Merge branch 'linux-4.16' of git://github.com/skeggsb/linux into drm-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return !i915_fence_signaled(fence);
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!list_empty(&pt->link));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         INIT_LIST_HEAD(&pt->link);
189         pt->priority = I915_PRIORITY_INVALID;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Check we are idle before we fiddle with hw state! */
217                 GEM_BUG_ON(!intel_engine_is_idle(engine));
218                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219
220                 /* Finally reset hw state */
221                 intel_engine_init_global_seqno(engine, seqno);
222                 tl->seqno = seqno;
223
224                 list_for_each_entry(timeline, &i915->gt.timelines, link)
225                         memset(timeline->engine[id].global_sync, 0,
226                                sizeof(timeline->engine[id].global_sync));
227         }
228
229         return 0;
230 }
231
232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235
236         lockdep_assert_held(&dev_priv->drm.struct_mutex);
237
238         if (seqno == 0)
239                 return -EINVAL;
240
241         /* HWS page needs to be set less than what we
242          * will inject to ring
243          */
244         return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246
247 static void mark_busy(struct drm_i915_private *i915)
248 {
249         if (i915->gt.awake)
250                 return;
251
252         GEM_BUG_ON(!i915->gt.active_requests);
253
254         intel_runtime_pm_get_noresume(i915);
255
256         /*
257          * It seems that the DMC likes to transition between the DC states a lot
258          * when there are no connected displays (no active power domains) during
259          * command submission.
260          *
261          * This activity has negative impact on the performance of the chip with
262          * huge latencies observed in the interrupt handler and elsewhere.
263          *
264          * Work around it by grabbing a GT IRQ power domain whilst there is any
265          * GT activity, preventing any DC state transitions.
266          */
267         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
268
269         i915->gt.awake = true;
270
271         intel_enable_gt_powersave(i915);
272         i915_update_gfx_val(i915);
273         if (INTEL_GEN(i915) >= 6)
274                 gen6_rps_busy(i915);
275         i915_pmu_gt_unparked(i915);
276
277         intel_engines_unpark(i915);
278
279         i915_queue_hangcheck(i915);
280
281         queue_delayed_work(i915->wq,
282                            &i915->gt.retire_work,
283                            round_jiffies_up_relative(HZ));
284 }
285
286 static int reserve_engine(struct intel_engine_cs *engine)
287 {
288         struct drm_i915_private *i915 = engine->i915;
289         u32 active = ++engine->timeline->inflight_seqnos;
290         u32 seqno = engine->timeline->seqno;
291         int ret;
292
293         /* Reservation is fine until we need to wrap around */
294         if (unlikely(add_overflows(seqno, active))) {
295                 ret = reset_all_global_seqno(i915, 0);
296                 if (ret) {
297                         engine->timeline->inflight_seqnos--;
298                         return ret;
299                 }
300         }
301
302         if (!i915->gt.active_requests++)
303                 mark_busy(i915);
304
305         return 0;
306 }
307
308 static void unreserve_engine(struct intel_engine_cs *engine)
309 {
310         struct drm_i915_private *i915 = engine->i915;
311
312         if (!--i915->gt.active_requests) {
313                 /* Cancel the mark_busy() from our reserve_engine() */
314                 GEM_BUG_ON(!i915->gt.awake);
315                 mod_delayed_work(i915->wq,
316                                  &i915->gt.idle_work,
317                                  msecs_to_jiffies(100));
318         }
319
320         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
321         engine->timeline->inflight_seqnos--;
322 }
323
324 void i915_gem_retire_noop(struct i915_gem_active *active,
325                           struct drm_i915_gem_request *request)
326 {
327         /* Space left intentionally blank */
328 }
329
330 static void advance_ring(struct drm_i915_gem_request *request)
331 {
332         unsigned int tail;
333
334         /* We know the GPU must have read the request to have
335          * sent us the seqno + interrupt, so use the position
336          * of tail of the request to update the last known position
337          * of the GPU head.
338          *
339          * Note this requires that we are always called in request
340          * completion order.
341          */
342         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
343                 /* We may race here with execlists resubmitting this request
344                  * as we retire it. The resubmission will move the ring->tail
345                  * forwards (to request->wa_tail). We either read the
346                  * current value that was written to hw, or the value that
347                  * is just about to be. Either works, if we miss the last two
348                  * noops - they are safe to be replayed on a reset.
349                  */
350                 tail = READ_ONCE(request->ring->tail);
351         } else {
352                 tail = request->postfix;
353         }
354         list_del(&request->ring_link);
355
356         request->ring->head = tail;
357 }
358
359 static void free_capture_list(struct drm_i915_gem_request *request)
360 {
361         struct i915_gem_capture_list *capture;
362
363         capture = request->capture_list;
364         while (capture) {
365                 struct i915_gem_capture_list *next = capture->next;
366
367                 kfree(capture);
368                 capture = next;
369         }
370 }
371
372 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
373 {
374         struct intel_engine_cs *engine = request->engine;
375         struct i915_gem_active *active, *next;
376
377         lockdep_assert_held(&request->i915->drm.struct_mutex);
378         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
379         GEM_BUG_ON(!i915_gem_request_completed(request));
380         GEM_BUG_ON(!request->i915->gt.active_requests);
381
382         trace_i915_gem_request_retire(request);
383
384         spin_lock_irq(&engine->timeline->lock);
385         list_del_init(&request->link);
386         spin_unlock_irq(&engine->timeline->lock);
387
388         unreserve_engine(request->engine);
389         advance_ring(request);
390
391         free_capture_list(request);
392
393         /* Walk through the active list, calling retire on each. This allows
394          * objects to track their GPU activity and mark themselves as idle
395          * when their *last* active request is completed (updating state
396          * tracking lists for eviction, active references for GEM, etc).
397          *
398          * As the ->retire() may free the node, we decouple it first and
399          * pass along the auxiliary information (to avoid dereferencing
400          * the node after the callback).
401          */
402         list_for_each_entry_safe(active, next, &request->active_list, link) {
403                 /* In microbenchmarks or focusing upon time inside the kernel,
404                  * we may spend an inordinate amount of time simply handling
405                  * the retirement of requests and processing their callbacks.
406                  * Of which, this loop itself is particularly hot due to the
407                  * cache misses when jumping around the list of i915_gem_active.
408                  * So we try to keep this loop as streamlined as possible and
409                  * also prefetch the next i915_gem_active to try and hide
410                  * the likely cache miss.
411                  */
412                 prefetchw(next);
413
414                 INIT_LIST_HEAD(&active->link);
415                 RCU_INIT_POINTER(active->request, NULL);
416
417                 active->retire(active, request);
418         }
419
420         i915_gem_request_remove_from_client(request);
421
422         /* Retirement decays the ban score as it is a sign of ctx progress */
423         atomic_dec_if_positive(&request->ctx->ban_score);
424
425         /* The backing object for the context is done after switching to the
426          * *next* context. Therefore we cannot retire the previous context until
427          * the next context has already started running. However, since we
428          * cannot take the required locks at i915_gem_request_submit() we
429          * defer the unpinning of the active context to now, retirement of
430          * the subsequent request.
431          */
432         if (engine->last_retired_context)
433                 engine->context_unpin(engine, engine->last_retired_context);
434         engine->last_retired_context = request->ctx;
435
436         spin_lock_irq(&request->lock);
437         if (request->waitboost)
438                 atomic_dec(&request->i915->gt_pm.rps.num_waiters);
439         dma_fence_signal_locked(&request->fence);
440         spin_unlock_irq(&request->lock);
441
442         i915_priotree_fini(request->i915, &request->priotree);
443         i915_gem_request_put(request);
444 }
445
446 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
447 {
448         struct intel_engine_cs *engine = req->engine;
449         struct drm_i915_gem_request *tmp;
450
451         lockdep_assert_held(&req->i915->drm.struct_mutex);
452         GEM_BUG_ON(!i915_gem_request_completed(req));
453
454         if (list_empty(&req->link))
455                 return;
456
457         do {
458                 tmp = list_first_entry(&engine->timeline->requests,
459                                        typeof(*tmp), link);
460
461                 i915_gem_request_retire(tmp);
462         } while (tmp != req);
463 }
464
465 static u32 timeline_get_seqno(struct intel_timeline *tl)
466 {
467         return ++tl->seqno;
468 }
469
470 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
471 {
472         struct intel_engine_cs *engine = request->engine;
473         struct intel_timeline *timeline;
474         u32 seqno;
475
476         GEM_BUG_ON(!irqs_disabled());
477         lockdep_assert_held(&engine->timeline->lock);
478
479         trace_i915_gem_request_execute(request);
480
481         /* Transfer from per-context onto the global per-engine timeline */
482         timeline = engine->timeline;
483         GEM_BUG_ON(timeline == request->timeline);
484         GEM_BUG_ON(request->global_seqno);
485
486         seqno = timeline_get_seqno(timeline);
487         GEM_BUG_ON(!seqno);
488         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
489
490         /* We may be recursing from the signal callback of another i915 fence */
491         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
492         request->global_seqno = seqno;
493         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
494                 intel_engine_enable_signaling(request, false);
495         spin_unlock(&request->lock);
496
497         engine->emit_breadcrumb(request,
498                                 request->ring->vaddr + request->postfix);
499
500         spin_lock(&request->timeline->lock);
501         list_move_tail(&request->link, &timeline->requests);
502         spin_unlock(&request->timeline->lock);
503
504         wake_up_all(&request->execute);
505 }
506
507 void i915_gem_request_submit(struct drm_i915_gem_request *request)
508 {
509         struct intel_engine_cs *engine = request->engine;
510         unsigned long flags;
511
512         /* Will be called from irq-context when using foreign fences. */
513         spin_lock_irqsave(&engine->timeline->lock, flags);
514
515         __i915_gem_request_submit(request);
516
517         spin_unlock_irqrestore(&engine->timeline->lock, flags);
518 }
519
520 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
521 {
522         struct intel_engine_cs *engine = request->engine;
523         struct intel_timeline *timeline;
524
525         GEM_BUG_ON(!irqs_disabled());
526         lockdep_assert_held(&engine->timeline->lock);
527
528         /* Only unwind in reverse order, required so that the per-context list
529          * is kept in seqno/ring order.
530          */
531         GEM_BUG_ON(!request->global_seqno);
532         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
533         engine->timeline->seqno--;
534
535         /* We may be recursing from the signal callback of another i915 fence */
536         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
537         request->global_seqno = 0;
538         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
539                 intel_engine_cancel_signaling(request);
540         spin_unlock(&request->lock);
541
542         /* Transfer back from the global per-engine timeline to per-context */
543         timeline = request->timeline;
544         GEM_BUG_ON(timeline == engine->timeline);
545
546         spin_lock(&timeline->lock);
547         list_move(&request->link, &timeline->requests);
548         spin_unlock(&timeline->lock);
549
550         /* We don't need to wake_up any waiters on request->execute, they
551          * will get woken by any other event or us re-adding this request
552          * to the engine timeline (__i915_gem_request_submit()). The waiters
553          * should be quite adapt at finding that the request now has a new
554          * global_seqno to the one they went to sleep on.
555          */
556 }
557
558 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
559 {
560         struct intel_engine_cs *engine = request->engine;
561         unsigned long flags;
562
563         /* Will be called from irq-context when using foreign fences. */
564         spin_lock_irqsave(&engine->timeline->lock, flags);
565
566         __i915_gem_request_unsubmit(request);
567
568         spin_unlock_irqrestore(&engine->timeline->lock, flags);
569 }
570
571 static int __i915_sw_fence_call
572 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
573 {
574         struct drm_i915_gem_request *request =
575                 container_of(fence, typeof(*request), submit);
576
577         switch (state) {
578         case FENCE_COMPLETE:
579                 trace_i915_gem_request_submit(request);
580                 /*
581                  * We need to serialize use of the submit_request() callback with its
582                  * hotplugging performed during an emergency i915_gem_set_wedged().
583                  * We use the RCU mechanism to mark the critical section in order to
584                  * force i915_gem_set_wedged() to wait until the submit_request() is
585                  * completed before proceeding.
586                  */
587                 rcu_read_lock();
588                 request->engine->submit_request(request);
589                 rcu_read_unlock();
590                 break;
591
592         case FENCE_FREE:
593                 i915_gem_request_put(request);
594                 break;
595         }
596
597         return NOTIFY_DONE;
598 }
599
600 /**
601  * i915_gem_request_alloc - allocate a request structure
602  *
603  * @engine: engine that we wish to issue the request on.
604  * @ctx: context that the request will be associated with.
605  *
606  * Returns a pointer to the allocated request if successful,
607  * or an error code if not.
608  */
609 struct drm_i915_gem_request *
610 i915_gem_request_alloc(struct intel_engine_cs *engine,
611                        struct i915_gem_context *ctx)
612 {
613         struct drm_i915_private *dev_priv = engine->i915;
614         struct drm_i915_gem_request *req;
615         struct intel_ring *ring;
616         int ret;
617
618         lockdep_assert_held(&dev_priv->drm.struct_mutex);
619
620         /*
621          * Preempt contexts are reserved for exclusive use to inject a
622          * preemption context switch. They are never to be used for any trivial
623          * request!
624          */
625         GEM_BUG_ON(ctx == dev_priv->preempt_context);
626
627         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
628          * EIO if the GPU is already wedged.
629          */
630         if (i915_terminally_wedged(&dev_priv->gpu_error))
631                 return ERR_PTR(-EIO);
632
633         /* Pinning the contexts may generate requests in order to acquire
634          * GGTT space, so do this first before we reserve a seqno for
635          * ourselves.
636          */
637         ring = engine->context_pin(engine, ctx);
638         if (IS_ERR(ring))
639                 return ERR_CAST(ring);
640         GEM_BUG_ON(!ring);
641
642         ret = reserve_engine(engine);
643         if (ret)
644                 goto err_unpin;
645
646         ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
647         if (ret)
648                 goto err_unreserve;
649
650         /* Move the oldest request to the slab-cache (if not in use!) */
651         req = list_first_entry_or_null(&engine->timeline->requests,
652                                        typeof(*req), link);
653         if (req && i915_gem_request_completed(req))
654                 i915_gem_request_retire(req);
655
656         /* Beware: Dragons be flying overhead.
657          *
658          * We use RCU to look up requests in flight. The lookups may
659          * race with the request being allocated from the slab freelist.
660          * That is the request we are writing to here, may be in the process
661          * of being read by __i915_gem_active_get_rcu(). As such,
662          * we have to be very careful when overwriting the contents. During
663          * the RCU lookup, we change chase the request->engine pointer,
664          * read the request->global_seqno and increment the reference count.
665          *
666          * The reference count is incremented atomically. If it is zero,
667          * the lookup knows the request is unallocated and complete. Otherwise,
668          * it is either still in use, or has been reallocated and reset
669          * with dma_fence_init(). This increment is safe for release as we
670          * check that the request we have a reference to and matches the active
671          * request.
672          *
673          * Before we increment the refcount, we chase the request->engine
674          * pointer. We must not call kmem_cache_zalloc() or else we set
675          * that pointer to NULL and cause a crash during the lookup. If
676          * we see the request is completed (based on the value of the
677          * old engine and seqno), the lookup is complete and reports NULL.
678          * If we decide the request is not completed (new engine or seqno),
679          * then we grab a reference and double check that it is still the
680          * active request - which it won't be and restart the lookup.
681          *
682          * Do not use kmem_cache_zalloc() here!
683          */
684         req = kmem_cache_alloc(dev_priv->requests,
685                                GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
686         if (unlikely(!req)) {
687                 /* Ratelimit ourselves to prevent oom from malicious clients */
688                 ret = i915_gem_wait_for_idle(dev_priv,
689                                              I915_WAIT_LOCKED |
690                                              I915_WAIT_INTERRUPTIBLE);
691                 if (ret)
692                         goto err_unreserve;
693
694                 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
695                 if (!req) {
696                         ret = -ENOMEM;
697                         goto err_unreserve;
698                 }
699         }
700
701         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
702         GEM_BUG_ON(req->timeline == engine->timeline);
703
704         spin_lock_init(&req->lock);
705         dma_fence_init(&req->fence,
706                        &i915_fence_ops,
707                        &req->lock,
708                        req->timeline->fence_context,
709                        timeline_get_seqno(req->timeline));
710
711         /* We bump the ref for the fence chain */
712         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
713         init_waitqueue_head(&req->execute);
714
715         i915_priotree_init(&req->priotree);
716
717         INIT_LIST_HEAD(&req->active_list);
718         req->i915 = dev_priv;
719         req->engine = engine;
720         req->ctx = ctx;
721         req->ring = ring;
722
723         /* No zalloc, must clear what we need by hand */
724         req->global_seqno = 0;
725         req->file_priv = NULL;
726         req->batch = NULL;
727         req->capture_list = NULL;
728         req->waitboost = false;
729
730         /*
731          * Reserve space in the ring buffer for all the commands required to
732          * eventually emit this request. This is to guarantee that the
733          * i915_add_request() call can't fail. Note that the reserve may need
734          * to be redone if the request is not actually submitted straight
735          * away, e.g. because a GPU scheduler has deferred it.
736          */
737         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
738         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
739
740         /*
741          * Record the position of the start of the request so that
742          * should we detect the updated seqno part-way through the
743          * GPU processing the request, we never over-estimate the
744          * position of the head.
745          */
746         req->head = req->ring->emit;
747
748         /* Unconditionally invalidate GPU caches and TLBs. */
749         ret = engine->emit_flush(req, EMIT_INVALIDATE);
750         if (ret)
751                 goto err_unwind;
752
753         ret = engine->request_alloc(req);
754         if (ret)
755                 goto err_unwind;
756
757         /* Check that we didn't interrupt ourselves with a new request */
758         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
759         return req;
760
761 err_unwind:
762         req->ring->emit = req->head;
763
764         /* Make sure we didn't add ourselves to external state before freeing */
765         GEM_BUG_ON(!list_empty(&req->active_list));
766         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
767         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
768
769         kmem_cache_free(dev_priv->requests, req);
770 err_unreserve:
771         unreserve_engine(engine);
772 err_unpin:
773         engine->context_unpin(engine, ctx);
774         return ERR_PTR(ret);
775 }
776
777 static int
778 i915_gem_request_await_request(struct drm_i915_gem_request *to,
779                                struct drm_i915_gem_request *from)
780 {
781         int ret;
782
783         GEM_BUG_ON(to == from);
784         GEM_BUG_ON(to->timeline == from->timeline);
785
786         if (i915_gem_request_completed(from))
787                 return 0;
788
789         if (to->engine->schedule) {
790                 ret = i915_priotree_add_dependency(to->i915,
791                                                    &to->priotree,
792                                                    &from->priotree);
793                 if (ret < 0)
794                         return ret;
795         }
796
797         if (to->engine == from->engine) {
798                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
799                                                        &from->submit,
800                                                        I915_FENCE_GFP);
801                 return ret < 0 ? ret : 0;
802         }
803
804         if (to->engine->semaphore.sync_to) {
805                 u32 seqno;
806
807                 GEM_BUG_ON(!from->engine->semaphore.signal);
808
809                 seqno = i915_gem_request_global_seqno(from);
810                 if (!seqno)
811                         goto await_dma_fence;
812
813                 if (seqno <= to->timeline->global_sync[from->engine->id])
814                         return 0;
815
816                 trace_i915_gem_ring_sync_to(to, from);
817                 ret = to->engine->semaphore.sync_to(to, from);
818                 if (ret)
819                         return ret;
820
821                 to->timeline->global_sync[from->engine->id] = seqno;
822                 return 0;
823         }
824
825 await_dma_fence:
826         ret = i915_sw_fence_await_dma_fence(&to->submit,
827                                             &from->fence, 0,
828                                             I915_FENCE_GFP);
829         return ret < 0 ? ret : 0;
830 }
831
832 int
833 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
834                                  struct dma_fence *fence)
835 {
836         struct dma_fence **child = &fence;
837         unsigned int nchild = 1;
838         int ret;
839
840         /* Note that if the fence-array was created in signal-on-any mode,
841          * we should *not* decompose it into its individual fences. However,
842          * we don't currently store which mode the fence-array is operating
843          * in. Fortunately, the only user of signal-on-any is private to
844          * amdgpu and we should not see any incoming fence-array from
845          * sync-file being in signal-on-any mode.
846          */
847         if (dma_fence_is_array(fence)) {
848                 struct dma_fence_array *array = to_dma_fence_array(fence);
849
850                 child = array->fences;
851                 nchild = array->num_fences;
852                 GEM_BUG_ON(!nchild);
853         }
854
855         do {
856                 fence = *child++;
857                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
858                         continue;
859
860                 /*
861                  * Requests on the same timeline are explicitly ordered, along
862                  * with their dependencies, by i915_add_request() which ensures
863                  * that requests are submitted in-order through each ring.
864                  */
865                 if (fence->context == req->fence.context)
866                         continue;
867
868                 /* Squash repeated waits to the same timelines */
869                 if (fence->context != req->i915->mm.unordered_timeline &&
870                     intel_timeline_sync_is_later(req->timeline, fence))
871                         continue;
872
873                 if (dma_fence_is_i915(fence))
874                         ret = i915_gem_request_await_request(req,
875                                                              to_request(fence));
876                 else
877                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
878                                                             I915_FENCE_TIMEOUT,
879                                                             I915_FENCE_GFP);
880                 if (ret < 0)
881                         return ret;
882
883                 /* Record the latest fence used against each timeline */
884                 if (fence->context != req->i915->mm.unordered_timeline)
885                         intel_timeline_sync_set(req->timeline, fence);
886         } while (--nchild);
887
888         return 0;
889 }
890
891 /**
892  * i915_gem_request_await_object - set this request to (async) wait upon a bo
893  *
894  * @to: request we are wishing to use
895  * @obj: object which may be in use on another ring.
896  *
897  * This code is meant to abstract object synchronization with the GPU.
898  * Conceptually we serialise writes between engines inside the GPU.
899  * We only allow one engine to write into a buffer at any time, but
900  * multiple readers. To ensure each has a coherent view of memory, we must:
901  *
902  * - If there is an outstanding write request to the object, the new
903  *   request must wait for it to complete (either CPU or in hw, requests
904  *   on the same ring will be naturally ordered).
905  *
906  * - If we are a write request (pending_write_domain is set), the new
907  *   request must wait for outstanding read requests to complete.
908  *
909  * Returns 0 if successful, else propagates up the lower layer error.
910  */
911 int
912 i915_gem_request_await_object(struct drm_i915_gem_request *to,
913                               struct drm_i915_gem_object *obj,
914                               bool write)
915 {
916         struct dma_fence *excl;
917         int ret = 0;
918
919         if (write) {
920                 struct dma_fence **shared;
921                 unsigned int count, i;
922
923                 ret = reservation_object_get_fences_rcu(obj->resv,
924                                                         &excl, &count, &shared);
925                 if (ret)
926                         return ret;
927
928                 for (i = 0; i < count; i++) {
929                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
930                         if (ret)
931                                 break;
932
933                         dma_fence_put(shared[i]);
934                 }
935
936                 for (; i < count; i++)
937                         dma_fence_put(shared[i]);
938                 kfree(shared);
939         } else {
940                 excl = reservation_object_get_excl_rcu(obj->resv);
941         }
942
943         if (excl) {
944                 if (ret == 0)
945                         ret = i915_gem_request_await_dma_fence(to, excl);
946
947                 dma_fence_put(excl);
948         }
949
950         return ret;
951 }
952
953 /*
954  * NB: This function is not allowed to fail. Doing so would mean the the
955  * request is not being tracked for completion but the work itself is
956  * going to happen on the hardware. This would be a Bad Thing(tm).
957  */
958 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
959 {
960         struct intel_engine_cs *engine = request->engine;
961         struct intel_ring *ring = request->ring;
962         struct intel_timeline *timeline = request->timeline;
963         struct drm_i915_gem_request *prev;
964         u32 *cs;
965         int err;
966
967         lockdep_assert_held(&request->i915->drm.struct_mutex);
968         trace_i915_gem_request_add(request);
969
970         /* Make sure that no request gazumped us - if it was allocated after
971          * our i915_gem_request_alloc() and called __i915_add_request() before
972          * us, the timeline will hold its seqno which is later than ours.
973          */
974         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
975
976         /*
977          * To ensure that this call will not fail, space for its emissions
978          * should already have been reserved in the ring buffer. Let the ring
979          * know that it is time to use that space up.
980          */
981         request->reserved_space = 0;
982
983         /*
984          * Emit any outstanding flushes - execbuf can fail to emit the flush
985          * after having emitted the batchbuffer command. Hence we need to fix
986          * things up similar to emitting the lazy request. The difference here
987          * is that the flush _must_ happen before the next request, no matter
988          * what.
989          */
990         if (flush_caches) {
991                 err = engine->emit_flush(request, EMIT_FLUSH);
992
993                 /* Not allowed to fail! */
994                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
995         }
996
997         /* Record the position of the start of the breadcrumb so that
998          * should we detect the updated seqno part-way through the
999          * GPU processing the request, we never over-estimate the
1000          * position of the ring's HEAD.
1001          */
1002         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1003         GEM_BUG_ON(IS_ERR(cs));
1004         request->postfix = intel_ring_offset(request, cs);
1005
1006         /* Seal the request and mark it as pending execution. Note that
1007          * we may inspect this state, without holding any locks, during
1008          * hangcheck. Hence we apply the barrier to ensure that we do not
1009          * see a more recent value in the hws than we are tracking.
1010          */
1011
1012         prev = i915_gem_active_raw(&timeline->last_request,
1013                                    &request->i915->drm.struct_mutex);
1014         if (prev) {
1015                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1016                                              &request->submitq);
1017                 if (engine->schedule)
1018                         __i915_priotree_add_dependency(&request->priotree,
1019                                                        &prev->priotree,
1020                                                        &request->dep,
1021                                                        0);
1022         }
1023
1024         spin_lock_irq(&timeline->lock);
1025         list_add_tail(&request->link, &timeline->requests);
1026         spin_unlock_irq(&timeline->lock);
1027
1028         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1029         i915_gem_active_set(&timeline->last_request, request);
1030
1031         list_add_tail(&request->ring_link, &ring->request_list);
1032         request->emitted_jiffies = jiffies;
1033
1034         /* Let the backend know a new request has arrived that may need
1035          * to adjust the existing execution schedule due to a high priority
1036          * request - i.e. we may want to preempt the current request in order
1037          * to run a high priority dependency chain *before* we can execute this
1038          * request.
1039          *
1040          * This is called before the request is ready to run so that we can
1041          * decide whether to preempt the entire chain so that it is ready to
1042          * run at the earliest possible convenience.
1043          */
1044         if (engine->schedule)
1045                 engine->schedule(request, request->ctx->priority);
1046
1047         local_bh_disable();
1048         i915_sw_fence_commit(&request->submit);
1049         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1050 }
1051
1052 static unsigned long local_clock_us(unsigned int *cpu)
1053 {
1054         unsigned long t;
1055
1056         /* Cheaply and approximately convert from nanoseconds to microseconds.
1057          * The result and subsequent calculations are also defined in the same
1058          * approximate microseconds units. The principal source of timing
1059          * error here is from the simple truncation.
1060          *
1061          * Note that local_clock() is only defined wrt to the current CPU;
1062          * the comparisons are no longer valid if we switch CPUs. Instead of
1063          * blocking preemption for the entire busywait, we can detect the CPU
1064          * switch and use that as indicator of system load and a reason to
1065          * stop busywaiting, see busywait_stop().
1066          */
1067         *cpu = get_cpu();
1068         t = local_clock() >> 10;
1069         put_cpu();
1070
1071         return t;
1072 }
1073
1074 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1075 {
1076         unsigned int this_cpu;
1077
1078         if (time_after(local_clock_us(&this_cpu), timeout))
1079                 return true;
1080
1081         return this_cpu != cpu;
1082 }
1083
1084 static bool __i915_spin_request(const struct drm_i915_gem_request *req,
1085                                 u32 seqno, int state, unsigned long timeout_us)
1086 {
1087         struct intel_engine_cs *engine = req->engine;
1088         unsigned int irq, cpu;
1089
1090         GEM_BUG_ON(!seqno);
1091
1092         /*
1093          * Only wait for the request if we know it is likely to complete.
1094          *
1095          * We don't track the timestamps around requests, nor the average
1096          * request length, so we do not have a good indicator that this
1097          * request will complete within the timeout. What we do know is the
1098          * order in which requests are executed by the engine and so we can
1099          * tell if the request has started. If the request hasn't started yet,
1100          * it is a fair assumption that it will not complete within our
1101          * relatively short timeout.
1102          */
1103         if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1104                 return false;
1105
1106         /* When waiting for high frequency requests, e.g. during synchronous
1107          * rendering split between the CPU and GPU, the finite amount of time
1108          * required to set up the irq and wait upon it limits the response
1109          * rate. By busywaiting on the request completion for a short while we
1110          * can service the high frequency waits as quick as possible. However,
1111          * if it is a slow request, we want to sleep as quickly as possible.
1112          * The tradeoff between waiting and sleeping is roughly the time it
1113          * takes to sleep on a request, on the order of a microsecond.
1114          */
1115
1116         irq = atomic_read(&engine->irq_count);
1117         timeout_us += local_clock_us(&cpu);
1118         do {
1119                 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1120                         return seqno == i915_gem_request_global_seqno(req);
1121
1122                 /* Seqno are meant to be ordered *before* the interrupt. If
1123                  * we see an interrupt without a corresponding seqno advance,
1124                  * assume we won't see one in the near future but require
1125                  * the engine->seqno_barrier() to fixup coherency.
1126                  */
1127                 if (atomic_read(&engine->irq_count) != irq)
1128                         break;
1129
1130                 if (signal_pending_state(state, current))
1131                         break;
1132
1133                 if (busywait_stop(timeout_us, cpu))
1134                         break;
1135
1136                 cpu_relax();
1137         } while (!need_resched());
1138
1139         return false;
1140 }
1141
1142 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1143 {
1144         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1145                 return false;
1146
1147         __set_current_state(TASK_RUNNING);
1148         i915_reset(request->i915, 0);
1149         return true;
1150 }
1151
1152 /**
1153  * i915_wait_request - wait until execution of request has finished
1154  * @req: the request to wait upon
1155  * @flags: how to wait
1156  * @timeout: how long to wait in jiffies
1157  *
1158  * i915_wait_request() waits for the request to be completed, for a
1159  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1160  * unbounded wait).
1161  *
1162  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1163  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1164  * must not specify that the wait is locked.
1165  *
1166  * Returns the remaining time (in jiffies) if the request completed, which may
1167  * be zero or -ETIME if the request is unfinished after the timeout expires.
1168  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1169  * pending before the request completes.
1170  */
1171 long i915_wait_request(struct drm_i915_gem_request *req,
1172                        unsigned int flags,
1173                        long timeout)
1174 {
1175         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1176                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1177         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1178         DEFINE_WAIT_FUNC(reset, default_wake_function);
1179         DEFINE_WAIT_FUNC(exec, default_wake_function);
1180         struct intel_wait wait;
1181
1182         might_sleep();
1183 #if IS_ENABLED(CONFIG_LOCKDEP)
1184         GEM_BUG_ON(debug_locks &&
1185                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1186                    !!(flags & I915_WAIT_LOCKED));
1187 #endif
1188         GEM_BUG_ON(timeout < 0);
1189
1190         if (i915_gem_request_completed(req))
1191                 return timeout;
1192
1193         if (!timeout)
1194                 return -ETIME;
1195
1196         trace_i915_gem_request_wait_begin(req, flags);
1197
1198         add_wait_queue(&req->execute, &exec);
1199         if (flags & I915_WAIT_LOCKED)
1200                 add_wait_queue(errq, &reset);
1201
1202         intel_wait_init(&wait, req);
1203
1204 restart:
1205         do {
1206                 set_current_state(state);
1207                 if (intel_wait_update_request(&wait, req))
1208                         break;
1209
1210                 if (flags & I915_WAIT_LOCKED &&
1211                     __i915_wait_request_check_and_reset(req))
1212                         continue;
1213
1214                 if (signal_pending_state(state, current)) {
1215                         timeout = -ERESTARTSYS;
1216                         goto complete;
1217                 }
1218
1219                 if (!timeout) {
1220                         timeout = -ETIME;
1221                         goto complete;
1222                 }
1223
1224                 timeout = io_schedule_timeout(timeout);
1225         } while (1);
1226
1227         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1228         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1229
1230         /* Optimistic short spin before touching IRQs */
1231         if (__i915_spin_request(req, wait.seqno, state, 5))
1232                 goto complete;
1233
1234         set_current_state(state);
1235         if (intel_engine_add_wait(req->engine, &wait))
1236                 /* In order to check that we haven't missed the interrupt
1237                  * as we enabled it, we need to kick ourselves to do a
1238                  * coherent check on the seqno before we sleep.
1239                  */
1240                 goto wakeup;
1241
1242         if (flags & I915_WAIT_LOCKED)
1243                 __i915_wait_request_check_and_reset(req);
1244
1245         for (;;) {
1246                 if (signal_pending_state(state, current)) {
1247                         timeout = -ERESTARTSYS;
1248                         break;
1249                 }
1250
1251                 if (!timeout) {
1252                         timeout = -ETIME;
1253                         break;
1254                 }
1255
1256                 timeout = io_schedule_timeout(timeout);
1257
1258                 if (intel_wait_complete(&wait) &&
1259                     intel_wait_check_request(&wait, req))
1260                         break;
1261
1262                 set_current_state(state);
1263
1264 wakeup:
1265                 /* Carefully check if the request is complete, giving time
1266                  * for the seqno to be visible following the interrupt.
1267                  * We also have to check in case we are kicked by the GPU
1268                  * reset in order to drop the struct_mutex.
1269                  */
1270                 if (__i915_request_irq_complete(req))
1271                         break;
1272
1273                 /* If the GPU is hung, and we hold the lock, reset the GPU
1274                  * and then check for completion. On a full reset, the engine's
1275                  * HW seqno will be advanced passed us and we are complete.
1276                  * If we do a partial reset, we have to wait for the GPU to
1277                  * resume and update the breadcrumb.
1278                  *
1279                  * If we don't hold the mutex, we can just wait for the worker
1280                  * to come along and update the breadcrumb (either directly
1281                  * itself, or indirectly by recovering the GPU).
1282                  */
1283                 if (flags & I915_WAIT_LOCKED &&
1284                     __i915_wait_request_check_and_reset(req))
1285                         continue;
1286
1287                 /* Only spin if we know the GPU is processing this request */
1288                 if (__i915_spin_request(req, wait.seqno, state, 2))
1289                         break;
1290
1291                 if (!intel_wait_check_request(&wait, req)) {
1292                         intel_engine_remove_wait(req->engine, &wait);
1293                         goto restart;
1294                 }
1295         }
1296
1297         intel_engine_remove_wait(req->engine, &wait);
1298 complete:
1299         __set_current_state(TASK_RUNNING);
1300         if (flags & I915_WAIT_LOCKED)
1301                 remove_wait_queue(errq, &reset);
1302         remove_wait_queue(&req->execute, &exec);
1303         trace_i915_gem_request_wait_end(req);
1304
1305         return timeout;
1306 }
1307
1308 static void engine_retire_requests(struct intel_engine_cs *engine)
1309 {
1310         struct drm_i915_gem_request *request, *next;
1311         u32 seqno = intel_engine_get_seqno(engine);
1312         LIST_HEAD(retire);
1313
1314         spin_lock_irq(&engine->timeline->lock);
1315         list_for_each_entry_safe(request, next,
1316                                  &engine->timeline->requests, link) {
1317                 if (!i915_seqno_passed(seqno, request->global_seqno))
1318                         break;
1319
1320                 list_move_tail(&request->link, &retire);
1321         }
1322         spin_unlock_irq(&engine->timeline->lock);
1323
1324         list_for_each_entry_safe(request, next, &retire, link)
1325                 i915_gem_request_retire(request);
1326 }
1327
1328 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1329 {
1330         struct intel_engine_cs *engine;
1331         enum intel_engine_id id;
1332
1333         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1334
1335         if (!dev_priv->gt.active_requests)
1336                 return;
1337
1338         for_each_engine(engine, dev_priv, id)
1339                 engine_retire_requests(engine);
1340 }
1341
1342 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1343 #include "selftests/mock_request.c"
1344 #include "selftests/i915_gem_request.c"
1345 #endif