Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /* Note that as an uncached mmio write, this should flush the
114          * WCB of the writes into the GGTT before it triggers the invalidate.
115          */
116         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121         gen6_ggtt_invalidate(dev_priv);
122         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127         intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132         i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136                                 int enable_ppgtt)
137 {
138         bool has_aliasing_ppgtt;
139         bool has_full_ppgtt;
140         bool has_full_48bit_ppgtt;
141
142         has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143         has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144         has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146         if (intel_vgpu_active(dev_priv)) {
147                 /* emulation is too hard */
148                 has_full_ppgtt = false;
149                 has_full_48bit_ppgtt = false;
150         }
151
152         if (!has_aliasing_ppgtt)
153                 return 0;
154
155         /*
156          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157          * execlists, the sole mechanism available to submit work.
158          */
159         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160                 return 0;
161
162         if (enable_ppgtt == 1)
163                 return 1;
164
165         if (enable_ppgtt == 2 && has_full_ppgtt)
166                 return 2;
167
168         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169                 return 3;
170
171 #ifdef CONFIG_INTEL_IOMMU
172         /* Disable ppgtt on SNB if VT-d is on. */
173         if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
174                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
175                 return 0;
176         }
177 #endif
178
179         /* Early VLV doesn't have this */
180         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
181                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
182                 return 0;
183         }
184
185         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
186                 return has_full_48bit_ppgtt ? 3 : 2;
187         else
188                 return has_aliasing_ppgtt ? 1 : 0;
189 }
190
191 static int ppgtt_bind_vma(struct i915_vma *vma,
192                           enum i915_cache_level cache_level,
193                           u32 unused)
194 {
195         u32 pte_flags;
196         int ret;
197
198         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
199                 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
200                                                  vma->size);
201                 if (ret)
202                         return ret;
203         }
204
205         vma->pages = vma->obj->mm.pages;
206
207         /* Currently applicable only to VLV */
208         pte_flags = 0;
209         if (vma->obj->gt_ro)
210                 pte_flags |= PTE_READ_ONLY;
211
212         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
213                                 cache_level, pte_flags);
214
215         return 0;
216 }
217
218 static void ppgtt_unbind_vma(struct i915_vma *vma)
219 {
220         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
221 }
222
223 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
224                                   enum i915_cache_level level)
225 {
226         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
227         pte |= addr;
228
229         switch (level) {
230         case I915_CACHE_NONE:
231                 pte |= PPAT_UNCACHED_INDEX;
232                 break;
233         case I915_CACHE_WT:
234                 pte |= PPAT_DISPLAY_ELLC_INDEX;
235                 break;
236         default:
237                 pte |= PPAT_CACHED_INDEX;
238                 break;
239         }
240
241         return pte;
242 }
243
244 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
245                                   const enum i915_cache_level level)
246 {
247         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
248         pde |= addr;
249         if (level != I915_CACHE_NONE)
250                 pde |= PPAT_CACHED_PDE_INDEX;
251         else
252                 pde |= PPAT_UNCACHED_INDEX;
253         return pde;
254 }
255
256 #define gen8_pdpe_encode gen8_pde_encode
257 #define gen8_pml4e_encode gen8_pde_encode
258
259 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
260                                  enum i915_cache_level level,
261                                  u32 unused)
262 {
263         gen6_pte_t pte = GEN6_PTE_VALID;
264         pte |= GEN6_PTE_ADDR_ENCODE(addr);
265
266         switch (level) {
267         case I915_CACHE_L3_LLC:
268         case I915_CACHE_LLC:
269                 pte |= GEN6_PTE_CACHE_LLC;
270                 break;
271         case I915_CACHE_NONE:
272                 pte |= GEN6_PTE_UNCACHED;
273                 break;
274         default:
275                 MISSING_CASE(level);
276         }
277
278         return pte;
279 }
280
281 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
282                                  enum i915_cache_level level,
283                                  u32 unused)
284 {
285         gen6_pte_t pte = GEN6_PTE_VALID;
286         pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288         switch (level) {
289         case I915_CACHE_L3_LLC:
290                 pte |= GEN7_PTE_CACHE_L3_LLC;
291                 break;
292         case I915_CACHE_LLC:
293                 pte |= GEN6_PTE_CACHE_LLC;
294                 break;
295         case I915_CACHE_NONE:
296                 pte |= GEN6_PTE_UNCACHED;
297                 break;
298         default:
299                 MISSING_CASE(level);
300         }
301
302         return pte;
303 }
304
305 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
306                                  enum i915_cache_level level,
307                                  u32 flags)
308 {
309         gen6_pte_t pte = GEN6_PTE_VALID;
310         pte |= GEN6_PTE_ADDR_ENCODE(addr);
311
312         if (!(flags & PTE_READ_ONLY))
313                 pte |= BYT_PTE_WRITEABLE;
314
315         if (level != I915_CACHE_NONE)
316                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
317
318         return pte;
319 }
320
321 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
322                                  enum i915_cache_level level,
323                                  u32 unused)
324 {
325         gen6_pte_t pte = GEN6_PTE_VALID;
326         pte |= HSW_PTE_ADDR_ENCODE(addr);
327
328         if (level != I915_CACHE_NONE)
329                 pte |= HSW_WB_LLC_AGE3;
330
331         return pte;
332 }
333
334 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
335                                   enum i915_cache_level level,
336                                   u32 unused)
337 {
338         gen6_pte_t pte = GEN6_PTE_VALID;
339         pte |= HSW_PTE_ADDR_ENCODE(addr);
340
341         switch (level) {
342         case I915_CACHE_NONE:
343                 break;
344         case I915_CACHE_WT:
345                 pte |= HSW_WT_ELLC_LLC_AGE3;
346                 break;
347         default:
348                 pte |= HSW_WB_ELLC_LLC_AGE3;
349                 break;
350         }
351
352         return pte;
353 }
354
355 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
356 {
357         struct page *page;
358
359         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
360                 i915_gem_shrink_all(vm->i915);
361
362         if (vm->free_pages.nr)
363                 return vm->free_pages.pages[--vm->free_pages.nr];
364
365         page = alloc_page(gfp);
366         if (!page)
367                 return NULL;
368
369         if (vm->pt_kmap_wc)
370                 set_pages_array_wc(&page, 1);
371
372         return page;
373 }
374
375 static void vm_free_pages_release(struct i915_address_space *vm)
376 {
377         GEM_BUG_ON(!pagevec_count(&vm->free_pages));
378
379         if (vm->pt_kmap_wc)
380                 set_pages_array_wb(vm->free_pages.pages,
381                                    pagevec_count(&vm->free_pages));
382
383         __pagevec_release(&vm->free_pages);
384 }
385
386 static void vm_free_page(struct i915_address_space *vm, struct page *page)
387 {
388         if (!pagevec_add(&vm->free_pages, page))
389                 vm_free_pages_release(vm);
390 }
391
392 static int __setup_page_dma(struct i915_address_space *vm,
393                             struct i915_page_dma *p,
394                             gfp_t gfp)
395 {
396         p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
397         if (unlikely(!p->page))
398                 return -ENOMEM;
399
400         p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
401                                 PCI_DMA_BIDIRECTIONAL);
402         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
403                 vm_free_page(vm, p->page);
404                 return -ENOMEM;
405         }
406
407         return 0;
408 }
409
410 static int setup_page_dma(struct i915_address_space *vm,
411                           struct i915_page_dma *p)
412 {
413         return __setup_page_dma(vm, p, I915_GFP_DMA);
414 }
415
416 static void cleanup_page_dma(struct i915_address_space *vm,
417                              struct i915_page_dma *p)
418 {
419         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
420         vm_free_page(vm, p->page);
421 }
422
423 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
424
425 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
426 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
427 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
428 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
429
430 static void fill_page_dma(struct i915_address_space *vm,
431                           struct i915_page_dma *p,
432                           const u64 val)
433 {
434         u64 * const vaddr = kmap_atomic(p->page);
435         int i;
436
437         for (i = 0; i < 512; i++)
438                 vaddr[i] = val;
439
440         kunmap_atomic(vaddr);
441 }
442
443 static void fill_page_dma_32(struct i915_address_space *vm,
444                              struct i915_page_dma *p,
445                              const u32 v)
446 {
447         fill_page_dma(vm, p, (u64)v << 32 | v);
448 }
449
450 static int
451 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
452 {
453         return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
454 }
455
456 static void cleanup_scratch_page(struct i915_address_space *vm)
457 {
458         cleanup_page_dma(vm, &vm->scratch_page);
459 }
460
461 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
462 {
463         struct i915_page_table *pt;
464
465         pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
466         if (unlikely(!pt))
467                 return ERR_PTR(-ENOMEM);
468
469         if (unlikely(setup_px(vm, pt))) {
470                 kfree(pt);
471                 return ERR_PTR(-ENOMEM);
472         }
473
474         pt->used_ptes = 0;
475         return pt;
476 }
477
478 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
479 {
480         cleanup_px(vm, pt);
481         kfree(pt);
482 }
483
484 static void gen8_initialize_pt(struct i915_address_space *vm,
485                                struct i915_page_table *pt)
486 {
487         fill_px(vm, pt,
488                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
489 }
490
491 static void gen6_initialize_pt(struct i915_address_space *vm,
492                                struct i915_page_table *pt)
493 {
494         fill32_px(vm, pt,
495                   vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
496 }
497
498 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
499 {
500         struct i915_page_directory *pd;
501
502         pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
503         if (unlikely(!pd))
504                 return ERR_PTR(-ENOMEM);
505
506         if (unlikely(setup_px(vm, pd))) {
507                 kfree(pd);
508                 return ERR_PTR(-ENOMEM);
509         }
510
511         pd->used_pdes = 0;
512         return pd;
513 }
514
515 static void free_pd(struct i915_address_space *vm,
516                     struct i915_page_directory *pd)
517 {
518         cleanup_px(vm, pd);
519         kfree(pd);
520 }
521
522 static void gen8_initialize_pd(struct i915_address_space *vm,
523                                struct i915_page_directory *pd)
524 {
525         unsigned int i;
526
527         fill_px(vm, pd,
528                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
529         for (i = 0; i < I915_PDES; i++)
530                 pd->page_table[i] = vm->scratch_pt;
531 }
532
533 static int __pdp_init(struct i915_address_space *vm,
534                       struct i915_page_directory_pointer *pdp)
535 {
536         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
537         unsigned int i;
538
539         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
540                                             GFP_KERNEL | __GFP_NOWARN);
541         if (unlikely(!pdp->page_directory))
542                 return -ENOMEM;
543
544         for (i = 0; i < pdpes; i++)
545                 pdp->page_directory[i] = vm->scratch_pd;
546
547         return 0;
548 }
549
550 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
551 {
552         kfree(pdp->page_directory);
553         pdp->page_directory = NULL;
554 }
555
556 static inline bool use_4lvl(const struct i915_address_space *vm)
557 {
558         return i915_vm_is_48bit(vm);
559 }
560
561 static struct i915_page_directory_pointer *
562 alloc_pdp(struct i915_address_space *vm)
563 {
564         struct i915_page_directory_pointer *pdp;
565         int ret = -ENOMEM;
566
567         WARN_ON(!use_4lvl(vm));
568
569         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
570         if (!pdp)
571                 return ERR_PTR(-ENOMEM);
572
573         ret = __pdp_init(vm, pdp);
574         if (ret)
575                 goto fail_bitmap;
576
577         ret = setup_px(vm, pdp);
578         if (ret)
579                 goto fail_page_m;
580
581         return pdp;
582
583 fail_page_m:
584         __pdp_fini(pdp);
585 fail_bitmap:
586         kfree(pdp);
587
588         return ERR_PTR(ret);
589 }
590
591 static void free_pdp(struct i915_address_space *vm,
592                      struct i915_page_directory_pointer *pdp)
593 {
594         __pdp_fini(pdp);
595
596         if (!use_4lvl(vm))
597                 return;
598
599         cleanup_px(vm, pdp);
600         kfree(pdp);
601 }
602
603 static void gen8_initialize_pdp(struct i915_address_space *vm,
604                                 struct i915_page_directory_pointer *pdp)
605 {
606         gen8_ppgtt_pdpe_t scratch_pdpe;
607
608         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
609
610         fill_px(vm, pdp, scratch_pdpe);
611 }
612
613 static void gen8_initialize_pml4(struct i915_address_space *vm,
614                                  struct i915_pml4 *pml4)
615 {
616         unsigned int i;
617
618         fill_px(vm, pml4,
619                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
620         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
621                 pml4->pdps[i] = vm->scratch_pdp;
622 }
623
624 /* Broadwell Page Directory Pointer Descriptors */
625 static int gen8_write_pdp(struct drm_i915_gem_request *req,
626                           unsigned entry,
627                           dma_addr_t addr)
628 {
629         struct intel_engine_cs *engine = req->engine;
630         u32 *cs;
631
632         BUG_ON(entry >= 4);
633
634         cs = intel_ring_begin(req, 6);
635         if (IS_ERR(cs))
636                 return PTR_ERR(cs);
637
638         *cs++ = MI_LOAD_REGISTER_IMM(1);
639         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
640         *cs++ = upper_32_bits(addr);
641         *cs++ = MI_LOAD_REGISTER_IMM(1);
642         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
643         *cs++ = lower_32_bits(addr);
644         intel_ring_advance(req, cs);
645
646         return 0;
647 }
648
649 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
650                                struct drm_i915_gem_request *req)
651 {
652         int i, ret;
653
654         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
655                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
656
657                 ret = gen8_write_pdp(req, i, pd_daddr);
658                 if (ret)
659                         return ret;
660         }
661
662         return 0;
663 }
664
665 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
666                                struct drm_i915_gem_request *req)
667 {
668         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
669 }
670
671 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
672  * the page table structures, we mark them dirty so that
673  * context switching/execlist queuing code takes extra steps
674  * to ensure that tlbs are flushed.
675  */
676 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
677 {
678         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
679 }
680
681 /* Removes entries from a single page table, releasing it if it's empty.
682  * Caller can use the return value to update higher-level entries.
683  */
684 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
685                                 struct i915_page_table *pt,
686                                 u64 start, u64 length)
687 {
688         unsigned int num_entries = gen8_pte_count(start, length);
689         unsigned int pte = gen8_pte_index(start);
690         unsigned int pte_end = pte + num_entries;
691         const gen8_pte_t scratch_pte =
692                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
693         gen8_pte_t *vaddr;
694
695         GEM_BUG_ON(num_entries > pt->used_ptes);
696
697         pt->used_ptes -= num_entries;
698         if (!pt->used_ptes)
699                 return true;
700
701         vaddr = kmap_atomic_px(pt);
702         while (pte < pte_end)
703                 vaddr[pte++] = scratch_pte;
704         kunmap_atomic(vaddr);
705
706         return false;
707 }
708
709 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
710                                struct i915_page_directory *pd,
711                                struct i915_page_table *pt,
712                                unsigned int pde)
713 {
714         gen8_pde_t *vaddr;
715
716         pd->page_table[pde] = pt;
717
718         vaddr = kmap_atomic_px(pd);
719         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
720         kunmap_atomic(vaddr);
721 }
722
723 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
724                                 struct i915_page_directory *pd,
725                                 u64 start, u64 length)
726 {
727         struct i915_page_table *pt;
728         u32 pde;
729
730         gen8_for_each_pde(pt, pd, start, length, pde) {
731                 GEM_BUG_ON(pt == vm->scratch_pt);
732
733                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
734                         continue;
735
736                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
737                 GEM_BUG_ON(!pd->used_pdes);
738                 pd->used_pdes--;
739
740                 free_pt(vm, pt);
741         }
742
743         return !pd->used_pdes;
744 }
745
746 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
747                                 struct i915_page_directory_pointer *pdp,
748                                 struct i915_page_directory *pd,
749                                 unsigned int pdpe)
750 {
751         gen8_ppgtt_pdpe_t *vaddr;
752
753         pdp->page_directory[pdpe] = pd;
754         if (!use_4lvl(vm))
755                 return;
756
757         vaddr = kmap_atomic_px(pdp);
758         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
759         kunmap_atomic(vaddr);
760 }
761
762 /* Removes entries from a single page dir pointer, releasing it if it's empty.
763  * Caller can use the return value to update higher-level entries
764  */
765 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
766                                  struct i915_page_directory_pointer *pdp,
767                                  u64 start, u64 length)
768 {
769         struct i915_page_directory *pd;
770         unsigned int pdpe;
771
772         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
773                 GEM_BUG_ON(pd == vm->scratch_pd);
774
775                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
776                         continue;
777
778                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
779                 GEM_BUG_ON(!pdp->used_pdpes);
780                 pdp->used_pdpes--;
781
782                 free_pd(vm, pd);
783         }
784
785         return !pdp->used_pdpes;
786 }
787
788 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
789                                   u64 start, u64 length)
790 {
791         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
792 }
793
794 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
795                                  struct i915_page_directory_pointer *pdp,
796                                  unsigned int pml4e)
797 {
798         gen8_ppgtt_pml4e_t *vaddr;
799
800         pml4->pdps[pml4e] = pdp;
801
802         vaddr = kmap_atomic_px(pml4);
803         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
804         kunmap_atomic(vaddr);
805 }
806
807 /* Removes entries from a single pml4.
808  * This is the top-level structure in 4-level page tables used on gen8+.
809  * Empty entries are always scratch pml4e.
810  */
811 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
812                                   u64 start, u64 length)
813 {
814         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
815         struct i915_pml4 *pml4 = &ppgtt->pml4;
816         struct i915_page_directory_pointer *pdp;
817         unsigned int pml4e;
818
819         GEM_BUG_ON(!use_4lvl(vm));
820
821         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
822                 GEM_BUG_ON(pdp == vm->scratch_pdp);
823
824                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
825                         continue;
826
827                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
828
829                 free_pdp(vm, pdp);
830         }
831 }
832
833 struct sgt_dma {
834         struct scatterlist *sg;
835         dma_addr_t dma, max;
836 };
837
838 struct gen8_insert_pte {
839         u16 pml4e;
840         u16 pdpe;
841         u16 pde;
842         u16 pte;
843 };
844
845 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
846 {
847         return (struct gen8_insert_pte) {
848                  gen8_pml4e_index(start),
849                  gen8_pdpe_index(start),
850                  gen8_pde_index(start),
851                  gen8_pte_index(start),
852         };
853 }
854
855 static __always_inline bool
856 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
857                               struct i915_page_directory_pointer *pdp,
858                               struct sgt_dma *iter,
859                               struct gen8_insert_pte *idx,
860                               enum i915_cache_level cache_level)
861 {
862         struct i915_page_directory *pd;
863         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
864         gen8_pte_t *vaddr;
865         bool ret;
866
867         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
868         pd = pdp->page_directory[idx->pdpe];
869         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
870         do {
871                 vaddr[idx->pte] = pte_encode | iter->dma;
872
873                 iter->dma += PAGE_SIZE;
874                 if (iter->dma >= iter->max) {
875                         iter->sg = __sg_next(iter->sg);
876                         if (!iter->sg) {
877                                 ret = false;
878                                 break;
879                         }
880
881                         iter->dma = sg_dma_address(iter->sg);
882                         iter->max = iter->dma + iter->sg->length;
883                 }
884
885                 if (++idx->pte == GEN8_PTES) {
886                         idx->pte = 0;
887
888                         if (++idx->pde == I915_PDES) {
889                                 idx->pde = 0;
890
891                                 /* Limited by sg length for 3lvl */
892                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
893                                         idx->pdpe = 0;
894                                         ret = true;
895                                         break;
896                                 }
897
898                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
899                                 pd = pdp->page_directory[idx->pdpe];
900                         }
901
902                         kunmap_atomic(vaddr);
903                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
904                 }
905         } while (1);
906         kunmap_atomic(vaddr);
907
908         return ret;
909 }
910
911 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
912                                    struct sg_table *pages,
913                                    u64 start,
914                                    enum i915_cache_level cache_level,
915                                    u32 unused)
916 {
917         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
918         struct sgt_dma iter = {
919                 .sg = pages->sgl,
920                 .dma = sg_dma_address(iter.sg),
921                 .max = iter.dma + iter.sg->length,
922         };
923         struct gen8_insert_pte idx = gen8_insert_pte(start);
924
925         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
926                                       cache_level);
927 }
928
929 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
930                                    struct sg_table *pages,
931                                    u64 start,
932                                    enum i915_cache_level cache_level,
933                                    u32 unused)
934 {
935         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936         struct sgt_dma iter = {
937                 .sg = pages->sgl,
938                 .dma = sg_dma_address(iter.sg),
939                 .max = iter.dma + iter.sg->length,
940         };
941         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
942         struct gen8_insert_pte idx = gen8_insert_pte(start);
943
944         while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
945                                              &idx, cache_level))
946                 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
947 }
948
949 static void gen8_free_page_tables(struct i915_address_space *vm,
950                                   struct i915_page_directory *pd)
951 {
952         int i;
953
954         if (!px_page(pd))
955                 return;
956
957         for (i = 0; i < I915_PDES; i++) {
958                 if (pd->page_table[i] != vm->scratch_pt)
959                         free_pt(vm, pd->page_table[i]);
960         }
961 }
962
963 static int gen8_init_scratch(struct i915_address_space *vm)
964 {
965         int ret;
966
967         ret = setup_scratch_page(vm, I915_GFP_DMA);
968         if (ret)
969                 return ret;
970
971         vm->scratch_pt = alloc_pt(vm);
972         if (IS_ERR(vm->scratch_pt)) {
973                 ret = PTR_ERR(vm->scratch_pt);
974                 goto free_scratch_page;
975         }
976
977         vm->scratch_pd = alloc_pd(vm);
978         if (IS_ERR(vm->scratch_pd)) {
979                 ret = PTR_ERR(vm->scratch_pd);
980                 goto free_pt;
981         }
982
983         if (use_4lvl(vm)) {
984                 vm->scratch_pdp = alloc_pdp(vm);
985                 if (IS_ERR(vm->scratch_pdp)) {
986                         ret = PTR_ERR(vm->scratch_pdp);
987                         goto free_pd;
988                 }
989         }
990
991         gen8_initialize_pt(vm, vm->scratch_pt);
992         gen8_initialize_pd(vm, vm->scratch_pd);
993         if (use_4lvl(vm))
994                 gen8_initialize_pdp(vm, vm->scratch_pdp);
995
996         return 0;
997
998 free_pd:
999         free_pd(vm, vm->scratch_pd);
1000 free_pt:
1001         free_pt(vm, vm->scratch_pt);
1002 free_scratch_page:
1003         cleanup_scratch_page(vm);
1004
1005         return ret;
1006 }
1007
1008 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1009 {
1010         struct i915_address_space *vm = &ppgtt->base;
1011         struct drm_i915_private *dev_priv = vm->i915;
1012         enum vgt_g2v_type msg;
1013         int i;
1014
1015         if (use_4lvl(vm)) {
1016                 const u64 daddr = px_dma(&ppgtt->pml4);
1017
1018                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1019                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1020
1021                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1022                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1023         } else {
1024                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1025                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1026
1027                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1028                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1029                 }
1030
1031                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1032                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1033         }
1034
1035         I915_WRITE(vgtif_reg(g2v_notify), msg);
1036
1037         return 0;
1038 }
1039
1040 static void gen8_free_scratch(struct i915_address_space *vm)
1041 {
1042         if (use_4lvl(vm))
1043                 free_pdp(vm, vm->scratch_pdp);
1044         free_pd(vm, vm->scratch_pd);
1045         free_pt(vm, vm->scratch_pt);
1046         cleanup_scratch_page(vm);
1047 }
1048
1049 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1050                                     struct i915_page_directory_pointer *pdp)
1051 {
1052         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1053         int i;
1054
1055         for (i = 0; i < pdpes; i++) {
1056                 if (pdp->page_directory[i] == vm->scratch_pd)
1057                         continue;
1058
1059                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1060                 free_pd(vm, pdp->page_directory[i]);
1061         }
1062
1063         free_pdp(vm, pdp);
1064 }
1065
1066 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1067 {
1068         int i;
1069
1070         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1071                 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1072                         continue;
1073
1074                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1075         }
1076
1077         cleanup_px(&ppgtt->base, &ppgtt->pml4);
1078 }
1079
1080 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1081 {
1082         struct drm_i915_private *dev_priv = vm->i915;
1083         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1084
1085         if (intel_vgpu_active(dev_priv))
1086                 gen8_ppgtt_notify_vgt(ppgtt, false);
1087
1088         if (use_4lvl(vm))
1089                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1090         else
1091                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1092
1093         gen8_free_scratch(vm);
1094 }
1095
1096 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1097                                struct i915_page_directory *pd,
1098                                u64 start, u64 length)
1099 {
1100         struct i915_page_table *pt;
1101         u64 from = start;
1102         unsigned int pde;
1103
1104         gen8_for_each_pde(pt, pd, start, length, pde) {
1105                 if (pt == vm->scratch_pt) {
1106                         pt = alloc_pt(vm);
1107                         if (IS_ERR(pt))
1108                                 goto unwind;
1109
1110                         gen8_initialize_pt(vm, pt);
1111
1112                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1113                         pd->used_pdes++;
1114                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1115                 }
1116
1117                 pt->used_ptes += gen8_pte_count(start, length);
1118         }
1119         return 0;
1120
1121 unwind:
1122         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1123         return -ENOMEM;
1124 }
1125
1126 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1127                                 struct i915_page_directory_pointer *pdp,
1128                                 u64 start, u64 length)
1129 {
1130         struct i915_page_directory *pd;
1131         u64 from = start;
1132         unsigned int pdpe;
1133         int ret;
1134
1135         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1136                 if (pd == vm->scratch_pd) {
1137                         pd = alloc_pd(vm);
1138                         if (IS_ERR(pd))
1139                                 goto unwind;
1140
1141                         gen8_initialize_pd(vm, pd);
1142                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1143                         pdp->used_pdpes++;
1144                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1145
1146                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1147                 }
1148
1149                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1150                 if (unlikely(ret))
1151                         goto unwind_pd;
1152         }
1153
1154         return 0;
1155
1156 unwind_pd:
1157         if (!pd->used_pdes) {
1158                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1159                 GEM_BUG_ON(!pdp->used_pdpes);
1160                 pdp->used_pdpes--;
1161                 free_pd(vm, pd);
1162         }
1163 unwind:
1164         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1165         return -ENOMEM;
1166 }
1167
1168 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1169                                  u64 start, u64 length)
1170 {
1171         return gen8_ppgtt_alloc_pdp(vm,
1172                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1173 }
1174
1175 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1176                                  u64 start, u64 length)
1177 {
1178         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1179         struct i915_pml4 *pml4 = &ppgtt->pml4;
1180         struct i915_page_directory_pointer *pdp;
1181         u64 from = start;
1182         u32 pml4e;
1183         int ret;
1184
1185         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1186                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1187                         pdp = alloc_pdp(vm);
1188                         if (IS_ERR(pdp))
1189                                 goto unwind;
1190
1191                         gen8_initialize_pdp(vm, pdp);
1192                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1193                 }
1194
1195                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1196                 if (unlikely(ret))
1197                         goto unwind_pdp;
1198         }
1199
1200         return 0;
1201
1202 unwind_pdp:
1203         if (!pdp->used_pdpes) {
1204                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1205                 free_pdp(vm, pdp);
1206         }
1207 unwind:
1208         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1209         return -ENOMEM;
1210 }
1211
1212 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1213                           struct i915_page_directory_pointer *pdp,
1214                           u64 start, u64 length,
1215                           gen8_pte_t scratch_pte,
1216                           struct seq_file *m)
1217 {
1218         struct i915_address_space *vm = &ppgtt->base;
1219         struct i915_page_directory *pd;
1220         u32 pdpe;
1221
1222         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1223                 struct i915_page_table *pt;
1224                 u64 pd_len = length;
1225                 u64 pd_start = start;
1226                 u32 pde;
1227
1228                 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1229                         continue;
1230
1231                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1232                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1233                         u32 pte;
1234                         gen8_pte_t *pt_vaddr;
1235
1236                         if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1237                                 continue;
1238
1239                         pt_vaddr = kmap_atomic_px(pt);
1240                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1241                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1242                                           pde << GEN8_PDE_SHIFT |
1243                                           pte << GEN8_PTE_SHIFT);
1244                                 int i;
1245                                 bool found = false;
1246
1247                                 for (i = 0; i < 4; i++)
1248                                         if (pt_vaddr[pte + i] != scratch_pte)
1249                                                 found = true;
1250                                 if (!found)
1251                                         continue;
1252
1253                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1254                                 for (i = 0; i < 4; i++) {
1255                                         if (pt_vaddr[pte + i] != scratch_pte)
1256                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1257                                         else
1258                                                 seq_puts(m, "  SCRATCH ");
1259                                 }
1260                                 seq_puts(m, "\n");
1261                         }
1262                         kunmap_atomic(pt_vaddr);
1263                 }
1264         }
1265 }
1266
1267 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1268 {
1269         struct i915_address_space *vm = &ppgtt->base;
1270         const gen8_pte_t scratch_pte =
1271                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1272         u64 start = 0, length = ppgtt->base.total;
1273
1274         if (use_4lvl(vm)) {
1275                 u64 pml4e;
1276                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1277                 struct i915_page_directory_pointer *pdp;
1278
1279                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1280                         if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1281                                 continue;
1282
1283                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1284                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1285                 }
1286         } else {
1287                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1288         }
1289 }
1290
1291 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1292 {
1293         struct i915_address_space *vm = &ppgtt->base;
1294         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1295         struct i915_page_directory *pd;
1296         u64 start = 0, length = ppgtt->base.total;
1297         u64 from = start;
1298         unsigned int pdpe;
1299
1300         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1301                 pd = alloc_pd(vm);
1302                 if (IS_ERR(pd))
1303                         goto unwind;
1304
1305                 gen8_initialize_pd(vm, pd);
1306                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1307                 pdp->used_pdpes++;
1308         }
1309
1310         pdp->used_pdpes++; /* never remove */
1311         return 0;
1312
1313 unwind:
1314         start -= from;
1315         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1316                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1317                 free_pd(vm, pd);
1318         }
1319         pdp->used_pdpes = 0;
1320         return -ENOMEM;
1321 }
1322
1323 /*
1324  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1325  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1326  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1327  * space.
1328  *
1329  */
1330 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1331 {
1332         struct i915_address_space *vm = &ppgtt->base;
1333         struct drm_i915_private *dev_priv = vm->i915;
1334         int ret;
1335
1336         ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1337                 1ULL << 48 :
1338                 1ULL << 32;
1339
1340         ret = gen8_init_scratch(&ppgtt->base);
1341         if (ret) {
1342                 ppgtt->base.total = 0;
1343                 return ret;
1344         }
1345
1346         /* There are only few exceptions for gen >=6. chv and bxt.
1347          * And we are not sure about the latter so play safe for now.
1348          */
1349         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1350                 ppgtt->base.pt_kmap_wc = true;
1351
1352         if (use_4lvl(vm)) {
1353                 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1354                 if (ret)
1355                         goto free_scratch;
1356
1357                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1358
1359                 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1360                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1361                 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1362                 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1363         } else {
1364                 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1365                 if (ret)
1366                         goto free_scratch;
1367
1368                 if (intel_vgpu_active(dev_priv)) {
1369                         ret = gen8_preallocate_top_level_pdp(ppgtt);
1370                         if (ret) {
1371                                 __pdp_fini(&ppgtt->pdp);
1372                                 goto free_scratch;
1373                         }
1374                 }
1375
1376                 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1377                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1378                 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1379                 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1380         }
1381
1382         if (intel_vgpu_active(dev_priv))
1383                 gen8_ppgtt_notify_vgt(ppgtt, true);
1384
1385         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1386         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1387         ppgtt->base.bind_vma = ppgtt_bind_vma;
1388         ppgtt->debug_dump = gen8_dump_ppgtt;
1389
1390         return 0;
1391
1392 free_scratch:
1393         gen8_free_scratch(&ppgtt->base);
1394         return ret;
1395 }
1396
1397 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1398 {
1399         struct i915_address_space *vm = &ppgtt->base;
1400         struct i915_page_table *unused;
1401         gen6_pte_t scratch_pte;
1402         u32 pd_entry, pte, pde;
1403         u32 start = 0, length = ppgtt->base.total;
1404
1405         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1406                                      I915_CACHE_LLC, 0);
1407
1408         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1409                 u32 expected;
1410                 gen6_pte_t *pt_vaddr;
1411                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1412                 pd_entry = readl(ppgtt->pd_addr + pde);
1413                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1414
1415                 if (pd_entry != expected)
1416                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1417                                    pde,
1418                                    pd_entry,
1419                                    expected);
1420                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1421
1422                 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1423
1424                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1425                         unsigned long va =
1426                                 (pde * PAGE_SIZE * GEN6_PTES) +
1427                                 (pte * PAGE_SIZE);
1428                         int i;
1429                         bool found = false;
1430                         for (i = 0; i < 4; i++)
1431                                 if (pt_vaddr[pte + i] != scratch_pte)
1432                                         found = true;
1433                         if (!found)
1434                                 continue;
1435
1436                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1437                         for (i = 0; i < 4; i++) {
1438                                 if (pt_vaddr[pte + i] != scratch_pte)
1439                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1440                                 else
1441                                         seq_puts(m, "  SCRATCH ");
1442                         }
1443                         seq_puts(m, "\n");
1444                 }
1445                 kunmap_atomic(pt_vaddr);
1446         }
1447 }
1448
1449 /* Write pde (index) from the page directory @pd to the page table @pt */
1450 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1451                                   const unsigned int pde,
1452                                   const struct i915_page_table *pt)
1453 {
1454         /* Caller needs to make sure the write completes if necessary */
1455         writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1456                        ppgtt->pd_addr + pde);
1457 }
1458
1459 /* Write all the page tables found in the ppgtt structure to incrementing page
1460  * directories. */
1461 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1462                                   u32 start, u32 length)
1463 {
1464         struct i915_page_table *pt;
1465         unsigned int pde;
1466
1467         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1468                 gen6_write_pde(ppgtt, pde, pt);
1469
1470         mark_tlbs_dirty(ppgtt);
1471         wmb();
1472 }
1473
1474 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1475 {
1476         GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1477         return ppgtt->pd.base.ggtt_offset << 10;
1478 }
1479
1480 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1481                          struct drm_i915_gem_request *req)
1482 {
1483         struct intel_engine_cs *engine = req->engine;
1484         u32 *cs;
1485
1486         /* NB: TLBs must be flushed and invalidated before a switch */
1487         cs = intel_ring_begin(req, 6);
1488         if (IS_ERR(cs))
1489                 return PTR_ERR(cs);
1490
1491         *cs++ = MI_LOAD_REGISTER_IMM(2);
1492         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1493         *cs++ = PP_DIR_DCLV_2G;
1494         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1495         *cs++ = get_pd_offset(ppgtt);
1496         *cs++ = MI_NOOP;
1497         intel_ring_advance(req, cs);
1498
1499         return 0;
1500 }
1501
1502 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1503                           struct drm_i915_gem_request *req)
1504 {
1505         struct intel_engine_cs *engine = req->engine;
1506         u32 *cs;
1507
1508         /* NB: TLBs must be flushed and invalidated before a switch */
1509         cs = intel_ring_begin(req, 6);
1510         if (IS_ERR(cs))
1511                 return PTR_ERR(cs);
1512
1513         *cs++ = MI_LOAD_REGISTER_IMM(2);
1514         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1515         *cs++ = PP_DIR_DCLV_2G;
1516         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1517         *cs++ = get_pd_offset(ppgtt);
1518         *cs++ = MI_NOOP;
1519         intel_ring_advance(req, cs);
1520
1521         return 0;
1522 }
1523
1524 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1525                           struct drm_i915_gem_request *req)
1526 {
1527         struct intel_engine_cs *engine = req->engine;
1528         struct drm_i915_private *dev_priv = req->i915;
1529
1530         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1531         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1532         return 0;
1533 }
1534
1535 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1536 {
1537         struct intel_engine_cs *engine;
1538         enum intel_engine_id id;
1539
1540         for_each_engine(engine, dev_priv, id) {
1541                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1542                                  GEN8_GFX_PPGTT_48B : 0;
1543                 I915_WRITE(RING_MODE_GEN7(engine),
1544                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1545         }
1546 }
1547
1548 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1549 {
1550         struct intel_engine_cs *engine;
1551         u32 ecochk, ecobits;
1552         enum intel_engine_id id;
1553
1554         ecobits = I915_READ(GAC_ECO_BITS);
1555         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1556
1557         ecochk = I915_READ(GAM_ECOCHK);
1558         if (IS_HASWELL(dev_priv)) {
1559                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1560         } else {
1561                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1562                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1563         }
1564         I915_WRITE(GAM_ECOCHK, ecochk);
1565
1566         for_each_engine(engine, dev_priv, id) {
1567                 /* GFX_MODE is per-ring on gen7+ */
1568                 I915_WRITE(RING_MODE_GEN7(engine),
1569                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1570         }
1571 }
1572
1573 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1574 {
1575         u32 ecochk, gab_ctl, ecobits;
1576
1577         ecobits = I915_READ(GAC_ECO_BITS);
1578         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1579                    ECOBITS_PPGTT_CACHE64B);
1580
1581         gab_ctl = I915_READ(GAB_CTL);
1582         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1583
1584         ecochk = I915_READ(GAM_ECOCHK);
1585         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1586
1587         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1588 }
1589
1590 /* PPGTT support for Sandybdrige/Gen6 and later */
1591 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1592                                    u64 start, u64 length)
1593 {
1594         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1595         unsigned int first_entry = start >> PAGE_SHIFT;
1596         unsigned int pde = first_entry / GEN6_PTES;
1597         unsigned int pte = first_entry % GEN6_PTES;
1598         unsigned int num_entries = length >> PAGE_SHIFT;
1599         gen6_pte_t scratch_pte =
1600                 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1601
1602         while (num_entries) {
1603                 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1604                 unsigned int end = min(pte + num_entries, GEN6_PTES);
1605                 gen6_pte_t *vaddr;
1606
1607                 num_entries -= end - pte;
1608
1609                 /* Note that the hw doesn't support removing PDE on the fly
1610                  * (they are cached inside the context with no means to
1611                  * invalidate the cache), so we can only reset the PTE
1612                  * entries back to scratch.
1613                  */
1614
1615                 vaddr = kmap_atomic_px(pt);
1616                 do {
1617                         vaddr[pte++] = scratch_pte;
1618                 } while (pte < end);
1619                 kunmap_atomic(vaddr);
1620
1621                 pte = 0;
1622         }
1623 }
1624
1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1626                                       struct sg_table *pages,
1627                                       u64 start,
1628                                       enum i915_cache_level cache_level,
1629                                       u32 flags)
1630 {
1631         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1632         unsigned first_entry = start >> PAGE_SHIFT;
1633         unsigned act_pt = first_entry / GEN6_PTES;
1634         unsigned act_pte = first_entry % GEN6_PTES;
1635         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1636         struct sgt_dma iter;
1637         gen6_pte_t *vaddr;
1638
1639         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1640         iter.sg = pages->sgl;
1641         iter.dma = sg_dma_address(iter.sg);
1642         iter.max = iter.dma + iter.sg->length;
1643         do {
1644                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1645
1646                 iter.dma += PAGE_SIZE;
1647                 if (iter.dma == iter.max) {
1648                         iter.sg = __sg_next(iter.sg);
1649                         if (!iter.sg)
1650                                 break;
1651
1652                         iter.dma = sg_dma_address(iter.sg);
1653                         iter.max = iter.dma + iter.sg->length;
1654                 }
1655
1656                 if (++act_pte == GEN6_PTES) {
1657                         kunmap_atomic(vaddr);
1658                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1659                         act_pte = 0;
1660                 }
1661         } while (1);
1662         kunmap_atomic(vaddr);
1663 }
1664
1665 static int gen6_alloc_va_range(struct i915_address_space *vm,
1666                                u64 start, u64 length)
1667 {
1668         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1669         struct i915_page_table *pt;
1670         u64 from = start;
1671         unsigned int pde;
1672         bool flush = false;
1673
1674         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1675                 if (pt == vm->scratch_pt) {
1676                         pt = alloc_pt(vm);
1677                         if (IS_ERR(pt))
1678                                 goto unwind_out;
1679
1680                         gen6_initialize_pt(vm, pt);
1681                         ppgtt->pd.page_table[pde] = pt;
1682                         gen6_write_pde(ppgtt, pde, pt);
1683                         flush = true;
1684                 }
1685         }
1686
1687         if (flush) {
1688                 mark_tlbs_dirty(ppgtt);
1689                 wmb();
1690         }
1691
1692         return 0;
1693
1694 unwind_out:
1695         gen6_ppgtt_clear_range(vm, from, start);
1696         return -ENOMEM;
1697 }
1698
1699 static int gen6_init_scratch(struct i915_address_space *vm)
1700 {
1701         int ret;
1702
1703         ret = setup_scratch_page(vm, I915_GFP_DMA);
1704         if (ret)
1705                 return ret;
1706
1707         vm->scratch_pt = alloc_pt(vm);
1708         if (IS_ERR(vm->scratch_pt)) {
1709                 cleanup_scratch_page(vm);
1710                 return PTR_ERR(vm->scratch_pt);
1711         }
1712
1713         gen6_initialize_pt(vm, vm->scratch_pt);
1714
1715         return 0;
1716 }
1717
1718 static void gen6_free_scratch(struct i915_address_space *vm)
1719 {
1720         free_pt(vm, vm->scratch_pt);
1721         cleanup_scratch_page(vm);
1722 }
1723
1724 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1725 {
1726         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1727         struct i915_page_directory *pd = &ppgtt->pd;
1728         struct i915_page_table *pt;
1729         u32 pde;
1730
1731         drm_mm_remove_node(&ppgtt->node);
1732
1733         gen6_for_all_pdes(pt, pd, pde)
1734                 if (pt != vm->scratch_pt)
1735                         free_pt(vm, pt);
1736
1737         gen6_free_scratch(vm);
1738 }
1739
1740 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1741 {
1742         struct i915_address_space *vm = &ppgtt->base;
1743         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1744         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1745         int ret;
1746
1747         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1748          * allocator works in address space sizes, so it's multiplied by page
1749          * size. We allocate at the top of the GTT to avoid fragmentation.
1750          */
1751         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1752
1753         ret = gen6_init_scratch(vm);
1754         if (ret)
1755                 return ret;
1756
1757         ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1758                                   GEN6_PD_SIZE, GEN6_PD_ALIGN,
1759                                   I915_COLOR_UNEVICTABLE,
1760                                   0, ggtt->base.total,
1761                                   PIN_HIGH);
1762         if (ret)
1763                 goto err_out;
1764
1765         if (ppgtt->node.start < ggtt->mappable_end)
1766                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1767
1768         ppgtt->pd.base.ggtt_offset =
1769                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1770
1771         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1772                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1773
1774         return 0;
1775
1776 err_out:
1777         gen6_free_scratch(vm);
1778         return ret;
1779 }
1780
1781 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1782 {
1783         return gen6_ppgtt_allocate_page_directories(ppgtt);
1784 }
1785
1786 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1787                                   u64 start, u64 length)
1788 {
1789         struct i915_page_table *unused;
1790         u32 pde;
1791
1792         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1793                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1794 }
1795
1796 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1797 {
1798         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1799         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1800         int ret;
1801
1802         ppgtt->base.pte_encode = ggtt->base.pte_encode;
1803         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1804                 ppgtt->switch_mm = gen6_mm_switch;
1805         else if (IS_HASWELL(dev_priv))
1806                 ppgtt->switch_mm = hsw_mm_switch;
1807         else if (IS_GEN7(dev_priv))
1808                 ppgtt->switch_mm = gen7_mm_switch;
1809         else
1810                 BUG();
1811
1812         ret = gen6_ppgtt_alloc(ppgtt);
1813         if (ret)
1814                 return ret;
1815
1816         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1817
1818         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1819         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1820
1821         ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1822         if (ret) {
1823                 gen6_ppgtt_cleanup(&ppgtt->base);
1824                 return ret;
1825         }
1826
1827         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1828         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1829         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1830         ppgtt->base.bind_vma = ppgtt_bind_vma;
1831         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1832         ppgtt->debug_dump = gen6_dump_ppgtt;
1833
1834         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1835                          ppgtt->node.size >> 20,
1836                          ppgtt->node.start / PAGE_SIZE);
1837
1838         DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1839                          ppgtt->pd.base.ggtt_offset << 10);
1840
1841         return 0;
1842 }
1843
1844 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1845                            struct drm_i915_private *dev_priv)
1846 {
1847         ppgtt->base.i915 = dev_priv;
1848         ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1849
1850         if (INTEL_INFO(dev_priv)->gen < 8)
1851                 return gen6_ppgtt_init(ppgtt);
1852         else
1853                 return gen8_ppgtt_init(ppgtt);
1854 }
1855
1856 static void i915_address_space_init(struct i915_address_space *vm,
1857                                     struct drm_i915_private *dev_priv,
1858                                     const char *name)
1859 {
1860         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1861
1862         drm_mm_init(&vm->mm, 0, vm->total);
1863         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1864
1865         INIT_LIST_HEAD(&vm->active_list);
1866         INIT_LIST_HEAD(&vm->inactive_list);
1867         INIT_LIST_HEAD(&vm->unbound_list);
1868
1869         list_add_tail(&vm->global_link, &dev_priv->vm_list);
1870         pagevec_init(&vm->free_pages, false);
1871 }
1872
1873 static void i915_address_space_fini(struct i915_address_space *vm)
1874 {
1875         if (pagevec_count(&vm->free_pages))
1876                 vm_free_pages_release(vm);
1877
1878         i915_gem_timeline_fini(&vm->timeline);
1879         drm_mm_takedown(&vm->mm);
1880         list_del(&vm->global_link);
1881 }
1882
1883 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1884 {
1885         /* This function is for gtt related workarounds. This function is
1886          * called on driver load and after a GPU reset, so you can place
1887          * workarounds here even if they get overwritten by GPU reset.
1888          */
1889         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */
1890         if (IS_BROADWELL(dev_priv))
1891                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1892         else if (IS_CHERRYVIEW(dev_priv))
1893                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1894         else if (IS_GEN9_BC(dev_priv))
1895                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1896         else if (IS_GEN9_LP(dev_priv))
1897                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1898 }
1899
1900 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1901 {
1902         gtt_write_workarounds(dev_priv);
1903
1904         /* In the case of execlists, PPGTT is enabled by the context descriptor
1905          * and the PDPs are contained within the context itself.  We don't
1906          * need to do anything here. */
1907         if (i915.enable_execlists)
1908                 return 0;
1909
1910         if (!USES_PPGTT(dev_priv))
1911                 return 0;
1912
1913         if (IS_GEN6(dev_priv))
1914                 gen6_ppgtt_enable(dev_priv);
1915         else if (IS_GEN7(dev_priv))
1916                 gen7_ppgtt_enable(dev_priv);
1917         else if (INTEL_GEN(dev_priv) >= 8)
1918                 gen8_ppgtt_enable(dev_priv);
1919         else
1920                 MISSING_CASE(INTEL_GEN(dev_priv));
1921
1922         return 0;
1923 }
1924
1925 struct i915_hw_ppgtt *
1926 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1927                   struct drm_i915_file_private *fpriv,
1928                   const char *name)
1929 {
1930         struct i915_hw_ppgtt *ppgtt;
1931         int ret;
1932
1933         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1934         if (!ppgtt)
1935                 return ERR_PTR(-ENOMEM);
1936
1937         ret = __hw_ppgtt_init(ppgtt, dev_priv);
1938         if (ret) {
1939                 kfree(ppgtt);
1940                 return ERR_PTR(ret);
1941         }
1942
1943         kref_init(&ppgtt->ref);
1944         i915_address_space_init(&ppgtt->base, dev_priv, name);
1945         ppgtt->base.file = fpriv;
1946
1947         trace_i915_ppgtt_create(&ppgtt->base);
1948
1949         return ppgtt;
1950 }
1951
1952 void i915_ppgtt_close(struct i915_address_space *vm)
1953 {
1954         struct list_head *phases[] = {
1955                 &vm->active_list,
1956                 &vm->inactive_list,
1957                 &vm->unbound_list,
1958                 NULL,
1959         }, **phase;
1960
1961         GEM_BUG_ON(vm->closed);
1962         vm->closed = true;
1963
1964         for (phase = phases; *phase; phase++) {
1965                 struct i915_vma *vma, *vn;
1966
1967                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1968                         if (!i915_vma_is_closed(vma))
1969                                 i915_vma_close(vma);
1970         }
1971 }
1972
1973 void i915_ppgtt_release(struct kref *kref)
1974 {
1975         struct i915_hw_ppgtt *ppgtt =
1976                 container_of(kref, struct i915_hw_ppgtt, ref);
1977
1978         trace_i915_ppgtt_release(&ppgtt->base);
1979
1980         /* vmas should already be unbound and destroyed */
1981         WARN_ON(!list_empty(&ppgtt->base.active_list));
1982         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1983         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1984
1985         ppgtt->base.cleanup(&ppgtt->base);
1986         i915_address_space_fini(&ppgtt->base);
1987         kfree(ppgtt);
1988 }
1989
1990 /* Certain Gen5 chipsets require require idling the GPU before
1991  * unmapping anything from the GTT when VT-d is enabled.
1992  */
1993 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1994 {
1995 #ifdef CONFIG_INTEL_IOMMU
1996         /* Query intel_iommu to see if we need the workaround. Presumably that
1997          * was loaded first.
1998          */
1999         if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2000                 return true;
2001 #endif
2002         return false;
2003 }
2004
2005 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2006 {
2007         struct intel_engine_cs *engine;
2008         enum intel_engine_id id;
2009
2010         if (INTEL_INFO(dev_priv)->gen < 6)
2011                 return;
2012
2013         for_each_engine(engine, dev_priv, id) {
2014                 u32 fault_reg;
2015                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2016                 if (fault_reg & RING_FAULT_VALID) {
2017                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2018                                          "\tAddr: 0x%08lx\n"
2019                                          "\tAddress space: %s\n"
2020                                          "\tSource ID: %d\n"
2021                                          "\tType: %d\n",
2022                                          fault_reg & PAGE_MASK,
2023                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2024                                          RING_FAULT_SRCID(fault_reg),
2025                                          RING_FAULT_FAULT_TYPE(fault_reg));
2026                         I915_WRITE(RING_FAULT_REG(engine),
2027                                    fault_reg & ~RING_FAULT_VALID);
2028                 }
2029         }
2030
2031         /* Engine specific init may not have been done till this point. */
2032         if (dev_priv->engine[RCS])
2033                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2034 }
2035
2036 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2037 {
2038         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2039
2040         /* Don't bother messing with faults pre GEN6 as we have little
2041          * documentation supporting that it's a good idea.
2042          */
2043         if (INTEL_GEN(dev_priv) < 6)
2044                 return;
2045
2046         i915_check_and_clear_faults(dev_priv);
2047
2048         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2049
2050         i915_ggtt_invalidate(dev_priv);
2051 }
2052
2053 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2054                                struct sg_table *pages)
2055 {
2056         do {
2057                 if (dma_map_sg(&obj->base.dev->pdev->dev,
2058                                pages->sgl, pages->nents,
2059                                PCI_DMA_BIDIRECTIONAL))
2060                         return 0;
2061
2062                 /* If the DMA remap fails, one cause can be that we have
2063                  * too many objects pinned in a small remapping table,
2064                  * such as swiotlb. Incrementally purge all other objects and
2065                  * try again - if there are no more pages to remove from
2066                  * the DMA remapper, i915_gem_shrink will return 0.
2067                  */
2068                 GEM_BUG_ON(obj->mm.pages == pages);
2069         } while (i915_gem_shrink(to_i915(obj->base.dev),
2070                                  obj->base.size >> PAGE_SHIFT,
2071                                  I915_SHRINK_BOUND |
2072                                  I915_SHRINK_UNBOUND |
2073                                  I915_SHRINK_ACTIVE));
2074
2075         return -ENOSPC;
2076 }
2077
2078 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2079 {
2080         writeq(pte, addr);
2081 }
2082
2083 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2084                                   dma_addr_t addr,
2085                                   u64 offset,
2086                                   enum i915_cache_level level,
2087                                   u32 unused)
2088 {
2089         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2090         gen8_pte_t __iomem *pte =
2091                 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2092
2093         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2094
2095         ggtt->invalidate(vm->i915);
2096 }
2097
2098 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2099                                      struct sg_table *st,
2100                                      u64 start,
2101                                      enum i915_cache_level level,
2102                                      u32 unused)
2103 {
2104         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2105         struct sgt_iter sgt_iter;
2106         gen8_pte_t __iomem *gtt_entries;
2107         const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2108         dma_addr_t addr;
2109
2110         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2111         gtt_entries += start >> PAGE_SHIFT;
2112         for_each_sgt_dma(addr, sgt_iter, st)
2113                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2114
2115         wmb();
2116
2117         /* This next bit makes the above posting read even more important. We
2118          * want to flush the TLBs only after we're certain all the PTE updates
2119          * have finished.
2120          */
2121         ggtt->invalidate(vm->i915);
2122 }
2123
2124 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2125                                   dma_addr_t addr,
2126                                   u64 offset,
2127                                   enum i915_cache_level level,
2128                                   u32 flags)
2129 {
2130         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2131         gen6_pte_t __iomem *pte =
2132                 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2133
2134         iowrite32(vm->pte_encode(addr, level, flags), pte);
2135
2136         ggtt->invalidate(vm->i915);
2137 }
2138
2139 /*
2140  * Binds an object into the global gtt with the specified cache level. The object
2141  * will be accessible to the GPU via commands whose operands reference offsets
2142  * within the global GTT as well as accessible by the GPU through the GMADR
2143  * mapped BAR (dev_priv->mm.gtt->gtt).
2144  */
2145 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2146                                      struct sg_table *st,
2147                                      u64 start,
2148                                      enum i915_cache_level level,
2149                                      u32 flags)
2150 {
2151         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2152         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2153         unsigned int i = start >> PAGE_SHIFT;
2154         struct sgt_iter iter;
2155         dma_addr_t addr;
2156         for_each_sgt_dma(addr, iter, st)
2157                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2158         wmb();
2159
2160         /* This next bit makes the above posting read even more important. We
2161          * want to flush the TLBs only after we're certain all the PTE updates
2162          * have finished.
2163          */
2164         ggtt->invalidate(vm->i915);
2165 }
2166
2167 static void nop_clear_range(struct i915_address_space *vm,
2168                             u64 start, u64 length)
2169 {
2170 }
2171
2172 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2173                                   u64 start, u64 length)
2174 {
2175         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2176         unsigned first_entry = start >> PAGE_SHIFT;
2177         unsigned num_entries = length >> PAGE_SHIFT;
2178         const gen8_pte_t scratch_pte =
2179                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2180         gen8_pte_t __iomem *gtt_base =
2181                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2182         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2183         int i;
2184
2185         if (WARN(num_entries > max_entries,
2186                  "First entry = %d; Num entries = %d (max=%d)\n",
2187                  first_entry, num_entries, max_entries))
2188                 num_entries = max_entries;
2189
2190         for (i = 0; i < num_entries; i++)
2191                 gen8_set_pte(&gtt_base[i], scratch_pte);
2192 }
2193
2194 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2195                                   u64 start, u64 length)
2196 {
2197         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2198         unsigned first_entry = start >> PAGE_SHIFT;
2199         unsigned num_entries = length >> PAGE_SHIFT;
2200         gen6_pte_t scratch_pte, __iomem *gtt_base =
2201                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2202         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2203         int i;
2204
2205         if (WARN(num_entries > max_entries,
2206                  "First entry = %d; Num entries = %d (max=%d)\n",
2207                  first_entry, num_entries, max_entries))
2208                 num_entries = max_entries;
2209
2210         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2211                                      I915_CACHE_LLC, 0);
2212
2213         for (i = 0; i < num_entries; i++)
2214                 iowrite32(scratch_pte, &gtt_base[i]);
2215 }
2216
2217 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2218                                   dma_addr_t addr,
2219                                   u64 offset,
2220                                   enum i915_cache_level cache_level,
2221                                   u32 unused)
2222 {
2223         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2224                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2225
2226         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2227 }
2228
2229 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2230                                      struct sg_table *pages,
2231                                      u64 start,
2232                                      enum i915_cache_level cache_level,
2233                                      u32 unused)
2234 {
2235         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2236                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2237
2238         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2239 }
2240
2241 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2242                                   u64 start, u64 length)
2243 {
2244         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2245 }
2246
2247 static int ggtt_bind_vma(struct i915_vma *vma,
2248                          enum i915_cache_level cache_level,
2249                          u32 flags)
2250 {
2251         struct drm_i915_private *i915 = vma->vm->i915;
2252         struct drm_i915_gem_object *obj = vma->obj;
2253         u32 pte_flags;
2254
2255         if (unlikely(!vma->pages)) {
2256                 int ret = i915_get_ggtt_vma_pages(vma);
2257                 if (ret)
2258                         return ret;
2259         }
2260
2261         /* Currently applicable only to VLV */
2262         pte_flags = 0;
2263         if (obj->gt_ro)
2264                 pte_flags |= PTE_READ_ONLY;
2265
2266         intel_runtime_pm_get(i915);
2267         vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2268                                 cache_level, pte_flags);
2269         intel_runtime_pm_put(i915);
2270
2271         /*
2272          * Without aliasing PPGTT there's no difference between
2273          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2274          * upgrade to both bound if we bind either to avoid double-binding.
2275          */
2276         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2277
2278         return 0;
2279 }
2280
2281 static void ggtt_unbind_vma(struct i915_vma *vma)
2282 {
2283         struct drm_i915_private *i915 = vma->vm->i915;
2284
2285         intel_runtime_pm_get(i915);
2286         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2287         intel_runtime_pm_put(i915);
2288 }
2289
2290 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2291                                  enum i915_cache_level cache_level,
2292                                  u32 flags)
2293 {
2294         struct drm_i915_private *i915 = vma->vm->i915;
2295         u32 pte_flags;
2296         int ret;
2297
2298         if (unlikely(!vma->pages)) {
2299                 ret = i915_get_ggtt_vma_pages(vma);
2300                 if (ret)
2301                         return ret;
2302         }
2303
2304         /* Currently applicable only to VLV */
2305         pte_flags = 0;
2306         if (vma->obj->gt_ro)
2307                 pte_flags |= PTE_READ_ONLY;
2308
2309         if (flags & I915_VMA_LOCAL_BIND) {
2310                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2311
2312                 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2313                     appgtt->base.allocate_va_range) {
2314                         ret = appgtt->base.allocate_va_range(&appgtt->base,
2315                                                              vma->node.start,
2316                                                              vma->node.size);
2317                         if (ret)
2318                                 goto err_pages;
2319                 }
2320
2321                 appgtt->base.insert_entries(&appgtt->base,
2322                                             vma->pages, vma->node.start,
2323                                             cache_level, pte_flags);
2324         }
2325
2326         if (flags & I915_VMA_GLOBAL_BIND) {
2327                 intel_runtime_pm_get(i915);
2328                 vma->vm->insert_entries(vma->vm,
2329                                         vma->pages, vma->node.start,
2330                                         cache_level, pte_flags);
2331                 intel_runtime_pm_put(i915);
2332         }
2333
2334         return 0;
2335
2336 err_pages:
2337         if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2338                 if (vma->pages != vma->obj->mm.pages) {
2339                         GEM_BUG_ON(!vma->pages);
2340                         sg_free_table(vma->pages);
2341                         kfree(vma->pages);
2342                 }
2343                 vma->pages = NULL;
2344         }
2345         return ret;
2346 }
2347
2348 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2349 {
2350         struct drm_i915_private *i915 = vma->vm->i915;
2351
2352         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2353                 intel_runtime_pm_get(i915);
2354                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2355                 intel_runtime_pm_put(i915);
2356         }
2357
2358         if (vma->flags & I915_VMA_LOCAL_BIND) {
2359                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2360
2361                 vm->clear_range(vm, vma->node.start, vma->size);
2362         }
2363 }
2364
2365 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2366                                struct sg_table *pages)
2367 {
2368         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2369         struct device *kdev = &dev_priv->drm.pdev->dev;
2370         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2371
2372         if (unlikely(ggtt->do_idle_maps)) {
2373                 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2374                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2375                         /* Wait a bit, in hopes it avoids the hang */
2376                         udelay(10);
2377                 }
2378         }
2379
2380         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2381 }
2382
2383 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2384                                   unsigned long color,
2385                                   u64 *start,
2386                                   u64 *end)
2387 {
2388         if (node->allocated && node->color != color)
2389                 *start += I915_GTT_PAGE_SIZE;
2390
2391         /* Also leave a space between the unallocated reserved node after the
2392          * GTT and any objects within the GTT, i.e. we use the color adjustment
2393          * to insert a guard page to prevent prefetches crossing over the
2394          * GTT boundary.
2395          */
2396         node = list_next_entry(node, node_list);
2397         if (node->color != color)
2398                 *end -= I915_GTT_PAGE_SIZE;
2399 }
2400
2401 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2402 {
2403         struct i915_ggtt *ggtt = &i915->ggtt;
2404         struct i915_hw_ppgtt *ppgtt;
2405         int err;
2406
2407         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2408         if (IS_ERR(ppgtt))
2409                 return PTR_ERR(ppgtt);
2410
2411         if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2412                 err = -ENODEV;
2413                 goto err_ppgtt;
2414         }
2415
2416         if (ppgtt->base.allocate_va_range) {
2417                 /* Note we only pre-allocate as far as the end of the global
2418                  * GTT. On 48b / 4-level page-tables, the difference is very,
2419                  * very significant! We have to preallocate as GVT/vgpu does
2420                  * not like the page directory disappearing.
2421                  */
2422                 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2423                                                     0, ggtt->base.total);
2424                 if (err)
2425                         goto err_ppgtt;
2426         }
2427
2428         i915->mm.aliasing_ppgtt = ppgtt;
2429
2430         WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2431         ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2432
2433         WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2434         ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2435
2436         return 0;
2437
2438 err_ppgtt:
2439         i915_ppgtt_put(ppgtt);
2440         return err;
2441 }
2442
2443 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2444 {
2445         struct i915_ggtt *ggtt = &i915->ggtt;
2446         struct i915_hw_ppgtt *ppgtt;
2447
2448         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2449         if (!ppgtt)
2450                 return;
2451
2452         i915_ppgtt_put(ppgtt);
2453
2454         ggtt->base.bind_vma = ggtt_bind_vma;
2455         ggtt->base.unbind_vma = ggtt_unbind_vma;
2456 }
2457
2458 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2459 {
2460         /* Let GEM Manage all of the aperture.
2461          *
2462          * However, leave one page at the end still bound to the scratch page.
2463          * There are a number of places where the hardware apparently prefetches
2464          * past the end of the object, and we've seen multiple hangs with the
2465          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2466          * aperture.  One page should be enough to keep any prefetching inside
2467          * of the aperture.
2468          */
2469         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2470         unsigned long hole_start, hole_end;
2471         struct drm_mm_node *entry;
2472         int ret;
2473
2474         ret = intel_vgt_balloon(dev_priv);
2475         if (ret)
2476                 return ret;
2477
2478         /* Reserve a mappable slot for our lockless error capture */
2479         ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2480                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2481                                           0, ggtt->mappable_end,
2482                                           DRM_MM_INSERT_LOW);
2483         if (ret)
2484                 return ret;
2485
2486         /* Clear any non-preallocated blocks */
2487         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2488                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2489                               hole_start, hole_end);
2490                 ggtt->base.clear_range(&ggtt->base, hole_start,
2491                                        hole_end - hole_start);
2492         }
2493
2494         /* And finally clear the reserved guard page */
2495         ggtt->base.clear_range(&ggtt->base,
2496                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2497
2498         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2499                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2500                 if (ret)
2501                         goto err;
2502         }
2503
2504         return 0;
2505
2506 err:
2507         drm_mm_remove_node(&ggtt->error_capture);
2508         return ret;
2509 }
2510
2511 /**
2512  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2513  * @dev_priv: i915 device
2514  */
2515 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2516 {
2517         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2518         struct i915_vma *vma, *vn;
2519
2520         ggtt->base.closed = true;
2521
2522         mutex_lock(&dev_priv->drm.struct_mutex);
2523         WARN_ON(!list_empty(&ggtt->base.active_list));
2524         list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2525                 WARN_ON(i915_vma_unbind(vma));
2526         mutex_unlock(&dev_priv->drm.struct_mutex);
2527
2528         i915_gem_cleanup_stolen(&dev_priv->drm);
2529
2530         mutex_lock(&dev_priv->drm.struct_mutex);
2531         i915_gem_fini_aliasing_ppgtt(dev_priv);
2532
2533         if (drm_mm_node_allocated(&ggtt->error_capture))
2534                 drm_mm_remove_node(&ggtt->error_capture);
2535
2536         if (drm_mm_initialized(&ggtt->base.mm)) {
2537                 intel_vgt_deballoon(dev_priv);
2538                 i915_address_space_fini(&ggtt->base);
2539         }
2540
2541         ggtt->base.cleanup(&ggtt->base);
2542         mutex_unlock(&dev_priv->drm.struct_mutex);
2543
2544         arch_phys_wc_del(ggtt->mtrr);
2545         io_mapping_fini(&ggtt->mappable);
2546 }
2547
2548 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2549 {
2550         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2551         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2552         return snb_gmch_ctl << 20;
2553 }
2554
2555 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2556 {
2557         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2558         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2559         if (bdw_gmch_ctl)
2560                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2561
2562 #ifdef CONFIG_X86_32
2563         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2564         if (bdw_gmch_ctl > 4)
2565                 bdw_gmch_ctl = 4;
2566 #endif
2567
2568         return bdw_gmch_ctl << 20;
2569 }
2570
2571 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2572 {
2573         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2574         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2575
2576         if (gmch_ctrl)
2577                 return 1 << (20 + gmch_ctrl);
2578
2579         return 0;
2580 }
2581
2582 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2583 {
2584         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2585         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2586         return snb_gmch_ctl << 25; /* 32 MB units */
2587 }
2588
2589 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2590 {
2591         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2592         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2593         return bdw_gmch_ctl << 25; /* 32 MB units */
2594 }
2595
2596 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2597 {
2598         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2599         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2600
2601         /*
2602          * 0x0  to 0x10: 32MB increments starting at 0MB
2603          * 0x11 to 0x16: 4MB increments starting at 8MB
2604          * 0x17 to 0x1d: 4MB increments start at 36MB
2605          */
2606         if (gmch_ctrl < 0x11)
2607                 return gmch_ctrl << 25;
2608         else if (gmch_ctrl < 0x17)
2609                 return (gmch_ctrl - 0x11 + 2) << 22;
2610         else
2611                 return (gmch_ctrl - 0x17 + 9) << 22;
2612 }
2613
2614 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2615 {
2616         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2617         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2618
2619         if (gen9_gmch_ctl < 0xf0)
2620                 return gen9_gmch_ctl << 25; /* 32 MB units */
2621         else
2622                 /* 4MB increments starting at 0xf0 for 4MB */
2623                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2624 }
2625
2626 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2627 {
2628         struct drm_i915_private *dev_priv = ggtt->base.i915;
2629         struct pci_dev *pdev = dev_priv->drm.pdev;
2630         phys_addr_t phys_addr;
2631         int ret;
2632
2633         /* For Modern GENs the PTEs and register space are split in the BAR */
2634         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2635
2636         /*
2637          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2638          * dropped. For WC mappings in general we have 64 byte burst writes
2639          * when the WC buffer is flushed, so we can't use it, but have to
2640          * resort to an uncached mapping. The WC issue is easily caught by the
2641          * readback check when writing GTT PTE entries.
2642          */
2643         if (IS_GEN9_LP(dev_priv))
2644                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2645         else
2646                 ggtt->gsm = ioremap_wc(phys_addr, size);
2647         if (!ggtt->gsm) {
2648                 DRM_ERROR("Failed to map the ggtt page table\n");
2649                 return -ENOMEM;
2650         }
2651
2652         ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2653         if (ret) {
2654                 DRM_ERROR("Scratch setup failed\n");
2655                 /* iounmap will also get called at remove, but meh */
2656                 iounmap(ggtt->gsm);
2657                 return ret;
2658         }
2659
2660         return 0;
2661 }
2662
2663 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2664  * bits. When using advanced contexts each context stores its own PAT, but
2665  * writing this data shouldn't be harmful even in those cases. */
2666 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2667 {
2668         u64 pat;
2669
2670         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2671               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2672               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2673               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2674               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2675               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2676               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2677               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2678
2679         if (!USES_PPGTT(dev_priv))
2680                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2681                  * so RTL will always use the value corresponding to
2682                  * pat_sel = 000".
2683                  * So let's disable cache for GGTT to avoid screen corruptions.
2684                  * MOCS still can be used though.
2685                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2686                  * before this patch, i.e. the same uncached + snooping access
2687                  * like on gen6/7 seems to be in effect.
2688                  * - So this just fixes blitter/render access. Again it looks
2689                  * like it's not just uncached access, but uncached + snooping.
2690                  * So we can still hold onto all our assumptions wrt cpu
2691                  * clflushing on LLC machines.
2692                  */
2693                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2694
2695         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2696          * write would work. */
2697         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2698         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2699 }
2700
2701 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2702 {
2703         u64 pat;
2704
2705         /*
2706          * Map WB on BDW to snooped on CHV.
2707          *
2708          * Only the snoop bit has meaning for CHV, the rest is
2709          * ignored.
2710          *
2711          * The hardware will never snoop for certain types of accesses:
2712          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2713          * - PPGTT page tables
2714          * - some other special cycles
2715          *
2716          * As with BDW, we also need to consider the following for GT accesses:
2717          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2718          * so RTL will always use the value corresponding to
2719          * pat_sel = 000".
2720          * Which means we must set the snoop bit in PAT entry 0
2721          * in order to keep the global status page working.
2722          */
2723         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2724               GEN8_PPAT(1, 0) |
2725               GEN8_PPAT(2, 0) |
2726               GEN8_PPAT(3, 0) |
2727               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2728               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2729               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2730               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2731
2732         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2733         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2734 }
2735
2736 static void gen6_gmch_remove(struct i915_address_space *vm)
2737 {
2738         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2739
2740         iounmap(ggtt->gsm);
2741         cleanup_scratch_page(vm);
2742 }
2743
2744 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2745 {
2746         struct drm_i915_private *dev_priv = ggtt->base.i915;
2747         struct pci_dev *pdev = dev_priv->drm.pdev;
2748         unsigned int size;
2749         u16 snb_gmch_ctl;
2750
2751         /* TODO: We're not aware of mappable constraints on gen8 yet */
2752         ggtt->mappable_base = pci_resource_start(pdev, 2);
2753         ggtt->mappable_end = pci_resource_len(pdev, 2);
2754
2755         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
2756                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2757
2758         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2759
2760         if (INTEL_GEN(dev_priv) >= 9) {
2761                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2762                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2763         } else if (IS_CHERRYVIEW(dev_priv)) {
2764                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2765                 size = chv_get_total_gtt_size(snb_gmch_ctl);
2766         } else {
2767                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2768                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2769         }
2770
2771         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2772
2773         if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2774                 chv_setup_private_ppat(dev_priv);
2775         else
2776                 bdw_setup_private_ppat(dev_priv);
2777
2778         ggtt->base.cleanup = gen6_gmch_remove;
2779         ggtt->base.bind_vma = ggtt_bind_vma;
2780         ggtt->base.unbind_vma = ggtt_unbind_vma;
2781         ggtt->base.insert_page = gen8_ggtt_insert_page;
2782         ggtt->base.clear_range = nop_clear_range;
2783         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2784                 ggtt->base.clear_range = gen8_ggtt_clear_range;
2785
2786         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2787
2788         ggtt->invalidate = gen6_ggtt_invalidate;
2789
2790         return ggtt_probe_common(ggtt, size);
2791 }
2792
2793 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2794 {
2795         struct drm_i915_private *dev_priv = ggtt->base.i915;
2796         struct pci_dev *pdev = dev_priv->drm.pdev;
2797         unsigned int size;
2798         u16 snb_gmch_ctl;
2799
2800         ggtt->mappable_base = pci_resource_start(pdev, 2);
2801         ggtt->mappable_end = pci_resource_len(pdev, 2);
2802
2803         /* 64/512MB is the current min/max we actually know of, but this is just
2804          * a coarse sanity check.
2805          */
2806         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2807                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2808                 return -ENXIO;
2809         }
2810
2811         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
2812                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2813         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2814
2815         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2816
2817         size = gen6_get_total_gtt_size(snb_gmch_ctl);
2818         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2819
2820         ggtt->base.clear_range = gen6_ggtt_clear_range;
2821         ggtt->base.insert_page = gen6_ggtt_insert_page;
2822         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2823         ggtt->base.bind_vma = ggtt_bind_vma;
2824         ggtt->base.unbind_vma = ggtt_unbind_vma;
2825         ggtt->base.cleanup = gen6_gmch_remove;
2826
2827         ggtt->invalidate = gen6_ggtt_invalidate;
2828
2829         if (HAS_EDRAM(dev_priv))
2830                 ggtt->base.pte_encode = iris_pte_encode;
2831         else if (IS_HASWELL(dev_priv))
2832                 ggtt->base.pte_encode = hsw_pte_encode;
2833         else if (IS_VALLEYVIEW(dev_priv))
2834                 ggtt->base.pte_encode = byt_pte_encode;
2835         else if (INTEL_GEN(dev_priv) >= 7)
2836                 ggtt->base.pte_encode = ivb_pte_encode;
2837         else
2838                 ggtt->base.pte_encode = snb_pte_encode;
2839
2840         return ggtt_probe_common(ggtt, size);
2841 }
2842
2843 static void i915_gmch_remove(struct i915_address_space *vm)
2844 {
2845         intel_gmch_remove();
2846 }
2847
2848 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2849 {
2850         struct drm_i915_private *dev_priv = ggtt->base.i915;
2851         int ret;
2852
2853         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2854         if (!ret) {
2855                 DRM_ERROR("failed to set up gmch\n");
2856                 return -EIO;
2857         }
2858
2859         intel_gtt_get(&ggtt->base.total,
2860                       &ggtt->stolen_size,
2861                       &ggtt->mappable_base,
2862                       &ggtt->mappable_end);
2863
2864         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2865         ggtt->base.insert_page = i915_ggtt_insert_page;
2866         ggtt->base.insert_entries = i915_ggtt_insert_entries;
2867         ggtt->base.clear_range = i915_ggtt_clear_range;
2868         ggtt->base.bind_vma = ggtt_bind_vma;
2869         ggtt->base.unbind_vma = ggtt_unbind_vma;
2870         ggtt->base.cleanup = i915_gmch_remove;
2871
2872         ggtt->invalidate = gmch_ggtt_invalidate;
2873
2874         if (unlikely(ggtt->do_idle_maps))
2875                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2876
2877         return 0;
2878 }
2879
2880 /**
2881  * i915_ggtt_probe_hw - Probe GGTT hardware location
2882  * @dev_priv: i915 device
2883  */
2884 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2885 {
2886         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2887         int ret;
2888
2889         ggtt->base.i915 = dev_priv;
2890         ggtt->base.dma = &dev_priv->drm.pdev->dev;
2891
2892         if (INTEL_GEN(dev_priv) <= 5)
2893                 ret = i915_gmch_probe(ggtt);
2894         else if (INTEL_GEN(dev_priv) < 8)
2895                 ret = gen6_gmch_probe(ggtt);
2896         else
2897                 ret = gen8_gmch_probe(ggtt);
2898         if (ret)
2899                 return ret;
2900
2901         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
2902          * This is easier than doing range restriction on the fly, as we
2903          * currently don't have any bits spare to pass in this upper
2904          * restriction!
2905          */
2906         if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
2907                 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
2908                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2909         }
2910
2911         if ((ggtt->base.total - 1) >> 32) {
2912                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
2913                           " of address space! Found %lldM!\n",
2914                           ggtt->base.total >> 20);
2915                 ggtt->base.total = 1ULL << 32;
2916                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2917         }
2918
2919         if (ggtt->mappable_end > ggtt->base.total) {
2920                 DRM_ERROR("mappable aperture extends past end of GGTT,"
2921                           " aperture=%llx, total=%llx\n",
2922                           ggtt->mappable_end, ggtt->base.total);
2923                 ggtt->mappable_end = ggtt->base.total;
2924         }
2925
2926         /* GMADR is the PCI mmio aperture into the global GTT. */
2927         DRM_INFO("Memory usable by graphics device = %lluM\n",
2928                  ggtt->base.total >> 20);
2929         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
2930         DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
2931 #ifdef CONFIG_INTEL_IOMMU
2932         if (intel_iommu_gfx_mapped)
2933                 DRM_INFO("VT-d active for gfx access\n");
2934 #endif
2935
2936         return 0;
2937 }
2938
2939 /**
2940  * i915_ggtt_init_hw - Initialize GGTT hardware
2941  * @dev_priv: i915 device
2942  */
2943 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
2944 {
2945         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2946         int ret;
2947
2948         INIT_LIST_HEAD(&dev_priv->vm_list);
2949
2950         /* Note that we use page colouring to enforce a guard page at the
2951          * end of the address space. This is required as the CS may prefetch
2952          * beyond the end of the batch buffer, across the page boundary,
2953          * and beyond the end of the GTT if we do not provide a guard.
2954          */
2955         mutex_lock(&dev_priv->drm.struct_mutex);
2956         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
2957         if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
2958                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2959         mutex_unlock(&dev_priv->drm.struct_mutex);
2960
2961         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
2962                                 dev_priv->ggtt.mappable_base,
2963                                 dev_priv->ggtt.mappable_end)) {
2964                 ret = -EIO;
2965                 goto out_gtt_cleanup;
2966         }
2967
2968         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
2969
2970         /*
2971          * Initialise stolen early so that we may reserve preallocated
2972          * objects for the BIOS to KMS transition.
2973          */
2974         ret = i915_gem_init_stolen(dev_priv);
2975         if (ret)
2976                 goto out_gtt_cleanup;
2977
2978         return 0;
2979
2980 out_gtt_cleanup:
2981         ggtt->base.cleanup(&ggtt->base);
2982         return ret;
2983 }
2984
2985 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
2986 {
2987         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
2988                 return -EIO;
2989
2990         return 0;
2991 }
2992
2993 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
2994 {
2995         i915->ggtt.invalidate = guc_ggtt_invalidate;
2996 }
2997
2998 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
2999 {
3000         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3001 }
3002
3003 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3004 {
3005         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3006         struct drm_i915_gem_object *obj, *on;
3007
3008         i915_check_and_clear_faults(dev_priv);
3009
3010         /* First fill our portion of the GTT with scratch pages */
3011         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3012
3013         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3014
3015         /* clflush objects bound into the GGTT and rebind them. */
3016         list_for_each_entry_safe(obj, on,
3017                                  &dev_priv->mm.bound_list, global_link) {
3018                 bool ggtt_bound = false;
3019                 struct i915_vma *vma;
3020
3021                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3022                         if (vma->vm != &ggtt->base)
3023                                 continue;
3024
3025                         if (!i915_vma_unbind(vma))
3026                                 continue;
3027
3028                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3029                                               PIN_UPDATE));
3030                         ggtt_bound = true;
3031                 }
3032
3033                 if (ggtt_bound)
3034                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3035         }
3036
3037         ggtt->base.closed = false;
3038
3039         if (INTEL_GEN(dev_priv) >= 8) {
3040                 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3041                         chv_setup_private_ppat(dev_priv);
3042                 else
3043                         bdw_setup_private_ppat(dev_priv);
3044
3045                 return;
3046         }
3047
3048         if (USES_PPGTT(dev_priv)) {
3049                 struct i915_address_space *vm;
3050
3051                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3052                         struct i915_hw_ppgtt *ppgtt;
3053
3054                         if (i915_is_ggtt(vm))
3055                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3056                         else
3057                                 ppgtt = i915_vm_to_ppgtt(vm);
3058
3059                         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3060                 }
3061         }
3062
3063         i915_ggtt_invalidate(dev_priv);
3064 }
3065
3066 static struct scatterlist *
3067 rotate_pages(const dma_addr_t *in, unsigned int offset,
3068              unsigned int width, unsigned int height,
3069              unsigned int stride,
3070              struct sg_table *st, struct scatterlist *sg)
3071 {
3072         unsigned int column, row;
3073         unsigned int src_idx;
3074
3075         for (column = 0; column < width; column++) {
3076                 src_idx = stride * (height - 1) + column;
3077                 for (row = 0; row < height; row++) {
3078                         st->nents++;
3079                         /* We don't need the pages, but need to initialize
3080                          * the entries so the sg list can be happily traversed.
3081                          * The only thing we need are DMA addresses.
3082                          */
3083                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3084                         sg_dma_address(sg) = in[offset + src_idx];
3085                         sg_dma_len(sg) = PAGE_SIZE;
3086                         sg = sg_next(sg);
3087                         src_idx -= stride;
3088                 }
3089         }
3090
3091         return sg;
3092 }
3093
3094 static noinline struct sg_table *
3095 intel_rotate_pages(struct intel_rotation_info *rot_info,
3096                    struct drm_i915_gem_object *obj)
3097 {
3098         const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3099         unsigned int size = intel_rotation_info_size(rot_info);
3100         struct sgt_iter sgt_iter;
3101         dma_addr_t dma_addr;
3102         unsigned long i;
3103         dma_addr_t *page_addr_list;
3104         struct sg_table *st;
3105         struct scatterlist *sg;
3106         int ret = -ENOMEM;
3107
3108         /* Allocate a temporary list of source pages for random access. */
3109         page_addr_list = drm_malloc_gfp(n_pages,
3110                                         sizeof(dma_addr_t),
3111                                         GFP_TEMPORARY);
3112         if (!page_addr_list)
3113                 return ERR_PTR(ret);
3114
3115         /* Allocate target SG list. */
3116         st = kmalloc(sizeof(*st), GFP_KERNEL);
3117         if (!st)
3118                 goto err_st_alloc;
3119
3120         ret = sg_alloc_table(st, size, GFP_KERNEL);
3121         if (ret)
3122                 goto err_sg_alloc;
3123
3124         /* Populate source page list from the object. */
3125         i = 0;
3126         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3127                 page_addr_list[i++] = dma_addr;
3128
3129         GEM_BUG_ON(i != n_pages);
3130         st->nents = 0;
3131         sg = st->sgl;
3132
3133         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3134                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3135                                   rot_info->plane[i].width, rot_info->plane[i].height,
3136                                   rot_info->plane[i].stride, st, sg);
3137         }
3138
3139         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3140                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3141
3142         drm_free_large(page_addr_list);
3143
3144         return st;
3145
3146 err_sg_alloc:
3147         kfree(st);
3148 err_st_alloc:
3149         drm_free_large(page_addr_list);
3150
3151         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3152                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3153
3154         return ERR_PTR(ret);
3155 }
3156
3157 static noinline struct sg_table *
3158 intel_partial_pages(const struct i915_ggtt_view *view,
3159                     struct drm_i915_gem_object *obj)
3160 {
3161         struct sg_table *st;
3162         struct scatterlist *sg, *iter;
3163         unsigned int count = view->partial.size;
3164         unsigned int offset;
3165         int ret = -ENOMEM;
3166
3167         st = kmalloc(sizeof(*st), GFP_KERNEL);
3168         if (!st)
3169                 goto err_st_alloc;
3170
3171         ret = sg_alloc_table(st, count, GFP_KERNEL);
3172         if (ret)
3173                 goto err_sg_alloc;
3174
3175         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3176         GEM_BUG_ON(!iter);
3177
3178         sg = st->sgl;
3179         st->nents = 0;
3180         do {
3181                 unsigned int len;
3182
3183                 len = min(iter->length - (offset << PAGE_SHIFT),
3184                           count << PAGE_SHIFT);
3185                 sg_set_page(sg, NULL, len, 0);
3186                 sg_dma_address(sg) =
3187                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3188                 sg_dma_len(sg) = len;
3189
3190                 st->nents++;
3191                 count -= len >> PAGE_SHIFT;
3192                 if (count == 0) {
3193                         sg_mark_end(sg);
3194                         return st;
3195                 }
3196
3197                 sg = __sg_next(sg);
3198                 iter = __sg_next(iter);
3199                 offset = 0;
3200         } while (1);
3201
3202 err_sg_alloc:
3203         kfree(st);
3204 err_st_alloc:
3205         return ERR_PTR(ret);
3206 }
3207
3208 static int
3209 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3210 {
3211         int ret;
3212
3213         /* The vma->pages are only valid within the lifespan of the borrowed
3214          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3215          * must be the vma->pages. A simple rule is that vma->pages must only
3216          * be accessed when the obj->mm.pages are pinned.
3217          */
3218         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3219
3220         switch (vma->ggtt_view.type) {
3221         case I915_GGTT_VIEW_NORMAL:
3222                 vma->pages = vma->obj->mm.pages;
3223                 return 0;
3224
3225         case I915_GGTT_VIEW_ROTATED:
3226                 vma->pages =
3227                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3228                 break;
3229
3230         case I915_GGTT_VIEW_PARTIAL:
3231                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3232                 break;
3233
3234         default:
3235                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3236                           vma->ggtt_view.type);
3237                 return -EINVAL;
3238         }
3239
3240         ret = 0;
3241         if (unlikely(IS_ERR(vma->pages))) {
3242                 ret = PTR_ERR(vma->pages);
3243                 vma->pages = NULL;
3244                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3245                           vma->ggtt_view.type, ret);
3246         }
3247         return ret;
3248 }
3249
3250 /**
3251  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3252  * @vm: the &struct i915_address_space
3253  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3254  * @size: how much space to allocate inside the GTT,
3255  *        must be #I915_GTT_PAGE_SIZE aligned
3256  * @offset: where to insert inside the GTT,
3257  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3258  *          (@offset + @size) must fit within the address space
3259  * @color: color to apply to node, if this node is not from a VMA,
3260  *         color must be #I915_COLOR_UNEVICTABLE
3261  * @flags: control search and eviction behaviour
3262  *
3263  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3264  * the address space (using @size and @color). If the @node does not fit, it
3265  * tries to evict any overlapping nodes from the GTT, including any
3266  * neighbouring nodes if the colors do not match (to ensure guard pages between
3267  * differing domains). See i915_gem_evict_for_node() for the gory details
3268  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3269  * evicting active overlapping objects, and any overlapping node that is pinned
3270  * or marked as unevictable will also result in failure.
3271  *
3272  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3273  * asked to wait for eviction and interrupted.
3274  */
3275 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3276                          struct drm_mm_node *node,
3277                          u64 size, u64 offset, unsigned long color,
3278                          unsigned int flags)
3279 {
3280         int err;
3281
3282         GEM_BUG_ON(!size);
3283         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3284         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3285         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3286         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3287         GEM_BUG_ON(drm_mm_node_allocated(node));
3288
3289         node->size = size;
3290         node->start = offset;
3291         node->color = color;
3292
3293         err = drm_mm_reserve_node(&vm->mm, node);
3294         if (err != -ENOSPC)
3295                 return err;
3296
3297         err = i915_gem_evict_for_node(vm, node, flags);
3298         if (err == 0)
3299                 err = drm_mm_reserve_node(&vm->mm, node);
3300
3301         return err;
3302 }
3303
3304 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3305 {
3306         u64 range, addr;
3307
3308         GEM_BUG_ON(range_overflows(start, len, end));
3309         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3310
3311         range = round_down(end - len, align) - round_up(start, align);
3312         if (range) {
3313                 if (sizeof(unsigned long) == sizeof(u64)) {
3314                         addr = get_random_long();
3315                 } else {
3316                         addr = get_random_int();
3317                         if (range > U32_MAX) {
3318                                 addr <<= 32;
3319                                 addr |= get_random_int();
3320                         }
3321                 }
3322                 div64_u64_rem(addr, range, &addr);
3323                 start += addr;
3324         }
3325
3326         return round_up(start, align);
3327 }
3328
3329 /**
3330  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3331  * @vm: the &struct i915_address_space
3332  * @node: the &struct drm_mm_node (typically i915_vma.node)
3333  * @size: how much space to allocate inside the GTT,
3334  *        must be #I915_GTT_PAGE_SIZE aligned
3335  * @alignment: required alignment of starting offset, may be 0 but
3336  *             if specified, this must be a power-of-two and at least
3337  *             #I915_GTT_MIN_ALIGNMENT
3338  * @color: color to apply to node
3339  * @start: start of any range restriction inside GTT (0 for all),
3340  *         must be #I915_GTT_PAGE_SIZE aligned
3341  * @end: end of any range restriction inside GTT (U64_MAX for all),
3342  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3343  * @flags: control search and eviction behaviour
3344  *
3345  * i915_gem_gtt_insert() first searches for an available hole into which
3346  * is can insert the node. The hole address is aligned to @alignment and
3347  * its @size must then fit entirely within the [@start, @end] bounds. The
3348  * nodes on either side of the hole must match @color, or else a guard page
3349  * will be inserted between the two nodes (or the node evicted). If no
3350  * suitable hole is found, first a victim is randomly selected and tested
3351  * for eviction, otherwise then the LRU list of objects within the GTT
3352  * is scanned to find the first set of replacement nodes to create the hole.
3353  * Those old overlapping nodes are evicted from the GTT (and so must be
3354  * rebound before any future use). Any node that is currently pinned cannot
3355  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3356  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3357  * searching for an eviction candidate. See i915_gem_evict_something() for
3358  * the gory details on the eviction algorithm.
3359  *
3360  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3361  * asked to wait for eviction and interrupted.
3362  */
3363 int i915_gem_gtt_insert(struct i915_address_space *vm,
3364                         struct drm_mm_node *node,
3365                         u64 size, u64 alignment, unsigned long color,
3366                         u64 start, u64 end, unsigned int flags)
3367 {
3368         enum drm_mm_insert_mode mode;
3369         u64 offset;
3370         int err;
3371
3372         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3373         GEM_BUG_ON(!size);
3374         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3375         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3376         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3377         GEM_BUG_ON(start >= end);
3378         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3379         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3380         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3381         GEM_BUG_ON(drm_mm_node_allocated(node));
3382
3383         if (unlikely(range_overflows(start, size, end)))
3384                 return -ENOSPC;
3385
3386         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3387                 return -ENOSPC;
3388
3389         mode = DRM_MM_INSERT_BEST;
3390         if (flags & PIN_HIGH)
3391                 mode = DRM_MM_INSERT_HIGH;
3392         if (flags & PIN_MAPPABLE)
3393                 mode = DRM_MM_INSERT_LOW;
3394
3395         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3396          * so we know that we always have a minimum alignment of 4096.
3397          * The drm_mm range manager is optimised to return results
3398          * with zero alignment, so where possible use the optimal
3399          * path.
3400          */
3401         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3402         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3403                 alignment = 0;
3404
3405         err = drm_mm_insert_node_in_range(&vm->mm, node,
3406                                           size, alignment, color,
3407                                           start, end, mode);
3408         if (err != -ENOSPC)
3409                 return err;
3410
3411         /* No free space, pick a slot at random.
3412          *
3413          * There is a pathological case here using a GTT shared between
3414          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3415          *
3416          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3417          *         (64k objects)             (448k objects)
3418          *
3419          * Now imagine that the eviction LRU is ordered top-down (just because
3420          * pathology meets real life), and that we need to evict an object to
3421          * make room inside the aperture. The eviction scan then has to walk
3422          * the 448k list before it finds one within range. And now imagine that
3423          * it has to search for a new hole between every byte inside the memcpy,
3424          * for several simultaneous clients.
3425          *
3426          * On a full-ppgtt system, if we have run out of available space, there
3427          * will be lots and lots of objects in the eviction list! Again,
3428          * searching that LRU list may be slow if we are also applying any
3429          * range restrictions (e.g. restriction to low 4GiB) and so, for
3430          * simplicity and similarilty between different GTT, try the single
3431          * random replacement first.
3432          */
3433         offset = random_offset(start, end,
3434                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3435         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3436         if (err != -ENOSPC)
3437                 return err;
3438
3439         /* Randomly selected placement is pinned, do a search */
3440         err = i915_gem_evict_something(vm, size, alignment, color,
3441                                        start, end, flags);
3442         if (err)
3443                 return err;
3444
3445         return drm_mm_insert_node_in_range(&vm->mm, node,
3446                                            size, alignment, color,
3447                                            start, end, DRM_MM_INSERT_EVICT);
3448 }
3449
3450 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3451 #include "selftests/mock_gtt.c"
3452 #include "selftests/i915_gem_gtt.c"
3453 #endif