Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return !i915_fence_signaled(fence);
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!list_empty(&pt->link));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         INIT_LIST_HEAD(&pt->link);
189         pt->priority = I915_PRIORITY_INVALID;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Check we are idle before we fiddle with hw state! */
217                 GEM_BUG_ON(!intel_engine_is_idle(engine));
218                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219
220                 /* Finally reset hw state */
221                 intel_engine_init_global_seqno(engine, seqno);
222                 tl->seqno = seqno;
223
224                 list_for_each_entry(timeline, &i915->gt.timelines, link)
225                         memset(timeline->engine[id].global_sync, 0,
226                                sizeof(timeline->engine[id].global_sync));
227         }
228
229         return 0;
230 }
231
232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235
236         lockdep_assert_held(&dev_priv->drm.struct_mutex);
237
238         if (seqno == 0)
239                 return -EINVAL;
240
241         /* HWS page needs to be set less than what we
242          * will inject to ring
243          */
244         return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246
247 static void mark_busy(struct drm_i915_private *i915)
248 {
249         if (i915->gt.awake)
250                 return;
251
252         GEM_BUG_ON(!i915->gt.active_requests);
253
254         intel_runtime_pm_get_noresume(i915);
255
256         /*
257          * It seems that the DMC likes to transition between the DC states a lot
258          * when there are no connected displays (no active power domains) during
259          * command submission.
260          *
261          * This activity has negative impact on the performance of the chip with
262          * huge latencies observed in the interrupt handler and elsewhere.
263          *
264          * Work around it by grabbing a GT IRQ power domain whilst there is any
265          * GT activity, preventing any DC state transitions.
266          */
267         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
268
269         i915->gt.awake = true;
270
271         intel_enable_gt_powersave(i915);
272         i915_update_gfx_val(i915);
273         if (INTEL_GEN(i915) >= 6)
274                 gen6_rps_busy(i915);
275         i915_pmu_gt_unparked(i915);
276
277         intel_engines_unpark(i915);
278
279         queue_delayed_work(i915->wq,
280                            &i915->gt.retire_work,
281                            round_jiffies_up_relative(HZ));
282 }
283
284 static int reserve_engine(struct intel_engine_cs *engine)
285 {
286         struct drm_i915_private *i915 = engine->i915;
287         u32 active = ++engine->timeline->inflight_seqnos;
288         u32 seqno = engine->timeline->seqno;
289         int ret;
290
291         /* Reservation is fine until we need to wrap around */
292         if (unlikely(add_overflows(seqno, active))) {
293                 ret = reset_all_global_seqno(i915, 0);
294                 if (ret) {
295                         engine->timeline->inflight_seqnos--;
296                         return ret;
297                 }
298         }
299
300         if (!i915->gt.active_requests++)
301                 mark_busy(i915);
302
303         return 0;
304 }
305
306 static void unreserve_engine(struct intel_engine_cs *engine)
307 {
308         struct drm_i915_private *i915 = engine->i915;
309
310         if (!--i915->gt.active_requests) {
311                 /* Cancel the mark_busy() from our reserve_engine() */
312                 GEM_BUG_ON(!i915->gt.awake);
313                 mod_delayed_work(i915->wq,
314                                  &i915->gt.idle_work,
315                                  msecs_to_jiffies(100));
316         }
317
318         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
319         engine->timeline->inflight_seqnos--;
320 }
321
322 void i915_gem_retire_noop(struct i915_gem_active *active,
323                           struct drm_i915_gem_request *request)
324 {
325         /* Space left intentionally blank */
326 }
327
328 static void advance_ring(struct drm_i915_gem_request *request)
329 {
330         unsigned int tail;
331
332         /* We know the GPU must have read the request to have
333          * sent us the seqno + interrupt, so use the position
334          * of tail of the request to update the last known position
335          * of the GPU head.
336          *
337          * Note this requires that we are always called in request
338          * completion order.
339          */
340         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
341                 /* We may race here with execlists resubmitting this request
342                  * as we retire it. The resubmission will move the ring->tail
343                  * forwards (to request->wa_tail). We either read the
344                  * current value that was written to hw, or the value that
345                  * is just about to be. Either works, if we miss the last two
346                  * noops - they are safe to be replayed on a reset.
347                  */
348                 tail = READ_ONCE(request->ring->tail);
349         } else {
350                 tail = request->postfix;
351         }
352         list_del(&request->ring_link);
353
354         request->ring->head = tail;
355 }
356
357 static void free_capture_list(struct drm_i915_gem_request *request)
358 {
359         struct i915_gem_capture_list *capture;
360
361         capture = request->capture_list;
362         while (capture) {
363                 struct i915_gem_capture_list *next = capture->next;
364
365                 kfree(capture);
366                 capture = next;
367         }
368 }
369
370 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
371 {
372         struct intel_engine_cs *engine = request->engine;
373         struct i915_gem_active *active, *next;
374
375         lockdep_assert_held(&request->i915->drm.struct_mutex);
376         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
377         GEM_BUG_ON(!i915_gem_request_completed(request));
378         GEM_BUG_ON(!request->i915->gt.active_requests);
379
380         trace_i915_gem_request_retire(request);
381
382         spin_lock_irq(&engine->timeline->lock);
383         list_del_init(&request->link);
384         spin_unlock_irq(&engine->timeline->lock);
385
386         unreserve_engine(request->engine);
387         advance_ring(request);
388
389         free_capture_list(request);
390
391         /* Walk through the active list, calling retire on each. This allows
392          * objects to track their GPU activity and mark themselves as idle
393          * when their *last* active request is completed (updating state
394          * tracking lists for eviction, active references for GEM, etc).
395          *
396          * As the ->retire() may free the node, we decouple it first and
397          * pass along the auxiliary information (to avoid dereferencing
398          * the node after the callback).
399          */
400         list_for_each_entry_safe(active, next, &request->active_list, link) {
401                 /* In microbenchmarks or focusing upon time inside the kernel,
402                  * we may spend an inordinate amount of time simply handling
403                  * the retirement of requests and processing their callbacks.
404                  * Of which, this loop itself is particularly hot due to the
405                  * cache misses when jumping around the list of i915_gem_active.
406                  * So we try to keep this loop as streamlined as possible and
407                  * also prefetch the next i915_gem_active to try and hide
408                  * the likely cache miss.
409                  */
410                 prefetchw(next);
411
412                 INIT_LIST_HEAD(&active->link);
413                 RCU_INIT_POINTER(active->request, NULL);
414
415                 active->retire(active, request);
416         }
417
418         i915_gem_request_remove_from_client(request);
419
420         /* Retirement decays the ban score as it is a sign of ctx progress */
421         atomic_dec_if_positive(&request->ctx->ban_score);
422
423         /* The backing object for the context is done after switching to the
424          * *next* context. Therefore we cannot retire the previous context until
425          * the next context has already started running. However, since we
426          * cannot take the required locks at i915_gem_request_submit() we
427          * defer the unpinning of the active context to now, retirement of
428          * the subsequent request.
429          */
430         if (engine->last_retired_context)
431                 engine->context_unpin(engine, engine->last_retired_context);
432         engine->last_retired_context = request->ctx;
433
434         spin_lock_irq(&request->lock);
435         if (request->waitboost)
436                 atomic_dec(&request->i915->gt_pm.rps.num_waiters);
437         dma_fence_signal_locked(&request->fence);
438         spin_unlock_irq(&request->lock);
439
440         i915_priotree_fini(request->i915, &request->priotree);
441         i915_gem_request_put(request);
442 }
443
444 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
445 {
446         struct intel_engine_cs *engine = req->engine;
447         struct drm_i915_gem_request *tmp;
448
449         lockdep_assert_held(&req->i915->drm.struct_mutex);
450         GEM_BUG_ON(!i915_gem_request_completed(req));
451
452         if (list_empty(&req->link))
453                 return;
454
455         do {
456                 tmp = list_first_entry(&engine->timeline->requests,
457                                        typeof(*tmp), link);
458
459                 i915_gem_request_retire(tmp);
460         } while (tmp != req);
461 }
462
463 static u32 timeline_get_seqno(struct intel_timeline *tl)
464 {
465         return ++tl->seqno;
466 }
467
468 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
469 {
470         struct intel_engine_cs *engine = request->engine;
471         struct intel_timeline *timeline;
472         u32 seqno;
473
474         GEM_BUG_ON(!irqs_disabled());
475         lockdep_assert_held(&engine->timeline->lock);
476
477         trace_i915_gem_request_execute(request);
478
479         /* Transfer from per-context onto the global per-engine timeline */
480         timeline = engine->timeline;
481         GEM_BUG_ON(timeline == request->timeline);
482         GEM_BUG_ON(request->global_seqno);
483
484         seqno = timeline_get_seqno(timeline);
485         GEM_BUG_ON(!seqno);
486         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
487
488         /* We may be recursing from the signal callback of another i915 fence */
489         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
490         request->global_seqno = seqno;
491         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
492                 intel_engine_enable_signaling(request, false);
493         spin_unlock(&request->lock);
494
495         engine->emit_breadcrumb(request,
496                                 request->ring->vaddr + request->postfix);
497
498         spin_lock(&request->timeline->lock);
499         list_move_tail(&request->link, &timeline->requests);
500         spin_unlock(&request->timeline->lock);
501
502         wake_up_all(&request->execute);
503 }
504
505 void i915_gem_request_submit(struct drm_i915_gem_request *request)
506 {
507         struct intel_engine_cs *engine = request->engine;
508         unsigned long flags;
509
510         /* Will be called from irq-context when using foreign fences. */
511         spin_lock_irqsave(&engine->timeline->lock, flags);
512
513         __i915_gem_request_submit(request);
514
515         spin_unlock_irqrestore(&engine->timeline->lock, flags);
516 }
517
518 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
519 {
520         struct intel_engine_cs *engine = request->engine;
521         struct intel_timeline *timeline;
522
523         GEM_BUG_ON(!irqs_disabled());
524         lockdep_assert_held(&engine->timeline->lock);
525
526         /* Only unwind in reverse order, required so that the per-context list
527          * is kept in seqno/ring order.
528          */
529         GEM_BUG_ON(!request->global_seqno);
530         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
531         engine->timeline->seqno--;
532
533         /* We may be recursing from the signal callback of another i915 fence */
534         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
535         request->global_seqno = 0;
536         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
537                 intel_engine_cancel_signaling(request);
538         spin_unlock(&request->lock);
539
540         /* Transfer back from the global per-engine timeline to per-context */
541         timeline = request->timeline;
542         GEM_BUG_ON(timeline == engine->timeline);
543
544         spin_lock(&timeline->lock);
545         list_move(&request->link, &timeline->requests);
546         spin_unlock(&timeline->lock);
547
548         /* We don't need to wake_up any waiters on request->execute, they
549          * will get woken by any other event or us re-adding this request
550          * to the engine timeline (__i915_gem_request_submit()). The waiters
551          * should be quite adapt at finding that the request now has a new
552          * global_seqno to the one they went to sleep on.
553          */
554 }
555
556 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
557 {
558         struct intel_engine_cs *engine = request->engine;
559         unsigned long flags;
560
561         /* Will be called from irq-context when using foreign fences. */
562         spin_lock_irqsave(&engine->timeline->lock, flags);
563
564         __i915_gem_request_unsubmit(request);
565
566         spin_unlock_irqrestore(&engine->timeline->lock, flags);
567 }
568
569 static int __i915_sw_fence_call
570 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
571 {
572         struct drm_i915_gem_request *request =
573                 container_of(fence, typeof(*request), submit);
574
575         switch (state) {
576         case FENCE_COMPLETE:
577                 trace_i915_gem_request_submit(request);
578                 /*
579                  * We need to serialize use of the submit_request() callback with its
580                  * hotplugging performed during an emergency i915_gem_set_wedged().
581                  * We use the RCU mechanism to mark the critical section in order to
582                  * force i915_gem_set_wedged() to wait until the submit_request() is
583                  * completed before proceeding.
584                  */
585                 rcu_read_lock();
586                 request->engine->submit_request(request);
587                 rcu_read_unlock();
588                 break;
589
590         case FENCE_FREE:
591                 i915_gem_request_put(request);
592                 break;
593         }
594
595         return NOTIFY_DONE;
596 }
597
598 /**
599  * i915_gem_request_alloc - allocate a request structure
600  *
601  * @engine: engine that we wish to issue the request on.
602  * @ctx: context that the request will be associated with.
603  *
604  * Returns a pointer to the allocated request if successful,
605  * or an error code if not.
606  */
607 struct drm_i915_gem_request *
608 i915_gem_request_alloc(struct intel_engine_cs *engine,
609                        struct i915_gem_context *ctx)
610 {
611         struct drm_i915_private *dev_priv = engine->i915;
612         struct drm_i915_gem_request *req;
613         struct intel_ring *ring;
614         int ret;
615
616         lockdep_assert_held(&dev_priv->drm.struct_mutex);
617
618         /*
619          * Preempt contexts are reserved for exclusive use to inject a
620          * preemption context switch. They are never to be used for any trivial
621          * request!
622          */
623         GEM_BUG_ON(ctx == dev_priv->preempt_context);
624
625         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
626          * EIO if the GPU is already wedged.
627          */
628         if (i915_terminally_wedged(&dev_priv->gpu_error))
629                 return ERR_PTR(-EIO);
630
631         /* Pinning the contexts may generate requests in order to acquire
632          * GGTT space, so do this first before we reserve a seqno for
633          * ourselves.
634          */
635         ring = engine->context_pin(engine, ctx);
636         if (IS_ERR(ring))
637                 return ERR_CAST(ring);
638         GEM_BUG_ON(!ring);
639
640         ret = reserve_engine(engine);
641         if (ret)
642                 goto err_unpin;
643
644         ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
645         if (ret)
646                 goto err_unreserve;
647
648         /* Move the oldest request to the slab-cache (if not in use!) */
649         req = list_first_entry_or_null(&engine->timeline->requests,
650                                        typeof(*req), link);
651         if (req && i915_gem_request_completed(req))
652                 i915_gem_request_retire(req);
653
654         /* Beware: Dragons be flying overhead.
655          *
656          * We use RCU to look up requests in flight. The lookups may
657          * race with the request being allocated from the slab freelist.
658          * That is the request we are writing to here, may be in the process
659          * of being read by __i915_gem_active_get_rcu(). As such,
660          * we have to be very careful when overwriting the contents. During
661          * the RCU lookup, we change chase the request->engine pointer,
662          * read the request->global_seqno and increment the reference count.
663          *
664          * The reference count is incremented atomically. If it is zero,
665          * the lookup knows the request is unallocated and complete. Otherwise,
666          * it is either still in use, or has been reallocated and reset
667          * with dma_fence_init(). This increment is safe for release as we
668          * check that the request we have a reference to and matches the active
669          * request.
670          *
671          * Before we increment the refcount, we chase the request->engine
672          * pointer. We must not call kmem_cache_zalloc() or else we set
673          * that pointer to NULL and cause a crash during the lookup. If
674          * we see the request is completed (based on the value of the
675          * old engine and seqno), the lookup is complete and reports NULL.
676          * If we decide the request is not completed (new engine or seqno),
677          * then we grab a reference and double check that it is still the
678          * active request - which it won't be and restart the lookup.
679          *
680          * Do not use kmem_cache_zalloc() here!
681          */
682         req = kmem_cache_alloc(dev_priv->requests,
683                                GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
684         if (unlikely(!req)) {
685                 /* Ratelimit ourselves to prevent oom from malicious clients */
686                 ret = i915_gem_wait_for_idle(dev_priv,
687                                              I915_WAIT_LOCKED |
688                                              I915_WAIT_INTERRUPTIBLE);
689                 if (ret)
690                         goto err_unreserve;
691
692                 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
693                 if (!req) {
694                         ret = -ENOMEM;
695                         goto err_unreserve;
696                 }
697         }
698
699         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
700         GEM_BUG_ON(req->timeline == engine->timeline);
701
702         spin_lock_init(&req->lock);
703         dma_fence_init(&req->fence,
704                        &i915_fence_ops,
705                        &req->lock,
706                        req->timeline->fence_context,
707                        timeline_get_seqno(req->timeline));
708
709         /* We bump the ref for the fence chain */
710         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
711         init_waitqueue_head(&req->execute);
712
713         i915_priotree_init(&req->priotree);
714
715         INIT_LIST_HEAD(&req->active_list);
716         req->i915 = dev_priv;
717         req->engine = engine;
718         req->ctx = ctx;
719         req->ring = ring;
720
721         /* No zalloc, must clear what we need by hand */
722         req->global_seqno = 0;
723         req->file_priv = NULL;
724         req->batch = NULL;
725         req->capture_list = NULL;
726         req->waitboost = false;
727
728         /*
729          * Reserve space in the ring buffer for all the commands required to
730          * eventually emit this request. This is to guarantee that the
731          * i915_add_request() call can't fail. Note that the reserve may need
732          * to be redone if the request is not actually submitted straight
733          * away, e.g. because a GPU scheduler has deferred it.
734          */
735         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
736         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
737
738         /*
739          * Record the position of the start of the request so that
740          * should we detect the updated seqno part-way through the
741          * GPU processing the request, we never over-estimate the
742          * position of the head.
743          */
744         req->head = req->ring->emit;
745
746         /* Unconditionally invalidate GPU caches and TLBs. */
747         ret = engine->emit_flush(req, EMIT_INVALIDATE);
748         if (ret)
749                 goto err_unwind;
750
751         ret = engine->request_alloc(req);
752         if (ret)
753                 goto err_unwind;
754
755         /* Check that we didn't interrupt ourselves with a new request */
756         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
757         return req;
758
759 err_unwind:
760         req->ring->emit = req->head;
761
762         /* Make sure we didn't add ourselves to external state before freeing */
763         GEM_BUG_ON(!list_empty(&req->active_list));
764         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
765         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
766
767         kmem_cache_free(dev_priv->requests, req);
768 err_unreserve:
769         unreserve_engine(engine);
770 err_unpin:
771         engine->context_unpin(engine, ctx);
772         return ERR_PTR(ret);
773 }
774
775 static int
776 i915_gem_request_await_request(struct drm_i915_gem_request *to,
777                                struct drm_i915_gem_request *from)
778 {
779         int ret;
780
781         GEM_BUG_ON(to == from);
782         GEM_BUG_ON(to->timeline == from->timeline);
783
784         if (i915_gem_request_completed(from))
785                 return 0;
786
787         if (to->engine->schedule) {
788                 ret = i915_priotree_add_dependency(to->i915,
789                                                    &to->priotree,
790                                                    &from->priotree);
791                 if (ret < 0)
792                         return ret;
793         }
794
795         if (to->engine == from->engine) {
796                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
797                                                        &from->submit,
798                                                        I915_FENCE_GFP);
799                 return ret < 0 ? ret : 0;
800         }
801
802         if (to->engine->semaphore.sync_to) {
803                 u32 seqno;
804
805                 GEM_BUG_ON(!from->engine->semaphore.signal);
806
807                 seqno = i915_gem_request_global_seqno(from);
808                 if (!seqno)
809                         goto await_dma_fence;
810
811                 if (seqno <= to->timeline->global_sync[from->engine->id])
812                         return 0;
813
814                 trace_i915_gem_ring_sync_to(to, from);
815                 ret = to->engine->semaphore.sync_to(to, from);
816                 if (ret)
817                         return ret;
818
819                 to->timeline->global_sync[from->engine->id] = seqno;
820                 return 0;
821         }
822
823 await_dma_fence:
824         ret = i915_sw_fence_await_dma_fence(&to->submit,
825                                             &from->fence, 0,
826                                             I915_FENCE_GFP);
827         return ret < 0 ? ret : 0;
828 }
829
830 int
831 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
832                                  struct dma_fence *fence)
833 {
834         struct dma_fence **child = &fence;
835         unsigned int nchild = 1;
836         int ret;
837
838         /* Note that if the fence-array was created in signal-on-any mode,
839          * we should *not* decompose it into its individual fences. However,
840          * we don't currently store which mode the fence-array is operating
841          * in. Fortunately, the only user of signal-on-any is private to
842          * amdgpu and we should not see any incoming fence-array from
843          * sync-file being in signal-on-any mode.
844          */
845         if (dma_fence_is_array(fence)) {
846                 struct dma_fence_array *array = to_dma_fence_array(fence);
847
848                 child = array->fences;
849                 nchild = array->num_fences;
850                 GEM_BUG_ON(!nchild);
851         }
852
853         do {
854                 fence = *child++;
855                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
856                         continue;
857
858                 /*
859                  * Requests on the same timeline are explicitly ordered, along
860                  * with their dependencies, by i915_add_request() which ensures
861                  * that requests are submitted in-order through each ring.
862                  */
863                 if (fence->context == req->fence.context)
864                         continue;
865
866                 /* Squash repeated waits to the same timelines */
867                 if (fence->context != req->i915->mm.unordered_timeline &&
868                     intel_timeline_sync_is_later(req->timeline, fence))
869                         continue;
870
871                 if (dma_fence_is_i915(fence))
872                         ret = i915_gem_request_await_request(req,
873                                                              to_request(fence));
874                 else
875                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
876                                                             I915_FENCE_TIMEOUT,
877                                                             I915_FENCE_GFP);
878                 if (ret < 0)
879                         return ret;
880
881                 /* Record the latest fence used against each timeline */
882                 if (fence->context != req->i915->mm.unordered_timeline)
883                         intel_timeline_sync_set(req->timeline, fence);
884         } while (--nchild);
885
886         return 0;
887 }
888
889 /**
890  * i915_gem_request_await_object - set this request to (async) wait upon a bo
891  *
892  * @to: request we are wishing to use
893  * @obj: object which may be in use on another ring.
894  *
895  * This code is meant to abstract object synchronization with the GPU.
896  * Conceptually we serialise writes between engines inside the GPU.
897  * We only allow one engine to write into a buffer at any time, but
898  * multiple readers. To ensure each has a coherent view of memory, we must:
899  *
900  * - If there is an outstanding write request to the object, the new
901  *   request must wait for it to complete (either CPU or in hw, requests
902  *   on the same ring will be naturally ordered).
903  *
904  * - If we are a write request (pending_write_domain is set), the new
905  *   request must wait for outstanding read requests to complete.
906  *
907  * Returns 0 if successful, else propagates up the lower layer error.
908  */
909 int
910 i915_gem_request_await_object(struct drm_i915_gem_request *to,
911                               struct drm_i915_gem_object *obj,
912                               bool write)
913 {
914         struct dma_fence *excl;
915         int ret = 0;
916
917         if (write) {
918                 struct dma_fence **shared;
919                 unsigned int count, i;
920
921                 ret = reservation_object_get_fences_rcu(obj->resv,
922                                                         &excl, &count, &shared);
923                 if (ret)
924                         return ret;
925
926                 for (i = 0; i < count; i++) {
927                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
928                         if (ret)
929                                 break;
930
931                         dma_fence_put(shared[i]);
932                 }
933
934                 for (; i < count; i++)
935                         dma_fence_put(shared[i]);
936                 kfree(shared);
937         } else {
938                 excl = reservation_object_get_excl_rcu(obj->resv);
939         }
940
941         if (excl) {
942                 if (ret == 0)
943                         ret = i915_gem_request_await_dma_fence(to, excl);
944
945                 dma_fence_put(excl);
946         }
947
948         return ret;
949 }
950
951 /*
952  * NB: This function is not allowed to fail. Doing so would mean the the
953  * request is not being tracked for completion but the work itself is
954  * going to happen on the hardware. This would be a Bad Thing(tm).
955  */
956 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
957 {
958         struct intel_engine_cs *engine = request->engine;
959         struct intel_ring *ring = request->ring;
960         struct intel_timeline *timeline = request->timeline;
961         struct drm_i915_gem_request *prev;
962         u32 *cs;
963         int err;
964
965         lockdep_assert_held(&request->i915->drm.struct_mutex);
966         trace_i915_gem_request_add(request);
967
968         /* Make sure that no request gazumped us - if it was allocated after
969          * our i915_gem_request_alloc() and called __i915_add_request() before
970          * us, the timeline will hold its seqno which is later than ours.
971          */
972         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
973
974         /*
975          * To ensure that this call will not fail, space for its emissions
976          * should already have been reserved in the ring buffer. Let the ring
977          * know that it is time to use that space up.
978          */
979         request->reserved_space = 0;
980
981         /*
982          * Emit any outstanding flushes - execbuf can fail to emit the flush
983          * after having emitted the batchbuffer command. Hence we need to fix
984          * things up similar to emitting the lazy request. The difference here
985          * is that the flush _must_ happen before the next request, no matter
986          * what.
987          */
988         if (flush_caches) {
989                 err = engine->emit_flush(request, EMIT_FLUSH);
990
991                 /* Not allowed to fail! */
992                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
993         }
994
995         /* Record the position of the start of the breadcrumb so that
996          * should we detect the updated seqno part-way through the
997          * GPU processing the request, we never over-estimate the
998          * position of the ring's HEAD.
999          */
1000         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1001         GEM_BUG_ON(IS_ERR(cs));
1002         request->postfix = intel_ring_offset(request, cs);
1003
1004         /* Seal the request and mark it as pending execution. Note that
1005          * we may inspect this state, without holding any locks, during
1006          * hangcheck. Hence we apply the barrier to ensure that we do not
1007          * see a more recent value in the hws than we are tracking.
1008          */
1009
1010         prev = i915_gem_active_raw(&timeline->last_request,
1011                                    &request->i915->drm.struct_mutex);
1012         if (prev) {
1013                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1014                                              &request->submitq);
1015                 if (engine->schedule)
1016                         __i915_priotree_add_dependency(&request->priotree,
1017                                                        &prev->priotree,
1018                                                        &request->dep,
1019                                                        0);
1020         }
1021
1022         spin_lock_irq(&timeline->lock);
1023         list_add_tail(&request->link, &timeline->requests);
1024         spin_unlock_irq(&timeline->lock);
1025
1026         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1027         i915_gem_active_set(&timeline->last_request, request);
1028
1029         list_add_tail(&request->ring_link, &ring->request_list);
1030         request->emitted_jiffies = jiffies;
1031
1032         /* Let the backend know a new request has arrived that may need
1033          * to adjust the existing execution schedule due to a high priority
1034          * request - i.e. we may want to preempt the current request in order
1035          * to run a high priority dependency chain *before* we can execute this
1036          * request.
1037          *
1038          * This is called before the request is ready to run so that we can
1039          * decide whether to preempt the entire chain so that it is ready to
1040          * run at the earliest possible convenience.
1041          */
1042         if (engine->schedule)
1043                 engine->schedule(request, request->ctx->priority);
1044
1045         local_bh_disable();
1046         i915_sw_fence_commit(&request->submit);
1047         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1048 }
1049
1050 static unsigned long local_clock_us(unsigned int *cpu)
1051 {
1052         unsigned long t;
1053
1054         /* Cheaply and approximately convert from nanoseconds to microseconds.
1055          * The result and subsequent calculations are also defined in the same
1056          * approximate microseconds units. The principal source of timing
1057          * error here is from the simple truncation.
1058          *
1059          * Note that local_clock() is only defined wrt to the current CPU;
1060          * the comparisons are no longer valid if we switch CPUs. Instead of
1061          * blocking preemption for the entire busywait, we can detect the CPU
1062          * switch and use that as indicator of system load and a reason to
1063          * stop busywaiting, see busywait_stop().
1064          */
1065         *cpu = get_cpu();
1066         t = local_clock() >> 10;
1067         put_cpu();
1068
1069         return t;
1070 }
1071
1072 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1073 {
1074         unsigned int this_cpu;
1075
1076         if (time_after(local_clock_us(&this_cpu), timeout))
1077                 return true;
1078
1079         return this_cpu != cpu;
1080 }
1081
1082 static bool __i915_spin_request(const struct drm_i915_gem_request *req,
1083                                 u32 seqno, int state, unsigned long timeout_us)
1084 {
1085         struct intel_engine_cs *engine = req->engine;
1086         unsigned int irq, cpu;
1087
1088         GEM_BUG_ON(!seqno);
1089
1090         /*
1091          * Only wait for the request if we know it is likely to complete.
1092          *
1093          * We don't track the timestamps around requests, nor the average
1094          * request length, so we do not have a good indicator that this
1095          * request will complete within the timeout. What we do know is the
1096          * order in which requests are executed by the engine and so we can
1097          * tell if the request has started. If the request hasn't started yet,
1098          * it is a fair assumption that it will not complete within our
1099          * relatively short timeout.
1100          */
1101         if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1102                 return false;
1103
1104         /* When waiting for high frequency requests, e.g. during synchronous
1105          * rendering split between the CPU and GPU, the finite amount of time
1106          * required to set up the irq and wait upon it limits the response
1107          * rate. By busywaiting on the request completion for a short while we
1108          * can service the high frequency waits as quick as possible. However,
1109          * if it is a slow request, we want to sleep as quickly as possible.
1110          * The tradeoff between waiting and sleeping is roughly the time it
1111          * takes to sleep on a request, on the order of a microsecond.
1112          */
1113
1114         irq = atomic_read(&engine->irq_count);
1115         timeout_us += local_clock_us(&cpu);
1116         do {
1117                 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1118                         return seqno == i915_gem_request_global_seqno(req);
1119
1120                 /* Seqno are meant to be ordered *before* the interrupt. If
1121                  * we see an interrupt without a corresponding seqno advance,
1122                  * assume we won't see one in the near future but require
1123                  * the engine->seqno_barrier() to fixup coherency.
1124                  */
1125                 if (atomic_read(&engine->irq_count) != irq)
1126                         break;
1127
1128                 if (signal_pending_state(state, current))
1129                         break;
1130
1131                 if (busywait_stop(timeout_us, cpu))
1132                         break;
1133
1134                 cpu_relax();
1135         } while (!need_resched());
1136
1137         return false;
1138 }
1139
1140 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1141 {
1142         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1143                 return false;
1144
1145         __set_current_state(TASK_RUNNING);
1146         i915_reset(request->i915, 0);
1147         return true;
1148 }
1149
1150 /**
1151  * i915_wait_request - wait until execution of request has finished
1152  * @req: the request to wait upon
1153  * @flags: how to wait
1154  * @timeout: how long to wait in jiffies
1155  *
1156  * i915_wait_request() waits for the request to be completed, for a
1157  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1158  * unbounded wait).
1159  *
1160  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1161  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1162  * must not specify that the wait is locked.
1163  *
1164  * Returns the remaining time (in jiffies) if the request completed, which may
1165  * be zero or -ETIME if the request is unfinished after the timeout expires.
1166  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1167  * pending before the request completes.
1168  */
1169 long i915_wait_request(struct drm_i915_gem_request *req,
1170                        unsigned int flags,
1171                        long timeout)
1172 {
1173         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1174                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1175         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1176         DEFINE_WAIT_FUNC(reset, default_wake_function);
1177         DEFINE_WAIT_FUNC(exec, default_wake_function);
1178         struct intel_wait wait;
1179
1180         might_sleep();
1181 #if IS_ENABLED(CONFIG_LOCKDEP)
1182         GEM_BUG_ON(debug_locks &&
1183                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1184                    !!(flags & I915_WAIT_LOCKED));
1185 #endif
1186         GEM_BUG_ON(timeout < 0);
1187
1188         if (i915_gem_request_completed(req))
1189                 return timeout;
1190
1191         if (!timeout)
1192                 return -ETIME;
1193
1194         trace_i915_gem_request_wait_begin(req, flags);
1195
1196         add_wait_queue(&req->execute, &exec);
1197         if (flags & I915_WAIT_LOCKED)
1198                 add_wait_queue(errq, &reset);
1199
1200         intel_wait_init(&wait, req);
1201
1202 restart:
1203         do {
1204                 set_current_state(state);
1205                 if (intel_wait_update_request(&wait, req))
1206                         break;
1207
1208                 if (flags & I915_WAIT_LOCKED &&
1209                     __i915_wait_request_check_and_reset(req))
1210                         continue;
1211
1212                 if (signal_pending_state(state, current)) {
1213                         timeout = -ERESTARTSYS;
1214                         goto complete;
1215                 }
1216
1217                 if (!timeout) {
1218                         timeout = -ETIME;
1219                         goto complete;
1220                 }
1221
1222                 timeout = io_schedule_timeout(timeout);
1223         } while (1);
1224
1225         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1226         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1227
1228         /* Optimistic short spin before touching IRQs */
1229         if (__i915_spin_request(req, wait.seqno, state, 5))
1230                 goto complete;
1231
1232         set_current_state(state);
1233         if (intel_engine_add_wait(req->engine, &wait))
1234                 /* In order to check that we haven't missed the interrupt
1235                  * as we enabled it, we need to kick ourselves to do a
1236                  * coherent check on the seqno before we sleep.
1237                  */
1238                 goto wakeup;
1239
1240         if (flags & I915_WAIT_LOCKED)
1241                 __i915_wait_request_check_and_reset(req);
1242
1243         for (;;) {
1244                 if (signal_pending_state(state, current)) {
1245                         timeout = -ERESTARTSYS;
1246                         break;
1247                 }
1248
1249                 if (!timeout) {
1250                         timeout = -ETIME;
1251                         break;
1252                 }
1253
1254                 timeout = io_schedule_timeout(timeout);
1255
1256                 if (intel_wait_complete(&wait) &&
1257                     intel_wait_check_request(&wait, req))
1258                         break;
1259
1260                 set_current_state(state);
1261
1262 wakeup:
1263                 /* Carefully check if the request is complete, giving time
1264                  * for the seqno to be visible following the interrupt.
1265                  * We also have to check in case we are kicked by the GPU
1266                  * reset in order to drop the struct_mutex.
1267                  */
1268                 if (__i915_request_irq_complete(req))
1269                         break;
1270
1271                 /* If the GPU is hung, and we hold the lock, reset the GPU
1272                  * and then check for completion. On a full reset, the engine's
1273                  * HW seqno will be advanced passed us and we are complete.
1274                  * If we do a partial reset, we have to wait for the GPU to
1275                  * resume and update the breadcrumb.
1276                  *
1277                  * If we don't hold the mutex, we can just wait for the worker
1278                  * to come along and update the breadcrumb (either directly
1279                  * itself, or indirectly by recovering the GPU).
1280                  */
1281                 if (flags & I915_WAIT_LOCKED &&
1282                     __i915_wait_request_check_and_reset(req))
1283                         continue;
1284
1285                 /* Only spin if we know the GPU is processing this request */
1286                 if (__i915_spin_request(req, wait.seqno, state, 2))
1287                         break;
1288
1289                 if (!intel_wait_check_request(&wait, req)) {
1290                         intel_engine_remove_wait(req->engine, &wait);
1291                         goto restart;
1292                 }
1293         }
1294
1295         intel_engine_remove_wait(req->engine, &wait);
1296 complete:
1297         __set_current_state(TASK_RUNNING);
1298         if (flags & I915_WAIT_LOCKED)
1299                 remove_wait_queue(errq, &reset);
1300         remove_wait_queue(&req->execute, &exec);
1301         trace_i915_gem_request_wait_end(req);
1302
1303         return timeout;
1304 }
1305
1306 static void engine_retire_requests(struct intel_engine_cs *engine)
1307 {
1308         struct drm_i915_gem_request *request, *next;
1309         u32 seqno = intel_engine_get_seqno(engine);
1310         LIST_HEAD(retire);
1311
1312         spin_lock_irq(&engine->timeline->lock);
1313         list_for_each_entry_safe(request, next,
1314                                  &engine->timeline->requests, link) {
1315                 if (!i915_seqno_passed(seqno, request->global_seqno))
1316                         break;
1317
1318                 list_move_tail(&request->link, &retire);
1319         }
1320         spin_unlock_irq(&engine->timeline->lock);
1321
1322         list_for_each_entry_safe(request, next, &retire, link)
1323                 i915_gem_request_retire(request);
1324 }
1325
1326 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1327 {
1328         struct intel_engine_cs *engine;
1329         enum intel_engine_id id;
1330
1331         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1332
1333         if (!dev_priv->gt.active_requests)
1334                 return;
1335
1336         for_each_engine(engine, dev_priv, id)
1337                 engine_retire_requests(engine);
1338 }
1339
1340 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1341 #include "selftests/mock_request.c"
1342 #include "selftests/i915_gem_request.c"
1343 #endif