Merge tag 'hisi-fixes-for-4.14' of git://github.com/hisilicon/linux-hisi into next...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 #define pipelined 0
59
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61                                  struct i915_vma *vma)
62 {
63         i915_reg_t fence_reg_lo, fence_reg_hi;
64         int fence_pitch_shift;
65         u64 val;
66
67         if (INTEL_INFO(fence->i915)->gen >= 6) {
68                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71
72         } else {
73                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
75                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76         }
77
78         val = 0;
79         if (vma) {
80                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
81
82                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
83                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
86
87                 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
88                 val |= vma->node.start;
89                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
90                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
91                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
92                 val |= I965_FENCE_REG_VALID;
93         }
94
95         if (!pipelined) {
96                 struct drm_i915_private *dev_priv = fence->i915;
97
98                 /* To w/a incoherency with non-atomic 64-bit register updates,
99                  * we split the 64-bit update into two 32-bit writes. In order
100                  * for a partial fence not to be evaluated between writes, we
101                  * precede the update with write to turn off the fence register,
102                  * and only enable the fence as the last step.
103                  *
104                  * For extra levels of paranoia, we make sure each step lands
105                  * before applying the next step.
106                  */
107                 I915_WRITE(fence_reg_lo, 0);
108                 POSTING_READ(fence_reg_lo);
109
110                 I915_WRITE(fence_reg_hi, upper_32_bits(val));
111                 I915_WRITE(fence_reg_lo, lower_32_bits(val));
112                 POSTING_READ(fence_reg_lo);
113         }
114 }
115
116 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117                                  struct i915_vma *vma)
118 {
119         u32 val;
120
121         val = 0;
122         if (vma) {
123                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124                 bool is_y_tiled = tiling == I915_TILING_Y;
125                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
126
127                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128                 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
129                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
130                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
131
132                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
133                         stride /= 128;
134                 else
135                         stride /= 512;
136                 GEM_BUG_ON(!is_power_of_2(stride));
137
138                 val = vma->node.start;
139                 if (is_y_tiled)
140                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
141                 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
142                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143
144                 val |= I830_FENCE_REG_VALID;
145         }
146
147         if (!pipelined) {
148                 struct drm_i915_private *dev_priv = fence->i915;
149                 i915_reg_t reg = FENCE_REG(fence->id);
150
151                 I915_WRITE(reg, val);
152                 POSTING_READ(reg);
153         }
154 }
155
156 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157                                  struct i915_vma *vma)
158 {
159         u32 val;
160
161         val = 0;
162         if (vma) {
163                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
164
165                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166                 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
167                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
168                 GEM_BUG_ON(!is_power_of_2(stride / 128));
169                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
170
171                 val = vma->node.start;
172                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
173                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
174                 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
175                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
176                 val |= I830_FENCE_REG_VALID;
177         }
178
179         if (!pipelined) {
180                 struct drm_i915_private *dev_priv = fence->i915;
181                 i915_reg_t reg = FENCE_REG(fence->id);
182
183                 I915_WRITE(reg, val);
184                 POSTING_READ(reg);
185         }
186 }
187
188 static void fence_write(struct drm_i915_fence_reg *fence,
189                         struct i915_vma *vma)
190 {
191         /* Previous access through the fence register is marshalled by
192          * the mb() inside the fault handlers (i915_gem_release_mmaps)
193          * and explicitly managed for internal users.
194          */
195
196         if (IS_GEN2(fence->i915))
197                 i830_write_fence_reg(fence, vma);
198         else if (IS_GEN3(fence->i915))
199                 i915_write_fence_reg(fence, vma);
200         else
201                 i965_write_fence_reg(fence, vma);
202
203         /* Access through the fenced region afterwards is
204          * ordered by the posting reads whilst writing the registers.
205          */
206
207         fence->dirty = false;
208 }
209
210 static int fence_update(struct drm_i915_fence_reg *fence,
211                         struct i915_vma *vma)
212 {
213         int ret;
214
215         if (vma) {
216                 if (!i915_vma_is_map_and_fenceable(vma))
217                         return -EINVAL;
218
219                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220                          !i915_gem_object_get_tiling(vma->obj),
221                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222                          i915_gem_object_get_stride(vma->obj),
223                          i915_gem_object_get_tiling(vma->obj)))
224                         return -EINVAL;
225
226                 ret = i915_gem_active_retire(&vma->last_fence,
227                                              &vma->obj->base.dev->struct_mutex);
228                 if (ret)
229                         return ret;
230         }
231
232         if (fence->vma) {
233                 ret = i915_gem_active_retire(&fence->vma->last_fence,
234                                       &fence->vma->obj->base.dev->struct_mutex);
235                 if (ret)
236                         return ret;
237         }
238
239         if (fence->vma && fence->vma != vma) {
240                 /* Ensure that all userspace CPU access is completed before
241                  * stealing the fence.
242                  */
243                 i915_gem_release_mmap(fence->vma->obj);
244
245                 fence->vma->fence = NULL;
246                 fence->vma = NULL;
247
248                 list_move(&fence->link, &fence->i915->mm.fence_list);
249         }
250
251         /* We only need to update the register itself if the device is awake.
252          * If the device is currently powered down, we will defer the write
253          * to the runtime resume, see i915_gem_restore_fences().
254          */
255         if (intel_runtime_pm_get_if_in_use(fence->i915)) {
256                 fence_write(fence, vma);
257                 intel_runtime_pm_put(fence->i915);
258         }
259
260         if (vma) {
261                 if (fence->vma != vma) {
262                         vma->fence = fence;
263                         fence->vma = vma;
264                 }
265
266                 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
267         }
268
269         return 0;
270 }
271
272 /**
273  * i915_vma_put_fence - force-remove fence for a VMA
274  * @vma: vma to map linearly (not through a fence reg)
275  *
276  * This function force-removes any fence from the given object, which is useful
277  * if the kernel wants to do untiled GTT access.
278  *
279  * Returns:
280  *
281  * 0 on success, negative error code on failure.
282  */
283 int
284 i915_vma_put_fence(struct i915_vma *vma)
285 {
286         struct drm_i915_fence_reg *fence = vma->fence;
287
288         if (!fence)
289                 return 0;
290
291         if (fence->pin_count)
292                 return -EBUSY;
293
294         return fence_update(fence, NULL);
295 }
296
297 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
298 {
299         struct drm_i915_fence_reg *fence;
300
301         list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
302                 if (fence->pin_count)
303                         continue;
304
305                 return fence;
306         }
307
308         /* Wait for completion of pending flips which consume fences */
309         if (intel_has_pending_fb_unpin(dev_priv))
310                 return ERR_PTR(-EAGAIN);
311
312         return ERR_PTR(-EDEADLK);
313 }
314
315 /**
316  * i915_vma_get_fence - set up fencing for a vma
317  * @vma: vma to map through a fence reg
318  *
319  * When mapping objects through the GTT, userspace wants to be able to write
320  * to them without having to worry about swizzling if the object is tiled.
321  * This function walks the fence regs looking for a free one for @obj,
322  * stealing one if it can't find any.
323  *
324  * It then sets up the reg based on the object's properties: address, pitch
325  * and tiling format.
326  *
327  * For an untiled surface, this removes any existing fence.
328  *
329  * Returns:
330  *
331  * 0 on success, negative error code on failure.
332  */
333 int
334 i915_vma_get_fence(struct i915_vma *vma)
335 {
336         struct drm_i915_fence_reg *fence;
337         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
338
339         /* Note that we revoke fences on runtime suspend. Therefore the user
340          * must keep the device awake whilst using the fence.
341          */
342         assert_rpm_wakelock_held(vma->vm->i915);
343
344         /* Just update our place in the LRU if our fence is getting reused. */
345         if (vma->fence) {
346                 fence = vma->fence;
347                 if (!fence->dirty) {
348                         list_move_tail(&fence->link,
349                                        &fence->i915->mm.fence_list);
350                         return 0;
351                 }
352         } else if (set) {
353                 fence = fence_find(vma->vm->i915);
354                 if (IS_ERR(fence))
355                         return PTR_ERR(fence);
356         } else
357                 return 0;
358
359         return fence_update(fence, set);
360 }
361
362 /**
363  * i915_gem_revoke_fences - revoke fence state
364  * @dev_priv: i915 device private
365  *
366  * Removes all GTT mmappings via the fence registers. This forces any user
367  * of the fence to reacquire that fence before continuing with their access.
368  * One use is during GPU reset where the fence register is lost and we need to
369  * revoke concurrent userspace access via GTT mmaps until the hardware has been
370  * reset and the fence registers have been restored.
371  */
372 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
373 {
374         int i;
375
376         lockdep_assert_held(&dev_priv->drm.struct_mutex);
377
378         for (i = 0; i < dev_priv->num_fence_regs; i++) {
379                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
380
381                 if (fence->vma)
382                         i915_gem_release_mmap(fence->vma->obj);
383         }
384 }
385
386 /**
387  * i915_gem_restore_fences - restore fence state
388  * @dev_priv: i915 device private
389  *
390  * Restore the hw fence state to match the software tracking again, to be called
391  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
392  * the fences, to be reacquired by the user later.
393  */
394 void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
395 {
396         int i;
397
398         for (i = 0; i < dev_priv->num_fence_regs; i++) {
399                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
400                 struct i915_vma *vma = reg->vma;
401
402                 /*
403                  * Commit delayed tiling changes if we have an object still
404                  * attached to the fence, otherwise just clear the fence.
405                  */
406                 if (vma && !i915_gem_object_is_tiled(vma->obj)) {
407                         GEM_BUG_ON(!reg->dirty);
408                         GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
409
410                         list_move(&reg->link, &dev_priv->mm.fence_list);
411                         vma->fence = NULL;
412                         vma = NULL;
413                 }
414
415                 fence_write(reg, vma);
416                 reg->vma = vma;
417         }
418 }
419
420 /**
421  * DOC: tiling swizzling details
422  *
423  * The idea behind tiling is to increase cache hit rates by rearranging
424  * pixel data so that a group of pixel accesses are in the same cacheline.
425  * Performance improvement from doing this on the back/depth buffer are on
426  * the order of 30%.
427  *
428  * Intel architectures make this somewhat more complicated, though, by
429  * adjustments made to addressing of data when the memory is in interleaved
430  * mode (matched pairs of DIMMS) to improve memory bandwidth.
431  * For interleaved memory, the CPU sends every sequential 64 bytes
432  * to an alternate memory channel so it can get the bandwidth from both.
433  *
434  * The GPU also rearranges its accesses for increased bandwidth to interleaved
435  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
436  * it does it a little differently, since one walks addresses not just in the
437  * X direction but also Y.  So, along with alternating channels when bit
438  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
439  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
440  * are common to both the 915 and 965-class hardware.
441  *
442  * The CPU also sometimes XORs in higher bits as well, to improve
443  * bandwidth doing strided access like we do so frequently in graphics.  This
444  * is called "Channel XOR Randomization" in the MCH documentation.  The result
445  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
446  * decode.
447  *
448  * All of this bit 6 XORing has an effect on our memory management,
449  * as we need to make sure that the 3d driver can correctly address object
450  * contents.
451  *
452  * If we don't have interleaved memory, all tiling is safe and no swizzling is
453  * required.
454  *
455  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
456  * 17 is not just a page offset, so as we page an object out and back in,
457  * individual pages in it will have different bit 17 addresses, resulting in
458  * each 64 bytes being swapped with its neighbor!
459  *
460  * Otherwise, if interleaved, we have to tell the 3d driver what the address
461  * swizzling it needs to do is, since it's writing with the CPU to the pages
462  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
463  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
464  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
465  * to match what the GPU expects.
466  */
467
468 /**
469  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
470  * @dev_priv: i915 device private
471  *
472  * Detects bit 6 swizzling of address lookup between IGD access and CPU
473  * access through main memory.
474  */
475 void
476 i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
477 {
478         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
479         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
480
481         if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
482                 /*
483                  * On BDW+, swizzling is not used. We leave the CPU memory
484                  * controller in charge of optimizing memory accesses without
485                  * the extra address manipulation GPU side.
486                  *
487                  * VLV and CHV don't have GPU swizzling.
488                  */
489                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
490                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
491         } else if (INTEL_GEN(dev_priv) >= 6) {
492                 if (dev_priv->preserve_bios_swizzle) {
493                         if (I915_READ(DISP_ARB_CTL) &
494                             DISP_TILE_SURFACE_SWIZZLING) {
495                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
496                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
497                         } else {
498                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
499                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
500                         }
501                 } else {
502                         uint32_t dimm_c0, dimm_c1;
503                         dimm_c0 = I915_READ(MAD_DIMM_C0);
504                         dimm_c1 = I915_READ(MAD_DIMM_C1);
505                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
506                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
507                         /* Enable swizzling when the channels are populated
508                          * with identically sized dimms. We don't need to check
509                          * the 3rd channel because no cpu with gpu attached
510                          * ships in that configuration. Also, swizzling only
511                          * makes sense for 2 channels anyway. */
512                         if (dimm_c0 == dimm_c1) {
513                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
514                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
515                         } else {
516                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
517                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
518                         }
519                 }
520         } else if (IS_GEN5(dev_priv)) {
521                 /* On Ironlake whatever DRAM config, GPU always do
522                  * same swizzling setup.
523                  */
524                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
525                 swizzle_y = I915_BIT_6_SWIZZLE_9;
526         } else if (IS_GEN2(dev_priv)) {
527                 /* As far as we know, the 865 doesn't have these bit 6
528                  * swizzling issues.
529                  */
530                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
531                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
532         } else if (IS_MOBILE(dev_priv) ||
533                    IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
534                 uint32_t dcc;
535
536                 /* On 9xx chipsets, channel interleave by the CPU is
537                  * determined by DCC.  For single-channel, neither the CPU
538                  * nor the GPU do swizzling.  For dual channel interleaved,
539                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
540                  * 9 for Y tiled.  The CPU's interleave is independent, and
541                  * can be based on either bit 11 (haven't seen this yet) or
542                  * bit 17 (common).
543                  */
544                 dcc = I915_READ(DCC);
545                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
546                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
547                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
548                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
549                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
550                         break;
551                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
552                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
553                                 /* This is the base swizzling by the GPU for
554                                  * tiled buffers.
555                                  */
556                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
557                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
558                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
559                                 /* Bit 11 swizzling by the CPU in addition. */
560                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
561                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
562                         } else {
563                                 /* Bit 17 swizzling by the CPU in addition. */
564                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
565                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
566                         }
567                         break;
568                 }
569
570                 /* check for L-shaped memory aka modified enhanced addressing */
571                 if (IS_GEN4(dev_priv) &&
572                     !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
573                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
575                 }
576
577                 if (dcc == 0xffffffff) {
578                         DRM_ERROR("Couldn't read from MCHBAR.  "
579                                   "Disabling tiling.\n");
580                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
581                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
582                 }
583         } else {
584                 /* The 965, G33, and newer, have a very flexible memory
585                  * configuration.  It will enable dual-channel mode
586                  * (interleaving) on as much memory as it can, and the GPU
587                  * will additionally sometimes enable different bit 6
588                  * swizzling for tiled objects from the CPU.
589                  *
590                  * Here's what I found on the G965:
591                  *    slot fill         memory size  swizzling
592                  * 0A   0B   1A   1B    1-ch   2-ch
593                  * 512  0    0    0     512    0     O
594                  * 512  0    512  0     16     1008  X
595                  * 512  0    0    512   16     1008  X
596                  * 0    512  0    512   16     1008  X
597                  * 1024 1024 1024 0     2048   1024  O
598                  *
599                  * We could probably detect this based on either the DRB
600                  * matching, which was the case for the swizzling required in
601                  * the table above, or from the 1-ch value being less than
602                  * the minimum size of a rank.
603                  *
604                  * Reports indicate that the swizzling actually
605                  * varies depending upon page placement inside the
606                  * channels, i.e. we see swizzled pages where the
607                  * banks of memory are paired and unswizzled on the
608                  * uneven portion, so leave that as unknown.
609                  */
610                 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
611                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612                         swizzle_y = I915_BIT_6_SWIZZLE_9;
613                 }
614         }
615
616         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
617             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
618                 /* Userspace likes to explode if it sees unknown swizzling,
619                  * so lie. We will finish the lie when reporting through
620                  * the get-tiling-ioctl by reporting the physical swizzle
621                  * mode as unknown instead.
622                  *
623                  * As we don't strictly know what the swizzling is, it may be
624                  * bit17 dependent, and so we need to also prevent the pages
625                  * from being moved.
626                  */
627                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
628                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
629                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
630         }
631
632         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
633         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
634 }
635
636 /*
637  * Swap every 64 bytes of this page around, to account for it having a new
638  * bit 17 of its physical address and therefore being interpreted differently
639  * by the GPU.
640  */
641 static void
642 i915_gem_swizzle_page(struct page *page)
643 {
644         char temp[64];
645         char *vaddr;
646         int i;
647
648         vaddr = kmap(page);
649
650         for (i = 0; i < PAGE_SIZE; i += 128) {
651                 memcpy(temp, &vaddr[i], 64);
652                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
653                 memcpy(&vaddr[i + 64], temp, 64);
654         }
655
656         kunmap(page);
657 }
658
659 /**
660  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
661  * @obj: i915 GEM buffer object
662  * @pages: the scattergather list of physical pages
663  *
664  * This function fixes up the swizzling in case any page frame number for this
665  * object has changed in bit 17 since that state has been saved with
666  * i915_gem_object_save_bit_17_swizzle().
667  *
668  * This is called when pinning backing storage again, since the kernel is free
669  * to move unpinned backing storage around (either by directly moving pages or
670  * by swapping them out and back in again).
671  */
672 void
673 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
674                                   struct sg_table *pages)
675 {
676         struct sgt_iter sgt_iter;
677         struct page *page;
678         int i;
679
680         if (obj->bit_17 == NULL)
681                 return;
682
683         i = 0;
684         for_each_sgt_page(page, sgt_iter, pages) {
685                 char new_bit_17 = page_to_phys(page) >> 17;
686                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
687                         i915_gem_swizzle_page(page);
688                         set_page_dirty(page);
689                 }
690                 i++;
691         }
692 }
693
694 /**
695  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
696  * @obj: i915 GEM buffer object
697  * @pages: the scattergather list of physical pages
698  *
699  * This function saves the bit 17 of each page frame number so that swizzling
700  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
701  * be called before the backing storage can be unpinned.
702  */
703 void
704 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
705                                     struct sg_table *pages)
706 {
707         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
708         struct sgt_iter sgt_iter;
709         struct page *page;
710         int i;
711
712         if (obj->bit_17 == NULL) {
713                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
714                                       sizeof(long), GFP_KERNEL);
715                 if (obj->bit_17 == NULL) {
716                         DRM_ERROR("Failed to allocate memory for bit 17 "
717                                   "record\n");
718                         return;
719                 }
720         }
721
722         i = 0;
723
724         for_each_sgt_page(page, sgt_iter, pages) {
725                 if (page_to_phys(page) & (1 << 17))
726                         __set_bit(i, obj->bit_17);
727                 else
728                         __clear_bit(i, obj->bit_17);
729                 i++;
730         }
731 }