Merge tag 'hisi-fixes-for-4.14' of git://github.com/hisilicon/linux-hisi into next...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395                 return;
396
397         spin_lock_irq(&dev_priv->irq_lock);
398         dev_priv->rps.interrupts_enabled = false;
399
400         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404         spin_unlock_irq(&dev_priv->irq_lock);
405         synchronize_irq(dev_priv->drm.irq);
406
407         /* Now that we will not be generating any more work, flush any
408          * outsanding tasks. As we are called on the RPS idle path,
409          * we will reset the GPU to minimum frequencies, so the current
410          * state of the worker can be discarded.
411          */
412         cancel_work_sync(&dev_priv->rps.work);
413         gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418         spin_lock_irq(&dev_priv->irq_lock);
419         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420         spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425         spin_lock_irq(&dev_priv->irq_lock);
426         if (!dev_priv->guc.interrupts_enabled) {
427                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428                                        dev_priv->pm_guc_events);
429                 dev_priv->guc.interrupts_enabled = true;
430                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431         }
432         spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437         spin_lock_irq(&dev_priv->irq_lock);
438         dev_priv->guc.interrupts_enabled = false;
439
440         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442         spin_unlock_irq(&dev_priv->irq_lock);
443         synchronize_irq(dev_priv->drm.irq);
444
445         gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455                                 uint32_t interrupt_mask,
456                                 uint32_t enabled_irq_mask)
457 {
458         uint32_t new_val;
459         uint32_t old_val;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470         new_val = old_val;
471         new_val &= ~interrupt_mask;
472         new_val |= (~enabled_irq_mask & interrupt_mask);
473
474         if (new_val != old_val) {
475                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476                 POSTING_READ(GEN8_DE_PORT_IMR);
477         }
478 }
479
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488                          enum pipe pipe,
489                          uint32_t interrupt_mask,
490                          uint32_t enabled_irq_mask)
491 {
492         uint32_t new_val;
493
494         lockdep_assert_held(&dev_priv->irq_lock);
495
496         WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499                 return;
500
501         new_val = dev_priv->de_irq_mask[pipe];
502         new_val &= ~interrupt_mask;
503         new_val |= (~enabled_irq_mask & interrupt_mask);
504
505         if (new_val != dev_priv->de_irq_mask[pipe]) {
506                 dev_priv->de_irq_mask[pipe] = new_val;
507                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509         }
510 }
511
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519                                   uint32_t interrupt_mask,
520                                   uint32_t enabled_irq_mask)
521 {
522         uint32_t sdeimr = I915_READ(SDEIMR);
523         sdeimr &= ~interrupt_mask;
524         sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526         WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528         lockdep_assert_held(&dev_priv->irq_lock);
529
530         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531                 return;
532
533         I915_WRITE(SDEIMR, sdeimr);
534         POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539                        u32 enable_mask, u32 status_mask)
540 {
541         i915_reg_t reg = PIPESTAT(pipe);
542         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544         lockdep_assert_held(&dev_priv->irq_lock);
545         WARN_ON(!intel_irqs_enabled(dev_priv));
546
547         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
549                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550                       pipe_name(pipe), enable_mask, status_mask))
551                 return;
552
553         if ((pipestat & enable_mask) == enable_mask)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558         /* Enable the interrupt, clear any pending status */
559         pipestat |= enable_mask | status_mask;
560         I915_WRITE(reg, pipestat);
561         POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566                         u32 enable_mask, u32 status_mask)
567 {
568         i915_reg_t reg = PIPESTAT(pipe);
569         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572         WARN_ON(!intel_irqs_enabled(dev_priv));
573
574         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
576                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577                       pipe_name(pipe), enable_mask, status_mask))
578                 return;
579
580         if ((pipestat & enable_mask) == 0)
581                 return;
582
583         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585         pipestat &= ~enable_mask;
586         I915_WRITE(reg, pipestat);
587         POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592         u32 enable_mask = status_mask << 16;
593
594         /*
595          * On pipe A we don't support the PSR interrupt yet,
596          * on pipe B and C the same bit MBZ.
597          */
598         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599                 return 0;
600         /*
601          * On pipe B and C we don't support the PSR interrupt yet, on pipe
602          * A the same bit is for perf counters which we don't use either.
603          */
604         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605                 return 0;
606
607         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608                          SPRITE0_FLIP_DONE_INT_EN_VLV |
609                          SPRITE1_FLIP_DONE_INT_EN_VLV);
610         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615         return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620                      u32 status_mask)
621 {
622         u32 enable_mask;
623
624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626                                                            status_mask);
627         else
628                 enable_mask = status_mask << 16;
629         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634                       u32 status_mask)
635 {
636         u32 enable_mask;
637
638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640                                                            status_mask);
641         else
642                 enable_mask = status_mask << 16;
643         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653                 return;
654
655         spin_lock_irq(&dev_priv->irq_lock);
656
657         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658         if (INTEL_GEN(dev_priv) >= 4)
659                 i915_enable_pipestat(dev_priv, PIPE_A,
660                                      PIPE_LEGACY_BLC_EVENT_STATUS);
661
662         spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t high_frame, low_frame;
722         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724         unsigned long irqflags;
725
726         htotal = mode->crtc_htotal;
727         hsync_start = mode->crtc_hsync_start;
728         vbl_start = mode->crtc_vblank_start;
729         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732         /* Convert to pixel count */
733         vbl_start *= htotal;
734
735         /* Start of vblank event occurs at start of hsync */
736         vbl_start -= htotal - hsync_start;
737
738         high_frame = PIPEFRAME(pipe);
739         low_frame = PIPEFRAMEPIXEL(pipe);
740
741         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743         /*
744          * High & low register fields aren't synchronized, so make sure
745          * we get a low value that's stable across two reads of the high
746          * register.
747          */
748         do {
749                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750                 low   = I915_READ_FW(low_frame);
751                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752         } while (high1 != high2);
753
754         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756         high1 >>= PIPE_FRAME_HIGH_SHIFT;
757         pixel = low & PIPE_PIXEL_MASK;
758         low >>= PIPE_FRAME_LOW_SHIFT;
759
760         /*
761          * The frame counter increments at beginning of active.
762          * Cook up a vblank counter by also checking the pixel
763          * counter against vblank start.
764          */
765         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770         struct drm_i915_private *dev_priv = to_i915(dev);
771
772         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778         struct drm_device *dev = crtc->base.dev;
779         struct drm_i915_private *dev_priv = to_i915(dev);
780         const struct drm_display_mode *mode;
781         struct drm_vblank_crtc *vblank;
782         enum pipe pipe = crtc->pipe;
783         int position, vtotal;
784
785         if (!crtc->active)
786                 return -1;
787
788         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789         mode = &vblank->hwmode;
790
791         vtotal = mode->crtc_vtotal;
792         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793                 vtotal /= 2;
794
795         if (IS_GEN2(dev_priv))
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797         else
798                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800         /*
801          * On HSW, the DSL reg (0x70000) appears to return 0 if we
802          * read it just before the start of vblank.  So try it again
803          * so we don't accidentally end up spanning a vblank frame
804          * increment, causing the pipe_update_end() code to squak at us.
805          *
806          * The nature of this problem means we can't simply check the ISR
807          * bit and return the vblank start value; nor can we use the scanline
808          * debug register in the transcoder as it appears to have the same
809          * problem.  We may need to extend this to include other platforms,
810          * but so far testing only shows the problem on HSW.
811          */
812         if (HAS_DDI(dev_priv) && !position) {
813                 int i, temp;
814
815                 for (i = 0; i < 100; i++) {
816                         udelay(1);
817                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818                         if (temp != position) {
819                                 position = temp;
820                                 break;
821                         }
822                 }
823         }
824
825         /*
826          * See update_scanline_offset() for the details on the
827          * scanline_offset adjustment.
828          */
829         return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833                                      bool in_vblank_irq, int *vpos, int *hpos,
834                                      ktime_t *stime, ktime_t *etime,
835                                      const struct drm_display_mode *mode)
836 {
837         struct drm_i915_private *dev_priv = to_i915(dev);
838         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839                                                                 pipe);
840         int position;
841         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842         bool in_vbl = true;
843         unsigned long irqflags;
844
845         if (WARN_ON(!mode->crtc_clock)) {
846                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847                                  "pipe %c\n", pipe_name(pipe));
848                 return false;
849         }
850
851         htotal = mode->crtc_htotal;
852         hsync_start = mode->crtc_hsync_start;
853         vtotal = mode->crtc_vtotal;
854         vbl_start = mode->crtc_vblank_start;
855         vbl_end = mode->crtc_vblank_end;
856
857         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859                 vbl_end /= 2;
860                 vtotal /= 2;
861         }
862
863         /*
864          * Lock uncore.lock, as we will do multiple timing critical raw
865          * register reads, potentially with preemption disabled, so the
866          * following code must not block on uncore.lock.
867          */
868         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872         /* Get optional system timestamp before query. */
873         if (stime)
874                 *stime = ktime_get();
875
876         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877                 /* No obvious pixelcount register. Only query vertical
878                  * scanout position from Display scan line register.
879                  */
880                 position = __intel_get_crtc_scanline(intel_crtc);
881         } else {
882                 /* Have access to pixelcount since start of frame.
883                  * We can split this into vertical and horizontal
884                  * scanout position.
885                  */
886                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888                 /* convert to pixel counts */
889                 vbl_start *= htotal;
890                 vbl_end *= htotal;
891                 vtotal *= htotal;
892
893                 /*
894                  * In interlaced modes, the pixel counter counts all pixels,
895                  * so one field will have htotal more pixels. In order to avoid
896                  * the reported position from jumping backwards when the pixel
897                  * counter is beyond the length of the shorter field, just
898                  * clamp the position the length of the shorter field. This
899                  * matches how the scanline counter based position works since
900                  * the scanline counter doesn't count the two half lines.
901                  */
902                 if (position >= vtotal)
903                         position = vtotal - 1;
904
905                 /*
906                  * Start of vblank interrupt is triggered at start of hsync,
907                  * just prior to the first active line of vblank. However we
908                  * consider lines to start at the leading edge of horizontal
909                  * active. So, should we get here before we've crossed into
910                  * the horizontal active of the first line in vblank, we would
911                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912                  * always add htotal-hsync_start to the current pixel position.
913                  */
914                 position = (position + htotal - hsync_start) % vtotal;
915         }
916
917         /* Get optional system timestamp after query. */
918         if (etime)
919                 *etime = ktime_get();
920
921         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         in_vbl = position >= vbl_start && position < vbl_end;
926
927         /*
928          * While in vblank, position will be negative
929          * counting up towards 0 at vbl_end. And outside
930          * vblank, position will be positive counting
931          * up since vbl_end.
932          */
933         if (position >= vbl_start)
934                 position -= vbl_end;
935         else
936                 position += vtotal - vbl_end;
937
938         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939                 *vpos = position;
940                 *hpos = 0;
941         } else {
942                 *vpos = position / htotal;
943                 *hpos = position - (*vpos * htotal);
944         }
945
946         return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952         unsigned long irqflags;
953         int position;
954
955         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956         position = __intel_get_crtc_scanline(crtc);
957         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959         return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964         u32 busy_up, busy_down, max_avg, min_avg;
965         u8 new_delay;
966
967         spin_lock(&mchdev_lock);
968
969         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971         new_delay = dev_priv->ips.cur_delay;
972
973         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974         busy_up = I915_READ(RCPREVBSYTUPAVG);
975         busy_down = I915_READ(RCPREVBSYTDNAVG);
976         max_avg = I915_READ(RCBMAXAVG);
977         min_avg = I915_READ(RCBMINAVG);
978
979         /* Handle RCS change request from hw */
980         if (busy_up > max_avg) {
981                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982                         new_delay = dev_priv->ips.cur_delay - 1;
983                 if (new_delay < dev_priv->ips.max_delay)
984                         new_delay = dev_priv->ips.max_delay;
985         } else if (busy_down < min_avg) {
986                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987                         new_delay = dev_priv->ips.cur_delay + 1;
988                 if (new_delay > dev_priv->ips.min_delay)
989                         new_delay = dev_priv->ips.min_delay;
990         }
991
992         if (ironlake_set_drps(dev_priv, new_delay))
993                 dev_priv->ips.cur_delay = new_delay;
994
995         spin_unlock(&mchdev_lock);
996
997         return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002         struct drm_i915_gem_request *rq = NULL;
1003         struct intel_wait *wait;
1004
1005         atomic_inc(&engine->irq_count);
1006         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008         spin_lock(&engine->breadcrumbs.irq_lock);
1009         wait = engine->breadcrumbs.irq_wait;
1010         if (wait) {
1011                 /* We use a callback from the dma-fence to submit
1012                  * requests after waiting on our own requests. To
1013                  * ensure minimum delay in queuing the next request to
1014                  * hardware, signal the fence now rather than wait for
1015                  * the signaler to be woken up. We still wake up the
1016                  * waiter in order to handle the irq-seqno coherency
1017                  * issues (we may receive the interrupt before the
1018                  * seqno is written, see __i915_request_irq_complete())
1019                  * and to handle coalescing of multiple seqno updates
1020                  * and many waiters.
1021                  */
1022                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023                                       wait->seqno) &&
1024                     !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025                               &wait->request->fence.flags))
1026                         rq = i915_gem_request_get(wait->request);
1027
1028                 wake_up_process(wait->tsk);
1029         } else {
1030                 __intel_engine_disarm_breadcrumbs(engine);
1031         }
1032         spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034         if (rq) {
1035                 dma_fence_signal(&rq->fence);
1036                 i915_gem_request_put(rq);
1037         }
1038
1039         trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043                         struct intel_rps_ei *ei)
1044 {
1045         ei->ktime = ktime_get_raw();
1046         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058         struct intel_rps_ei now;
1059         u32 events = 0;
1060
1061         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062                 return 0;
1063
1064         vlv_c0_read(dev_priv, &now);
1065
1066         if (prev->ktime) {
1067                 u64 time, c0;
1068                 u32 render, media;
1069
1070                 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072                 time *= dev_priv->czclk_freq;
1073
1074                 /* Workload can be split between render + media,
1075                  * e.g. SwapBuffers being blitted in X after being rendered in
1076                  * mesa. To account for this we need to combine both engines
1077                  * into our activity counter.
1078                  */
1079                 render = now.render_c0 - prev->render_c0;
1080                 media = now.media_c0 - prev->media_c0;
1081                 c0 = max(render, media);
1082                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084                 if (c0 > time * dev_priv->rps.up_threshold)
1085                         events = GEN6_PM_RP_UP_THRESHOLD;
1086                 else if (c0 < time * dev_priv->rps.down_threshold)
1087                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1088         }
1089
1090         dev_priv->rps.ei = now;
1091         return events;
1092 }
1093
1094 static bool any_waiters(struct drm_i915_private *dev_priv)
1095 {
1096         struct intel_engine_cs *engine;
1097         enum intel_engine_id id;
1098
1099         for_each_engine(engine, dev_priv, id)
1100                 if (intel_engine_has_waiter(engine))
1101                         return true;
1102
1103         return false;
1104 }
1105
1106 static void gen6_pm_rps_work(struct work_struct *work)
1107 {
1108         struct drm_i915_private *dev_priv =
1109                 container_of(work, struct drm_i915_private, rps.work);
1110         bool client_boost = false;
1111         int new_delay, adj, min, max;
1112         u32 pm_iir = 0;
1113
1114         spin_lock_irq(&dev_priv->irq_lock);
1115         if (dev_priv->rps.interrupts_enabled) {
1116                 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1117                 client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1118         }
1119         spin_unlock_irq(&dev_priv->irq_lock);
1120
1121         /* Make sure we didn't queue anything we're not going to process. */
1122         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1123         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1124                 goto out;
1125
1126         mutex_lock(&dev_priv->rps.hw_lock);
1127
1128         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1129
1130         adj = dev_priv->rps.last_adj;
1131         new_delay = dev_priv->rps.cur_freq;
1132         min = dev_priv->rps.min_freq_softlimit;
1133         max = dev_priv->rps.max_freq_softlimit;
1134         if (client_boost || any_waiters(dev_priv))
1135                 max = dev_priv->rps.max_freq;
1136         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1137                 new_delay = dev_priv->rps.boost_freq;
1138                 adj = 0;
1139         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1140                 if (adj > 0)
1141                         adj *= 2;
1142                 else /* CHV needs even encode values */
1143                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1144
1145                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1146                         adj = 0;
1147         } else if (client_boost || any_waiters(dev_priv)) {
1148                 adj = 0;
1149         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1150                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1151                         new_delay = dev_priv->rps.efficient_freq;
1152                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1153                         new_delay = dev_priv->rps.min_freq_softlimit;
1154                 adj = 0;
1155         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1156                 if (adj < 0)
1157                         adj *= 2;
1158                 else /* CHV needs even encode values */
1159                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1160
1161                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1162                         adj = 0;
1163         } else { /* unknown event */
1164                 adj = 0;
1165         }
1166
1167         dev_priv->rps.last_adj = adj;
1168
1169         /* sysfs frequency interfaces may have snuck in while servicing the
1170          * interrupt
1171          */
1172         new_delay += adj;
1173         new_delay = clamp_t(int, new_delay, min, max);
1174
1175         if (intel_set_rps(dev_priv, new_delay)) {
1176                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1177                 dev_priv->rps.last_adj = 0;
1178         }
1179
1180         mutex_unlock(&dev_priv->rps.hw_lock);
1181
1182 out:
1183         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1184         spin_lock_irq(&dev_priv->irq_lock);
1185         if (dev_priv->rps.interrupts_enabled)
1186                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1187         spin_unlock_irq(&dev_priv->irq_lock);
1188 }
1189
1190
1191 /**
1192  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1193  * occurred.
1194  * @work: workqueue struct
1195  *
1196  * Doesn't actually do anything except notify userspace. As a consequence of
1197  * this event, userspace should try to remap the bad rows since statistically
1198  * it is likely the same row is more likely to go bad again.
1199  */
1200 static void ivybridge_parity_work(struct work_struct *work)
1201 {
1202         struct drm_i915_private *dev_priv =
1203                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1204         u32 error_status, row, bank, subbank;
1205         char *parity_event[6];
1206         uint32_t misccpctl;
1207         uint8_t slice = 0;
1208
1209         /* We must turn off DOP level clock gating to access the L3 registers.
1210          * In order to prevent a get/put style interface, acquire struct mutex
1211          * any time we access those registers.
1212          */
1213         mutex_lock(&dev_priv->drm.struct_mutex);
1214
1215         /* If we've screwed up tracking, just let the interrupt fire again */
1216         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1217                 goto out;
1218
1219         misccpctl = I915_READ(GEN7_MISCCPCTL);
1220         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1221         POSTING_READ(GEN7_MISCCPCTL);
1222
1223         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1224                 i915_reg_t reg;
1225
1226                 slice--;
1227                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1228                         break;
1229
1230                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1231
1232                 reg = GEN7_L3CDERRST1(slice);
1233
1234                 error_status = I915_READ(reg);
1235                 row = GEN7_PARITY_ERROR_ROW(error_status);
1236                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1237                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1238
1239                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1240                 POSTING_READ(reg);
1241
1242                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1243                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1244                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1245                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1246                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1247                 parity_event[5] = NULL;
1248
1249                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1250                                    KOBJ_CHANGE, parity_event);
1251
1252                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1253                           slice, row, bank, subbank);
1254
1255                 kfree(parity_event[4]);
1256                 kfree(parity_event[3]);
1257                 kfree(parity_event[2]);
1258                 kfree(parity_event[1]);
1259         }
1260
1261         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1262
1263 out:
1264         WARN_ON(dev_priv->l3_parity.which_slice);
1265         spin_lock_irq(&dev_priv->irq_lock);
1266         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1267         spin_unlock_irq(&dev_priv->irq_lock);
1268
1269         mutex_unlock(&dev_priv->drm.struct_mutex);
1270 }
1271
1272 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1273                                                u32 iir)
1274 {
1275         if (!HAS_L3_DPF(dev_priv))
1276                 return;
1277
1278         spin_lock(&dev_priv->irq_lock);
1279         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1280         spin_unlock(&dev_priv->irq_lock);
1281
1282         iir &= GT_PARITY_ERROR(dev_priv);
1283         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1284                 dev_priv->l3_parity.which_slice |= 1 << 1;
1285
1286         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1287                 dev_priv->l3_parity.which_slice |= 1 << 0;
1288
1289         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1290 }
1291
1292 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1293                                u32 gt_iir)
1294 {
1295         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1296                 notify_ring(dev_priv->engine[RCS]);
1297         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1298                 notify_ring(dev_priv->engine[VCS]);
1299 }
1300
1301 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1302                                u32 gt_iir)
1303 {
1304         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1305                 notify_ring(dev_priv->engine[RCS]);
1306         if (gt_iir & GT_BSD_USER_INTERRUPT)
1307                 notify_ring(dev_priv->engine[VCS]);
1308         if (gt_iir & GT_BLT_USER_INTERRUPT)
1309                 notify_ring(dev_priv->engine[BCS]);
1310
1311         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1312                       GT_BSD_CS_ERROR_INTERRUPT |
1313                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1314                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1315
1316         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1317                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1318 }
1319
1320 static void
1321 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1322 {
1323         bool tasklet = false;
1324
1325         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1326                 if (port_count(&engine->execlist_port[0])) {
1327                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1328                         tasklet = true;
1329                 }
1330         }
1331
1332         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1333                 notify_ring(engine);
1334                 tasklet |= i915.enable_guc_submission;
1335         }
1336
1337         if (tasklet)
1338                 tasklet_hi_schedule(&engine->irq_tasklet);
1339 }
1340
1341 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1342                                    u32 master_ctl,
1343                                    u32 gt_iir[4])
1344 {
1345         irqreturn_t ret = IRQ_NONE;
1346
1347         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1348                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1349                 if (gt_iir[0]) {
1350                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1351                         ret = IRQ_HANDLED;
1352                 } else
1353                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1354         }
1355
1356         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1357                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1358                 if (gt_iir[1]) {
1359                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1360                         ret = IRQ_HANDLED;
1361                 } else
1362                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363         }
1364
1365         if (master_ctl & GEN8_GT_VECS_IRQ) {
1366                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1367                 if (gt_iir[3]) {
1368                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1369                         ret = IRQ_HANDLED;
1370                 } else
1371                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1372         }
1373
1374         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1375                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1376                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1377                                  dev_priv->pm_guc_events)) {
1378                         I915_WRITE_FW(GEN8_GT_IIR(2),
1379                                       gt_iir[2] & (dev_priv->pm_rps_events |
1380                                                    dev_priv->pm_guc_events));
1381                         ret = IRQ_HANDLED;
1382                 } else
1383                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1384         }
1385
1386         return ret;
1387 }
1388
1389 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1390                                 u32 gt_iir[4])
1391 {
1392         if (gt_iir[0]) {
1393                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1394                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1395                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1396                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1397         }
1398
1399         if (gt_iir[1]) {
1400                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1401                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1402                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1403                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1404         }
1405
1406         if (gt_iir[3])
1407                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1408                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1409
1410         if (gt_iir[2] & dev_priv->pm_rps_events)
1411                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1412
1413         if (gt_iir[2] & dev_priv->pm_guc_events)
1414                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1415 }
1416
1417 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1418 {
1419         switch (port) {
1420         case PORT_A:
1421                 return val & PORTA_HOTPLUG_LONG_DETECT;
1422         case PORT_B:
1423                 return val & PORTB_HOTPLUG_LONG_DETECT;
1424         case PORT_C:
1425                 return val & PORTC_HOTPLUG_LONG_DETECT;
1426         default:
1427                 return false;
1428         }
1429 }
1430
1431 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1432 {
1433         switch (port) {
1434         case PORT_E:
1435                 return val & PORTE_HOTPLUG_LONG_DETECT;
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443         switch (port) {
1444         case PORT_A:
1445                 return val & PORTA_HOTPLUG_LONG_DETECT;
1446         case PORT_B:
1447                 return val & PORTB_HOTPLUG_LONG_DETECT;
1448         case PORT_C:
1449                 return val & PORTC_HOTPLUG_LONG_DETECT;
1450         case PORT_D:
1451                 return val & PORTD_HOTPLUG_LONG_DETECT;
1452         default:
1453                 return false;
1454         }
1455 }
1456
1457 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1458 {
1459         switch (port) {
1460         case PORT_A:
1461                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1462         default:
1463                 return false;
1464         }
1465 }
1466
1467 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1468 {
1469         switch (port) {
1470         case PORT_B:
1471                 return val & PORTB_HOTPLUG_LONG_DETECT;
1472         case PORT_C:
1473                 return val & PORTC_HOTPLUG_LONG_DETECT;
1474         case PORT_D:
1475                 return val & PORTD_HOTPLUG_LONG_DETECT;
1476         default:
1477                 return false;
1478         }
1479 }
1480
1481 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1482 {
1483         switch (port) {
1484         case PORT_B:
1485                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1486         case PORT_C:
1487                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1488         case PORT_D:
1489                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1490         default:
1491                 return false;
1492         }
1493 }
1494
1495 /*
1496  * Get a bit mask of pins that have triggered, and which ones may be long.
1497  * This can be called multiple times with the same masks to accumulate
1498  * hotplug detection results from several registers.
1499  *
1500  * Note that the caller is expected to zero out the masks initially.
1501  */
1502 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1503                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1504                              const u32 hpd[HPD_NUM_PINS],
1505                              bool long_pulse_detect(enum port port, u32 val))
1506 {
1507         enum port port;
1508         int i;
1509
1510         for_each_hpd_pin(i) {
1511                 if ((hpd[i] & hotplug_trigger) == 0)
1512                         continue;
1513
1514                 *pin_mask |= BIT(i);
1515
1516                 if (!intel_hpd_pin_to_port(i, &port))
1517                         continue;
1518
1519                 if (long_pulse_detect(port, dig_hotplug_reg))
1520                         *long_mask |= BIT(i);
1521         }
1522
1523         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1524                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1525
1526 }
1527
1528 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1529 {
1530         wake_up_all(&dev_priv->gmbus_wait_queue);
1531 }
1532
1533 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1534 {
1535         wake_up_all(&dev_priv->gmbus_wait_queue);
1536 }
1537
1538 #if defined(CONFIG_DEBUG_FS)
1539 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1540                                          enum pipe pipe,
1541                                          uint32_t crc0, uint32_t crc1,
1542                                          uint32_t crc2, uint32_t crc3,
1543                                          uint32_t crc4)
1544 {
1545         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1546         struct intel_pipe_crc_entry *entry;
1547         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1548         struct drm_driver *driver = dev_priv->drm.driver;
1549         uint32_t crcs[5];
1550         int head, tail;
1551
1552         spin_lock(&pipe_crc->lock);
1553         if (pipe_crc->source) {
1554                 if (!pipe_crc->entries) {
1555                         spin_unlock(&pipe_crc->lock);
1556                         DRM_DEBUG_KMS("spurious interrupt\n");
1557                         return;
1558                 }
1559
1560                 head = pipe_crc->head;
1561                 tail = pipe_crc->tail;
1562
1563                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564                         spin_unlock(&pipe_crc->lock);
1565                         DRM_ERROR("CRC buffer overflowing\n");
1566                         return;
1567                 }
1568
1569                 entry = &pipe_crc->entries[head];
1570
1571                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1572                 entry->crc[0] = crc0;
1573                 entry->crc[1] = crc1;
1574                 entry->crc[2] = crc2;
1575                 entry->crc[3] = crc3;
1576                 entry->crc[4] = crc4;
1577
1578                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579                 pipe_crc->head = head;
1580
1581                 spin_unlock(&pipe_crc->lock);
1582
1583                 wake_up_interruptible(&pipe_crc->wq);
1584         } else {
1585                 /*
1586                  * For some not yet identified reason, the first CRC is
1587                  * bonkers. So let's just wait for the next vblank and read
1588                  * out the buggy result.
1589                  *
1590                  * On CHV sometimes the second CRC is bonkers as well, so
1591                  * don't trust that one either.
1592                  */
1593                 if (pipe_crc->skipped == 0 ||
1594                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1595                         pipe_crc->skipped++;
1596                         spin_unlock(&pipe_crc->lock);
1597                         return;
1598                 }
1599                 spin_unlock(&pipe_crc->lock);
1600                 crcs[0] = crc0;
1601                 crcs[1] = crc1;
1602                 crcs[2] = crc2;
1603                 crcs[3] = crc3;
1604                 crcs[4] = crc4;
1605                 drm_crtc_add_crc_entry(&crtc->base, true,
1606                                        drm_accurate_vblank_count(&crtc->base),
1607                                        crcs);
1608         }
1609 }
1610 #else
1611 static inline void
1612 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1613                              enum pipe pipe,
1614                              uint32_t crc0, uint32_t crc1,
1615                              uint32_t crc2, uint32_t crc3,
1616                              uint32_t crc4) {}
1617 #endif
1618
1619
1620 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1621                                      enum pipe pipe)
1622 {
1623         display_pipe_crc_irq_handler(dev_priv, pipe,
1624                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1625                                      0, 0, 0, 0);
1626 }
1627
1628 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1629                                      enum pipe pipe)
1630 {
1631         display_pipe_crc_irq_handler(dev_priv, pipe,
1632                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1633                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1634                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1635                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1636                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1637 }
1638
1639 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1640                                       enum pipe pipe)
1641 {
1642         uint32_t res1, res2;
1643
1644         if (INTEL_GEN(dev_priv) >= 3)
1645                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1646         else
1647                 res1 = 0;
1648
1649         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1650                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1651         else
1652                 res2 = 0;
1653
1654         display_pipe_crc_irq_handler(dev_priv, pipe,
1655                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1656                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1657                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1658                                      res1, res2);
1659 }
1660
1661 /* The RPS events need forcewake, so we add them to a work queue and mask their
1662  * IMR bits until the work is done. Other interrupts can be processed without
1663  * the work queue. */
1664 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1665 {
1666         if (pm_iir & dev_priv->pm_rps_events) {
1667                 spin_lock(&dev_priv->irq_lock);
1668                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1669                 if (dev_priv->rps.interrupts_enabled) {
1670                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1671                         schedule_work(&dev_priv->rps.work);
1672                 }
1673                 spin_unlock(&dev_priv->irq_lock);
1674         }
1675
1676         if (INTEL_INFO(dev_priv)->gen >= 8)
1677                 return;
1678
1679         if (HAS_VEBOX(dev_priv)) {
1680                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1681                         notify_ring(dev_priv->engine[VECS]);
1682
1683                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1684                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1685         }
1686 }
1687
1688 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1689 {
1690         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1691                 /* Sample the log buffer flush related bits & clear them out now
1692                  * itself from the message identity register to minimize the
1693                  * probability of losing a flush interrupt, when there are back
1694                  * to back flush interrupts.
1695                  * There can be a new flush interrupt, for different log buffer
1696                  * type (like for ISR), whilst Host is handling one (for DPC).
1697                  * Since same bit is used in message register for ISR & DPC, it
1698                  * could happen that GuC sets the bit for 2nd interrupt but Host
1699                  * clears out the bit on handling the 1st interrupt.
1700                  */
1701                 u32 msg, flush;
1702
1703                 msg = I915_READ(SOFT_SCRATCH(15));
1704                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1705                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1706                 if (flush) {
1707                         /* Clear the message bits that are handled */
1708                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1709
1710                         /* Handle flush interrupt in bottom half */
1711                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1712                                    &dev_priv->guc.log.runtime.flush_work);
1713
1714                         dev_priv->guc.log.flush_interrupt_count++;
1715                 } else {
1716                         /* Not clearing of unhandled event bits won't result in
1717                          * re-triggering of the interrupt.
1718                          */
1719                 }
1720         }
1721 }
1722
1723 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1724                                      enum pipe pipe)
1725 {
1726         bool ret;
1727
1728         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1729         if (ret)
1730                 intel_finish_page_flip_mmio(dev_priv, pipe);
1731
1732         return ret;
1733 }
1734
1735 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1736                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1737 {
1738         int pipe;
1739
1740         spin_lock(&dev_priv->irq_lock);
1741
1742         if (!dev_priv->display_irqs_enabled) {
1743                 spin_unlock(&dev_priv->irq_lock);
1744                 return;
1745         }
1746
1747         for_each_pipe(dev_priv, pipe) {
1748                 i915_reg_t reg;
1749                 u32 mask, iir_bit = 0;
1750
1751                 /*
1752                  * PIPESTAT bits get signalled even when the interrupt is
1753                  * disabled with the mask bits, and some of the status bits do
1754                  * not generate interrupts at all (like the underrun bit). Hence
1755                  * we need to be careful that we only handle what we want to
1756                  * handle.
1757                  */
1758
1759                 /* fifo underruns are filterered in the underrun handler. */
1760                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1761
1762                 switch (pipe) {
1763                 case PIPE_A:
1764                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1765                         break;
1766                 case PIPE_B:
1767                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1768                         break;
1769                 case PIPE_C:
1770                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1771                         break;
1772                 }
1773                 if (iir & iir_bit)
1774                         mask |= dev_priv->pipestat_irq_mask[pipe];
1775
1776                 if (!mask)
1777                         continue;
1778
1779                 reg = PIPESTAT(pipe);
1780                 mask |= PIPESTAT_INT_ENABLE_MASK;
1781                 pipe_stats[pipe] = I915_READ(reg) & mask;
1782
1783                 /*
1784                  * Clear the PIPE*STAT regs before the IIR
1785                  */
1786                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1787                                         PIPESTAT_INT_STATUS_MASK))
1788                         I915_WRITE(reg, pipe_stats[pipe]);
1789         }
1790         spin_unlock(&dev_priv->irq_lock);
1791 }
1792
1793 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1794                                             u32 pipe_stats[I915_MAX_PIPES])
1795 {
1796         enum pipe pipe;
1797
1798         for_each_pipe(dev_priv, pipe) {
1799                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1800                     intel_pipe_handle_vblank(dev_priv, pipe))
1801                         intel_check_page_flip(dev_priv, pipe);
1802
1803                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1804                         intel_finish_page_flip_cs(dev_priv, pipe);
1805
1806                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1807                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1808
1809                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1810                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1811         }
1812
1813         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1814                 gmbus_irq_handler(dev_priv);
1815 }
1816
1817 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1818 {
1819         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1820
1821         if (hotplug_status)
1822                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1823
1824         return hotplug_status;
1825 }
1826
1827 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1828                                  u32 hotplug_status)
1829 {
1830         u32 pin_mask = 0, long_mask = 0;
1831
1832         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1833             IS_CHERRYVIEW(dev_priv)) {
1834                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1835
1836                 if (hotplug_trigger) {
1837                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1838                                            hotplug_trigger, hpd_status_g4x,
1839                                            i9xx_port_hotplug_long_detect);
1840
1841                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1842                 }
1843
1844                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1845                         dp_aux_irq_handler(dev_priv);
1846         } else {
1847                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1848
1849                 if (hotplug_trigger) {
1850                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1851                                            hotplug_trigger, hpd_status_i915,
1852                                            i9xx_port_hotplug_long_detect);
1853                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1854                 }
1855         }
1856 }
1857
1858 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1859 {
1860         struct drm_device *dev = arg;
1861         struct drm_i915_private *dev_priv = to_i915(dev);
1862         irqreturn_t ret = IRQ_NONE;
1863
1864         if (!intel_irqs_enabled(dev_priv))
1865                 return IRQ_NONE;
1866
1867         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1868         disable_rpm_wakeref_asserts(dev_priv);
1869
1870         do {
1871                 u32 iir, gt_iir, pm_iir;
1872                 u32 pipe_stats[I915_MAX_PIPES] = {};
1873                 u32 hotplug_status = 0;
1874                 u32 ier = 0;
1875
1876                 gt_iir = I915_READ(GTIIR);
1877                 pm_iir = I915_READ(GEN6_PMIIR);
1878                 iir = I915_READ(VLV_IIR);
1879
1880                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1881                         break;
1882
1883                 ret = IRQ_HANDLED;
1884
1885                 /*
1886                  * Theory on interrupt generation, based on empirical evidence:
1887                  *
1888                  * x = ((VLV_IIR & VLV_IER) ||
1889                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1890                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1891                  *
1892                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1893                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1894                  * guarantee the CPU interrupt will be raised again even if we
1895                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1896                  * bits this time around.
1897                  */
1898                 I915_WRITE(VLV_MASTER_IER, 0);
1899                 ier = I915_READ(VLV_IER);
1900                 I915_WRITE(VLV_IER, 0);
1901
1902                 if (gt_iir)
1903                         I915_WRITE(GTIIR, gt_iir);
1904                 if (pm_iir)
1905                         I915_WRITE(GEN6_PMIIR, pm_iir);
1906
1907                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1908                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1909
1910                 /* Call regardless, as some status bits might not be
1911                  * signalled in iir */
1912                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1913
1914                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1915                            I915_LPE_PIPE_B_INTERRUPT))
1916                         intel_lpe_audio_irq_handler(dev_priv);
1917
1918                 /*
1919                  * VLV_IIR is single buffered, and reflects the level
1920                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1921                  */
1922                 if (iir)
1923                         I915_WRITE(VLV_IIR, iir);
1924
1925                 I915_WRITE(VLV_IER, ier);
1926                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1927                 POSTING_READ(VLV_MASTER_IER);
1928
1929                 if (gt_iir)
1930                         snb_gt_irq_handler(dev_priv, gt_iir);
1931                 if (pm_iir)
1932                         gen6_rps_irq_handler(dev_priv, pm_iir);
1933
1934                 if (hotplug_status)
1935                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1936
1937                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1938         } while (0);
1939
1940         enable_rpm_wakeref_asserts(dev_priv);
1941
1942         return ret;
1943 }
1944
1945 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1946 {
1947         struct drm_device *dev = arg;
1948         struct drm_i915_private *dev_priv = to_i915(dev);
1949         irqreturn_t ret = IRQ_NONE;
1950
1951         if (!intel_irqs_enabled(dev_priv))
1952                 return IRQ_NONE;
1953
1954         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1955         disable_rpm_wakeref_asserts(dev_priv);
1956
1957         do {
1958                 u32 master_ctl, iir;
1959                 u32 gt_iir[4] = {};
1960                 u32 pipe_stats[I915_MAX_PIPES] = {};
1961                 u32 hotplug_status = 0;
1962                 u32 ier = 0;
1963
1964                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1965                 iir = I915_READ(VLV_IIR);
1966
1967                 if (master_ctl == 0 && iir == 0)
1968                         break;
1969
1970                 ret = IRQ_HANDLED;
1971
1972                 /*
1973                  * Theory on interrupt generation, based on empirical evidence:
1974                  *
1975                  * x = ((VLV_IIR & VLV_IER) ||
1976                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1977                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1978                  *
1979                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1980                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1981                  * guarantee the CPU interrupt will be raised again even if we
1982                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1983                  * bits this time around.
1984                  */
1985                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1986                 ier = I915_READ(VLV_IER);
1987                 I915_WRITE(VLV_IER, 0);
1988
1989                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1990
1991                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1992                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1993
1994                 /* Call regardless, as some status bits might not be
1995                  * signalled in iir */
1996                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1997
1998                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1999                            I915_LPE_PIPE_B_INTERRUPT |
2000                            I915_LPE_PIPE_C_INTERRUPT))
2001                         intel_lpe_audio_irq_handler(dev_priv);
2002
2003                 /*
2004                  * VLV_IIR is single buffered, and reflects the level
2005                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2006                  */
2007                 if (iir)
2008                         I915_WRITE(VLV_IIR, iir);
2009
2010                 I915_WRITE(VLV_IER, ier);
2011                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2012                 POSTING_READ(GEN8_MASTER_IRQ);
2013
2014                 gen8_gt_irq_handler(dev_priv, gt_iir);
2015
2016                 if (hotplug_status)
2017                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2018
2019                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2020         } while (0);
2021
2022         enable_rpm_wakeref_asserts(dev_priv);
2023
2024         return ret;
2025 }
2026
2027 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2028                                 u32 hotplug_trigger,
2029                                 const u32 hpd[HPD_NUM_PINS])
2030 {
2031         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2032
2033         /*
2034          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2035          * unless we touch the hotplug register, even if hotplug_trigger is
2036          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2037          * errors.
2038          */
2039         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2040         if (!hotplug_trigger) {
2041                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2042                         PORTD_HOTPLUG_STATUS_MASK |
2043                         PORTC_HOTPLUG_STATUS_MASK |
2044                         PORTB_HOTPLUG_STATUS_MASK;
2045                 dig_hotplug_reg &= ~mask;
2046         }
2047
2048         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2049         if (!hotplug_trigger)
2050                 return;
2051
2052         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2053                            dig_hotplug_reg, hpd,
2054                            pch_port_hotplug_long_detect);
2055
2056         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2057 }
2058
2059 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2060 {
2061         int pipe;
2062         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2063
2064         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2065
2066         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2067                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2068                                SDE_AUDIO_POWER_SHIFT);
2069                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2070                                  port_name(port));
2071         }
2072
2073         if (pch_iir & SDE_AUX_MASK)
2074                 dp_aux_irq_handler(dev_priv);
2075
2076         if (pch_iir & SDE_GMBUS)
2077                 gmbus_irq_handler(dev_priv);
2078
2079         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2080                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2081
2082         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2083                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2084
2085         if (pch_iir & SDE_POISON)
2086                 DRM_ERROR("PCH poison interrupt\n");
2087
2088         if (pch_iir & SDE_FDI_MASK)
2089                 for_each_pipe(dev_priv, pipe)
2090                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2091                                          pipe_name(pipe),
2092                                          I915_READ(FDI_RX_IIR(pipe)));
2093
2094         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2095                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2096
2097         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2098                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2099
2100         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2101                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2102
2103         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2104                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2105 }
2106
2107 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2108 {
2109         u32 err_int = I915_READ(GEN7_ERR_INT);
2110         enum pipe pipe;
2111
2112         if (err_int & ERR_INT_POISON)
2113                 DRM_ERROR("Poison interrupt\n");
2114
2115         for_each_pipe(dev_priv, pipe) {
2116                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2117                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2118
2119                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2120                         if (IS_IVYBRIDGE(dev_priv))
2121                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2122                         else
2123                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2124                 }
2125         }
2126
2127         I915_WRITE(GEN7_ERR_INT, err_int);
2128 }
2129
2130 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2131 {
2132         u32 serr_int = I915_READ(SERR_INT);
2133
2134         if (serr_int & SERR_INT_POISON)
2135                 DRM_ERROR("PCH poison interrupt\n");
2136
2137         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2138                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2139
2140         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2141                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2142
2143         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2144                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2145
2146         I915_WRITE(SERR_INT, serr_int);
2147 }
2148
2149 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2150 {
2151         int pipe;
2152         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2153
2154         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2155
2156         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2157                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2158                                SDE_AUDIO_POWER_SHIFT_CPT);
2159                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2160                                  port_name(port));
2161         }
2162
2163         if (pch_iir & SDE_AUX_MASK_CPT)
2164                 dp_aux_irq_handler(dev_priv);
2165
2166         if (pch_iir & SDE_GMBUS_CPT)
2167                 gmbus_irq_handler(dev_priv);
2168
2169         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2170                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2171
2172         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2173                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2174
2175         if (pch_iir & SDE_FDI_MASK_CPT)
2176                 for_each_pipe(dev_priv, pipe)
2177                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2178                                          pipe_name(pipe),
2179                                          I915_READ(FDI_RX_IIR(pipe)));
2180
2181         if (pch_iir & SDE_ERROR_CPT)
2182                 cpt_serr_int_handler(dev_priv);
2183 }
2184
2185 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2186 {
2187         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2188                 ~SDE_PORTE_HOTPLUG_SPT;
2189         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2190         u32 pin_mask = 0, long_mask = 0;
2191
2192         if (hotplug_trigger) {
2193                 u32 dig_hotplug_reg;
2194
2195                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2196                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2197
2198                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2199                                    dig_hotplug_reg, hpd_spt,
2200                                    spt_port_hotplug_long_detect);
2201         }
2202
2203         if (hotplug2_trigger) {
2204                 u32 dig_hotplug_reg;
2205
2206                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2207                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2208
2209                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2210                                    dig_hotplug_reg, hpd_spt,
2211                                    spt_port_hotplug2_long_detect);
2212         }
2213
2214         if (pin_mask)
2215                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2216
2217         if (pch_iir & SDE_GMBUS_CPT)
2218                 gmbus_irq_handler(dev_priv);
2219 }
2220
2221 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2222                                 u32 hotplug_trigger,
2223                                 const u32 hpd[HPD_NUM_PINS])
2224 {
2225         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2226
2227         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2228         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2229
2230         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2231                            dig_hotplug_reg, hpd,
2232                            ilk_port_hotplug_long_detect);
2233
2234         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2235 }
2236
2237 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2238                                     u32 de_iir)
2239 {
2240         enum pipe pipe;
2241         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2242
2243         if (hotplug_trigger)
2244                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2245
2246         if (de_iir & DE_AUX_CHANNEL_A)
2247                 dp_aux_irq_handler(dev_priv);
2248
2249         if (de_iir & DE_GSE)
2250                 intel_opregion_asle_intr(dev_priv);
2251
2252         if (de_iir & DE_POISON)
2253                 DRM_ERROR("Poison interrupt\n");
2254
2255         for_each_pipe(dev_priv, pipe) {
2256                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2257                     intel_pipe_handle_vblank(dev_priv, pipe))
2258                         intel_check_page_flip(dev_priv, pipe);
2259
2260                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2261                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2262
2263                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2264                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2265
2266                 /* plane/pipes map 1:1 on ilk+ */
2267                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2268                         intel_finish_page_flip_cs(dev_priv, pipe);
2269         }
2270
2271         /* check event from PCH */
2272         if (de_iir & DE_PCH_EVENT) {
2273                 u32 pch_iir = I915_READ(SDEIIR);
2274
2275                 if (HAS_PCH_CPT(dev_priv))
2276                         cpt_irq_handler(dev_priv, pch_iir);
2277                 else
2278                         ibx_irq_handler(dev_priv, pch_iir);
2279
2280                 /* should clear PCH hotplug event before clear CPU irq */
2281                 I915_WRITE(SDEIIR, pch_iir);
2282         }
2283
2284         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2285                 ironlake_rps_change_irq_handler(dev_priv);
2286 }
2287
2288 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2289                                     u32 de_iir)
2290 {
2291         enum pipe pipe;
2292         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2293
2294         if (hotplug_trigger)
2295                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2296
2297         if (de_iir & DE_ERR_INT_IVB)
2298                 ivb_err_int_handler(dev_priv);
2299
2300         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2301                 dp_aux_irq_handler(dev_priv);
2302
2303         if (de_iir & DE_GSE_IVB)
2304                 intel_opregion_asle_intr(dev_priv);
2305
2306         for_each_pipe(dev_priv, pipe) {
2307                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2308                     intel_pipe_handle_vblank(dev_priv, pipe))
2309                         intel_check_page_flip(dev_priv, pipe);
2310
2311                 /* plane/pipes map 1:1 on ilk+ */
2312                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2313                         intel_finish_page_flip_cs(dev_priv, pipe);
2314         }
2315
2316         /* check event from PCH */
2317         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2318                 u32 pch_iir = I915_READ(SDEIIR);
2319
2320                 cpt_irq_handler(dev_priv, pch_iir);
2321
2322                 /* clear PCH hotplug event before clear CPU irq */
2323                 I915_WRITE(SDEIIR, pch_iir);
2324         }
2325 }
2326
2327 /*
2328  * To handle irqs with the minimum potential races with fresh interrupts, we:
2329  * 1 - Disable Master Interrupt Control.
2330  * 2 - Find the source(s) of the interrupt.
2331  * 3 - Clear the Interrupt Identity bits (IIR).
2332  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2333  * 5 - Re-enable Master Interrupt Control.
2334  */
2335 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2336 {
2337         struct drm_device *dev = arg;
2338         struct drm_i915_private *dev_priv = to_i915(dev);
2339         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2340         irqreturn_t ret = IRQ_NONE;
2341
2342         if (!intel_irqs_enabled(dev_priv))
2343                 return IRQ_NONE;
2344
2345         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2346         disable_rpm_wakeref_asserts(dev_priv);
2347
2348         /* disable master interrupt before clearing iir  */
2349         de_ier = I915_READ(DEIER);
2350         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2351         POSTING_READ(DEIER);
2352
2353         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2354          * interrupts will will be stored on its back queue, and then we'll be
2355          * able to process them after we restore SDEIER (as soon as we restore
2356          * it, we'll get an interrupt if SDEIIR still has something to process
2357          * due to its back queue). */
2358         if (!HAS_PCH_NOP(dev_priv)) {
2359                 sde_ier = I915_READ(SDEIER);
2360                 I915_WRITE(SDEIER, 0);
2361                 POSTING_READ(SDEIER);
2362         }
2363
2364         /* Find, clear, then process each source of interrupt */
2365
2366         gt_iir = I915_READ(GTIIR);
2367         if (gt_iir) {
2368                 I915_WRITE(GTIIR, gt_iir);
2369                 ret = IRQ_HANDLED;
2370                 if (INTEL_GEN(dev_priv) >= 6)
2371                         snb_gt_irq_handler(dev_priv, gt_iir);
2372                 else
2373                         ilk_gt_irq_handler(dev_priv, gt_iir);
2374         }
2375
2376         de_iir = I915_READ(DEIIR);
2377         if (de_iir) {
2378                 I915_WRITE(DEIIR, de_iir);
2379                 ret = IRQ_HANDLED;
2380                 if (INTEL_GEN(dev_priv) >= 7)
2381                         ivb_display_irq_handler(dev_priv, de_iir);
2382                 else
2383                         ilk_display_irq_handler(dev_priv, de_iir);
2384         }
2385
2386         if (INTEL_GEN(dev_priv) >= 6) {
2387                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2388                 if (pm_iir) {
2389                         I915_WRITE(GEN6_PMIIR, pm_iir);
2390                         ret = IRQ_HANDLED;
2391                         gen6_rps_irq_handler(dev_priv, pm_iir);
2392                 }
2393         }
2394
2395         I915_WRITE(DEIER, de_ier);
2396         POSTING_READ(DEIER);
2397         if (!HAS_PCH_NOP(dev_priv)) {
2398                 I915_WRITE(SDEIER, sde_ier);
2399                 POSTING_READ(SDEIER);
2400         }
2401
2402         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2403         enable_rpm_wakeref_asserts(dev_priv);
2404
2405         return ret;
2406 }
2407
2408 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2409                                 u32 hotplug_trigger,
2410                                 const u32 hpd[HPD_NUM_PINS])
2411 {
2412         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2413
2414         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2415         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2416
2417         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2418                            dig_hotplug_reg, hpd,
2419                            bxt_port_hotplug_long_detect);
2420
2421         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2422 }
2423
2424 static irqreturn_t
2425 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2426 {
2427         irqreturn_t ret = IRQ_NONE;
2428         u32 iir;
2429         enum pipe pipe;
2430
2431         if (master_ctl & GEN8_DE_MISC_IRQ) {
2432                 iir = I915_READ(GEN8_DE_MISC_IIR);
2433                 if (iir) {
2434                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2435                         ret = IRQ_HANDLED;
2436                         if (iir & GEN8_DE_MISC_GSE)
2437                                 intel_opregion_asle_intr(dev_priv);
2438                         else
2439                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2440                 }
2441                 else
2442                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2443         }
2444
2445         if (master_ctl & GEN8_DE_PORT_IRQ) {
2446                 iir = I915_READ(GEN8_DE_PORT_IIR);
2447                 if (iir) {
2448                         u32 tmp_mask;
2449                         bool found = false;
2450
2451                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2452                         ret = IRQ_HANDLED;
2453
2454                         tmp_mask = GEN8_AUX_CHANNEL_A;
2455                         if (INTEL_INFO(dev_priv)->gen >= 9)
2456                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2457                                             GEN9_AUX_CHANNEL_C |
2458                                             GEN9_AUX_CHANNEL_D;
2459
2460                         if (iir & tmp_mask) {
2461                                 dp_aux_irq_handler(dev_priv);
2462                                 found = true;
2463                         }
2464
2465                         if (IS_GEN9_LP(dev_priv)) {
2466                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2467                                 if (tmp_mask) {
2468                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2469                                                             hpd_bxt);
2470                                         found = true;
2471                                 }
2472                         } else if (IS_BROADWELL(dev_priv)) {
2473                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2474                                 if (tmp_mask) {
2475                                         ilk_hpd_irq_handler(dev_priv,
2476                                                             tmp_mask, hpd_bdw);
2477                                         found = true;
2478                                 }
2479                         }
2480
2481                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2482                                 gmbus_irq_handler(dev_priv);
2483                                 found = true;
2484                         }
2485
2486                         if (!found)
2487                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2488                 }
2489                 else
2490                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2491         }
2492
2493         for_each_pipe(dev_priv, pipe) {
2494                 u32 flip_done, fault_errors;
2495
2496                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2497                         continue;
2498
2499                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2500                 if (!iir) {
2501                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2502                         continue;
2503                 }
2504
2505                 ret = IRQ_HANDLED;
2506                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2507
2508                 if (iir & GEN8_PIPE_VBLANK &&
2509                     intel_pipe_handle_vblank(dev_priv, pipe))
2510                         intel_check_page_flip(dev_priv, pipe);
2511
2512                 flip_done = iir;
2513                 if (INTEL_INFO(dev_priv)->gen >= 9)
2514                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2515                 else
2516                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2517
2518                 if (flip_done)
2519                         intel_finish_page_flip_cs(dev_priv, pipe);
2520
2521                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2522                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2523
2524                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2525                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2526
2527                 fault_errors = iir;
2528                 if (INTEL_INFO(dev_priv)->gen >= 9)
2529                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2530                 else
2531                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2532
2533                 if (fault_errors)
2534                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2535                                   pipe_name(pipe),
2536                                   fault_errors);
2537         }
2538
2539         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2540             master_ctl & GEN8_DE_PCH_IRQ) {
2541                 /*
2542                  * FIXME(BDW): Assume for now that the new interrupt handling
2543                  * scheme also closed the SDE interrupt handling race we've seen
2544                  * on older pch-split platforms. But this needs testing.
2545                  */
2546                 iir = I915_READ(SDEIIR);
2547                 if (iir) {
2548                         I915_WRITE(SDEIIR, iir);
2549                         ret = IRQ_HANDLED;
2550
2551                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2552                             HAS_PCH_CNP(dev_priv))
2553                                 spt_irq_handler(dev_priv, iir);
2554                         else
2555                                 cpt_irq_handler(dev_priv, iir);
2556                 } else {
2557                         /*
2558                          * Like on previous PCH there seems to be something
2559                          * fishy going on with forwarding PCH interrupts.
2560                          */
2561                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2562                 }
2563         }
2564
2565         return ret;
2566 }
2567
2568 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2569 {
2570         struct drm_device *dev = arg;
2571         struct drm_i915_private *dev_priv = to_i915(dev);
2572         u32 master_ctl;
2573         u32 gt_iir[4] = {};
2574         irqreturn_t ret;
2575
2576         if (!intel_irqs_enabled(dev_priv))
2577                 return IRQ_NONE;
2578
2579         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2580         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2581         if (!master_ctl)
2582                 return IRQ_NONE;
2583
2584         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2585
2586         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2587         disable_rpm_wakeref_asserts(dev_priv);
2588
2589         /* Find, clear, then process each source of interrupt */
2590         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2591         gen8_gt_irq_handler(dev_priv, gt_iir);
2592         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2593
2594         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2595         POSTING_READ_FW(GEN8_MASTER_IRQ);
2596
2597         enable_rpm_wakeref_asserts(dev_priv);
2598
2599         return ret;
2600 }
2601
2602 /**
2603  * i915_reset_and_wakeup - do process context error handling work
2604  * @dev_priv: i915 device private
2605  *
2606  * Fire an error uevent so userspace can see that a hang or error
2607  * was detected.
2608  */
2609 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2610 {
2611         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2612         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2613         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2614         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2615
2616         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2617
2618         DRM_DEBUG_DRIVER("resetting chip\n");
2619         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2620
2621         intel_prepare_reset(dev_priv);
2622
2623         set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2624         wake_up_all(&dev_priv->gpu_error.wait_queue);
2625
2626         do {
2627                 /*
2628                  * All state reset _must_ be completed before we update the
2629                  * reset counter, for otherwise waiters might miss the reset
2630                  * pending state and not properly drop locks, resulting in
2631                  * deadlocks with the reset work.
2632                  */
2633                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2634                         i915_reset(dev_priv);
2635                         mutex_unlock(&dev_priv->drm.struct_mutex);
2636                 }
2637
2638                 /* We need to wait for anyone holding the lock to wakeup */
2639         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2640                                      I915_RESET_HANDOFF,
2641                                      TASK_UNINTERRUPTIBLE,
2642                                      HZ));
2643
2644         intel_finish_reset(dev_priv);
2645
2646         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2647                 kobject_uevent_env(kobj,
2648                                    KOBJ_CHANGE, reset_done_event);
2649
2650         /*
2651          * Note: The wake_up also serves as a memory barrier so that
2652          * waiters see the updated value of the dev_priv->gpu_error.
2653          */
2654         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2655         wake_up_all(&dev_priv->gpu_error.reset_queue);
2656 }
2657
2658 static inline void
2659 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2660                         struct intel_instdone *instdone)
2661 {
2662         int slice;
2663         int subslice;
2664
2665         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2666
2667         if (INTEL_GEN(dev_priv) <= 3)
2668                 return;
2669
2670         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2671
2672         if (INTEL_GEN(dev_priv) <= 6)
2673                 return;
2674
2675         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2676                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2677                        slice, subslice, instdone->sampler[slice][subslice]);
2678
2679         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2680                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2681                        slice, subslice, instdone->row[slice][subslice]);
2682 }
2683
2684 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2685 {
2686         u32 eir;
2687
2688         if (!IS_GEN2(dev_priv))
2689                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2690
2691         if (INTEL_GEN(dev_priv) < 4)
2692                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2693         else
2694                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2695
2696         I915_WRITE(EIR, I915_READ(EIR));
2697         eir = I915_READ(EIR);
2698         if (eir) {
2699                 /*
2700                  * some errors might have become stuck,
2701                  * mask them.
2702                  */
2703                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2704                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2705                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2706         }
2707 }
2708
2709 /**
2710  * i915_handle_error - handle a gpu error
2711  * @dev_priv: i915 device private
2712  * @engine_mask: mask representing engines that are hung
2713  * @fmt: Error message format string
2714  *
2715  * Do some basic checking of register state at error time and
2716  * dump it to the syslog.  Also call i915_capture_error_state() to make
2717  * sure we get a record and make it available in debugfs.  Fire a uevent
2718  * so userspace knows something bad happened (should trigger collection
2719  * of a ring dump etc.).
2720  */
2721 void i915_handle_error(struct drm_i915_private *dev_priv,
2722                        u32 engine_mask,
2723                        const char *fmt, ...)
2724 {
2725         va_list args;
2726         char error_msg[80];
2727
2728         va_start(args, fmt);
2729         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2730         va_end(args);
2731
2732         /*
2733          * In most cases it's guaranteed that we get here with an RPM
2734          * reference held, for example because there is a pending GPU
2735          * request that won't finish until the reset is done. This
2736          * isn't the case at least when we get here by doing a
2737          * simulated reset via debugfs, so get an RPM reference.
2738          */
2739         intel_runtime_pm_get(dev_priv);
2740
2741         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2742         i915_clear_error_registers(dev_priv);
2743
2744         if (!engine_mask)
2745                 goto out;
2746
2747         if (test_and_set_bit(I915_RESET_BACKOFF,
2748                              &dev_priv->gpu_error.flags))
2749                 goto out;
2750
2751         i915_reset_and_wakeup(dev_priv);
2752
2753 out:
2754         intel_runtime_pm_put(dev_priv);
2755 }
2756
2757 /* Called from drm generic code, passed 'crtc' which
2758  * we use as a pipe index
2759  */
2760 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762         struct drm_i915_private *dev_priv = to_i915(dev);
2763         unsigned long irqflags;
2764
2765         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2767         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2768
2769         return 0;
2770 }
2771
2772 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2773 {
2774         struct drm_i915_private *dev_priv = to_i915(dev);
2775         unsigned long irqflags;
2776
2777         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2778         i915_enable_pipestat(dev_priv, pipe,
2779                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2780         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2781
2782         return 0;
2783 }
2784
2785 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2786 {
2787         struct drm_i915_private *dev_priv = to_i915(dev);
2788         unsigned long irqflags;
2789         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2790                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2791
2792         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2793         ilk_enable_display_irq(dev_priv, bit);
2794         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795
2796         return 0;
2797 }
2798
2799 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2800 {
2801         struct drm_i915_private *dev_priv = to_i915(dev);
2802         unsigned long irqflags;
2803
2804         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2805         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2806         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2807
2808         return 0;
2809 }
2810
2811 /* Called from drm generic code, passed 'crtc' which
2812  * we use as a pipe index
2813  */
2814 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2815 {
2816         struct drm_i915_private *dev_priv = to_i915(dev);
2817         unsigned long irqflags;
2818
2819         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2820         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2821         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2822 }
2823
2824 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2825 {
2826         struct drm_i915_private *dev_priv = to_i915(dev);
2827         unsigned long irqflags;
2828
2829         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830         i915_disable_pipestat(dev_priv, pipe,
2831                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2832         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2833 }
2834
2835 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2836 {
2837         struct drm_i915_private *dev_priv = to_i915(dev);
2838         unsigned long irqflags;
2839         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2840                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2841
2842         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2843         ilk_disable_display_irq(dev_priv, bit);
2844         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2845 }
2846
2847 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2848 {
2849         struct drm_i915_private *dev_priv = to_i915(dev);
2850         unsigned long irqflags;
2851
2852         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2854         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 }
2856
2857 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2858 {
2859         if (HAS_PCH_NOP(dev_priv))
2860                 return;
2861
2862         GEN5_IRQ_RESET(SDE);
2863
2864         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2865                 I915_WRITE(SERR_INT, 0xffffffff);
2866 }
2867
2868 /*
2869  * SDEIER is also touched by the interrupt handler to work around missed PCH
2870  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2871  * instead we unconditionally enable all PCH interrupt sources here, but then
2872  * only unmask them as needed with SDEIMR.
2873  *
2874  * This function needs to be called before interrupts are enabled.
2875  */
2876 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2877 {
2878         struct drm_i915_private *dev_priv = to_i915(dev);
2879
2880         if (HAS_PCH_NOP(dev_priv))
2881                 return;
2882
2883         WARN_ON(I915_READ(SDEIER) != 0);
2884         I915_WRITE(SDEIER, 0xffffffff);
2885         POSTING_READ(SDEIER);
2886 }
2887
2888 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2889 {
2890         GEN5_IRQ_RESET(GT);
2891         if (INTEL_GEN(dev_priv) >= 6)
2892                 GEN5_IRQ_RESET(GEN6_PM);
2893 }
2894
2895 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2896 {
2897         enum pipe pipe;
2898
2899         if (IS_CHERRYVIEW(dev_priv))
2900                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2901         else
2902                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2903
2904         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2905         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2906
2907         for_each_pipe(dev_priv, pipe) {
2908                 I915_WRITE(PIPESTAT(pipe),
2909                            PIPE_FIFO_UNDERRUN_STATUS |
2910                            PIPESTAT_INT_STATUS_MASK);
2911                 dev_priv->pipestat_irq_mask[pipe] = 0;
2912         }
2913
2914         GEN5_IRQ_RESET(VLV_);
2915         dev_priv->irq_mask = ~0;
2916 }
2917
2918 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2919 {
2920         u32 pipestat_mask;
2921         u32 enable_mask;
2922         enum pipe pipe;
2923
2924         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2925                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2926
2927         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2928         for_each_pipe(dev_priv, pipe)
2929                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2930
2931         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2932                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2933                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2934                 I915_LPE_PIPE_A_INTERRUPT |
2935                 I915_LPE_PIPE_B_INTERRUPT;
2936
2937         if (IS_CHERRYVIEW(dev_priv))
2938                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2939                         I915_LPE_PIPE_C_INTERRUPT;
2940
2941         WARN_ON(dev_priv->irq_mask != ~0);
2942
2943         dev_priv->irq_mask = ~enable_mask;
2944
2945         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2946 }
2947
2948 /* drm_dma.h hooks
2949 */
2950 static void ironlake_irq_reset(struct drm_device *dev)
2951 {
2952         struct drm_i915_private *dev_priv = to_i915(dev);
2953
2954         I915_WRITE(HWSTAM, 0xffffffff);
2955
2956         GEN5_IRQ_RESET(DE);
2957         if (IS_GEN7(dev_priv))
2958                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2959
2960         gen5_gt_irq_reset(dev_priv);
2961
2962         ibx_irq_reset(dev_priv);
2963 }
2964
2965 static void valleyview_irq_preinstall(struct drm_device *dev)
2966 {
2967         struct drm_i915_private *dev_priv = to_i915(dev);
2968
2969         I915_WRITE(VLV_MASTER_IER, 0);
2970         POSTING_READ(VLV_MASTER_IER);
2971
2972         gen5_gt_irq_reset(dev_priv);
2973
2974         spin_lock_irq(&dev_priv->irq_lock);
2975         if (dev_priv->display_irqs_enabled)
2976                 vlv_display_irq_reset(dev_priv);
2977         spin_unlock_irq(&dev_priv->irq_lock);
2978 }
2979
2980 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2981 {
2982         GEN8_IRQ_RESET_NDX(GT, 0);
2983         GEN8_IRQ_RESET_NDX(GT, 1);
2984         GEN8_IRQ_RESET_NDX(GT, 2);
2985         GEN8_IRQ_RESET_NDX(GT, 3);
2986 }
2987
2988 static void gen8_irq_reset(struct drm_device *dev)
2989 {
2990         struct drm_i915_private *dev_priv = to_i915(dev);
2991         int pipe;
2992
2993         I915_WRITE(GEN8_MASTER_IRQ, 0);
2994         POSTING_READ(GEN8_MASTER_IRQ);
2995
2996         gen8_gt_irq_reset(dev_priv);
2997
2998         for_each_pipe(dev_priv, pipe)
2999                 if (intel_display_power_is_enabled(dev_priv,
3000                                                    POWER_DOMAIN_PIPE(pipe)))
3001                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3002
3003         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3004         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3005         GEN5_IRQ_RESET(GEN8_PCU_);
3006
3007         if (HAS_PCH_SPLIT(dev_priv))
3008                 ibx_irq_reset(dev_priv);
3009 }
3010
3011 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3012                                      unsigned int pipe_mask)
3013 {
3014         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3015         enum pipe pipe;
3016
3017         spin_lock_irq(&dev_priv->irq_lock);
3018         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3019                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3020                                   dev_priv->de_irq_mask[pipe],
3021                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3022         spin_unlock_irq(&dev_priv->irq_lock);
3023 }
3024
3025 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3026                                      unsigned int pipe_mask)
3027 {
3028         enum pipe pipe;
3029
3030         spin_lock_irq(&dev_priv->irq_lock);
3031         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3032                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3033         spin_unlock_irq(&dev_priv->irq_lock);
3034
3035         /* make sure we're done processing display irqs */
3036         synchronize_irq(dev_priv->drm.irq);
3037 }
3038
3039 static void cherryview_irq_preinstall(struct drm_device *dev)
3040 {
3041         struct drm_i915_private *dev_priv = to_i915(dev);
3042
3043         I915_WRITE(GEN8_MASTER_IRQ, 0);
3044         POSTING_READ(GEN8_MASTER_IRQ);
3045
3046         gen8_gt_irq_reset(dev_priv);
3047
3048         GEN5_IRQ_RESET(GEN8_PCU_);
3049
3050         spin_lock_irq(&dev_priv->irq_lock);
3051         if (dev_priv->display_irqs_enabled)
3052                 vlv_display_irq_reset(dev_priv);
3053         spin_unlock_irq(&dev_priv->irq_lock);
3054 }
3055
3056 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3057                                   const u32 hpd[HPD_NUM_PINS])
3058 {
3059         struct intel_encoder *encoder;
3060         u32 enabled_irqs = 0;
3061
3062         for_each_intel_encoder(&dev_priv->drm, encoder)
3063                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3064                         enabled_irqs |= hpd[encoder->hpd_pin];
3065
3066         return enabled_irqs;
3067 }
3068
3069 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3070 {
3071         u32 hotplug;
3072
3073         /*
3074          * Enable digital hotplug on the PCH, and configure the DP short pulse
3075          * duration to 2ms (which is the minimum in the Display Port spec).
3076          * The pulse duration bits are reserved on LPT+.
3077          */
3078         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3079         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3080                      PORTC_PULSE_DURATION_MASK |
3081                      PORTD_PULSE_DURATION_MASK);
3082         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3083         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3084         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3085         /*
3086          * When CPU and PCH are on the same package, port A
3087          * HPD must be enabled in both north and south.
3088          */
3089         if (HAS_PCH_LPT_LP(dev_priv))
3090                 hotplug |= PORTA_HOTPLUG_ENABLE;
3091         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3092 }
3093
3094 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3095 {
3096         u32 hotplug_irqs, enabled_irqs;
3097
3098         if (HAS_PCH_IBX(dev_priv)) {
3099                 hotplug_irqs = SDE_HOTPLUG_MASK;
3100                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3101         } else {
3102                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3103                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3104         }
3105
3106         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3107
3108         ibx_hpd_detection_setup(dev_priv);
3109 }
3110
3111 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3112 {
3113         u32 hotplug;
3114
3115         /* Enable digital hotplug on the PCH */
3116         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3117         hotplug |= PORTA_HOTPLUG_ENABLE |
3118                    PORTB_HOTPLUG_ENABLE |
3119                    PORTC_HOTPLUG_ENABLE |
3120                    PORTD_HOTPLUG_ENABLE;
3121         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3122
3123         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3124         hotplug |= PORTE_HOTPLUG_ENABLE;
3125         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3126 }
3127
3128 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3129 {
3130         u32 hotplug_irqs, enabled_irqs;
3131
3132         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3133         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3134
3135         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3136
3137         spt_hpd_detection_setup(dev_priv);
3138 }
3139
3140 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3141 {
3142         u32 hotplug;
3143
3144         /*
3145          * Enable digital hotplug on the CPU, and configure the DP short pulse
3146          * duration to 2ms (which is the minimum in the Display Port spec)
3147          * The pulse duration bits are reserved on HSW+.
3148          */
3149         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3150         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3151         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3152                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3153         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3154 }
3155
3156 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3157 {
3158         u32 hotplug_irqs, enabled_irqs;
3159
3160         if (INTEL_GEN(dev_priv) >= 8) {
3161                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3162                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3163
3164                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3165         } else if (INTEL_GEN(dev_priv) >= 7) {
3166                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3167                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3168
3169                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3170         } else {
3171                 hotplug_irqs = DE_DP_A_HOTPLUG;
3172                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3173
3174                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3175         }
3176
3177         ilk_hpd_detection_setup(dev_priv);
3178
3179         ibx_hpd_irq_setup(dev_priv);
3180 }
3181
3182 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3183                                       u32 enabled_irqs)
3184 {
3185         u32 hotplug;
3186
3187         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3188         hotplug |= PORTA_HOTPLUG_ENABLE |
3189                    PORTB_HOTPLUG_ENABLE |
3190                    PORTC_HOTPLUG_ENABLE;
3191
3192         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3193                       hotplug, enabled_irqs);
3194         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3195
3196         /*
3197          * For BXT invert bit has to be set based on AOB design
3198          * for HPD detection logic, update it based on VBT fields.
3199          */
3200         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3201             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3202                 hotplug |= BXT_DDIA_HPD_INVERT;
3203         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3204             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3205                 hotplug |= BXT_DDIB_HPD_INVERT;
3206         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3207             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3208                 hotplug |= BXT_DDIC_HPD_INVERT;
3209
3210         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3211 }
3212
3213 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3214 {
3215         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3216 }
3217
3218 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3219 {
3220         u32 hotplug_irqs, enabled_irqs;
3221
3222         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3223         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3224
3225         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3226
3227         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3228 }
3229
3230 static void ibx_irq_postinstall(struct drm_device *dev)
3231 {
3232         struct drm_i915_private *dev_priv = to_i915(dev);
3233         u32 mask;
3234
3235         if (HAS_PCH_NOP(dev_priv))
3236                 return;
3237
3238         if (HAS_PCH_IBX(dev_priv))
3239                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3240         else
3241                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3242
3243         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3244         I915_WRITE(SDEIMR, ~mask);
3245
3246         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3247             HAS_PCH_LPT(dev_priv))
3248                 ibx_hpd_detection_setup(dev_priv);
3249         else
3250                 spt_hpd_detection_setup(dev_priv);
3251 }
3252
3253 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3254 {
3255         struct drm_i915_private *dev_priv = to_i915(dev);
3256         u32 pm_irqs, gt_irqs;
3257
3258         pm_irqs = gt_irqs = 0;
3259
3260         dev_priv->gt_irq_mask = ~0;
3261         if (HAS_L3_DPF(dev_priv)) {
3262                 /* L3 parity interrupt is always unmasked. */
3263                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3264                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3265         }
3266
3267         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3268         if (IS_GEN5(dev_priv)) {
3269                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3270         } else {
3271                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3272         }
3273
3274         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3275
3276         if (INTEL_GEN(dev_priv) >= 6) {
3277                 /*
3278                  * RPS interrupts will get enabled/disabled on demand when RPS
3279                  * itself is enabled/disabled.
3280                  */
3281                 if (HAS_VEBOX(dev_priv)) {
3282                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3283                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3284                 }
3285
3286                 dev_priv->pm_imr = 0xffffffff;
3287                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3288         }
3289 }
3290
3291 static int ironlake_irq_postinstall(struct drm_device *dev)
3292 {
3293         struct drm_i915_private *dev_priv = to_i915(dev);
3294         u32 display_mask, extra_mask;
3295
3296         if (INTEL_GEN(dev_priv) >= 7) {
3297                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3298                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3299                                 DE_PLANEB_FLIP_DONE_IVB |
3300                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3301                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3302                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3303                               DE_DP_A_HOTPLUG_IVB);
3304         } else {
3305                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3306                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3307                                 DE_AUX_CHANNEL_A |
3308                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3309                                 DE_POISON);
3310                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3311                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3312                               DE_DP_A_HOTPLUG);
3313         }
3314
3315         dev_priv->irq_mask = ~display_mask;
3316
3317         I915_WRITE(HWSTAM, 0xeffe);
3318
3319         ibx_irq_pre_postinstall(dev);
3320
3321         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3322
3323         gen5_gt_irq_postinstall(dev);
3324
3325         ilk_hpd_detection_setup(dev_priv);
3326
3327         ibx_irq_postinstall(dev);
3328
3329         if (IS_IRONLAKE_M(dev_priv)) {
3330                 /* Enable PCU event interrupts
3331                  *
3332                  * spinlocking not required here for correctness since interrupt
3333                  * setup is guaranteed to run in single-threaded context. But we
3334                  * need it to make the assert_spin_locked happy. */
3335                 spin_lock_irq(&dev_priv->irq_lock);
3336                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3337                 spin_unlock_irq(&dev_priv->irq_lock);
3338         }
3339
3340         return 0;
3341 }
3342
3343 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3344 {
3345         lockdep_assert_held(&dev_priv->irq_lock);
3346
3347         if (dev_priv->display_irqs_enabled)
3348                 return;
3349
3350         dev_priv->display_irqs_enabled = true;
3351
3352         if (intel_irqs_enabled(dev_priv)) {
3353                 vlv_display_irq_reset(dev_priv);
3354                 vlv_display_irq_postinstall(dev_priv);
3355         }
3356 }
3357
3358 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3359 {
3360         lockdep_assert_held(&dev_priv->irq_lock);
3361
3362         if (!dev_priv->display_irqs_enabled)
3363                 return;
3364
3365         dev_priv->display_irqs_enabled = false;
3366
3367         if (intel_irqs_enabled(dev_priv))
3368                 vlv_display_irq_reset(dev_priv);
3369 }
3370
3371
3372 static int valleyview_irq_postinstall(struct drm_device *dev)
3373 {
3374         struct drm_i915_private *dev_priv = to_i915(dev);
3375
3376         gen5_gt_irq_postinstall(dev);
3377
3378         spin_lock_irq(&dev_priv->irq_lock);
3379         if (dev_priv->display_irqs_enabled)
3380                 vlv_display_irq_postinstall(dev_priv);
3381         spin_unlock_irq(&dev_priv->irq_lock);
3382
3383         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3384         POSTING_READ(VLV_MASTER_IER);
3385
3386         return 0;
3387 }
3388
3389 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3390 {
3391         /* These are interrupts we'll toggle with the ring mask register */
3392         uint32_t gt_interrupts[] = {
3393                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3394                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3395                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3396                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3397                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3398                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3399                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3400                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3401                 0,
3402                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3403                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3404                 };
3405
3406         if (HAS_L3_DPF(dev_priv))
3407                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3408
3409         dev_priv->pm_ier = 0x0;
3410         dev_priv->pm_imr = ~dev_priv->pm_ier;
3411         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3412         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3413         /*
3414          * RPS interrupts will get enabled/disabled on demand when RPS itself
3415          * is enabled/disabled. Same wil be the case for GuC interrupts.
3416          */
3417         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3418         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3419 }
3420
3421 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3422 {
3423         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3424         uint32_t de_pipe_enables;
3425         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3426         u32 de_port_enables;
3427         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3428         enum pipe pipe;
3429
3430         if (INTEL_INFO(dev_priv)->gen >= 9) {
3431                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3432                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3433                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3434                                   GEN9_AUX_CHANNEL_D;
3435                 if (IS_GEN9_LP(dev_priv))
3436                         de_port_masked |= BXT_DE_PORT_GMBUS;
3437         } else {
3438                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3439                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3440         }
3441
3442         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3443                                            GEN8_PIPE_FIFO_UNDERRUN;
3444
3445         de_port_enables = de_port_masked;
3446         if (IS_GEN9_LP(dev_priv))
3447                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3448         else if (IS_BROADWELL(dev_priv))
3449                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3450
3451         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3452         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3453         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3454
3455         for_each_pipe(dev_priv, pipe)
3456                 if (intel_display_power_is_enabled(dev_priv,
3457                                 POWER_DOMAIN_PIPE(pipe)))
3458                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3459                                           dev_priv->de_irq_mask[pipe],
3460                                           de_pipe_enables);
3461
3462         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3463         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3464
3465         if (IS_GEN9_LP(dev_priv))
3466                 bxt_hpd_detection_setup(dev_priv);
3467         else if (IS_BROADWELL(dev_priv))
3468                 ilk_hpd_detection_setup(dev_priv);
3469 }
3470
3471 static int gen8_irq_postinstall(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = to_i915(dev);
3474
3475         if (HAS_PCH_SPLIT(dev_priv))
3476                 ibx_irq_pre_postinstall(dev);
3477
3478         gen8_gt_irq_postinstall(dev_priv);
3479         gen8_de_irq_postinstall(dev_priv);
3480
3481         if (HAS_PCH_SPLIT(dev_priv))
3482                 ibx_irq_postinstall(dev);
3483
3484         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3485         POSTING_READ(GEN8_MASTER_IRQ);
3486
3487         return 0;
3488 }
3489
3490 static int cherryview_irq_postinstall(struct drm_device *dev)
3491 {
3492         struct drm_i915_private *dev_priv = to_i915(dev);
3493
3494         gen8_gt_irq_postinstall(dev_priv);
3495
3496         spin_lock_irq(&dev_priv->irq_lock);
3497         if (dev_priv->display_irqs_enabled)
3498                 vlv_display_irq_postinstall(dev_priv);
3499         spin_unlock_irq(&dev_priv->irq_lock);
3500
3501         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3502         POSTING_READ(GEN8_MASTER_IRQ);
3503
3504         return 0;
3505 }
3506
3507 static void gen8_irq_uninstall(struct drm_device *dev)
3508 {
3509         struct drm_i915_private *dev_priv = to_i915(dev);
3510
3511         if (!dev_priv)
3512                 return;
3513
3514         gen8_irq_reset(dev);
3515 }
3516
3517 static void valleyview_irq_uninstall(struct drm_device *dev)
3518 {
3519         struct drm_i915_private *dev_priv = to_i915(dev);
3520
3521         if (!dev_priv)
3522                 return;
3523
3524         I915_WRITE(VLV_MASTER_IER, 0);
3525         POSTING_READ(VLV_MASTER_IER);
3526
3527         gen5_gt_irq_reset(dev_priv);
3528
3529         I915_WRITE(HWSTAM, 0xffffffff);
3530
3531         spin_lock_irq(&dev_priv->irq_lock);
3532         if (dev_priv->display_irqs_enabled)
3533                 vlv_display_irq_reset(dev_priv);
3534         spin_unlock_irq(&dev_priv->irq_lock);
3535 }
3536
3537 static void cherryview_irq_uninstall(struct drm_device *dev)
3538 {
3539         struct drm_i915_private *dev_priv = to_i915(dev);
3540
3541         if (!dev_priv)
3542                 return;
3543
3544         I915_WRITE(GEN8_MASTER_IRQ, 0);
3545         POSTING_READ(GEN8_MASTER_IRQ);
3546
3547         gen8_gt_irq_reset(dev_priv);
3548
3549         GEN5_IRQ_RESET(GEN8_PCU_);
3550
3551         spin_lock_irq(&dev_priv->irq_lock);
3552         if (dev_priv->display_irqs_enabled)
3553                 vlv_display_irq_reset(dev_priv);
3554         spin_unlock_irq(&dev_priv->irq_lock);
3555 }
3556
3557 static void ironlake_irq_uninstall(struct drm_device *dev)
3558 {
3559         struct drm_i915_private *dev_priv = to_i915(dev);
3560
3561         if (!dev_priv)
3562                 return;
3563
3564         ironlake_irq_reset(dev);
3565 }
3566
3567 static void i8xx_irq_preinstall(struct drm_device * dev)
3568 {
3569         struct drm_i915_private *dev_priv = to_i915(dev);
3570         int pipe;
3571
3572         for_each_pipe(dev_priv, pipe)
3573                 I915_WRITE(PIPESTAT(pipe), 0);
3574         I915_WRITE16(IMR, 0xffff);
3575         I915_WRITE16(IER, 0x0);
3576         POSTING_READ16(IER);
3577 }
3578
3579 static int i8xx_irq_postinstall(struct drm_device *dev)
3580 {
3581         struct drm_i915_private *dev_priv = to_i915(dev);
3582
3583         I915_WRITE16(EMR,
3584                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3585
3586         /* Unmask the interrupts that we always want on. */
3587         dev_priv->irq_mask =
3588                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3589                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3590                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3591                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3592         I915_WRITE16(IMR, dev_priv->irq_mask);
3593
3594         I915_WRITE16(IER,
3595                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3596                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3597                      I915_USER_INTERRUPT);
3598         POSTING_READ16(IER);
3599
3600         /* Interrupt setup is already guaranteed to be single-threaded, this is
3601          * just to make the assert_spin_locked check happy. */
3602         spin_lock_irq(&dev_priv->irq_lock);
3603         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3604         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3605         spin_unlock_irq(&dev_priv->irq_lock);
3606
3607         return 0;
3608 }
3609
3610 /*
3611  * Returns true when a page flip has completed.
3612  */
3613 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3614                                int plane, int pipe, u32 iir)
3615 {
3616         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3617
3618         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3619                 return false;
3620
3621         if ((iir & flip_pending) == 0)
3622                 goto check_page_flip;
3623
3624         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3625          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3626          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3627          * the flip is completed (no longer pending). Since this doesn't raise
3628          * an interrupt per se, we watch for the change at vblank.
3629          */
3630         if (I915_READ16(ISR) & flip_pending)
3631                 goto check_page_flip;
3632
3633         intel_finish_page_flip_cs(dev_priv, pipe);
3634         return true;
3635
3636 check_page_flip:
3637         intel_check_page_flip(dev_priv, pipe);
3638         return false;
3639 }
3640
3641 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3642 {
3643         struct drm_device *dev = arg;
3644         struct drm_i915_private *dev_priv = to_i915(dev);
3645         u16 iir, new_iir;
3646         u32 pipe_stats[2];
3647         int pipe;
3648         u16 flip_mask =
3649                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3650                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3651         irqreturn_t ret;
3652
3653         if (!intel_irqs_enabled(dev_priv))
3654                 return IRQ_NONE;
3655
3656         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3657         disable_rpm_wakeref_asserts(dev_priv);
3658
3659         ret = IRQ_NONE;
3660         iir = I915_READ16(IIR);
3661         if (iir == 0)
3662                 goto out;
3663
3664         while (iir & ~flip_mask) {
3665                 /* Can't rely on pipestat interrupt bit in iir as it might
3666                  * have been cleared after the pipestat interrupt was received.
3667                  * It doesn't set the bit in iir again, but it still produces
3668                  * interrupts (for non-MSI).
3669                  */
3670                 spin_lock(&dev_priv->irq_lock);
3671                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3672                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3673
3674                 for_each_pipe(dev_priv, pipe) {
3675                         i915_reg_t reg = PIPESTAT(pipe);
3676                         pipe_stats[pipe] = I915_READ(reg);
3677
3678                         /*
3679                          * Clear the PIPE*STAT regs before the IIR
3680                          */
3681                         if (pipe_stats[pipe] & 0x8000ffff)
3682                                 I915_WRITE(reg, pipe_stats[pipe]);
3683                 }
3684                 spin_unlock(&dev_priv->irq_lock);
3685
3686                 I915_WRITE16(IIR, iir & ~flip_mask);
3687                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3688
3689                 if (iir & I915_USER_INTERRUPT)
3690                         notify_ring(dev_priv->engine[RCS]);
3691
3692                 for_each_pipe(dev_priv, pipe) {
3693                         int plane = pipe;
3694                         if (HAS_FBC(dev_priv))
3695                                 plane = !plane;
3696
3697                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3698                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3699                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3700
3701                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3702                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3703
3704                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3705                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3706                                                                     pipe);
3707                 }
3708
3709                 iir = new_iir;
3710         }
3711         ret = IRQ_HANDLED;
3712
3713 out:
3714         enable_rpm_wakeref_asserts(dev_priv);
3715
3716         return ret;
3717 }
3718
3719 static void i8xx_irq_uninstall(struct drm_device * dev)
3720 {
3721         struct drm_i915_private *dev_priv = to_i915(dev);
3722         int pipe;
3723
3724         for_each_pipe(dev_priv, pipe) {
3725                 /* Clear enable bits; then clear status bits */
3726                 I915_WRITE(PIPESTAT(pipe), 0);
3727                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3728         }
3729         I915_WRITE16(IMR, 0xffff);
3730         I915_WRITE16(IER, 0x0);
3731         I915_WRITE16(IIR, I915_READ16(IIR));
3732 }
3733
3734 static void i915_irq_preinstall(struct drm_device * dev)
3735 {
3736         struct drm_i915_private *dev_priv = to_i915(dev);
3737         int pipe;
3738
3739         if (I915_HAS_HOTPLUG(dev_priv)) {
3740                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3741                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3742         }
3743
3744         I915_WRITE16(HWSTAM, 0xeffe);
3745         for_each_pipe(dev_priv, pipe)
3746                 I915_WRITE(PIPESTAT(pipe), 0);
3747         I915_WRITE(IMR, 0xffffffff);
3748         I915_WRITE(IER, 0x0);
3749         POSTING_READ(IER);
3750 }
3751
3752 static int i915_irq_postinstall(struct drm_device *dev)
3753 {
3754         struct drm_i915_private *dev_priv = to_i915(dev);
3755         u32 enable_mask;
3756
3757         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3758
3759         /* Unmask the interrupts that we always want on. */
3760         dev_priv->irq_mask =
3761                 ~(I915_ASLE_INTERRUPT |
3762                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3763                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3764                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3765                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3766
3767         enable_mask =
3768                 I915_ASLE_INTERRUPT |
3769                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3770                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3771                 I915_USER_INTERRUPT;
3772
3773         if (I915_HAS_HOTPLUG(dev_priv)) {
3774                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3775                 POSTING_READ(PORT_HOTPLUG_EN);
3776
3777                 /* Enable in IER... */
3778                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3779                 /* and unmask in IMR */
3780                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3781         }
3782
3783         I915_WRITE(IMR, dev_priv->irq_mask);
3784         I915_WRITE(IER, enable_mask);
3785         POSTING_READ(IER);
3786
3787         i915_enable_asle_pipestat(dev_priv);
3788
3789         /* Interrupt setup is already guaranteed to be single-threaded, this is
3790          * just to make the assert_spin_locked check happy. */
3791         spin_lock_irq(&dev_priv->irq_lock);
3792         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3793         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3794         spin_unlock_irq(&dev_priv->irq_lock);
3795
3796         return 0;
3797 }
3798
3799 /*
3800  * Returns true when a page flip has completed.
3801  */
3802 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3803                                int plane, int pipe, u32 iir)
3804 {
3805         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3806
3807         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3808                 return false;
3809
3810         if ((iir & flip_pending) == 0)
3811                 goto check_page_flip;
3812
3813         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3814          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3815          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3816          * the flip is completed (no longer pending). Since this doesn't raise
3817          * an interrupt per se, we watch for the change at vblank.
3818          */
3819         if (I915_READ(ISR) & flip_pending)
3820                 goto check_page_flip;
3821
3822         intel_finish_page_flip_cs(dev_priv, pipe);
3823         return true;
3824
3825 check_page_flip:
3826         intel_check_page_flip(dev_priv, pipe);
3827         return false;
3828 }
3829
3830 static irqreturn_t i915_irq_handler(int irq, void *arg)
3831 {
3832         struct drm_device *dev = arg;
3833         struct drm_i915_private *dev_priv = to_i915(dev);
3834         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3835         u32 flip_mask =
3836                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3837                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3838         int pipe, ret = IRQ_NONE;
3839
3840         if (!intel_irqs_enabled(dev_priv))
3841                 return IRQ_NONE;
3842
3843         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3844         disable_rpm_wakeref_asserts(dev_priv);
3845
3846         iir = I915_READ(IIR);
3847         do {
3848                 bool irq_received = (iir & ~flip_mask) != 0;
3849                 bool blc_event = false;
3850
3851                 /* Can't rely on pipestat interrupt bit in iir as it might
3852                  * have been cleared after the pipestat interrupt was received.
3853                  * It doesn't set the bit in iir again, but it still produces
3854                  * interrupts (for non-MSI).
3855                  */
3856                 spin_lock(&dev_priv->irq_lock);
3857                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3858                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3859
3860                 for_each_pipe(dev_priv, pipe) {
3861                         i915_reg_t reg = PIPESTAT(pipe);
3862                         pipe_stats[pipe] = I915_READ(reg);
3863
3864                         /* Clear the PIPE*STAT regs before the IIR */
3865                         if (pipe_stats[pipe] & 0x8000ffff) {
3866                                 I915_WRITE(reg, pipe_stats[pipe]);
3867                                 irq_received = true;
3868                         }
3869                 }
3870                 spin_unlock(&dev_priv->irq_lock);
3871
3872                 if (!irq_received)
3873                         break;
3874
3875                 /* Consume port.  Then clear IIR or we'll miss events */
3876                 if (I915_HAS_HOTPLUG(dev_priv) &&
3877                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3878                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3879                         if (hotplug_status)
3880                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3881                 }
3882
3883                 I915_WRITE(IIR, iir & ~flip_mask);
3884                 new_iir = I915_READ(IIR); /* Flush posted writes */
3885
3886                 if (iir & I915_USER_INTERRUPT)
3887                         notify_ring(dev_priv->engine[RCS]);
3888
3889                 for_each_pipe(dev_priv, pipe) {
3890                         int plane = pipe;
3891                         if (HAS_FBC(dev_priv))
3892                                 plane = !plane;
3893
3894                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3895                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3896                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3897
3898                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3899                                 blc_event = true;
3900
3901                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3902                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3903
3904                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3905                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3906                                                                     pipe);
3907                 }
3908
3909                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3910                         intel_opregion_asle_intr(dev_priv);
3911
3912                 /* With MSI, interrupts are only generated when iir
3913                  * transitions from zero to nonzero.  If another bit got
3914                  * set while we were handling the existing iir bits, then
3915                  * we would never get another interrupt.
3916                  *
3917                  * This is fine on non-MSI as well, as if we hit this path
3918                  * we avoid exiting the interrupt handler only to generate
3919                  * another one.
3920                  *
3921                  * Note that for MSI this could cause a stray interrupt report
3922                  * if an interrupt landed in the time between writing IIR and
3923                  * the posting read.  This should be rare enough to never
3924                  * trigger the 99% of 100,000 interrupts test for disabling
3925                  * stray interrupts.
3926                  */
3927                 ret = IRQ_HANDLED;
3928                 iir = new_iir;
3929         } while (iir & ~flip_mask);
3930
3931         enable_rpm_wakeref_asserts(dev_priv);
3932
3933         return ret;
3934 }
3935
3936 static void i915_irq_uninstall(struct drm_device * dev)
3937 {
3938         struct drm_i915_private *dev_priv = to_i915(dev);
3939         int pipe;
3940
3941         if (I915_HAS_HOTPLUG(dev_priv)) {
3942                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3943                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3944         }
3945
3946         I915_WRITE16(HWSTAM, 0xffff);
3947         for_each_pipe(dev_priv, pipe) {
3948                 /* Clear enable bits; then clear status bits */
3949                 I915_WRITE(PIPESTAT(pipe), 0);
3950                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3951         }
3952         I915_WRITE(IMR, 0xffffffff);
3953         I915_WRITE(IER, 0x0);
3954
3955         I915_WRITE(IIR, I915_READ(IIR));
3956 }
3957
3958 static void i965_irq_preinstall(struct drm_device * dev)
3959 {
3960         struct drm_i915_private *dev_priv = to_i915(dev);
3961         int pipe;
3962
3963         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3964         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3965
3966         I915_WRITE(HWSTAM, 0xeffe);
3967         for_each_pipe(dev_priv, pipe)
3968                 I915_WRITE(PIPESTAT(pipe), 0);
3969         I915_WRITE(IMR, 0xffffffff);
3970         I915_WRITE(IER, 0x0);
3971         POSTING_READ(IER);
3972 }
3973
3974 static int i965_irq_postinstall(struct drm_device *dev)
3975 {
3976         struct drm_i915_private *dev_priv = to_i915(dev);
3977         u32 enable_mask;
3978         u32 error_mask;
3979
3980         /* Unmask the interrupts that we always want on. */
3981         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3982                                I915_DISPLAY_PORT_INTERRUPT |
3983                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3984                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3985                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3986                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3987                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3988
3989         enable_mask = ~dev_priv->irq_mask;
3990         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3991                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3992         enable_mask |= I915_USER_INTERRUPT;
3993
3994         if (IS_G4X(dev_priv))
3995                 enable_mask |= I915_BSD_USER_INTERRUPT;
3996
3997         /* Interrupt setup is already guaranteed to be single-threaded, this is
3998          * just to make the assert_spin_locked check happy. */
3999         spin_lock_irq(&dev_priv->irq_lock);
4000         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4001         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4002         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4003         spin_unlock_irq(&dev_priv->irq_lock);
4004
4005         /*
4006          * Enable some error detection, note the instruction error mask
4007          * bit is reserved, so we leave it masked.
4008          */
4009         if (IS_G4X(dev_priv)) {
4010                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4011                                GM45_ERROR_MEM_PRIV |
4012                                GM45_ERROR_CP_PRIV |
4013                                I915_ERROR_MEMORY_REFRESH);
4014         } else {
4015                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4016                                I915_ERROR_MEMORY_REFRESH);
4017         }
4018         I915_WRITE(EMR, error_mask);
4019
4020         I915_WRITE(IMR, dev_priv->irq_mask);
4021         I915_WRITE(IER, enable_mask);
4022         POSTING_READ(IER);
4023
4024         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4025         POSTING_READ(PORT_HOTPLUG_EN);
4026
4027         i915_enable_asle_pipestat(dev_priv);
4028
4029         return 0;
4030 }
4031
4032 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4033 {
4034         u32 hotplug_en;
4035
4036         lockdep_assert_held(&dev_priv->irq_lock);
4037
4038         /* Note HDMI and DP share hotplug bits */
4039         /* enable bits are the same for all generations */
4040         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4041         /* Programming the CRT detection parameters tends
4042            to generate a spurious hotplug event about three
4043            seconds later.  So just do it once.
4044         */
4045         if (IS_G4X(dev_priv))
4046                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4047         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4048
4049         /* Ignore TV since it's buggy */
4050         i915_hotplug_interrupt_update_locked(dev_priv,
4051                                              HOTPLUG_INT_EN_MASK |
4052                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4053                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4054                                              hotplug_en);
4055 }
4056
4057 static irqreturn_t i965_irq_handler(int irq, void *arg)
4058 {
4059         struct drm_device *dev = arg;
4060         struct drm_i915_private *dev_priv = to_i915(dev);
4061         u32 iir, new_iir;
4062         u32 pipe_stats[I915_MAX_PIPES];
4063         int ret = IRQ_NONE, pipe;
4064         u32 flip_mask =
4065                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4066                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4067
4068         if (!intel_irqs_enabled(dev_priv))
4069                 return IRQ_NONE;
4070
4071         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4072         disable_rpm_wakeref_asserts(dev_priv);
4073
4074         iir = I915_READ(IIR);
4075
4076         for (;;) {
4077                 bool irq_received = (iir & ~flip_mask) != 0;
4078                 bool blc_event = false;
4079
4080                 /* Can't rely on pipestat interrupt bit in iir as it might
4081                  * have been cleared after the pipestat interrupt was received.
4082                  * It doesn't set the bit in iir again, but it still produces
4083                  * interrupts (for non-MSI).
4084                  */
4085                 spin_lock(&dev_priv->irq_lock);
4086                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4087                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4088
4089                 for_each_pipe(dev_priv, pipe) {
4090                         i915_reg_t reg = PIPESTAT(pipe);
4091                         pipe_stats[pipe] = I915_READ(reg);
4092
4093                         /*
4094                          * Clear the PIPE*STAT regs before the IIR
4095                          */
4096                         if (pipe_stats[pipe] & 0x8000ffff) {
4097                                 I915_WRITE(reg, pipe_stats[pipe]);
4098                                 irq_received = true;
4099                         }
4100                 }
4101                 spin_unlock(&dev_priv->irq_lock);
4102
4103                 if (!irq_received)
4104                         break;
4105
4106                 ret = IRQ_HANDLED;
4107
4108                 /* Consume port.  Then clear IIR or we'll miss events */
4109                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4110                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4111                         if (hotplug_status)
4112                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4113                 }
4114
4115                 I915_WRITE(IIR, iir & ~flip_mask);
4116                 new_iir = I915_READ(IIR); /* Flush posted writes */
4117
4118                 if (iir & I915_USER_INTERRUPT)
4119                         notify_ring(dev_priv->engine[RCS]);
4120                 if (iir & I915_BSD_USER_INTERRUPT)
4121                         notify_ring(dev_priv->engine[VCS]);
4122
4123                 for_each_pipe(dev_priv, pipe) {
4124                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4125                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4126                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4127
4128                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4129                                 blc_event = true;
4130
4131                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4132                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4133
4134                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4135                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4136                 }
4137
4138                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4139                         intel_opregion_asle_intr(dev_priv);
4140
4141                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4142                         gmbus_irq_handler(dev_priv);
4143
4144                 /* With MSI, interrupts are only generated when iir
4145                  * transitions from zero to nonzero.  If another bit got
4146                  * set while we were handling the existing iir bits, then
4147                  * we would never get another interrupt.
4148                  *
4149                  * This is fine on non-MSI as well, as if we hit this path
4150                  * we avoid exiting the interrupt handler only to generate
4151                  * another one.
4152                  *
4153                  * Note that for MSI this could cause a stray interrupt report
4154                  * if an interrupt landed in the time between writing IIR and
4155                  * the posting read.  This should be rare enough to never
4156                  * trigger the 99% of 100,000 interrupts test for disabling
4157                  * stray interrupts.
4158                  */
4159                 iir = new_iir;
4160         }
4161
4162         enable_rpm_wakeref_asserts(dev_priv);
4163
4164         return ret;
4165 }
4166
4167 static void i965_irq_uninstall(struct drm_device * dev)
4168 {
4169         struct drm_i915_private *dev_priv = to_i915(dev);
4170         int pipe;
4171
4172         if (!dev_priv)
4173                 return;
4174
4175         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4176         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4177
4178         I915_WRITE(HWSTAM, 0xffffffff);
4179         for_each_pipe(dev_priv, pipe)
4180                 I915_WRITE(PIPESTAT(pipe), 0);
4181         I915_WRITE(IMR, 0xffffffff);
4182         I915_WRITE(IER, 0x0);
4183
4184         for_each_pipe(dev_priv, pipe)
4185                 I915_WRITE(PIPESTAT(pipe),
4186                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4187         I915_WRITE(IIR, I915_READ(IIR));
4188 }
4189
4190 /**
4191  * intel_irq_init - initializes irq support
4192  * @dev_priv: i915 device instance
4193  *
4194  * This function initializes all the irq support including work items, timers
4195  * and all the vtables. It does not setup the interrupt itself though.
4196  */
4197 void intel_irq_init(struct drm_i915_private *dev_priv)
4198 {
4199         struct drm_device *dev = &dev_priv->drm;
4200         int i;
4201
4202         intel_hpd_init_work(dev_priv);
4203
4204         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4205
4206         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4207         for (i = 0; i < MAX_L3_SLICES; ++i)
4208                 dev_priv->l3_parity.remap_info[i] = NULL;
4209
4210         if (HAS_GUC_SCHED(dev_priv))
4211                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4212
4213         /* Let's track the enabled rps events */
4214         if (IS_VALLEYVIEW(dev_priv))
4215                 /* WaGsvRC0ResidencyMethod:vlv */
4216                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4217         else
4218                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4219
4220         dev_priv->rps.pm_intrmsk_mbz = 0;
4221
4222         /*
4223          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4224          * if GEN6_PM_UP_EI_EXPIRED is masked.
4225          *
4226          * TODO: verify if this can be reproduced on VLV,CHV.
4227          */
4228         if (INTEL_INFO(dev_priv)->gen <= 7)
4229                 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4230
4231         if (INTEL_INFO(dev_priv)->gen >= 8)
4232                 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4233
4234         if (IS_GEN2(dev_priv)) {
4235                 /* Gen2 doesn't have a hardware frame counter */
4236                 dev->max_vblank_count = 0;
4237         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4238                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4239                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4240         } else {
4241                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4242                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4243         }
4244
4245         /*
4246          * Opt out of the vblank disable timer on everything except gen2.
4247          * Gen2 doesn't have a hardware frame counter and so depends on
4248          * vblank interrupts to produce sane vblank seuquence numbers.
4249          */
4250         if (!IS_GEN2(dev_priv))
4251                 dev->vblank_disable_immediate = true;
4252
4253         /* Most platforms treat the display irq block as an always-on
4254          * power domain. vlv/chv can disable it at runtime and need
4255          * special care to avoid writing any of the display block registers
4256          * outside of the power domain. We defer setting up the display irqs
4257          * in this case to the runtime pm.
4258          */
4259         dev_priv->display_irqs_enabled = true;
4260         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4261                 dev_priv->display_irqs_enabled = false;
4262
4263         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4264
4265         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4266         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4267
4268         if (IS_CHERRYVIEW(dev_priv)) {
4269                 dev->driver->irq_handler = cherryview_irq_handler;
4270                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4271                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4272                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4273                 dev->driver->enable_vblank = i965_enable_vblank;
4274                 dev->driver->disable_vblank = i965_disable_vblank;
4275                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4276         } else if (IS_VALLEYVIEW(dev_priv)) {
4277                 dev->driver->irq_handler = valleyview_irq_handler;
4278                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4279                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4280                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4281                 dev->driver->enable_vblank = i965_enable_vblank;
4282                 dev->driver->disable_vblank = i965_disable_vblank;
4283                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4284         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4285                 dev->driver->irq_handler = gen8_irq_handler;
4286                 dev->driver->irq_preinstall = gen8_irq_reset;
4287                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4288                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4289                 dev->driver->enable_vblank = gen8_enable_vblank;
4290                 dev->driver->disable_vblank = gen8_disable_vblank;
4291                 if (IS_GEN9_LP(dev_priv))
4292                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4293                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4294                          HAS_PCH_CNP(dev_priv))
4295                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4296                 else
4297                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4298         } else if (HAS_PCH_SPLIT(dev_priv)) {
4299                 dev->driver->irq_handler = ironlake_irq_handler;
4300                 dev->driver->irq_preinstall = ironlake_irq_reset;
4301                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4302                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4303                 dev->driver->enable_vblank = ironlake_enable_vblank;
4304                 dev->driver->disable_vblank = ironlake_disable_vblank;
4305                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4306         } else {
4307                 if (IS_GEN2(dev_priv)) {
4308                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4309                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4310                         dev->driver->irq_handler = i8xx_irq_handler;
4311                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4312                         dev->driver->enable_vblank = i8xx_enable_vblank;
4313                         dev->driver->disable_vblank = i8xx_disable_vblank;
4314                 } else if (IS_GEN3(dev_priv)) {
4315                         dev->driver->irq_preinstall = i915_irq_preinstall;
4316                         dev->driver->irq_postinstall = i915_irq_postinstall;
4317                         dev->driver->irq_uninstall = i915_irq_uninstall;
4318                         dev->driver->irq_handler = i915_irq_handler;
4319                         dev->driver->enable_vblank = i8xx_enable_vblank;
4320                         dev->driver->disable_vblank = i8xx_disable_vblank;
4321                 } else {
4322                         dev->driver->irq_preinstall = i965_irq_preinstall;
4323                         dev->driver->irq_postinstall = i965_irq_postinstall;
4324                         dev->driver->irq_uninstall = i965_irq_uninstall;
4325                         dev->driver->irq_handler = i965_irq_handler;
4326                         dev->driver->enable_vblank = i965_enable_vblank;
4327                         dev->driver->disable_vblank = i965_disable_vblank;
4328                 }
4329                 if (I915_HAS_HOTPLUG(dev_priv))
4330                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4331         }
4332 }
4333
4334 /**
4335  * intel_irq_fini - deinitializes IRQ support
4336  * @i915: i915 device instance
4337  *
4338  * This function deinitializes all the IRQ support.
4339  */
4340 void intel_irq_fini(struct drm_i915_private *i915)
4341 {
4342         int i;
4343
4344         for (i = 0; i < MAX_L3_SLICES; ++i)
4345                 kfree(i915->l3_parity.remap_info[i]);
4346 }
4347
4348 /**
4349  * intel_irq_install - enables the hardware interrupt
4350  * @dev_priv: i915 device instance
4351  *
4352  * This function enables the hardware interrupt handling, but leaves the hotplug
4353  * handling still disabled. It is called after intel_irq_init().
4354  *
4355  * In the driver load and resume code we need working interrupts in a few places
4356  * but don't want to deal with the hassle of concurrent probe and hotplug
4357  * workers. Hence the split into this two-stage approach.
4358  */
4359 int intel_irq_install(struct drm_i915_private *dev_priv)
4360 {
4361         /*
4362          * We enable some interrupt sources in our postinstall hooks, so mark
4363          * interrupts as enabled _before_ actually enabling them to avoid
4364          * special cases in our ordering checks.
4365          */
4366         dev_priv->pm.irqs_enabled = true;
4367
4368         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4369 }
4370
4371 /**
4372  * intel_irq_uninstall - finilizes all irq handling
4373  * @dev_priv: i915 device instance
4374  *
4375  * This stops interrupt and hotplug handling and unregisters and frees all
4376  * resources acquired in the init functions.
4377  */
4378 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4379 {
4380         drm_irq_uninstall(&dev_priv->drm);
4381         intel_hpd_cancel_work(dev_priv);
4382         dev_priv->pm.irqs_enabled = false;
4383 }
4384
4385 /**
4386  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4387  * @dev_priv: i915 device instance
4388  *
4389  * This function is used to disable interrupts at runtime, both in the runtime
4390  * pm and the system suspend/resume code.
4391  */
4392 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4393 {
4394         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4395         dev_priv->pm.irqs_enabled = false;
4396         synchronize_irq(dev_priv->drm.irq);
4397 }
4398
4399 /**
4400  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4401  * @dev_priv: i915 device instance
4402  *
4403  * This function is used to enable interrupts at runtime, both in the runtime
4404  * pm and the system suspend/resume code.
4405  */
4406 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4407 {
4408         dev_priv->pm.irqs_enabled = true;
4409         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4410         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4411 }