Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN3_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 #define GEN2_IRQ_RESET(type) do { \
140         I915_WRITE16(type##IMR, 0xffff); \
141         POSTING_READ16(type##IMR); \
142         I915_WRITE16(type##IER, 0); \
143         I915_WRITE16(type##IIR, 0xffff); \
144         POSTING_READ16(type##IIR); \
145         I915_WRITE16(type##IIR, 0xffff); \
146         POSTING_READ16(type##IIR); \
147 } while (0)
148
149 /*
150  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
151  */
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153                                     i915_reg_t reg)
154 {
155         u32 val = I915_READ(reg);
156
157         if (val == 0)
158                 return;
159
160         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161              i915_mmio_reg_offset(reg), val);
162         I915_WRITE(reg, 0xffffffff);
163         POSTING_READ(reg);
164         I915_WRITE(reg, 0xffffffff);
165         POSTING_READ(reg);
166 }
167
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169                                     i915_reg_t reg)
170 {
171         u16 val = I915_READ16(reg);
172
173         if (val == 0)
174                 return;
175
176         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177              i915_mmio_reg_offset(reg), val);
178         I915_WRITE16(reg, 0xffff);
179         POSTING_READ16(reg);
180         I915_WRITE16(reg, 0xffff);
181         POSTING_READ16(reg);
182 }
183
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185         gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188         POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
190
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192         gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193         I915_WRITE(type##IER, (ier_val)); \
194         I915_WRITE(type##IMR, (imr_val)); \
195         POSTING_READ(type##IMR); \
196 } while (0)
197
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199         gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200         I915_WRITE16(type##IER, (ier_val)); \
201         I915_WRITE16(type##IMR, (imr_val)); \
202         POSTING_READ16(type##IMR); \
203 } while (0)
204
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
207
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211                                      uint32_t mask,
212                                      uint32_t bits)
213 {
214         uint32_t val;
215
216         lockdep_assert_held(&dev_priv->irq_lock);
217         WARN_ON(bits & ~mask);
218
219         val = I915_READ(PORT_HOTPLUG_EN);
220         val &= ~mask;
221         val |= bits;
222         I915_WRITE(PORT_HOTPLUG_EN, val);
223 }
224
225 /**
226  * i915_hotplug_interrupt_update - update hotplug interrupt enable
227  * @dev_priv: driver private
228  * @mask: bits to update
229  * @bits: bits to enable
230  * NOTE: the HPD enable bits are modified both inside and outside
231  * of an interrupt context. To avoid that read-modify-write cycles
232  * interfer, these bits are protected by a spinlock. Since this
233  * function is usually not called from a context where the lock is
234  * held already, this function acquires the lock itself. A non-locking
235  * version is also available.
236  */
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238                                    uint32_t mask,
239                                    uint32_t bits)
240 {
241         spin_lock_irq(&dev_priv->irq_lock);
242         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243         spin_unlock_irq(&dev_priv->irq_lock);
244 }
245
246 static u32
247 gen11_gt_engine_identity(struct drm_i915_private * const i915,
248                          const unsigned int bank, const unsigned int bit);
249
250 bool gen11_reset_one_iir(struct drm_i915_private * const i915,
251                          const unsigned int bank,
252                          const unsigned int bit)
253 {
254         void __iomem * const regs = i915->regs;
255         u32 dw;
256
257         lockdep_assert_held(&i915->irq_lock);
258
259         dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
260         if (dw & BIT(bit)) {
261                 /*
262                  * According to the BSpec, DW_IIR bits cannot be cleared without
263                  * first servicing the Selector & Shared IIR registers.
264                  */
265                 gen11_gt_engine_identity(i915, bank, bit);
266
267                 /*
268                  * We locked GT INT DW by reading it. If we want to (try
269                  * to) recover from this succesfully, we need to clear
270                  * our bit, otherwise we are locking the register for
271                  * everybody.
272                  */
273                 raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
274
275                 return true;
276         }
277
278         return false;
279 }
280
281 /**
282  * ilk_update_display_irq - update DEIMR
283  * @dev_priv: driver private
284  * @interrupt_mask: mask of interrupt bits to update
285  * @enabled_irq_mask: mask of interrupt bits to enable
286  */
287 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
288                             uint32_t interrupt_mask,
289                             uint32_t enabled_irq_mask)
290 {
291         uint32_t new_val;
292
293         lockdep_assert_held(&dev_priv->irq_lock);
294
295         WARN_ON(enabled_irq_mask & ~interrupt_mask);
296
297         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
298                 return;
299
300         new_val = dev_priv->irq_mask;
301         new_val &= ~interrupt_mask;
302         new_val |= (~enabled_irq_mask & interrupt_mask);
303
304         if (new_val != dev_priv->irq_mask) {
305                 dev_priv->irq_mask = new_val;
306                 I915_WRITE(DEIMR, dev_priv->irq_mask);
307                 POSTING_READ(DEIMR);
308         }
309 }
310
311 /**
312  * ilk_update_gt_irq - update GTIMR
313  * @dev_priv: driver private
314  * @interrupt_mask: mask of interrupt bits to update
315  * @enabled_irq_mask: mask of interrupt bits to enable
316  */
317 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
318                               uint32_t interrupt_mask,
319                               uint32_t enabled_irq_mask)
320 {
321         lockdep_assert_held(&dev_priv->irq_lock);
322
323         WARN_ON(enabled_irq_mask & ~interrupt_mask);
324
325         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
326                 return;
327
328         dev_priv->gt_irq_mask &= ~interrupt_mask;
329         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
330         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
331 }
332
333 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
334 {
335         ilk_update_gt_irq(dev_priv, mask, mask);
336         POSTING_READ_FW(GTIMR);
337 }
338
339 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
340 {
341         ilk_update_gt_irq(dev_priv, mask, 0);
342 }
343
344 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
345 {
346         WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
347
348         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
349 }
350
351 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
352 {
353         if (INTEL_GEN(dev_priv) >= 11)
354                 return GEN11_GPM_WGBOXPERF_INTR_MASK;
355         else if (INTEL_GEN(dev_priv) >= 8)
356                 return GEN8_GT_IMR(2);
357         else
358                 return GEN6_PMIMR;
359 }
360
361 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
362 {
363         if (INTEL_GEN(dev_priv) >= 11)
364                 return GEN11_GPM_WGBOXPERF_INTR_ENABLE;
365         else if (INTEL_GEN(dev_priv) >= 8)
366                 return GEN8_GT_IER(2);
367         else
368                 return GEN6_PMIER;
369 }
370
371 /**
372  * snb_update_pm_irq - update GEN6_PMIMR
373  * @dev_priv: driver private
374  * @interrupt_mask: mask of interrupt bits to update
375  * @enabled_irq_mask: mask of interrupt bits to enable
376  */
377 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
378                               uint32_t interrupt_mask,
379                               uint32_t enabled_irq_mask)
380 {
381         uint32_t new_val;
382
383         WARN_ON(enabled_irq_mask & ~interrupt_mask);
384
385         lockdep_assert_held(&dev_priv->irq_lock);
386
387         new_val = dev_priv->pm_imr;
388         new_val &= ~interrupt_mask;
389         new_val |= (~enabled_irq_mask & interrupt_mask);
390
391         if (new_val != dev_priv->pm_imr) {
392                 dev_priv->pm_imr = new_val;
393                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
394                 POSTING_READ(gen6_pm_imr(dev_priv));
395         }
396 }
397
398 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
399 {
400         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
401                 return;
402
403         snb_update_pm_irq(dev_priv, mask, mask);
404 }
405
406 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
407 {
408         snb_update_pm_irq(dev_priv, mask, 0);
409 }
410
411 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
412 {
413         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
414                 return;
415
416         __gen6_mask_pm_irq(dev_priv, mask);
417 }
418
419 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
420 {
421         i915_reg_t reg = gen6_pm_iir(dev_priv);
422
423         lockdep_assert_held(&dev_priv->irq_lock);
424
425         I915_WRITE(reg, reset_mask);
426         I915_WRITE(reg, reset_mask);
427         POSTING_READ(reg);
428 }
429
430 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
431 {
432         lockdep_assert_held(&dev_priv->irq_lock);
433
434         dev_priv->pm_ier |= enable_mask;
435         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
436         gen6_unmask_pm_irq(dev_priv, enable_mask);
437         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
438 }
439
440 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
441 {
442         lockdep_assert_held(&dev_priv->irq_lock);
443
444         dev_priv->pm_ier &= ~disable_mask;
445         __gen6_mask_pm_irq(dev_priv, disable_mask);
446         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
447         /* though a barrier is missing here, but don't really need a one */
448 }
449
450 void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
451 {
452         spin_lock_irq(&dev_priv->irq_lock);
453
454         while (gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM))
455                 ;
456
457         dev_priv->gt_pm.rps.pm_iir = 0;
458
459         spin_unlock_irq(&dev_priv->irq_lock);
460 }
461
462 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
463 {
464         spin_lock_irq(&dev_priv->irq_lock);
465         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
466         dev_priv->gt_pm.rps.pm_iir = 0;
467         spin_unlock_irq(&dev_priv->irq_lock);
468 }
469
470 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
471 {
472         struct intel_rps *rps = &dev_priv->gt_pm.rps;
473
474         if (READ_ONCE(rps->interrupts_enabled))
475                 return;
476
477         spin_lock_irq(&dev_priv->irq_lock);
478         WARN_ON_ONCE(rps->pm_iir);
479
480         if (INTEL_GEN(dev_priv) >= 11)
481                 WARN_ON_ONCE(gen11_reset_one_iir(dev_priv, 0, GEN11_GTPM));
482         else
483                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
484
485         rps->interrupts_enabled = true;
486         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
487
488         spin_unlock_irq(&dev_priv->irq_lock);
489 }
490
491 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
492 {
493         struct intel_rps *rps = &dev_priv->gt_pm.rps;
494
495         if (!READ_ONCE(rps->interrupts_enabled))
496                 return;
497
498         spin_lock_irq(&dev_priv->irq_lock);
499         rps->interrupts_enabled = false;
500
501         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
502
503         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
504
505         spin_unlock_irq(&dev_priv->irq_lock);
506         synchronize_irq(dev_priv->drm.irq);
507
508         /* Now that we will not be generating any more work, flush any
509          * outstanding tasks. As we are called on the RPS idle path,
510          * we will reset the GPU to minimum frequencies, so the current
511          * state of the worker can be discarded.
512          */
513         cancel_work_sync(&rps->work);
514         if (INTEL_GEN(dev_priv) >= 11)
515                 gen11_reset_rps_interrupts(dev_priv);
516         else
517                 gen6_reset_rps_interrupts(dev_priv);
518 }
519
520 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
521 {
522         assert_rpm_wakelock_held(dev_priv);
523
524         spin_lock_irq(&dev_priv->irq_lock);
525         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
526         spin_unlock_irq(&dev_priv->irq_lock);
527 }
528
529 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
530 {
531         assert_rpm_wakelock_held(dev_priv);
532
533         spin_lock_irq(&dev_priv->irq_lock);
534         if (!dev_priv->guc.interrupts_enabled) {
535                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
536                                        dev_priv->pm_guc_events);
537                 dev_priv->guc.interrupts_enabled = true;
538                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
539         }
540         spin_unlock_irq(&dev_priv->irq_lock);
541 }
542
543 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
544 {
545         assert_rpm_wakelock_held(dev_priv);
546
547         spin_lock_irq(&dev_priv->irq_lock);
548         dev_priv->guc.interrupts_enabled = false;
549
550         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
551
552         spin_unlock_irq(&dev_priv->irq_lock);
553         synchronize_irq(dev_priv->drm.irq);
554
555         gen9_reset_guc_interrupts(dev_priv);
556 }
557
558 /**
559  * bdw_update_port_irq - update DE port interrupt
560  * @dev_priv: driver private
561  * @interrupt_mask: mask of interrupt bits to update
562  * @enabled_irq_mask: mask of interrupt bits to enable
563  */
564 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
565                                 uint32_t interrupt_mask,
566                                 uint32_t enabled_irq_mask)
567 {
568         uint32_t new_val;
569         uint32_t old_val;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572
573         WARN_ON(enabled_irq_mask & ~interrupt_mask);
574
575         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
576                 return;
577
578         old_val = I915_READ(GEN8_DE_PORT_IMR);
579
580         new_val = old_val;
581         new_val &= ~interrupt_mask;
582         new_val |= (~enabled_irq_mask & interrupt_mask);
583
584         if (new_val != old_val) {
585                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
586                 POSTING_READ(GEN8_DE_PORT_IMR);
587         }
588 }
589
590 /**
591  * bdw_update_pipe_irq - update DE pipe interrupt
592  * @dev_priv: driver private
593  * @pipe: pipe whose interrupt to update
594  * @interrupt_mask: mask of interrupt bits to update
595  * @enabled_irq_mask: mask of interrupt bits to enable
596  */
597 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
598                          enum pipe pipe,
599                          uint32_t interrupt_mask,
600                          uint32_t enabled_irq_mask)
601 {
602         uint32_t new_val;
603
604         lockdep_assert_held(&dev_priv->irq_lock);
605
606         WARN_ON(enabled_irq_mask & ~interrupt_mask);
607
608         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
609                 return;
610
611         new_val = dev_priv->de_irq_mask[pipe];
612         new_val &= ~interrupt_mask;
613         new_val |= (~enabled_irq_mask & interrupt_mask);
614
615         if (new_val != dev_priv->de_irq_mask[pipe]) {
616                 dev_priv->de_irq_mask[pipe] = new_val;
617                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
618                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
619         }
620 }
621
622 /**
623  * ibx_display_interrupt_update - update SDEIMR
624  * @dev_priv: driver private
625  * @interrupt_mask: mask of interrupt bits to update
626  * @enabled_irq_mask: mask of interrupt bits to enable
627  */
628 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
629                                   uint32_t interrupt_mask,
630                                   uint32_t enabled_irq_mask)
631 {
632         uint32_t sdeimr = I915_READ(SDEIMR);
633         sdeimr &= ~interrupt_mask;
634         sdeimr |= (~enabled_irq_mask & interrupt_mask);
635
636         WARN_ON(enabled_irq_mask & ~interrupt_mask);
637
638         lockdep_assert_held(&dev_priv->irq_lock);
639
640         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
641                 return;
642
643         I915_WRITE(SDEIMR, sdeimr);
644         POSTING_READ(SDEIMR);
645 }
646
647 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
648                               enum pipe pipe)
649 {
650         u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
651         u32 enable_mask = status_mask << 16;
652
653         lockdep_assert_held(&dev_priv->irq_lock);
654
655         if (INTEL_GEN(dev_priv) < 5)
656                 goto out;
657
658         /*
659          * On pipe A we don't support the PSR interrupt yet,
660          * on pipe B and C the same bit MBZ.
661          */
662         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
663                 return 0;
664         /*
665          * On pipe B and C we don't support the PSR interrupt yet, on pipe
666          * A the same bit is for perf counters which we don't use either.
667          */
668         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
669                 return 0;
670
671         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
672                          SPRITE0_FLIP_DONE_INT_EN_VLV |
673                          SPRITE1_FLIP_DONE_INT_EN_VLV);
674         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
675                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
676         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
677                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
678
679 out:
680         WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
681                   status_mask & ~PIPESTAT_INT_STATUS_MASK,
682                   "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
683                   pipe_name(pipe), enable_mask, status_mask);
684
685         return enable_mask;
686 }
687
688 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
689                           enum pipe pipe, u32 status_mask)
690 {
691         i915_reg_t reg = PIPESTAT(pipe);
692         u32 enable_mask;
693
694         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
695                   "pipe %c: status_mask=0x%x\n",
696                   pipe_name(pipe), status_mask);
697
698         lockdep_assert_held(&dev_priv->irq_lock);
699         WARN_ON(!intel_irqs_enabled(dev_priv));
700
701         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
702                 return;
703
704         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
705         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
706
707         I915_WRITE(reg, enable_mask | status_mask);
708         POSTING_READ(reg);
709 }
710
711 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
712                            enum pipe pipe, u32 status_mask)
713 {
714         i915_reg_t reg = PIPESTAT(pipe);
715         u32 enable_mask;
716
717         WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
718                   "pipe %c: status_mask=0x%x\n",
719                   pipe_name(pipe), status_mask);
720
721         lockdep_assert_held(&dev_priv->irq_lock);
722         WARN_ON(!intel_irqs_enabled(dev_priv));
723
724         if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
725                 return;
726
727         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
728         enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
729
730         I915_WRITE(reg, enable_mask | status_mask);
731         POSTING_READ(reg);
732 }
733
734 /**
735  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
736  * @dev_priv: i915 device private
737  */
738 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
739 {
740         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
741                 return;
742
743         spin_lock_irq(&dev_priv->irq_lock);
744
745         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
746         if (INTEL_GEN(dev_priv) >= 4)
747                 i915_enable_pipestat(dev_priv, PIPE_A,
748                                      PIPE_LEGACY_BLC_EVENT_STATUS);
749
750         spin_unlock_irq(&dev_priv->irq_lock);
751 }
752
753 /*
754  * This timing diagram depicts the video signal in and
755  * around the vertical blanking period.
756  *
757  * Assumptions about the fictitious mode used in this example:
758  *  vblank_start >= 3
759  *  vsync_start = vblank_start + 1
760  *  vsync_end = vblank_start + 2
761  *  vtotal = vblank_start + 3
762  *
763  *           start of vblank:
764  *           latch double buffered registers
765  *           increment frame counter (ctg+)
766  *           generate start of vblank interrupt (gen4+)
767  *           |
768  *           |          frame start:
769  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
770  *           |          may be shifted forward 1-3 extra lines via PIPECONF
771  *           |          |
772  *           |          |  start of vsync:
773  *           |          |  generate vsync interrupt
774  *           |          |  |
775  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
776  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
777  * ----va---> <-----------------vb--------------------> <--------va-------------
778  *       |          |       <----vs----->                     |
779  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
780  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
781  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
782  *       |          |                                         |
783  *       last visible pixel                                   first visible pixel
784  *                  |                                         increment frame counter (gen3/4)
785  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
786  *
787  * x  = horizontal active
788  * _  = horizontal blanking
789  * hs = horizontal sync
790  * va = vertical active
791  * vb = vertical blanking
792  * vs = vertical sync
793  * vbs = vblank_start (number)
794  *
795  * Summary:
796  * - most events happen at the start of horizontal sync
797  * - frame start happens at the start of horizontal blank, 1-4 lines
798  *   (depending on PIPECONF settings) after the start of vblank
799  * - gen3/4 pixel and frame counter are synchronized with the start
800  *   of horizontal active on the first line of vertical active
801  */
802
803 /* Called from drm generic code, passed a 'crtc', which
804  * we use as a pipe index
805  */
806 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
807 {
808         struct drm_i915_private *dev_priv = to_i915(dev);
809         i915_reg_t high_frame, low_frame;
810         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
811         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
812         unsigned long irqflags;
813
814         htotal = mode->crtc_htotal;
815         hsync_start = mode->crtc_hsync_start;
816         vbl_start = mode->crtc_vblank_start;
817         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
818                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819
820         /* Convert to pixel count */
821         vbl_start *= htotal;
822
823         /* Start of vblank event occurs at start of hsync */
824         vbl_start -= htotal - hsync_start;
825
826         high_frame = PIPEFRAME(pipe);
827         low_frame = PIPEFRAMEPIXEL(pipe);
828
829         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
830
831         /*
832          * High & low register fields aren't synchronized, so make sure
833          * we get a low value that's stable across two reads of the high
834          * register.
835          */
836         do {
837                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
838                 low   = I915_READ_FW(low_frame);
839                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
840         } while (high1 != high2);
841
842         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
843
844         high1 >>= PIPE_FRAME_HIGH_SHIFT;
845         pixel = low & PIPE_PIXEL_MASK;
846         low >>= PIPE_FRAME_LOW_SHIFT;
847
848         /*
849          * The frame counter increments at beginning of active.
850          * Cook up a vblank counter by also checking the pixel
851          * counter against vblank start.
852          */
853         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
854 }
855
856 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
857 {
858         struct drm_i915_private *dev_priv = to_i915(dev);
859
860         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
861 }
862
863 /*
864  * On certain encoders on certain platforms, pipe
865  * scanline register will not work to get the scanline,
866  * since the timings are driven from the PORT or issues
867  * with scanline register updates.
868  * This function will use Framestamp and current
869  * timestamp registers to calculate the scanline.
870  */
871 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
872 {
873         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
874         struct drm_vblank_crtc *vblank =
875                 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
876         const struct drm_display_mode *mode = &vblank->hwmode;
877         u32 vblank_start = mode->crtc_vblank_start;
878         u32 vtotal = mode->crtc_vtotal;
879         u32 htotal = mode->crtc_htotal;
880         u32 clock = mode->crtc_clock;
881         u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
882
883         /*
884          * To avoid the race condition where we might cross into the
885          * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
886          * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
887          * during the same frame.
888          */
889         do {
890                 /*
891                  * This field provides read back of the display
892                  * pipe frame time stamp. The time stamp value
893                  * is sampled at every start of vertical blank.
894                  */
895                 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
896
897                 /*
898                  * The TIMESTAMP_CTR register has the current
899                  * time stamp value.
900                  */
901                 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
902
903                 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
904         } while (scan_post_time != scan_prev_time);
905
906         scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
907                                         clock), 1000 * htotal);
908         scanline = min(scanline, vtotal - 1);
909         scanline = (scanline + vblank_start) % vtotal;
910
911         return scanline;
912 }
913
914 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
915 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917         struct drm_device *dev = crtc->base.dev;
918         struct drm_i915_private *dev_priv = to_i915(dev);
919         const struct drm_display_mode *mode;
920         struct drm_vblank_crtc *vblank;
921         enum pipe pipe = crtc->pipe;
922         int position, vtotal;
923
924         if (!crtc->active)
925                 return -1;
926
927         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
928         mode = &vblank->hwmode;
929
930         if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
931                 return __intel_get_crtc_scanline_from_timestamp(crtc);
932
933         vtotal = mode->crtc_vtotal;
934         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
935                 vtotal /= 2;
936
937         if (IS_GEN2(dev_priv))
938                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
939         else
940                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
941
942         /*
943          * On HSW, the DSL reg (0x70000) appears to return 0 if we
944          * read it just before the start of vblank.  So try it again
945          * so we don't accidentally end up spanning a vblank frame
946          * increment, causing the pipe_update_end() code to squak at us.
947          *
948          * The nature of this problem means we can't simply check the ISR
949          * bit and return the vblank start value; nor can we use the scanline
950          * debug register in the transcoder as it appears to have the same
951          * problem.  We may need to extend this to include other platforms,
952          * but so far testing only shows the problem on HSW.
953          */
954         if (HAS_DDI(dev_priv) && !position) {
955                 int i, temp;
956
957                 for (i = 0; i < 100; i++) {
958                         udelay(1);
959                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
960                         if (temp != position) {
961                                 position = temp;
962                                 break;
963                         }
964                 }
965         }
966
967         /*
968          * See update_scanline_offset() for the details on the
969          * scanline_offset adjustment.
970          */
971         return (position + crtc->scanline_offset) % vtotal;
972 }
973
974 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
975                                      bool in_vblank_irq, int *vpos, int *hpos,
976                                      ktime_t *stime, ktime_t *etime,
977                                      const struct drm_display_mode *mode)
978 {
979         struct drm_i915_private *dev_priv = to_i915(dev);
980         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
981                                                                 pipe);
982         int position;
983         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
984         unsigned long irqflags;
985
986         if (WARN_ON(!mode->crtc_clock)) {
987                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
988                                  "pipe %c\n", pipe_name(pipe));
989                 return false;
990         }
991
992         htotal = mode->crtc_htotal;
993         hsync_start = mode->crtc_hsync_start;
994         vtotal = mode->crtc_vtotal;
995         vbl_start = mode->crtc_vblank_start;
996         vbl_end = mode->crtc_vblank_end;
997
998         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
999                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
1000                 vbl_end /= 2;
1001                 vtotal /= 2;
1002         }
1003
1004         /*
1005          * Lock uncore.lock, as we will do multiple timing critical raw
1006          * register reads, potentially with preemption disabled, so the
1007          * following code must not block on uncore.lock.
1008          */
1009         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1010
1011         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
1012
1013         /* Get optional system timestamp before query. */
1014         if (stime)
1015                 *stime = ktime_get();
1016
1017         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1018                 /* No obvious pixelcount register. Only query vertical
1019                  * scanout position from Display scan line register.
1020                  */
1021                 position = __intel_get_crtc_scanline(intel_crtc);
1022         } else {
1023                 /* Have access to pixelcount since start of frame.
1024                  * We can split this into vertical and horizontal
1025                  * scanout position.
1026                  */
1027                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1028
1029                 /* convert to pixel counts */
1030                 vbl_start *= htotal;
1031                 vbl_end *= htotal;
1032                 vtotal *= htotal;
1033
1034                 /*
1035                  * In interlaced modes, the pixel counter counts all pixels,
1036                  * so one field will have htotal more pixels. In order to avoid
1037                  * the reported position from jumping backwards when the pixel
1038                  * counter is beyond the length of the shorter field, just
1039                  * clamp the position the length of the shorter field. This
1040                  * matches how the scanline counter based position works since
1041                  * the scanline counter doesn't count the two half lines.
1042                  */
1043                 if (position >= vtotal)
1044                         position = vtotal - 1;
1045
1046                 /*
1047                  * Start of vblank interrupt is triggered at start of hsync,
1048                  * just prior to the first active line of vblank. However we
1049                  * consider lines to start at the leading edge of horizontal
1050                  * active. So, should we get here before we've crossed into
1051                  * the horizontal active of the first line in vblank, we would
1052                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1053                  * always add htotal-hsync_start to the current pixel position.
1054                  */
1055                 position = (position + htotal - hsync_start) % vtotal;
1056         }
1057
1058         /* Get optional system timestamp after query. */
1059         if (etime)
1060                 *etime = ktime_get();
1061
1062         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1063
1064         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1065
1066         /*
1067          * While in vblank, position will be negative
1068          * counting up towards 0 at vbl_end. And outside
1069          * vblank, position will be positive counting
1070          * up since vbl_end.
1071          */
1072         if (position >= vbl_start)
1073                 position -= vbl_end;
1074         else
1075                 position += vtotal - vbl_end;
1076
1077         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1078                 *vpos = position;
1079                 *hpos = 0;
1080         } else {
1081                 *vpos = position / htotal;
1082                 *hpos = position - (*vpos * htotal);
1083         }
1084
1085         return true;
1086 }
1087
1088 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1089 {
1090         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1091         unsigned long irqflags;
1092         int position;
1093
1094         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1095         position = __intel_get_crtc_scanline(crtc);
1096         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1097
1098         return position;
1099 }
1100
1101 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1102 {
1103         u32 busy_up, busy_down, max_avg, min_avg;
1104         u8 new_delay;
1105
1106         spin_lock(&mchdev_lock);
1107
1108         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1109
1110         new_delay = dev_priv->ips.cur_delay;
1111
1112         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1113         busy_up = I915_READ(RCPREVBSYTUPAVG);
1114         busy_down = I915_READ(RCPREVBSYTDNAVG);
1115         max_avg = I915_READ(RCBMAXAVG);
1116         min_avg = I915_READ(RCBMINAVG);
1117
1118         /* Handle RCS change request from hw */
1119         if (busy_up > max_avg) {
1120                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1121                         new_delay = dev_priv->ips.cur_delay - 1;
1122                 if (new_delay < dev_priv->ips.max_delay)
1123                         new_delay = dev_priv->ips.max_delay;
1124         } else if (busy_down < min_avg) {
1125                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1126                         new_delay = dev_priv->ips.cur_delay + 1;
1127                 if (new_delay > dev_priv->ips.min_delay)
1128                         new_delay = dev_priv->ips.min_delay;
1129         }
1130
1131         if (ironlake_set_drps(dev_priv, new_delay))
1132                 dev_priv->ips.cur_delay = new_delay;
1133
1134         spin_unlock(&mchdev_lock);
1135
1136         return;
1137 }
1138
1139 static void notify_ring(struct intel_engine_cs *engine)
1140 {
1141         struct i915_request *rq = NULL;
1142         struct intel_wait *wait;
1143
1144         if (!engine->breadcrumbs.irq_armed)
1145                 return;
1146
1147         atomic_inc(&engine->irq_count);
1148         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1149
1150         spin_lock(&engine->breadcrumbs.irq_lock);
1151         wait = engine->breadcrumbs.irq_wait;
1152         if (wait) {
1153                 bool wakeup = engine->irq_seqno_barrier;
1154
1155                 /* We use a callback from the dma-fence to submit
1156                  * requests after waiting on our own requests. To
1157                  * ensure minimum delay in queuing the next request to
1158                  * hardware, signal the fence now rather than wait for
1159                  * the signaler to be woken up. We still wake up the
1160                  * waiter in order to handle the irq-seqno coherency
1161                  * issues (we may receive the interrupt before the
1162                  * seqno is written, see __i915_request_irq_complete())
1163                  * and to handle coalescing of multiple seqno updates
1164                  * and many waiters.
1165                  */
1166                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1167                                       wait->seqno)) {
1168                         struct i915_request *waiter = wait->request;
1169
1170                         wakeup = true;
1171                         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1172                                       &waiter->fence.flags) &&
1173                             intel_wait_check_request(wait, waiter))
1174                                 rq = i915_request_get(waiter);
1175                 }
1176
1177                 if (wakeup)
1178                         wake_up_process(wait->tsk);
1179         } else {
1180                 if (engine->breadcrumbs.irq_armed)
1181                         __intel_engine_disarm_breadcrumbs(engine);
1182         }
1183         spin_unlock(&engine->breadcrumbs.irq_lock);
1184
1185         if (rq) {
1186                 dma_fence_signal(&rq->fence);
1187                 GEM_BUG_ON(!i915_request_completed(rq));
1188                 i915_request_put(rq);
1189         }
1190
1191         trace_intel_engine_notify(engine, wait);
1192 }
1193
1194 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1195                         struct intel_rps_ei *ei)
1196 {
1197         ei->ktime = ktime_get_raw();
1198         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1199         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1200 }
1201
1202 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1203 {
1204         memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1205 }
1206
1207 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1208 {
1209         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1210         const struct intel_rps_ei *prev = &rps->ei;
1211         struct intel_rps_ei now;
1212         u32 events = 0;
1213
1214         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1215                 return 0;
1216
1217         vlv_c0_read(dev_priv, &now);
1218
1219         if (prev->ktime) {
1220                 u64 time, c0;
1221                 u32 render, media;
1222
1223                 time = ktime_us_delta(now.ktime, prev->ktime);
1224
1225                 time *= dev_priv->czclk_freq;
1226
1227                 /* Workload can be split between render + media,
1228                  * e.g. SwapBuffers being blitted in X after being rendered in
1229                  * mesa. To account for this we need to combine both engines
1230                  * into our activity counter.
1231                  */
1232                 render = now.render_c0 - prev->render_c0;
1233                 media = now.media_c0 - prev->media_c0;
1234                 c0 = max(render, media);
1235                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1236
1237                 if (c0 > time * rps->up_threshold)
1238                         events = GEN6_PM_RP_UP_THRESHOLD;
1239                 else if (c0 < time * rps->down_threshold)
1240                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1241         }
1242
1243         rps->ei = now;
1244         return events;
1245 }
1246
1247 static void gen6_pm_rps_work(struct work_struct *work)
1248 {
1249         struct drm_i915_private *dev_priv =
1250                 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1251         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1252         bool client_boost = false;
1253         int new_delay, adj, min, max;
1254         u32 pm_iir = 0;
1255
1256         spin_lock_irq(&dev_priv->irq_lock);
1257         if (rps->interrupts_enabled) {
1258                 pm_iir = fetch_and_zero(&rps->pm_iir);
1259                 client_boost = atomic_read(&rps->num_waiters);
1260         }
1261         spin_unlock_irq(&dev_priv->irq_lock);
1262
1263         /* Make sure we didn't queue anything we're not going to process. */
1264         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1265         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1266                 goto out;
1267
1268         mutex_lock(&dev_priv->pcu_lock);
1269
1270         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1271
1272         adj = rps->last_adj;
1273         new_delay = rps->cur_freq;
1274         min = rps->min_freq_softlimit;
1275         max = rps->max_freq_softlimit;
1276         if (client_boost)
1277                 max = rps->max_freq;
1278         if (client_boost && new_delay < rps->boost_freq) {
1279                 new_delay = rps->boost_freq;
1280                 adj = 0;
1281         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1282                 if (adj > 0)
1283                         adj *= 2;
1284                 else /* CHV needs even encode values */
1285                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1286
1287                 if (new_delay >= rps->max_freq_softlimit)
1288                         adj = 0;
1289         } else if (client_boost) {
1290                 adj = 0;
1291         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1292                 if (rps->cur_freq > rps->efficient_freq)
1293                         new_delay = rps->efficient_freq;
1294                 else if (rps->cur_freq > rps->min_freq_softlimit)
1295                         new_delay = rps->min_freq_softlimit;
1296                 adj = 0;
1297         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1298                 if (adj < 0)
1299                         adj *= 2;
1300                 else /* CHV needs even encode values */
1301                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1302
1303                 if (new_delay <= rps->min_freq_softlimit)
1304                         adj = 0;
1305         } else { /* unknown event */
1306                 adj = 0;
1307         }
1308
1309         rps->last_adj = adj;
1310
1311         /* sysfs frequency interfaces may have snuck in while servicing the
1312          * interrupt
1313          */
1314         new_delay += adj;
1315         new_delay = clamp_t(int, new_delay, min, max);
1316
1317         if (intel_set_rps(dev_priv, new_delay)) {
1318                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1319                 rps->last_adj = 0;
1320         }
1321
1322         mutex_unlock(&dev_priv->pcu_lock);
1323
1324 out:
1325         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1326         spin_lock_irq(&dev_priv->irq_lock);
1327         if (rps->interrupts_enabled)
1328                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1329         spin_unlock_irq(&dev_priv->irq_lock);
1330 }
1331
1332
1333 /**
1334  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1335  * occurred.
1336  * @work: workqueue struct
1337  *
1338  * Doesn't actually do anything except notify userspace. As a consequence of
1339  * this event, userspace should try to remap the bad rows since statistically
1340  * it is likely the same row is more likely to go bad again.
1341  */
1342 static void ivybridge_parity_work(struct work_struct *work)
1343 {
1344         struct drm_i915_private *dev_priv =
1345                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1346         u32 error_status, row, bank, subbank;
1347         char *parity_event[6];
1348         uint32_t misccpctl;
1349         uint8_t slice = 0;
1350
1351         /* We must turn off DOP level clock gating to access the L3 registers.
1352          * In order to prevent a get/put style interface, acquire struct mutex
1353          * any time we access those registers.
1354          */
1355         mutex_lock(&dev_priv->drm.struct_mutex);
1356
1357         /* If we've screwed up tracking, just let the interrupt fire again */
1358         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1359                 goto out;
1360
1361         misccpctl = I915_READ(GEN7_MISCCPCTL);
1362         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1363         POSTING_READ(GEN7_MISCCPCTL);
1364
1365         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1366                 i915_reg_t reg;
1367
1368                 slice--;
1369                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1370                         break;
1371
1372                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1373
1374                 reg = GEN7_L3CDERRST1(slice);
1375
1376                 error_status = I915_READ(reg);
1377                 row = GEN7_PARITY_ERROR_ROW(error_status);
1378                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1379                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1380
1381                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1382                 POSTING_READ(reg);
1383
1384                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1385                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1386                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1387                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1388                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1389                 parity_event[5] = NULL;
1390
1391                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1392                                    KOBJ_CHANGE, parity_event);
1393
1394                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1395                           slice, row, bank, subbank);
1396
1397                 kfree(parity_event[4]);
1398                 kfree(parity_event[3]);
1399                 kfree(parity_event[2]);
1400                 kfree(parity_event[1]);
1401         }
1402
1403         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1404
1405 out:
1406         WARN_ON(dev_priv->l3_parity.which_slice);
1407         spin_lock_irq(&dev_priv->irq_lock);
1408         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1409         spin_unlock_irq(&dev_priv->irq_lock);
1410
1411         mutex_unlock(&dev_priv->drm.struct_mutex);
1412 }
1413
1414 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1415                                                u32 iir)
1416 {
1417         if (!HAS_L3_DPF(dev_priv))
1418                 return;
1419
1420         spin_lock(&dev_priv->irq_lock);
1421         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1422         spin_unlock(&dev_priv->irq_lock);
1423
1424         iir &= GT_PARITY_ERROR(dev_priv);
1425         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1426                 dev_priv->l3_parity.which_slice |= 1 << 1;
1427
1428         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1429                 dev_priv->l3_parity.which_slice |= 1 << 0;
1430
1431         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1432 }
1433
1434 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1435                                u32 gt_iir)
1436 {
1437         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1438                 notify_ring(dev_priv->engine[RCS]);
1439         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1440                 notify_ring(dev_priv->engine[VCS]);
1441 }
1442
1443 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1444                                u32 gt_iir)
1445 {
1446         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1447                 notify_ring(dev_priv->engine[RCS]);
1448         if (gt_iir & GT_BSD_USER_INTERRUPT)
1449                 notify_ring(dev_priv->engine[VCS]);
1450         if (gt_iir & GT_BLT_USER_INTERRUPT)
1451                 notify_ring(dev_priv->engine[BCS]);
1452
1453         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1454                       GT_BSD_CS_ERROR_INTERRUPT |
1455                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1456                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1457
1458         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1459                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1460 }
1461
1462 static void
1463 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir)
1464 {
1465         struct intel_engine_execlists * const execlists = &engine->execlists;
1466         bool tasklet = false;
1467
1468         if (iir & GT_CONTEXT_SWITCH_INTERRUPT) {
1469                 if (READ_ONCE(engine->execlists.active))
1470                         tasklet = !test_and_set_bit(ENGINE_IRQ_EXECLIST,
1471                                                     &engine->irq_posted);
1472         }
1473
1474         if (iir & GT_RENDER_USER_INTERRUPT) {
1475                 notify_ring(engine);
1476                 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1477         }
1478
1479         if (tasklet)
1480                 tasklet_hi_schedule(&execlists->tasklet);
1481 }
1482
1483 static void gen8_gt_irq_ack(struct drm_i915_private *i915,
1484                             u32 master_ctl, u32 gt_iir[4])
1485 {
1486         void __iomem * const regs = i915->regs;
1487
1488 #define GEN8_GT_IRQS (GEN8_GT_RCS_IRQ | \
1489                       GEN8_GT_BCS_IRQ | \
1490                       GEN8_GT_VCS1_IRQ | \
1491                       GEN8_GT_VCS2_IRQ | \
1492                       GEN8_GT_VECS_IRQ | \
1493                       GEN8_GT_PM_IRQ | \
1494                       GEN8_GT_GUC_IRQ)
1495
1496         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1497                 gt_iir[0] = raw_reg_read(regs, GEN8_GT_IIR(0));
1498                 if (likely(gt_iir[0]))
1499                         raw_reg_write(regs, GEN8_GT_IIR(0), gt_iir[0]);
1500         }
1501
1502         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1503                 gt_iir[1] = raw_reg_read(regs, GEN8_GT_IIR(1));
1504                 if (likely(gt_iir[1]))
1505                         raw_reg_write(regs, GEN8_GT_IIR(1), gt_iir[1]);
1506         }
1507
1508         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1509                 gt_iir[2] = raw_reg_read(regs, GEN8_GT_IIR(2));
1510                 if (likely(gt_iir[2] & (i915->pm_rps_events |
1511                                         i915->pm_guc_events)))
1512                         raw_reg_write(regs, GEN8_GT_IIR(2),
1513                                       gt_iir[2] & (i915->pm_rps_events |
1514                                                    i915->pm_guc_events));
1515         }
1516
1517         if (master_ctl & GEN8_GT_VECS_IRQ) {
1518                 gt_iir[3] = raw_reg_read(regs, GEN8_GT_IIR(3));
1519                 if (likely(gt_iir[3]))
1520                         raw_reg_write(regs, GEN8_GT_IIR(3), gt_iir[3]);
1521         }
1522 }
1523
1524 static void gen8_gt_irq_handler(struct drm_i915_private *i915,
1525                                 u32 master_ctl, u32 gt_iir[4])
1526 {
1527         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1528                 gen8_cs_irq_handler(i915->engine[RCS],
1529                                     gt_iir[0] >> GEN8_RCS_IRQ_SHIFT);
1530                 gen8_cs_irq_handler(i915->engine[BCS],
1531                                     gt_iir[0] >> GEN8_BCS_IRQ_SHIFT);
1532         }
1533
1534         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1535                 gen8_cs_irq_handler(i915->engine[VCS],
1536                                     gt_iir[1] >> GEN8_VCS1_IRQ_SHIFT);
1537                 gen8_cs_irq_handler(i915->engine[VCS2],
1538                                     gt_iir[1] >> GEN8_VCS2_IRQ_SHIFT);
1539         }
1540
1541         if (master_ctl & GEN8_GT_VECS_IRQ) {
1542                 gen8_cs_irq_handler(i915->engine[VECS],
1543                                     gt_iir[3] >> GEN8_VECS_IRQ_SHIFT);
1544         }
1545
1546         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1547                 gen6_rps_irq_handler(i915, gt_iir[2]);
1548                 gen9_guc_irq_handler(i915, gt_iir[2]);
1549         }
1550 }
1551
1552 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1553 {
1554         switch (port) {
1555         case PORT_A:
1556                 return val & PORTA_HOTPLUG_LONG_DETECT;
1557         case PORT_B:
1558                 return val & PORTB_HOTPLUG_LONG_DETECT;
1559         case PORT_C:
1560                 return val & PORTC_HOTPLUG_LONG_DETECT;
1561         default:
1562                 return false;
1563         }
1564 }
1565
1566 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1567 {
1568         switch (port) {
1569         case PORT_E:
1570                 return val & PORTE_HOTPLUG_LONG_DETECT;
1571         default:
1572                 return false;
1573         }
1574 }
1575
1576 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1577 {
1578         switch (port) {
1579         case PORT_A:
1580                 return val & PORTA_HOTPLUG_LONG_DETECT;
1581         case PORT_B:
1582                 return val & PORTB_HOTPLUG_LONG_DETECT;
1583         case PORT_C:
1584                 return val & PORTC_HOTPLUG_LONG_DETECT;
1585         case PORT_D:
1586                 return val & PORTD_HOTPLUG_LONG_DETECT;
1587         default:
1588                 return false;
1589         }
1590 }
1591
1592 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1593 {
1594         switch (port) {
1595         case PORT_A:
1596                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1597         default:
1598                 return false;
1599         }
1600 }
1601
1602 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1603 {
1604         switch (port) {
1605         case PORT_B:
1606                 return val & PORTB_HOTPLUG_LONG_DETECT;
1607         case PORT_C:
1608                 return val & PORTC_HOTPLUG_LONG_DETECT;
1609         case PORT_D:
1610                 return val & PORTD_HOTPLUG_LONG_DETECT;
1611         default:
1612                 return false;
1613         }
1614 }
1615
1616 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1617 {
1618         switch (port) {
1619         case PORT_B:
1620                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1621         case PORT_C:
1622                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1623         case PORT_D:
1624                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1625         default:
1626                 return false;
1627         }
1628 }
1629
1630 /*
1631  * Get a bit mask of pins that have triggered, and which ones may be long.
1632  * This can be called multiple times with the same masks to accumulate
1633  * hotplug detection results from several registers.
1634  *
1635  * Note that the caller is expected to zero out the masks initially.
1636  */
1637 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1638                                u32 *pin_mask, u32 *long_mask,
1639                                u32 hotplug_trigger, u32 dig_hotplug_reg,
1640                                const u32 hpd[HPD_NUM_PINS],
1641                                bool long_pulse_detect(enum port port, u32 val))
1642 {
1643         enum port port;
1644         int i;
1645
1646         for_each_hpd_pin(i) {
1647                 if ((hpd[i] & hotplug_trigger) == 0)
1648                         continue;
1649
1650                 *pin_mask |= BIT(i);
1651
1652                 port = intel_hpd_pin_to_port(dev_priv, i);
1653                 if (port == PORT_NONE)
1654                         continue;
1655
1656                 if (long_pulse_detect(port, dig_hotplug_reg))
1657                         *long_mask |= BIT(i);
1658         }
1659
1660         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1661                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1662
1663 }
1664
1665 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1666 {
1667         wake_up_all(&dev_priv->gmbus_wait_queue);
1668 }
1669
1670 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1671 {
1672         wake_up_all(&dev_priv->gmbus_wait_queue);
1673 }
1674
1675 #if defined(CONFIG_DEBUG_FS)
1676 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1677                                          enum pipe pipe,
1678                                          uint32_t crc0, uint32_t crc1,
1679                                          uint32_t crc2, uint32_t crc3,
1680                                          uint32_t crc4)
1681 {
1682         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1683         struct intel_pipe_crc_entry *entry;
1684         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1685         struct drm_driver *driver = dev_priv->drm.driver;
1686         uint32_t crcs[5];
1687         int head, tail;
1688
1689         spin_lock(&pipe_crc->lock);
1690         if (pipe_crc->source && !crtc->base.crc.opened) {
1691                 if (!pipe_crc->entries) {
1692                         spin_unlock(&pipe_crc->lock);
1693                         DRM_DEBUG_KMS("spurious interrupt\n");
1694                         return;
1695                 }
1696
1697                 head = pipe_crc->head;
1698                 tail = pipe_crc->tail;
1699
1700                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1701                         spin_unlock(&pipe_crc->lock);
1702                         DRM_ERROR("CRC buffer overflowing\n");
1703                         return;
1704                 }
1705
1706                 entry = &pipe_crc->entries[head];
1707
1708                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1709                 entry->crc[0] = crc0;
1710                 entry->crc[1] = crc1;
1711                 entry->crc[2] = crc2;
1712                 entry->crc[3] = crc3;
1713                 entry->crc[4] = crc4;
1714
1715                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1716                 pipe_crc->head = head;
1717
1718                 spin_unlock(&pipe_crc->lock);
1719
1720                 wake_up_interruptible(&pipe_crc->wq);
1721         } else {
1722                 /*
1723                  * For some not yet identified reason, the first CRC is
1724                  * bonkers. So let's just wait for the next vblank and read
1725                  * out the buggy result.
1726                  *
1727                  * On GEN8+ sometimes the second CRC is bonkers as well, so
1728                  * don't trust that one either.
1729                  */
1730                 if (pipe_crc->skipped <= 0 ||
1731                     (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1732                         pipe_crc->skipped++;
1733                         spin_unlock(&pipe_crc->lock);
1734                         return;
1735                 }
1736                 spin_unlock(&pipe_crc->lock);
1737                 crcs[0] = crc0;
1738                 crcs[1] = crc1;
1739                 crcs[2] = crc2;
1740                 crcs[3] = crc3;
1741                 crcs[4] = crc4;
1742                 drm_crtc_add_crc_entry(&crtc->base, true,
1743                                        drm_crtc_accurate_vblank_count(&crtc->base),
1744                                        crcs);
1745         }
1746 }
1747 #else
1748 static inline void
1749 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1750                              enum pipe pipe,
1751                              uint32_t crc0, uint32_t crc1,
1752                              uint32_t crc2, uint32_t crc3,
1753                              uint32_t crc4) {}
1754 #endif
1755
1756
1757 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1758                                      enum pipe pipe)
1759 {
1760         display_pipe_crc_irq_handler(dev_priv, pipe,
1761                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1762                                      0, 0, 0, 0);
1763 }
1764
1765 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1766                                      enum pipe pipe)
1767 {
1768         display_pipe_crc_irq_handler(dev_priv, pipe,
1769                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1770                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1771                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1772                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1773                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1774 }
1775
1776 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1777                                       enum pipe pipe)
1778 {
1779         uint32_t res1, res2;
1780
1781         if (INTEL_GEN(dev_priv) >= 3)
1782                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1783         else
1784                 res1 = 0;
1785
1786         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1787                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1788         else
1789                 res2 = 0;
1790
1791         display_pipe_crc_irq_handler(dev_priv, pipe,
1792                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1793                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1794                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1795                                      res1, res2);
1796 }
1797
1798 /* The RPS events need forcewake, so we add them to a work queue and mask their
1799  * IMR bits until the work is done. Other interrupts can be processed without
1800  * the work queue. */
1801 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1802 {
1803         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1804
1805         if (pm_iir & dev_priv->pm_rps_events) {
1806                 spin_lock(&dev_priv->irq_lock);
1807                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1808                 if (rps->interrupts_enabled) {
1809                         rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1810                         schedule_work(&rps->work);
1811                 }
1812                 spin_unlock(&dev_priv->irq_lock);
1813         }
1814
1815         if (INTEL_GEN(dev_priv) >= 8)
1816                 return;
1817
1818         if (HAS_VEBOX(dev_priv)) {
1819                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1820                         notify_ring(dev_priv->engine[VECS]);
1821
1822                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1823                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1824         }
1825 }
1826
1827 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1828 {
1829         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT)
1830                 intel_guc_to_host_event_handler(&dev_priv->guc);
1831 }
1832
1833 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1834 {
1835         enum pipe pipe;
1836
1837         for_each_pipe(dev_priv, pipe) {
1838                 I915_WRITE(PIPESTAT(pipe),
1839                            PIPESTAT_INT_STATUS_MASK |
1840                            PIPE_FIFO_UNDERRUN_STATUS);
1841
1842                 dev_priv->pipestat_irq_mask[pipe] = 0;
1843         }
1844 }
1845
1846 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1847                                   u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1848 {
1849         int pipe;
1850
1851         spin_lock(&dev_priv->irq_lock);
1852
1853         if (!dev_priv->display_irqs_enabled) {
1854                 spin_unlock(&dev_priv->irq_lock);
1855                 return;
1856         }
1857
1858         for_each_pipe(dev_priv, pipe) {
1859                 i915_reg_t reg;
1860                 u32 status_mask, enable_mask, iir_bit = 0;
1861
1862                 /*
1863                  * PIPESTAT bits get signalled even when the interrupt is
1864                  * disabled with the mask bits, and some of the status bits do
1865                  * not generate interrupts at all (like the underrun bit). Hence
1866                  * we need to be careful that we only handle what we want to
1867                  * handle.
1868                  */
1869
1870                 /* fifo underruns are filterered in the underrun handler. */
1871                 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1872
1873                 switch (pipe) {
1874                 case PIPE_A:
1875                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1876                         break;
1877                 case PIPE_B:
1878                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1879                         break;
1880                 case PIPE_C:
1881                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1882                         break;
1883                 }
1884                 if (iir & iir_bit)
1885                         status_mask |= dev_priv->pipestat_irq_mask[pipe];
1886
1887                 if (!status_mask)
1888                         continue;
1889
1890                 reg = PIPESTAT(pipe);
1891                 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1892                 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1893
1894                 /*
1895                  * Clear the PIPE*STAT regs before the IIR
1896                  *
1897                  * Toggle the enable bits to make sure we get an
1898                  * edge in the ISR pipe event bit if we don't clear
1899                  * all the enabled status bits. Otherwise the edge
1900                  * triggered IIR on i965/g4x wouldn't notice that
1901                  * an interrupt is still pending.
1902                  */
1903                 if (pipe_stats[pipe]) {
1904                         I915_WRITE(reg, pipe_stats[pipe]);
1905                         I915_WRITE(reg, enable_mask);
1906                 }
1907         }
1908         spin_unlock(&dev_priv->irq_lock);
1909 }
1910
1911 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1912                                       u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1913 {
1914         enum pipe pipe;
1915
1916         for_each_pipe(dev_priv, pipe) {
1917                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1918                         drm_handle_vblank(&dev_priv->drm, pipe);
1919
1920                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1921                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1922
1923                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1924                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1925         }
1926 }
1927
1928 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1929                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1930 {
1931         bool blc_event = false;
1932         enum pipe pipe;
1933
1934         for_each_pipe(dev_priv, pipe) {
1935                 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1936                         drm_handle_vblank(&dev_priv->drm, pipe);
1937
1938                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1939                         blc_event = true;
1940
1941                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1942                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1943
1944                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1945                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1946         }
1947
1948         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1949                 intel_opregion_asle_intr(dev_priv);
1950 }
1951
1952 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1953                                       u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1954 {
1955         bool blc_event = false;
1956         enum pipe pipe;
1957
1958         for_each_pipe(dev_priv, pipe) {
1959                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1960                         drm_handle_vblank(&dev_priv->drm, pipe);
1961
1962                 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1963                         blc_event = true;
1964
1965                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1966                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1967
1968                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1969                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1970         }
1971
1972         if (blc_event || (iir & I915_ASLE_INTERRUPT))
1973                 intel_opregion_asle_intr(dev_priv);
1974
1975         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1976                 gmbus_irq_handler(dev_priv);
1977 }
1978
1979 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1980                                             u32 pipe_stats[I915_MAX_PIPES])
1981 {
1982         enum pipe pipe;
1983
1984         for_each_pipe(dev_priv, pipe) {
1985                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1986                         drm_handle_vblank(&dev_priv->drm, pipe);
1987
1988                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1989                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1990
1991                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1992                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1993         }
1994
1995         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1996                 gmbus_irq_handler(dev_priv);
1997 }
1998
1999 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
2000 {
2001         u32 hotplug_status = 0, hotplug_status_mask;
2002         int i;
2003
2004         if (IS_G4X(dev_priv) ||
2005             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2006                 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
2007                         DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
2008         else
2009                 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
2010
2011         /*
2012          * We absolutely have to clear all the pending interrupt
2013          * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
2014          * interrupt bit won't have an edge, and the i965/g4x
2015          * edge triggered IIR will not notice that an interrupt
2016          * is still pending. We can't use PORT_HOTPLUG_EN to
2017          * guarantee the edge as the act of toggling the enable
2018          * bits can itself generate a new hotplug interrupt :(
2019          */
2020         for (i = 0; i < 10; i++) {
2021                 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
2022
2023                 if (tmp == 0)
2024                         return hotplug_status;
2025
2026                 hotplug_status |= tmp;
2027                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2028         }
2029
2030         WARN_ONCE(1,
2031                   "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
2032                   I915_READ(PORT_HOTPLUG_STAT));
2033
2034         return hotplug_status;
2035 }
2036
2037 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2038                                  u32 hotplug_status)
2039 {
2040         u32 pin_mask = 0, long_mask = 0;
2041
2042         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
2043             IS_CHERRYVIEW(dev_priv)) {
2044                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2045
2046                 if (hotplug_trigger) {
2047                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2048                                            hotplug_trigger, hotplug_trigger,
2049                                            hpd_status_g4x,
2050                                            i9xx_port_hotplug_long_detect);
2051
2052                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2053                 }
2054
2055                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2056                         dp_aux_irq_handler(dev_priv);
2057         } else {
2058                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2059
2060                 if (hotplug_trigger) {
2061                         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2062                                            hotplug_trigger, hotplug_trigger,
2063                                            hpd_status_i915,
2064                                            i9xx_port_hotplug_long_detect);
2065                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2066                 }
2067         }
2068 }
2069
2070 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2071 {
2072         struct drm_device *dev = arg;
2073         struct drm_i915_private *dev_priv = to_i915(dev);
2074         irqreturn_t ret = IRQ_NONE;
2075
2076         if (!intel_irqs_enabled(dev_priv))
2077                 return IRQ_NONE;
2078
2079         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2080         disable_rpm_wakeref_asserts(dev_priv);
2081
2082         do {
2083                 u32 iir, gt_iir, pm_iir;
2084                 u32 pipe_stats[I915_MAX_PIPES] = {};
2085                 u32 hotplug_status = 0;
2086                 u32 ier = 0;
2087
2088                 gt_iir = I915_READ(GTIIR);
2089                 pm_iir = I915_READ(GEN6_PMIIR);
2090                 iir = I915_READ(VLV_IIR);
2091
2092                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2093                         break;
2094
2095                 ret = IRQ_HANDLED;
2096
2097                 /*
2098                  * Theory on interrupt generation, based on empirical evidence:
2099                  *
2100                  * x = ((VLV_IIR & VLV_IER) ||
2101                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2102                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2103                  *
2104                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2105                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2106                  * guarantee the CPU interrupt will be raised again even if we
2107                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2108                  * bits this time around.
2109                  */
2110                 I915_WRITE(VLV_MASTER_IER, 0);
2111                 ier = I915_READ(VLV_IER);
2112                 I915_WRITE(VLV_IER, 0);
2113
2114                 if (gt_iir)
2115                         I915_WRITE(GTIIR, gt_iir);
2116                 if (pm_iir)
2117                         I915_WRITE(GEN6_PMIIR, pm_iir);
2118
2119                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2120                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2121
2122                 /* Call regardless, as some status bits might not be
2123                  * signalled in iir */
2124                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2125
2126                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2127                            I915_LPE_PIPE_B_INTERRUPT))
2128                         intel_lpe_audio_irq_handler(dev_priv);
2129
2130                 /*
2131                  * VLV_IIR is single buffered, and reflects the level
2132                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2133                  */
2134                 if (iir)
2135                         I915_WRITE(VLV_IIR, iir);
2136
2137                 I915_WRITE(VLV_IER, ier);
2138                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2139                 POSTING_READ(VLV_MASTER_IER);
2140
2141                 if (gt_iir)
2142                         snb_gt_irq_handler(dev_priv, gt_iir);
2143                 if (pm_iir)
2144                         gen6_rps_irq_handler(dev_priv, pm_iir);
2145
2146                 if (hotplug_status)
2147                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2148
2149                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2150         } while (0);
2151
2152         enable_rpm_wakeref_asserts(dev_priv);
2153
2154         return ret;
2155 }
2156
2157 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2158 {
2159         struct drm_device *dev = arg;
2160         struct drm_i915_private *dev_priv = to_i915(dev);
2161         irqreturn_t ret = IRQ_NONE;
2162
2163         if (!intel_irqs_enabled(dev_priv))
2164                 return IRQ_NONE;
2165
2166         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2167         disable_rpm_wakeref_asserts(dev_priv);
2168
2169         do {
2170                 u32 master_ctl, iir;
2171                 u32 pipe_stats[I915_MAX_PIPES] = {};
2172                 u32 hotplug_status = 0;
2173                 u32 gt_iir[4];
2174                 u32 ier = 0;
2175
2176                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2177                 iir = I915_READ(VLV_IIR);
2178
2179                 if (master_ctl == 0 && iir == 0)
2180                         break;
2181
2182                 ret = IRQ_HANDLED;
2183
2184                 /*
2185                  * Theory on interrupt generation, based on empirical evidence:
2186                  *
2187                  * x = ((VLV_IIR & VLV_IER) ||
2188                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2189                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2190                  *
2191                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2192                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2193                  * guarantee the CPU interrupt will be raised again even if we
2194                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2195                  * bits this time around.
2196                  */
2197                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2198                 ier = I915_READ(VLV_IER);
2199                 I915_WRITE(VLV_IER, 0);
2200
2201                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2202
2203                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2204                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2205
2206                 /* Call regardless, as some status bits might not be
2207                  * signalled in iir */
2208                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2209
2210                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2211                            I915_LPE_PIPE_B_INTERRUPT |
2212                            I915_LPE_PIPE_C_INTERRUPT))
2213                         intel_lpe_audio_irq_handler(dev_priv);
2214
2215                 /*
2216                  * VLV_IIR is single buffered, and reflects the level
2217                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2218                  */
2219                 if (iir)
2220                         I915_WRITE(VLV_IIR, iir);
2221
2222                 I915_WRITE(VLV_IER, ier);
2223                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2224                 POSTING_READ(GEN8_MASTER_IRQ);
2225
2226                 gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2227
2228                 if (hotplug_status)
2229                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2230
2231                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2232         } while (0);
2233
2234         enable_rpm_wakeref_asserts(dev_priv);
2235
2236         return ret;
2237 }
2238
2239 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2240                                 u32 hotplug_trigger,
2241                                 const u32 hpd[HPD_NUM_PINS])
2242 {
2243         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2244
2245         /*
2246          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2247          * unless we touch the hotplug register, even if hotplug_trigger is
2248          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2249          * errors.
2250          */
2251         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2252         if (!hotplug_trigger) {
2253                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2254                         PORTD_HOTPLUG_STATUS_MASK |
2255                         PORTC_HOTPLUG_STATUS_MASK |
2256                         PORTB_HOTPLUG_STATUS_MASK;
2257                 dig_hotplug_reg &= ~mask;
2258         }
2259
2260         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2261         if (!hotplug_trigger)
2262                 return;
2263
2264         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2265                            dig_hotplug_reg, hpd,
2266                            pch_port_hotplug_long_detect);
2267
2268         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2269 }
2270
2271 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2272 {
2273         int pipe;
2274         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2275
2276         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2277
2278         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2279                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2280                                SDE_AUDIO_POWER_SHIFT);
2281                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2282                                  port_name(port));
2283         }
2284
2285         if (pch_iir & SDE_AUX_MASK)
2286                 dp_aux_irq_handler(dev_priv);
2287
2288         if (pch_iir & SDE_GMBUS)
2289                 gmbus_irq_handler(dev_priv);
2290
2291         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2292                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2293
2294         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2295                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2296
2297         if (pch_iir & SDE_POISON)
2298                 DRM_ERROR("PCH poison interrupt\n");
2299
2300         if (pch_iir & SDE_FDI_MASK)
2301                 for_each_pipe(dev_priv, pipe)
2302                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2303                                          pipe_name(pipe),
2304                                          I915_READ(FDI_RX_IIR(pipe)));
2305
2306         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2307                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2308
2309         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2310                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2311
2312         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2313                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2314
2315         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2316                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2317 }
2318
2319 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2320 {
2321         u32 err_int = I915_READ(GEN7_ERR_INT);
2322         enum pipe pipe;
2323
2324         if (err_int & ERR_INT_POISON)
2325                 DRM_ERROR("Poison interrupt\n");
2326
2327         for_each_pipe(dev_priv, pipe) {
2328                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2329                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2330
2331                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2332                         if (IS_IVYBRIDGE(dev_priv))
2333                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2334                         else
2335                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2336                 }
2337         }
2338
2339         I915_WRITE(GEN7_ERR_INT, err_int);
2340 }
2341
2342 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2343 {
2344         u32 serr_int = I915_READ(SERR_INT);
2345         enum pipe pipe;
2346
2347         if (serr_int & SERR_INT_POISON)
2348                 DRM_ERROR("PCH poison interrupt\n");
2349
2350         for_each_pipe(dev_priv, pipe)
2351                 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2352                         intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2353
2354         I915_WRITE(SERR_INT, serr_int);
2355 }
2356
2357 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2358 {
2359         int pipe;
2360         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2361
2362         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2363
2364         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2365                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2366                                SDE_AUDIO_POWER_SHIFT_CPT);
2367                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2368                                  port_name(port));
2369         }
2370
2371         if (pch_iir & SDE_AUX_MASK_CPT)
2372                 dp_aux_irq_handler(dev_priv);
2373
2374         if (pch_iir & SDE_GMBUS_CPT)
2375                 gmbus_irq_handler(dev_priv);
2376
2377         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2378                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2379
2380         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2381                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2382
2383         if (pch_iir & SDE_FDI_MASK_CPT)
2384                 for_each_pipe(dev_priv, pipe)
2385                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2386                                          pipe_name(pipe),
2387                                          I915_READ(FDI_RX_IIR(pipe)));
2388
2389         if (pch_iir & SDE_ERROR_CPT)
2390                 cpt_serr_int_handler(dev_priv);
2391 }
2392
2393 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2394 {
2395         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2396                 ~SDE_PORTE_HOTPLUG_SPT;
2397         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2398         u32 pin_mask = 0, long_mask = 0;
2399
2400         if (hotplug_trigger) {
2401                 u32 dig_hotplug_reg;
2402
2403                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2404                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2405
2406                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2407                                    hotplug_trigger, dig_hotplug_reg, hpd_spt,
2408                                    spt_port_hotplug_long_detect);
2409         }
2410
2411         if (hotplug2_trigger) {
2412                 u32 dig_hotplug_reg;
2413
2414                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2415                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2416
2417                 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2418                                    hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2419                                    spt_port_hotplug2_long_detect);
2420         }
2421
2422         if (pin_mask)
2423                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2424
2425         if (pch_iir & SDE_GMBUS_CPT)
2426                 gmbus_irq_handler(dev_priv);
2427 }
2428
2429 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2430                                 u32 hotplug_trigger,
2431                                 const u32 hpd[HPD_NUM_PINS])
2432 {
2433         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2434
2435         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2436         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2437
2438         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2439                            dig_hotplug_reg, hpd,
2440                            ilk_port_hotplug_long_detect);
2441
2442         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2443 }
2444
2445 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2446                                     u32 de_iir)
2447 {
2448         enum pipe pipe;
2449         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2450
2451         if (hotplug_trigger)
2452                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2453
2454         if (de_iir & DE_AUX_CHANNEL_A)
2455                 dp_aux_irq_handler(dev_priv);
2456
2457         if (de_iir & DE_GSE)
2458                 intel_opregion_asle_intr(dev_priv);
2459
2460         if (de_iir & DE_POISON)
2461                 DRM_ERROR("Poison interrupt\n");
2462
2463         for_each_pipe(dev_priv, pipe) {
2464                 if (de_iir & DE_PIPE_VBLANK(pipe))
2465                         drm_handle_vblank(&dev_priv->drm, pipe);
2466
2467                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2468                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2469
2470                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2471                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2472         }
2473
2474         /* check event from PCH */
2475         if (de_iir & DE_PCH_EVENT) {
2476                 u32 pch_iir = I915_READ(SDEIIR);
2477
2478                 if (HAS_PCH_CPT(dev_priv))
2479                         cpt_irq_handler(dev_priv, pch_iir);
2480                 else
2481                         ibx_irq_handler(dev_priv, pch_iir);
2482
2483                 /* should clear PCH hotplug event before clear CPU irq */
2484                 I915_WRITE(SDEIIR, pch_iir);
2485         }
2486
2487         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2488                 ironlake_rps_change_irq_handler(dev_priv);
2489 }
2490
2491 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2492                                     u32 de_iir)
2493 {
2494         enum pipe pipe;
2495         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2496
2497         if (hotplug_trigger)
2498                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2499
2500         if (de_iir & DE_ERR_INT_IVB)
2501                 ivb_err_int_handler(dev_priv);
2502
2503         if (de_iir & DE_EDP_PSR_INT_HSW) {
2504                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2505
2506                 intel_psr_irq_handler(dev_priv, psr_iir);
2507                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2508         }
2509
2510         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2511                 dp_aux_irq_handler(dev_priv);
2512
2513         if (de_iir & DE_GSE_IVB)
2514                 intel_opregion_asle_intr(dev_priv);
2515
2516         for_each_pipe(dev_priv, pipe) {
2517                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2518                         drm_handle_vblank(&dev_priv->drm, pipe);
2519         }
2520
2521         /* check event from PCH */
2522         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2523                 u32 pch_iir = I915_READ(SDEIIR);
2524
2525                 cpt_irq_handler(dev_priv, pch_iir);
2526
2527                 /* clear PCH hotplug event before clear CPU irq */
2528                 I915_WRITE(SDEIIR, pch_iir);
2529         }
2530 }
2531
2532 /*
2533  * To handle irqs with the minimum potential races with fresh interrupts, we:
2534  * 1 - Disable Master Interrupt Control.
2535  * 2 - Find the source(s) of the interrupt.
2536  * 3 - Clear the Interrupt Identity bits (IIR).
2537  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2538  * 5 - Re-enable Master Interrupt Control.
2539  */
2540 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2541 {
2542         struct drm_device *dev = arg;
2543         struct drm_i915_private *dev_priv = to_i915(dev);
2544         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2545         irqreturn_t ret = IRQ_NONE;
2546
2547         if (!intel_irqs_enabled(dev_priv))
2548                 return IRQ_NONE;
2549
2550         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551         disable_rpm_wakeref_asserts(dev_priv);
2552
2553         /* disable master interrupt before clearing iir  */
2554         de_ier = I915_READ(DEIER);
2555         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2556         POSTING_READ(DEIER);
2557
2558         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2559          * interrupts will will be stored on its back queue, and then we'll be
2560          * able to process them after we restore SDEIER (as soon as we restore
2561          * it, we'll get an interrupt if SDEIIR still has something to process
2562          * due to its back queue). */
2563         if (!HAS_PCH_NOP(dev_priv)) {
2564                 sde_ier = I915_READ(SDEIER);
2565                 I915_WRITE(SDEIER, 0);
2566                 POSTING_READ(SDEIER);
2567         }
2568
2569         /* Find, clear, then process each source of interrupt */
2570
2571         gt_iir = I915_READ(GTIIR);
2572         if (gt_iir) {
2573                 I915_WRITE(GTIIR, gt_iir);
2574                 ret = IRQ_HANDLED;
2575                 if (INTEL_GEN(dev_priv) >= 6)
2576                         snb_gt_irq_handler(dev_priv, gt_iir);
2577                 else
2578                         ilk_gt_irq_handler(dev_priv, gt_iir);
2579         }
2580
2581         de_iir = I915_READ(DEIIR);
2582         if (de_iir) {
2583                 I915_WRITE(DEIIR, de_iir);
2584                 ret = IRQ_HANDLED;
2585                 if (INTEL_GEN(dev_priv) >= 7)
2586                         ivb_display_irq_handler(dev_priv, de_iir);
2587                 else
2588                         ilk_display_irq_handler(dev_priv, de_iir);
2589         }
2590
2591         if (INTEL_GEN(dev_priv) >= 6) {
2592                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2593                 if (pm_iir) {
2594                         I915_WRITE(GEN6_PMIIR, pm_iir);
2595                         ret = IRQ_HANDLED;
2596                         gen6_rps_irq_handler(dev_priv, pm_iir);
2597                 }
2598         }
2599
2600         I915_WRITE(DEIER, de_ier);
2601         POSTING_READ(DEIER);
2602         if (!HAS_PCH_NOP(dev_priv)) {
2603                 I915_WRITE(SDEIER, sde_ier);
2604                 POSTING_READ(SDEIER);
2605         }
2606
2607         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2608         enable_rpm_wakeref_asserts(dev_priv);
2609
2610         return ret;
2611 }
2612
2613 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2614                                 u32 hotplug_trigger,
2615                                 const u32 hpd[HPD_NUM_PINS])
2616 {
2617         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2618
2619         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2620         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2621
2622         intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2623                            dig_hotplug_reg, hpd,
2624                            bxt_port_hotplug_long_detect);
2625
2626         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2627 }
2628
2629 static irqreturn_t
2630 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2631 {
2632         irqreturn_t ret = IRQ_NONE;
2633         u32 iir;
2634         enum pipe pipe;
2635
2636         if (master_ctl & GEN8_DE_MISC_IRQ) {
2637                 iir = I915_READ(GEN8_DE_MISC_IIR);
2638                 if (iir) {
2639                         bool found = false;
2640
2641                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2642                         ret = IRQ_HANDLED;
2643
2644                         if (iir & GEN8_DE_MISC_GSE) {
2645                                 intel_opregion_asle_intr(dev_priv);
2646                                 found = true;
2647                         }
2648
2649                         if (iir & GEN8_DE_EDP_PSR) {
2650                                 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2651
2652                                 intel_psr_irq_handler(dev_priv, psr_iir);
2653                                 I915_WRITE(EDP_PSR_IIR, psr_iir);
2654                                 found = true;
2655                         }
2656
2657                         if (!found)
2658                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2659                 }
2660                 else
2661                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2662         }
2663
2664         if (master_ctl & GEN8_DE_PORT_IRQ) {
2665                 iir = I915_READ(GEN8_DE_PORT_IIR);
2666                 if (iir) {
2667                         u32 tmp_mask;
2668                         bool found = false;
2669
2670                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2671                         ret = IRQ_HANDLED;
2672
2673                         tmp_mask = GEN8_AUX_CHANNEL_A;
2674                         if (INTEL_GEN(dev_priv) >= 9)
2675                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2676                                             GEN9_AUX_CHANNEL_C |
2677                                             GEN9_AUX_CHANNEL_D;
2678
2679                         if (IS_CNL_WITH_PORT_F(dev_priv))
2680                                 tmp_mask |= CNL_AUX_CHANNEL_F;
2681
2682                         if (iir & tmp_mask) {
2683                                 dp_aux_irq_handler(dev_priv);
2684                                 found = true;
2685                         }
2686
2687                         if (IS_GEN9_LP(dev_priv)) {
2688                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2689                                 if (tmp_mask) {
2690                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2691                                                             hpd_bxt);
2692                                         found = true;
2693                                 }
2694                         } else if (IS_BROADWELL(dev_priv)) {
2695                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2696                                 if (tmp_mask) {
2697                                         ilk_hpd_irq_handler(dev_priv,
2698                                                             tmp_mask, hpd_bdw);
2699                                         found = true;
2700                                 }
2701                         }
2702
2703                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2704                                 gmbus_irq_handler(dev_priv);
2705                                 found = true;
2706                         }
2707
2708                         if (!found)
2709                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2710                 }
2711                 else
2712                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2713         }
2714
2715         for_each_pipe(dev_priv, pipe) {
2716                 u32 fault_errors;
2717
2718                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2719                         continue;
2720
2721                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2722                 if (!iir) {
2723                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2724                         continue;
2725                 }
2726
2727                 ret = IRQ_HANDLED;
2728                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2729
2730                 if (iir & GEN8_PIPE_VBLANK)
2731                         drm_handle_vblank(&dev_priv->drm, pipe);
2732
2733                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2734                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2735
2736                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2737                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2738
2739                 fault_errors = iir;
2740                 if (INTEL_GEN(dev_priv) >= 9)
2741                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2742                 else
2743                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2744
2745                 if (fault_errors)
2746                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2747                                   pipe_name(pipe),
2748                                   fault_errors);
2749         }
2750
2751         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2752             master_ctl & GEN8_DE_PCH_IRQ) {
2753                 /*
2754                  * FIXME(BDW): Assume for now that the new interrupt handling
2755                  * scheme also closed the SDE interrupt handling race we've seen
2756                  * on older pch-split platforms. But this needs testing.
2757                  */
2758                 iir = I915_READ(SDEIIR);
2759                 if (iir) {
2760                         I915_WRITE(SDEIIR, iir);
2761                         ret = IRQ_HANDLED;
2762
2763                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2764                             HAS_PCH_CNP(dev_priv))
2765                                 spt_irq_handler(dev_priv, iir);
2766                         else
2767                                 cpt_irq_handler(dev_priv, iir);
2768                 } else {
2769                         /*
2770                          * Like on previous PCH there seems to be something
2771                          * fishy going on with forwarding PCH interrupts.
2772                          */
2773                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2774                 }
2775         }
2776
2777         return ret;
2778 }
2779
2780 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2781 {
2782         struct drm_i915_private *dev_priv = to_i915(arg);
2783         u32 master_ctl;
2784         u32 gt_iir[4];
2785
2786         if (!intel_irqs_enabled(dev_priv))
2787                 return IRQ_NONE;
2788
2789         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2790         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2791         if (!master_ctl)
2792                 return IRQ_NONE;
2793
2794         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2795
2796         /* Find, clear, then process each source of interrupt */
2797         gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2798
2799         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2800         if (master_ctl & ~GEN8_GT_IRQS) {
2801                 disable_rpm_wakeref_asserts(dev_priv);
2802                 gen8_de_irq_handler(dev_priv, master_ctl);
2803                 enable_rpm_wakeref_asserts(dev_priv);
2804         }
2805
2806         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2807
2808         gen8_gt_irq_handler(dev_priv, master_ctl, gt_iir);
2809
2810         return IRQ_HANDLED;
2811 }
2812
2813 struct wedge_me {
2814         struct delayed_work work;
2815         struct drm_i915_private *i915;
2816         const char *name;
2817 };
2818
2819 static void wedge_me(struct work_struct *work)
2820 {
2821         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2822
2823         dev_err(w->i915->drm.dev,
2824                 "%s timed out, cancelling all in-flight rendering.\n",
2825                 w->name);
2826         i915_gem_set_wedged(w->i915);
2827 }
2828
2829 static void __init_wedge(struct wedge_me *w,
2830                          struct drm_i915_private *i915,
2831                          long timeout,
2832                          const char *name)
2833 {
2834         w->i915 = i915;
2835         w->name = name;
2836
2837         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2838         schedule_delayed_work(&w->work, timeout);
2839 }
2840
2841 static void __fini_wedge(struct wedge_me *w)
2842 {
2843         cancel_delayed_work_sync(&w->work);
2844         destroy_delayed_work_on_stack(&w->work);
2845         w->i915 = NULL;
2846 }
2847
2848 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2849         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2850              (W)->i915;                                                 \
2851              __fini_wedge((W)))
2852
2853 static u32
2854 gen11_gt_engine_identity(struct drm_i915_private * const i915,
2855                          const unsigned int bank, const unsigned int bit)
2856 {
2857         void __iomem * const regs = i915->regs;
2858         u32 timeout_ts;
2859         u32 ident;
2860
2861         lockdep_assert_held(&i915->irq_lock);
2862
2863         raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
2864
2865         /*
2866          * NB: Specs do not specify how long to spin wait,
2867          * so we do ~100us as an educated guess.
2868          */
2869         timeout_ts = (local_clock() >> 10) + 100;
2870         do {
2871                 ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
2872         } while (!(ident & GEN11_INTR_DATA_VALID) &&
2873                  !time_after32(local_clock() >> 10, timeout_ts));
2874
2875         if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
2876                 DRM_ERROR("INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
2877                           bank, bit, ident);
2878                 return 0;
2879         }
2880
2881         raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
2882                       GEN11_INTR_DATA_VALID);
2883
2884         return ident;
2885 }
2886
2887 static void
2888 gen11_other_irq_handler(struct drm_i915_private * const i915,
2889                         const u8 instance, const u16 iir)
2890 {
2891         if (instance == OTHER_GTPM_INSTANCE)
2892                 return gen6_rps_irq_handler(i915, iir);
2893
2894         WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
2895                   instance, iir);
2896 }
2897
2898 static void
2899 gen11_engine_irq_handler(struct drm_i915_private * const i915,
2900                          const u8 class, const u8 instance, const u16 iir)
2901 {
2902         struct intel_engine_cs *engine;
2903
2904         if (instance <= MAX_ENGINE_INSTANCE)
2905                 engine = i915->engine_class[class][instance];
2906         else
2907                 engine = NULL;
2908
2909         if (likely(engine))
2910                 return gen8_cs_irq_handler(engine, iir);
2911
2912         WARN_ONCE(1, "unhandled engine interrupt class=0x%x, instance=0x%x\n",
2913                   class, instance);
2914 }
2915
2916 static void
2917 gen11_gt_identity_handler(struct drm_i915_private * const i915,
2918                           const u32 identity)
2919 {
2920         const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
2921         const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
2922         const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
2923
2924         if (unlikely(!intr))
2925                 return;
2926
2927         if (class <= COPY_ENGINE_CLASS)
2928                 return gen11_engine_irq_handler(i915, class, instance, intr);
2929
2930         if (class == OTHER_CLASS)
2931                 return gen11_other_irq_handler(i915, instance, intr);
2932
2933         WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
2934                   class, instance, intr);
2935 }
2936
2937 static void
2938 gen11_gt_bank_handler(struct drm_i915_private * const i915,
2939                       const unsigned int bank)
2940 {
2941         void __iomem * const regs = i915->regs;
2942         unsigned long intr_dw;
2943         unsigned int bit;
2944
2945         lockdep_assert_held(&i915->irq_lock);
2946
2947         intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
2948
2949         if (unlikely(!intr_dw)) {
2950                 DRM_ERROR("GT_INTR_DW%u blank!\n", bank);
2951                 return;
2952         }
2953
2954         for_each_set_bit(bit, &intr_dw, 32) {
2955                 const u32 ident = gen11_gt_engine_identity(i915,
2956                                                            bank, bit);
2957
2958                 gen11_gt_identity_handler(i915, ident);
2959         }
2960
2961         /* Clear must be after shared has been served for engine */
2962         raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
2963 }
2964
2965 static void
2966 gen11_gt_irq_handler(struct drm_i915_private * const i915,
2967                      const u32 master_ctl)
2968 {
2969         unsigned int bank;
2970
2971         spin_lock(&i915->irq_lock);
2972
2973         for (bank = 0; bank < 2; bank++) {
2974                 if (master_ctl & GEN11_GT_DW_IRQ(bank))
2975                         gen11_gt_bank_handler(i915, bank);
2976         }
2977
2978         spin_unlock(&i915->irq_lock);
2979 }
2980
2981 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2982 {
2983         struct drm_i915_private * const i915 = to_i915(arg);
2984         void __iomem * const regs = i915->regs;
2985         u32 master_ctl;
2986
2987         if (!intel_irqs_enabled(i915))
2988                 return IRQ_NONE;
2989
2990         master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2991         master_ctl &= ~GEN11_MASTER_IRQ;
2992         if (!master_ctl)
2993                 return IRQ_NONE;
2994
2995         /* Disable interrupts. */
2996         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2997
2998         /* Find, clear, then process each source of interrupt. */
2999         gen11_gt_irq_handler(i915, master_ctl);
3000
3001         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3002         if (master_ctl & GEN11_DISPLAY_IRQ) {
3003                 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
3004
3005                 disable_rpm_wakeref_asserts(i915);
3006                 /*
3007                  * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
3008                  * for the display related bits.
3009                  */
3010                 gen8_de_irq_handler(i915, disp_ctl);
3011                 enable_rpm_wakeref_asserts(i915);
3012         }
3013
3014         /* Acknowledge and enable interrupts. */
3015         raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ | master_ctl);
3016
3017         return IRQ_HANDLED;
3018 }
3019
3020 static void i915_reset_device(struct drm_i915_private *dev_priv,
3021                               u32 engine_mask,
3022                               const char *reason)
3023 {
3024         struct i915_gpu_error *error = &dev_priv->gpu_error;
3025         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
3026         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
3027         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
3028         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
3029         struct wedge_me w;
3030
3031         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
3032
3033         DRM_DEBUG_DRIVER("resetting chip\n");
3034         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
3035
3036         /* Use a watchdog to ensure that our reset completes */
3037         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
3038                 intel_prepare_reset(dev_priv);
3039
3040                 error->reason = reason;
3041                 error->stalled_mask = engine_mask;
3042
3043                 /* Signal that locked waiters should reset the GPU */
3044                 smp_mb__before_atomic();
3045                 set_bit(I915_RESET_HANDOFF, &error->flags);
3046                 wake_up_all(&error->wait_queue);
3047
3048                 /* Wait for anyone holding the lock to wakeup, without
3049                  * blocking indefinitely on struct_mutex.
3050                  */
3051                 do {
3052                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
3053                                 i915_reset(dev_priv, engine_mask, reason);
3054                                 mutex_unlock(&dev_priv->drm.struct_mutex);
3055                         }
3056                 } while (wait_on_bit_timeout(&error->flags,
3057                                              I915_RESET_HANDOFF,
3058                                              TASK_UNINTERRUPTIBLE,
3059                                              1));
3060
3061                 error->stalled_mask = 0;
3062                 error->reason = NULL;
3063
3064                 intel_finish_reset(dev_priv);
3065         }
3066
3067         if (!test_bit(I915_WEDGED, &error->flags))
3068                 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
3069 }
3070
3071 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
3072 {
3073         u32 eir;
3074
3075         if (!IS_GEN2(dev_priv))
3076                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
3077
3078         if (INTEL_GEN(dev_priv) < 4)
3079                 I915_WRITE(IPEIR, I915_READ(IPEIR));
3080         else
3081                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
3082
3083         I915_WRITE(EIR, I915_READ(EIR));
3084         eir = I915_READ(EIR);
3085         if (eir) {
3086                 /*
3087                  * some errors might have become stuck,
3088                  * mask them.
3089                  */
3090                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
3091                 I915_WRITE(EMR, I915_READ(EMR) | eir);
3092                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3093         }
3094 }
3095
3096 /**
3097  * i915_handle_error - handle a gpu error
3098  * @dev_priv: i915 device private
3099  * @engine_mask: mask representing engines that are hung
3100  * @flags: control flags
3101  * @fmt: Error message format string
3102  *
3103  * Do some basic checking of register state at error time and
3104  * dump it to the syslog.  Also call i915_capture_error_state() to make
3105  * sure we get a record and make it available in debugfs.  Fire a uevent
3106  * so userspace knows something bad happened (should trigger collection
3107  * of a ring dump etc.).
3108  */
3109 void i915_handle_error(struct drm_i915_private *dev_priv,
3110                        u32 engine_mask,
3111                        unsigned long flags,
3112                        const char *fmt, ...)
3113 {
3114         struct intel_engine_cs *engine;
3115         unsigned int tmp;
3116         char error_msg[80];
3117         char *msg = NULL;
3118
3119         if (fmt) {
3120                 va_list args;
3121
3122                 va_start(args, fmt);
3123                 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
3124                 va_end(args);
3125
3126                 msg = error_msg;
3127         }
3128
3129         /*
3130          * In most cases it's guaranteed that we get here with an RPM
3131          * reference held, for example because there is a pending GPU
3132          * request that won't finish until the reset is done. This
3133          * isn't the case at least when we get here by doing a
3134          * simulated reset via debugfs, so get an RPM reference.
3135          */
3136         intel_runtime_pm_get(dev_priv);
3137
3138         engine_mask &= INTEL_INFO(dev_priv)->ring_mask;
3139
3140         if (flags & I915_ERROR_CAPTURE) {
3141                 i915_capture_error_state(dev_priv, engine_mask, msg);
3142                 i915_clear_error_registers(dev_priv);
3143         }
3144
3145         /*
3146          * Try engine reset when available. We fall back to full reset if
3147          * single reset fails.
3148          */
3149         if (intel_has_reset_engine(dev_priv)) {
3150                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
3151                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
3152                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3153                                              &dev_priv->gpu_error.flags))
3154                                 continue;
3155
3156                         if (i915_reset_engine(engine, msg) == 0)
3157                                 engine_mask &= ~intel_engine_flag(engine);
3158
3159                         clear_bit(I915_RESET_ENGINE + engine->id,
3160                                   &dev_priv->gpu_error.flags);
3161                         wake_up_bit(&dev_priv->gpu_error.flags,
3162                                     I915_RESET_ENGINE + engine->id);
3163                 }
3164         }
3165
3166         if (!engine_mask)
3167                 goto out;
3168
3169         /* Full reset needs the mutex, stop any other user trying to do so. */
3170         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
3171                 wait_event(dev_priv->gpu_error.reset_queue,
3172                            !test_bit(I915_RESET_BACKOFF,
3173                                      &dev_priv->gpu_error.flags));
3174                 goto out;
3175         }
3176
3177         /* Prevent any other reset-engine attempt. */
3178         for_each_engine(engine, dev_priv, tmp) {
3179                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
3180                                         &dev_priv->gpu_error.flags))
3181                         wait_on_bit(&dev_priv->gpu_error.flags,
3182                                     I915_RESET_ENGINE + engine->id,
3183                                     TASK_UNINTERRUPTIBLE);
3184         }
3185
3186         i915_reset_device(dev_priv, engine_mask, msg);
3187
3188         for_each_engine(engine, dev_priv, tmp) {
3189                 clear_bit(I915_RESET_ENGINE + engine->id,
3190                           &dev_priv->gpu_error.flags);
3191         }
3192
3193         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
3194         wake_up_all(&dev_priv->gpu_error.reset_queue);
3195
3196 out:
3197         intel_runtime_pm_put(dev_priv);
3198 }
3199
3200 /* Called from drm generic code, passed 'crtc' which
3201  * we use as a pipe index
3202  */
3203 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
3204 {
3205         struct drm_i915_private *dev_priv = to_i915(dev);
3206         unsigned long irqflags;
3207
3208         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3209         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3210         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3211
3212         return 0;
3213 }
3214
3215 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
3216 {
3217         struct drm_i915_private *dev_priv = to_i915(dev);
3218         unsigned long irqflags;
3219
3220         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3221         i915_enable_pipestat(dev_priv, pipe,
3222                              PIPE_START_VBLANK_INTERRUPT_STATUS);
3223         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3224
3225         return 0;
3226 }
3227
3228 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(dev);
3231         unsigned long irqflags;
3232         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3233                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3234
3235         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3236         ilk_enable_display_irq(dev_priv, bit);
3237         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3238
3239         /* Even though there is no DMC, frame counter can get stuck when
3240          * PSR is active as no frames are generated.
3241          */
3242         if (HAS_PSR(dev_priv))
3243                 drm_vblank_restore(dev, pipe);
3244
3245         return 0;
3246 }
3247
3248 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
3249 {
3250         struct drm_i915_private *dev_priv = to_i915(dev);
3251         unsigned long irqflags;
3252
3253         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3254         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3255         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3256
3257         /* Even if there is no DMC, frame counter can get stuck when
3258          * PSR is active as no frames are generated, so check only for PSR.
3259          */
3260         if (HAS_PSR(dev_priv))
3261                 drm_vblank_restore(dev, pipe);
3262
3263         return 0;
3264 }
3265
3266 /* Called from drm generic code, passed 'crtc' which
3267  * we use as a pipe index
3268  */
3269 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
3270 {
3271         struct drm_i915_private *dev_priv = to_i915(dev);
3272         unsigned long irqflags;
3273
3274         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3275         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3276         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3277 }
3278
3279 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
3280 {
3281         struct drm_i915_private *dev_priv = to_i915(dev);
3282         unsigned long irqflags;
3283
3284         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3285         i915_disable_pipestat(dev_priv, pipe,
3286                               PIPE_START_VBLANK_INTERRUPT_STATUS);
3287         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3288 }
3289
3290 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3291 {
3292         struct drm_i915_private *dev_priv = to_i915(dev);
3293         unsigned long irqflags;
3294         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3295                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3296
3297         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3298         ilk_disable_display_irq(dev_priv, bit);
3299         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3300 }
3301
3302 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3303 {
3304         struct drm_i915_private *dev_priv = to_i915(dev);
3305         unsigned long irqflags;
3306
3307         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3308         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3309         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3310 }
3311
3312 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3313 {
3314         if (HAS_PCH_NOP(dev_priv))
3315                 return;
3316
3317         GEN3_IRQ_RESET(SDE);
3318
3319         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3320                 I915_WRITE(SERR_INT, 0xffffffff);
3321 }
3322
3323 /*
3324  * SDEIER is also touched by the interrupt handler to work around missed PCH
3325  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3326  * instead we unconditionally enable all PCH interrupt sources here, but then
3327  * only unmask them as needed with SDEIMR.
3328  *
3329  * This function needs to be called before interrupts are enabled.
3330  */
3331 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3332 {
3333         struct drm_i915_private *dev_priv = to_i915(dev);
3334
3335         if (HAS_PCH_NOP(dev_priv))
3336                 return;
3337
3338         WARN_ON(I915_READ(SDEIER) != 0);
3339         I915_WRITE(SDEIER, 0xffffffff);
3340         POSTING_READ(SDEIER);
3341 }
3342
3343 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3344 {
3345         GEN3_IRQ_RESET(GT);
3346         if (INTEL_GEN(dev_priv) >= 6)
3347                 GEN3_IRQ_RESET(GEN6_PM);
3348 }
3349
3350 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3351 {
3352         if (IS_CHERRYVIEW(dev_priv))
3353                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3354         else
3355                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3356
3357         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3358         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3359
3360         i9xx_pipestat_irq_reset(dev_priv);
3361
3362         GEN3_IRQ_RESET(VLV_);
3363         dev_priv->irq_mask = ~0u;
3364 }
3365
3366 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3367 {
3368         u32 pipestat_mask;
3369         u32 enable_mask;
3370         enum pipe pipe;
3371
3372         pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3373
3374         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3375         for_each_pipe(dev_priv, pipe)
3376                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3377
3378         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3379                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3380                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3381                 I915_LPE_PIPE_A_INTERRUPT |
3382                 I915_LPE_PIPE_B_INTERRUPT;
3383
3384         if (IS_CHERRYVIEW(dev_priv))
3385                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3386                         I915_LPE_PIPE_C_INTERRUPT;
3387
3388         WARN_ON(dev_priv->irq_mask != ~0u);
3389
3390         dev_priv->irq_mask = ~enable_mask;
3391
3392         GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3393 }
3394
3395 /* drm_dma.h hooks
3396 */
3397 static void ironlake_irq_reset(struct drm_device *dev)
3398 {
3399         struct drm_i915_private *dev_priv = to_i915(dev);
3400
3401         if (IS_GEN5(dev_priv))
3402                 I915_WRITE(HWSTAM, 0xffffffff);
3403
3404         GEN3_IRQ_RESET(DE);
3405         if (IS_GEN7(dev_priv))
3406                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3407
3408         if (IS_HASWELL(dev_priv)) {
3409                 I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3410                 I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3411         }
3412
3413         gen5_gt_irq_reset(dev_priv);
3414
3415         ibx_irq_reset(dev_priv);
3416 }
3417
3418 static void valleyview_irq_reset(struct drm_device *dev)
3419 {
3420         struct drm_i915_private *dev_priv = to_i915(dev);
3421
3422         I915_WRITE(VLV_MASTER_IER, 0);
3423         POSTING_READ(VLV_MASTER_IER);
3424
3425         gen5_gt_irq_reset(dev_priv);
3426
3427         spin_lock_irq(&dev_priv->irq_lock);
3428         if (dev_priv->display_irqs_enabled)
3429                 vlv_display_irq_reset(dev_priv);
3430         spin_unlock_irq(&dev_priv->irq_lock);
3431 }
3432
3433 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3434 {
3435         GEN8_IRQ_RESET_NDX(GT, 0);
3436         GEN8_IRQ_RESET_NDX(GT, 1);
3437         GEN8_IRQ_RESET_NDX(GT, 2);
3438         GEN8_IRQ_RESET_NDX(GT, 3);
3439 }
3440
3441 static void gen8_irq_reset(struct drm_device *dev)
3442 {
3443         struct drm_i915_private *dev_priv = to_i915(dev);
3444         int pipe;
3445
3446         I915_WRITE(GEN8_MASTER_IRQ, 0);
3447         POSTING_READ(GEN8_MASTER_IRQ);
3448
3449         gen8_gt_irq_reset(dev_priv);
3450
3451         I915_WRITE(EDP_PSR_IMR, 0xffffffff);
3452         I915_WRITE(EDP_PSR_IIR, 0xffffffff);
3453
3454         for_each_pipe(dev_priv, pipe)
3455                 if (intel_display_power_is_enabled(dev_priv,
3456                                                    POWER_DOMAIN_PIPE(pipe)))
3457                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3458
3459         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3460         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3461         GEN3_IRQ_RESET(GEN8_PCU_);
3462
3463         if (HAS_PCH_SPLIT(dev_priv))
3464                 ibx_irq_reset(dev_priv);
3465 }
3466
3467 static void gen11_gt_irq_reset(struct drm_i915_private *dev_priv)
3468 {
3469         /* Disable RCS, BCS, VCS and VECS class engines. */
3470         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, 0);
3471         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    0);
3472
3473         /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
3474         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~0);
3475         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~0);
3476         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~0);
3477         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~0);
3478         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~0);
3479
3480         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
3481         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
3482 }
3483
3484 static void gen11_irq_reset(struct drm_device *dev)
3485 {
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487         int pipe;
3488
3489         I915_WRITE(GEN11_GFX_MSTR_IRQ, 0);
3490         POSTING_READ(GEN11_GFX_MSTR_IRQ);
3491
3492         gen11_gt_irq_reset(dev_priv);
3493
3494         I915_WRITE(GEN11_DISPLAY_INT_CTL, 0);
3495
3496         for_each_pipe(dev_priv, pipe)
3497                 if (intel_display_power_is_enabled(dev_priv,
3498                                                    POWER_DOMAIN_PIPE(pipe)))
3499                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3500
3501         GEN3_IRQ_RESET(GEN8_DE_PORT_);
3502         GEN3_IRQ_RESET(GEN8_DE_MISC_);
3503         GEN3_IRQ_RESET(GEN8_PCU_);
3504 }
3505
3506 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3507                                      u8 pipe_mask)
3508 {
3509         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3510         enum pipe pipe;
3511
3512         spin_lock_irq(&dev_priv->irq_lock);
3513
3514         if (!intel_irqs_enabled(dev_priv)) {
3515                 spin_unlock_irq(&dev_priv->irq_lock);
3516                 return;
3517         }
3518
3519         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3520                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3521                                   dev_priv->de_irq_mask[pipe],
3522                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3523
3524         spin_unlock_irq(&dev_priv->irq_lock);
3525 }
3526
3527 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3528                                      u8 pipe_mask)
3529 {
3530         enum pipe pipe;
3531
3532         spin_lock_irq(&dev_priv->irq_lock);
3533
3534         if (!intel_irqs_enabled(dev_priv)) {
3535                 spin_unlock_irq(&dev_priv->irq_lock);
3536                 return;
3537         }
3538
3539         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3540                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3541
3542         spin_unlock_irq(&dev_priv->irq_lock);
3543
3544         /* make sure we're done processing display irqs */
3545         synchronize_irq(dev_priv->drm.irq);
3546 }
3547
3548 static void cherryview_irq_reset(struct drm_device *dev)
3549 {
3550         struct drm_i915_private *dev_priv = to_i915(dev);
3551
3552         I915_WRITE(GEN8_MASTER_IRQ, 0);
3553         POSTING_READ(GEN8_MASTER_IRQ);
3554
3555         gen8_gt_irq_reset(dev_priv);
3556
3557         GEN3_IRQ_RESET(GEN8_PCU_);
3558
3559         spin_lock_irq(&dev_priv->irq_lock);
3560         if (dev_priv->display_irqs_enabled)
3561                 vlv_display_irq_reset(dev_priv);
3562         spin_unlock_irq(&dev_priv->irq_lock);
3563 }
3564
3565 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3566                                   const u32 hpd[HPD_NUM_PINS])
3567 {
3568         struct intel_encoder *encoder;
3569         u32 enabled_irqs = 0;
3570
3571         for_each_intel_encoder(&dev_priv->drm, encoder)
3572                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3573                         enabled_irqs |= hpd[encoder->hpd_pin];
3574
3575         return enabled_irqs;
3576 }
3577
3578 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3579 {
3580         u32 hotplug;
3581
3582         /*
3583          * Enable digital hotplug on the PCH, and configure the DP short pulse
3584          * duration to 2ms (which is the minimum in the Display Port spec).
3585          * The pulse duration bits are reserved on LPT+.
3586          */
3587         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3588         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3589                      PORTC_PULSE_DURATION_MASK |
3590                      PORTD_PULSE_DURATION_MASK);
3591         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3592         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3593         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3594         /*
3595          * When CPU and PCH are on the same package, port A
3596          * HPD must be enabled in both north and south.
3597          */
3598         if (HAS_PCH_LPT_LP(dev_priv))
3599                 hotplug |= PORTA_HOTPLUG_ENABLE;
3600         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3601 }
3602
3603 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3604 {
3605         u32 hotplug_irqs, enabled_irqs;
3606
3607         if (HAS_PCH_IBX(dev_priv)) {
3608                 hotplug_irqs = SDE_HOTPLUG_MASK;
3609                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3610         } else {
3611                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3612                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3613         }
3614
3615         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3616
3617         ibx_hpd_detection_setup(dev_priv);
3618 }
3619
3620 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3621 {
3622         u32 val, hotplug;
3623
3624         /* Display WA #1179 WaHardHangonHotPlug: cnp */
3625         if (HAS_PCH_CNP(dev_priv)) {
3626                 val = I915_READ(SOUTH_CHICKEN1);
3627                 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3628                 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3629                 I915_WRITE(SOUTH_CHICKEN1, val);
3630         }
3631
3632         /* Enable digital hotplug on the PCH */
3633         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3634         hotplug |= PORTA_HOTPLUG_ENABLE |
3635                    PORTB_HOTPLUG_ENABLE |
3636                    PORTC_HOTPLUG_ENABLE |
3637                    PORTD_HOTPLUG_ENABLE;
3638         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3639
3640         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3641         hotplug |= PORTE_HOTPLUG_ENABLE;
3642         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3643 }
3644
3645 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3646 {
3647         u32 hotplug_irqs, enabled_irqs;
3648
3649         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3650         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3651
3652         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3653
3654         spt_hpd_detection_setup(dev_priv);
3655 }
3656
3657 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3658 {
3659         u32 hotplug;
3660
3661         /*
3662          * Enable digital hotplug on the CPU, and configure the DP short pulse
3663          * duration to 2ms (which is the minimum in the Display Port spec)
3664          * The pulse duration bits are reserved on HSW+.
3665          */
3666         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3667         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3668         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3669                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3670         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3671 }
3672
3673 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3674 {
3675         u32 hotplug_irqs, enabled_irqs;
3676
3677         if (INTEL_GEN(dev_priv) >= 8) {
3678                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3679                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3680
3681                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3682         } else if (INTEL_GEN(dev_priv) >= 7) {
3683                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3684                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3685
3686                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3687         } else {
3688                 hotplug_irqs = DE_DP_A_HOTPLUG;
3689                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3690
3691                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3692         }
3693
3694         ilk_hpd_detection_setup(dev_priv);
3695
3696         ibx_hpd_irq_setup(dev_priv);
3697 }
3698
3699 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3700                                       u32 enabled_irqs)
3701 {
3702         u32 hotplug;
3703
3704         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3705         hotplug |= PORTA_HOTPLUG_ENABLE |
3706                    PORTB_HOTPLUG_ENABLE |
3707                    PORTC_HOTPLUG_ENABLE;
3708
3709         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3710                       hotplug, enabled_irqs);
3711         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3712
3713         /*
3714          * For BXT invert bit has to be set based on AOB design
3715          * for HPD detection logic, update it based on VBT fields.
3716          */
3717         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3718             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3719                 hotplug |= BXT_DDIA_HPD_INVERT;
3720         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3721             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3722                 hotplug |= BXT_DDIB_HPD_INVERT;
3723         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3724             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3725                 hotplug |= BXT_DDIC_HPD_INVERT;
3726
3727         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3728 }
3729
3730 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3731 {
3732         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3733 }
3734
3735 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3736 {
3737         u32 hotplug_irqs, enabled_irqs;
3738
3739         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3740         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3741
3742         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3743
3744         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3745 }
3746
3747 static void ibx_irq_postinstall(struct drm_device *dev)
3748 {
3749         struct drm_i915_private *dev_priv = to_i915(dev);
3750         u32 mask;
3751
3752         if (HAS_PCH_NOP(dev_priv))
3753                 return;
3754
3755         if (HAS_PCH_IBX(dev_priv))
3756                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3757         else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3758                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3759         else
3760                 mask = SDE_GMBUS_CPT;
3761
3762         gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3763         I915_WRITE(SDEIMR, ~mask);
3764
3765         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3766             HAS_PCH_LPT(dev_priv))
3767                 ibx_hpd_detection_setup(dev_priv);
3768         else
3769                 spt_hpd_detection_setup(dev_priv);
3770 }
3771
3772 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3773 {
3774         struct drm_i915_private *dev_priv = to_i915(dev);
3775         u32 pm_irqs, gt_irqs;
3776
3777         pm_irqs = gt_irqs = 0;
3778
3779         dev_priv->gt_irq_mask = ~0;
3780         if (HAS_L3_DPF(dev_priv)) {
3781                 /* L3 parity interrupt is always unmasked. */
3782                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3783                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3784         }
3785
3786         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3787         if (IS_GEN5(dev_priv)) {
3788                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3789         } else {
3790                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3791         }
3792
3793         GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3794
3795         if (INTEL_GEN(dev_priv) >= 6) {
3796                 /*
3797                  * RPS interrupts will get enabled/disabled on demand when RPS
3798                  * itself is enabled/disabled.
3799                  */
3800                 if (HAS_VEBOX(dev_priv)) {
3801                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3802                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3803                 }
3804
3805                 dev_priv->pm_imr = 0xffffffff;
3806                 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3807         }
3808 }
3809
3810 static int ironlake_irq_postinstall(struct drm_device *dev)
3811 {
3812         struct drm_i915_private *dev_priv = to_i915(dev);
3813         u32 display_mask, extra_mask;
3814
3815         if (INTEL_GEN(dev_priv) >= 7) {
3816                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3817                                 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3818                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3819                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3820                               DE_DP_A_HOTPLUG_IVB);
3821         } else {
3822                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3823                                 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3824                                 DE_PIPEA_CRC_DONE | DE_POISON);
3825                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3826                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3827                               DE_DP_A_HOTPLUG);
3828         }
3829
3830         if (IS_HASWELL(dev_priv)) {
3831                 gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3832                 intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3833                 display_mask |= DE_EDP_PSR_INT_HSW;
3834         }
3835
3836         dev_priv->irq_mask = ~display_mask;
3837
3838         ibx_irq_pre_postinstall(dev);
3839
3840         GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3841
3842         gen5_gt_irq_postinstall(dev);
3843
3844         ilk_hpd_detection_setup(dev_priv);
3845
3846         ibx_irq_postinstall(dev);
3847
3848         if (IS_IRONLAKE_M(dev_priv)) {
3849                 /* Enable PCU event interrupts
3850                  *
3851                  * spinlocking not required here for correctness since interrupt
3852                  * setup is guaranteed to run in single-threaded context. But we
3853                  * need it to make the assert_spin_locked happy. */
3854                 spin_lock_irq(&dev_priv->irq_lock);
3855                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3856                 spin_unlock_irq(&dev_priv->irq_lock);
3857         }
3858
3859         return 0;
3860 }
3861
3862 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3863 {
3864         lockdep_assert_held(&dev_priv->irq_lock);
3865
3866         if (dev_priv->display_irqs_enabled)
3867                 return;
3868
3869         dev_priv->display_irqs_enabled = true;
3870
3871         if (intel_irqs_enabled(dev_priv)) {
3872                 vlv_display_irq_reset(dev_priv);
3873                 vlv_display_irq_postinstall(dev_priv);
3874         }
3875 }
3876
3877 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3878 {
3879         lockdep_assert_held(&dev_priv->irq_lock);
3880
3881         if (!dev_priv->display_irqs_enabled)
3882                 return;
3883
3884         dev_priv->display_irqs_enabled = false;
3885
3886         if (intel_irqs_enabled(dev_priv))
3887                 vlv_display_irq_reset(dev_priv);
3888 }
3889
3890
3891 static int valleyview_irq_postinstall(struct drm_device *dev)
3892 {
3893         struct drm_i915_private *dev_priv = to_i915(dev);
3894
3895         gen5_gt_irq_postinstall(dev);
3896
3897         spin_lock_irq(&dev_priv->irq_lock);
3898         if (dev_priv->display_irqs_enabled)
3899                 vlv_display_irq_postinstall(dev_priv);
3900         spin_unlock_irq(&dev_priv->irq_lock);
3901
3902         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3903         POSTING_READ(VLV_MASTER_IER);
3904
3905         return 0;
3906 }
3907
3908 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3909 {
3910         /* These are interrupts we'll toggle with the ring mask register */
3911         uint32_t gt_interrupts[] = {
3912                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3913                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3914                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3915                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3916                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3917                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3918                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3919                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3920                 0,
3921                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3922                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3923                 };
3924
3925         if (HAS_L3_DPF(dev_priv))
3926                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3927
3928         dev_priv->pm_ier = 0x0;
3929         dev_priv->pm_imr = ~dev_priv->pm_ier;
3930         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3931         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3932         /*
3933          * RPS interrupts will get enabled/disabled on demand when RPS itself
3934          * is enabled/disabled. Same wil be the case for GuC interrupts.
3935          */
3936         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3937         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3938 }
3939
3940 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3941 {
3942         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3943         uint32_t de_pipe_enables;
3944         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3945         u32 de_port_enables;
3946         u32 de_misc_masked = GEN8_DE_MISC_GSE | GEN8_DE_EDP_PSR;
3947         enum pipe pipe;
3948
3949         if (INTEL_GEN(dev_priv) >= 9) {
3950                 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3951                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3952                                   GEN9_AUX_CHANNEL_D;
3953                 if (IS_GEN9_LP(dev_priv))
3954                         de_port_masked |= BXT_DE_PORT_GMBUS;
3955         } else {
3956                 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3957         }
3958
3959         if (IS_CNL_WITH_PORT_F(dev_priv))
3960                 de_port_masked |= CNL_AUX_CHANNEL_F;
3961
3962         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3963                                            GEN8_PIPE_FIFO_UNDERRUN;
3964
3965         de_port_enables = de_port_masked;
3966         if (IS_GEN9_LP(dev_priv))
3967                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3968         else if (IS_BROADWELL(dev_priv))
3969                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3970
3971         gen3_assert_iir_is_zero(dev_priv, EDP_PSR_IIR);
3972         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3973
3974         for_each_pipe(dev_priv, pipe) {
3975                 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3976
3977                 if (intel_display_power_is_enabled(dev_priv,
3978                                 POWER_DOMAIN_PIPE(pipe)))
3979                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3980                                           dev_priv->de_irq_mask[pipe],
3981                                           de_pipe_enables);
3982         }
3983
3984         GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3985         GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3986
3987         if (IS_GEN9_LP(dev_priv))
3988                 bxt_hpd_detection_setup(dev_priv);
3989         else if (IS_BROADWELL(dev_priv))
3990                 ilk_hpd_detection_setup(dev_priv);
3991 }
3992
3993 static int gen8_irq_postinstall(struct drm_device *dev)
3994 {
3995         struct drm_i915_private *dev_priv = to_i915(dev);
3996
3997         if (HAS_PCH_SPLIT(dev_priv))
3998                 ibx_irq_pre_postinstall(dev);
3999
4000         gen8_gt_irq_postinstall(dev_priv);
4001         gen8_de_irq_postinstall(dev_priv);
4002
4003         if (HAS_PCH_SPLIT(dev_priv))
4004                 ibx_irq_postinstall(dev);
4005
4006         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4007         POSTING_READ(GEN8_MASTER_IRQ);
4008
4009         return 0;
4010 }
4011
4012 static void gen11_gt_irq_postinstall(struct drm_i915_private *dev_priv)
4013 {
4014         const u32 irqs = GT_RENDER_USER_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT;
4015
4016         BUILD_BUG_ON(irqs & 0xffff0000);
4017
4018         /* Enable RCS, BCS, VCS and VECS class interrupts. */
4019         I915_WRITE(GEN11_RENDER_COPY_INTR_ENABLE, irqs << 16 | irqs);
4020         I915_WRITE(GEN11_VCS_VECS_INTR_ENABLE,    irqs << 16 | irqs);
4021
4022         /* Unmask irqs on RCS, BCS, VCS and VECS engines. */
4023         I915_WRITE(GEN11_RCS0_RSVD_INTR_MASK,   ~(irqs << 16));
4024         I915_WRITE(GEN11_BCS_RSVD_INTR_MASK,    ~(irqs << 16));
4025         I915_WRITE(GEN11_VCS0_VCS1_INTR_MASK,   ~(irqs | irqs << 16));
4026         I915_WRITE(GEN11_VCS2_VCS3_INTR_MASK,   ~(irqs | irqs << 16));
4027         I915_WRITE(GEN11_VECS0_VECS1_INTR_MASK, ~(irqs | irqs << 16));
4028
4029         /*
4030          * RPS interrupts will get enabled/disabled on demand when RPS itself
4031          * is enabled/disabled.
4032          */
4033         dev_priv->pm_ier = 0x0;
4034         dev_priv->pm_imr = ~dev_priv->pm_ier;
4035         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
4036         I915_WRITE(GEN11_GPM_WGBOXPERF_INTR_MASK,  ~0);
4037 }
4038
4039 static int gen11_irq_postinstall(struct drm_device *dev)
4040 {
4041         struct drm_i915_private *dev_priv = dev->dev_private;
4042
4043         gen11_gt_irq_postinstall(dev_priv);
4044         gen8_de_irq_postinstall(dev_priv);
4045
4046         I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
4047
4048         I915_WRITE(GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
4049         POSTING_READ(GEN11_GFX_MSTR_IRQ);
4050
4051         return 0;
4052 }
4053
4054 static int cherryview_irq_postinstall(struct drm_device *dev)
4055 {
4056         struct drm_i915_private *dev_priv = to_i915(dev);
4057
4058         gen8_gt_irq_postinstall(dev_priv);
4059
4060         spin_lock_irq(&dev_priv->irq_lock);
4061         if (dev_priv->display_irqs_enabled)
4062                 vlv_display_irq_postinstall(dev_priv);
4063         spin_unlock_irq(&dev_priv->irq_lock);
4064
4065         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
4066         POSTING_READ(GEN8_MASTER_IRQ);
4067
4068         return 0;
4069 }
4070
4071 static void i8xx_irq_reset(struct drm_device *dev)
4072 {
4073         struct drm_i915_private *dev_priv = to_i915(dev);
4074
4075         i9xx_pipestat_irq_reset(dev_priv);
4076
4077         I915_WRITE16(HWSTAM, 0xffff);
4078
4079         GEN2_IRQ_RESET();
4080 }
4081
4082 static int i8xx_irq_postinstall(struct drm_device *dev)
4083 {
4084         struct drm_i915_private *dev_priv = to_i915(dev);
4085         u16 enable_mask;
4086
4087         I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
4088                             I915_ERROR_MEMORY_REFRESH));
4089
4090         /* Unmask the interrupts that we always want on. */
4091         dev_priv->irq_mask =
4092                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4093                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4094
4095         enable_mask =
4096                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4097                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4098                 I915_USER_INTERRUPT;
4099
4100         GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4101
4102         /* Interrupt setup is already guaranteed to be single-threaded, this is
4103          * just to make the assert_spin_locked check happy. */
4104         spin_lock_irq(&dev_priv->irq_lock);
4105         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107         spin_unlock_irq(&dev_priv->irq_lock);
4108
4109         return 0;
4110 }
4111
4112 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4113 {
4114         struct drm_device *dev = arg;
4115         struct drm_i915_private *dev_priv = to_i915(dev);
4116         irqreturn_t ret = IRQ_NONE;
4117
4118         if (!intel_irqs_enabled(dev_priv))
4119                 return IRQ_NONE;
4120
4121         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4122         disable_rpm_wakeref_asserts(dev_priv);
4123
4124         do {
4125                 u32 pipe_stats[I915_MAX_PIPES] = {};
4126                 u16 iir;
4127
4128                 iir = I915_READ16(IIR);
4129                 if (iir == 0)
4130                         break;
4131
4132                 ret = IRQ_HANDLED;
4133
4134                 /* Call regardless, as some status bits might not be
4135                  * signalled in iir */
4136                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4137
4138                 I915_WRITE16(IIR, iir);
4139
4140                 if (iir & I915_USER_INTERRUPT)
4141                         notify_ring(dev_priv->engine[RCS]);
4142
4143                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4144                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4145
4146                 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4147         } while (0);
4148
4149         enable_rpm_wakeref_asserts(dev_priv);
4150
4151         return ret;
4152 }
4153
4154 static void i915_irq_reset(struct drm_device *dev)
4155 {
4156         struct drm_i915_private *dev_priv = to_i915(dev);
4157
4158         if (I915_HAS_HOTPLUG(dev_priv)) {
4159                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4160                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4161         }
4162
4163         i9xx_pipestat_irq_reset(dev_priv);
4164
4165         I915_WRITE(HWSTAM, 0xffffffff);
4166
4167         GEN3_IRQ_RESET();
4168 }
4169
4170 static int i915_irq_postinstall(struct drm_device *dev)
4171 {
4172         struct drm_i915_private *dev_priv = to_i915(dev);
4173         u32 enable_mask;
4174
4175         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4176                           I915_ERROR_MEMORY_REFRESH));
4177
4178         /* Unmask the interrupts that we always want on. */
4179         dev_priv->irq_mask =
4180                 ~(I915_ASLE_INTERRUPT |
4181                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4182                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
4183
4184         enable_mask =
4185                 I915_ASLE_INTERRUPT |
4186                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4187                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4188                 I915_USER_INTERRUPT;
4189
4190         if (I915_HAS_HOTPLUG(dev_priv)) {
4191                 /* Enable in IER... */
4192                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4193                 /* and unmask in IMR */
4194                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4195         }
4196
4197         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4198
4199         /* Interrupt setup is already guaranteed to be single-threaded, this is
4200          * just to make the assert_spin_locked check happy. */
4201         spin_lock_irq(&dev_priv->irq_lock);
4202         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4203         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4204         spin_unlock_irq(&dev_priv->irq_lock);
4205
4206         i915_enable_asle_pipestat(dev_priv);
4207
4208         return 0;
4209 }
4210
4211 static irqreturn_t i915_irq_handler(int irq, void *arg)
4212 {
4213         struct drm_device *dev = arg;
4214         struct drm_i915_private *dev_priv = to_i915(dev);
4215         irqreturn_t ret = IRQ_NONE;
4216
4217         if (!intel_irqs_enabled(dev_priv))
4218                 return IRQ_NONE;
4219
4220         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4221         disable_rpm_wakeref_asserts(dev_priv);
4222
4223         do {
4224                 u32 pipe_stats[I915_MAX_PIPES] = {};
4225                 u32 hotplug_status = 0;
4226                 u32 iir;
4227
4228                 iir = I915_READ(IIR);
4229                 if (iir == 0)
4230                         break;
4231
4232                 ret = IRQ_HANDLED;
4233
4234                 if (I915_HAS_HOTPLUG(dev_priv) &&
4235                     iir & I915_DISPLAY_PORT_INTERRUPT)
4236                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4237
4238                 /* Call regardless, as some status bits might not be
4239                  * signalled in iir */
4240                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4241
4242                 I915_WRITE(IIR, iir);
4243
4244                 if (iir & I915_USER_INTERRUPT)
4245                         notify_ring(dev_priv->engine[RCS]);
4246
4247                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4248                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4249
4250                 if (hotplug_status)
4251                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4252
4253                 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4254         } while (0);
4255
4256         enable_rpm_wakeref_asserts(dev_priv);
4257
4258         return ret;
4259 }
4260
4261 static void i965_irq_reset(struct drm_device *dev)
4262 {
4263         struct drm_i915_private *dev_priv = to_i915(dev);
4264
4265         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4266         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4267
4268         i9xx_pipestat_irq_reset(dev_priv);
4269
4270         I915_WRITE(HWSTAM, 0xffffffff);
4271
4272         GEN3_IRQ_RESET();
4273 }
4274
4275 static int i965_irq_postinstall(struct drm_device *dev)
4276 {
4277         struct drm_i915_private *dev_priv = to_i915(dev);
4278         u32 enable_mask;
4279         u32 error_mask;
4280
4281         /*
4282          * Enable some error detection, note the instruction error mask
4283          * bit is reserved, so we leave it masked.
4284          */
4285         if (IS_G4X(dev_priv)) {
4286                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4287                                GM45_ERROR_MEM_PRIV |
4288                                GM45_ERROR_CP_PRIV |
4289                                I915_ERROR_MEMORY_REFRESH);
4290         } else {
4291                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4292                                I915_ERROR_MEMORY_REFRESH);
4293         }
4294         I915_WRITE(EMR, error_mask);
4295
4296         /* Unmask the interrupts that we always want on. */
4297         dev_priv->irq_mask =
4298                 ~(I915_ASLE_INTERRUPT |
4299                   I915_DISPLAY_PORT_INTERRUPT |
4300                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4301                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4302                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4303
4304         enable_mask =
4305                 I915_ASLE_INTERRUPT |
4306                 I915_DISPLAY_PORT_INTERRUPT |
4307                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4308                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4309                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4310                 I915_USER_INTERRUPT;
4311
4312         if (IS_G4X(dev_priv))
4313                 enable_mask |= I915_BSD_USER_INTERRUPT;
4314
4315         GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
4316
4317         /* Interrupt setup is already guaranteed to be single-threaded, this is
4318          * just to make the assert_spin_locked check happy. */
4319         spin_lock_irq(&dev_priv->irq_lock);
4320         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4321         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4322         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4323         spin_unlock_irq(&dev_priv->irq_lock);
4324
4325         i915_enable_asle_pipestat(dev_priv);
4326
4327         return 0;
4328 }
4329
4330 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4331 {
4332         u32 hotplug_en;
4333
4334         lockdep_assert_held(&dev_priv->irq_lock);
4335
4336         /* Note HDMI and DP share hotplug bits */
4337         /* enable bits are the same for all generations */
4338         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4339         /* Programming the CRT detection parameters tends
4340            to generate a spurious hotplug event about three
4341            seconds later.  So just do it once.
4342         */
4343         if (IS_G4X(dev_priv))
4344                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4345         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4346
4347         /* Ignore TV since it's buggy */
4348         i915_hotplug_interrupt_update_locked(dev_priv,
4349                                              HOTPLUG_INT_EN_MASK |
4350                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4351                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4352                                              hotplug_en);
4353 }
4354
4355 static irqreturn_t i965_irq_handler(int irq, void *arg)
4356 {
4357         struct drm_device *dev = arg;
4358         struct drm_i915_private *dev_priv = to_i915(dev);
4359         irqreturn_t ret = IRQ_NONE;
4360
4361         if (!intel_irqs_enabled(dev_priv))
4362                 return IRQ_NONE;
4363
4364         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4365         disable_rpm_wakeref_asserts(dev_priv);
4366
4367         do {
4368                 u32 pipe_stats[I915_MAX_PIPES] = {};
4369                 u32 hotplug_status = 0;
4370                 u32 iir;
4371
4372                 iir = I915_READ(IIR);
4373                 if (iir == 0)
4374                         break;
4375
4376                 ret = IRQ_HANDLED;
4377
4378                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4379                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4380
4381                 /* Call regardless, as some status bits might not be
4382                  * signalled in iir */
4383                 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4384
4385                 I915_WRITE(IIR, iir);
4386
4387                 if (iir & I915_USER_INTERRUPT)
4388                         notify_ring(dev_priv->engine[RCS]);
4389
4390                 if (iir & I915_BSD_USER_INTERRUPT)
4391                         notify_ring(dev_priv->engine[VCS]);
4392
4393                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4394                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4395
4396                 if (hotplug_status)
4397                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4398
4399                 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4400         } while (0);
4401
4402         enable_rpm_wakeref_asserts(dev_priv);
4403
4404         return ret;
4405 }
4406
4407 /**
4408  * intel_irq_init - initializes irq support
4409  * @dev_priv: i915 device instance
4410  *
4411  * This function initializes all the irq support including work items, timers
4412  * and all the vtables. It does not setup the interrupt itself though.
4413  */
4414 void intel_irq_init(struct drm_i915_private *dev_priv)
4415 {
4416         struct drm_device *dev = &dev_priv->drm;
4417         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4418         int i;
4419
4420         intel_hpd_init_work(dev_priv);
4421
4422         INIT_WORK(&rps->work, gen6_pm_rps_work);
4423
4424         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4425         for (i = 0; i < MAX_L3_SLICES; ++i)
4426                 dev_priv->l3_parity.remap_info[i] = NULL;
4427
4428         if (HAS_GUC_SCHED(dev_priv))
4429                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4430
4431         /* Let's track the enabled rps events */
4432         if (IS_VALLEYVIEW(dev_priv))
4433                 /* WaGsvRC0ResidencyMethod:vlv */
4434                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4435         else
4436                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4437
4438         rps->pm_intrmsk_mbz = 0;
4439
4440         /*
4441          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4442          * if GEN6_PM_UP_EI_EXPIRED is masked.
4443          *
4444          * TODO: verify if this can be reproduced on VLV,CHV.
4445          */
4446         if (INTEL_GEN(dev_priv) <= 7)
4447                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4448
4449         if (INTEL_GEN(dev_priv) >= 8)
4450                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4451
4452         if (IS_GEN2(dev_priv)) {
4453                 /* Gen2 doesn't have a hardware frame counter */
4454                 dev->max_vblank_count = 0;
4455         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4456                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4457                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4458         } else {
4459                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4460                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4461         }
4462
4463         /*
4464          * Opt out of the vblank disable timer on everything except gen2.
4465          * Gen2 doesn't have a hardware frame counter and so depends on
4466          * vblank interrupts to produce sane vblank seuquence numbers.
4467          */
4468         if (!IS_GEN2(dev_priv))
4469                 dev->vblank_disable_immediate = true;
4470
4471         /* Most platforms treat the display irq block as an always-on
4472          * power domain. vlv/chv can disable it at runtime and need
4473          * special care to avoid writing any of the display block registers
4474          * outside of the power domain. We defer setting up the display irqs
4475          * in this case to the runtime pm.
4476          */
4477         dev_priv->display_irqs_enabled = true;
4478         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4479                 dev_priv->display_irqs_enabled = false;
4480
4481         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4482
4483         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4484         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4485
4486         if (IS_CHERRYVIEW(dev_priv)) {
4487                 dev->driver->irq_handler = cherryview_irq_handler;
4488                 dev->driver->irq_preinstall = cherryview_irq_reset;
4489                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4490                 dev->driver->irq_uninstall = cherryview_irq_reset;
4491                 dev->driver->enable_vblank = i965_enable_vblank;
4492                 dev->driver->disable_vblank = i965_disable_vblank;
4493                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4494         } else if (IS_VALLEYVIEW(dev_priv)) {
4495                 dev->driver->irq_handler = valleyview_irq_handler;
4496                 dev->driver->irq_preinstall = valleyview_irq_reset;
4497                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4498                 dev->driver->irq_uninstall = valleyview_irq_reset;
4499                 dev->driver->enable_vblank = i965_enable_vblank;
4500                 dev->driver->disable_vblank = i965_disable_vblank;
4501                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4502         } else if (INTEL_GEN(dev_priv) >= 11) {
4503                 dev->driver->irq_handler = gen11_irq_handler;
4504                 dev->driver->irq_preinstall = gen11_irq_reset;
4505                 dev->driver->irq_postinstall = gen11_irq_postinstall;
4506                 dev->driver->irq_uninstall = gen11_irq_reset;
4507                 dev->driver->enable_vblank = gen8_enable_vblank;
4508                 dev->driver->disable_vblank = gen8_disable_vblank;
4509                 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4510         } else if (INTEL_GEN(dev_priv) >= 8) {
4511                 dev->driver->irq_handler = gen8_irq_handler;
4512                 dev->driver->irq_preinstall = gen8_irq_reset;
4513                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4514                 dev->driver->irq_uninstall = gen8_irq_reset;
4515                 dev->driver->enable_vblank = gen8_enable_vblank;
4516                 dev->driver->disable_vblank = gen8_disable_vblank;
4517                 if (IS_GEN9_LP(dev_priv))
4518                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4519                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4520                          HAS_PCH_CNP(dev_priv))
4521                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4522                 else
4523                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4524         } else if (HAS_PCH_SPLIT(dev_priv)) {
4525                 dev->driver->irq_handler = ironlake_irq_handler;
4526                 dev->driver->irq_preinstall = ironlake_irq_reset;
4527                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4528                 dev->driver->irq_uninstall = ironlake_irq_reset;
4529                 dev->driver->enable_vblank = ironlake_enable_vblank;
4530                 dev->driver->disable_vblank = ironlake_disable_vblank;
4531                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4532         } else {
4533                 if (IS_GEN2(dev_priv)) {
4534                         dev->driver->irq_preinstall = i8xx_irq_reset;
4535                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4536                         dev->driver->irq_handler = i8xx_irq_handler;
4537                         dev->driver->irq_uninstall = i8xx_irq_reset;
4538                         dev->driver->enable_vblank = i8xx_enable_vblank;
4539                         dev->driver->disable_vblank = i8xx_disable_vblank;
4540                 } else if (IS_GEN3(dev_priv)) {
4541                         dev->driver->irq_preinstall = i915_irq_reset;
4542                         dev->driver->irq_postinstall = i915_irq_postinstall;
4543                         dev->driver->irq_uninstall = i915_irq_reset;
4544                         dev->driver->irq_handler = i915_irq_handler;
4545                         dev->driver->enable_vblank = i8xx_enable_vblank;
4546                         dev->driver->disable_vblank = i8xx_disable_vblank;
4547                 } else {
4548                         dev->driver->irq_preinstall = i965_irq_reset;
4549                         dev->driver->irq_postinstall = i965_irq_postinstall;
4550                         dev->driver->irq_uninstall = i965_irq_reset;
4551                         dev->driver->irq_handler = i965_irq_handler;
4552                         dev->driver->enable_vblank = i965_enable_vblank;
4553                         dev->driver->disable_vblank = i965_disable_vblank;
4554                 }
4555                 if (I915_HAS_HOTPLUG(dev_priv))
4556                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4557         }
4558 }
4559
4560 /**
4561  * intel_irq_fini - deinitializes IRQ support
4562  * @i915: i915 device instance
4563  *
4564  * This function deinitializes all the IRQ support.
4565  */
4566 void intel_irq_fini(struct drm_i915_private *i915)
4567 {
4568         int i;
4569
4570         for (i = 0; i < MAX_L3_SLICES; ++i)
4571                 kfree(i915->l3_parity.remap_info[i]);
4572 }
4573
4574 /**
4575  * intel_irq_install - enables the hardware interrupt
4576  * @dev_priv: i915 device instance
4577  *
4578  * This function enables the hardware interrupt handling, but leaves the hotplug
4579  * handling still disabled. It is called after intel_irq_init().
4580  *
4581  * In the driver load and resume code we need working interrupts in a few places
4582  * but don't want to deal with the hassle of concurrent probe and hotplug
4583  * workers. Hence the split into this two-stage approach.
4584  */
4585 int intel_irq_install(struct drm_i915_private *dev_priv)
4586 {
4587         /*
4588          * We enable some interrupt sources in our postinstall hooks, so mark
4589          * interrupts as enabled _before_ actually enabling them to avoid
4590          * special cases in our ordering checks.
4591          */
4592         dev_priv->runtime_pm.irqs_enabled = true;
4593
4594         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4595 }
4596
4597 /**
4598  * intel_irq_uninstall - finilizes all irq handling
4599  * @dev_priv: i915 device instance
4600  *
4601  * This stops interrupt and hotplug handling and unregisters and frees all
4602  * resources acquired in the init functions.
4603  */
4604 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4605 {
4606         drm_irq_uninstall(&dev_priv->drm);
4607         intel_hpd_cancel_work(dev_priv);
4608         dev_priv->runtime_pm.irqs_enabled = false;
4609 }
4610
4611 /**
4612  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4613  * @dev_priv: i915 device instance
4614  *
4615  * This function is used to disable interrupts at runtime, both in the runtime
4616  * pm and the system suspend/resume code.
4617  */
4618 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4619 {
4620         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4621         dev_priv->runtime_pm.irqs_enabled = false;
4622         synchronize_irq(dev_priv->drm.irq);
4623 }
4624
4625 /**
4626  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4627  * @dev_priv: i915 device instance
4628  *
4629  * This function is used to enable interrupts at runtime, both in the runtime
4630  * pm and the system suspend/resume code.
4631  */
4632 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4633 {
4634         dev_priv->runtime_pm.irqs_enabled = true;
4635         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4636         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4637 }