtc->lut_r[i] << 16) |
4197                            (intel_crtc->lut_g[i] << 8) |
4198                            intel_crtc->lut_b[i]);
4199         }
4200
4201         if (reenable_ips)
4202                 hsw_enable_ips(intel_crtc);
4203 }
4204
4205 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4206 {
4207         if (!enable && intel_crtc->overlay) {
4208                 struct drm_device *dev = intel_crtc->base.dev;
4209                 struct drm_i915_private *dev_priv = dev->dev_private;
4210
4211                 mutex_lock(&dev->struct_mutex);
4212                 dev_priv->mm.interruptible = false;
4213                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4214                 dev_priv->mm.interruptible = true;
4215                 mutex_unlock(&dev->struct_mutex);
4216         }
4217
4218         /* Let userspace switch the overlay on again. In most cases userspace
4219          * has to recompute where to put it anyway.
4220          */
4221 }
4222
4223 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4224 {
4225         struct drm_device *dev = crtc->dev;
4226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4227         int pipe = intel_crtc->pipe;
4228
4229         intel_enable_primary_hw_plane(crtc->primary, crtc);
4230         intel_enable_sprite_planes(crtc);
4231         intel_crtc_update_cursor(crtc, true);
4232         intel_crtc_dpms_overlay(intel_crtc, true);
4233
4234         hsw_enable_ips(intel_crtc);
4235
4236         mutex_lock(&dev->struct_mutex);
4237         intel_fbc_update(dev);
4238         mutex_unlock(&dev->struct_mutex);
4239
4240         /*
4241          * FIXME: Once we grow proper nuclear flip support out of this we need
4242          * to compute the mask of flip planes precisely. For the time being
4243          * consider this a flip from a NULL plane.
4244          */
4245         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4246 }
4247
4248 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4249 {
4250         struct drm_device *dev = crtc->dev;
4251         struct drm_i915_private *dev_priv = dev->dev_private;
4252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4253         int pipe = intel_crtc->pipe;
4254         int plane = intel_crtc->plane;
4255
4256         intel_crtc_wait_for_pending_flips(crtc);
4257
4258         if (dev_priv->fbc.plane == plane)
4259                 intel_fbc_disable(dev);
4260
4261         hsw_disable_ips(intel_crtc);
4262
4263         intel_crtc_dpms_overlay(intel_crtc, false);
4264         intel_crtc_update_cursor(crtc, false);
4265         intel_disable_sprite_planes(crtc);
4266         intel_disable_primary_hw_plane(crtc->primary, crtc);
4267
4268         /*
4269          * FIXME: Once we grow proper nuclear flip support out of this we need
4270          * to compute the mask of flip planes precisely. For the time being
4271          * consider this a flip to a NULL plane.
4272          */
4273         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4274 }
4275
4276 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4277 {
4278         struct drm_device *dev = crtc->dev;
4279         struct drm_i915_private *dev_priv = dev->dev_private;
4280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4281         struct intel_encoder *encoder;
4282         int pipe = intel_crtc->pipe;
4283
4284         WARN_ON(!crtc->enabled);
4285
4286         if (intel_crtc->active)
4287                 return;
4288
4289         if (intel_crtc->config->has_pch_encoder)
4290                 intel_prepare_shared_dpll(intel_crtc);
4291
4292         if (intel_crtc->config->has_dp_encoder)
4293                 intel_dp_set_m_n(intel_crtc);
4294
4295         intel_set_pipe_timings(intel_crtc);
4296
4297         if (intel_crtc->config->has_pch_encoder) {
4298                 intel_cpu_transcoder_set_m_n(intel_crtc,
4299                                      &intel_crtc->config->fdi_m_n, NULL);
4300         }
4301
4302         ironlake_set_pipeconf(crtc);
4303
4304         intel_crtc->active = true;
4305
4306         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4307         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4308
4309         for_each_encoder_on_crtc(dev, crtc, encoder)
4310                 if (encoder->pre_enable)
4311                         encoder->pre_enable(encoder);
4312
4313         if (intel_crtc->config->has_pch_encoder) {
4314                 /* Note: FDI PLL enabling _must_ be done before we enable the
4315                  * cpu pipes, hence this is separate from all the other fdi/pch
4316                  * enabling. */
4317                 ironlake_fdi_pll_enable(intel_crtc);
4318         } else {
4319                 assert_fdi_tx_disabled(dev_priv, pipe);
4320                 assert_fdi_rx_disabled(dev_priv, pipe);
4321         }
4322
4323         ironlake_pfit_enable(intel_crtc);
4324
4325         /*
4326          * On ILK+ LUT must be loaded before the pipe is running but with
4327          * clocks enabled
4328          */
4329         intel_crtc_load_lut(crtc);
4330
4331         intel_update_watermarks(crtc);
4332         intel_enable_pipe(intel_crtc);
4333
4334         if (intel_crtc->config->has_pch_encoder)
4335                 ironlake_pch_enable(crtc);
4336
4337         assert_vblank_disabled(crtc);
4338         drm_crtc_vblank_on(crtc);
4339
4340         for_each_encoder_on_crtc(dev, crtc, encoder)
4341                 encoder->enable(encoder);
4342
4343         if (HAS_PCH_CPT(dev))
4344                 cpt_verify_modeset(dev, intel_crtc->pipe);
4345
4346         intel_crtc_enable_planes(crtc);
4347 }
4348
4349 /* IPS only exists on ULT machines and is tied to pipe A. */
4350 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4351 {
4352         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4353 }
4354
4355 /*
4356  * This implements the workaround described in the "notes" section of the mode
4357  * set sequence documentation. When going from no pipes or single pipe to
4358  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4359  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4360  */
4361 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4362 {
4363         struct drm_device *dev = crtc->base.dev;
4364         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4365
4366         /* We want to get the other_active_crtc only if there's only 1 other
4367          * active crtc. */
4368         for_each_intel_crtc(dev, crtc_it) {
4369                 if (!crtc_it->active || crtc_it == crtc)
4370                         continue;
4371
4372                 if (other_active_crtc)
4373                         return;
4374
4375                 other_active_crtc = crtc_it;
4376         }
4377         if (!other_active_crtc)
4378                 return;
4379
4380         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4381         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4382 }
4383
4384 static void haswell_crtc_enable(struct drm_crtc *crtc)
4385 {
4386         struct drm_device *dev = crtc->dev;
4387         struct drm_i915_private *dev_priv = dev->dev_private;
4388         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4389         struct intel_encoder *encoder;
4390         int pipe = intel_crtc->pipe;
4391
4392         WARN_ON(!crtc->enabled);
4393
4394         if (intel_crtc->active)
4395                 return;
4396
4397         if (intel_crtc_to_shared_dpll(intel_crtc))
4398                 intel_enable_shared_dpll(intel_crtc);
4399
4400         if (intel_crtc->config->has_dp_encoder)
4401                 intel_dp_set_m_n(intel_crtc);
4402
4403         intel_set_pipe_timings(intel_crtc);
4404
4405         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4406                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4407                            intel_crtc->config->pixel_multiplier - 1);
4408         }
4409
4410         if (intel_crtc->config->has_pch_encoder) {
4411                 intel_cpu_transcoder_set_m_n(intel_crtc,
4412                                      &intel_crtc->config->fdi_m_n, NULL);
4413         }
4414
4415         haswell_set_pipeconf(crtc);
4416
4417         intel_set_pipe_csc(crtc);
4418
4419         intel_crtc->active = true;
4420
4421         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4422         for_each_encoder_on_crtc(dev, crtc, encoder)
4423                 if (encoder->pre_enable)
4424                         encoder->pre_enable(encoder);
4425
4426         if (intel_crtc->config->has_pch_encoder) {
4427                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4428                                                       true);
4429                 dev_priv->display.fdi_link_train(crtc);
4430         }
4431
4432         intel_ddi_enable_pipe_clock(intel_crtc);
4433
4434         if (IS_SKYLAKE(dev))
4435                 skylake_pfit_enable(intel_crtc);
4436         else
4437                 ironlake_pfit_enable(intel_crtc);
4438
4439         /*
4440          * On ILK+ LUT must be loaded before the pipe is running but with
4441          * clocks enabled
4442          */
4443         intel_crtc_load_lut(crtc);
4444
4445         intel_ddi_set_pipe_settings(crtc);
4446         intel_ddi_enable_transcoder_func(crtc);
4447
4448         intel_update_watermarks(crtc);
4449         intel_enable_pipe(intel_crtc);
4450
4451         if (intel_crtc->config->has_pch_encoder)
4452                 lpt_pch_enable(crtc);
4453
4454         if (intel_crtc->config->dp_encoder_is_mst)
4455                 intel_ddi_set_vc_payload_alloc(crtc, true);
4456
4457         assert_vblank_disabled(crtc);
4458         drm_crtc_vblank_on(crtc);
4459
4460         for_each_encoder_on_crtc(dev, crtc, encoder) {
4461                 encoder->enable(encoder);
4462                 intel_opregion_notify_encoder(encoder, true);
4463         }
4464
4465         /* If we change the relative order between pipe/planes enabling, we need
4466          * to change the workaround. */
4467         haswell_mode_set_planes_workaround(intel_crtc);
4468         intel_crtc_enable_planes(crtc);
4469 }
4470
4471 static void skylake_pfit_disable(struct intel_crtc *crtc)
4472 {
4473         struct drm_device *dev = crtc->base.dev;
4474         struct drm_i915_private *dev_priv = dev->dev_private;
4475         int pipe = crtc->pipe;
4476
4477         /* To avoid upsetting the power well on haswell only disable the pfit if
4478          * it's in use. The hw state code will make sure we get this right. */
4479         if (crtc->config->pch_pfit.enabled) {
4480                 I915_WRITE(PS_CTL(pipe), 0);
4481                 I915_WRITE(PS_WIN_POS(pipe), 0);
4482                 I915_WRITE(PS_WIN_SZ(pipe), 0);
4483         }
4484 }
4485
4486 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4487 {
4488         struct drm_device *dev = crtc->base.dev;
4489         struct drm_i915_private *dev_priv = dev->dev_private;
4490         int pipe = crtc->pipe;
4491
4492         /* To avoid upsetting the power well on haswell only disable the pfit if
4493          * it's in use. The hw state code will make sure we get this right. */
4494         if (crtc->config->pch_pfit.enabled) {
4495                 I915_WRITE(PF_CTL(pipe), 0);
4496                 I915_WRITE(PF_WIN_POS(pipe), 0);
4497                 I915_WRITE(PF_WIN_SZ(pipe), 0);
4498         }
4499 }
4500
4501 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4502 {
4503         struct drm_device *dev = crtc->dev;
4504         struct drm_i915_private *dev_priv = dev->dev_private;
4505         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4506         struct intel_encoder *encoder;
4507         int pipe = intel_crtc->pipe;
4508         u32 reg, temp;
4509
4510         if (!intel_crtc->active)
4511                 return;
4512
4513         intel_crtc_disable_planes(crtc);
4514
4515         for_each_encoder_on_crtc(dev, crtc, encoder)
4516                 encoder->disable(encoder);
4517
4518         drm_crtc_vblank_off(crtc);
4519         assert_vblank_disabled(crtc);
4520
4521         if (intel_crtc->config->has_pch_encoder)
4522                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4523
4524         intel_disable_pipe(intel_crtc);
4525
4526         ironlake_pfit_disable(intel_crtc);
4527
4528         for_each_encoder_on_crtc(dev, crtc, encoder)
4529                 if (encoder->post_disable)
4530                         encoder->post_disable(encoder);
4531
4532         if (intel_crtc->config->has_pch_encoder) {
4533                 ironlake_fdi_disable(crtc);
4534
4535                 ironlake_disable_pch_transcoder(dev_priv, pipe);
4536
4537                 if (HAS_PCH_CPT(dev)) {
4538                         /* disable TRANS_DP_CTL */
4539                         reg = TRANS_DP_CTL(pipe);
4540                         temp = I915_READ(reg);
4541                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4542                                   TRANS_DP_PORT_SEL_MASK);
4543                         temp |= TRANS_DP_PORT_SEL_NONE;
4544                         I915_WRITE(reg, temp);
4545
4546                         /* disable DPLL_SEL */
4547                         temp = I915_READ(PCH_DPLL_SEL);
4548                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4549                         I915_WRITE(PCH_DPLL_SEL, temp);
4550                 }
4551
4552                 /* disable PCH DPLL */
4553                 intel_disable_shared_dpll(intel_crtc);
4554
4555                 ironlake_fdi_pll_disable(intel_crtc);
4556         }
4557
4558         intel_crtc->active = false;
4559         intel_update_watermarks(crtc);
4560
4561         mutex_lock(&dev->struct_mutex);
4562         intel_fbc_update(dev);
4563         mutex_unlock(&dev->struct_mutex);
4564 }
4565
4566 static void haswell_crtc_disable(struct drm_crtc *crtc)
4567 {
4568         struct drm_device *dev = crtc->dev;
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4571         struct intel_encoder *encoder;
4572         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4573
4574         if (!intel_crtc->active)
4575                 return;
4576
4577         intel_crtc_disable_planes(crtc);
4578
4579         for_each_encoder_on_crtc(dev, crtc, encoder) {
4580                 intel_opregion_notify_encoder(encoder, false);
4581                 encoder->disable(encoder);
4582         }
4583
4584         drm_crtc_vblank_off(crtc);
4585         assert_vblank_disabled(crtc);
4586
4587         if (intel_crtc->config->has_pch_encoder)
4588                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4589                                                       false);
4590         intel_disable_pipe(intel_crtc);
4591
4592         if (intel_crtc->config->dp_encoder_is_mst)
4593                 intel_ddi_set_vc_payload_alloc(crtc, false);
4594
4595         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4596
4597         if (IS_SKYLAKE(dev))
4598                 skylake_pfit_disable(intel_crtc);
4599         else
4600                 ironlake_pfit_disable(intel_crtc);
4601
4602         intel_ddi_disable_pipe_clock(intel_crtc);
4603
4604         if (intel_crtc->config->has_pch_encoder) {
4605                 lpt_disable_pch_transcoder(dev_priv);
4606                 intel_ddi_fdi_disable(crtc);
4607         }
4608
4609         for_each_encoder_on_crtc(dev, crtc, encoder)
4610                 if (encoder->post_disable)
4611                         encoder->post_disable(encoder);
4612
4613         intel_crtc->active = false;
4614         intel_update_watermarks(crtc);
4615
4616         mutex_lock(&dev->struct_mutex);
4617         intel_fbc_update(dev);
4618         mutex_unlock(&dev->struct_mutex);
4619
4620         if (intel_crtc_to_shared_dpll(intel_crtc))
4621                 intel_disable_shared_dpll(intel_crtc);
4622 }
4623
4624 static void ironlake_crtc_off(struct drm_crtc *crtc)
4625 {
4626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4627         intel_put_shared_dpll(intel_crtc);
4628 }
4629
4630
4631 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4632 {
4633         struct drm_device *dev = crtc->base.dev;
4634         struct drm_i915_private *dev_priv = dev->dev_private;
4635         struct intel_crtc_state *pipe_config = crtc->config;
4636
4637         if (!pipe_config->gmch_pfit.control)
4638                 return;
4639
4640         /*
4641          * The panel fitter should only be adjusted whilst the pipe is disabled,
4642          * according to register description and PRM.
4643          */
4644         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4645         assert_pipe_disabled(dev_priv, crtc->pipe);
4646
4647         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4648         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4649
4650         /* Border color in case we don't scale up to the full screen. Black by
4651          * default, change to something else for debugging. */
4652         I915_WRITE(BCLRPAT(crtc->pipe), 0);
4653 }
4654
4655 static enum intel_display_power_domain port_to_power_domain(enum port port)
4656 {
4657         switch (port) {
4658         case PORT_A:
4659                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4660         case PORT_B:
4661                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4662         case PORT_C:
4663                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4664         case PORT_D:
4665                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4666         default:
4667                 WARN_ON_ONCE(1);
4668                 return POWER_DOMAIN_PORT_OTHER;
4669         }
4670 }
4671
4672 #define for_each_power_domain(domain, mask)                             \
4673         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
4674                 if ((1 << (domain)) & (mask))
4675
4676 enum intel_display_power_domain
4677 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4678 {
4679         struct drm_device *dev = intel_encoder->base.dev;
4680         struct intel_digital_port *intel_dig_port;
4681
4682         switch (intel_encoder->type) {
4683         case INTEL_OUTPUT_UNKNOWN:
4684                 /* Only DDI platforms should ever use this output type */
4685                 WARN_ON_ONCE(!HAS_DDI(dev));
4686         case INTEL_OUTPUT_DISPLAYPORT:
4687         case INTEL_OUTPUT_HDMI:
4688         case INTEL_OUTPUT_EDP:
4689                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4690                 return port_to_power_domain(intel_dig_port->port);
4691         case INTEL_OUTPUT_DP_MST:
4692                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4693                 return port_to_power_domain(intel_dig_port->port);
4694         case INTEL_OUTPUT_ANALOG:
4695                 return POWER_DOMAIN_PORT_CRT;
4696         case INTEL_OUTPUT_DSI:
4697                 return POWER_DOMAIN_PORT_DSI;
4698         default:
4699                 return POWER_DOMAIN_PORT_OTHER;
4700         }
4701 }
4702
4703 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4704 {
4705         struct drm_device *dev = crtc->dev;
4706         struct intel_encoder *intel_encoder;
4707         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4708         enum pipe pipe = intel_crtc->pipe;
4709         unsigned long mask;
4710         enum transcoder transcoder;
4711
4712         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4713
4714         mask = BIT(POWER_DOMAIN_PIPE(pipe));
4715         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4716         if (intel_crtc->config->pch_pfit.enabled ||
4717             intel_crtc->config->pch_pfit.force_thru)
4718                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4719
4720         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4721                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4722
4723         return mask;
4724 }
4725
4726 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4730         struct intel_crtc *crtc;
4731
4732         /*
4733          * First get all needed power domains, then put all unneeded, to avoid
4734          * any unnecessary toggling of the power wells.
4735          */
4736         for_each_intel_crtc(dev, crtc) {
4737                 enum intel_display_power_domain domain;
4738
4739                 if (!crtc->base.enabled)
4740                         continue;
4741
4742                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4743
4744                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4745                         intel_display_power_get(dev_priv, domain);
4746         }
4747
4748         if (dev_priv->display.modeset_global_resources)
4749                 dev_priv->display.modeset_global_resources(dev);
4750
4751         for_each_intel_crtc(dev, crtc) {
4752                 enum intel_display_power_domain domain;
4753
4754                 for_each_power_domain(domain, crtc->enabled_power_domains)
4755                         intel_display_power_put(dev_priv, domain);
4756
4757                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4758         }
4759
4760         intel_display_set_init_power(dev_priv, false);
4761 }
4762
4763 /* returns HPLL frequency in kHz */
4764 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4765 {
4766         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4767
4768         /* Obtain SKU information */
4769         mutex_lock(&dev_priv->dpio_lock);
4770         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4771                 CCK_FUSE_HPLL_FREQ_MASK;
4772         mutex_unlock(&dev_priv->dpio_lock);
4773
4774         return vco_freq[hpll_freq] * 1000;
4775 }
4776
4777 static void vlv_update_cdclk(struct drm_device *dev)
4778 {
4779         struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781         dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4782         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4783                          dev_priv->vlv_cdclk_freq);
4784
4785         /*
4786          * Program the gmbus_freq based on the cdclk frequency.
4787          * BSpec erroneously claims we should aim for 4MHz, but
4788          * in fact 1MHz is the correct frequency.
4789          */
4790         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4791 }
4792
4793 /* Adjust CDclk dividers to allow high res or save power if possible */
4794 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4795 {
4796         struct drm_i915_private *dev_priv = dev->dev_private;
4797         u32 val, cmd;
4798
4799         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4800
4801         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4802                 cmd = 2;
4803         else if (cdclk == 266667)
4804                 cmd = 1;
4805         else
4806                 cmd = 0;
4807
4808         mutex_lock(&dev_priv->rps.hw_lock);
4809         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4810         val &= ~DSPFREQGUAR_MASK;
4811         val |= (cmd << DSPFREQGUAR_SHIFT);
4812         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4813         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4814                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4815                      50)) {
4816                 DRM_ERROR("timed out waiting for CDclk change\n");
4817         }
4818         mutex_unlock(&dev_priv->rps.hw_lock);
4819
4820         if (cdclk == 400000) {
4821                 u32 divider;
4822
4823                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4824
4825                 mutex_lock(&dev_priv->dpio_lock);
4826                 /* adjust cdclk divider */
4827                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4828                 val &= ~DISPLAY_FREQUENCY_VALUES;
4829                 val |= divider;
4830                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4831
4832                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4833                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4834                              50))
4835                         DRM_ERROR("timed out waiting for CDclk change\n");
4836                 mutex_unlock(&dev_priv->dpio_lock);
4837         }
4838
4839         mutex_lock(&dev_priv->dpio_lock);
4840         /* adjust self-refresh exit latency value */
4841         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4842         val &= ~0x7f;
4843
4844         /*
4845          * For high bandwidth configs, we set a higher latency in the bunit
4846          * so that the core display fetch happens in time to avoid underruns.
4847          */
4848         if (cdclk == 400000)
4849                 val |= 4500 / 250; /* 4.5 usec */
4850         else
4851                 val |= 3000 / 250; /* 3.0 usec */
4852         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4853         mutex_unlock(&dev_priv->dpio_lock);
4854
4855         vlv_update_cdclk(dev);
4856 }
4857
4858 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4859 {
4860         struct drm_i915_private *dev_priv = dev->dev_private;
4861         u32 val, cmd;
4862
4863         WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4864
4865         switch (cdclk) {
4866         case 400000:
4867                 cmd = 3;
4868                 break;
4869         case 333333:
4870         case 320000:
4871                 cmd = 2;
4872                 break;
4873         case 266667:
4874                 cmd = 1;
4875                 break;
4876         case 200000:
4877                 cmd = 0;
4878                 break;
4879         default:
4880                 MISSING_CASE(cdclk);
4881                 return;
4882         }
4883
4884         mutex_lock(&dev_priv->rps.hw_lock);
4885         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4886         val &= ~DSPFREQGUAR_MASK_CHV;
4887         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4888         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4889         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4890                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4891                      50)) {
4892                 DRM_ERROR("timed out waiting for CDclk change\n");
4893         }
4894         mutex_unlock(&dev_priv->rps.hw_lock);
4895
4896         vlv_update_cdclk(dev);
4897 }
4898
4899 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4900                                  int max_pixclk)
4901 {
4902         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
4903
4904         /* FIXME: Punit isn't quite ready yet */
4905         if (IS_CHERRYVIEW(dev_priv->dev))
4906                 return 400000;
4907
4908         /*
4909          * Really only a few cases to deal with, as only 4 CDclks are supported:
4910          *   200MHz
4911          *   267MHz
4912          *   320/333MHz (depends on HPLL freq)
4913          *   400MHz
4914          * So we check to see whether we're above 90% of the lower bin and
4915          * adjust if needed.
4916          *
4917          * We seem to get an unstable or solid color picture at 200MHz.
4918          * Not sure what's wrong. For now use 200MHz only when all pipes
4919          * are off.
4920          */
4921         if (max_pixclk > freq_320*9/10)
4922                 return 400000;
4923         else if (max_pixclk > 266667*9/10)
4924                 return freq_320;
4925         else if (max_pixclk > 0)
4926                 return 266667;
4927         else
4928                 return 200000;
4929 }
4930
4931 /* compute the max pixel clock for new configuration */
4932 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4933 {
4934         struct drm_device *dev = dev_priv->dev;
4935         struct intel_crtc *intel_crtc;
4936         int max_pixclk = 0;
4937
4938         for_each_intel_crtc(dev, intel_crtc) {
4939                 if (intel_crtc->new_enabled)
4940                         max_pixclk = max(max_pixclk,
4941                                          intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4942         }
4943
4944         return max_pixclk;
4945 }
4946
4947 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4948                                             unsigned *prepare_pipes)
4949 {
4950         struct drm_i915_private *dev_priv = dev->dev_private;
4951         struct intel_crtc *intel_crtc;
4952         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4953
4954         if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4955             dev_priv->vlv_cdclk_freq)
4956                 return;
4957
4958         /* disable/enable all currently active pipes while we change cdclk */
4959         for_each_intel_crtc(dev, intel_crtc)
4960                 if (intel_crtc->base.enabled)
4961                         *prepare_pipes |= (1 << intel_crtc->pipe);
4962 }
4963
4964 static void valleyview_modeset_global_resources(struct drm_device *dev)
4965 {
4966         struct drm_i915_private *dev_priv = dev->dev_private;
4967         int max_pixclk = intel_mode_max_pixclk(dev_priv);
4968         int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4969
4970         if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4971                 /*
4972                  * FIXME: We can end up here with all power domains off, yet
4973                  * with a CDCLK frequency other than the minimum. To account
4974                  * for this take the PIPE-A power domain, which covers the HW
4975                  * blocks needed for the following programming. This can be
4976                  * removed once it's guaranteed that we get here either with
4977                  * the minimum CDCLK set, or the required power domains
4978                  * enabled.
4979                  */
4980                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4981
4982                 if (IS_CHERRYVIEW(dev))
4983                         cherryview_set_cdclk(dev, req_cdclk);
4984                 else
4985                         valleyview_set_cdclk(dev, req_cdclk);
4986
4987                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4988         }
4989 }
4990
4991 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4992 {
4993         struct drm_device *dev = crtc->dev;
4994         struct drm_i915_private *dev_priv = to_i915(dev);
4995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4996         struct intel_encoder *encoder;
4997         int pipe = intel_crtc->pipe;
4998         bool is_dsi;
4999
5000         WARN_ON(!crtc->enabled);
5001
5002         if (intel_crtc->active)
5003                 return;
5004
5005         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5006
5007         if (!is_dsi) {
5008                 if (IS_CHERRYVIEW(dev))
5009                         chv_prepare_pll(intel_crtc, intel_crtc->config);
5010                 else
5011                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
5012         }
5013
5014         if (intel_crtc->config->has_dp_encoder)
5015                 intel_dp_set_m_n(intel_crtc);
5016
5017         intel_set_pipe_timings(intel_crtc);
5018
5019         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5020                 struct drm_i915_private *dev_priv = dev->dev_private;
5021
5022                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5023                 I915_WRITE(CHV_CANVAS(pipe), 0);
5024         }
5025
5026         i9xx_set_pipeconf(intel_crtc);
5027
5028         intel_crtc->active = true;
5029
5030         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5031
5032         for_each_encoder_on_crtc(dev, crtc, encoder)
5033                 if (encoder->pre_pll_enable)
5034                         encoder->pre_pll_enable(encoder);
5035
5036         if (!is_dsi) {
5037                 if (IS_CHERRYVIEW(dev))
5038                         chv_enable_pll(intel_crtc, intel_crtc->config);
5039                 else
5040                         vlv_enable_pll(intel_crtc, intel_crtc->config);
5041         }
5042
5043         for_each_encoder_on_crtc(dev, crtc, encoder)
5044                 if (encoder->pre_enable)
5045                         encoder->pre_enable(encoder);
5046
5047         i9xx_pfit_enable(intel_crtc);
5048
5049         intel_crtc_load_lut(crtc);
5050
5051         intel_update_watermarks(crtc);
5052         intel_enable_pipe(intel_crtc);
5053
5054         assert_vblank_disabled(crtc);
5055         drm_crtc_vblank_on(crtc);
5056
5057         for_each_encoder_on_crtc(dev, crtc, encoder)
5058                 encoder->enable(encoder);
5059
5060         intel_crtc_enable_planes(crtc);
5061
5062         /* Underruns don't raise interrupts, so check manually. */
5063         i9xx_check_fifo_underruns(dev_priv);
5064 }
5065
5066 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5067 {
5068         struct drm_device *dev = crtc->base.dev;
5069         struct drm_i915_private *dev_priv = dev->dev_private;
5070
5071         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5072         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5073 }
5074
5075 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5076 {
5077         struct drm_device *dev = crtc->dev;
5078         struct drm_i915_private *dev_priv = to_i915(dev);
5079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5080         struct intel_encoder *encoder;
5081         int pipe = intel_crtc->pipe;
5082
5083         WARN_ON(!crtc->enabled);
5084
5085         if (intel_crtc->active)
5086                 return;
5087
5088         i9xx_set_pll_dividers(intel_crtc);
5089
5090         if (intel_crtc->config->has_dp_encoder)
5091                 intel_dp_set_m_n(intel_crtc);
5092
5093         intel_set_pipe_timings(intel_crtc);
5094
5095         i9xx_set_pipeconf(intel_crtc);
5096
5097         intel_crtc->active = true;
5098
5099         if (!IS_GEN2(dev))
5100                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5101
5102         for_each_encoder_on_crtc(dev, crtc, encoder)
5103                 if (encoder->pre_enable)
5104                         encoder->pre_enable(encoder);
5105
5106         i9xx_enable_pll(intel_crtc);
5107
5108         i9xx_pfit_enable(intel_crtc);
5109
5110         intel_crtc_load_lut(crtc);
5111
5112         intel_update_watermarks(crtc);
5113         intel_enable_pipe(intel_crtc);
5114
5115         assert_vblank_disabled(crtc);
5116         drm_crtc_vblank_on(crtc);
5117
5118         for_each_encoder_on_crtc(dev, crtc, encoder)
5119                 encoder->enable(encoder);
5120
5121         intel_crtc_enable_planes(crtc);
5122
5123         /*
5124          * Gen2 reports pipe underruns whenever all planes are disabled.
5125          * So don't enable underrun reporting before at least some planes
5126          * are enabled.
5127          * FIXME: Need to fix the logic to work when we turn off all planes
5128          * but leave the pipe running.
5129          */
5130         if (IS_GEN2(dev))
5131                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5132
5133         /* Underruns don't raise interrupts, so check manually. */
5134         i9xx_check_fifo_underruns(dev_priv);
5135 }
5136
5137 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5138 {
5139         struct drm_device *dev = crtc->base.dev;
5140         struct drm_i915_private *dev_priv = dev->dev_private;
5141
5142         if (!crtc->config->gmch_pfit.control)
5143                 return;
5144
5145         assert_pipe_disabled(dev_priv, crtc->pipe);
5146
5147         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5148                          I915_READ(PFIT_CONTROL));
5149         I915_WRITE(PFIT_CONTROL, 0);
5150 }
5151
5152 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5153 {
5154         struct drm_device *dev = crtc->dev;
5155         struct drm_i915_private *dev_priv = dev->dev_private;
5156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5157         struct intel_encoder *encoder;
5158         int pipe = intel_crtc->pipe;
5159
5160         if (!intel_crtc->active)
5161                 return;
5162
5163         /*
5164          * Gen2 reports pipe underruns whenever all planes are disabled.
5165          * So diasble underrun reporting before all the planes get disabled.
5166          * FIXME: Need to fix the logic to work when we turn off all planes
5167          * but leave the pipe running.
5168          */
5169         if (IS_GEN2(dev))
5170                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5171
5172         /*
5173          * Vblank time updates from the shadow to live plane control register
5174          * are blocked if the memory self-refresh mode is active at that
5175          * moment. So to make sure the plane gets truly disabled, disable
5176          * first the self-refresh mode. The self-refresh enable bit in turn
5177          * will be checked/applied by the HW only at the next frame start
5178          * event which is after the vblank start event, so we need to have a
5179          * wait-for-vblank between disabling the plane and the pipe.
5180          */
5181         intel_set_memory_cxsr(dev_priv, false);
5182         intel_crtc_disable_planes(crtc);
5183
5184         /*
5185          * On gen2 planes are double buffered but the pipe isn't, so we must
5186          * wait for planes to fully turn off before disabling the pipe.
5187          * We also need to wait on all gmch platforms because of the
5188          * self-refresh mode constraint explained above.
5189          */
5190         intel_wait_for_vblank(dev, pipe);
5191
5192         for_each_encoder_on_crtc(dev, crtc, encoder)
5193                 encoder->disable(encoder);
5194
5195         drm_crtc_vblank_off(crtc);
5196         assert_vblank_disabled(crtc);
5197
5198         intel_disable_pipe(intel_crtc);
5199
5200         i9xx_pfit_disable(intel_crtc);
5201
5202         for_each_encoder_on_crtc(dev, crtc, encoder)
5203                 if (encoder->post_disable)
5204                         encoder->post_disable(encoder);
5205
5206         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5207                 if (IS_CHERRYVIEW(dev))
5208                         chv_disable_pll(dev_priv, pipe);
5209                 else if (IS_VALLEYVIEW(dev))
5210                         vlv_disable_pll(dev_priv, pipe);
5211                 else
5212                         i9xx_disable_pll(intel_crtc);
5213         }
5214
5215         if (!IS_GEN2(dev))
5216                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5217
5218         intel_crtc->active = false;
5219         intel_update_watermarks(crtc);
5220
5221         mutex_lock(&dev->struct_mutex);
5222         intel_fbc_update(dev);
5223         mutex_unlock(&dev->struct_mutex);
5224 }
5225
5226 static void i9xx_crtc_off(struct drm_crtc *crtc)
5227 {
5228 }
5229
5230 /* Master function to enable/disable CRTC and corresponding power wells */
5231 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5232 {
5233         struct drm_device *dev = crtc->dev;
5234         struct drm_i915_private *dev_priv = dev->dev_private;
5235         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5236         enum intel_display_power_domain domain;
5237         unsigned long domains;
5238
5239         if (enable) {
5240                 if (!intel_crtc->active) {
5241                         domains = get_crtc_power_domains(crtc);
5242                         for_each_power_domain(domain, domains)
5243                                 intel_display_power_get(dev_priv, domain);
5244                         intel_crtc->enabled_power_domains = domains;
5245
5246                         dev_priv->display.crtc_enable(crtc);
5247                 }
5248         } else {
5249                 if (intel_crtc->active) {
5250                         dev_priv->display.crtc_disable(crtc);
5251
5252                         domains = intel_crtc->enabled_power_domains;
5253                         for_each_power_domain(domain, domains)
5254                                 intel_display_power_put(dev_priv, domain);
5255                         intel_crtc->enabled_power_domains = 0;
5256                 }
5257         }
5258 }
5259
5260 /**
5261  * Sets the power management mode of the pipe and plane.
5262  */
5263 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5264 {
5265         struct drm_device *dev = crtc->dev;
5266         struct intel_encoder *intel_encoder;
5267         bool enable = false;
5268
5269         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5270                 enable |= intel_encoder->connectors_active;
5271
5272         intel_crtc_control(crtc, enable);
5273 }
5274
5275 static void intel_crtc_disable(struct drm_crtc *crtc)
5276 {
5277         struct drm_device *dev = crtc->dev;
5278         struct drm_connector *connector;
5279         struct drm_i915_private *dev_priv = dev->dev_private;
5280
5281         /* crtc should still be enabled when we disable it. */
5282         WARN_ON(!crtc->enabled);
5283
5284         dev_priv->display.crtc_disable(crtc);
5285         dev_priv->display.off(crtc);
5286
5287         crtc->primary->funcs->disable_plane(crtc->primary);
5288
5289         /* Update computed state. */
5290         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5291                 if (!connector->encoder || !connector->encoder->crtc)
5292                         continue;
5293
5294                 if (connector->encoder->crtc != crtc)
5295                         continue;
5296
5297                 connector->dpms = DRM_MODE_DPMS_OFF;
5298                 to_intel_encoder(connector->encoder)->connectors_active = false;
5299         }
5300 }
5301
5302 void intel_encoder_destroy(struct drm_encoder *encoder)
5303 {
5304         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5305
5306         drm_encoder_cleanup(encoder);
5307         kfree(intel_encoder);
5308 }
5309
5310 /* Simple dpms helper for encoders with just one connector, no cloning and only
5311  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5312  * state of the entire output pipe. */
5313 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5314 {
5315         if (mode == DRM_MODE_DPMS_ON) {
5316                 encoder->connectors_active = true;
5317
5318                 intel_crtc_update_dpms(encoder->base.crtc);
5319         } else {
5320                 encoder->connectors_active = false;
5321
5322                 intel_crtc_update_dpms(encoder->base.crtc);
5323         }
5324 }
5325
5326 /* Cross check the actual hw state with our own modeset state tracking (and it's
5327  * internal consistency). */
5328 static void intel_connector_check_state(struct intel_connector *connector)
5329 {
5330         if (connector->get_hw_state(connector)) {
5331                 struct intel_encoder *encoder = connector->encoder;
5332                 struct drm_crtc *crtc;
5333                 bool encoder_enabled;
5334                 enum pipe pipe;
5335
5336                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5337                               connector->base.base.id,
5338                               connector->base.name);
5339
5340                 /* there is no real hw state for MST connectors */
5341                 if (connector->mst_port)
5342                         return;
5343
5344                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5345                      "wrong connector dpms state\n");
5346                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5347                      "active connector not linked to encoder\n");
5348
5349                 if (encoder) {
5350                         I915_STATE_WARN(!encoder->connectors_active,
5351                              "encoder->connectors_active not set\n");
5352
5353                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5354                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5355                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
5356                                 return;
5357
5358                         crtc = encoder->base.crtc;
5359
5360                         I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5361                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5362                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5363                              "encoder active on the wrong pipe\n");
5364                 }
5365         }
5366 }
5367
5368 /* Even simpler default implementation, if there's really no special case to
5369  * consider. */
5370 void intel_connector_dpms(struct drm_connector *connector, int mode)
5371 {
5372         /* All the simple cases only support two dpms states. */
5373         if (mode != DRM_MODE_DPMS_ON)
5374                 mode = DRM_MODE_DPMS_OFF;
5375
5376         if (mode == connector->dpms)
5377                 return;
5378
5379         connector->dpms = mode;
5380
5381         /* Only need to change hw state when actually enabled */
5382         if (connector->encoder)
5383                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5384
5385         intel_modeset_check_state(connector->dev);
5386 }
5387
5388 /* Simple connector->get_hw_state implementation for encoders that support only
5389  * one connector and no cloning and hence the encoder state determines the state
5390  * of the connector. */
5391 bool intel_connector_get_hw_state(struct intel_connector *connector)
5392 {
5393         enum pipe pipe = 0;
5394         struct intel_encoder *encoder = connector->encoder;
5395
5396         return encoder->get_hw_state(encoder, &pipe);
5397 }
5398
5399 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5400                                      struct intel_crtc_state *pipe_config)
5401 {
5402         struct drm_i915_private *dev_priv = dev->dev_private;
5403         struct intel_crtc *pipe_B_crtc =
5404                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5405
5406         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5407                       pipe_name(pipe), pipe_config->fdi_lanes);
5408         if (pipe_config->fdi_lanes > 4) {
5409                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5410                               pipe_name(pipe), pipe_config->fdi_lanes);
5411                 return false;
5412         }
5413
5414         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5415                 if (pipe_config->fdi_lanes > 2) {
5416                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5417                                       pipe_config->fdi_lanes);
5418                         return false;
5419                 } else {
5420                         return true;
5421                 }
5422         }
5423
5424         if (INTEL_INFO(dev)->num_pipes == 2)
5425                 return true;
5426
5427         /* Ivybridge 3 pipe is really complicated */
5428         switch (pipe) {
5429         case PIPE_A:
5430                 return true;
5431         case PIPE_B:
5432                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5433                     pipe_config->fdi_lanes > 2) {
5434                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5435                                       pipe_name(pipe), pipe_config->fdi_lanes);
5436                         return false;
5437                 }
5438                 return true;
5439         case PIPE_C:
5440                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5441                     pipe_B_crtc->config->fdi_lanes <= 2) {
5442                         if (pipe_config->fdi_lanes > 2) {
5443                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5444                                               pipe_name(pipe), pipe_config->fdi_lanes);
5445                                 return false;
5446                         }
5447                 } else {
5448                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5449                         return false;
5450                 }
5451                 return true;
5452         default:
5453                 BUG();
5454         }
5455 }
5456
5457 #define RETRY 1
5458 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5459                                        struct intel_crtc_state *pipe_config)
5460 {
5461         struct drm_device *dev = intel_crtc->base.dev;
5462         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5463         int lane, link_bw, fdi_dotclock;
5464         bool setup_ok, needs_recompute = false;
5465
5466 retry:
5467         /* FDI is a binary signal running at ~2.7GHz, encoding
5468          * each output octet as 10 bits. The actual frequency
5469          * is stored as a divider into a 100MHz clock, and the
5470          * mode pixel clock is stored in units of 1KHz.
5471          * Hence the bw of each lane in terms of the mode signal
5472          * is:
5473          */
5474         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5475
5476         fdi_dotclock = adjusted_mode->crtc_clock;
5477
5478         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5479                                            pipe_config->pipe_bpp);
5480
5481         pipe_config->fdi_lanes = lane;
5482
5483         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5484                                link_bw, &pipe_config->fdi_m_n);
5485
5486         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5487                                             intel_crtc->pipe, pipe_config);
5488         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5489                 pipe_config->pipe_bpp -= 2*3;
5490                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5491                               pipe_config->pipe_bpp);
5492                 needs_recompute = true;
5493                 pipe_config->bw_constrained = true;
5494
5495                 goto retry;
5496         }
5497
5498         if (needs_recompute)
5499                 return RETRY;
5500
5501         return setup_ok ? 0 : -EINVAL;
5502 }
5503
5504 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5505                                    struct intel_crtc_state *pipe_config)
5506 {
5507         pipe_config->ips_enabled = i915.enable_ips &&
5508                                    hsw_crtc_supports_ips(crtc) &&
5509                                    pipe_config->pipe_bpp <= 24;
5510 }
5511
5512 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5513                                      struct intel_crtc_state *pipe_config)
5514 {
5515         struct drm_device *dev = crtc->base.dev;
5516         struct drm_i915_private *dev_priv = dev->dev_private;
5517         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5518
5519         /* FIXME should check pixel clock limits on all platforms */
5520         if (INTEL_INFO(dev)->gen < 4) {
5521                 int clock_limit =
5522                         dev_priv->display.get_display_clock_speed(dev);
5523
5524                 /*
5525                  * Enable pixel doubling when the dot clock
5526                  * is > 90% of the (display) core speed.
5527                  *
5528                  * GDG double wide on either pipe,
5529                  * otherwise pipe A only.
5530                  */
5531                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5532                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5533                         clock_limit *= 2;
5534                         pipe_config->double_wide = true;
5535                 }
5536
5537                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5538                         return -EINVAL;
5539         }
5540
5541         /*
5542          * Pipe horizontal size must be even in:
5543          * - DVO ganged mode
5544          * - LVDS dual channel mode
5545          * - Double wide pipe
5546          */
5547         if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5548              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5549                 pipe_config->pipe_src_w &= ~1;
5550
5551         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5552          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5553          */
5554         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5555                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5556                 return -EINVAL;
5557
5558         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5559                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5560         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5561                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5562                  * for lvds. */
5563                 pipe_config->pipe_bpp = 8*3;
5564         }
5565
5566         if (HAS_IPS(dev))
5567                 hsw_compute_ips_config(crtc, pipe_config);
5568
5569         if (pipe_config->has_pch_encoder)
5570                 return ironlake_fdi_compute_config(crtc, pipe_config);
5571
5572         return 0;
5573 }
5574
5575 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5576 {
5577         struct drm_i915_private *dev_priv = dev->dev_private;
5578         u32 val;
5579         int divider;
5580
5581         /* FIXME: Punit isn't quite ready yet */
5582         if (IS_CHERRYVIEW(dev))
5583                 return 400000;
5584
5585         if (dev_priv->hpll_freq == 0)
5586                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5587
5588         mutex_lock(&dev_priv->dpio_lock);
5589         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5590         mutex_unlock(&dev_priv->dpio_lock);
5591
5592         divider = val & DISPLAY_FREQUENCY_VALUES;
5593
5594         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5595              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5596              "cdclk change in progress\n");
5597
5598         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5599 }
5600
5601 static int i945_get_display_clock_speed(struct drm_device *dev)
5602 {
5603         return 400000;
5604 }
5605
5606 static int i915_get_display_clock_speed(struct drm_device *dev)
5607 {
5608         return 333000;
5609 }
5610
5611 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5612 {
5613         return 200000;
5614 }
5615
5616 static int pnv_get_display_clock_speed(struct drm_device *dev)
5617 {
5618         u16 gcfgc = 0;
5619
5620         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5621
5622         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5624                 return 267000;
5625         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5626                 return 333000;
5627         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5628                 return 444000;
5629         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5630                 return 200000;
5631         default:
5632                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5633         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5634                 return 133000;
5635         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5636                 return 167000;
5637         }
5638 }
5639
5640 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5641 {
5642         u16 gcfgc = 0;
5643
5644         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5645
5646         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5647                 return 133000;
5648         else {
5649                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5650                 case GC_DISPLAY_CLOCK_333_MHZ:
5651                         return 333000;
5652                 default:
5653                 case GC_DISPLAY_CLOCK_190_200_MHZ:
5654                         return 190000;
5655                 }
5656         }
5657 }
5658
5659 static int i865_get_display_clock_speed(struct drm_device *dev)
5660 {
5661         return 266000;
5662 }
5663
5664 static int i855_get_display_clock_speed(struct drm_device *dev)
5665 {
5666         u16 hpllcc = 0;
5667         /* Assume that the hardware is in the high speed state.  This
5668          * should be the default.
5669          */
5670         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5671         case GC_CLOCK_133_200:
5672         case GC_CLOCK_100_200:
5673                 return 200000;
5674         case GC_CLOCK_166_250:
5675                 return 250000;
5676         case GC_CLOCK_100_133:
5677                 return 133000;
5678         }
5679
5680         /* Shouldn't happen */
5681         return 0;
5682 }
5683
5684 static int i830_get_display_clock_speed(struct drm_device *dev)
5685 {
5686         return 133000;
5687 }
5688
5689 static void
5690 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5691 {
5692         while (*num > DATA_LINK_M_N_MASK ||
5693                *den > DATA_LINK_M_N_MASK) {
5694                 *num >>= 1;
5695                 *den >>= 1;
5696         }
5697 }
5698
5699 static void compute_m_n(unsigned int m, unsigned int n,
5700                         uint32_t *ret_m, uint32_t *ret_n)
5701 {
5702         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5703         *ret_m = div_u64((uint64_t) m * *ret_n, n);
5704         intel_reduce_m_n_ratio(ret_m, ret_n);
5705 }
5706
5707 void
5708 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5709                        int pixel_clock, int link_clock,
5710                        struct intel_link_m_n *m_n)
5711 {
5712         m_n->tu = 64;
5713
5714         compute_m_n(bits_per_pixel * pixel_clock,
5715                     link_clock * nlanes * 8,
5716                     &m_n->gmch_m, &m_n->gmch_n);
5717
5718         compute_m_n(pixel_clock, link_clock,
5719                     &m_n->link_m, &m_n->link_n);
5720 }
5721
5722 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5723 {
5724         if (i915.panel_use_ssc >= 0)
5725                 return i915.panel_use_ssc != 0;
5726         return dev_priv->vbt.lvds_use_ssc
5727                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5728 }
5729
5730 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5731 {
5732         struct drm_device *dev = crtc->base.dev;
5733         struct drm_i915_private *dev_priv = dev->dev_private;
5734         int refclk;
5735
5736         if (IS_VALLEYVIEW(dev)) {
5737                 refclk = 100000;
5738         } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5739             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5740                 refclk = dev_priv->vbt.lvds_ssc_freq;
5741                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5742         } else if (!IS_GEN2(dev)) {
5743                 refclk = 96000;
5744         } else {
5745                 refclk = 48000;
5746         }
5747
5748         return refclk;
5749 }
5750
5751 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5752 {
5753         return (1 << dpll->n) << 16 | dpll->m2;
5754 }
5755
5756 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5757 {
5758         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5759 }
5760
5761 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5762                                      struct intel_crtc_state *crtc_state,
5763                                      intel_clock_t *reduced_clock)
5764 {
5765         struct drm_device *dev = crtc->base.dev;
5766         u32 fp, fp2 = 0;
5767
5768         if (IS_PINEVIEW(dev)) {
5769                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5770                 if (reduced_clock)
5771                         fp2 = pnv_dpll_compute_fp(reduced_clock);
5772         } else {
5773                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5774                 if (reduced_clock)
5775                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
5776         }
5777
5778         crtc_state->dpll_hw_state.fp0 = fp;
5779
5780         crtc->lowfreq_avail = false;
5781         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5782             reduced_clock && i915.powersave) {
5783                 crtc_state->dpll_hw_state.fp1 = fp2;
5784                 crtc->lowfreq_avail = true;
5785         } else {
5786                 crtc_state->dpll_hw_state.fp1 = fp;
5787         }
5788 }
5789
5790 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5791                 pipe)
5792 {
5793         u32 reg_val;
5794
5795         /*
5796          * PLLB opamp always calibrates to max value of 0x3f, force enable it
5797          * and set it to a reasonable value instead.
5798          */
5799         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5800         reg_val &= 0xffffff00;
5801         reg_val |= 0x00000030;
5802         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5803
5804         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5805         reg_val &= 0x8cffffff;
5806         reg_val = 0x8c000000;
5807         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5808
5809         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5810         reg_val &= 0xffffff00;
5811         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5812
5813         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5814         reg_val &= 0x00ffffff;
5815         reg_val |= 0xb0000000;
5816         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5817 }
5818
5819 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5820                                          struct intel_link_m_n *m_n)
5821 {
5822         struct drm_device *dev = crtc->base.dev;
5823         struct drm_i915_private *dev_priv = dev->dev_private;
5824         int pipe = crtc->pipe;
5825
5826         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5827         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5828         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5829         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5830 }
5831
5832 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5833                                          struct intel_link_m_n *m_n,
5834                                          struct intel_link_m_n *m2_n2)
5835 {
5836         struct drm_device *dev = crtc->base.dev;
5837         struct drm_i915_private *dev_priv = dev->dev_private;
5838         int pipe = crtc->pipe;
5839         enum transcoder transcoder = crtc->config->cpu_transcoder;
5840
5841         if (INTEL_INFO(dev)->gen >= 5) {
5842                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5843                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5844                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5845                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5846                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5847                  * for gen < 8) and if DRRS is supported (to make sure the
5848                  * registers are not unnecessarily accessed).
5849                  */
5850                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5851                         crtc->config->has_drrs) {
5852                         I915_WRITE(PIPE_DATA_M2(transcoder),
5853                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5854                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5855                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5856                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5857                 }
5858         } else {
5859                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5860                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5861                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5862                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5863         }
5864 }
5865
5866 void intel_dp_set_m_n(struct intel_crtc *crtc)
5867 {
5868         if (crtc->config->has_pch_encoder)
5869                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5870         else
5871                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5872                                                    &crtc->config->dp_m2_n2);
5873 }
5874
5875 static void vlv_update_pll(struct intel_crtc *crtc,
5876                            struct intel_crtc_state *pipe_config)
5877 {
5878         u32 dpll, dpll_md;
5879
5880         /*
5881          * Enable DPIO clock input. We should never disable the reference
5882          * clock for pipe B, since VGA hotplug / manual detection depends
5883          * on it.
5884          */
5885         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5886                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5887         /* We should never disable this, set it here for state tracking */
5888         if (crtc->pipe == PIPE_B)
5889                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5890         dpll |= DPLL_VCO_ENABLE;
5891         pipe_config->dpll_hw_state.dpll = dpll;
5892
5893         dpll_md = (pipe_config->pixel_multiplier - 1)
5894                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5895         pipe_config->dpll_hw_state.dpll_md = dpll_md;
5896 }
5897
5898 static void vlv_prepare_pll(struct intel_crtc *crtc,
5899                             const struct intel_crtc_state *pipe_config)
5900 {
5901         struct drm_device *dev = crtc->base.dev;
5902         struct drm_i915_private *dev_priv = dev->dev_private;
5903         int pipe = crtc->pipe;
5904         u32 mdiv;
5905         u32 bestn, bestm1, bestm2, bestp1, bestp2;
5906         u32 coreclk, reg_val;
5907
5908         mutex_lock(&dev_priv->dpio_lock);
5909
5910         bestn = pipe_config->dpll.n;
5911         bestm1 = pipe_config->dpll.m1;
5912         bestm2 = pipe_config->dpll.m2;
5913         bestp1 = pipe_config->dpll.p1;
5914         bestp2 = pipe_config->dpll.p2;
5915
5916         /* See eDP HDMI DPIO driver vbios notes doc */
5917
5918         /* PLL B needs special handling */
5919         if (pipe == PIPE_B)
5920                 vlv_pllb_recal_opamp(dev_priv, pipe);
5921
5922         /* Set up Tx target for periodic Rcomp update */
5923         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5924
5925         /* Disable target IRef on PLL */
5926         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5927         reg_val &= 0x00ffffff;
5928         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5929
5930         /* Disable fast lock */
5931         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5932
5933         /* Set idtafcrecal before PLL is enabled */
5934         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5935         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5936         mdiv |= ((bestn << DPIO_N_SHIFT));
5937         mdiv |= (1 << DPIO_K_SHIFT);
5938
5939         /*
5940          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5941          * but we don't support that).
5942          * Note: don't use the DAC post divider as it seems unstable.
5943          */
5944         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5945         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5946
5947         mdiv |= DPIO_ENABLE_CALIBRATION;
5948         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5949
5950         /* Set HBR and RBR LPF coefficients */
5951         if (pipe_config->port_clock == 162000 ||
5952             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5953             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5954                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5955                                  0x009f0003);
5956         else
5957                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5958                                  0x00d0000f);
5959
5960         if (pipe_config->has_dp_encoder) {
5961                 /* Use SSC source */
5962                 if (pipe == PIPE_A)
5963                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5964                                          0x0df40000);
5965                 else
5966                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5967                                          0x0df70000);
5968         } else { /* HDMI or VGA */
5969                 /* Use bend source */
5970                 if (pipe == PIPE_A)
5971                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5972                                          0x0df70000);
5973                 else
5974                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5975                                          0x0df40000);
5976         }
5977
5978         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5979         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5980         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5981             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5982                 coreclk |= 0x01000000;
5983         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5984
5985         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5986         mutex_unlock(&dev_priv->dpio_lock);
5987 }
5988
5989 static void chv_update_pll(struct intel_crtc *crtc,
5990                            struct intel_crtc_state *pipe_config)
5991 {
5992         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5993                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5994                 DPLL_VCO_ENABLE;
5995         if (crtc->pipe != PIPE_A)
5996                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5997
5998         pipe_config->dpll_hw_state.dpll_md =
5999                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6000 }
6001
6002 static void chv_prepare_pll(struct intel_crtc *crtc,
6003                             const struct intel_crtc_state *pipe_config)
6004 {
6005         struct drm_device *dev = crtc->base.dev;
6006         struct drm_i915_private *dev_priv = dev->dev_private;
6007         int pipe = crtc->pipe;
6008         int dpll_reg = DPLL(crtc->pipe);
6009         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6010         u32 loopfilter, intcoeff;
6011         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6012         int refclk;
6013
6014         bestn = pipe_config->dpll.n;
6015         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6016         bestm1 = pipe_config->dpll.m1;
6017         bestm2 = pipe_config->dpll.m2 >> 22;
6018         bestp1 = pipe_config->dpll.p1;
6019         bestp2 = pipe_config->dpll.p2;
6020
6021         /*
6022          * Enable Refclk and SSC
6023          */
6024         I915_WRITE(dpll_reg,
6025                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6026
6027         mutex_lock(&dev_priv->dpio_lock);
6028
6029         /* p1 and p2 divider */
6030         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6031                         5 << DPIO_CHV_S1_DIV_SHIFT |
6032                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6033                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6034                         1 << DPIO_CHV_K_DIV_SHIFT);
6035
6036         /* Feedback post-divider - m2 */
6037         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6038
6039         /* Feedback refclk divider - n and m1 */
6040         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6041                         DPIO_CHV_M1_DIV_BY_2 |
6042                         1 << DPIO_CHV_N_DIV_SHIFT);
6043
6044         /* M2 fraction division */
6045         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6046
6047         /* M2 fraction division enable */
6048         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6049                        DPIO_CHV_FRAC_DIV_EN |
6050                        (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6051
6052         /* Loop filter */
6053         refclk = i9xx_get_refclk(crtc, 0);
6054         loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6055                 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6056         if (refclk == 100000)
6057                 intcoeff = 11;
6058         else if (refclk == 38400)
6059                 intcoeff = 10;
6060         else
6061                 intcoeff = 9;
6062         loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6063         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6064
6065         /* AFC Recal */
6066         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6067                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6068                         DPIO_AFC_RECAL);
6069
6070         mutex_unlock(&dev_priv->dpio_lock);
6071 }
6072
6073 /**
6074  * vlv_force_pll_on - forcibly enable just the PLL
6075  * @dev_priv: i915 private structure
6076  * @pipe: pipe PLL to enable
6077  * @dpll: PLL configuration
6078  *
6079  * Enable the PLL for @pipe using the supplied @dpll config. To be used
6080  * in cases where we need the PLL enabled even when @pipe is not going to
6081  * be enabled.
6082  */
6083 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6084                       const struct dpll *dpll)
6085 {
6086         struct intel_crtc *crtc =
6087                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6088         struct intel_crtc_state pipe_config = {
6089                 .pixel_multiplier = 1,
6090                 .dpll = *dpll,
6091         };
6092
6093         if (IS_CHERRYVIEW(dev)) {
6094                 chv_update_pll(crtc, &pipe_config);
6095                 chv_prepare_pll(crtc, &pipe_config);
6096                 chv_enable_pll(crtc, &pipe_config);
6097         } else {
6098                 vlv_update_pll(crtc, &pipe_config);
6099                 vlv_prepare_pll(crtc, &pipe_config);
6100                 vlv_enable_pll(crtc, &pipe_config);
6101         }
6102 }
6103
6104 /**
6105  * vlv_force_pll_off - forcibly disable just the PLL
6106  * @dev_priv: i915 private structure
6107  * @pipe: pipe PLL to disable
6108  *
6109  * Disable the PLL for @pipe. To be used in cases where we need
6110  * the PLL enabled even when @pipe is not going to be enabled.
6111  */
6112 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6113 {
6114         if (IS_CHERRYVIEW(dev))
6115                 chv_disable_pll(to_i915(dev), pipe);
6116         else
6117                 vlv_disable_pll(to_i915(dev), pipe);
6118 }
6119
6120 static void i9xx_update_pll(struct intel_crtc *crtc,
6121                             struct intel_crtc_state *crtc_state,
6122                             intel_clock_t *reduced_clock,
6123                             int num_connectors)
6124 {
6125         struct drm_device *dev = crtc->base.dev;
6126         struct drm_i915_private *dev_priv = dev->dev_private;
6127         u32 dpll;
6128         bool is_sdvo;
6129         struct dpll *clock = &crtc_state->dpll;
6130
6131         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6132
6133         is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6134                 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6135
6136         dpll = DPLL_VGA_MODE_DIS;
6137
6138         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6139                 dpll |= DPLLB_MODE_LVDS;
6140         else
6141                 dpll |= DPLLB_MODE_DAC_SERIAL;
6142
6143         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6144                 dpll |= (crtc_state->pixel_multiplier - 1)
6145                         << SDVO_MULTIPLIER_SHIFT_HIRES;
6146         }
6147
6148         if (is_sdvo)
6149                 dpll |= DPLL_SDVO_HIGH_SPEED;
6150
6151         if (crtc_state->has_dp_encoder)
6152                 dpll |= DPLL_SDVO_HIGH_SPEED;
6153
6154         /* compute bitmask from p1 value */
6155         if (IS_PINEVIEW(dev))
6156                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6157         else {
6158                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6159                 if (IS_G4X(dev) && reduced_clock)
6160                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6161         }
6162         switch (clock->p2) {
6163         case 5:
6164                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6165                 break;
6166         case 7:
6167                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6168                 break;
6169         case 10:
6170                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6171                 break;
6172         case 14:
6173                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6174                 break;
6175         }
6176         if (INTEL_INFO(dev)->gen >= 4)
6177                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6178
6179         if (crtc_state->sdvo_tv_clock)
6180                 dpll |= PLL_REF_INPUT_TVCLKINBC;
6181         else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6182                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6183                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6184         else
6185                 dpll |= PLL_REF_INPUT_DREFCLK;
6186
6187         dpll |= DPLL_VCO_ENABLE;
6188         crtc_state->dpll_hw_state.dpll = dpll;
6189
6190         if (INTEL_INFO(dev)->gen >= 4) {
6191                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6192                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6193                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6194         }
6195 }
6196
6197 static void i8xx_update_pll(struct intel_crtc *crtc,
6198                             struct intel_crtc_state *crtc_state,
6199                             intel_clock_t *reduced_clock,
6200                             int num_connectors)
6201 {
6202         struct drm_device *dev = crtc->base.dev;
6203         struct drm_i915_private *dev_priv = dev->dev_private;
6204         u32 dpll;
6205         struct dpll *clock = &crtc_state->dpll;
6206
6207         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6208
6209         dpll = DPLL_VGA_MODE_DIS;
6210
6211         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6212                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6213         } else {
6214                 if (clock->p1 == 2)
6215                         dpll |= PLL_P1_DIVIDE_BY_TWO;
6216                 else
6217                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6218                 if (clock->p2 == 4)
6219                         dpll |= PLL_P2_DIVIDE_BY_4;
6220         }
6221
6222         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6223                 dpll |= DPLL_DVO_2X_MODE;
6224
6225         if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6226                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6227                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6228         else
6229                 dpll |= PLL_REF_INPUT_DREFCLK;
6230
6231         dpll |= DPLL_VCO_ENABLE;
6232         crtc_state->dpll_hw_state.dpll = dpll;
6233 }
6234
6235 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6236 {
6237         struct drm_device *dev = intel_crtc->base.dev;
6238         struct drm_i915_private *dev_priv = dev->dev_private;
6239         enum pipe pipe = intel_crtc->pipe;
6240         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6241         struct drm_display_mode *adjusted_mode =
6242                 &intel_crtc->config->base.adjusted_mode;
6243         uint32_t crtc_vtotal, crtc_vblank_end;
6244         int vsyncshift = 0;
6245
6246         /* We need to be careful not to changed the adjusted mode, for otherwise
6247          * the hw state checker will get angry at the mismatch. */
6248         crtc_vtotal = adjusted_mode->crtc_vtotal;
6249         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6250
6251         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6252                 /* the chip adds 2 halflines automatically */
6253                 crtc_vtotal -= 1;
6254                 crtc_vblank_end -= 1;
6255
6256                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6257                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6258                 else
6259                         vsyncshift = adjusted_mode->crtc_hsync_start -
6260                                 adjusted_mode->crtc_htotal / 2;
6261                 if (vsyncshift < 0)
6262                         vsyncshift += adjusted_mode->crtc_htotal;
6263         }
6264
6265         if (INTEL_INFO(dev)->gen > 3)
6266                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6267
6268         I915_WRITE(HTOTAL(cpu_transcoder),
6269                    (adjusted_mode->crtc_hdisplay - 1) |
6270                    ((adjusted_mode->crtc_htotal - 1) << 16));
6271         I915_WRITE(HBLANK(cpu_transcoder),
6272                    (adjusted_mode->crtc_hblank_start - 1) |
6273                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
6274         I915_WRITE(HSYNC(cpu_transcoder),
6275                    (adjusted_mode->crtc_hsync_start - 1) |
6276                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
6277
6278         I915_WRITE(VTOTAL(cpu_transcoder),
6279                    (adjusted_mode->crtc_vdisplay - 1) |
6280                    ((crtc_vtotal - 1) << 16));
6281         I915_WRITE(VBLANK(cpu_transcoder),
6282                    (adjusted_mode->crtc_vblank_start - 1) |
6283                    ((crtc_vblank_end - 1) << 16));
6284         I915_WRITE(VSYNC(cpu_transcoder),
6285                    (adjusted_mode->crtc_vsync_start - 1) |
6286                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
6287
6288         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6289          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6290          * documented on the DDI_FUNC_CTL register description, EDP Input Select
6291          * bits. */
6292         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6293             (pipe == PIPE_B || pipe == PIPE_C))
6294                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6295
6296         /* pipesrc controls the size that is scaled from, which should
6297          * always be the user's requested size.
6298          */
6299         I915_WRITE(PIPESRC(pipe),
6300                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
6301                    (intel_crtc->config->pipe_src_h - 1));
6302 }
6303
6304 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6305                                    struct intel_crtc_state *pipe_config)
6306 {
6307         struct drm_device *dev = crtc->base.dev;
6308         struct drm_i915_private *dev_priv = dev->dev_private;
6309         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6310         uint32_t tmp;
6311
6312         tmp = I915_READ(HTOTAL(cpu_transcoder));
6313         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6314         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6315         tmp = I915_READ(HBLANK(cpu_transcoder));
6316         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6317         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6318         tmp = I915_READ(HSYNC(cpu_transcoder));
6319         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6320         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6321
6322         tmp = I915_READ(VTOTAL(cpu_transcoder));
6323         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6324         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6325         tmp = I915_READ(VBLANK(cpu_transcoder));
6326         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6327         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6328         tmp = I915_READ(VSYNC(cpu_transcoder));
6329         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6330         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6331
6332         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6333                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6334                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6335                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6336         }
6337
6338         tmp = I915_READ(PIPESRC(crtc->pipe));
6339         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6340         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6341
6342         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6343         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6344 }
6345
6346 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6347                                  struct intel_crtc_state *pipe_config)
6348 {
6349         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6350         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6351         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6352         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6353
6354         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6355         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6356         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6357         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6358
6359         mode->flags = pipe_config->base.adjusted_mode.flags;
6360
6361         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6362         mode->flags |= pipe_config->base.adjusted_mode.flags;
6363 }
6364
6365 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6366 {
6367         struct drm_device *dev = intel_crtc->base.dev;
6368         struct drm_i915_private *dev_priv = dev->dev_private;
6369         uint32_t pipeconf;
6370
6371         pipeconf = 0;
6372
6373         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6374             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6375                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6376
6377         if (intel_crtc->config->double_wide)
6378                 pipeconf |= PIPECONF_DOUBLE_WIDE;
6379
6380         /* only g4x and later have fancy bpc/dither controls */
6381         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6382                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6383                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6384                         pipeconf |= PIPECONF_DITHER_EN |
6385                                     PIPECONF_DITHER_TYPE_SP;
6386
6387                 switch (intel_crtc->config->pipe_bpp) {
6388                 case 18:
6389                         pipeconf |= PIPECONF_6BPC;
6390                         break;
6391                 case 24:
6392                         pipeconf |= PIPECONF_8BPC;
6393                         break;
6394                 case 30:
6395                         pipeconf |= PIPECONF_10BPC;
6396                         break;
6397                 default:
6398                         /* Case prevented by intel_choose_pipe_bpp_dither. */
6399                         BUG();
6400                 }
6401         }
6402
6403         if (HAS_PIPE_CXSR(dev)) {
6404                 if (intel_crtc->lowfreq_avail) {
6405                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6406                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6407                 } else {
6408                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6409                 }
6410         }
6411
6412         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6413                 if (INTEL_INFO(dev)->gen < 4 ||
6414                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6415                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6416                 else
6417                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6418         } else
6419                 pipeconf |= PIPECONF_PROGRESSIVE;
6420
6421         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6422                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6423
6424         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6425         POSTING_READ(PIPECONF(intel_crtc->pipe));
6426 }
6427
6428 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6429                                    struct intel_crtc_state *crtc_state)
6430 {
6431         struct drm_device *dev = crtc->base.dev;
6432         struct drm_i915_private *dev_priv = dev->dev_private;
6433         int refclk, num_connectors = 0;
6434         intel_clock_t clock, reduced_clock;
6435         bool ok, has_reduced_clock = false;
6436         bool is_lvds = false, is_dsi = false;
6437         struct intel_encoder *encoder;
6438         const intel_limit_t *limit;
6439
6440         for_each_intel_encoder(dev, encoder) {
6441                 if (encoder->new_crtc != crtc)
6442                         continue;
6443
6444                 switch (encoder->type) {
6445                 case INTEL_OUTPUT_LVDS:
6446                         is_lvds = true;
6447                         break;
6448                 case INTEL_OUTPUT_DSI:
6449                         is_dsi = true;
6450                         break;
6451                 default:
6452                         break;
6453                 }
6454
6455                 num_connectors++;
6456         }
6457
6458         if (is_dsi)
6459                 return 0;
6460
6461         if (!crtc_state->clock_set) {
6462                 refclk = i9xx_get_refclk(crtc, num_connectors);
6463
6464                 /*
6465                  * Returns a set of divisors for the desired target clock with
6466                  * the given refclk, or FALSE.  The returned values represent
6467                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6468                  * 2) / p1 / p2.
6469                  */
6470                 limit = intel_limit(crtc, refclk);
6471                 ok = dev_priv->display.find_dpll(limit, crtc,
6472                                                  crtc_state->port_clock,
6473                                                  refclk, NULL, &clock);
6474                 if (!ok) {
6475                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
6476                         return -EINVAL;
6477                 }
6478
6479                 if (is_lvds && dev_priv->lvds_downclock_avail) {
6480                         /*
6481                          * Ensure we match the reduced clock's P to the target
6482                          * clock.  If the clocks don't match, we can't switch
6483                          * the display clock by using the FP0/FP1. In such case
6484                          * we will disable the LVDS downclock feature.
6485                          */
6486                         has_reduced_clock =
6487                                 dev_priv->display.find_dpll(limit, crtc,
6488                                                             dev_priv->lvds_downclock,
6489                                                             refclk, &clock,
6490                                                             &reduced_clock);
6491                 }
6492                 /* Compat-code for transition, will disappear. */
6493                 crtc_state->dpll.n = clock.n;
6494                 crtc_state->dpll.m1 = clock.m1;
6495                 crtc_state->dpll.m2 = clock.m2;
6496                 crtc_state->dpll.p1 = clock.p1;
6497                 crtc_state->dpll.p2 = clock.p2;
6498         }
6499
6500         if (IS_GEN2(dev)) {
6501                 i8xx_update_pll(crtc, crtc_state,
6502                                 has_reduced_clock ? &reduced_clock : NULL,
6503                                 num_connectors);
6504         } else if (IS_CHERRYVIEW(dev)) {
6505                 chv_update_pll(crtc, crtc_state);
6506         } else if (IS_VALLEYVIEW(dev)) {
6507                 vlv_update_pll(crtc, crtc_state);
6508         } else {
6509                 i9xx_update_pll(crtc, crtc_state,
6510                                 has_reduced_clock ? &reduced_clock : NULL,
6511                                 num_connectors);
6512         }
6513
6514         return 0;
6515 }
6516
6517 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6518                                  struct intel_crtc_state *pipe_config)
6519 {
6520         struct drm_device *dev = crtc->base.dev;
6521         struct drm_i915_private *dev_priv = dev->dev_private;
6522         uint32_t tmp;
6523
6524         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6525                 return;
6526
6527         tmp = I915_READ(PFIT_CONTROL);
6528         if (!(tmp & PFIT_ENABLE))
6529                 return;
6530
6531         /* Check whether the pfit is attached to our pipe. */
6532         if (INTEL_INFO(dev)->gen < 4) {
6533                 if (crtc->pipe != PIPE_B)
6534                         return;
6535         } else {
6536                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6537                         return;
6538         }
6539
6540         pipe_config->gmch_pfit.control = tmp;
6541         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6542         if (INTEL_INFO(dev)->gen < 5)
6543                 pipe_config->gmch_pfit.lvds_border_bits =
6544                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6545 }
6546
6547 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6548                                struct intel_crtc_state *pipe_config)
6549 {
6550         struct drm_device *dev = crtc->base.dev;
6551         struct drm_i915_private *dev_priv = dev->dev_private;
6552         int pipe = pipe_config->cpu_transcoder;
6553         intel_clock_t clock;
6554         u32 mdiv;
6555         int refclk = 100000;
6556
6557         /* In case of MIPI DPLL will not even be used */
6558         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6559                 return;
6560
6561         mutex_lock(&dev_priv->dpio_lock);
6562         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6563         mutex_unlock(&dev_priv->dpio_lock);
6564
6565         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6566         clock.m2 = mdiv & DPIO_M2DIV_MASK;
6567         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6568         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6569         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6570
6571         vlv_clock(refclk, &clock);
6572
6573         /* clock.dot is the fast clock */
6574         pipe_config->port_clock = clock.dot / 5;
6575 }
6576
6577 static void
6578 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6579                               struct intel_initial_plane_config *plane_config)
6580 {
6581         struct drm_device *dev = crtc->base.dev;
6582         struct drm_i915_private *dev_priv = dev->dev_private;
6583         u32 val, base, offset;
6584         int pipe = crtc->pipe, plane = crtc->plane;
6585         int fourcc, pixel_format;
6586         int aligned_height;
6587         struct drm_framebuffer *fb;
6588         struct intel_framebuffer *intel_fb;
6589
6590         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6591         if (!intel_fb) {
6592                 DRM_DEBUG_KMS("failed to alloc fb\n");
6593                 return;
6594         }
6595
6596         fb = &intel_fb->base;
6597
6598         val = I915_READ(DSPCNTR(plane));
6599
6600         if (INTEL_INFO(dev)->gen >= 4)
6601                 if (val & DISPPLANE_TILED)
6602                         plane_config->tiling = I915_TILING_X;
6603
6604         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6605         fourcc = i9xx_format_to_fourcc(pixel_format);
6606         fb->pixel_format = fourcc;
6607         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6608
6609         if (INTEL_INFO(dev)->gen >= 4) {
6610                 if (plane_config->tiling)
6611                         offset = I915_READ(DSPTILEOFF(plane));
6612                 else
6613                         offset = I915_READ(DSPLINOFF(plane));
6614                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6615         } else {
6616                 base = I915_READ(DSPADDR(plane));
6617         }
6618         plane_config->base = base;
6619
6620         val = I915_READ(PIPESRC(pipe));
6621         fb->width = ((val >> 16) & 0xfff) + 1;
6622         fb->height = ((val >> 0) & 0xfff) + 1;
6623
6624         val = I915_READ(DSPSTRIDE(pipe));
6625         fb->pitches[0] = val & 0xffffffc0;
6626
6627         aligned_height = intel_fb_align_height(dev, fb->height,
6628                                                plane_config->tiling);
6629
6630         plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
6631
6632         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6633                       pipe_name(pipe), plane, fb->width, fb->height,
6634                       fb->bits_per_pixel, base, fb->pitches[0],
6635                       plane_config->size);
6636
6637         crtc->base.primary->fb = fb;
6638 }
6639
6640 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6641                                struct intel_crtc_state *pipe_config)
6642 {
6643         struct drm_device *dev = crtc->base.dev;
6644         struct drm_i915_private *dev_priv = dev->dev_private;
6645         int pipe = pipe_config->cpu_transcoder;
6646         enum dpio_channel port = vlv_pipe_to_channel(pipe);
6647         intel_clock_t clock;
6648         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6649         int refclk = 100000;
6650
6651         mutex_lock(&dev_priv->dpio_lock);
6652         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6653         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6654         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6655         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6656         mutex_unlock(&dev_priv->dpio_lock);
6657
6658         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6659         clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6660         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6661         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6662         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6663
6664         chv_clock(refclk, &clock);
6665
6666         /* clock.dot is the fast clock */
6667         pipe_config->port_clock = clock.dot / 5;
6668 }
6669
6670 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6671                                  struct intel_crtc_state *pipe_config)
6672 {
6673         struct drm_device *dev = crtc->base.dev;
6674         struct drm_i915_private *dev_priv = dev->dev_private;
6675         uint32_t tmp;
6676
6677         if (!intel_display_power_is_enabled(dev_priv,
6678                                             POWER_DOMAIN_PIPE(crtc->pipe)))
6679                 return false;
6680
6681         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6682         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6683
6684         tmp = I915_READ(PIPECONF(crtc->pipe));
6685         if (!(tmp & PIPECONF_ENABLE))
6686                 return false;
6687
6688         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6689                 switch (tmp & PIPECONF_BPC_MASK) {
6690                 case PIPECONF_6BPC:
6691                         pipe_config->pipe_bpp = 18;
6692                         break;
6693                 case PIPECONF_8BPC:
6694                         pipe_config->pipe_bpp = 24;
6695                         break;
6696                 case PIPECONF_10BPC:
6697                         pipe_config->pipe_bpp = 30;
6698                         break;
6699                 default:
6700                         break;
6701                 }
6702         }
6703
6704         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6705                 pipe_config->limited_color_range = true;
6706
6707         if (INTEL_INFO(dev)->gen < 4)
6708                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6709
6710         intel_get_pipe_timings(crtc, pipe_config);
6711
6712         i9xx_get_pfit_config(crtc, pipe_config);
6713
6714         if (INTEL_INFO(dev)->gen >= 4) {
6715                 tmp = I915_READ(DPLL_MD(crtc->pipe));
6716                 pipe_config->pixel_multiplier =
6717                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6718                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6719                 pipe_config->dpll_hw_state.dpll_md = tmp;
6720         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6721                 tmp = I915_READ(DPLL(crtc->pipe));
6722                 pipe_config->pixel_multiplier =
6723                         ((tmp & SDVO_MULTIPLIER_MASK)
6724                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6725         } else {
6726                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6727                  * port and will be fixed up in the encoder->get_config
6728                  * function. */
6729                 pipe_config->pixel_multiplier = 1;
6730         }
6731         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6732         if (!IS_VALLEYVIEW(dev)) {
6733                 /*
6734                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6735                  * on 830. Filter it out here so that we don't
6736                  * report errors due to that.
6737                  */
6738                 if (IS_I830(dev))
6739                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6740
6741                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6742                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6743         } else {
6744                 /* Mask out read-only status bits. */
6745                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6746                                                      DPLL_PORTC_READY_MASK |
6747                                                      DPLL_PORTB_READY_MASK);
6748         }
6749
6750         if (IS_CHERRYVIEW(dev))
6751                 chv_crtc_clock_get(crtc, pipe_config);
6752         else if (IS_VALLEYVIEW(dev))
6753                 vlv_crtc_clock_get(crtc, pipe_config);
6754         else
6755                 i9xx_crtc_clock_get(crtc, pipe_config);
6756
6757         return true;
6758 }
6759
6760 static void ironlake_init_pch_refclk(struct drm_device *dev)
6761 {
6762         struct drm_i915_private *dev_priv = dev->dev_private;
6763         struct intel_encoder *encoder;
6764         u32 val, final;
6765         bool has_lvds = false;
6766         bool has_cpu_edp = false;
6767         bool has_panel = false;
6768         bool has_ck505 = false;
6769         bool can_ssc = false;
6770
6771         /* We need to take the global config into account */
6772         for_each_intel_encoder(dev, encoder) {
6773                 switch (encoder->type) {
6774                 case INTEL_OUTPUT_LVDS:
6775                         has_panel = true;
6776                         has_lvds = true;
6777                         break;
6778                 case INTEL_OUTPUT_EDP:
6779                         has_panel = true;
6780                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6781                                 has_cpu_edp = true;
6782                         break;
6783                 default:
6784                         break;
6785                 }
6786         }
6787
6788         if (HAS_PCH_IBX(dev)) {
6789                 has_ck505 = dev_priv->vbt.display_clock_mode;
6790                 can_ssc = has_ck505;
6791         } else {
6792                 has_ck505 = false;
6793                 can_ssc = true;
6794         }
6795
6796         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6797                       has_panel, has_lvds, has_ck505);
6798
6799         /* Ironlake: try to setup display ref clock before DPLL
6800          * enabling. This is only under driver's control after
6801          * PCH B stepping, previous chipset stepping should be
6802          * ignoring this setting.
6803          */
6804         val = I915_READ(PCH_DREF_CONTROL);
6805
6806         /* As we must carefully and slowly disable/enable each source in turn,
6807          * compute the final state we want first and check if we need to
6808          * make any changes at all.
6809          */
6810         final = val;
6811         final &= ~DREF_NONSPREAD_SOURCE_MASK;
6812         if (has_ck505)
6813                 final |= DREF_NONSPREAD_CK505_ENABLE;
6814         else
6815                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6816
6817         final &= ~DREF_SSC_SOURCE_MASK;
6818         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6819         final &= ~DREF_SSC1_ENABLE;
6820
6821         if (has_panel) {
6822                 final |= DREF_SSC_SOURCE_ENABLE;
6823
6824                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6825                         final |= DREF_SSC1_ENABLE;
6826
6827                 if (has_cpu_edp) {
6828                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
6829                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6830                         else
6831                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6832                 } else
6833                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6834         } else {
6835                 final |= DREF_SSC_SOURCE_DISABLE;
6836                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6837         }
6838
6839         if (final == val)
6840                 return;
6841
6842         /* Always enable nonspread source */
6843         val &= ~DREF_NONSPREAD_SOURCE_MASK;
6844
6845         if (has_ck505)
6846                 val |= DREF_NONSPREAD_CK505_ENABLE;
6847         else
6848                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6849
6850         if (has_panel) {
6851                 val &= ~DREF_SSC_SOURCE_MASK;
6852                 val |= DREF_SSC_SOURCE_ENABLE;
6853
6854                 /* SSC must be turned on before enabling the CPU output  */
6855                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6856                         DRM_DEBUG_KMS("Using SSC on panel\n");
6857                         val |= DREF_SSC1_ENABLE;
6858                 } else
6859                         val &= ~DREF_SSC1_ENABLE;
6860
6861                 /* Get SSC going before enabling the outputs */
6862                 I915_WRITE(PCH_DREF_CONTROL, val);
6863                 POSTING_READ(PCH_DREF_CONTROL);
6864                 udelay(200);
6865
6866                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6867
6868                 /* Enable CPU source on CPU attached eDP */
6869                 if (has_cpu_edp) {
6870                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6871                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
6872                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6873                         } else
6874                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6875                 } else
6876                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6877
6878                 I915_WRITE(PCH_DREF_CONTROL, val);
6879                 POSTING_READ(PCH_DREF_CONTROL);
6880                 udelay(200);
6881         } else {
6882                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6883
6884                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6885
6886                 /* Turn off CPU output */
6887                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6888
6889                 I915_WRITE(PCH_DREF_CONTROL, val);
6890                 POSTING_READ(PCH_DREF_CONTROL);
6891                 udelay(200);
6892
6893                 /* Turn off the SSC source */
6894                 val &= ~DREF_SSC_SOURCE_MASK;
6895                 val |= DREF_SSC_SOURCE_DISABLE;
6896
6897                 /* Turn off SSC1 */
6898                 val &= ~DREF_SSC1_ENABLE;
6899
6900                 I915_WRITE(PCH_DREF_CONTROL, val);
6901                 POSTING_READ(PCH_DREF_CONTROL);
6902                 udelay(200);
6903         }
6904
6905         BUG_ON(val != final);
6906 }
6907
6908 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6909 {
6910         uint32_t tmp;
6911
6912         tmp = I915_READ(SOUTH_CHICKEN2);
6913         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6914         I915_WRITE(SOUTH_CHICKEN2, tmp);
6915
6916         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6917                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6918                 DRM_ERROR("FDI mPHY reset assert timeout\n");
6919
6920         tmp = I915_READ(SOUTH_CHICKEN2);
6921         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6922         I915_WRITE(SOUTH_CHICKEN2, tmp);
6923
6924         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6925                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6926                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6927 }
6928
6929 /* WaMPhyProgramming:hsw */
6930 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6931 {
6932         uint32_t tmp;
6933
6934         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6935         tmp &= ~(0xFF << 24);
6936         tmp |= (0x12 << 24);
6937         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6938
6939         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6940         tmp |= (1 << 11);
6941         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6942
6943         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6944         tmp |= (1 << 11);
6945         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6946
6947         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6948         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6949         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6950
6951         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6952         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6953         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6954
6955         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6956         tmp &= ~(7 << 13);
6957         tmp |= (5 << 13);
6958         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6959
6960         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6961         tmp &= ~(7 << 13);
6962         tmp |= (5 << 13);
6963         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6964
6965         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6966         tmp &= ~0xFF;
6967         tmp |= 0x1C;
6968         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6969
6970         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6971         tmp &= ~0xFF;
6972         tmp |= 0x1C;
6973         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6974
6975         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6976         tmp &= ~(0xFF << 16);
6977         tmp |= (0x1C << 16);
6978         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6979
6980         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6981         tmp &= ~(0xFF << 16);
6982         tmp |= (0x1C << 16);
6983         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6984
6985         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6986         tmp |= (1 << 27);
6987         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6988
6989         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6990         tmp |= (1 << 27);
6991         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6992
6993         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6994         tmp &= ~(0xF << 28);
6995         tmp |= (4 << 28);
6996         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6997
6998         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6999         tmp &= ~(0xF << 28);
7000         tmp |= (4 << 28);
7001         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7002 }
7003
7004 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7005  * Programming" based on the parameters passed:
7006  * - Sequence to enable CLKOUT_DP
7007  * - Sequence to enable CLKOUT_DP without spread
7008  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7009  */
7010 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7011                                  bool with_fdi)
7012 {
7013         struct drm_i915_private *dev_priv = dev->dev_private;
7014         uint32_t reg, tmp;
7015
7016         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7017                 with_spread = true;
7018         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7019                  with_fdi, "LP PCH doesn't have FDI\n"))
7020                 with_fdi = false;
7021
7022         mutex_lock(&dev_priv->dpio_lock);
7023
7024         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7025         tmp &= ~SBI_SSCCTL_DISABLE;
7026         tmp |= SBI_SSCCTL_PATHALT;
7027         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7028
7029         udelay(24);
7030
7031         if (with_spread) {
7032                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7033                 tmp &= ~SBI_SSCCTL_PATHALT;
7034                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7035
7036                 if (with_fdi) {
7037                         lpt_reset_fdi_mphy(dev_priv);
7038                         lpt_program_fdi_mphy(dev_priv);
7039                 }
7040         }
7041
7042         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7043                SBI_GEN0 : SBI_DBUFF0;
7044         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7045         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7046         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7047
7048         mutex_unlock(&dev_priv->dpio_lock);
7049 }
7050
7051 /* Sequence to disable CLKOUT_DP */
7052 static void lpt_disable_clkout_dp(struct drm_device *dev)
7053 {
7054         struct drm_i915_private *dev_priv = dev->dev_private;
7055         uint32_t reg, tmp;
7056
7057         mutex_lock(&dev_priv->dpio_lock);
7058
7059         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7060                SBI_GEN0 : SBI_DBUFF0;
7061         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7062         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7063         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7064
7065         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7066         if (!(tmp & SBI_SSCCTL_DISABLE)) {
7067                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7068                         tmp |= SBI_SSCCTL_PATHALT;
7069                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070                         udelay(32);
7071                 }
7072                 tmp |= SBI_SSCCTL_DISABLE;
7073                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7074         }
7075
7076         mutex_unlock(&dev_priv->dpio_lock);
7077 }
7078
7079 static void lpt_init_pch_refclk(struct drm_device *dev)
7080 {
7081         struct intel_encoder *encoder;
7082         bool has_vga = false;
7083
7084         for_each_intel_encoder(dev, encoder) {
7085                 switch (encoder->type) {
7086                 case INTEL_OUTPUT_ANALOG:
7087                         has_vga = true;
7088                         break;
7089                 default:
7090                         break;
7091                 }
7092         }
7093
7094         if (has_vga)
7095                 lpt_enable_clkout_dp(dev, true, true);
7096         else
7097                 lpt_disable_clkout_dp(dev);
7098 }
7099
7100 /*
7101  * Initialize reference clocks when the driver loads
7102  */
7103 void intel_init_pch_refclk(struct drm_device *dev)
7104 {
7105         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7106                 ironlake_init_pch_refclk(dev);
7107         else if (HAS_PCH_LPT(dev))
7108                 lpt_init_pch_refclk(dev);
7109 }
7110
7111 static int ironlake_get_refclk(struct drm_crtc *crtc)
7112 {
7113         struct drm_device *dev = crtc->dev;
7114         struct drm_i915_private *dev_priv = dev->dev_private;
7115         struct intel_encoder *encoder;
7116         int num_connectors = 0;
7117         bool is_lvds = false;
7118
7119         for_each_intel_encoder(dev, encoder) {
7120                 if (encoder->new_crtc != to_intel_crtc(crtc))
7121                         continue;
7122
7123                 switch (encoder->type) {
7124                 case INTEL_OUTPUT_LVDS:
7125                         is_lvds = true;
7126                         break;
7127                 default:
7128                         break;
7129                 }
7130                 num_connectors++;
7131         }
7132
7133         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7134                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7135                               dev_priv->vbt.lvds_ssc_freq);
7136                 return dev_priv->vbt.lvds_ssc_freq;
7137         }
7138
7139         return 120000;
7140 }
7141
7142 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7143 {
7144         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7146         int pipe = intel_crtc->pipe;
7147         uint32_t val;
7148
7149         val = 0;
7150
7151         switch (intel_crtc->config->pipe_bpp) {
7152         case 18:
7153                 val |= PIPECONF_6BPC;
7154                 break;
7155         case 24:
7156                 val |= PIPECONF_8BPC;
7157                 break;
7158         case 30:
7159                 val |= PIPECONF_10BPC;
7160                 break;
7161         case 36:
7162                 val |= PIPECONF_12BPC;
7163                 break;
7164         default:
7165                 /* Case prevented by intel_choose_pipe_bpp_dither. */
7166                 BUG();
7167         }
7168
7169         if (intel_crtc->config->dither)
7170                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7171
7172         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7173                 val |= PIPECONF_INTERLACED_ILK;
7174         else
7175                 val |= PIPECONF_PROGRESSIVE;
7176
7177         if (intel_crtc->config->limited_color_range)
7178                 val |= PIPECONF_COLOR_RANGE_SELECT;
7179
7180         I915_WRITE(PIPECONF(pipe), val);
7181         POSTING_READ(PIPECONF(pipe));
7182 }
7183
7184 /*
7185  * Set up the pipe CSC unit.
7186  *
7187  * Currently only full range RGB to limited range RGB conversion
7188  * is supported, but eventually this should handle various
7189  * RGB<->YCbCr scenarios as well.
7190  */
7191 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7192 {
7193         struct drm_device *dev = crtc->dev;
7194         struct drm_i915_private *dev_priv = dev->dev_private;
7195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7196         int pipe = intel_crtc->pipe;
7197         uint16_t coeff = 0x7800; /* 1.0 */
7198
7199         /*
7200          * TODO: Check what kind of values actually come out of the pipe
7201          * with these coeff/postoff values and adjust to get the best
7202          * accuracy. Perhaps we even need to take the bpc value into
7203          * consideration.
7204          */
7205
7206         if (intel_crtc->config->limited_color_range)
7207                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7208
7209         /*
7210          * GY/GU and RY/RU should be the other way around according
7211          * to BSpec, but reality doesn't agree. Just set them up in
7212          * a way that results in the correct picture.
7213          */
7214         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7215         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7216
7217         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7218         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7219
7220         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7221         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7222
7223         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7224         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7225         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7226
7227         if (INTEL_INFO(dev)->gen > 6) {
7228                 uint16_t postoff = 0;
7229
7230                 if (intel_crtc->config->limited_color_range)
7231                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
7232
7233                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7234                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7235                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7236
7237                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7238         } else {
7239                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7240
7241                 if (intel_crtc->config->limited_color_range)
7242                         mode |= CSC_BLACK_SCREEN_OFFSET;
7243
7244                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7245         }
7246 }
7247
7248 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7249 {
7250         struct drm_device *dev = crtc->dev;
7251         struct drm_i915_private *dev_priv = dev->dev_private;
7252         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7253         enum pipe pipe = intel_crtc->pipe;
7254         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7255         uint32_t val;
7256
7257         val = 0;
7258
7259         if (IS_HASWELL(dev) && intel_crtc->config->dither)
7260                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7261
7262         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7263                 val |= PIPECONF_INTERLACED_ILK;
7264         else
7265                 val |= PIPECONF_PROGRESSIVE;
7266
7267         I915_WRITE(PIPECONF(cpu_transcoder), val);
7268         POSTING_READ(PIPECONF(cpu_transcoder));
7269
7270         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7271         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7272
7273         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7274                 val = 0;
7275
7276                 switch (intel_crtc->config->pipe_bpp) {
7277                 case 18:
7278                         val |= PIPEMISC_DITHER_6_BPC;
7279                         break;
7280                 case 24:
7281                         val |= PIPEMISC_DITHER_8_BPC;
7282                         break;
7283                 case 30:
7284                         val |= PIPEMISC_DITHER_10_BPC;
7285                         break;
7286                 case 36:
7287                         val |= PIPEMISC_DITHER_12_BPC;
7288                         break;
7289                 default:
7290                         /* Case prevented by pipe_config_set_bpp. */
7291                         BUG();
7292                 }
7293
7294                 if (intel_crtc->config->dither)
7295                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7296
7297                 I915_WRITE(PIPEMISC(pipe), val);
7298         }
7299 }
7300
7301 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7302                                     struct intel_crtc_state *crtc_state,
7303                                     intel_clock_t *clock,
7304                                     bool *has_reduced_clock,
7305                                     intel_clock_t *reduced_clock)
7306 {
7307         struct drm_device *dev = crtc->dev;
7308         struct drm_i915_private *dev_priv = dev->dev_private;
7309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7310         int refclk;
7311         const intel_limit_t *limit;
7312         bool ret, is_lvds = false;
7313
7314         is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7315
7316         refclk = ironlake_get_refclk(crtc);
7317
7318         /*
7319          * Returns a set of divisors for the desired target clock with the given
7320          * refclk, or FALSE.  The returned values represent the clock equation:
7321          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7322          */
7323         limit = intel_limit(intel_crtc, refclk);
7324         ret = dev_priv->display.find_dpll(limit, intel_crtc,
7325                                           crtc_state->port_clock,
7326                                           refclk, NULL, clock);
7327         if (!ret)
7328                 return false;
7329
7330         if (is_lvds && dev_priv->lvds_downclock_avail) {
7331                 /*
7332                  * Ensure we match the reduced clock's P to the target clock.
7333                  * If the clocks don't match, we can't switch the display clock
7334                  * by using the FP0/FP1. In such case we will disable the LVDS
7335                  * downclock feature.
7336                 */
7337                 *has_reduced_clock =
7338                         dev_priv->display.find_dpll(limit, intel_crtc,
7339                                                     dev_priv->lvds_downclock,
7340                                                     refclk, clock,
7341                                                     reduced_clock);
7342         }
7343
7344         return true;
7345 }
7346
7347 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7348 {
7349         /*
7350          * Account for spread spectrum to avoid
7351          * oversubscribing the link. Max center spread
7352          * is 2.5%; use 5% for safety's sake.
7353          */
7354         u32 bps = target_clock * bpp * 21 / 20;
7355         return DIV_ROUND_UP(bps, link_bw * 8);
7356 }
7357
7358 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7359 {
7360         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7361 }
7362
7363 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7364                                       struct intel_crtc_state *crtc_state,
7365                                       u32 *fp,
7366                                       intel_clock_t *reduced_clock, u32 *fp2)
7367 {
7368         struct drm_crtc *crtc = &intel_crtc->base;
7369         struct drm_device *dev = crtc->dev;
7370         struct drm_i915_private *dev_priv = dev->dev_private;
7371         struct intel_encoder *intel_encoder;
7372         uint32_t dpll;
7373         int factor, num_connectors = 0;
7374         bool is_lvds = false, is_sdvo = false;
7375
7376         for_each_intel_encoder(dev, intel_encoder) {
7377                 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7378                         continue;
7379
7380                 switch (intel_encoder->type) {
7381                 case INTEL_OUTPUT_LVDS:
7382                         is_lvds = true;
7383                         break;
7384                 case INTEL_OUTPUT_SDVO:
7385                 case INTEL_OUTPUT_HDMI:
7386                         is_sdvo = true;
7387                         break;
7388                 default:
7389                         break;
7390                 }
7391
7392                 num_connectors++;
7393         }
7394
7395         /* Enable autotuning of the PLL clock (if permissible) */
7396         factor = 21;
7397         if (is_lvds) {
7398                 if ((intel_panel_use_ssc(dev_priv) &&
7399                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
7400                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7401                         factor = 25;
7402         } else if (crtc_state->sdvo_tv_clock)
7403                 factor = 20;
7404
7405         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7406                 *fp |= FP_CB_TUNE;
7407
7408         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7409                 *fp2 |= FP_CB_TUNE;
7410
7411         dpll = 0;
7412
7413         if (is_lvds)
7414                 dpll |= DPLLB_MODE_LVDS;
7415         else
7416                 dpll |= DPLLB_MODE_DAC_SERIAL;
7417
7418         dpll |= (crtc_state->pixel_multiplier - 1)
7419                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7420
7421         if (is_sdvo)
7422                 dpll |= DPLL_SDVO_HIGH_SPEED;
7423         if (crtc_state->has_dp_encoder)
7424                 dpll |= DPLL_SDVO_HIGH_SPEED;
7425
7426         /* compute bitmask from p1 value */
7427         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7428         /* also FPA1 */
7429         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7430
7431         switch (crtc_state->dpll.p2) {
7432         case 5:
7433                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7434                 break;
7435         case 7:
7436                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7437                 break;
7438         case 10:
7439                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7440                 break;
7441         case 14:
7442                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7443                 break;
7444         }
7445
7446         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7447                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7448         else
7449                 dpll |= PLL_REF_INPUT_DREFCLK;
7450
7451         return dpll | DPLL_VCO_ENABLE;
7452 }
7453
7454 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7455                                        struct intel_crtc_state *crtc_state)
7456 {
7457         struct drm_device *dev = crtc->base.dev;
7458         intel_clock_t clock, reduced_clock;
7459         u32 dpll = 0, fp = 0, fp2 = 0;
7460         bool ok, has_reduced_clock = false;
7461         bool is_lvds = false;
7462         struct intel_shared_dpll *pll;
7463
7464         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7465
7466         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7467              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7468
7469         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7470                                      &has_reduced_clock, &reduced_clock);
7471         if (!ok && !crtc_state->clock_set) {
7472                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7473                 return -EINVAL;
7474         }
7475         /* Compat-code for transition, will disappear. */
7476         if (!crtc_state->clock_set) {
7477                 crtc_state->dpll.n = clock.n;
7478                 crtc_state->dpll.m1 = clock.m1;
7479                 crtc_state->dpll.m2 = clock.m2;
7480                 crtc_state->dpll.p1 = clock.p1;
7481                 crtc_state->dpll.p2 = clock.p2;
7482         }
7483
7484         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7485         if (crtc_state->has_pch_encoder) {
7486                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7487                 if (has_reduced_clock)
7488                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7489
7490                 dpll = ironlake_compute_dpll(crtc, crtc_state,
7491                                              &fp, &reduced_clock,
7492                                              has_reduced_clock ? &fp2 : NULL);
7493
7494                 crtc_state->dpll_hw_state.dpll = dpll;
7495                 crtc_state->dpll_hw_state.fp0 = fp;
7496                 if (has_reduced_clock)
7497                         crtc_state->dpll_hw_state.fp1 = fp2;
7498                 else
7499                         crtc_state->dpll_hw_state.fp1 = fp;
7500
7501                 pll = intel_get_shared_dpll(crtc, crtc_state);
7502                 if (pll == NULL) {
7503                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7504                                          pipe_name(crtc->pipe));
7505                         return -EINVAL;
7506                 }
7507         }
7508
7509         if (is_lvds && has_reduced_clock && i915.powersave)
7510                 crtc->lowfreq_avail = true;
7511         else
7512                 crtc->lowfreq_avail = false;
7513
7514         return 0;
7515 }
7516
7517 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7518                                          struct intel_link_m_n *m_n)
7519 {
7520         struct drm_device *dev = crtc->base.dev;
7521         struct drm_i915_private *dev_priv = dev->dev_private;
7522         enum pipe pipe = crtc->pipe;
7523
7524         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7525         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7526         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7527                 & ~TU_SIZE_MASK;
7528         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7529         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7530                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7531 }
7532
7533 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7534                                          enum transcoder transcoder,
7535                                          struct intel_link_m_n *m_n,
7536                                          struct intel_link_m_n *m2_n2)
7537 {
7538         struct drm_device *dev = crtc->base.dev;
7539         struct drm_i915_private *dev_priv = dev->dev_private;
7540         enum pipe pipe = crtc->pipe;
7541
7542         if (INTEL_INFO(dev)->gen >= 5) {
7543                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7544                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7545                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7546                         & ~TU_SIZE_MASK;
7547                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7548                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7549                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7550                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7551                  * gen < 8) and if DRRS is supported (to make sure the
7552                  * registers are not unnecessarily read).
7553                  */
7554                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7555                         crtc->config->has_drrs) {
7556                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7557                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7558                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7559                                         & ~TU_SIZE_MASK;
7560                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7561                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7562                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563                 }
7564         } else {
7565                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7566                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7567                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7568                         & ~TU_SIZE_MASK;
7569                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7570                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7571                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7572         }
7573 }
7574
7575 void intel_dp_get_m_n(struct intel_crtc *crtc,
7576                       struct intel_crtc_state *pipe_config)
7577 {
7578         if (pipe_config->has_pch_encoder)
7579                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7580         else
7581                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7582                                              &pipe_config->dp_m_n,
7583                                              &pipe_config->dp_m2_n2);
7584 }
7585
7586 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7587                                         struct intel_crtc_state *pipe_config)
7588 {
7589         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7590                                      &pipe_config->fdi_m_n, NULL);
7591 }
7592
7593 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7594                                     struct intel_crtc_state *pipe_config)
7595 {
7596         struct drm_device *dev = crtc->base.dev;
7597         struct drm_i915_private *dev_priv = dev->dev_private;
7598         uint32_t tmp;
7599
7600         tmp = I915_READ(PS_CTL(crtc->pipe));
7601
7602         if (tmp & PS_ENABLE) {
7603                 pipe_config->pch_pfit.enabled = true;
7604                 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7605                 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7606         }
7607 }
7608
7609 static void
7610 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7611                                  struct intel_initial_plane_config *plane_config)
7612 {
7613         struct drm_device *dev = crtc->base.dev;
7614         struct drm_i915_private *dev_priv = dev->dev_private;
7615         u32 val, base, offset, stride_mult;
7616         int pipe = crtc->pipe;
7617         int fourcc, pixel_format;
7618         int aligned_height;
7619         struct drm_framebuffer *fb;
7620         struct intel_framebuffer *intel_fb;
7621
7622         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7623         if (!intel_fb) {
7624                 DRM_DEBUG_KMS("failed to alloc fb\n");
7625                 return;
7626         }
7627
7628         fb = &intel_fb->base;
7629
7630         val = I915_READ(PLANE_CTL(pipe, 0));
7631         if (val & PLANE_CTL_TILED_MASK)
7632                 plane_config->tiling = I915_TILING_X;
7633
7634         pixel_format = val & PLANE_CTL_FORMAT_MASK;
7635         fourcc = skl_format_to_fourcc(pixel_format,
7636                                       val & PLANE_CTL_ORDER_RGBX,
7637                                       val & PLANE_CTL_ALPHA_MASK);
7638         fb->pixel_format = fourcc;
7639         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7640
7641         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7642         plane_config->base = base;
7643
7644         offset = I915_READ(PLANE_OFFSET(pipe, 0));
7645
7646         val = I915_READ(PLANE_SIZE(pipe, 0));
7647         fb->height = ((val >> 16) & 0xfff) + 1;
7648         fb->width = ((val >> 0) & 0x1fff) + 1;
7649
7650         val = I915_READ(PLANE_STRIDE(pipe, 0));
7651         switch (plane_config->tiling) {
7652         case I915_TILING_NONE:
7653                 stride_mult = 64;
7654                 break;
7655         case I915_TILING_X:
7656                 stride_mult = 512;
7657                 break;
7658         default:
7659                 MISSING_CASE(plane_config->tiling);
7660                 goto error;
7661         }
7662         fb->pitches[0] = (val & 0x3ff) * stride_mult;
7663
7664         aligned_height = intel_fb_align_height(dev, fb->height,
7665                                                plane_config->tiling);
7666
7667         plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7668
7669         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7670                       pipe_name(pipe), fb->width, fb->height,
7671                       fb->bits_per_pixel, base, fb->pitches[0],
7672                       plane_config->size);
7673
7674         crtc->base.primary->fb = fb;
7675         return;
7676
7677 error:
7678         kfree(fb);
7679 }
7680
7681 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7682                                      struct intel_crtc_state *pipe_config)
7683 {
7684         struct drm_device *dev = crtc->base.dev;
7685         struct drm_i915_private *dev_priv = dev->dev_private;
7686         uint32_t tmp;
7687
7688         tmp = I915_READ(PF_CTL(crtc->pipe));
7689
7690         if (tmp & PF_ENABLE) {
7691                 pipe_config->pch_pfit.enabled = true;
7692                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7693                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7694
7695                 /* We currently do not free assignements of panel fitters on
7696                  * ivb/hsw (since we don't use the higher upscaling modes which
7697                  * differentiates them) so just WARN about this case for now. */
7698                 if (IS_GEN7(dev)) {
7699                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7700                                 PF_PIPE_SEL_IVB(crtc->pipe));
7701                 }
7702         }
7703 }
7704
7705 static void
7706 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7707                                   struct intel_initial_plane_config *plane_config)
7708 {
7709         struct drm_device *dev = crtc->base.dev;
7710         struct drm_i915_private *dev_priv = dev->dev_private;
7711         u32 val, base, offset;
7712         int pipe = crtc->pipe;
7713         int fourcc, pixel_format;
7714         int aligned_height;
7715         struct drm_framebuffer *fb;
7716         struct intel_framebuffer *intel_fb;
7717
7718         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7719         if (!intel_fb) {
7720                 DRM_DEBUG_KMS("failed to alloc fb\n");
7721                 return;
7722         }
7723
7724         fb = &intel_fb->base;
7725
7726         val = I915_READ(DSPCNTR(pipe));
7727
7728         if (INTEL_INFO(dev)->gen >= 4)
7729                 if (val & DISPPLANE_TILED)
7730                         plane_config->tiling = I915_TILING_X;
7731
7732         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7733         fourcc = i9xx_format_to_fourcc(pixel_format);
7734         fb->pixel_format = fourcc;
7735         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7736
7737         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7738         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7739                 offset = I915_READ(DSPOFFSET(pipe));
7740         } else {
7741                 if (plane_config->tiling)
7742                         offset = I915_READ(DSPTILEOFF(pipe));
7743                 else
7744                         offset = I915_READ(DSPLINOFF(pipe));
7745         }
7746         plane_config->base = base;
7747
7748         val = I915_READ(PIPESRC(pipe));
7749         fb->width = ((val >> 16) & 0xfff) + 1;
7750         fb->height = ((val >> 0) & 0xfff) + 1;
7751
7752         val = I915_READ(DSPSTRIDE(pipe));
7753         fb->pitches[0] = val & 0xffffffc0;
7754
7755         aligned_height = intel_fb_align_height(dev, fb->height,
7756                                                plane_config->tiling);
7757
7758         plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
7759
7760         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7761                       pipe_name(pipe), fb->width, fb->height,
7762                       fb->bits_per_pixel, base, fb->pitches[0],
7763                       plane_config->size);
7764
7765         crtc->base.primary->fb = fb;
7766 }
7767
7768 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7769                                      struct intel_crtc_state *pipe_config)
7770 {
7771         struct drm_device *dev = crtc->base.dev;
7772         struct drm_i915_private *dev_priv = dev->dev_private;
7773         uint32_t tmp;
7774
7775         if (!intel_display_power_is_enabled(dev_priv,
7776                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7777                 return false;
7778
7779         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7780         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7781
7782         tmp = I915_READ(PIPECONF(crtc->pipe));
7783         if (!(tmp & PIPECONF_ENABLE))
7784                 return false;
7785
7786         switch (tmp & PIPECONF_BPC_MASK) {
7787         case PIPECONF_6BPC:
7788                 pipe_config->pipe_bpp = 18;
7789                 break;
7790         case PIPECONF_8BPC:
7791                 pipe_config->pipe_bpp = 24;
7792                 break;
7793         case PIPECONF_10BPC:
7794                 pipe_config->pipe_bpp = 30;
7795                 break;
7796         case PIPECONF_12BPC:
7797                 pipe_config->pipe_bpp = 36;
7798                 break;
7799         default:
7800                 break;
7801         }
7802
7803         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7804                 pipe_config->limited_color_range = true;
7805
7806         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7807                 struct intel_shared_dpll *pll;
7808
7809                 pipe_config->has_pch_encoder = true;
7810
7811                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7812                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7813                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
7814
7815                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7816
7817                 if (HAS_PCH_IBX(dev_priv->dev)) {
7818                         pipe_config->shared_dpll =
7819                                 (enum intel_dpll_id) crtc->pipe;
7820                 } else {
7821                         tmp = I915_READ(PCH_DPLL_SEL);
7822                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7823                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7824                         else
7825                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7826                 }
7827
7828                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7829
7830                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7831                                            &pipe_config->dpll_hw_state));
7832
7833                 tmp = pipe_config->dpll_hw_state.dpll;
7834                 pipe_config->pixel_multiplier =
7835                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7836                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7837
7838                 ironlake_pch_clock_get(crtc, pipe_config);
7839         } else {
7840                 pipe_config->pixel_multiplier = 1;
7841         }
7842
7843         intel_get_pipe_timings(crtc, pipe_config);
7844
7845         ironlake_get_pfit_config(crtc, pipe_config);
7846
7847         return true;
7848 }
7849
7850 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7851 {
7852         struct drm_device *dev = dev_priv->dev;
7853         struct intel_crtc *crtc;
7854
7855         for_each_intel_crtc(dev, crtc)
7856                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7857                      pipe_name(crtc->pipe));
7858
7859         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7860         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7861         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7862         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7863         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7864         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7865              "CPU PWM1 enabled\n");
7866         if (IS_HASWELL(dev))
7867                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7868                      "CPU PWM2 enabled\n");
7869         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7870              "PCH PWM1 enabled\n");
7871         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7872              "Utility pin enabled\n");
7873         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7874
7875         /*
7876          * In theory we can still leave IRQs enabled, as long as only the HPD
7877          * interrupts remain enabled. We used to check for that, but since it's
7878          * gen-specific and since we only disable LCPLL after we fully disable
7879          * the interrupts, the check below should be enough.
7880          */
7881         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7882 }
7883
7884 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7885 {
7886         struct drm_device *dev = dev_priv->dev;
7887
7888         if (IS_HASWELL(dev))
7889                 return I915_READ(D_COMP_HSW);
7890         else
7891                 return I915_READ(D_COMP_BDW);
7892 }
7893
7894 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7895 {
7896         struct drm_device *dev = dev_priv->dev;
7897
7898         if (IS_HASWELL(dev)) {
7899                 mutex_lock(&dev_priv->rps.hw_lock);
7900                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7901                                             val))
7902                         DRM_ERROR("Failed to write to D_COMP\n");
7903                 mutex_unlock(&dev_priv->rps.hw_lock);
7904         } else {
7905                 I915_WRITE(D_COMP_BDW, val);
7906                 POSTING_READ(D_COMP_BDW);
7907         }
7908 }
7909
7910 /*
7911  * This function implements pieces of two sequences from BSpec:
7912  * - Sequence for display software to disable LCPLL
7913  * - Sequence for display software to allow package C8+
7914  * The steps implemented here are just the steps that actually touch the LCPLL
7915  * register. Callers should take care of disabling all the display engine
7916  * functions, doing the mode unset, fixing interrupts, etc.
7917  */
7918 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7919                               bool switch_to_fclk, bool allow_power_down)
7920 {
7921         uint32_t val;
7922
7923         assert_can_disable_lcpll(dev_priv);
7924
7925         val = I915_READ(LCPLL_CTL);
7926
7927         if (switch_to_fclk) {
7928                 val |= LCPLL_CD_SOURCE_FCLK;
7929                 I915_WRITE(LCPLL_CTL, val);
7930
7931                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7932                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
7933                         DRM_ERROR("Switching to FCLK failed\n");
7934
7935                 val = I915_READ(LCPLL_CTL);
7936         }
7937
7938         val |= LCPLL_PLL_DISABLE;
7939         I915_WRITE(LCPLL_CTL, val);
7940         POSTING_READ(LCPLL_CTL);
7941
7942         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7943                 DRM_ERROR("LCPLL still locked\n");
7944
7945         val = hsw_read_dcomp(dev_priv);
7946         val |= D_COMP_COMP_DISABLE;
7947         hsw_write_dcomp(dev_priv, val);
7948         ndelay(100);
7949
7950         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7951                      1))
7952                 DRM_ERROR("D_COMP RCOMP still in progress\n");
7953
7954         if (allow_power_down) {
7955                 val = I915_READ(LCPLL_CTL);
7956                 val |= LCPLL_POWER_DOWN_ALLOW;
7957                 I915_WRITE(LCPLL_CTL, val);
7958                 POSTING_READ(LCPLL_CTL);
7959         }
7960 }
7961
7962 /*
7963  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7964  * source.
7965  */
7966 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7967 {
7968         uint32_t val;
7969
7970         val = I915_READ(LCPLL_CTL);
7971
7972         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7973                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7974                 return;
7975
7976         /*
7977          * Make sure we're not on PC8 state before disabling PC8, otherwise
7978          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7979          */
7980         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7981
7982         if (val & LCPLL_POWER_DOWN_ALLOW) {
7983                 val &= ~LCPLL_POWER_DOWN_ALLOW;
7984                 I915_WRITE(LCPLL_CTL, val);
7985                 POSTING_READ(LCPLL_CTL);
7986         }
7987
7988         val = hsw_read_dcomp(dev_priv);
7989         val |= D_COMP_COMP_FORCE;
7990         val &= ~D_COMP_COMP_DISABLE;
7991         hsw_write_dcomp(dev_priv, val);
7992
7993         val = I915_READ(LCPLL_CTL);
7994         val &= ~LCPLL_PLL_DISABLE;
7995         I915_WRITE(LCPLL_CTL, val);
7996
7997         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7998                 DRM_ERROR("LCPLL not locked yet\n");
7999
8000         if (val & LCPLL_CD_SOURCE_FCLK) {
8001                 val = I915_READ(LCPLL_CTL);
8002                 val &= ~LCPLL_CD_SOURCE_FCLK;
8003                 I915_WRITE(LCPLL_CTL, val);
8004
8005                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8006                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8007                         DRM_ERROR("Switching back to LCPLL failed\n");
8008         }
8009
8010         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8011 }
8012
8013 /*
8014  * Package states C8 and deeper are really deep PC states that can only be
8015  * reached when all the devices on the system allow it, so even if the graphics
8016  * device allows PC8+, it doesn't mean the system will actually get to these
8017  * states. Our driver only allows PC8+ when going into runtime PM.
8018  *
8019  * The requirements for PC8+ are that all the outputs are disabled, the power
8020  * well is disabled and most interrupts are disabled, and these are also
8021  * requirements for runtime PM. When these conditions are met, we manually do
8022  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8023  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8024  * hang the machine.
8025  *
8026  * When we really reach PC8 or deeper states (not just when we allow it) we lose
8027  * the state of some registers, so when we come back from PC8+ we need to
8028  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8029  * need to take care of the registers kept by RC6. Notice that this happens even
8030  * if we don't put the device in PCI D3 state (which is what currently happens
8031  * because of the runtime PM support).
8032  *
8033  * For more, read "Display Sequences for Package C8" on the hardware
8034  * documentation.
8035  */
8036 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8037 {
8038         struct drm_device *dev = dev_priv->dev;
8039         uint32_t val;
8040
8041         DRM_DEBUG_KMS("Enabling package C8+\n");
8042
8043         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8044                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8045                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8046                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8047         }
8048
8049         lpt_disable_clkout_dp(dev);
8050         hsw_disable_lcpll(dev_priv, true, true);
8051 }
8052
8053 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8054 {
8055         struct drm_device *dev = dev_priv->dev;
8056         uint32_t val;
8057
8058         DRM_DEBUG_KMS("Disabling package C8+\n");
8059
8060         hsw_restore_lcpll(dev_priv);
8061         lpt_init_pch_refclk(dev);
8062
8063         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8064                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8065                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8066                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8067         }
8068
8069         intel_prepare_ddi(dev);
8070 }
8071
8072 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8073                                       struct intel_crtc_state *crtc_state)
8074 {
8075         if (!intel_ddi_pll_select(crtc, crtc_state))
8076                 return -EINVAL;
8077
8078         crtc->lowfreq_avail = false;
8079
8080         return 0;
8081 }
8082
8083 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8084                                 enum port port,
8085                                 struct intel_crtc_state *pipe_config)
8086 {
8087         u32 temp, dpll_ctl1;
8088
8089         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8090         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8091
8092         switch (pipe_config->ddi_pll_sel) {
8093         case SKL_DPLL0:
8094                 /*
8095                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8096                  * of the shared DPLL framework and thus needs to be read out
8097                  * separately
8098                  */
8099                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8100                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8101                 break;
8102         case SKL_DPLL1:
8103                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8104                 break;
8105         case SKL_DPLL2:
8106                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8107                 break;
8108         case SKL_DPLL3:
8109                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8110                 break;
8111         }
8112 }
8113
8114 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8115                                 enum port port,
8116                                 struct intel_crtc_state *pipe_config)
8117 {
8118         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8119
8120         switch (pipe_config->ddi_pll_sel) {
8121         case PORT_CLK_SEL_WRPLL1:
8122                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8123                 break;
8124         case PORT_CLK_SEL_WRPLL2:
8125                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8126                 break;
8127         }
8128 }
8129
8130 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8131                                        struct intel_crtc_state *pipe_config)
8132 {
8133         struct drm_device *dev = crtc->base.dev;
8134         struct drm_i915_private *dev_priv = dev->dev_private;
8135         struct intel_shared_dpll *pll;
8136         enum port port;
8137         uint32_t tmp;
8138
8139         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8140
8141         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8142
8143         if (IS_SKYLAKE(dev))
8144                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8145         else
8146                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8147
8148         if (pipe_config->shared_dpll >= 0) {
8149                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8150
8151                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152                                            &pipe_config->dpll_hw_state));
8153         }
8154
8155         /*
8156          * Haswell has only FDI/PCH transcoder A. It is which is connected to
8157          * DDI E. So just check whether this pipe is wired to DDI E and whether
8158          * the PCH transcoder is on.
8159          */
8160         if (INTEL_INFO(dev)->gen < 9 &&
8161             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8162                 pipe_config->has_pch_encoder = true;
8163
8164                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8165                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8166                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
8167
8168                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8169         }
8170 }
8171
8172 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8173                                     struct intel_crtc_state *pipe_config)
8174 {
8175         struct drm_device *dev = crtc->base.dev;
8176         struct drm_i915_private *dev_priv = dev->dev_private;
8177         enum intel_display_power_domain pfit_domain;
8178         uint32_t tmp;
8179
8180         if (!intel_display_power_is_enabled(dev_priv,
8181                                          POWER_DOMAIN_PIPE(crtc->pipe)))
8182                 return false;
8183
8184         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8185         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8186
8187         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8188         if (tmp & TRANS_DDI_FUNC_ENABLE) {
8189                 enum pipe trans_edp_pipe;
8190                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8191                 default:
8192                         WARN(1, "unknown pipe linked to edp transcoder\n");
8193                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8194                 case TRANS_DDI_EDP_INPUT_A_ON:
8195                         trans_edp_pipe = PIPE_A;
8196                         break;
8197                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8198                         trans_edp_pipe = PIPE_B;
8199                         break;
8200                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8201                         trans_edp_pipe = PIPE_C;
8202                         break;
8203                 }
8204
8205                 if (trans_edp_pipe == crtc->pipe)
8206                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
8207         }
8208
8209         if (!intel_display_power_is_enabled(dev_priv,
8210                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8211                 return false;
8212
8213         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8214         if (!(tmp & PIPECONF_ENABLE))
8215                 return false;
8216
8217         haswell_get_ddi_port_state(crtc, pipe_config);
8218
8219         intel_get_pipe_timings(crtc, pipe_config);
8220
8221         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8222         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8223                 if (IS_SKYLAKE(dev))
8224                         skylake_get_pfit_config(crtc, pipe_config);
8225                 else
8226                         ironlake_get_pfit_config(crtc, pipe_config);
8227         }
8228
8229         if (IS_HASWELL(dev))
8230                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8231                         (I915_READ(IPS_CTL) & IPS_ENABLE);
8232
8233         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8234                 pipe_config->pixel_multiplier =
8235                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8236         } else {
8237                 pipe_config->pixel_multiplier = 1;
8238         }
8239
8240         return true;
8241 }
8242
8243 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8244 {
8245         struct drm_device *dev = crtc->dev;
8246         struct drm_i915_private *dev_priv = dev->dev_private;
8247         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8248         uint32_t cntl = 0, size = 0;
8249
8250         if (base) {
8251                 unsigned int width = intel_crtc->cursor_width;
8252                 unsigned int height = intel_crtc->cursor_height;
8253                 unsigned int stride = roundup_pow_of_two(width) * 4;
8254
8255                 switch (stride) {
8256                 default:
8257                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8258                                   width, stride);
8259                         stride = 256;
8260                         /* fallthrough */
8261                 case 256:
8262                 case 512:
8263                 case 1024:
8264                 case 2048:
8265                         break;
8266                 }
8267
8268                 cntl |= CURSOR_ENABLE |
8269                         CURSOR_GAMMA_ENABLE |
8270                         CURSOR_FORMAT_ARGB |
8271                         CURSOR_STRIDE(stride);
8272
8273                 size = (height << 12) | width;
8274         }
8275
8276         if (intel_crtc->cursor_cntl != 0 &&
8277             (intel_crtc->cursor_base != base ||
8278              intel_crtc->cursor_size != size ||
8279              intel_crtc->cursor_cntl != cntl)) {
8280                 /* On these chipsets we can only modify the base/size/stride
8281                  * whilst the cursor is disabled.
8282                  */
8283                 I915_WRITE(_CURACNTR, 0);
8284                 POSTING_READ(_CURACNTR);
8285                 intel_crtc->cursor_cntl = 0;
8286         }
8287
8288         if (intel_crtc->cursor_base != base) {
8289                 I915_WRITE(_CURABASE, base);
8290                 intel_crtc->cursor_base = base;
8291         }
8292
8293         if (intel_crtc->cursor_size != size) {
8294                 I915_WRITE(CURSIZE, size);
8295                 intel_crtc->cursor_size = size;
8296         }
8297
8298         if (intel_crtc->cursor_cntl != cntl) {
8299                 I915_WRITE(_CURACNTR, cntl);
8300                 POSTING_READ(_CURACNTR);
8301                 intel_crtc->cursor_cntl = cntl;
8302         }
8303 }
8304
8305 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8306 {
8307         struct drm_device *dev = crtc->dev;
8308         struct drm_i915_private *dev_priv = dev->dev_private;
8309         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8310         int pipe = intel_crtc->pipe;
8311         uint32_t cntl;
8312
8313         cntl = 0;
8314         if (base) {
8315                 cntl = MCURSOR_GAMMA_ENABLE;
8316                 switch (intel_crtc->cursor_width) {
8317                         case 64:
8318                                 cntl |= CURSOR_MODE_64_ARGB_AX;
8319                                 break;
8320                         case 128:
8321                                 cntl |= CURSOR_MODE_128_ARGB_AX;
8322                                 break;
8323                         case 256:
8324                                 cntl |= CURSOR_MODE_256_ARGB_AX;
8325                                 break;
8326                         default:
8327                                 MISSING_CASE(intel_crtc->cursor_width);
8328                                 return;
8329                 }
8330                 cntl |= pipe << 28; /* Connect to correct pipe */
8331
8332                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8333                         cntl |= CURSOR_PIPE_CSC_ENABLE;
8334         }
8335
8336         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8337                 cntl |= CURSOR_ROTATE_180;
8338
8339         if (intel_crtc->cursor_cntl != cntl) {
8340                 I915_WRITE(CURCNTR(pipe), cntl);
8341                 POSTING_READ(CURCNTR(pipe));
8342                 intel_crtc->cursor_cntl = cntl;
8343         }
8344
8345         /* and commit changes on next vblank */
8346         I915_WRITE(CURBASE(pipe), base);
8347         POSTING_READ(CURBASE(pipe));
8348
8349         intel_crtc->cursor_base = base;
8350 }
8351
8352 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8353 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8354                                      bool on)
8355 {
8356         struct drm_device *dev = crtc->dev;
8357         struct drm_i915_private *dev_priv = dev->dev_private;
8358         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8359         int pipe = intel_crtc->pipe;
8360         int x = crtc->cursor_x;
8361         int y = crtc->cursor_y;
8362         u32 base = 0, pos = 0;
8363
8364         if (on)
8365                 base = intel_crtc->cursor_addr;
8366
8367         if (x >= intel_crtc->config->pipe_src_w)
8368                 base = 0;
8369
8370         if (y >= intel_crtc->config->pipe_src_h)
8371                 base = 0;
8372
8373         if (x < 0) {
8374                 if (x + intel_crtc->cursor_width <= 0)
8375                         base = 0;
8376
8377                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8378                 x = -x;
8379         }
8380         pos |= x << CURSOR_X_SHIFT;
8381
8382         if (y < 0) {
8383                 if (y + intel_crtc->cursor_height <= 0)
8384                         base = 0;
8385
8386                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8387                 y = -y;
8388         }
8389         pos |= y << CURSOR_Y_SHIFT;
8390
8391         if (base == 0 && intel_crtc->cursor_base == 0)
8392                 return;
8393
8394         I915_WRITE(CURPOS(pipe), pos);
8395
8396         /* ILK+ do this automagically */
8397         if (HAS_GMCH_DISPLAY(dev) &&
8398             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8399                 base += (intel_crtc->cursor_height *
8400                         intel_crtc->cursor_width - 1) * 4;
8401         }
8402
8403         if (IS_845G(dev) || IS_I865G(dev))
8404                 i845_update_cursor(crtc, base);
8405         else
8406                 i9xx_update_cursor(crtc, base);
8407 }
8408
8409 static bool cursor_size_ok(struct drm_device *dev,
8410                            uint32_t width, uint32_t height)
8411 {
8412         if (width == 0 || height == 0)
8413                 return false;
8414
8415         /*
8416          * 845g/865g are special in that they are only limited by
8417          * the width of their cursors, the height is arbitrary up to
8418          * the precision of the register. Everything else requires
8419          * square cursors, limited to a few power-of-two sizes.
8420          */
8421         if (IS_845G(dev) || IS_I865G(dev)) {
8422                 if ((width & 63) != 0)
8423                         return false;
8424
8425                 if (width > (IS_845G(dev) ? 64 : 512))
8426                         return false;
8427
8428                 if (height > 1023)
8429                         return false;
8430         } else {
8431                 switch (width | height) {
8432                 case 256:
8433                 case 128:
8434                         if (IS_GEN2(dev))
8435                                 return false;
8436                 case 64:
8437                         break;
8438                 default:
8439                         return false;
8440                 }
8441         }
8442
8443         return true;
8444 }
8445
8446 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8447                                  u16 *blue, uint32_t start, uint32_t size)
8448 {
8449         int end = (start + size > 256) ? 256 : start + size, i;
8450         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8451
8452         for (i = start; i < end; i++) {
8453                 intel_crtc->lut_r[i] = red[i] >> 8;
8454                 intel_crtc->lut_g[i] = green[i] >> 8;
8455                 intel_crtc->lut_b[i] = blue[i] >> 8;
8456         }
8457
8458         intel_crtc_load_lut(crtc);
8459 }
8460
8461 /* VESA 640x480x72Hz mode to set on the pipe */
8462 static struct drm_display_mode load_detect_mode = {
8463         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8464                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8465 };
8466
8467 struct drm_framebuffer *
8468 __intel_framebuffer_create(struct drm_device *dev,
8469                            struct drm_mode_fb_cmd2 *mode_cmd,
8470                            struct drm_i915_gem_object *obj)
8471 {
8472         struct intel_framebuffer *intel_fb;
8473         int ret;
8474
8475         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8476         if (!intel_fb) {
8477                 drm_gem_object_unreference(&obj->base);
8478                 return ERR_PTR(-ENOMEM);
8479         }
8480
8481         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8482         if (ret)
8483                 goto err;
8484
8485         return &intel_fb->base;
8486 err:
8487         drm_gem_object_unreference(&obj->base);
8488         kfree(intel_fb);
8489
8490         return ERR_PTR(ret);
8491 }
8492
8493 static struct drm_framebuffer *
8494 intel_framebuffer_create(struct drm_device *dev,
8495                          struct drm_mode_fb_cmd2 *mode_cmd,
8496                          struct drm_i915_gem_object *obj)
8497 {
8498         struct drm_framebuffer *fb;
8499         int ret;
8500
8501         ret = i915_mutex_lock_interruptible(dev);
8502         if (ret)
8503                 return ERR_PTR(ret);
8504         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8505         mutex_unlock(&dev->struct_mutex);
8506
8507         return fb;
8508 }
8509
8510 static u32
8511 intel_framebuffer_pitch_for_width(int width, int bpp)
8512 {
8513         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8514         return ALIGN(pitch, 64);
8515 }
8516
8517 static u32
8518 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8519 {
8520         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8521         return PAGE_ALIGN(pitch * mode->vdisplay);
8522 }
8523
8524 static struct drm_framebuffer *
8525 intel_framebuffer_create_for_mode(struct drm_device *dev,
8526                                   struct drm_display_mode *mode,
8527                                   int depth, int bpp)
8528 {
8529         struct drm_i915_gem_object *obj;
8530         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8531
8532         obj = i915_gem_alloc_object(dev,
8533                                     intel_framebuffer_size_for_mode(mode, bpp));
8534         if (obj == NULL)
8535                 return ERR_PTR(-ENOMEM);
8536
8537         mode_cmd.width = mode->hdisplay;
8538         mode_cmd.height = mode->vdisplay;
8539         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8540                                                                 bpp);
8541         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8542
8543         return intel_framebuffer_create(dev, &mode_cmd, obj);
8544 }
8545
8546 static struct drm_framebuffer *
8547 mode_fits_in_fbdev(struct drm_device *dev,
8548                    struct drm_display_mode *mode)
8549 {
8550 #ifdef CONFIG_DRM_I915_FBDEV
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552         struct drm_i915_gem_object *obj;
8553         struct drm_framebuffer *fb;
8554
8555         if (!dev_priv->fbdev)
8556                 return NULL;
8557
8558         if (!dev_priv->fbdev->fb)
8559                 return NULL;
8560
8561         obj = dev_priv->fbdev->fb->obj;
8562         BUG_ON(!obj);
8563
8564         fb = &dev_priv->fbdev->fb->base;
8565         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8566                                                                fb->bits_per_pixel))
8567                 return NULL;
8568
8569         if (obj->base.size < mode->vdisplay * fb->pitches[0])
8570                 return NULL;
8571
8572         return fb;
8573 #else
8574         return NULL;
8575 #endif
8576 }
8577
8578 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8579                                 struct drm_display_mode *mode,
8580                                 struct intel_load_detect_pipe *old,
8581                                 struct drm_modeset_acquire_ctx *ctx)
8582 {
8583         struct intel_crtc *intel_crtc;
8584         struct intel_encoder *intel_encoder =
8585                 intel_attached_encoder(connector);
8586         struct drm_crtc *possible_crtc;
8587         struct drm_encoder *encoder = &intel_encoder->base;
8588         struct drm_crtc *crtc = NULL;
8589         struct drm_device *dev = encoder->dev;
8590         struct drm_framebuffer *fb;
8591         struct drm_mode_config *config = &dev->mode_config;
8592         int ret, i = -1;
8593
8594         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8595                       connector->base.id, connector->name,
8596                       encoder->base.id, encoder->name);
8597
8598 retry:
8599         ret = drm_modeset_lock(&config->connection_mutex, ctx);
8600         if (ret)
8601                 goto fail_unlock;
8602
8603         /*
8604          * Algorithm gets a little messy:
8605          *
8606          *   - if the connector already has an assigned crtc, use it (but make
8607          *     sure it's on first)
8608          *
8609          *   - try to find the first unused crtc that can drive this connector,
8610          *     and use that if we find one
8611          */
8612
8613         /* See if we already have a CRTC for this connector */
8614         if (encoder->crtc) {
8615                 crtc = encoder->crtc;
8616
8617                 ret = drm_modeset_lock(&crtc->mutex, ctx);
8618                 if (ret)
8619                         goto fail_unlock;
8620                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8621                 if (ret)
8622                         goto fail_unlock;
8623
8624                 old->dpms_mode = connector->dpms;
8625                 old->load_detect_temp = false;
8626
8627                 /* Make sure the crtc and connector are running */
8628                 if (connector->dpms != DRM_MODE_DPMS_ON)
8629                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8630
8631                 return true;
8632         }
8633
8634         /* Find an unused one (if possible) */
8635         for_each_crtc(dev, possible_crtc) {
8636                 i++;
8637                 if (!(encoder->possible_crtcs & (1 << i)))
8638                         continue;
8639                 if (possible_crtc->enabled)
8640                         continue;
8641                 /* This can occur when applying the pipe A quirk on resume. */
8642                 if (to_intel_crtc(possible_crtc)->new_enabled)
8643                         continue;
8644
8645                 crtc = possible_crtc;
8646                 break;
8647         }
8648
8649         /*
8650          * If we didn't find an unused CRTC, don't use any.
8651          */
8652         if (!crtc) {
8653                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8654                 goto fail_unlock;
8655         }
8656
8657         ret = drm_modeset_lock(&crtc->mutex, ctx);
8658         if (ret)
8659                 goto fail_unlock;
8660         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8661         if (ret)
8662                 goto fail_unlock;
8663         intel_encoder->new_crtc = to_intel_crtc(crtc);
8664         to_intel_connector(connector)->new_encoder = intel_encoder;
8665
8666         intel_crtc = to_intel_crtc(crtc);
8667         intel_crtc->new_enabled = true;
8668         intel_crtc->new_config = intel_crtc->config;
8669         old->dpms_mode = connector->dpms;
8670         old->load_detect_temp = true;
8671         old->release_fb = NULL;
8672
8673         if (!mode)
8674                 mode = &load_detect_mode;
8675
8676         /* We need a framebuffer large enough to accommodate all accesses
8677          * that the plane may generate whilst we perform load detection.
8678          * We can not rely on the fbcon either being present (we get called
8679          * during its initialisation to detect all boot displays, or it may
8680          * not even exist) or that it is large enough to satisfy the
8681          * requested mode.
8682          */
8683         fb = mode_fits_in_fbdev(dev, mode);
8684         if (fb == NULL) {
8685                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8686                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8687                 old->release_fb = fb;
8688         } else
8689                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8690         if (IS_ERR(fb)) {
8691                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8692                 goto fail;
8693         }
8694
8695         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8696                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8697                 if (old->release_fb)
8698                         old->release_fb->funcs->destroy(old->release_fb);
8699                 goto fail;
8700         }
8701
8702         /* let the connector get through one full cycle before testing */
8703         intel_wait_for_vblank(dev, intel_crtc->pipe);
8704         return true;
8705
8706  fail:
8707         intel_crtc->new_enabled = crtc->enabled;
8708         if (intel_crtc->new_enabled)
8709                 intel_crtc->new_config = intel_crtc->config;
8710         else
8711                 intel_crtc->new_config = NULL;
8712 fail_unlock:
8713         if (ret == -EDEADLK) {
8714                 drm_modeset_backoff(ctx);
8715                 goto retry;
8716         }
8717
8718         return false;
8719 }
8720
8721 void intel_release_load_detect_pipe(struct drm_connector *connector,
8722                                     struct intel_load_detect_pipe *old)
8723 {
8724         struct intel_encoder *intel_encoder =
8725                 intel_attached_encoder(connector);
8726         struct drm_encoder *encoder = &intel_encoder->base;
8727         struct drm_crtc *crtc = encoder->crtc;
8728         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8729
8730         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8731                       connector->base.id, connector->name,
8732                       encoder->base.id, encoder->name);
8733
8734         if (old->load_detect_temp) {
8735                 to_intel_connector(connector)->new_encoder = NULL;
8736                 intel_encoder->new_crtc = NULL;
8737                 intel_crtc->new_enabled = false;
8738                 intel_crtc->new_config = NULL;
8739                 intel_set_mode(crtc, NULL, 0, 0, NULL);
8740
8741                 if (old->release_fb) {
8742                         drm_framebuffer_unregister_private(old->release_fb);
8743                         drm_framebuffer_unreference(old->release_fb);
8744                 }
8745
8746                 return;
8747         }
8748
8749         /* Switch crtc and encoder back off if necessary */
8750         if (old->dpms_mode != DRM_MODE_DPMS_ON)
8751                 connector->funcs->dpms(connector, old->dpms_mode);
8752 }
8753
8754 static int i9xx_pll_refclk(struct drm_device *dev,
8755                            const struct intel_crtc_state *pipe_config)
8756 {
8757         struct drm_i915_private *dev_priv = dev->dev_private;
8758         u32 dpll = pipe_config->dpll_hw_state.dpll;
8759
8760         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8761                 return dev_priv->vbt.lvds_ssc_freq;
8762         else if (HAS_PCH_SPLIT(dev))
8763                 return 120000;
8764         else if (!IS_GEN2(dev))
8765                 return 96000;
8766         else
8767                 return 48000;
8768 }
8769
8770 /* Returns the clock of the currently programmed mode of the given pipe. */
8771 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8772                                 struct intel_crtc_state *pipe_config)
8773 {
8774         struct drm_device *dev = crtc->base.dev;
8775         struct drm_i915_private *dev_priv = dev->dev_private;
8776         int pipe = pipe_config->cpu_transcoder;
8777         u32 dpll = pipe_config->dpll_hw_state.dpll;
8778         u32 fp;
8779         intel_clock_t clock;
8780         int refclk = i9xx_pll_refclk(dev, pipe_config);
8781
8782         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8783                 fp = pipe_config->dpll_hw_state.fp0;
8784         else
8785                 fp = pipe_config->dpll_hw_state.fp1;
8786
8787         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8788         if (IS_PINEVIEW(dev)) {
8789                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8790                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8791         } else {
8792                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8793                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8794         }
8795
8796         if (!IS_GEN2(dev)) {
8797                 if (IS_PINEVIEW(dev))
8798                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8799                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8800                 else
8801                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8802                                DPLL_FPA01_P1_POST_DIV_SHIFT);
8803
8804                 switch (dpll & DPLL_MODE_MASK) {
8805                 case DPLLB_MODE_DAC_SERIAL:
8806                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8807                                 5 : 10;
8808                         break;
8809                 case DPLLB_MODE_LVDS:
8810                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8811                                 7 : 14;
8812                         break;
8813                 default:
8814                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8815                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
8816                         return;
8817                 }
8818
8819                 if (IS_PINEVIEW(dev))
8820                         pineview_clock(refclk, &clock);
8821                 else
8822                         i9xx_clock(refclk, &clock);
8823         } else {
8824                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8825                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8826
8827                 if (is_lvds) {
8828                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8829                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
8830
8831                         if (lvds & LVDS_CLKB_POWER_UP)
8832                                 clock.p2 = 7;
8833                         else
8834                                 clock.p2 = 14;
8835                 } else {
8836                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
8837                                 clock.p1 = 2;
8838                         else {
8839                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8840                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8841                         }
8842                         if (dpll & PLL_P2_DIVIDE_BY_4)
8843                                 clock.p2 = 4;
8844                         else
8845                                 clock.p2 = 2;
8846                 }
8847
8848                 i9xx_clock(refclk, &clock);
8849         }
8850
8851         /*
8852          * This value includes pixel_multiplier. We will use
8853          * port_clock to compute adjusted_mode.crtc_clock in the
8854          * encoder's get_config() function.
8855          */
8856         pipe_config->port_clock = clock.dot;
8857 }
8858
8859 int intel_dotclock_calculate(int link_freq,
8860                              const struct intel_link_m_n *m_n)
8861 {
8862         /*
8863          * The calculation for the data clock is:
8864          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8865          * But we want to avoid losing precison if possible, so:
8866          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8867          *
8868          * and the link clock is simpler:
8869          * link_clock = (m * link_clock) / n
8870          */
8871
8872         if (!m_n->link_n)
8873                 return 0;
8874
8875         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8876 }
8877
8878 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8879                                    struct intel_crtc_state *pipe_config)
8880 {
8881         struct drm_device *dev = crtc->base.dev;
8882
8883         /* read out port_clock from the DPLL */
8884         i9xx_crtc_clock_get(crtc, pipe_config);
8885
8886         /*
8887          * This value does not include pixel_multiplier.
8888          * We will check that port_clock and adjusted_mode.crtc_clock
8889          * agree once we know their relationship in the encoder's
8890          * get_config() function.
8891          */
8892         pipe_config->base.adjusted_mode.crtc_clock =
8893                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8894                                          &pipe_config->fdi_m_n);
8895 }
8896
8897 /** Returns the currently programmed mode of the given pipe. */
8898 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8899                                              struct drm_crtc *crtc)
8900 {
8901         struct drm_i915_private *dev_priv = dev->dev_private;
8902         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8903         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8904         struct drm_display_mode *mode;
8905         struct intel_crtc_state pipe_config;
8906         int htot = I915_READ(HTOTAL(cpu_transcoder));
8907         int hsync = I915_READ(HSYNC(cpu_transcoder));
8908         int vtot = I915_READ(VTOTAL(cpu_transcoder));
8909         int vsync = I915_READ(VSYNC(cpu_transcoder));
8910         enum pipe pipe = intel_crtc->pipe;
8911
8912         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8913         if (!mode)
8914                 return NULL;
8915
8916         /*
8917          * Construct a pipe_config sufficient for getting the clock info
8918          * back out of crtc_clock_get.
8919          *
8920          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8921          * to use a real value here instead.
8922          */
8923         pipe_config.cpu_transcoder = (enum transcoder) pipe;
8924         pipe_config.pixel_multiplier = 1;
8925         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8926         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8927         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8928         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8929
8930         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8931         mode->hdisplay = (htot & 0xffff) + 1;
8932         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8933         mode->hsync_start = (hsync & 0xffff) + 1;
8934         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8935         mode->vdisplay = (vtot & 0xffff) + 1;
8936         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8937         mode->vsync_start = (vsync & 0xffff) + 1;
8938         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8939
8940         drm_mode_set_name(mode);
8941
8942         return mode;
8943 }
8944
8945 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8946 {
8947         struct drm_device *dev = crtc->dev;
8948         struct drm_i915_private *dev_priv = dev->dev_private;
8949         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8950
8951         if (!HAS_GMCH_DISPLAY(dev))
8952                 return;
8953
8954         if (!dev_priv->lvds_downclock_avail)
8955                 return;
8956
8957         /*
8958          * Since this is called by a timer, we should never get here in
8959          * the manual case.
8960          */
8961         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8962                 int pipe = intel_crtc->pipe;
8963                 int dpll_reg = DPLL(pipe);
8964                 int dpll;
8965
8966                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8967
8968                 assert_panel_unlocked(dev_priv, pipe);
8969
8970                 dpll = I915_READ(dpll_reg);
8971                 dpll |= DISPLAY_RATE_SELECT_FPA1;
8972                 I915_WRITE(dpll_reg, dpll);
8973                 intel_wait_for_vblank(dev, pipe);
8974                 dpll = I915_READ(dpll_reg);
8975                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8976                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8977         }
8978
8979 }
8980
8981 void intel_mark_busy(struct drm_device *dev)
8982 {
8983         struct drm_i915_private *dev_priv = dev->dev_private;
8984
8985         if (dev_priv->mm.busy)
8986                 return;
8987
8988         intel_runtime_pm_get(dev_priv);
8989         i915_update_gfx_val(dev_priv);
8990         dev_priv->mm.busy = true;
8991 }
8992
8993 void intel_mark_idle(struct drm_device *dev)
8994 {
8995         struct drm_i915_private *dev_priv = dev->dev_private;
8996         struct drm_crtc *crtc;
8997
8998         if (!dev_priv->mm.busy)
8999                 return;
9000
9001         dev_priv->mm.busy = false;
9002
9003         if (!i915.powersave)
9004                 goto out;
9005
9006         for_each_crtc(dev, crtc) {
9007                 if (!crtc->primary->fb)
9008                         continue;
9009
9010                 intel_decrease_pllclock(crtc);
9011         }
9012
9013         if (INTEL_INFO(dev)->gen >= 6)
9014                 gen6_rps_idle(dev->dev_private);
9015
9016 out:
9017         intel_runtime_pm_put(dev_priv);
9018 }
9019
9020 static void intel_crtc_set_state(struct intel_crtc *crtc,
9021                                  struct intel_crtc_state *crtc_state)
9022 {
9023         kfree(crtc->config);
9024         crtc->config = crtc_state;
9025         crtc->base.state = &crtc_state->base;
9026 }
9027
9028 static void intel_crtc_destroy(struct drm_crtc *crtc)
9029 {
9030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9031         struct drm_device *dev = crtc->dev;
9032         struct intel_unpin_work *work;
9033
9034         spin_lock_irq(&dev->event_lock);
9035         work = intel_crtc->unpin_work;
9036         intel_crtc->unpin_work = NULL;
9037         spin_unlock_irq(&dev->event_lock);
9038
9039         if (work) {
9040                 cancel_work_sync(&work->work);
9041                 kfree(work);
9042         }
9043
9044         intel_crtc_set_state(intel_crtc, NULL);
9045         drm_crtc_cleanup(crtc);
9046
9047         kfree(intel_crtc);
9048 }
9049
9050 static void intel_unpin_work_fn(struct work_struct *__work)
9051 {
9052         struct intel_unpin_work *work =
9053                 container_of(__work, struct intel_unpin_work, work);
9054         struct drm_device *dev = work->crtc->dev;
9055         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9056
9057         mutex_lock(&dev->struct_mutex);
9058         intel_unpin_fb_obj(work->old_fb_obj);
9059         drm_gem_object_unreference(&work->pending_flip_obj->base);
9060         drm_gem_object_unreference(&work->old_fb_obj->base);
9061
9062         intel_fbc_update(dev);
9063
9064         if (work->flip_queued_req)
9065                 i915_gem_request_assign(&work->flip_queued_req, NULL);
9066         mutex_unlock(&dev->struct_mutex);
9067
9068         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9069
9070         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9071         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9072
9073         kfree(work);
9074 }
9075
9076 static void do_intel_finish_page_flip(struct drm_device *dev,
9077                                       struct drm_crtc *crtc)
9078 {
9079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9080         struct intel_unpin_work *work;
9081         unsigned long flags;
9082
9083         /* Ignore early vblank irqs */
9084         if (intel_crtc == NULL)
9085                 return;
9086
9087         /*
9088          * This is called both by irq handlers and the reset code (to complete
9089          * lost pageflips) so needs the full irqsave spinlocks.
9090          */
9091         spin_lock_irqsave(&dev->event_lock, flags);
9092         work = intel_crtc->unpin_work;
9093
9094         /* Ensure we don't miss a work->pending update ... */
9095         smp_rmb();
9096
9097         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9098                 spin_unlock_irqrestore(&dev->event_lock, flags);
9099                 return;
9100         }
9101
9102         page_flip_completed(intel_crtc);
9103
9104         spin_unlock_irqrestore(&dev->event_lock, flags);
9105 }
9106
9107 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9108 {
9109         struct drm_i915_private *dev_priv = dev->dev_private;
9110         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9111
9112         do_intel_finish_page_flip(dev, crtc);
9113 }
9114
9115 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9116 {
9117         struct drm_i915_private *dev_priv = dev->dev_private;
9118         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9119
9120         do_intel_finish_page_flip(dev, crtc);
9121 }
9122
9123 /* Is 'a' after or equal to 'b'? */
9124 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9125 {
9126         return !((a - b) & 0x80000000);
9127 }
9128
9129 static bool page_flip_finished(struct intel_crtc *crtc)
9130 {
9131         struct drm_device *dev = crtc->base.dev;
9132         struct drm_i915_private *dev_priv = dev->dev_private;
9133
9134         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9135             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9136                 return true;
9137
9138         /*
9139          * The relevant registers doen't exist on pre-ctg.
9140          * As the flip done interrupt doesn't trigger for mmio
9141          * flips on gmch platforms, a flip count check isn't
9142          * really needed there. But since ctg has the registers,
9143          * include it in the check anyway.
9144          */
9145         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9146                 return true;
9147
9148         /*
9149          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9150          * used the same base address. In that case the mmio flip might
9151          * have completed, but the CS hasn't even executed the flip yet.
9152          *
9153          * A flip count check isn't enough as the CS might have updated
9154          * the base address just after start of vblank, but before we
9155          * managed to process the interrupt. This means we'd complete the
9156          * CS flip too soon.
9157          *
9158          * Combining both checks should get us a good enough result. It may
9159          * still happen that the CS flip has been executed, but has not
9160          * yet actually completed. But in case the base address is the same
9161          * anyway, we don't really care.
9162          */
9163         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9164                 crtc->unpin_work->gtt_offset &&
9165                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9166                                     crtc->unpin_work->flip_count);
9167 }
9168
9169 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9170 {
9171         struct drm_i915_private *dev_priv = dev->dev_private;
9172         struct intel_crtc *intel_crtc =
9173                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9174         unsigned long flags;
9175
9176
9177         /*
9178          * This is called both by irq handlers and the reset code (to complete
9179          * lost pageflips) so needs the full irqsave spinlocks.
9180          *
9181          * NB: An MMIO update of the plane base pointer will also
9182          * generate a page-flip completion irq, i.e. every modeset
9183          * is also accompanied by a spurious intel_prepare_page_flip().
9184          */
9185         spin_lock_irqsave(&dev->event_lock, flags);
9186         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9187                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9188         spin_unlock_irqrestore(&dev->event_lock, flags);
9189 }
9190
9191 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9192 {
9193         /* Ensure that the work item is consistent when activating it ... */
9194         smp_wmb();
9195         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9196         /* and that it is marked active as soon as the irq could fire. */
9197         smp_wmb();
9198 }
9199
9200 static int intel_gen2_queue_flip(struct drm_device *dev,
9201                                  struct drm_crtc *crtc,
9202                                  struct drm_framebuffer *fb,
9203                                  struct drm_i915_gem_object *obj,
9204                                  struct intel_engine_cs *ring,
9205                                  uint32_t flags)
9206 {
9207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9208         u32 flip_mask;
9209         int ret;
9210
9211         ret = intel_ring_begin(ring, 6);
9212         if (ret)
9213                 return ret;
9214
9215         /* Can't queue multiple flips, so wait for the previous
9216          * one to finish before executing the next.
9217          */
9218         if (intel_crtc->plane)
9219                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9220         else
9221                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9222         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9223         intel_ring_emit(ring, MI_NOOP);
9224         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9225                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9226         intel_ring_emit(ring, fb->pitches[0]);
9227         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9228         intel_ring_emit(ring, 0); /* aux display base address, unused */
9229
9230         intel_mark_page_flip_active(intel_crtc);
9231         __intel_ring_advance(ring);
9232         return 0;
9233 }
9234
9235 static int intel_gen3_queue_flip(struct drm_device *dev,
9236                                  struct drm_crtc *crtc,
9237                                  struct drm_framebuffer *fb,
9238                                  struct drm_i915_gem_object *obj,
9239                                  struct intel_engine_cs *ring,
9240                                  uint32_t flags)
9241 {
9242         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9243         u32 flip_mask;
9244         int ret;
9245
9246         ret = intel_ring_begin(ring, 6);
9247         if (ret)
9248                 return ret;
9249
9250         if (intel_crtc->plane)
9251                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9252         else
9253                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9254         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9255         intel_ring_emit(ring, MI_NOOP);
9256         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9257                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9258         intel_ring_emit(ring, fb->pitches[0]);
9259         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9260         intel_ring_emit(ring, MI_NOOP);
9261
9262         intel_mark_page_flip_active(intel_crtc);
9263         __intel_ring_advance(ring);
9264         return 0;
9265 }
9266
9267 static int intel_gen4_queue_flip(struct drm_device *dev,
9268                                  struct drm_crtc *crtc,
9269                                  struct drm_framebuffer *fb,
9270                                  struct drm_i915_gem_object *obj,
9271                                  struct intel_engine_cs *ring,
9272                                  uint32_t flags)
9273 {
9274         struct drm_i915_private *dev_priv = dev->dev_private;
9275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9276         uint32_t pf, pipesrc;
9277         int ret;
9278
9279         ret = intel_ring_begin(ring, 4);
9280         if (ret)
9281                 return ret;
9282
9283         /* i965+ uses the linear or tiled offsets from the
9284          * Display Registers (which do not change across a page-flip)
9285          * so we need only reprogram the base address.
9286          */
9287         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9288                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9289         intel_ring_emit(ring, fb->pitches[0]);
9290         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9291                         obj->tiling_mode);
9292
9293         /* XXX Enabling the panel-fitter across page-flip is so far
9294          * untested on non-native modes, so ignore it for now.
9295          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9296          */
9297         pf = 0;
9298         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9299         intel_ring_emit(ring, pf | pipesrc);
9300
9301         intel_mark_page_flip_active(intel_crtc);
9302         __intel_ring_advance(ring);
9303         return 0;
9304 }
9305
9306 static int intel_gen6_queue_flip(struct drm_device *dev,
9307                                  struct drm_crtc *crtc,
9308                                  struct drm_framebuffer *fb,
9309                                  struct drm_i915_gem_object *obj,
9310                                  struct intel_engine_cs *ring,
9311                                  uint32_t flags)
9312 {
9313         struct drm_i915_private *dev_priv = dev->dev_private;
9314         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9315         uint32_t pf, pipesrc;
9316         int ret;
9317
9318         ret = intel_ring_begin(ring, 4);
9319         if (ret)
9320                 return ret;
9321
9322         intel_ring_emit(ring, MI_DISPLAY_FLIP |
9323                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9324         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9325         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9326
9327         /* Contrary to the suggestions in the documentation,
9328          * "Enable Panel Fitter" does not seem to be required when page
9329          * flipping with a non-native mode, and worse causes a normal
9330          * modeset to fail.
9331          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9332          */
9333         pf = 0;
9334         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9335         intel_ring_emit(ring, pf | pipesrc);
9336
9337         intel_mark_page_flip_active(intel_crtc);
9338         __intel_ring_advance(ring);
9339         return 0;
9340 }
9341
9342 static int intel_gen7_queue_flip(struct drm_device *dev,
9343                                  struct drm_crtc *crtc,
9344                                  struct drm_framebuffer *fb,
9345                                  struct drm_i915_gem_object *obj,
9346                                  struct intel_engine_cs *ring,
9347                                  uint32_t flags)
9348 {
9349         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9350         uint32_t plane_bit = 0;
9351         int len, ret;
9352
9353         switch (intel_crtc->plane) {
9354         case PLANE_A:
9355                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9356                 break;
9357         case PLANE_B:
9358                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9359                 break;
9360         case PLANE_C:
9361                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9362                 break;
9363         default:
9364                 WARN_ONCE(1, "unknown plane in flip command\n");
9365                 return -ENODEV;
9366         }
9367
9368         len = 4;
9369         if (ring->id == RCS) {
9370                 len += 6;
9371                 /*
9372                  * On Gen 8, SRM is now taking an extra dword to accommodate
9373                  * 48bits addresses, and we need a NOOP for the batch size to
9374                  * stay even.
9375                  */
9376                 if (IS_GEN8(dev))
9377                         len += 2;
9378         }
9379
9380         /*
9381          * BSpec MI_DISPLAY_FLIP for IVB:
9382          * "The full packet must be contained within the same cache line."
9383          *
9384          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9385          * cacheline, if we ever start emitting more commands before
9386          * the MI_DISPLAY_FLIP we may need to first emit everything else,
9387          * then do the cacheline alignment, and finally emit the
9388          * MI_DISPLAY_FLIP.
9389          */
9390         ret = intel_ring_cacheline_align(ring);
9391         if (ret)
9392                 return ret;
9393
9394         ret = intel_ring_begin(ring, len);
9395         if (ret)
9396                 return ret;
9397
9398         /* Unmask the flip-done completion message. Note that the bspec says that
9399          * we should do this for both the BCS and RCS, and that we must not unmask
9400          * more than one flip event at any time (or ensure that one flip message
9401          * can be sent by waiting for flip-done prior to queueing new flips).
9402          * Experimentation says that BCS works despite DERRMR masking all
9403          * flip-done completion events and that unmasking all planes at once
9404          * for the RCS also doesn't appear to drop events. Setting the DERRMR
9405          * to zero does lead to lockups within MI_DISPLAY_FLIP.
9406          */
9407         if (ring->id == RCS) {
9408                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9409                 intel_ring_emit(ring, DERRMR);
9410                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9411                                         DERRMR_PIPEB_PRI_FLIP_DONE |
9412                                         DERRMR_PIPEC_PRI_FLIP_DONE));
9413                 if (IS_GEN8(dev))
9414                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9415                                               MI_SRM_LRM_GLOBAL_GTT);
9416                 else
9417                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9418                                               MI_SRM_LRM_GLOBAL_GTT);
9419                 intel_ring_emit(ring, DERRMR);
9420                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9421                 if (IS_GEN8(dev)) {
9422                         intel_ring_emit(ring, 0);
9423                         intel_ring_emit(ring, MI_NOOP);
9424                 }
9425         }
9426
9427         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9428         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9429         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9430         intel_ring_emit(ring, (MI_NOOP));
9431
9432         intel_mark_page_flip_active(intel_crtc);
9433         __intel_ring_advance(ring);
9434         return 0;
9435 }
9436
9437 static bool use_mmio_flip(struct intel_engine_cs *ring,
9438                           struct drm_i915_gem_object *obj)
9439 {
9440         /*
9441          * This is not being used for older platforms, because
9442          * non-availability of flip done interrupt forces us to use
9443          * CS flips. Older platforms derive flip done using some clever
9444          * tricks involving the flip_pending status bits and vblank irqs.
9445          * So using MMIO flips there would disrupt this mechanism.
9446          */
9447
9448         if (ring == NULL)
9449                 return true;
9450
9451         if (INTEL_INFO(ring->dev)->gen < 5)
9452                 return false;
9453
9454         if (i915.use_mmio_flip < 0)
9455                 return false;
9456         else if (i915.use_mmio_flip > 0)
9457                 return true;
9458         else if (i915.enable_execlists)
9459                 return true;
9460         else
9461                 return ring != i915_gem_request_get_ring(obj->last_read_req);
9462 }
9463
9464 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9465 {
9466         struct drm_device *dev = intel_crtc->base.dev;
9467         struct drm_i915_private *dev_priv = dev->dev_private;
9468         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9469         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9470         struct drm_i915_gem_object *obj = intel_fb->obj;
9471         const enum pipe pipe = intel_crtc->pipe;
9472         u32 ctl, stride;
9473
9474         ctl = I915_READ(PLANE_CTL(pipe, 0));
9475         ctl &= ~PLANE_CTL_TILED_MASK;
9476         if (obj->tiling_mode == I915_TILING_X)
9477                 ctl |= PLANE_CTL_TILED_X;
9478
9479         /*
9480          * The stride is either expressed as a multiple of 64 bytes chunks for
9481          * linear buffers or in number of tiles for tiled buffers.
9482          */
9483         stride = fb->pitches[0] >> 6;
9484         if (obj->tiling_mode == I915_TILING_X)
9485                 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9486
9487         /*
9488          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9489          * PLANE_SURF updates, the update is then guaranteed to be atomic.
9490          */
9491         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9492         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9493
9494         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9495         POSTING_READ(PLANE_SURF(pipe, 0));
9496 }
9497
9498 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9499 {
9500         struct drm_device *dev = intel_crtc->base.dev;
9501         struct drm_i915_private *dev_priv = dev->dev_private;
9502         struct intel_framebuffer *intel_fb =
9503                 to_intel_framebuffer(intel_crtc->base.primary->fb);
9504         struct drm_i915_gem_object *obj = intel_fb->obj;
9505         u32 dspcntr;
9506         u32 reg;
9507
9508         reg = DSPCNTR(intel_crtc->plane);
9509         dspcntr = I915_READ(reg);
9510
9511         if (obj->tiling_mode != I915_TILING_NONE)
9512                 dspcntr |= DISPPLANE_TILED;
9513         else
9514                 dspcntr &= ~DISPPLANE_TILED;
9515
9516         I915_WRITE(reg, dspcntr);
9517
9518         I915_WRITE(DSPSURF(intel_crtc->plane),
9519                    intel_crtc->unpin_work->gtt_offset);
9520         POSTING_READ(DSPSURF(intel_crtc->plane));
9521
9522 }
9523
9524 /*
9525  * XXX: This is the temporary way to update the plane registers until we get
9526  * around to using the usual plane update functions for MMIO flips
9527  */
9528 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9529 {
9530         struct drm_device *dev = intel_crtc->base.dev;
9531         bool atomic_update;
9532         u32 start_vbl_count;
9533
9534         intel_mark_page_flip_active(intel_crtc);
9535
9536         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9537
9538         if (INTEL_INFO(dev)->gen >= 9)
9539                 skl_do_mmio_flip(intel_crtc);
9540         else
9541                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9542                 ilk_do_mmio_flip(intel_crtc);
9543
9544         if (atomic_update)
9545                 intel_pipe_update_end(intel_crtc, start_vbl_count);
9546 }
9547
9548 static void intel_mmio_flip_work_func(struct work_struct *work)
9549 {
9550         struct intel_crtc *crtc =
9551                 container_of(work, struct intel_crtc, mmio_flip.work);
9552         struct intel_mmio_flip *mmio_flip;
9553
9554         mmio_flip = &crtc->mmio_flip;
9555         if (mmio_flip->req)
9556                 WARN_ON(__i915_wait_request(mmio_flip->req,
9557                                             crtc->reset_counter,
9558                                             false, NULL, NULL) != 0);
9559
9560         intel_do_mmio_flip(crtc);
9561         if (mmio_flip->req) {
9562                 mutex_lock(&crtc->base.dev->struct_mutex);
9563                 i915_gem_request_assign(&mmio_flip->req, NULL);
9564                 mutex_unlock(&crtc->base.dev->struct_mutex);
9565         }
9566 }
9567
9568 static int intel_queue_mmio_flip(struct drm_device *dev,
9569                                  struct drm_crtc *crtc,
9570                                  struct drm_framebuffer *fb,
9571                                  struct drm_i915_gem_object *obj,
9572                                  struct intel_engine_cs *ring,
9573                                  uint32_t flags)
9574 {
9575         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576
9577         i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9578                                 obj->last_write_req);
9579
9580         schedule_work(&intel_crtc->mmio_flip.work);
9581
9582         return 0;
9583 }
9584
9585 static int intel_gen9_queue_flip(struct drm_device *dev,
9586                                  struct drm_crtc *crtc,
9587                                  struct drm_framebuffer *fb,
9588                                  struct drm_i915_gem_object *obj,
9589                                  struct intel_engine_cs *ring,
9590                                  uint32_t flags)
9591 {
9592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9593         uint32_t plane = 0, stride;
9594         int ret;
9595
9596         switch(intel_crtc->pipe) {
9597         case PIPE_A:
9598                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9599                 break;
9600         case PIPE_B:
9601                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9602                 break;
9603         case PIPE_C:
9604                 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9605                 break;
9606         default:
9607                 WARN_ONCE(1, "unknown plane in flip command\n");
9608                 return -ENODEV;
9609         }
9610
9611         switch (obj->tiling_mode) {
9612         case I915_TILING_NONE:
9613                 stride = fb->pitches[0] >> 6;
9614                 break;
9615         case I915_TILING_X:
9616                 stride = fb->pitches[0] >> 9;
9617                 break;
9618         default:
9619                 WARN_ONCE(1, "unknown tiling in flip command\n");
9620                 return -ENODEV;
9621         }
9622
9623         ret = intel_ring_begin(ring, 10);
9624         if (ret)
9625                 return ret;
9626
9627         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9628         intel_ring_emit(ring, DERRMR);
9629         intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9630                                 DERRMR_PIPEB_PRI_FLIP_DONE |
9631                                 DERRMR_PIPEC_PRI_FLIP_DONE));
9632         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9633                               MI_SRM_LRM_GLOBAL_GTT);
9634         intel_ring_emit(ring, DERRMR);
9635         intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9636         intel_ring_emit(ring, 0);
9637
9638         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9639         intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9640         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9641
9642         intel_mark_page_flip_active(intel_crtc);
9643         __intel_ring_advance(ring);
9644
9645         return 0;
9646 }
9647
9648 static int intel_default_queue_flip(struct drm_device *dev,
9649                                     struct drm_crtc *crtc,
9650                                     struct drm_framebuffer *fb,
9651                                     struct drm_i915_gem_object *obj,
9652                                     struct intel_engine_cs *ring,
9653                                     uint32_t flags)
9654 {
9655         return -ENODEV;
9656 }
9657
9658 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9659                                          struct drm_crtc *crtc)
9660 {
9661         struct drm_i915_private *dev_priv = dev->dev_private;
9662         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9663         struct intel_unpin_work *work = intel_crtc->unpin_work;
9664         u32 addr;
9665
9666         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9667                 return true;
9668
9669         if (!work->enable_stall_check)
9670                 return false;
9671
9672         if (work->flip_ready_vblank == 0) {
9673                 if (work->flip_queued_req &&
9674                     !i915_gem_request_completed(work->flip_queued_req, true))
9675                         return false;
9676
9677                 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9678         }
9679
9680         if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9681                 return false;
9682
9683         /* Potential stall - if we see that the flip has happened,
9684          * assume a missed interrupt. */
9685         if (INTEL_INFO(dev)->gen >= 4)
9686                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9687         else
9688                 addr = I915_READ(DSPADDR(intel_crtc->plane));
9689
9690         /* There is a potential issue here with a false positive after a flip
9691          * to the same address. We could address this by checking for a
9692          * non-incrementing frame counter.
9693          */
9694         return addr == work->gtt_offset;
9695 }
9696
9697 void intel_check_page_flip(struct drm_device *dev, int pipe)
9698 {
9699         struct drm_i915_private *dev_priv = dev->dev_private;
9700         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9701         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9702
9703         WARN_ON(!in_irq());
9704
9705         if (crtc == NULL)
9706                 return;
9707
9708         spin_lock(&dev->event_lock);
9709         if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9710                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9711                          intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9712                 page_flip_completed(intel_crtc);
9713         }
9714         spin_unlock(&dev->event_lock);
9715 }
9716
9717 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9718                                 struct drm_framebuffer *fb,
9719                                 struct drm_pending_vblank_event *event,
9720                                 uint32_t page_flip_flags)
9721 {
9722         struct drm_device *dev = crtc->dev;
9723         struct drm_i915_private *dev_priv = dev->dev_private;
9724         struct drm_framebuffer *old_fb = crtc->primary->fb;
9725         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9726         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9727         struct drm_plane *primary = crtc->primary;
9728         enum pipe pipe = intel_crtc->pipe;
9729         struct intel_unpin_work *work;
9730         struct intel_engine_cs *ring;
9731         int ret;
9732
9733         /*
9734          * drm_mode_page_flip_ioctl() should already catch this, but double
9735          * check to be safe.  In the future we may enable pageflipping from
9736          * a disabled primary plane.
9737          */
9738         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9739                 return -EBUSY;
9740
9741         /* Can't change pixel format via MI display flips. */
9742         if (fb->pixel_format != crtc->primary->fb->pixel_format)
9743                 return -EINVAL;
9744
9745         /*
9746          * TILEOFF/LINOFF registers can't be changed via MI display flips.
9747          * Note that pitch changes could also affect these register.
9748          */
9749         if (INTEL_INFO(dev)->gen > 3 &&
9750             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9751              fb->pitches[0] != crtc->primary->fb->pitches[0]))
9752                 return -EINVAL;
9753
9754         if (i915_terminally_wedged(&dev_priv->gpu_error))
9755                 goto out_hang;
9756
9757         work = kzalloc(sizeof(*work), GFP_KERNEL);
9758         if (work == NULL)
9759                 return -ENOMEM;
9760
9761         work->event = event;
9762         work->crtc = crtc;
9763         work->old_fb_obj = intel_fb_obj(old_fb);
9764         INIT_WORK(&work->work, intel_unpin_work_fn);
9765
9766         ret = drm_crtc_vblank_get(crtc);
9767         if (ret)
9768                 goto free_work;
9769
9770         /* We borrow the event spin lock for protecting unpin_work */
9771         spin_lock_irq(&dev->event_lock);
9772         if (intel_crtc->unpin_work) {
9773                 /* Before declaring the flip queue wedged, check if
9774                  * the hardware completed the operation behind our backs.
9775                  */
9776                 if (__intel_pageflip_stall_check(dev, crtc)) {
9777                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9778                         page_flip_completed(intel_crtc);
9779                 } else {
9780                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9781                         spin_unlock_irq(&dev->event_lock);
9782
9783                         drm_crtc_vblank_put(crtc);
9784                         kfree(work);
9785                         return -EBUSY;
9786                 }
9787         }
9788         intel_crtc->unpin_work = work;
9789         spin_unlock_irq(&dev->event_lock);
9790
9791         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9792                 flush_workqueue(dev_priv->wq);
9793
9794         ret = i915_mutex_lock_interruptible(dev);
9795         if (ret)
9796                 goto cleanup;
9797
9798         /* Reference the objects for the scheduled work. */
9799         drm_gem_object_reference(&work->old_fb_obj->base);
9800         drm_gem_object_reference(&obj->base);
9801
9802         crtc->primary->fb = fb;
9803
9804         work->pending_flip_obj = obj;
9805
9806         atomic_inc(&intel_crtc->unpin_work_count);
9807         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9808
9809         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9810                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9811
9812         if (IS_VALLEYVIEW(dev)) {
9813                 ring = &dev_priv->ring[BCS];
9814                 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9815                         /* vlv: DISPLAY_FLIP fails to change tiling */
9816                         ring = NULL;
9817         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9818                 ring = &dev_priv->ring[BCS];
9819         } else if (INTEL_INFO(dev)->gen >= 7) {
9820                 ring = i915_gem_request_get_ring(obj->last_read_req);
9821                 if (ring == NULL || ring->id != RCS)
9822                         ring = &dev_priv->ring[BCS];
9823         } else {
9824                 ring = &dev_priv->ring[RCS];
9825         }
9826
9827         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9828         if (ret)
9829                 goto cleanup_pending;
9830
9831         work->gtt_offset =
9832                 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9833
9834         if (use_mmio_flip(ring, obj)) {
9835                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9836                                             page_flip_flags);
9837                 if (ret)
9838                         goto cleanup_unpin;
9839
9840                 i915_gem_request_assign(&work->flip_queued_req,
9841                                         obj->last_write_req);
9842         } else {
9843                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9844                                                    page_flip_flags);
9845                 if (ret)
9846                         goto cleanup_unpin;
9847
9848                 i915_gem_request_assign(&work->flip_queued_req,
9849                                         intel_ring_get_request(ring));
9850         }
9851
9852         work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9853         work->enable_stall_check = true;
9854
9855         i915_gem_track_fb(work->old_fb_obj, obj,
9856                           INTEL_FRONTBUFFER_PRIMARY(pipe));
9857
9858         intel_fbc_disable(dev);
9859         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9860         mutex_unlock(&dev->struct_mutex);
9861
9862         trace_i915_flip_request(intel_crtc->plane, obj);
9863
9864         return 0;
9865
9866 cleanup_unpin:
9867         intel_unpin_fb_obj(obj);
9868 cleanup_pending:
9869         atomic_dec(&intel_crtc->unpin_work_count);
9870         crtc->primary->fb = old_fb;
9871         drm_gem_object_unreference(&work->old_fb_obj->base);
9872         drm_gem_object_unreference(&obj->base);
9873         mutex_unlock(&dev->struct_mutex);
9874
9875 cleanup:
9876         spin_lock_irq(&dev->event_lock);
9877         intel_crtc->unpin_work = NULL;
9878         spin_unlock_irq(&dev->event_lock);
9879
9880         drm_crtc_vblank_put(crtc);
9881 free_work:
9882         kfree(work);
9883
9884         if (ret == -EIO) {
9885 out_hang:
9886                 ret = intel_plane_restore(primary);
9887                 if (ret == 0 && event) {
9888                         spin_lock_irq(&dev->event_lock);
9889                         drm_send_vblank_event(dev, pipe, event);
9890                         spin_unlock_irq(&dev->event_lock);
9891                 }
9892         }
9893         return ret;
9894 }
9895
9896 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9897         .mode_set_base_atomic = intel_pipe_set_base_atomic,
9898         .load_lut = intel_crtc_load_lut,
9899         .atomic_begin = intel_begin_crtc_commit,
9900         .atomic_flush = intel_finish_crtc_commit,
9901 };
9902
9903 /**
9904  * intel_modeset_update_staged_output_state
9905  *
9906  * Updates the staged output configuration state, e.g. after we've read out the
9907  * current hw state.
9908  */
9909 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9910 {
9911         struct intel_crtc *crtc;
9912         struct intel_encoder *encoder;
9913         struct intel_connector *connector;
9914
9915         list_for_each_entry(connector, &dev->mode_config.connector_list,
9916                             base.head) {
9917                 connector->new_encoder =
9918                         to_intel_encoder(connector->base.encoder);
9919         }
9920
9921         for_each_intel_encoder(dev, encoder) {
9922                 encoder->new_crtc =
9923                         to_intel_crtc(encoder->base.crtc);
9924         }
9925
9926         for_each_intel_crtc(dev, crtc) {
9927                 crtc->new_enabled = crtc->base.enabled;
9928
9929                 if (crtc->new_enabled)
9930                         crtc->new_config = crtc->config;
9931                 else
9932                         crtc->new_config = NULL;
9933         }
9934 }
9935
9936 /**
9937  * intel_modeset_commit_output_state
9938  *
9939  * This function copies the stage display pipe configuration to the real one.
9940  */
9941 static void intel_modeset_commit_output_state(struct drm_device *dev)
9942 {
9943         struct intel_crtc *crtc;
9944         struct intel_encoder *encoder;
9945         struct intel_connector *connector;
9946
9947         list_for_each_entry(connector, &dev->mode_config.connector_list,
9948                             base.head) {
9949                 connector->base.encoder = &connector->new_encoder->base;
9950         }
9951
9952         for_each_intel_encoder(dev, encoder) {
9953                 encoder->base.crtc = &encoder->new_crtc->base;
9954         }
9955
9956         for_each_intel_crtc(dev, crtc) {
9957                 crtc->base.enabled = crtc->new_enabled;
9958         }
9959 }
9960
9961 static void
9962 connected_sink_compute_bpp(struct intel_connector *connector,
9963                            struct intel_crtc_state *pipe_config)
9964 {
9965         int bpp = pipe_config->pipe_bpp;
9966
9967         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9968                 connector->base.base.id,
9969                 connector->base.name);
9970
9971         /* Don't use an invalid EDID bpc value */
9972         if (connector->base.display_info.bpc &&
9973             connector->base.display_info.bpc * 3 < bpp) {
9974                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9975                               bpp, connector->base.display_info.bpc*3);
9976                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9977         }
9978
9979         /* Clamp bpp to 8 on screens without EDID 1.4 */
9980         if (connector->base.display_info.bpc == 0 && bpp > 24) {
9981                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9982                               bpp);
9983                 pipe_config->pipe_bpp = 24;
9984         }
9985 }
9986
9987 static int
9988 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9989                           struct drm_framebuffer *fb,
9990                           struct intel_crtc_state *pipe_config)
9991 {
9992         struct drm_device *dev = crtc->base.dev;
9993         struct intel_connector *connector;
9994         int bpp;
9995
9996         switch (fb->pixel_format) {
9997         case DRM_FORMAT_C8:
9998                 bpp = 8*3; /* since we go through a colormap */
9999                 break;
10000         case DRM_FORMAT_XRGB1555:
10001         case DRM_FORMAT_ARGB1555:
10002                 /* checked in intel_framebuffer_init already */
10003                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10004                         return -EINVAL;
10005         case DRM_FORMAT_RGB565:
10006                 bpp = 6*3; /* min is 18bpp */
10007                 break;
10008         case DRM_FORMAT_XBGR8888:
10009         case DRM_FORMAT_ABGR8888:
10010                 /* checked in intel_framebuffer_init already */
10011                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10012                         return -EINVAL;
10013         case DRM_FORMAT_XRGB8888:
10014         case DRM_FORMAT_ARGB8888:
10015                 bpp = 8*3;
10016                 break;
10017         case DRM_FORMAT_XRGB2101010:
10018         case DRM_FORMAT_ARGB2101010:
10019         case DRM_FORMAT_XBGR2101010:
10020         case DRM_FORMAT_ABGR2101010:
10021                 /* checked in intel_framebuffer_init already */
10022                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10023                         return -EINVAL;
10024                 bpp = 10*3;
10025                 break;
10026         /* TODO: gen4+ supports 16 bpc floating point, too. */
10027         default:
10028                 DRM_DEBUG_KMS("unsupported depth\n");
10029                 return -EINVAL;
10030         }
10031
10032         pipe_config->pipe_bpp = bpp;
10033
10034         /* Clamp display bpp to EDID value */
10035         list_for_each_entry(connector, &dev->mode_config.connector_list,
10036                             base.head) {
10037                 if (!connector->new_encoder ||
10038                     connector->new_encoder->new_crtc != crtc)
10039                         continue;
10040
10041                 connected_sink_compute_bpp(connector, pipe_config);
10042         }
10043
10044         return bpp;
10045 }
10046
10047 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10048 {
10049         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10050                         "type: 0x%x flags: 0x%x\n",
10051                 mode->crtc_clock,
10052                 mode->crtc_hdisplay, mode->crtc_hsync_start,
10053                 mode->crtc_hsync_end, mode->crtc_htotal,
10054                 mode->crtc_vdisplay, mode->crtc_vsync_start,
10055                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10056 }
10057
10058 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10059                                    struct intel_crtc_state *pipe_config,
10060                                    const char *context)
10061 {
10062         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10063                       context, pipe_name(crtc->pipe));
10064
10065         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10066         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10067                       pipe_config->pipe_bpp, pipe_config->dither);
10068         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069                       pipe_config->has_pch_encoder,
10070                       pipe_config->fdi_lanes,
10071                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10072                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10073                       pipe_config->fdi_m_n.tu);
10074         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10075                       pipe_config->has_dp_encoder,
10076                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10077                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10078                       pipe_config->dp_m_n.tu);
10079
10080         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10081                       pipe_config->has_dp_encoder,
10082                       pipe_config->dp_m2_n2.gmch_m,
10083                       pipe_config->dp_m2_n2.gmch_n,
10084                       pipe_config->dp_m2_n2.link_m,
10085                       pipe_config->dp_m2_n2.link_n,
10086                       pipe_config->dp_m2_n2.tu);
10087
10088         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10089                       pipe_config->has_audio,
10090                       pipe_config->has_infoframe);
10091
10092         DRM_DEBUG_KMS("requested mode:\n");
10093         drm_mode_debug_printmodeline(&pipe_config->base.mode);
10094         DRM_DEBUG_KMS("adjusted mode:\n");
10095         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10096         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10097         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10098         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10099                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10100         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10101                       pipe_config->gmch_pfit.control,
10102                       pipe_config->gmch_pfit.pgm_ratios,
10103                       pipe_config->gmch_pfit.lvds_border_bits);
10104         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10105                       pipe_config->pch_pfit.pos,
10106                       pipe_config->pch_pfit.size,
10107                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10108         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10109         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10110 }
10111
10112 static bool encoders_cloneable(const struct intel_encoder *a,
10113                                const struct intel_encoder *b)
10114 {
10115         /* masks could be asymmetric, so check both ways */
10116         return a == b || (a->cloneable & (1 << b->type) &&
10117                           b->cloneable & (1 << a->type));
10118 }
10119
10120 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10121                                          struct intel_encoder *encoder)
10122 {
10123         struct drm_device *dev = crtc->base.dev;
10124         struct intel_encoder *source_encoder;
10125
10126         for_each_intel_encoder(dev, source_encoder) {
10127                 if (source_encoder->new_crtc != crtc)
10128                         continue;
10129
10130                 if (!encoders_cloneable(encoder, source_encoder))
10131                         return false;
10132         }
10133
10134         return true;
10135 }
10136
10137 static bool check_encoder_cloning(struct intel_crtc *crtc)
10138 {
10139         struct drm_device *dev = crtc->base.dev;
10140         struct intel_encoder *encoder;
10141
10142         for_each_intel_encoder(dev, encoder) {
10143                 if (encoder->new_crtc != crtc)
10144                         continue;
10145
10146                 if (!check_single_encoder_cloning(crtc, encoder))
10147                         return false;
10148         }
10149
10150         return true;
10151 }
10152
10153 static bool check_digital_port_conflicts(struct drm_device *dev)
10154 {
10155         struct intel_connector *connector;
10156         unsigned int used_ports = 0;
10157
10158         /*
10159          * Walk the connector list instead of the encoder
10160          * list to detect the problem on ddi platforms
10161          * where there's just one encoder per digital port.
10162          */
10163         list_for_each_entry(connector,
10164                             &dev->mode_config.connector_list, base.head) {
10165                 struct intel_encoder *encoder = connector->new_encoder;
10166
10167                 if (!encoder)
10168                         continue;
10169
10170                 WARN_ON(!encoder->new_crtc);
10171
10172                 switch (encoder->type) {
10173                         unsigned int port_mask;
10174                 case INTEL_OUTPUT_UNKNOWN:
10175                         if (WARN_ON(!HAS_DDI(dev)))
10176                                 break;
10177                 case INTEL_OUTPUT_DISPLAYPORT:
10178                 case INTEL_OUTPUT_HDMI:
10179                 case INTEL_OUTPUT_EDP:
10180                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10181
10182                         /* the same port mustn't appear more than once */
10183                         if (used_ports & port_mask)
10184                                 return false;
10185
10186                         used_ports |= port_mask;
10187                 default:
10188                         break;
10189                 }
10190         }
10191
10192         return true;
10193 }
10194
10195 static struct intel_crtc_state *
10196 intel_modeset_pipe_config(struct drm_crtc *crtc,
10197                           struct drm_framebuffer *fb,
10198                           struct drm_display_mode *mode)
10199 {
10200         struct drm_device *dev = crtc->dev;
10201         struct intel_encoder *encoder;
10202         struct intel_crtc_state *pipe_config;
10203         int plane_bpp, ret = -EINVAL;
10204         bool retry = true;
10205
10206         if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10207                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10208                 return ERR_PTR(-EINVAL);
10209         }
10210
10211         if (!check_digital_port_conflicts(dev)) {
10212                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10213                 return ERR_PTR(-EINVAL);
10214         }
10215
10216         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10217         if (!pipe_config)
10218                 return ERR_PTR(-ENOMEM);
10219
10220         drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10221         drm_mode_copy(&pipe_config->base.mode, mode);
10222
10223         pipe_config->cpu_transcoder =
10224                 (enum transcoder) to_intel_crtc(crtc)->pipe;
10225         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10226
10227         /*
10228          * Sanitize sync polarity flags based on requested ones. If neither
10229          * positive or negative polarity is requested, treat this as meaning
10230          * negative polarity.
10231          */
10232         if (!(pipe_config->base.adjusted_mode.flags &
10233               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10234                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10235
10236         if (!(pipe_config->base.adjusted_mode.flags &
10237               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10238                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10239
10240         /* Compute a starting value for pipe_config->pipe_bpp taking the source
10241          * plane pixel format and any sink constraints into account. Returns the
10242          * source plane bpp so that dithering can be selected on mismatches
10243          * after encoders and crtc also have had their say. */
10244         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10245                                               fb, pipe_config);
10246         if (plane_bpp < 0)
10247                 goto fail;
10248
10249         /*
10250          * Determine the real pipe dimensions. Note that stereo modes can
10251          * increase the actual pipe size due to the frame doubling and
10252          * insertion of additional space for blanks between the frame. This
10253          * is stored in the crtc timings. We use the requested mode to do this
10254          * computation to clearly distinguish it from the adjusted mode, which
10255          * can be changed by the connectors in the below retry loop.
10256          */
10257         drm_crtc_get_hv_timing(&pipe_config->base.mode,
10258                                &pipe_config->pipe_src_w,
10259                                &pipe_config->pipe_src_h);
10260
10261 encoder_retry:
10262         /* Ensure the port clock defaults are reset when retrying. */
10263         pipe_config->port_clock = 0;
10264         pipe_config->pixel_multiplier = 1;
10265
10266         /* Fill in default crtc timings, allow encoders to overwrite them. */
10267         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10268                               CRTC_STEREO_DOUBLE);
10269
10270         /* Pass our mode to the connectors and the CRTC to give them a chance to
10271          * adjust it according to limitations or connector properties, and also
10272          * a chance to reject the mode entirely.
10273          */
10274         for_each_intel_encoder(dev, encoder) {
10275
10276                 if (&encoder->new_crtc->base != crtc)
10277                         continue;
10278
10279                 if (!(encoder->compute_config(encoder, pipe_config))) {
10280                         DRM_DEBUG_KMS("Encoder config failure\n");
10281                         goto fail;
10282                 }
10283         }
10284
10285         /* Set default port clock if not overwritten by the encoder. Needs to be
10286          * done afterwards in case the encoder adjusts the mode. */
10287         if (!pipe_config->port_clock)
10288                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10289                         * pipe_config->pixel_multiplier;
10290
10291         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10292         if (ret < 0) {
10293                 DRM_DEBUG_KMS("CRTC fixup failed\n");
10294                 goto fail;
10295         }
10296
10297         if (ret == RETRY) {
10298                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10299                         ret = -EINVAL;
10300                         goto fail;
10301                 }
10302
10303                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10304                 retry = false;
10305                 goto encoder_retry;
10306         }
10307
10308         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10309         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10310                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10311
10312         return pipe_config;
10313 fail:
10314         kfree(pipe_config);
10315         return ERR_PTR(ret);
10316 }
10317
10318 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10319  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10320 static void
10321 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10322                              unsigned *prepare_pipes, unsigned *disable_pipes)
10323 {
10324         struct intel_crtc *intel_crtc;
10325         struct drm_device *dev = crtc->dev;
10326         struct intel_encoder *encoder;
10327         struct intel_connector *connector;
10328         struct drm_crtc *tmp_crtc;
10329
10330         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10331
10332         /* Check which crtcs have changed outputs connected to them, these need
10333          * to be part of the prepare_pipes mask. We don't (yet) support global
10334          * modeset across multiple crtcs, so modeset_pipes will only have one
10335          * bit set at most. */
10336         list_for_each_entry(connector, &dev->mode_config.connector_list,
10337                             base.head) {
10338                 if (connector->base.encoder == &connector->new_encoder->base)
10339                         continue;
10340
10341                 if (connector->base.encoder) {
10342                         tmp_crtc = connector->base.encoder->crtc;
10343
10344                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10345                 }
10346
10347                 if (connector->new_encoder)
10348                         *prepare_pipes |=
10349                                 1 << connector->new_encoder->new_crtc->pipe;
10350         }
10351
10352         for_each_intel_encoder(dev, encoder) {
10353                 if (encoder->base.crtc == &encoder->new_crtc->base)
10354                         continue;
10355
10356                 if (encoder->base.crtc) {
10357                         tmp_crtc = encoder->base.crtc;
10358
10359                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10360                 }
10361
10362                 if (encoder->new_crtc)
10363                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10364         }
10365
10366         /* Check for pipes that will be enabled/disabled ... */
10367         for_each_intel_crtc(dev, intel_crtc) {
10368                 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10369                         continue;
10370
10371                 if (!intel_crtc->new_enabled)
10372                         *disable_pipes |= 1 << intel_crtc->pipe;
10373                 else
10374                         *prepare_pipes |= 1 << intel_crtc->pipe;
10375         }
10376
10377
10378         /* set_mode is also used to update properties on life display pipes. */
10379         intel_crtc = to_intel_crtc(crtc);
10380         if (intel_crtc->new_enabled)
10381                 *prepare_pipes |= 1 << intel_crtc->pipe;
10382
10383         /*
10384          * For simplicity do a full modeset on any pipe where the output routing
10385          * changed. We could be more clever, but that would require us to be
10386          * more careful with calling the relevant encoder->mode_set functions.
10387          */
10388         if (*prepare_pipes)
10389                 *modeset_pipes = *prepare_pipes;
10390
10391         /* ... and mask these out. */
10392         *modeset_pipes &= ~(*disable_pipes);
10393         *prepare_pipes &= ~(*disable_pipes);
10394
10395         /*
10396          * HACK: We don't (yet) fully support global modesets. intel_set_config
10397          * obies this rule, but the modeset restore mode of
10398          * intel_modeset_setup_hw_state does not.
10399          */
10400         *modeset_pipes &= 1 << intel_crtc->pipe;
10401         *prepare_pipes &= 1 << intel_crtc->pipe;
10402
10403         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10404                       *modeset_pipes, *prepare_pipes, *disable_pipes);
10405 }
10406
10407 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10408 {
10409         struct drm_encoder *encoder;
10410         struct drm_device *dev = crtc->dev;
10411
10412         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10413                 if (encoder->crtc == crtc)
10414                         return true;
10415
10416         return false;
10417 }
10418
10419 static void
10420 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10421 {
10422         struct drm_i915_private *dev_priv = dev->dev_private;
10423         struct intel_encoder *intel_encoder;
10424         struct intel_crtc *intel_crtc;
10425         struct drm_connector *connector;
10426
10427         intel_shared_dpll_commit(dev_priv);
10428
10429         for_each_intel_encoder(dev, intel_encoder) {
10430                 if (!intel_encoder->base.crtc)
10431                         continue;
10432
10433                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10434
10435                 if (prepare_pipes & (1 << intel_crtc->pipe))
10436                         intel_encoder->connectors_active = false;
10437         }
10438
10439         intel_modeset_commit_output_state(dev);
10440
10441         /* Double check state. */
10442         for_each_intel_crtc(dev, intel_crtc) {
10443                 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10444                 WARN_ON(intel_crtc->new_config &&
10445                         intel_crtc->new_config != intel_crtc->config);
10446                 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10447         }
10448
10449         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10450                 if (!connector->encoder || !connector->encoder->crtc)
10451                         continue;
10452
10453                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10454
10455                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10456                         struct drm_property *dpms_property =
10457                                 dev->mode_config.dpms_property;
10458
10459                         connector->dpms = DRM_MODE_DPMS_ON;
10460                         drm_object_property_set_value(&connector->base,
10461                                                          dpms_property,
10462                                                          DRM_MODE_DPMS_ON);
10463
10464                         intel_encoder = to_intel_encoder(connector->encoder);
10465                         intel_encoder->connectors_active = true;
10466                 }
10467         }
10468
10469 }
10470
10471 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10472 {
10473         int diff;
10474
10475         if (clock1 == clock2)
10476                 return true;
10477
10478         if (!clock1 || !clock2)
10479                 return false;
10480
10481         diff = abs(clock1 - clock2);
10482
10483         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10484                 return true;
10485
10486         return false;
10487 }
10488
10489 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10490         list_for_each_entry((intel_crtc), \
10491                             &(dev)->mode_config.crtc_list, \
10492                             base.head) \
10493                 if (mask & (1 <<(intel_crtc)->pipe))
10494
10495 static bool
10496 intel_pipe_config_compare(struct drm_device *dev,
10497                           struct intel_crtc_state *current_config,
10498                           struct intel_crtc_state *pipe_config)
10499 {
10500 #define PIPE_CONF_CHECK_X(name) \
10501         if (current_config->name != pipe_config->name) { \
10502                 DRM_ERROR("mismatch in " #name " " \
10503                           "(expected 0x%08x, found 0x%08x)\n", \
10504                           current_config->name, \
10505                           pipe_config->name); \
10506                 return false; \
10507         }
10508
10509 #define PIPE_CONF_CHECK_I(name) \
10510         if (current_config->name != pipe_config->name) { \
10511                 DRM_ERROR("mismatch in " #name " " \
10512                           "(expected %i, found %i)\n", \
10513                           current_config->name, \
10514                           pipe_config->name); \
10515                 return false; \
10516         }
10517
10518 /* This is required for BDW+ where there is only one set of registers for
10519  * switching between high and low RR.
10520  * This macro can be used whenever a comparison has to be made between one
10521  * hw state and multiple sw state variables.
10522  */
10523 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10524         if ((current_config->name != pipe_config->name) && \
10525                 (current_config->alt_name != pipe_config->name)) { \
10526                         DRM_ERROR("mismatch in " #name " " \
10527                                   "(expected %i or %i, found %i)\n", \
10528                                   current_config->name, \
10529                                   current_config->alt_name, \
10530                                   pipe_config->name); \
10531                         return false; \
10532         }
10533
10534 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
10535         if ((current_config->name ^ pipe_config->name) & (mask)) { \
10536                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
10537                           "(expected %i, found %i)\n", \
10538                           current_config->name & (mask), \
10539                           pipe_config->name & (mask)); \
10540                 return false; \
10541         }
10542
10543 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10544         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10545                 DRM_ERROR("mismatch in " #name " " \
10546                           "(expected %i, found %i)\n", \
10547                           current_config->name, \
10548                           pipe_config->name); \
10549                 return false; \
10550         }
10551
10552 #define PIPE_CONF_QUIRK(quirk)  \
10553         ((current_config->quirks | pipe_config->quirks) & (quirk))
10554
10555         PIPE_CONF_CHECK_I(cpu_transcoder);
10556
10557         PIPE_CONF_CHECK_I(has_pch_encoder);
10558         PIPE_CONF_CHECK_I(fdi_lanes);
10559         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10560         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10561         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10562         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10563         PIPE_CONF_CHECK_I(fdi_m_n.tu);
10564
10565         PIPE_CONF_CHECK_I(has_dp_encoder);
10566
10567         if (INTEL_INFO(dev)->gen < 8) {
10568                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10569                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10570                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10571                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10572                 PIPE_CONF_CHECK_I(dp_m_n.tu);
10573
10574                 if (current_config->has_drrs) {
10575                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10576                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10577                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10578                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10579                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10580                 }
10581         } else {
10582                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10583                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10584                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10585                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10586                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10587         }
10588
10589         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10590         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10591         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10592         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10593         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10594         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10595
10596         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10597         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10598         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10599         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10600         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10601         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10602
10603         PIPE_CONF_CHECK_I(pixel_multiplier);
10604         PIPE_CONF_CHECK_I(has_hdmi_sink);
10605         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10606             IS_VALLEYVIEW(dev))
10607                 PIPE_CONF_CHECK_I(limited_color_range);
10608         PIPE_CONF_CHECK_I(has_infoframe);
10609
10610         PIPE_CONF_CHECK_I(has_audio);
10611
10612         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10613                               DRM_MODE_FLAG_INTERLACE);
10614
10615         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10616                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10617                                       DRM_MODE_FLAG_PHSYNC);
10618                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10619                                       DRM_MODE_FLAG_NHSYNC);
10620                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10621                                       DRM_MODE_FLAG_PVSYNC);
10622                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10623                                       DRM_MODE_FLAG_NVSYNC);
10624         }
10625
10626         PIPE_CONF_CHECK_I(pipe_src_w);
10627         PIPE_CONF_CHECK_I(pipe_src_h);
10628
10629         /*
10630          * FIXME: BIOS likes to set up a cloned config with lvds+external
10631          * screen. Since we don't yet re-compute the pipe config when moving
10632          * just the lvds port away to another pipe the sw tracking won't match.
10633          *
10634          * Proper atomic modesets with recomputed global state will fix this.
10635          * Until then just don't check gmch state for inherited modes.
10636          */
10637         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10638                 PIPE_CONF_CHECK_I(gmch_pfit.control);
10639                 /* pfit ratios are autocomputed by the hw on gen4+ */
10640                 if (INTEL_INFO(dev)->gen < 4)
10641                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10642                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10643         }
10644
10645         PIPE_CONF_CHECK_I(pch_pfit.enabled);
10646         if (current_config->pch_pfit.enabled) {
10647                 PIPE_CONF_CHECK_I(pch_pfit.pos);
10648                 PIPE_CONF_CHECK_I(pch_pfit.size);
10649         }
10650
10651         /* BDW+ don't expose a synchronous way to read the state */
10652         if (IS_HASWELL(dev))
10653                 PIPE_CONF_CHECK_I(ips_enabled);
10654
10655         PIPE_CONF_CHECK_I(double_wide);
10656
10657         PIPE_CONF_CHECK_X(ddi_pll_sel);
10658
10659         PIPE_CONF_CHECK_I(shared_dpll);
10660         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10661         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10662         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10663         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10664         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10665         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10666         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10667         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10668
10669         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10670                 PIPE_CONF_CHECK_I(pipe_bpp);
10671
10672         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10673         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10674
10675 #undef PIPE_CONF_CHECK_X
10676 #undef PIPE_CONF_CHECK_I
10677 #undef PIPE_CONF_CHECK_I_ALT
10678 #undef PIPE_CONF_CHECK_FLAGS
10679 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10680 #undef PIPE_CONF_QUIRK
10681
10682         return true;
10683 }
10684
10685 static void check_wm_state(struct drm_device *dev)
10686 {
10687         struct drm_i915_private *dev_priv = dev->dev_private;
10688         struct skl_ddb_allocation hw_ddb, *sw_ddb;
10689         struct intel_crtc *intel_crtc;
10690         int plane;
10691
10692         if (INTEL_INFO(dev)->gen < 9)
10693                 return;
10694
10695         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10696         sw_ddb = &dev_priv->wm.skl_hw.ddb;
10697
10698         for_each_intel_crtc(dev, intel_crtc) {
10699                 struct skl_ddb_entry *hw_entry, *sw_entry;
10700                 const enum pipe pipe = intel_crtc->pipe;
10701
10702                 if (!intel_crtc->active)
10703                         continue;
10704
10705                 /* planes */
10706                 for_each_plane(pipe, plane) {
10707                         hw_entry = &hw_ddb.plane[pipe][plane];
10708                         sw_entry = &sw_ddb->plane[pipe][plane];
10709
10710                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
10711                                 continue;
10712
10713                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10714                                   "(expected (%u,%u), found (%u,%u))\n",
10715                                   pipe_name(pipe), plane + 1,
10716                                   sw_entry->start, sw_entry->end,
10717                                   hw_entry->start, hw_entry->end);
10718                 }
10719
10720                 /* cursor */
10721                 hw_entry = &hw_ddb.cursor[pipe];
10722                 sw_entry = &sw_ddb->cursor[pipe];
10723
10724                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10725                         continue;
10726
10727                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10728                           "(expected (%u,%u), found (%u,%u))\n",
10729                           pipe_name(pipe),
10730                           sw_entry->start, sw_entry->end,
10731                           hw_entry->start, hw_entry->end);
10732         }
10733 }
10734
10735 static void
10736 check_connector_state(struct drm_device *dev)
10737 {
10738         struct intel_connector *connector;
10739
10740         list_for_each_entry(connector, &dev->mode_config.connector_list,
10741                             base.head) {
10742                 /* This also checks the encoder/connector hw state with the
10743                  * ->get_hw_state callbacks. */
10744                 intel_connector_check_state(connector);
10745
10746                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10747                      "connector's staged encoder doesn't match current encoder\n");
10748         }
10749 }
10750
10751 static void
10752 check_encoder_state(struct drm_device *dev)
10753 {
10754         struct intel_encoder *encoder;
10755         struct intel_connector *connector;
10756
10757         for_each_intel_encoder(dev, encoder) {
10758                 bool enabled = false;
10759                 bool active = false;
10760                 enum pipe pipe, tracked_pipe;
10761
10762                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10763                               encoder->base.base.id,
10764                               encoder->base.name);
10765
10766                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10767                      "encoder's stage crtc doesn't match current crtc\n");
10768                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10769                      "encoder's active_connectors set, but no crtc\n");
10770
10771                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10772                                     base.head) {
10773                         if (connector->base.encoder != &encoder->base)
10774                                 continue;
10775                         enabled = true;
10776                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10777                                 active = true;
10778                 }
10779                 /*
10780                  * for MST connectors if we unplug the connector is gone
10781                  * away but the encoder is still connected to a crtc
10782                  * until a modeset happens in response to the hotplug.
10783                  */
10784                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10785                         continue;
10786
10787                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10788                      "encoder's enabled state mismatch "
10789                      "(expected %i, found %i)\n",
10790                      !!encoder->base.crtc, enabled);
10791                 I915_STATE_WARN(active && !encoder->base.crtc,
10792                      "active encoder with no crtc\n");
10793
10794                 I915_STATE_WARN(encoder->connectors_active != active,
10795                      "encoder's computed active state doesn't match tracked active state "
10796                      "(expected %i, found %i)\n", active, encoder->connectors_active);
10797
10798                 active = encoder->get_hw_state(encoder, &pipe);
10799                 I915_STATE_WARN(active != encoder->connectors_active,
10800                      "encoder's hw state doesn't match sw tracking "
10801                      "(expected %i, found %i)\n",
10802                      encoder->connectors_active, active);
10803
10804                 if (!encoder->base.crtc)
10805                         continue;
10806
10807                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10808                 I915_STATE_WARN(active && pipe != tracked_pipe,
10809                      "active encoder's pipe doesn't match"
10810                      "(expected %i, found %i)\n",
10811                      tracked_pipe, pipe);
10812
10813         }
10814 }
10815
10816 static void
10817 check_crtc_state(struct drm_device *dev)
10818 {
10819         struct drm_i915_private *dev_priv = dev->dev_private;
10820         struct intel_crtc *crtc;
10821         struct intel_encoder *encoder;
10822         struct intel_crtc_state pipe_config;
10823
10824         for_each_intel_crtc(dev, crtc) {
10825                 bool enabled = false;
10826                 bool active = false;
10827
10828                 memset(&pipe_config, 0, sizeof(pipe_config));
10829
10830                 DRM_DEBUG_KMS("[CRTC:%d]\n",
10831                               crtc->base.base.id);
10832
10833                 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10834                      "active crtc, but not enabled in sw tracking\n");
10835
10836                 for_each_intel_encoder(dev, encoder) {
10837                         if (encoder->base.crtc != &crtc->base)
10838                                 continue;
10839                         enabled = true;
10840                         if (encoder->connectors_active)
10841                                 active = true;
10842                 }
10843
10844                 I915_STATE_WARN(active != crtc->active,
10845                      "crtc's computed active state doesn't match tracked active state "
10846                      "(expected %i, found %i)\n", active, crtc->active);
10847                 I915_STATE_WARN(enabled != crtc->base.enabled,
10848                      "crtc's computed enabled state doesn't match tracked enabled state "
10849                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10850
10851                 active = dev_priv->display.get_pipe_config(crtc,
10852                                                            &pipe_config);
10853
10854                 /* hw state is inconsistent with the pipe quirk */
10855                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10856                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10857                         active = crtc->active;
10858
10859                 for_each_intel_encoder(dev, encoder) {
10860                         enum pipe pipe;
10861                         if (encoder->base.crtc != &crtc->base)
10862                                 continue;
10863                         if (encoder->get_hw_state(encoder, &pipe))
10864                                 encoder->get_config(encoder, &pipe_config);
10865                 }
10866
10867                 I915_STATE_WARN(crtc->active != active,
10868                      "crtc active state doesn't match with hw state "
10869                      "(expected %i, found %i)\n", crtc->active, active);
10870
10871                 if (active &&
10872                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10873                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
10874                         intel_dump_pipe_config(crtc, &pipe_config,
10875                                                "[hw state]");
10876                         intel_dump_pipe_config(crtc, crtc->config,
10877                                                "[sw state]");
10878                 }
10879         }
10880 }
10881
10882 static void
10883 check_shared_dpll_state(struct drm_device *dev)
10884 {
10885         struct drm_i915_private *dev_priv = dev->dev_private;
10886         struct intel_crtc *crtc;
10887         struct intel_dpll_hw_state dpll_hw_state;
10888         int i;
10889
10890         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10891                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10892                 int enabled_crtcs = 0, active_crtcs = 0;
10893                 bool active;
10894
10895                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10896
10897                 DRM_DEBUG_KMS("%s\n", pll->name);
10898
10899                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10900
10901                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10902                      "more active pll users than references: %i vs %i\n",
10903                      pll->active, hweight32(pll->config.crtc_mask));
10904                 I915_STATE_WARN(pll->active && !pll->on,
10905                      "pll in active use but not on in sw tracking\n");
10906                 I915_STATE_WARN(pll->on && !pll->active,
10907                      "pll in on but not on in use in sw tracking\n");
10908                 I915_STATE_WARN(pll->on != active,
10909                      "pll on state mismatch (expected %i, found %i)\n",
10910                      pll->on, active);
10911
10912                 for_each_intel_crtc(dev, crtc) {
10913                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10914                                 enabled_crtcs++;
10915                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10916                                 active_crtcs++;
10917                 }
10918                 I915_STATE_WARN(pll->active != active_crtcs,
10919                      "pll active crtcs mismatch (expected %i, found %i)\n",
10920                      pll->active, active_crtcs);
10921                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10922                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
10923                      hweight32(pll->config.crtc_mask), enabled_crtcs);
10924
10925                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10926                                        sizeof(dpll_hw_state)),
10927                      "pll hw state mismatch\n");
10928         }
10929 }
10930
10931 void
10932 intel_modeset_check_state(struct drm_device *dev)
10933 {
10934         check_wm_state(dev);
10935         check_connector_state(dev);
10936         check_encoder_state(dev);
10937         check_crtc_state(dev);
10938         check_shared_dpll_state(dev);
10939 }
10940
10941 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10942                                      int dotclock)
10943 {
10944         /*
10945          * FDI already provided one idea for the dotclock.
10946          * Yell if the encoder disagrees.
10947          */
10948         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10949              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10950              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10951 }
10952
10953 static void update_scanline_offset(struct intel_crtc *crtc)
10954 {
10955         struct drm_device *dev = crtc->base.dev;
10956
10957         /*
10958          * The scanline counter increments at the leading edge of hsync.
10959          *
10960          * On most platforms it starts counting from vtotal-1 on the
10961          * first active line. That means the scanline counter value is
10962          * always one less than what we would expect. Ie. just after
10963          * start of vblank, which also occurs at start of hsync (on the
10964          * last active line), the scanline counter will read vblank_start-1.
10965          *
10966          * On gen2 the scanline counter starts counting from 1 instead
10967          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10968          * to keep the value positive), instead of adding one.
10969          *
10970          * On HSW+ the behaviour of the scanline counter depends on the output
10971          * type. For DP ports it behaves like most other platforms, but on HDMI
10972          * there's an extra 1 line difference. So we need to add two instead of
10973          * one to the value.
10974          */
10975         if (IS_GEN2(dev)) {
10976                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
10977                 int vtotal;
10978
10979                 vtotal = mode->crtc_vtotal;
10980                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10981                         vtotal /= 2;
10982
10983                 crtc->scanline_offset = vtotal - 1;
10984         } else if (HAS_DDI(dev) &&
10985                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10986                 crtc->scanline_offset = 2;
10987         } else
10988                 crtc->scanline_offset = 1;
10989 }
10990
10991 static struct intel_crtc_state *
10992 intel_modeset_compute_config(struct drm_crtc *crtc,
10993                              struct drm_display_mode *mode,
10994                              struct drm_framebuffer *fb,
10995                              unsigned *modeset_pipes,
10996                              unsigned *prepare_pipes,
10997                              unsigned *disable_pipes)
10998 {
10999         struct intel_crtc_state *pipe_config = NULL;
11000
11001         intel_modeset_affected_pipes(crtc, modeset_pipes,
11002                                      prepare_pipes, disable_pipes);
11003
11004         if ((*modeset_pipes) == 0)
11005                 goto out;
11006
11007         /*
11008          * Note this needs changes when we start tracking multiple modes
11009          * and crtcs.  At that point we'll need to compute the whole config
11010          * (i.e. one pipe_config for each crtc) rather than just the one
11011          * for this crtc.
11012          */
11013         pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11014         if (IS_ERR(pipe_config)) {
11015                 goto out;
11016         }
11017         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11018                                "[modeset]");
11019
11020 out:
11021         return pipe_config;
11022 }
11023
11024 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11025                                        unsigned modeset_pipes,
11026                                        unsigned disable_pipes)
11027 {
11028         struct drm_i915_private *dev_priv = to_i915(dev);
11029         unsigned clear_pipes = modeset_pipes | disable_pipes;
11030         struct intel_crtc *intel_crtc;
11031         int ret = 0;
11032
11033         if (!dev_priv->display.crtc_compute_clock)
11034                 return 0;
11035
11036         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11037         if (ret)
11038                 goto done;
11039
11040         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11041                 struct intel_crtc_state *state = intel_crtc->new_config;
11042                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11043                                                            state);
11044                 if (ret) {
11045                         intel_shared_dpll_abort_config(dev_priv);
11046                         goto done;
11047                 }
11048         }
11049
11050 done:
11051         return ret;
11052 }
11053
11054 static int __intel_set_mode(struct drm_crtc *crtc,
11055                             struct drm_display_mode *mode,
11056                             int x, int y, struct drm_framebuffer *fb,
11057                             struct intel_crtc_state *pipe_config,
11058                             unsigned modeset_pipes,
11059                             unsigned prepare_pipes,
11060                             unsigned disable_pipes)
11061 {
11062         struct drm_device *dev = crtc->dev;
11063         struct drm_i915_private *dev_priv = dev->dev_private;
11064         struct drm_display_mode *saved_mode;
11065         struct intel_crtc *intel_crtc;
11066         int ret = 0;
11067
11068         saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11069         if (!saved_mode)
11070                 return -ENOMEM;
11071
11072         *saved_mode = crtc->mode;
11073
11074         if (modeset_pipes)
11075                 to_intel_crtc(crtc)->new_config = pipe_config;
11076
11077         /*
11078          * See if the config requires any additional preparation, e.g.
11079          * to adjust global state with pipes off.  We need to do this
11080          * here so we can get the modeset_pipe updated config for the new
11081          * mode set on this crtc.  For other crtcs we need to use the
11082          * adjusted_mode bits in the crtc directly.
11083          */
11084         if (IS_VALLEYVIEW(dev)) {
11085                 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11086
11087                 /* may have added more to prepare_pipes than we should */
11088                 prepare_pipes &= ~disable_pipes;
11089         }
11090
11091         ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11092         if (ret)
11093                 goto done;
11094
11095         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11096                 intel_crtc_disable(&intel_crtc->base);
11097
11098         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11099                 if (intel_crtc->base.enabled)
11100                         dev_priv->display.crtc_disable(&intel_crtc->base);
11101         }
11102
11103         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11104          * to set it here already despite that we pass it down the callchain.
11105          *
11106          * Note we'll need to fix this up when we start tracking multiple
11107          * pipes; here we assume a single modeset_pipe and only track the
11108          * single crtc and mode.
11109          */
11110         if (modeset_pipes) {
11111                 crtc->mode = *mode;
11112                 /* mode_set/enable/disable functions rely on a correct pipe
11113                  * config. */
11114                 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11115
11116                 /*
11117                  * Calculate and store various constants which
11118                  * are later needed by vblank and swap-completion
11119                  * timestamping. They are derived from true hwmode.
11120                  */
11121                 drm_calc_timestamping_constants(crtc,
11122                                                 &pipe_config->base.adjusted_mode);
11123         }
11124
11125         /* Only after disabling all output pipelines that will be changed can we
11126          * update the the output configuration. */
11127         intel_modeset_update_state(dev, prepare_pipes);
11128
11129         modeset_update_crtc_power_domains(dev);
11130
11131         /* Set up the DPLL and any encoders state that needs to adjust or depend
11132          * on the DPLL.
11133          */
11134         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11135                 struct drm_plane *primary = intel_crtc->base.primary;
11136                 int vdisplay, hdisplay;
11137
11138                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11139                 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11140                                                    fb, 0, 0,
11141                                                    hdisplay, vdisplay,
11142                                                    x << 16, y << 16,
11143                                                    hdisplay << 16, vdisplay << 16);
11144         }
11145
11146         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11147         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11148                 update_scanline_offset(intel_crtc);
11149
11150                 dev_priv->display.crtc_enable(&intel_crtc->base);
11151         }
11152
11153         /* FIXME: add subpixel order */
11154 done:
11155         if (ret && crtc->enabled)
11156                 crtc->mode = *saved_mode;
11157
11158         kfree(saved_mode);
11159         return ret;
11160 }
11161
11162 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11163                                 struct drm_display_mode *mode,
11164                                 int x, int y, struct drm_framebuffer *fb,
11165                                 struct intel_crtc_state *pipe_config,
11166                                 unsigned modeset_pipes,
11167                                 unsigned prepare_pipes,
11168                                 unsigned disable_pipes)
11169 {
11170         int ret;
11171
11172         ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11173                                prepare_pipes, disable_pipes);
11174
11175         if (ret == 0)
11176                 intel_modeset_check_state(crtc->dev);
11177
11178         return ret;
11179 }
11180
11181 static int intel_set_mode(struct drm_crtc *crtc,
11182                           struct drm_display_mode *mode,
11183                           int x, int y, struct drm_framebuffer *fb)
11184 {
11185         struct intel_crtc_state *pipe_config;
11186         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11187
11188         pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11189                                                    &modeset_pipes,
11190                                                    &prepare_pipes,
11191                                                    &disable_pipes);
11192
11193         if (IS_ERR(pipe_config))
11194                 return PTR_ERR(pipe_config);
11195
11196         return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11197                                     modeset_pipes, prepare_pipes,
11198                                     disable_pipes);
11199 }
11200
11201 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11202 {
11203         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11204 }
11205
11206 #undef for_each_intel_crtc_masked
11207
11208 static void intel_set_config_free(struct intel_set_config *config)
11209 {
11210         if (!config)
11211                 return;
11212
11213         kfree(config->save_connector_encoders);
11214         kfree(config->save_encoder_crtcs);
11215         kfree(config->save_crtc_enabled);
11216         kfree(config);
11217 }
11218
11219 static int intel_set_config_save_state(struct drm_device *dev,
11220                                        struct intel_set_config *config)
11221 {
11222         struct drm_crtc *crtc;
11223         struct drm_encoder *encoder;
11224         struct drm_connector *connector;
11225         int count;
11226
11227         config->save_crtc_enabled =
11228                 kcalloc(dev->mode_config.num_crtc,
11229                         sizeof(bool), GFP_KERNEL);
11230         if (!config->save_crtc_enabled)
11231                 return -ENOMEM;
11232
11233         config->save_encoder_crtcs =
11234                 kcalloc(dev->mode_config.num_encoder,
11235                         sizeof(struct drm_crtc *), GFP_KERNEL);
11236         if (!config->save_encoder_crtcs)
11237                 return -ENOMEM;
11238
11239         config->save_connector_encoders =
11240                 kcalloc(dev->mode_config.num_connector,
11241                         sizeof(struct drm_encoder *), GFP_KERNEL);
11242         if (!config->save_connector_encoders)
11243                 return -ENOMEM;
11244
11245         /* Copy data. Note that driver private data is not affected.
11246          * Should anything bad happen only the expected state is
11247          * restored, not the drivers personal bookkeeping.
11248          */
11249         count = 0;
11250         for_each_crtc(dev, crtc) {
11251                 config->save_crtc_enabled[count++] = crtc->enabled;
11252         }
11253
11254         count = 0;
11255         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11256                 config->save_encoder_crtcs[count++] = encoder->crtc;
11257         }
11258
11259         count = 0;
11260         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11261                 config->save_connector_encoders[count++] = connector->encoder;
11262         }
11263
11264         return 0;
11265 }
11266
11267 static void intel_set_config_restore_state(struct drm_device *dev,
11268                                            struct intel_set_config *config)
11269 {
11270         struct intel_crtc *crtc;
11271         struct intel_encoder *encoder;
11272         struct intel_connector *connector;
11273         int count;
11274
11275         count = 0;
11276         for_each_intel_crtc(dev, crtc) {
11277                 crtc->new_enabled = config->save_crtc_enabled[count++];
11278
11279                 if (crtc->new_enabled)
11280                         crtc->new_config = crtc->config;
11281                 else
11282                         crtc->new_config = NULL;
11283         }
11284
11285         count = 0;
11286         for_each_intel_encoder(dev, encoder) {
11287                 encoder->new_crtc =
11288                         to_intel_crtc(config->save_encoder_crtcs[count++]);
11289         }
11290
11291         count = 0;
11292         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11293                 connector->new_encoder =
11294                         to_intel_encoder(config->save_connector_encoders[count++]);
11295         }
11296 }
11297
11298 static bool
11299 is_crtc_connector_off(struct drm_mode_set *set)
11300 {
11301         int i;
11302
11303         if (set->num_connectors == 0)
11304                 return false;
11305
11306         if (WARN_ON(set->connectors == NULL))
11307                 return false;
11308
11309         for (i = 0; i < set->num_connectors; i++)
11310                 if (set->connectors[i]->encoder &&
11311                     set->connectors[i]->encoder->crtc == set->crtc &&
11312                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11313                         return true;
11314
11315         return false;
11316 }
11317
11318 static void
11319 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11320                                       struct intel_set_config *config)
11321 {
11322
11323         /* We should be able to check here if the fb has the same properties
11324          * and then just flip_or_move it */
11325         if (is_crtc_connector_off(set)) {
11326                 config->mode_changed = true;
11327         } else if (set->crtc->primary->fb != set->fb) {
11328                 /*
11329                  * If we have no fb, we can only flip as long as the crtc is
11330                  * active, otherwise we need a full mode set.  The crtc may
11331                  * be active if we've only disabled the primary plane, or
11332                  * in fastboot situations.
11333                  */
11334                 if (set->crtc->primary->fb == NULL) {
11335                         struct intel_crtc *intel_crtc =
11336                                 to_intel_crtc(set->crtc);
11337
11338                         if (intel_crtc->active) {
11339                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11340                                 config->fb_changed = true;
11341                         } else {
11342                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11343                                 config->mode_changed = true;
11344                         }
11345                 } else if (set->fb == NULL) {
11346                         config->mode_changed = true;
11347                 } else if (set->fb->pixel_format !=
11348                            set->crtc->primary->fb->pixel_format) {
11349                         config->mode_changed = true;
11350                 } else {
11351                         config->fb_changed = true;
11352                 }
11353         }
11354
11355         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11356                 config->fb_changed = true;
11357
11358         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11359                 DRM_DEBUG_KMS("modes are different, full mode set\n");
11360                 drm_mode_debug_printmodeline(&set->crtc->mode);
11361                 drm_mode_debug_printmodeline(set->mode);
11362                 config->mode_changed = true;
11363         }
11364
11365         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11366                         set->crtc->base.id, config->mode_changed, config->fb_changed);
11367 }
11368
11369 static int
11370 intel_modeset_stage_output_state(struct drm_device *dev,
11371                                  struct drm_mode_set *set,
11372                                  struct intel_set_config *config)
11373 {
11374         struct intel_connector *connector;
11375         struct intel_encoder *encoder;
11376         struct intel_crtc *crtc;
11377         int ro;
11378
11379         /* The upper layers ensure that we either disable a crtc or have a list
11380          * of connectors. For paranoia, double-check this. */
11381         WARN_ON(!set->fb && (set->num_connectors != 0));
11382         WARN_ON(set->fb && (set->num_connectors == 0));
11383
11384         list_for_each_entry(connector, &dev->mode_config.connector_list,
11385                             base.head) {
11386                 /* Otherwise traverse passed in connector list and get encoders
11387                  * for them. */
11388                 for (ro = 0; ro < set->num_connectors; ro++) {
11389                         if (set->connectors[ro] == &connector->base) {
11390                                 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11391                                 break;
11392                         }
11393                 }
11394
11395                 /* If we disable the crtc, disable all its connectors. Also, if
11396                  * the connector is on the changing crtc but not on the new
11397                  * connector list, disable it. */
11398                 if ((!set->fb || ro == set->num_connectors) &&
11399                     connector->base.encoder &&
11400                     connector->base.encoder->crtc == set->crtc) {
11401                         connector->new_encoder = NULL;
11402
11403                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11404                                 connector->base.base.id,
11405                                 connector->base.name);
11406                 }
11407
11408
11409                 if (&connector->new_encoder->base != connector->base.encoder) {
11410                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11411                         config->mode_changed = true;
11412                 }
11413         }
11414         /* connector->new_encoder is now updated for all connectors. */
11415
11416         /* Update crtc of enabled connectors. */
11417         list_for_each_entry(connector, &dev->mode_config.connector_list,
11418                             base.head) {
11419                 struct drm_crtc *new_crtc;
11420
11421                 if (!connector->new_encoder)
11422                         continue;
11423
11424                 new_crtc = connector->new_encoder->base.crtc;
11425
11426                 for (ro = 0; ro < set->num_connectors; ro++) {
11427                         if (set->connectors[ro] == &connector->base)
11428                                 new_crtc = set->crtc;
11429                 }
11430
11431                 /* Make sure the new CRTC will work with the encoder */
11432                 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11433                                          new_crtc)) {
11434                         return -EINVAL;
11435                 }
11436                 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11437
11438                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11439                         connector->base.base.id,
11440                         connector->base.name,
11441                         new_crtc->base.id);
11442         }
11443
11444         /* Check for any encoders that needs to be disabled. */
11445         for_each_intel_encoder(dev, encoder) {
11446                 int num_connectors = 0;
11447                 list_for_each_entry(connector,
11448                                     &dev->mode_config.connector_list,
11449                                     base.head) {
11450                         if (connector->new_encoder == encoder) {
11451                                 WARN_ON(!connector->new_encoder->new_crtc);
11452                                 num_connectors++;
11453                         }
11454                 }
11455
11456                 if (num_connectors == 0)
11457                         encoder->new_crtc = NULL;
11458                 else if (num_connectors > 1)
11459                         return -EINVAL;
11460
11461                 /* Only now check for crtc changes so we don't miss encoders
11462                  * that will be disabled. */
11463                 if (&encoder->new_crtc->base != encoder->base.crtc) {
11464                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11465                         config->mode_changed = true;
11466                 }
11467         }
11468         /* Now we've also updated encoder->new_crtc for all encoders. */
11469         list_for_each_entry(connector, &dev->mode_config.connector_list,
11470                             base.head) {
11471                 if (connector->new_encoder)
11472                         if (connector->new_encoder != connector->encoder)
11473                                 connector->encoder = connector->new_encoder;
11474         }
11475         for_each_intel_crtc(dev, crtc) {
11476                 crtc->new_enabled = false;
11477
11478                 for_each_intel_encoder(dev, encoder) {
11479                         if (encoder->new_crtc == crtc) {
11480                                 crtc->new_enabled = true;
11481                                 break;
11482                         }
11483                 }
11484
11485                 if (crtc->new_enabled != crtc->base.enabled) {
11486                         DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11487                                       crtc->new_enabled ? "en" : "dis");
11488                         config->mode_changed = true;
11489                 }
11490
11491                 if (crtc->new_enabled)
11492                         crtc->new_config = crtc->config;
11493                 else
11494                         crtc->new_config = NULL;
11495         }
11496
11497         return 0;
11498 }
11499
11500 static void disable_crtc_nofb(struct intel_crtc *crtc)
11501 {
11502         struct drm_device *dev = crtc->base.dev;
11503         struct intel_encoder *encoder;
11504         struct intel_connector *connector;
11505
11506         DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11507                       pipe_name(crtc->pipe));
11508
11509         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11510                 if (connector->new_encoder &&
11511                     connector->new_encoder->new_crtc == crtc)
11512                         connector->new_encoder = NULL;
11513         }
11514
11515         for_each_intel_encoder(dev, encoder) {
11516                 if (encoder->new_crtc == crtc)
11517                         encoder->new_crtc = NULL;
11518         }
11519
11520         crtc->new_enabled = false;
11521         crtc->new_config = NULL;
11522 }
11523
11524 static int intel_crtc_set_config(struct drm_mode_set *set)
11525 {
11526         struct drm_device *dev;
11527         struct drm_mode_set save_set;
11528         struct intel_set_config *config;
11529         struct intel_crtc_state *pipe_config;
11530         unsigned modeset_pipes, prepare_pipes, disable_pipes;
11531         int ret;
11532
11533         BUG_ON(!set);
11534         BUG_ON(!set->crtc);
11535         BUG_ON(!set->crtc->helper_private);
11536
11537         /* Enforce sane interface api - has been abused by the fb helper. */
11538         BUG_ON(!set->mode && set->fb);
11539         BUG_ON(set->fb && set->num_connectors == 0);
11540
11541         if (set->fb) {
11542                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11543                                 set->crtc->base.id, set->fb->base.id,
11544                                 (int)set->num_connectors, set->x, set->y);
11545         } else {
11546                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11547         }
11548
11549         dev = set->crtc->dev;
11550
11551         ret = -ENOMEM;
11552         config = kzalloc(sizeof(*config), GFP_KERNEL);
11553         if (!config)
11554                 goto out_config;
11555
11556         ret = intel_set_config_save_state(dev, config);
11557         if (ret)
11558                 goto out_config;
11559
11560         save_set.crtc = set->crtc;
11561         save_set.mode = &set->crtc->mode;
11562         save_set.x = set->crtc->x;
11563         save_set.y = set->crtc->y;
11564         save_set.fb = set->crtc->primary->fb;
11565
11566         /* Compute whether we need a full modeset, only an fb base update or no
11567          * change at all. In the future we might also check whether only the
11568          * mode changed, e.g. for LVDS where we only change the panel fitter in
11569          * such cases. */
11570         intel_set_config_compute_mode_changes(set, config);
11571
11572         ret = intel_modeset_stage_output_state(dev, set, config);
11573         if (ret)
11574                 goto fail;
11575
11576         pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11577                                                    set->fb,
11578                                                    &modeset_pipes,
11579                                                    &prepare_pipes,
11580                                                    &disable_pipes);
11581         if (IS_ERR(pipe_config)) {
11582                 ret = PTR_ERR(pipe_config);
11583                 goto fail;
11584         } else if (pipe_config) {
11585                 if (pipe_config->has_audio !=
11586                     to_intel_crtc(set->crtc)->config->has_audio)
11587                         config->mode_changed = true;
11588
11589                 /*
11590                  * Note we have an issue here with infoframes: current code
11591                  * only updates them on the full mode set path per hw
11592                  * requirements.  So here we should be checking for any
11593                  * required changes and forcing a mode set.
11594                  */
11595         }
11596
11597         /* set_mode will free it in the mode_changed case */
11598         if (!config->mode_changed)
11599                 kfree(pipe_config);
11600
11601         intel_update_pipe_size(to_intel_crtc(set->crtc));
11602
11603         if (config->mode_changed) {
11604                 ret = intel_set_mode_pipes(set->crtc, set->mode,
11605                                            set->x, set->y, set->fb, pipe_config,
11606                                            modeset_pipes, prepare_pipes,
11607                                            disable_pipes);
11608         } else if (config->fb_changed) {
11609                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11610                 struct drm_plane *primary = set->crtc->primary;
11611                 int vdisplay, hdisplay;
11612
11613                 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11614                 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11615                                                    0, 0, hdisplay, vdisplay,
11616                                                    set->x << 16, set->y << 16,
11617                                                    hdisplay << 16, vdisplay << 16);
11618
11619                 /*
11620                  * We need to make sure the primary plane is re-enabled if it
11621                  * has previously been turned off.
11622                  */
11623                 if (!intel_crtc->primary_enabled && ret == 0) {
11624                         WARN_ON(!intel_crtc->active);
11625                         intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11626                 }
11627
11628                 /*
11629                  * In the fastboot case this may be our only check of the
11630                  * state after boot.  It would be better to only do it on
11631                  * the first update, but we don't have a nice way of doing that
11632                  * (and really, set_config isn't used much for high freq page
11633                  * flipping, so increasing its cost here shouldn't be a big
11634                  * deal).
11635                  */
11636                 if (i915.fastboot && ret == 0)
11637                         intel_modeset_check_state(set->crtc->dev);
11638         }
11639
11640         if (ret) {
11641                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11642                               set->crtc->base.id, ret);
11643 fail:
11644                 intel_set_config_restore_state(dev, config);
11645
11646                 /*
11647                  * HACK: if the pipe was on, but we didn't have a framebuffer,
11648                  * force the pipe off to avoid oopsing in the modeset code
11649                  * due to fb==NULL. This should only happen during boot since
11650                  * we don't yet reconstruct the FB from the hardware state.
11651                  */
11652                 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11653                         disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11654
11655                 /* Try to restore the config */
11656                 if (config->mode_changed &&
11657                     intel_set_mode(save_set.crtc, save_set.mode,
11658                                    save_set.x, save_set.y, save_set.fb))
11659                         DRM_ERROR("failed to restore config after modeset failure\n");
11660         }
11661
11662 out_config:
11663         intel_set_config_free(config);
11664         return ret;
11665 }
11666
11667 static const struct drm_crtc_funcs intel_crtc_funcs = {
11668         .gamma_set = intel_crtc_gamma_set,
11669         .set_config = intel_crtc_set_config,
11670         .destroy = intel_crtc_destroy,
11671         .page_flip = intel_crtc_page_flip,
11672         .atomic_duplicate_state = intel_crtc_duplicate_state,
11673         .atomic_destroy_state = intel_crtc_destroy_state,
11674 };
11675
11676 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11677                                       struct intel_shared_dpll *pll,
11678                                       struct intel_dpll_hw_state *hw_state)
11679 {
11680         uint32_t val;
11681
11682         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11683                 return false;
11684
11685         val = I915_READ(PCH_DPLL(pll->id));
11686         hw_state->dpll = val;
11687         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11688         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11689
11690         return val & DPLL_VCO_ENABLE;
11691 }
11692
11693 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11694                                   struct intel_shared_dpll *pll)
11695 {
11696         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11697         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11698 }
11699
11700 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11701                                 struct intel_shared_dpll *pll)
11702 {
11703         /* PCH refclock must be enabled first */
11704         ibx_assert_pch_refclk_enabled(dev_priv);
11705
11706         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11707
11708         /* Wait for the clocks to stabilize. */
11709         POSTING_READ(PCH_DPLL(pll->id));
11710         udelay(150);
11711
11712         /* The pixel multiplier can only be updated once the
11713          * DPLL is enabled and the clocks are stable.
11714          *
11715          * So write it again.
11716          */
11717         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11718         POSTING_READ(PCH_DPLL(pll->id));
11719         udelay(200);
11720 }
11721
11722 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11723                                  struct intel_shared_dpll *pll)
11724 {
11725         struct drm_device *dev = dev_priv->dev;
11726         struct intel_crtc *crtc;
11727
11728         /* Make sure no transcoder isn't still depending on us. */
11729         for_each_intel_crtc(dev, crtc) {
11730                 if (intel_crtc_to_shared_dpll(crtc) == pll)
11731                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11732         }
11733
11734         I915_WRITE(PCH_DPLL(pll->id), 0);
11735         POSTING_READ(PCH_DPLL(pll->id));
11736         udelay(200);
11737 }
11738
11739 static char *ibx_pch_dpll_names[] = {
11740         "PCH DPLL A",
11741         "PCH DPLL B",
11742 };
11743
11744 static void ibx_pch_dpll_init(struct drm_device *dev)
11745 {
11746         struct drm_i915_private *dev_priv = dev->dev_private;
11747         int i;
11748
11749         dev_priv->num_shared_dpll = 2;
11750
11751         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11752                 dev_priv->shared_dplls[i].id = i;
11753                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11754                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11755                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11756                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11757                 dev_priv->shared_dplls[i].get_hw_state =
11758                         ibx_pch_dpll_get_hw_state;
11759         }
11760 }
11761
11762 static void intel_shared_dpll_init(struct drm_device *dev)
11763 {
11764         struct drm_i915_private *dev_priv = dev->dev_private;
11765
11766         if (HAS_DDI(dev))
11767                 intel_ddi_pll_init(dev);
11768         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11769                 ibx_pch_dpll_init(dev);
11770         else
11771                 dev_priv->num_shared_dpll = 0;
11772
11773         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11774 }
11775
11776 /**
11777  * intel_prepare_plane_fb - Prepare fb for usage on plane
11778  * @plane: drm plane to prepare for
11779  * @fb: framebuffer to prepare for presentation
11780  *
11781  * Prepares a framebuffer for usage on a display plane.  Generally this
11782  * involves pinning the underlying object and updating the frontbuffer tracking
11783  * bits.  Some older platforms need special physical address handling for
11784  * cursor planes.
11785  *
11786  * Returns 0 on success, negative error code on failure.
11787  */
11788 int
11789 intel_prepare_plane_fb(struct drm_plane *plane,
11790                        struct drm_framebuffer *fb)
11791 {
11792         struct drm_device *dev = plane->dev;
11793         struct intel_plane *intel_plane = to_intel_plane(plane);
11794         enum pipe pipe = intel_plane->pipe;
11795         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11796         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11797         unsigned frontbuffer_bits = 0;
11798         int ret = 0;
11799
11800         if (!obj)
11801                 return 0;
11802
11803         switch (plane->type) {
11804         case DRM_PLANE_TYPE_PRIMARY:
11805                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11806                 break;
11807         case DRM_PLANE_TYPE_CURSOR:
11808                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11809                 break;
11810         case DRM_PLANE_TYPE_OVERLAY:
11811                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11812                 break;
11813         }
11814
11815         mutex_lock(&dev->struct_mutex);
11816
11817         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11818             INTEL_INFO(dev)->cursor_needs_physical) {
11819                 int align = IS_I830(dev) ? 16 * 1024 : 256;
11820                 ret = i915_gem_object_attach_phys(obj, align);
11821                 if (ret)
11822                         DRM_DEBUG_KMS("failed to attach phys object\n");
11823         } else {
11824                 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11825         }
11826
11827         if (ret == 0)
11828                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11829
11830         mutex_unlock(&dev->struct_mutex);
11831
11832         return ret;
11833 }
11834
11835 /**
11836  * intel_cleanup_plane_fb - Cleans up an fb after plane use
11837  * @plane: drm plane to clean up for
11838  * @fb: old framebuffer that was on plane
11839  *
11840  * Cleans up a framebuffer that has just been removed from a plane.
11841  */
11842 void
11843 intel_cleanup_plane_fb(struct drm_plane *plane,
11844                        struct drm_framebuffer *fb)
11845 {
11846         struct drm_device *dev = plane->dev;
11847         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11848
11849         if (WARN_ON(!obj))
11850                 return;
11851
11852         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11853             !INTEL_INFO(dev)->cursor_needs_physical) {
11854                 mutex_lock(&dev->struct_mutex);
11855                 intel_unpin_fb_obj(obj);
11856                 mutex_unlock(&dev->struct_mutex);
11857         }
11858 }
11859
11860 static int
11861 intel_check_primary_plane(struct drm_plane *plane,
11862                           struct intel_plane_state *state)
11863 {
11864         struct drm_device *dev = plane->dev;
11865         struct drm_i915_private *dev_priv = dev->dev_private;
11866         struct drm_crtc *crtc = state->base.crtc;
11867         struct intel_crtc *intel_crtc;
11868         struct drm_framebuffer *fb = state->base.fb;
11869         struct drm_rect *dest = &state->dst;
11870         struct drm_rect *src = &state->src;
11871         const struct drm_rect *clip = &state->clip;
11872         int ret;
11873
11874         crtc = crtc ? crtc : plane->crtc;
11875         intel_crtc = to_intel_crtc(crtc);
11876
11877         ret = drm_plane_helper_check_update(plane, crtc, fb,
11878                                             src, dest, clip,
11879                                             DRM_PLANE_HELPER_NO_SCALING,
11880                                             DRM_PLANE_HELPER_NO_SCALING,
11881                                             false, true, &state->visible);
11882         if (ret)
11883                 return ret;
11884
11885         if (intel_crtc->active) {
11886                 intel_crtc->atomic.wait_for_flips = true;
11887
11888                 /*
11889                  * FBC does not work on some platforms for rotated
11890                  * planes, so disable it when rotation is not 0 and
11891                  * update it when rotation is set back to 0.
11892                  *
11893                  * FIXME: This is redundant with the fbc update done in
11894                  * the primary plane enable function except that that
11895                  * one is done too late. We eventually need to unify
11896                  * this.
11897                  */
11898                 if (intel_crtc->primary_enabled &&
11899                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11900                     dev_priv->fbc.plane == intel_crtc->plane &&
11901                     state->base.rotation != BIT(DRM_ROTATE_0)) {
11902                         intel_crtc->atomic.disable_fbc = true;
11903                 }
11904
11905                 if (state->visible) {
11906                         /*
11907                          * BDW signals flip done immediately if the plane
11908                          * is disabled, even if the plane enable is already
11909                          * armed to occur at the next vblank :(
11910                          */
11911                         if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11912                                 intel_crtc->atomic.wait_vblank = true;
11913                 }
11914
11915                 intel_crtc->atomic.fb_bits |=
11916                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11917
11918                 intel_crtc->atomic.update_fbc = true;
11919         }
11920
11921         return 0;
11922 }
11923
11924 static void
11925 intel_commit_primary_plane(struct drm_plane *plane,
11926                            struct intel_plane_state *state)
11927 {
11928         struct drm_crtc *crtc = state->base.crtc;
11929         struct drm_framebuffer *fb = state->base.fb;
11930         struct drm_device *dev = plane->dev;
11931         struct drm_i915_private *dev_priv = dev->dev_private;
11932         struct intel_crtc *intel_crtc;
11933         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11934         struct intel_plane *intel_plane = to_intel_plane(plane);
11935         struct drm_rect *src = &state->src;
11936
11937         crtc = crtc ? crtc : plane->crtc;
11938         intel_crtc = to_intel_crtc(crtc);
11939
11940         plane->fb = fb;
11941         crtc->x = src->x1 >> 16;
11942         crtc->y = src->y1 >> 16;
11943
11944         intel_plane->obj = obj;
11945
11946         if (intel_crtc->active) {
11947                 if (state->visible) {
11948                         /* FIXME: kill this fastboot hack */
11949                         intel_update_pipe_size(intel_crtc);
11950
11951                         intel_crtc->primary_enabled = true;
11952
11953                         dev_priv->display.update_primary_plane(crtc, plane->fb,
11954                                         crtc->x, crtc->y);
11955                 } else {
11956                         /*
11957                          * If clipping results in a non-visible primary plane,
11958                          * we'll disable the primary plane.  Note that this is
11959                          * a bit different than what happens if userspace
11960                          * explicitly disables the plane by passing fb=0
11961                          * because plane->fb still gets set and pinned.
11962                          */
11963                         intel_disable_primary_hw_plane(plane, crtc);
11964                 }
11965         }
11966 }
11967
11968 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11969 {
11970         struct drm_device *dev = crtc->dev;
11971         struct drm_i915_private *dev_priv = dev->dev_private;
11972         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11973         struct intel_plane *intel_plane;
11974         struct drm_plane *p;
11975         unsigned fb_bits = 0;
11976
11977         /* Track fb's for any planes being disabled */
11978         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11979                 intel_plane = to_intel_plane(p);
11980
11981                 if (intel_crtc->atomic.disabled_planes &
11982                     (1 << drm_plane_index(p))) {
11983                         switch (p->type) {
11984                         case DRM_PLANE_TYPE_PRIMARY:
11985                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11986                                 break;
11987                         case DRM_PLANE_TYPE_CURSOR:
11988                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11989                                 break;
11990                         case DRM_PLANE_TYPE_OVERLAY:
11991                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11992                                 break;
11993                         }
11994
11995                         mutex_lock(&dev->struct_mutex);
11996                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11997                         mutex_unlock(&dev->struct_mutex);
11998                 }
11999         }
12000
12001         if (intel_crtc->atomic.wait_for_flips)
12002                 intel_crtc_wait_for_pending_flips(crtc);
12003
12004         if (intel_crtc->atomic.disable_fbc)
12005                 intel_fbc_disable(dev);
12006
12007         if (intel_crtc->atomic.pre_disable_primary)
12008                 intel_pre_disable_primary(crtc);
12009
12010         if (intel_crtc->atomic.update_wm)
12011                 intel_update_watermarks(crtc);
12012
12013         intel_runtime_pm_get(dev_priv);
12014
12015         /* Perform vblank evasion around commit operation */
12016         if (intel_crtc->active)
12017                 intel_crtc->atomic.evade =
12018                         intel_pipe_update_start(intel_crtc,
12019                                                 &intel_crtc->atomic.start_vbl_count);
12020 }
12021
12022 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12023 {
12024         struct drm_device *dev = crtc->dev;
12025         struct drm_i915_private *dev_priv = dev->dev_private;
12026         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12027         struct drm_plane *p;
12028
12029         if (intel_crtc->atomic.evade)
12030                 intel_pipe_update_end(intel_crtc,
12031                                       intel_crtc->atomic.start_vbl_count);
12032
12033         intel_runtime_pm_put(dev_priv);
12034
12035         if (intel_crtc->atomic.wait_vblank)
12036                 intel_wait_for_vblank(dev, intel_crtc->pipe);
12037
12038         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12039
12040         if (intel_crtc->atomic.update_fbc) {
12041                 mutex_lock(&dev->struct_mutex);
12042                 intel_fbc_update(dev);
12043                 mutex_unlock(&dev->struct_mutex);
12044         }
12045
12046         if (intel_crtc->atomic.post_enable_primary)
12047                 intel_post_enable_primary(crtc);
12048
12049         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12050                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12051                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12052                                                        false, false);
12053
12054         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12055 }
12056
12057 /**
12058  * intel_plane_destroy - destroy a plane
12059  * @plane: plane to destroy
12060  *
12061  * Common destruction function for all types of planes (primary, cursor,
12062  * sprite).
12063  */
12064 void intel_plane_destroy(struct drm_plane *plane)
12065 {
12066         struct intel_plane *intel_plane = to_intel_plane(plane);
12067         drm_plane_cleanup(plane);
12068         kfree(intel_plane);
12069 }
12070
12071 const struct drm_plane_funcs intel_plane_funcs = {
12072         .update_plane = drm_plane_helper_update,
12073         .disable_plane = drm_plane_helper_disable,
12074         .destroy = intel_plane_destroy,
12075         .set_property = drm_atomic_helper_plane_set_property,
12076         .atomic_get_property = intel_plane_atomic_get_property,
12077         .atomic_set_property = intel_plane_atomic_set_property,
12078         .atomic_duplicate_state = intel_plane_duplicate_state,
12079         .atomic_destroy_state = intel_plane_destroy_state,
12080
12081 };
12082
12083 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12084                                                     int pipe)
12085 {
12086         struct intel_plane *primary;
12087         struct intel_plane_state *state;
12088         const uint32_t *intel_primary_formats;
12089         int num_formats;
12090
12091         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12092         if (primary == NULL)
12093                 return NULL;
12094
12095         state = intel_create_plane_state(&primary->base);
12096         if (!state) {
12097                 kfree(primary);
12098                 return NULL;
12099         }
12100         primary->base.state = &state->base;
12101
12102         primary->can_scale = false;
12103         primary->max_downscale = 1;
12104         primary->pipe = pipe;
12105         primary->plane = pipe;
12106         primary->check_plane = intel_check_primary_plane;
12107         primary->commit_plane = intel_commit_primary_plane;
12108         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12109                 primary->plane = !pipe;
12110
12111         if (INTEL_INFO(dev)->gen <= 3) {
12112                 intel_primary_formats = intel_primary_formats_gen2;
12113                 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12114         } else {
12115                 intel_primary_formats = intel_primary_formats_gen4;
12116                 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12117         }
12118
12119         drm_universal_plane_init(dev, &primary->base, 0,
12120                                  &intel_plane_funcs,
12121                                  intel_primary_formats, num_formats,
12122                                  DRM_PLANE_TYPE_PRIMARY);
12123
12124         if (INTEL_INFO(dev)->gen >= 4) {
12125                 if (!dev->mode_config.rotation_property)
12126                         dev->mode_config.rotation_property =
12127                                 drm_mode_create_rotation_property(dev,
12128                                                         BIT(DRM_ROTATE_0) |
12129                                                         BIT(DRM_ROTATE_180));
12130                 if (dev->mode_config.rotation_property)
12131                         drm_object_attach_property(&primary->base.base,
12132                                 dev->mode_config.rotation_property,
12133                                 state->base.rotation);
12134         }
12135
12136         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12137
12138         return &primary->base;
12139 }
12140
12141 static int
12142 intel_check_cursor_plane(struct drm_plane *plane,
12143                          struct intel_plane_state *state)
12144 {
12145         struct drm_crtc *crtc = state->base.crtc;
12146         struct drm_device *dev = plane->dev;
12147         struct drm_framebuffer *fb = state->base.fb;
12148         struct drm_rect *dest = &state->dst;
12149         struct drm_rect *src = &state->src;
12150         const struct drm_rect *clip = &state->clip;
12151         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12152         struct intel_crtc *intel_crtc;
12153         unsigned stride;
12154         int ret;
12155
12156         crtc = crtc ? crtc : plane->crtc;
12157         intel_crtc = to_intel_crtc(crtc);
12158
12159         ret = drm_plane_helper_check_update(plane, crtc, fb,
12160                                             src, dest, clip,
12161                                             DRM_PLANE_HELPER_NO_SCALING,
12162                                             DRM_PLANE_HELPER_NO_SCALING,
12163                                             true, true, &state->visible);
12164         if (ret)
12165                 return ret;
12166
12167
12168         /* if we want to turn off the cursor ignore width and height */
12169         if (!obj)
12170                 goto finish;
12171
12172         /* Check for which cursor types we support */
12173         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12174                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12175                           state->base.crtc_w, state->base.crtc_h);
12176                 return -EINVAL;
12177         }
12178
12179         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12180         if (obj->base.size < stride * state->base.crtc_h) {
12181                 DRM_DEBUG_KMS("buffer is too small\n");
12182                 return -ENOMEM;
12183         }
12184
12185         if (fb == crtc->cursor->fb)
12186                 return 0;
12187
12188         /* we only need to pin inside GTT if cursor is non-phy */
12189         mutex_lock(&dev->struct_mutex);
12190         if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12191                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12192                 ret = -EINVAL;
12193         }
12194         mutex_unlock(&dev->struct_mutex);
12195
12196 finish:
12197         if (intel_crtc->active) {
12198                 if (intel_crtc->cursor_width != state->base.crtc_w)
12199                         intel_crtc->atomic.update_wm = true;
12200
12201                 intel_crtc->atomic.fb_bits |=
12202                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12203         }
12204
12205         return ret;
12206 }
12207
12208 static void
12209 intel_commit_cursor_plane(struct drm_plane *plane,
12210                           struct intel_plane_state *state)
12211 {
12212         struct drm_crtc *crtc = state->base.crtc;
12213         struct drm_device *dev = plane->dev;
12214         struct intel_crtc *intel_crtc;
12215         struct intel_plane *intel_plane = to_intel_plane(plane);
12216         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12217         uint32_t addr;
12218
12219         crtc = crtc ? crtc : plane->crtc;
12220         intel_crtc = to_intel_crtc(crtc);
12221
12222         plane->fb = state->base.fb;
12223         crtc->cursor_x = state->base.crtc_x;
12224         crtc->cursor_y = state->base.crtc_y;
12225
12226         intel_plane->obj = obj;
12227
12228         if (intel_crtc->cursor_bo == obj)
12229                 goto update;
12230
12231         if (!obj)
12232                 addr = 0;
12233         else if (!INTEL_INFO(dev)->cursor_needs_physical)
12234                 addr = i915_gem_obj_ggtt_offset(obj);
12235         else
12236                 addr = obj->phys_handle->busaddr;
12237
12238         intel_crtc->cursor_addr = addr;
12239         intel_crtc->cursor_bo = obj;
12240 update:
12241         intel_crtc->cursor_width = state->base.crtc_w;
12242         intel_crtc->cursor_height = state->base.crtc_h;
12243
12244         if (intel_crtc->active)
12245                 intel_crtc_update_cursor(crtc, state->visible);
12246 }
12247
12248 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12249                                                    int pipe)
12250 {
12251         struct intel_plane *cursor;
12252         struct intel_plane_state *state;
12253
12254         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12255         if (cursor == NULL)
12256                 return NULL;
12257
12258         state = intel_create_plane_state(&cursor->base);
12259         if (!state) {
12260                 kfree(cursor);
12261                 return NULL;
12262         }
12263         cursor->base.state = &state->base;
12264
12265         cursor->can_scale = false;
12266         cursor->max_downscale = 1;
12267         cursor->pipe = pipe;
12268         cursor->plane = pipe;
12269         cursor->check_plane = intel_check_cursor_plane;
12270         cursor->commit_plane = intel_commit_cursor_plane;
12271
12272         drm_universal_plane_init(dev, &cursor->base, 0,
12273                                  &intel_plane_funcs,
12274                                  intel_cursor_formats,
12275                                  ARRAY_SIZE(intel_cursor_formats),
12276                                  DRM_PLANE_TYPE_CURSOR);
12277
12278         if (INTEL_INFO(dev)->gen >= 4) {
12279                 if (!dev->mode_config.rotation_property)
12280                         dev->mode_config.rotation_property =
12281                                 drm_mode_create_rotation_property(dev,
12282                                                         BIT(DRM_ROTATE_0) |
12283                                                         BIT(DRM_ROTATE_180));
12284                 if (dev->mode_config.rotation_property)
12285                         drm_object_attach_property(&cursor->base.base,
12286                                 dev->mode_config.rotation_property,
12287                                 state->base.rotation);
12288         }
12289
12290         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12291
12292         return &cursor->base;
12293 }
12294
12295 static void intel_crtc_init(struct drm_device *dev, int pipe)
12296 {
12297         struct drm_i915_private *dev_priv = dev->dev_private;
12298         struct intel_crtc *intel_crtc;
12299         struct intel_crtc_state *crtc_state = NULL;
12300         struct drm_plane *primary = NULL;
12301         struct drm_plane *cursor = NULL;
12302         int i, ret;
12303
12304         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12305         if (intel_crtc == NULL)
12306                 return;
12307
12308         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12309         if (!crtc_state)
12310                 goto fail;
12311         intel_crtc_set_state(intel_crtc, crtc_state);
12312
12313         primary = intel_primary_plane_create(dev, pipe);
12314         if (!primary)
12315                 goto fail;
12316
12317         cursor = intel_cursor_plane_create(dev, pipe);
12318         if (!cursor)
12319                 goto fail;
12320
12321         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12322                                         cursor, &intel_crtc_funcs);
12323         if (ret)
12324                 goto fail;
12325
12326         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12327         for (i = 0; i < 256; i++) {
12328                 intel_crtc->lut_r[i] = i;
12329                 intel_crtc->lut_g[i] = i;
12330                 intel_crtc->lut_b[i] = i;
12331         }
12332
12333         /*
12334          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12335          * is hooked to pipe B. Hence we want plane A feeding pipe B.
12336          */
12337         intel_crtc->pipe = pipe;
12338         intel_crtc->plane = pipe;
12339         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12340                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12341                 intel_crtc->plane = !pipe;
12342         }
12343
12344         intel_crtc->cursor_base = ~0;
12345         intel_crtc->cursor_cntl = ~0;
12346         intel_crtc->cursor_size = ~0;
12347
12348         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12349                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12350         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12351         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12352
12353         INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12354
12355         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12356
12357         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12358         return;
12359
12360 fail:
12361         if (primary)
12362                 drm_plane_cleanup(primary);
12363         if (cursor)
12364                 drm_plane_cleanup(cursor);
12365         kfree(crtc_state);
12366         kfree(intel_crtc);
12367 }
12368
12369 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12370 {
12371         struct drm_encoder *encoder = connector->base.encoder;
12372         struct drm_device *dev = connector->base.dev;
12373
12374         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12375
12376         if (!encoder || WARN_ON(!encoder->crtc))
12377                 return INVALID_PIPE;
12378
12379         return to_intel_crtc(encoder->crtc)->pipe;
12380 }
12381
12382 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12383                                 struct drm_file *file)
12384 {
12385         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12386         struct drm_crtc *drmmode_crtc;
12387         struct intel_crtc *crtc;
12388
12389         if (!drm_core_check_feature(dev, DRIVER_MODESET))
12390                 return -ENODEV;
12391
12392         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12393
12394         if (!drmmode_crtc) {
12395                 DRM_ERROR("no such CRTC id\n");
12396                 return -ENOENT;
12397         }
12398
12399         crtc = to_intel_crtc(drmmode_crtc);
12400         pipe_from_crtc_id->pipe = crtc->pipe;
12401
12402         return 0;
12403 }
12404
12405 static int intel_encoder_clones(struct intel_encoder *encoder)
12406 {
12407         struct drm_device *dev = encoder->base.dev;
12408         struct intel_encoder *source_encoder;
12409         int index_mask = 0;
12410         int entry = 0;
12411
12412         for_each_intel_encoder(dev, source_encoder) {
12413                 if (encoders_cloneable(encoder, source_encoder))
12414                         index_mask |= (1 << entry);
12415
12416                 entry++;
12417         }
12418
12419         return index_mask;
12420 }
12421
12422 static bool has_edp_a(struct drm_device *dev)
12423 {
12424         struct drm_i915_private *dev_priv = dev->dev_private;
12425
12426         if (!IS_MOBILE(dev))
12427                 return false;
12428
12429         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12430                 return false;
12431
12432         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12433                 return false;
12434
12435         return true;
12436 }
12437
12438 static bool intel_crt_present(struct drm_device *dev)
12439 {
12440         struct drm_i915_private *dev_priv = dev->dev_private;
12441
12442         if (INTEL_INFO(dev)->gen >= 9)
12443                 return false;
12444
12445         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12446                 return false;
12447
12448         if (IS_CHERRYVIEW(dev))
12449                 return false;
12450
12451         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12452                 return false;
12453
12454         return true;
12455 }
12456
12457 static void intel_setup_outputs(struct drm_device *dev)
12458 {
12459         struct drm_i915_private *dev_priv = dev->dev_private;
12460         struct intel_encoder *encoder;
12461         struct drm_connector *connector;
12462         bool dpd_is_edp = false;
12463
12464         intel_lvds_init(dev);
12465
12466         if (intel_crt_present(dev))
12467                 intel_crt_init(dev);
12468
12469         if (HAS_DDI(dev)) {
12470                 int found;
12471
12472                 /* Haswell uses DDI functions to detect digital outputs */
12473                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12474                 /* DDI A only supports eDP */
12475                 if (found)
12476                         intel_ddi_init(dev, PORT_A);
12477
12478                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12479                  * register */
12480                 found = I915_READ(SFUSE_STRAP);
12481
12482                 if (found & SFUSE_STRAP_DDIB_DETECTED)
12483                         intel_ddi_init(dev, PORT_B);
12484                 if (found & SFUSE_STRAP_DDIC_DETECTED)
12485                         intel_ddi_init(dev, PORT_C);
12486                 if (found & SFUSE_STRAP_DDID_DETECTED)
12487                         intel_ddi_init(dev, PORT_D);
12488         } else if (HAS_PCH_SPLIT(dev)) {
12489                 int found;
12490                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12491
12492                 if (has_edp_a(dev))
12493                         intel_dp_init(dev, DP_A, PORT_A);
12494
12495                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12496                         /* PCH SDVOB multiplex with HDMIB */
12497                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
12498                         if (!found)
12499                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12500                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12501                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
12502                 }
12503
12504                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12505                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12506
12507                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12508                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12509
12510                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12511                         intel_dp_init(dev, PCH_DP_C, PORT_C);
12512
12513                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12514                         intel_dp_init(dev, PCH_DP_D, PORT_D);
12515         } else if (IS_VALLEYVIEW(dev)) {
12516                 /*
12517                  * The DP_DETECTED bit is the latched state of the DDC
12518                  * SDA pin at boot. However since eDP doesn't require DDC
12519                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
12520                  * eDP ports may have been muxed to an alternate function.
12521                  * Thus we can't rely on the DP_DETECTED bit alone to detect
12522                  * eDP ports. Consult the VBT as well as DP_DETECTED to
12523                  * detect eDP ports.
12524                  */
12525                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12526                     !intel_dp_is_edp(dev, PORT_B))
12527                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12528                                         PORT_B);
12529                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12530                     intel_dp_is_edp(dev, PORT_B))
12531                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12532
12533                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12534                     !intel_dp_is_edp(dev, PORT_C))
12535                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12536                                         PORT_C);
12537                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12538                     intel_dp_is_edp(dev, PORT_C))
12539                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12540
12541                 if (IS_CHERRYVIEW(dev)) {
12542                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12543                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12544                                                 PORT_D);
12545                         /* eDP not supported on port D, so don't check VBT */
12546                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12547                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12548                 }
12549
12550                 intel_dsi_init(dev);
12551         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12552                 bool found = false;
12553
12554                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12555                         DRM_DEBUG_KMS("probing SDVOB\n");
12556                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12557                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12558                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12559                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12560                         }
12561
12562                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
12563                                 intel_dp_init(dev, DP_B, PORT_B);
12564                 }
12565
12566                 /* Before G4X SDVOC doesn't have its own detect register */
12567
12568                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12569                         DRM_DEBUG_KMS("probing SDVOC\n");
12570                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12571                 }
12572
12573                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12574
12575                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12576                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12577                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12578                         }
12579                         if (SUPPORTS_INTEGRATED_DP(dev))
12580                                 intel_dp_init(dev, DP_C, PORT_C);
12581                 }
12582
12583                 if (SUPPORTS_INTEGRATED_DP(dev) &&
12584                     (I915_READ(DP_D) & DP_DETECTED))
12585                         intel_dp_init(dev, DP_D, PORT_D);
12586         } else if (IS_GEN2(dev))
12587                 intel_dvo_init(dev);
12588
12589         if (SUPPORTS_TV(dev))
12590                 intel_tv_init(dev);
12591
12592         /*
12593          * FIXME:  We don't have full atomic support yet, but we want to be
12594          * able to enable/test plane updates via the atomic interface in the
12595          * meantime.  However as soon as we flip DRIVER_ATOMIC on, the DRM core
12596          * will take some atomic codepaths to lookup properties during
12597          * drmModeGetConnector() that unconditionally dereference
12598          * connector->state.
12599          *
12600          * We create a dummy connector state here for each connector to ensure
12601          * the DRM core doesn't try to dereference a NULL connector->state.
12602          * The actual connector properties will never be updated or contain
12603          * useful information, but since we're doing this specifically for
12604          * testing/debug of the plane operations (and only when a specific
12605          * kernel module option is given), that shouldn't really matter.
12606          *
12607          * Once atomic support for crtc's + connectors lands, this loop should
12608          * be removed since we'll be setting up real connector state, which
12609          * will contain Intel-specific properties.
12610          */
12611         if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12612                 list_for_each_entry(connector,
12613                                     &dev->mode_config.connector_list,
12614                                     head) {
12615                         if (!WARN_ON(connector->state)) {
12616                                 connector->state =
12617                                         kzalloc(sizeof(*connector->state),
12618                                                 GFP_KERNEL);
12619                         }
12620                 }
12621         }
12622
12623         intel_psr_init(dev);
12624
12625         for_each_intel_encoder(dev, encoder) {
12626                 encoder->base.possible_crtcs = encoder->crtc_mask;
12627                 encoder->base.possible_clones =
12628                         intel_encoder_clones(encoder);
12629         }
12630
12631         intel_init_pch_refclk(dev);
12632
12633         drm_helper_move_panel_connectors_to_head(dev);
12634 }
12635
12636 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12637 {
12638         struct drm_device *dev = fb->dev;
12639         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12640
12641         drm_framebuffer_cleanup(fb);
12642         mutex_lock(&dev->struct_mutex);
12643         WARN_ON(!intel_fb->obj->framebuffer_references--);
12644         drm_gem_object_unreference(&intel_fb->obj->base);
12645         mutex_unlock(&dev->struct_mutex);
12646         kfree(intel_fb);
12647 }
12648
12649 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12650                                                 struct drm_file *file,
12651                                                 unsigned int *handle)
12652 {
12653         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12654         struct drm_i915_gem_object *obj = intel_fb->obj;
12655
12656         return drm_gem_handle_create(file, &obj->base, handle);
12657 }
12658
12659 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12660         .destroy = intel_user_framebuffer_destroy,
12661         .create_handle = intel_user_framebuffer_create_handle,
12662 };
12663
12664 static int intel_framebuffer_init(struct drm_device *dev,
12665                                   struct intel_framebuffer *intel_fb,
12666                                   struct drm_mode_fb_cmd2 *mode_cmd,
12667                                   struct drm_i915_gem_object *obj)
12668 {
12669         int aligned_height;
12670         int pitch_limit;
12671         int ret;
12672
12673         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12674
12675         if (obj->tiling_mode == I915_TILING_Y) {
12676                 DRM_DEBUG("hardware does not support tiling Y\n");
12677                 return -EINVAL;
12678         }
12679
12680         if (mode_cmd->pitches[0] & 63) {
12681                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12682                           mode_cmd->pitches[0]);
12683                 return -EINVAL;
12684         }
12685
12686         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12687                 pitch_limit = 32*1024;
12688         } else if (INTEL_INFO(dev)->gen >= 4) {
12689                 if (obj->tiling_mode)
12690                         pitch_limit = 16*1024;
12691                 else
12692                         pitch_limit = 32*1024;
12693         } else if (INTEL_INFO(dev)->gen >= 3) {
12694                 if (obj->tiling_mode)
12695                         pitch_limit = 8*1024;
12696                 else
12697                         pitch_limit = 16*1024;
12698         } else
12699                 /* XXX DSPC is limited to 4k tiled */
12700                 pitch_limit = 8*1024;
12701
12702         if (mode_cmd->pitches[0] > pitch_limit) {
12703                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12704                           obj->tiling_mode ? "tiled" : "linear",
12705                           mode_cmd->pitches[0], pitch_limit);
12706                 return -EINVAL;
12707         }
12708
12709         if (obj->tiling_mode != I915_TILING_NONE &&
12710             mode_cmd->pitches[0] != obj->stride) {
12711                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12712                           mode_cmd->pitches[0], obj->stride);
12713                 return -EINVAL;
12714         }
12715
12716         /* Reject formats not supported by any plane early. */
12717         switch (mode_cmd->pixel_format) {
12718         case DRM_FORMAT_C8:
12719         case DRM_FORMAT_RGB565:
12720         case DRM_FORMAT_XRGB8888:
12721         case DRM_FORMAT_ARGB8888:
12722                 break;
12723         case DRM_FORMAT_XRGB1555:
12724         case DRM_FORMAT_ARGB1555:
12725                 if (INTEL_INFO(dev)->gen > 3) {
12726                         DRM_DEBUG("unsupported pixel format: %s\n",
12727                                   drm_get_format_name(mode_cmd->pixel_format));
12728                         return -EINVAL;
12729                 }
12730                 break;
12731         case DRM_FORMAT_XBGR8888:
12732         case DRM_FORMAT_ABGR8888:
12733         case DRM_FORMAT_XRGB2101010:
12734         case DRM_FORMAT_ARGB2101010:
12735         case DRM_FORMAT_XBGR2101010:
12736         case DRM_FORMAT_ABGR2101010:
12737                 if (INTEL_INFO(dev)->gen < 4) {
12738                         DRM_DEBUG("unsupported pixel format: %s\n",
12739                                   drm_get_format_name(mode_cmd->pixel_format));
12740                         return -EINVAL;
12741                 }
12742                 break;
12743         case DRM_FORMAT_YUYV:
12744         case DRM_FORMAT_UYVY:
12745         case DRM_FORMAT_YVYU:
12746         case DRM_FORMAT_VYUY:
12747                 if (INTEL_INFO(dev)->gen < 5) {
12748                         DRM_DEBUG("unsupported pixel format: %s\n",
12749                                   drm_get_format_name(mode_cmd->pixel_format));
12750                         return -EINVAL;
12751                 }
12752                 break;
12753         default:
12754                 DRM_DEBUG("unsupported pixel format: %s\n",
12755                           drm_get_format_name(mode_cmd->pixel_format));
12756                 return -EINVAL;
12757         }
12758
12759         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12760         if (mode_cmd->offsets[0] != 0)
12761                 return -EINVAL;
12762
12763         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12764                                                obj->tiling_mode);
12765         /* FIXME drm helper for size checks (especially planar formats)? */
12766         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12767                 return -EINVAL;
12768
12769         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12770         intel_fb->obj = obj;
12771         intel_fb->obj->framebuffer_references++;
12772
12773         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12774         if (ret) {
12775                 DRM_ERROR("framebuffer init failed %d\n", ret);
12776                 return ret;
12777         }
12778
12779         return 0;
12780 }
12781
12782 static struct drm_framebuffer *
12783 intel_user_framebuffer_create(struct drm_device *dev,
12784                               struct drm_file *filp,
12785                               struct drm_mode_fb_cmd2 *mode_cmd)
12786 {
12787         struct drm_i915_gem_object *obj;
12788
12789         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12790                                                 mode_cmd->handles[0]));
12791         if (&obj->base == NULL)
12792                 return ERR_PTR(-ENOENT);
12793
12794         return intel_framebuffer_create(dev, mode_cmd, obj);
12795 }
12796
12797 #ifndef CONFIG_DRM_I915_FBDEV
12798 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12799 {
12800 }
12801 #endif
12802
12803 static const struct drm_mode_config_funcs intel_mode_funcs = {
12804         .fb_create = intel_user_framebuffer_create,
12805         .output_poll_changed = intel_fbdev_output_poll_changed,
12806         .atomic_check = intel_atomic_check,
12807         .atomic_commit = intel_atomic_commit,
12808 };
12809
12810 /* Set up chip specific display functions */
12811 static void intel_init_display(struct drm_device *dev)
12812 {
12813         struct drm_i915_private *dev_priv = dev->dev_private;
12814
12815         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12816                 dev_priv->display.find_dpll = g4x_find_best_dpll;
12817         else if (IS_CHERRYVIEW(dev))
12818                 dev_priv->display.find_dpll = chv_find_best_dpll;
12819         else if (IS_VALLEYVIEW(dev))
12820                 dev_priv->display.find_dpll = vlv_find_best_dpll;
12821         else if (IS_PINEVIEW(dev))
12822                 dev_priv->display.find_dpll = pnv_find_best_dpll;
12823         else
12824                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12825
12826         if (INTEL_INFO(dev)->gen >= 9) {
12827                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12828                 dev_priv->display.get_initial_plane_config =
12829                         skylake_get_initial_plane_config;
12830                 dev_priv->display.crtc_compute_clock =
12831                         haswell_crtc_compute_clock;
12832                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12833                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12834                 dev_priv->display.off = ironlake_crtc_off;
12835                 dev_priv->display.update_primary_plane =
12836                         skylake_update_primary_plane;
12837         } else if (HAS_DDI(dev)) {
12838                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12839                 dev_priv->display.get_initial_plane_config =
12840                         ironlake_get_initial_plane_config;
12841                 dev_priv->display.crtc_compute_clock =
12842                         haswell_crtc_compute_clock;
12843                 dev_priv->display.crtc_enable = haswell_crtc_enable;
12844                 dev_priv->display.crtc_disable = haswell_crtc_disable;
12845                 dev_priv->display.off = ironlake_crtc_off;
12846                 dev_priv->display.update_primary_plane =
12847                         ironlake_update_primary_plane;
12848         } else if (HAS_PCH_SPLIT(dev)) {
12849                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12850                 dev_priv->display.get_initial_plane_config =
12851                         ironlake_get_initial_plane_config;
12852                 dev_priv->display.crtc_compute_clock =
12853                         ironlake_crtc_compute_clock;
12854                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12855                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12856                 dev_priv->display.off = ironlake_crtc_off;
12857                 dev_priv->display.update_primary_plane =
12858                         ironlake_update_primary_plane;
12859         } else if (IS_VALLEYVIEW(dev)) {
12860                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12861                 dev_priv->display.get_initial_plane_config =
12862                         i9xx_get_initial_plane_config;
12863                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12864                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12865                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12866                 dev_priv->display.off = i9xx_crtc_off;
12867                 dev_priv->display.update_primary_plane =
12868                         i9xx_update_primary_plane;
12869         } else {
12870                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12871                 dev_priv->display.get_initial_plane_config =
12872                         i9xx_get_initial_plane_config;
12873                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12874                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12875                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12876                 dev_priv->display.off = i9xx_crtc_off;
12877                 dev_priv->display.update_primary_plane =
12878                         i9xx_update_primary_plane;
12879         }
12880
12881         /* Returns the core display clock speed */
12882         if (IS_VALLEYVIEW(dev))
12883                 dev_priv->display.get_display_clock_speed =
12884                         valleyview_get_display_clock_speed;
12885         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12886                 dev_priv->display.get_display_clock_speed =
12887                         i945_get_display_clock_speed;
12888         else if (IS_I915G(dev))
12889                 dev_priv->display.get_display_clock_speed =
12890                         i915_get_display_clock_speed;
12891         else if (IS_I945GM(dev) || IS_845G(dev))
12892                 dev_priv->display.get_display_clock_speed =
12893                         i9xx_misc_get_display_clock_speed;
12894         else if (IS_PINEVIEW(dev))
12895                 dev_priv->display.get_display_clock_speed =
12896                         pnv_get_display_clock_speed;
12897         else if (IS_I915GM(dev))
12898                 dev_priv->display.get_display_clock_speed =
12899                         i915gm_get_display_clock_speed;
12900         else if (IS_I865G(dev))
12901                 dev_priv->display.get_display_clock_speed =
12902                         i865_get_display_clock_speed;
12903         else if (IS_I85X(dev))
12904                 dev_priv->display.get_display_clock_speed =
12905                         i855_get_display_clock_speed;
12906         else /* 852, 830 */
12907                 dev_priv->display.get_display_clock_speed =
12908                         i830_get_display_clock_speed;
12909
12910         if (IS_GEN5(dev)) {
12911                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12912         } else if (IS_GEN6(dev)) {
12913                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12914         } else if (IS_IVYBRIDGE(dev)) {
12915                 /* FIXME: detect B0+ stepping and use auto training */
12916                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12917                 dev_priv->display.modeset_global_resources =
12918                         ivb_modeset_global_resources;
12919         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12920                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12921         } else if (IS_VALLEYVIEW(dev)) {
12922                 dev_priv->display.modeset_global_resources =
12923                         valleyview_modeset_global_resources;
12924         }
12925
12926         /* Default just returns -ENODEV to indicate unsupported */
12927         dev_priv->display.queue_flip = intel_default_queue_flip;
12928
12929         switch (INTEL_INFO(dev)->gen) {
12930         case 2:
12931                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12932                 break;
12933
12934         case 3:
12935                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12936                 break;
12937
12938         case 4:
12939         case 5:
12940                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12941                 break;
12942
12943         case 6:
12944                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12945                 break;
12946         case 7:
12947         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12948                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12949                 break;
12950         case 9:
12951                 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12952                 break;
12953         }
12954
12955         intel_panel_init_backlight_funcs(dev);
12956
12957         mutex_init(&dev_priv->pps_mutex);
12958 }
12959
12960 /*
12961  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12962  * resume, or other times.  This quirk makes sure that's the case for
12963  * affected systems.
12964  */
12965 static void quirk_pipea_force(struct drm_device *dev)
12966 {
12967         struct drm_i915_private *dev_priv = dev->dev_private;
12968
12969         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12970         DRM_INFO("applying pipe a force quirk\n");
12971 }
12972
12973 static void quirk_pipeb_force(struct drm_device *dev)
12974 {
12975         struct drm_i915_private *dev_priv = dev->dev_private;
12976
12977         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12978         DRM_INFO("applying pipe b force quirk\n");
12979 }
12980
12981 /*
12982  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12983  */
12984 static void quirk_ssc_force_disable(struct drm_device *dev)
12985 {
12986         struct drm_i915_private *dev_priv = dev->dev_private;
12987         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12988         DRM_INFO("applying lvds SSC disable quirk\n");
12989 }
12990
12991 /*
12992  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12993  * brightness value
12994  */
12995 static void quirk_invert_brightness(struct drm_device *dev)
12996 {
12997         struct drm_i915_private *dev_priv = dev->dev_private;
12998         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12999         DRM_INFO("applying inverted panel brightness quirk\n");
13000 }
13001
13002 /* Some VBT's incorrectly indicate no backlight is present */
13003 static void quirk_backlight_present(struct drm_device *dev)
13004 {
13005         struct drm_i915_private *dev_priv = dev->dev_private;
13006         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13007         DRM_INFO("applying backlight present quirk\n");
13008 }
13009
13010 struct intel_quirk {
13011         int device;
13012         int subsystem_vendor;
13013         int subsystem_device;
13014         void (*hook)(struct drm_device *dev);
13015 };
13016
13017 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13018 struct intel_dmi_quirk {
13019         void (*hook)(struct drm_device *dev);
13020         const struct dmi_system_id (*dmi_id_list)[];
13021 };
13022
13023 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13024 {
13025         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13026         return 1;
13027 }
13028
13029 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13030         {
13031                 .dmi_id_list = &(const struct dmi_system_id[]) {
13032                         {
13033                                 .callback = intel_dmi_reverse_brightness,
13034                                 .ident = "NCR Corporation",
13035                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13036                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
13037                                 },
13038                         },
13039                         { }  /* terminating entry */
13040                 },
13041                 .hook = quirk_invert_brightness,
13042         },
13043 };
13044
13045 static struct intel_quirk intel_quirks[] = {
13046         /* HP Mini needs pipe A force quirk (LP: #322104) */
13047         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13048
13049         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13050         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13051
13052         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13053         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13054
13055         /* 830 needs to leave pipe A & dpll A up */
13056         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13057
13058         /* 830 needs to leave pipe B & dpll B up */
13059         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13060
13061         /* Lenovo U160 cannot use SSC on LVDS */
13062         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13063
13064         /* Sony Vaio Y cannot use SSC on LVDS */
13065         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13066
13067         /* Acer Aspire 5734Z must invert backlight brightness */
13068         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13069
13070         /* Acer/eMachines G725 */
13071         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13072
13073         /* Acer/eMachines e725 */
13074         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13075
13076         /* Acer/Packard Bell NCL20 */
13077         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13078
13079         /* Acer Aspire 4736Z */
13080         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13081
13082         /* Acer Aspire 5336 */
13083         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13084
13085         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13086         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13087
13088         /* Acer C720 Chromebook (Core i3 4005U) */
13089         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13090
13091         /* Apple Macbook 2,1 (Core 2 T7400) */
13092         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13093
13094         /* Toshiba CB35 Chromebook (Celeron 2955U) */
13095         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13096
13097         /* HP Chromebook 14 (Celeron 2955U) */
13098         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13099 };
13100
13101 static void intel_init_quirks(struct drm_device *dev)
13102 {
13103         struct pci_dev *d = dev->pdev;
13104         int i;
13105
13106         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13107                 struct intel_quirk *q = &intel_quirks[i];
13108
13109                 if (d->device == q->device &&
13110                     (d->subsystem_vendor == q->subsystem_vendor ||
13111                      q->subsystem_vendor == PCI_ANY_ID) &&
13112                     (d->subsystem_device == q->subsystem_device ||
13113                      q->subsystem_device == PCI_ANY_ID))
13114                         q->hook(dev);
13115         }
13116         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13117                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13118                         intel_dmi_quirks[i].hook(dev);
13119         }
13120 }
13121
13122 /* Disable the VGA plane that we never use */
13123 static void i915_disable_vga(struct drm_device *dev)
13124 {
13125         struct drm_i915_private *dev_priv = dev->dev_private;
13126         u8 sr1;
13127         u32 vga_reg = i915_vgacntrl_reg(dev);
13128
13129         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13130         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13131         outb(SR01, VGA_SR_INDEX);
13132         sr1 = inb(VGA_SR_DATA);
13133         outb(sr1 | 1<<5, VGA_SR_DATA);
13134         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13135         udelay(300);
13136
13137         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13138         POSTING_READ(vga_reg);
13139 }
13140
13141 void intel_modeset_init_hw(struct drm_device *dev)
13142 {
13143         intel_prepare_ddi(dev);
13144
13145         if (IS_VALLEYVIEW(dev))
13146                 vlv_update_cdclk(dev);
13147
13148         intel_init_clock_gating(dev);
13149
13150         intel_enable_gt_powersave(dev);
13151 }
13152
13153 void intel_modeset_init(struct drm_device *dev)
13154 {
13155         struct drm_i915_private *dev_priv = dev->dev_private;
13156         int sprite, ret;
13157         enum pipe pipe;
13158         struct intel_crtc *crtc;
13159
13160         drm_mode_config_init(dev);
13161
13162         dev->mode_config.min_width = 0;
13163         dev->mode_config.min_height = 0;
13164
13165         dev->mode_config.preferred_depth = 24;
13166         dev->mode_config.prefer_shadow = 1;
13167
13168         dev->mode_config.funcs = &intel_mode_funcs;
13169
13170         intel_init_quirks(dev);
13171
13172         intel_init_pm(dev);
13173
13174         if (INTEL_INFO(dev)->num_pipes == 0)
13175                 return;
13176
13177         intel_init_display(dev);
13178         intel_init_audio(dev);
13179
13180         if (IS_GEN2(dev)) {
13181                 dev->mode_config.max_width = 2048;
13182                 dev->mode_config.max_height = 2048;
13183         } else if (IS_GEN3(dev)) {
13184                 dev->mode_config.max_width = 4096;
13185                 dev->mode_config.max_height = 4096;
13186         } else {
13187                 dev->mode_config.max_width = 8192;
13188                 dev->mode_config.max_height = 8192;
13189         }
13190
13191         if (IS_845G(dev) || IS_I865G(dev)) {
13192                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13193                 dev->mode_config.cursor_height = 1023;
13194         } else if (IS_GEN2(dev)) {
13195                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13196                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13197         } else {
13198                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13199                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13200         }
13201
13202         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13203
13204         DRM_DEBUG_KMS("%d display pipe%s available.\n",
13205                       INTEL_INFO(dev)->num_pipes,
13206                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13207
13208         for_each_pipe(dev_priv, pipe) {
13209                 intel_crtc_init(dev, pipe);
13210                 for_each_sprite(pipe, sprite) {
13211                         ret = intel_plane_init(dev, pipe, sprite);
13212                         if (ret)
13213                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13214                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
13215                 }
13216         }
13217
13218         intel_init_dpio(dev);
13219
13220         intel_shared_dpll_init(dev);
13221
13222         /* Just disable it once at startup */
13223         i915_disable_vga(dev);
13224         intel_setup_outputs(dev);
13225
13226         /* Just in case the BIOS is doing something questionable. */
13227         intel_fbc_disable(dev);
13228
13229         drm_modeset_lock_all(dev);
13230         intel_modeset_setup_hw_state(dev, false);
13231         drm_modeset_unlock_all(dev);
13232
13233         for_each_intel_crtc(dev, crtc) {
13234                 if (!crtc->active)
13235                         continue;
13236
13237                 /*
13238                  * Note that reserving the BIOS fb up front prevents us
13239                  * from stuffing other stolen allocations like the ring
13240                  * on top.  This prevents some ugliness at boot time, and
13241                  * can even allow for smooth boot transitions if the BIOS
13242                  * fb is large enough for the active pipe configuration.
13243                  */
13244                 if (dev_priv->display.get_initial_plane_config) {
13245                         dev_priv->display.get_initial_plane_config(crtc,
13246                                                            &crtc->plane_config);
13247                         /*
13248                          * If the fb is shared between multiple heads, we'll
13249                          * just get the first one.
13250                          */
13251                         intel_find_plane_obj(crtc, &crtc->plane_config);
13252                 }
13253         }
13254 }
13255
13256 static void intel_enable_pipe_a(struct drm_device *dev)
13257 {
13258         struct intel_connector *connector;
13259         struct drm_connector *crt = NULL;
13260         struct intel_load_detect_pipe load_detect_temp;
13261         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13262
13263         /* We can't just switch on the pipe A, we need to set things up with a
13264          * proper mode and output configuration. As a gross hack, enable pipe A
13265          * by enabling the load detect pipe once. */
13266         list_for_each_entry(connector,
13267                             &dev->mode_config.connector_list,
13268                             base.head) {
13269                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13270                         crt = &connector->base;
13271                         break;
13272                 }
13273         }
13274
13275         if (!crt)
13276                 return;
13277
13278         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13279                 intel_release_load_detect_pipe(crt, &load_detect_temp);
13280 }
13281
13282 static bool
13283 intel_check_plane_mapping(struct intel_crtc *crtc)
13284 {
13285         struct drm_device *dev = crtc->base.dev;
13286         struct drm_i915_private *dev_priv = dev->dev_private;
13287         u32 reg, val;
13288
13289         if (INTEL_INFO(dev)->num_pipes == 1)
13290                 return true;
13291
13292         reg = DSPCNTR(!crtc->plane);
13293         val = I915_READ(reg);
13294
13295         if ((val & DISPLAY_PLANE_ENABLE) &&
13296             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13297                 return false;
13298
13299         return true;
13300 }
13301
13302 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13303 {
13304         struct drm_device *dev = crtc->base.dev;
13305         struct drm_i915_private *dev_priv = dev->dev_private;
13306         u32 reg;
13307
13308         /* Clear any frame start delays used for debugging left by the BIOS */
13309         reg = PIPECONF(crtc->config->cpu_transcoder);
13310         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13311
13312         /* restore vblank interrupts to correct state */
13313         if (crtc->active) {
13314                 update_scanline_offset(crtc);
13315                 drm_vblank_on(dev, crtc->pipe);
13316         } else
13317                 drm_vblank_off(dev, crtc->pipe);
13318
13319         /* We need to sanitize the plane -> pipe mapping first because this will
13320          * disable the crtc (and hence change the state) if it is wrong. Note
13321          * that gen4+ has a fixed plane -> pipe mapping.  */
13322         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13323                 struct intel_connector *connector;
13324                 bool plane;
13325
13326                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13327                               crtc->base.base.id);
13328
13329                 /* Pipe has the wrong plane attached and the plane is active.
13330                  * Temporarily change the plane mapping and disable everything
13331                  * ...  */
13332                 plane = crtc->plane;
13333                 crtc->plane = !plane;
13334                 crtc->primary_enabled = true;
13335                 dev_priv->display.crtc_disable(&crtc->base);
13336                 crtc->plane = plane;
13337
13338                 /* ... and break all links. */
13339                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13340                                     base.head) {
13341                         if (connector->encoder->base.crtc != &crtc->base)
13342                                 continue;
13343
13344                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13345                         connector->base.encoder = NULL;
13346                 }
13347                 /* multiple connectors may have the same encoder:
13348                  *  handle them and break crtc link separately */
13349                 list_for_each_entry(connector, &dev->mode_config.connector_list,
13350                                     base.head)
13351                         if (connector->encoder->base.crtc == &crtc->base) {
13352                                 connector->encoder->base.crtc = NULL;
13353                                 connector->encoder->connectors_active = false;
13354                         }
13355
13356                 WARN_ON(crtc->active);
13357                 crtc->base.enabled = false;
13358         }
13359
13360         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13361             crtc->pipe == PIPE_A && !crtc->active) {
13362                 /* BIOS forgot to enable pipe A, this mostly happens after
13363                  * resume. Force-enable the pipe to fix this, the update_dpms
13364                  * call below we restore the pipe to the right state, but leave
13365                  * the required bits on. */
13366                 intel_enable_pipe_a(dev);
13367         }
13368
13369         /* Adjust the state of the output pipe according to whether we
13370          * have active connectors/encoders. */
13371         intel_crtc_update_dpms(&crtc->base);
13372
13373         if (crtc->active != crtc->base.enabled) {
13374                 struct intel_encoder *encoder;
13375
13376                 /* This can happen either due to bugs in the get_hw_state
13377                  * functions or because the pipe is force-enabled due to the
13378                  * pipe A quirk. */
13379                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13380                               crtc->base.base.id,
13381                               crtc->base.enabled ? "enabled" : "disabled",
13382                               crtc->active ? "enabled" : "disabled");
13383
13384                 crtc->base.enabled = crtc->active;
13385
13386                 /* Because we only establish the connector -> encoder ->
13387                  * crtc links if something is active, this means the
13388                  * crtc is now deactivated. Break the links. connector
13389                  * -> encoder links are only establish when things are
13390                  *  actually up, hence no need to break them. */
13391                 WARN_ON(crtc->active);
13392
13393                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13394                         WARN_ON(encoder->connectors_active);
13395                         encoder->base.crtc = NULL;
13396                 }
13397         }
13398
13399         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13400                 /*
13401                  * We start out with underrun reporting disabled to avoid races.
13402                  * For correct bookkeeping mark this on active crtcs.
13403                  *
13404                  * Also on gmch platforms we dont have any hardware bits to
13405                  * disable the underrun reporting. Which means we need to start
13406                  * out with underrun reporting disabled also on inactive pipes,
13407                  * since otherwise we'll complain about the garbage we read when
13408                  * e.g. coming up after runtime pm.
13409                  *
13410                  * No protection against concurrent access is required - at
13411                  * worst a fifo underrun happens which also sets this to false.
13412                  */
13413                 crtc->cpu_fifo_underrun_disabled = true;
13414                 crtc->pch_fifo_underrun_disabled = true;
13415         }
13416 }
13417
13418 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13419 {
13420         struct intel_connector *connector;
13421         struct drm_device *dev = encoder->base.dev;
13422
13423         /* We need to check both for a crtc link (meaning that the
13424          * encoder is active and trying to read from a pipe) and the
13425          * pipe itself being active. */
13426         bool has_active_crtc = encoder->base.crtc &&
13427                 to_intel_crtc(encoder->base.crtc)->active;
13428
13429         if (encoder->connectors_active && !has_active_crtc) {
13430                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13431                               encoder->base.base.id,
13432                               encoder->base.name);
13433
13434                 /* Connector is active, but has no active pipe. This is
13435                  * fallout from our resume register restoring. Disable
13436                  * the encoder manually again. */
13437                 if (encoder->base.crtc) {
13438                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13439                                       encoder->base.base.id,
13440                                       encoder->base.name);
13441                         encoder->disable(encoder);
13442                         if (encoder->post_disable)
13443                                 encoder->post_disable(encoder);
13444                 }
13445                 encoder->base.crtc = NULL;
13446                 encoder->connectors_active = false;
13447
13448                 /* Inconsistent output/port/pipe state happens presumably due to
13449                  * a bug in one of the get_hw_state functions. Or someplace else
13450                  * in our code, like the register restore mess on resume. Clamp
13451                  * things to off as a safer default. */
13452                 list_for_each_entry(connector,
13453                                     &dev->mode_config.connector_list,
13454                                     base.head) {
13455                         if (connector->encoder != encoder)
13456                                 continue;
13457                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13458                         connector->base.encoder = NULL;
13459                 }
13460         }
13461         /* Enabled encoders without active connectors will be fixed in
13462          * the crtc fixup. */
13463 }
13464
13465 void i915_redisable_vga_power_on(struct drm_device *dev)
13466 {
13467         struct drm_i915_private *dev_priv = dev->dev_private;
13468         u32 vga_reg = i915_vgacntrl_reg(dev);
13469
13470         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13471                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13472                 i915_disable_vga(dev);
13473         }
13474 }
13475
13476 void i915_redisable_vga(struct drm_device *dev)
13477 {
13478         struct drm_i915_private *dev_priv = dev->dev_private;
13479
13480         /* This function can be called both from intel_modeset_setup_hw_state or
13481          * at a very early point in our resume sequence, where the power well
13482          * structures are not yet restored. Since this function is at a very
13483          * paranoid "someone might have enabled VGA while we were not looking"
13484          * level, just check if the power well is enabled instead of trying to
13485          * follow the "don't touch the power well if we don't need it" policy
13486          * the rest of the driver uses. */
13487         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13488                 return;
13489
13490         i915_redisable_vga_power_on(dev);
13491 }
13492
13493 static bool primary_get_hw_state(struct intel_crtc *crtc)
13494 {
13495         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13496
13497         if (!crtc->active)
13498                 return false;
13499
13500         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13501 }
13502
13503 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13504 {
13505         struct drm_i915_private *dev_priv = dev->dev_private;
13506         enum pipe pipe;
13507         struct intel_crtc *crtc;
13508         struct intel_encoder *encoder;
13509         struct intel_connector *connector;
13510         int i;
13511
13512         for_each_intel_crtc(dev, crtc) {
13513                 memset(crtc->config, 0, sizeof(*crtc->config));
13514
13515                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13516
13517                 crtc->active = dev_priv->display.get_pipe_config(crtc,
13518                                                                  crtc->config);
13519
13520                 crtc->base.enabled = crtc->active;
13521                 crtc->primary_enabled = primary_get_hw_state(crtc);
13522
13523                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13524                               crtc->base.base.id,
13525                               crtc->active ? "enabled" : "disabled");
13526         }
13527
13528         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13529                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13530
13531                 pll->on = pll->get_hw_state(dev_priv, pll,
13532                                             &pll->config.hw_state);
13533                 pll->active = 0;
13534                 pll->config.crtc_mask = 0;
13535                 for_each_intel_crtc(dev, crtc) {
13536                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13537                                 pll->active++;
13538                                 pll->config.crtc_mask |= 1 << crtc->pipe;
13539                         }
13540                 }
13541
13542                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13543                               pll->name, pll->config.crtc_mask, pll->on);
13544
13545                 if (pll->config.crtc_mask)
13546                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13547         }
13548
13549         for_each_intel_encoder(dev, encoder) {
13550                 pipe = 0;
13551
13552                 if (encoder->get_hw_state(encoder, &pipe)) {
13553                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13554                         encoder->base.crtc = &crtc->base;
13555                         encoder->get_config(encoder, crtc->config);
13556                 } else {
13557                         encoder->base.crtc = NULL;
13558                 }
13559
13560                 encoder->connectors_active = false;
13561                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13562                               encoder->base.base.id,
13563                               encoder->base.name,
13564                               encoder->base.crtc ? "enabled" : "disabled",
13565                               pipe_name(pipe));
13566         }
13567
13568         list_for_each_entry(connector, &dev->mode_config.connector_list,
13569                             base.head) {
13570                 if (connector->get_hw_state(connector)) {
13571                         connector->base.dpms = DRM_MODE_DPMS_ON;
13572                         connector->encoder->connectors_active = true;
13573                         connector->base.encoder = &connector->encoder->base;
13574                 } else {
13575                         connector->base.dpms = DRM_MODE_DPMS_OFF;
13576                         connector->base.encoder = NULL;
13577                 }
13578                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13579                               connector->base.base.id,
13580                               connector->base.name,
13581                               connector->base.encoder ? "enabled" : "disabled");
13582         }
13583 }
13584
13585 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13586  * and i915 state tracking structures. */
13587 void intel_modeset_setup_hw_state(struct drm_device *dev,
13588                                   bool force_restore)
13589 {
13590         struct drm_i915_private *dev_priv = dev->dev_private;
13591         enum pipe pipe;
13592         struct intel_crtc *crtc;
13593         struct intel_encoder *encoder;
13594         int i;
13595
13596         intel_modeset_readout_hw_state(dev);
13597
13598         /*
13599          * Now that we have the config, copy it to each CRTC struct
13600          * Note that this could go away if we move to using crtc_config
13601          * checking everywhere.
13602          */
13603         for_each_intel_crtc(dev, crtc) {
13604                 if (crtc->active && i915.fastboot) {
13605                         intel_mode_from_pipe_config(&crtc->base.mode,
13606                                                     crtc->config);
13607                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13608                                       crtc->base.base.id);
13609                         drm_mode_debug_printmodeline(&crtc->base.mode);
13610                 }
13611         }
13612
13613         /* HW state is read out, now we need to sanitize this mess. */
13614         for_each_intel_encoder(dev, encoder) {
13615                 intel_sanitize_encoder(encoder);
13616         }
13617
13618         for_each_pipe(dev_priv, pipe) {
13619                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13620                 intel_sanitize_crtc(crtc);
13621                 intel_dump_pipe_config(crtc, crtc->config,
13622                                        "[setup_hw_state]");
13623         }
13624
13625         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13626                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13627
13628                 if (!pll->on || pll->active)
13629                         continue;
13630
13631                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13632
13633                 pll->disable(dev_priv, pll);
13634                 pll->on = false;
13635         }
13636
13637         if (IS_GEN9(dev))
13638                 skl_wm_get_hw_state(dev);
13639         else if (HAS_PCH_SPLIT(dev))
13640                 ilk_wm_get_hw_state(dev);
13641
13642         if (force_restore) {
13643                 i915_redisable_vga(dev);
13644
13645                 /*
13646                  * We need to use raw interfaces for restoring state to avoid
13647                  * checking (bogus) intermediate states.
13648                  */
13649                 for_each_pipe(dev_priv, pipe) {
13650                         struct drm_crtc *crtc =
13651                                 dev_priv->pipe_to_crtc_mapping[pipe];
13652
13653                         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13654                                        crtc->primary->fb);
13655                 }
13656         } else {
13657                 intel_modeset_update_staged_output_state(dev);
13658         }
13659
13660         intel_modeset_check_state(dev);
13661 }
13662
13663 void intel_modeset_gem_init(struct drm_device *dev)
13664 {
13665         struct drm_i915_private *dev_priv = dev->dev_private;
13666         struct drm_crtc *c;
13667         struct drm_i915_gem_object *obj;
13668
13669         mutex_lock(&dev->struct_mutex);
13670         intel_init_gt_powersave(dev);
13671         mutex_unlock(&dev->struct_mutex);
13672
13673         /*
13674          * There may be no VBT; and if the BIOS enabled SSC we can
13675          * just keep using it to avoid unnecessary flicker.  Whereas if the
13676          * BIOS isn't using it, don't assume it will work even if the VBT
13677          * indicates as much.
13678          */
13679         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13680                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13681                                                 DREF_SSC1_ENABLE);
13682
13683         intel_modeset_init_hw(dev);
13684
13685         intel_setup_overlay(dev);
13686
13687         /*
13688          * Make sure any fbs we allocated at startup are properly
13689          * pinned & fenced.  When we do the allocation it's too early
13690          * for this.
13691          */
13692         mutex_lock(&dev->struct_mutex);
13693         for_each_crtc(dev, c) {
13694                 obj = intel_fb_obj(c->primary->fb);
13695                 if (obj == NULL)
13696                         continue;
13697
13698                 if (intel_pin_and_fence_fb_obj(c->primary,
13699                                                c->primary->fb,
13700                                                NULL)) {
13701                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
13702                                   to_intel_crtc(c)->pipe);
13703                         drm_framebuffer_unreference(c->primary->fb);
13704                         c->primary->fb = NULL;
13705                 }
13706         }
13707         mutex_unlock(&dev->struct_mutex);
13708
13709         intel_backlight_register(dev);
13710 }
13711
13712 void intel_connector_unregister(struct intel_connector *intel_connector)
13713 {
13714         struct drm_connector *connector = &intel_connector->base;
13715
13716         intel_panel_destroy_backlight(connector);
13717         drm_connector_unregister(connector);
13718 }
13719
13720 void intel_modeset_cleanup(struct drm_device *dev)
13721 {
13722         struct drm_i915_private *dev_priv = dev->dev_private;
13723         struct drm_connector *connector;
13724
13725         intel_disable_gt_powersave(dev);
13726
13727         intel_backlight_unregister(dev);
13728
13729         /*
13730          * Interrupts and polling as the first thing to avoid creating havoc.
13731          * Too much stuff here (turning of connectors, ...) would
13732          * experience fancy races otherwise.
13733          */
13734         intel_irq_uninstall(dev_priv);
13735
13736         /*
13737          * Due to the hpd irq storm handling the hotplug work can re-arm the
13738          * poll handlers. Hence disable polling after hpd handling is shut down.
13739          */
13740         drm_kms_helper_poll_fini(dev);
13741
13742         mutex_lock(&dev->struct_mutex);
13743
13744         intel_unregister_dsm_handler();
13745
13746         intel_fbc_disable(dev);
13747
13748         ironlake_teardown_rc6(dev);
13749
13750         mutex_unlock(&dev->struct_mutex);
13751
13752         /* flush any delayed tasks or pending work */
13753         flush_scheduled_work();
13754
13755         /* destroy the backlight and sysfs files before encoders/connectors */
13756         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13757                 struct intel_connector *intel_connector;
13758
13759                 intel_connector = to_intel_connector(connector);
13760                 intel_connector->unregister(intel_connector);
13761         }
13762
13763         drm_mode_config_cleanup(dev);
13764
13765         intel_cleanup_overlay(dev);
13766
13767         mutex_lock(&dev->struct_mutex);
13768         intel_cleanup_gt_powersave(dev);
13769         mutex_unlock(&dev->struct_mutex);
13770 }
13771
13772 /*
13773  * Return which encoder is currently attached for connector.
13774  */
13775 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13776 {
13777         return &intel_attached_encoder(connector)->base;
13778 }
13779
13780 void intel_connector_attach_encoder(struct intel_connector *connector,
13781                                     struct intel_encoder *encoder)
13782 {
13783         connector->encoder = encoder;
13784         drm_mode_connector_attach_encoder(&connector->base,
13785                                           &encoder->base);
13786 }
13787
13788 /*
13789  * set vga decode state - true == enable VGA decode
13790  */
13791 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13792 {
13793         struct drm_i915_private *dev_priv = dev->dev_private;
13794         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13795         u16 gmch_ctrl;
13796
13797         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13798                 DRM_ERROR("failed to read control word\n");
13799                 return -EIO;
13800         }
13801
13802         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13803                 return 0;
13804
13805         if (state)
13806                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13807         else
13808                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13809
13810         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13811                 DRM_ERROR("failed to write control word\n");
13812                 return -EIO;
13813         }
13814
13815         return 0;
13816 }
13817
13818 struct intel_display_error_state {
13819
13820         u32 power_well_driver;
13821
13822         int num_transcoders;
13823
13824         struct intel_cursor_error_state {
13825                 u32 control;
13826                 u32 position;
13827                 u32 base;
13828                 u32 size;
13829         } cursor[I915_MAX_PIPES];
13830
13831         struct intel_pipe_error_state {
13832                 bool power_domain_on;
13833                 u32 source;
13834                 u32 stat;
13835         } pipe[I915_MAX_PIPES];
13836
13837         struct intel_plane_error_state {
13838                 u32 control;
13839                 u32 stride;
13840                 u32 size;
13841                 u32 pos;
13842                 u32 addr;
13843                 u32 surface;
13844                 u32 tile_offset;
13845         } plane[I915_MAX_PIPES];
13846
13847         struct intel_transcoder_error_state {
13848                 bool power_domain_on;
13849                 enum transcoder cpu_transcoder;
13850
13851                 u32 conf;
13852
13853                 u32 htotal;
13854                 u32 hblank;
13855                 u32 hsync;
13856                 u32 vtotal;
13857                 u32 vblank;
13858                 u32 vsync;
13859         } transcoder[4];
13860 };
13861
13862 struct intel_display_error_state *
13863 intel_display_capture_error_state(struct drm_device *dev)
13864 {
13865         struct drm_i915_private *dev_priv = dev->dev_private;
13866         struct intel_display_error_state *error;
13867         int transcoders[] = {
13868                 TRANSCODER_A,
13869                 TRANSCODER_B,
13870                 TRANSCODER_C,
13871                 TRANSCODER_EDP,
13872         };
13873         int i;
13874
13875         if (INTEL_INFO(dev)->num_pipes == 0)
13876                 return NULL;
13877
13878         error = kzalloc(sizeof(*error), GFP_ATOMIC);
13879         if (error == NULL)
13880                 return NULL;
13881
13882         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13883                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13884
13885         for_each_pipe(dev_priv, i) {
13886                 error->pipe[i].power_domain_on =
13887                         __intel_display_power_is_enabled(dev_priv,
13888                                                          POWER_DOMAIN_PIPE(i));
13889                 if (!error->pipe[i].power_domain_on)
13890                         continue;
13891
13892                 error->cursor[i].control = I915_READ(CURCNTR(i));
13893                 error->cursor[i].position = I915_READ(CURPOS(i));
13894                 error->cursor[i].base = I915_READ(CURBASE(i));
13895
13896                 error->plane[i].control = I915_READ(DSPCNTR(i));
13897                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13898                 if (INTEL_INFO(dev)->gen <= 3) {
13899                         error->plane[i].size = I915_READ(DSPSIZE(i));
13900                         error->plane[i].pos = I915_READ(DSPPOS(i));
13901                 }
13902                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13903                         error->plane[i].addr = I915_READ(DSPADDR(i));
13904                 if (INTEL_INFO(dev)->gen >= 4) {
13905                         error->plane[i].surface = I915_READ(DSPSURF(i));
13906                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13907                 }
13908
13909                 error->pipe[i].source = I915_READ(PIPESRC(i));
13910
13911                 if (HAS_GMCH_DISPLAY(dev))
13912                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
13913         }
13914
13915         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13916         if (HAS_DDI(dev_priv->dev))
13917                 error->num_transcoders++; /* Account for eDP. */
13918
13919         for (i = 0; i < error->num_transcoders; i++) {
13920                 enum transcoder cpu_transcoder = transcoders[i];
13921
13922                 error->transcoder[i].power_domain_on =
13923                         __intel_display_power_is_enabled(dev_priv,
13924                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13925                 if (!error->transcoder[i].power_domain_on)
13926                         continue;
13927
13928                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13929
13930                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13931                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13932                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13933                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13934                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13935                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13936                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13937         }
13938
13939         return error;
13940 }
13941
13942 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13943
13944 void
13945 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13946                                 struct drm_device *dev,
13947                                 struct intel_display_error_state *error)
13948 {
13949         struct drm_i915_private *dev_priv = dev->dev_private;
13950         int i;
13951
13952         if (!error)
13953                 return;
13954
13955         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13956         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13957                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13958                            error->power_well_driver);
13959         for_each_pipe(dev_priv, i) {
13960                 err_printf(m, "Pipe [%d]:\n", i);
13961                 err_printf(m, "  Power: %s\n",
13962                            error->pipe[i].power_domain_on ? "on" : "off");
13963                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
13964                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
13965
13966                 err_printf(m, "Plane [%d]:\n", i);
13967                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
13968                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
13969                 if (INTEL_INFO(dev)->gen <= 3) {
13970                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
13971                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
13972                 }
13973                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13974                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
13975                 if (INTEL_INFO(dev)->gen >= 4) {
13976                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
13977                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
13978                 }
13979
13980                 err_printf(m, "Cursor [%d]:\n", i);
13981                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
13982                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
13983                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
13984         }
13985
13986         for (i = 0; i < error->num_transcoders; i++) {
13987                 err_printf(m, "CPU transcoder: %c\n",
13988                            transcoder_name(error->transcoder[i].cpu_transcoder));
13989                 err_printf(m, "  Power: %s\n",
13990                            error->transcoder[i].power_domain_on ? "on" : "off");
13991                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
13992                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
13993                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
13994                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
13995                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
13996                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
13997                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
13998         }
13999 }
14000
14001 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14002 {
14003         struct intel_crtc *crtc;
14004
14005         for_each_intel_crtc(dev, crtc) {
14006                 struct intel_unpin_work *work;
14007
14008                 spin_lock_irq(&dev->event_lock);
14009
14010                 work = crtc->unpin_work;
14011
14012                 if (work && work->event &&
14013                     work->event->base.file_priv == file) {
14014                         kfree(work->event);
14015                         work->event = NULL;
14016                 }
14017
14018                 spin_unlock_irq(&dev->event_lock);
14019         }
14020 }