Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->cache_dirty)
55                 return false;
56
57         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58                 return true;
59
60         return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142         GEM_TRACE("\n");
143
144         lockdep_assert_held(&i915->drm.struct_mutex);
145         GEM_BUG_ON(i915->gt.active_requests);
146         GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148         if (!i915->gt.awake)
149                 return I915_EPOCH_INVALID;
150
151         GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153         /*
154          * Be paranoid and flush a concurrent interrupt to make sure
155          * we don't reactivate any irq tasklets after parking.
156          *
157          * FIXME: Note that even though we have waited for execlists to be idle,
158          * there may still be an in-flight interrupt even though the CSB
159          * is now empty. synchronize_irq() makes sure that a residual interrupt
160          * is completed before we continue, but it doesn't prevent the HW from
161          * raising a spurious interrupt later. To complete the shield we should
162          * coordinate disabling the CS irq with flushing the interrupts.
163          */
164         synchronize_irq(i915->drm.irq);
165
166         intel_engines_park(i915);
167         i915_timelines_park(i915);
168
169         i915_pmu_gt_parked(i915);
170         i915_vma_parked(i915);
171
172         i915->gt.awake = false;
173
174         if (INTEL_GEN(i915) >= 6)
175                 gen6_rps_idle(i915);
176
177         intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179         intel_runtime_pm_put(i915);
180
181         return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186         GEM_TRACE("\n");
187
188         lockdep_assert_held(&i915->drm.struct_mutex);
189         GEM_BUG_ON(i915->gt.active_requests);
190
191         if (!i915->gt.awake)
192                 return;
193
194         /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195         mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200         GEM_TRACE("\n");
201
202         lockdep_assert_held(&i915->drm.struct_mutex);
203         GEM_BUG_ON(!i915->gt.active_requests);
204
205         if (i915->gt.awake)
206                 return;
207
208         intel_runtime_pm_get_noresume(i915);
209
210         /*
211          * It seems that the DMC likes to transition between the DC states a lot
212          * when there are no connected displays (no active power domains) during
213          * command submission.
214          *
215          * This activity has negative impact on the performance of the chip with
216          * huge latencies observed in the interrupt handler and elsewhere.
217          *
218          * Work around it by grabbing a GT IRQ power domain whilst there is any
219          * GT activity, preventing any DC state transitions.
220          */
221         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223         i915->gt.awake = true;
224         if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225                 i915->gt.epoch = 1;
226
227         intel_enable_gt_powersave(i915);
228         i915_update_gfx_val(i915);
229         if (INTEL_GEN(i915) >= 6)
230                 gen6_rps_busy(i915);
231         i915_pmu_gt_unparked(i915);
232
233         intel_engines_unpark(i915);
234
235         i915_queue_hangcheck(i915);
236
237         queue_delayed_work(i915->wq,
238                            &i915->gt.retire_work,
239                            round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244                             struct drm_file *file)
245 {
246         struct drm_i915_private *dev_priv = to_i915(dev);
247         struct i915_ggtt *ggtt = &dev_priv->ggtt;
248         struct drm_i915_gem_get_aperture *args = data;
249         struct i915_vma *vma;
250         u64 pinned;
251
252         pinned = ggtt->vm.reserved;
253         mutex_lock(&dev->struct_mutex);
254         list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255                 if (i915_vma_is_pinned(vma))
256                         pinned += vma->node.size;
257         list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258                 if (i915_vma_is_pinned(vma))
259                         pinned += vma->node.size;
260         mutex_unlock(&dev->struct_mutex);
261
262         args->aper_size = ggtt->vm.total;
263         args->aper_available_size = args->aper_size - pinned;
264
265         return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270         struct address_space *mapping = obj->base.filp->f_mapping;
271         drm_dma_handle_t *phys;
272         struct sg_table *st;
273         struct scatterlist *sg;
274         char *vaddr;
275         int i;
276         int err;
277
278         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279                 return -EINVAL;
280
281         /* Always aligning to the object size, allows a single allocation
282          * to handle all possible callers, and given typical object sizes,
283          * the alignment of the buddy allocation will naturally match.
284          */
285         phys = drm_pci_alloc(obj->base.dev,
286                              roundup_pow_of_two(obj->base.size),
287                              roundup_pow_of_two(obj->base.size));
288         if (!phys)
289                 return -ENOMEM;
290
291         vaddr = phys->vaddr;
292         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293                 struct page *page;
294                 char *src;
295
296                 page = shmem_read_mapping_page(mapping, i);
297                 if (IS_ERR(page)) {
298                         err = PTR_ERR(page);
299                         goto err_phys;
300                 }
301
302                 src = kmap_atomic(page);
303                 memcpy(vaddr, src, PAGE_SIZE);
304                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305                 kunmap_atomic(src);
306
307                 put_page(page);
308                 vaddr += PAGE_SIZE;
309         }
310
311         i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313         st = kmalloc(sizeof(*st), GFP_KERNEL);
314         if (!st) {
315                 err = -ENOMEM;
316                 goto err_phys;
317         }
318
319         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320                 kfree(st);
321                 err = -ENOMEM;
322                 goto err_phys;
323         }
324
325         sg = st->sgl;
326         sg->offset = 0;
327         sg->length = obj->base.size;
328
329         sg_dma_address(sg) = phys->busaddr;
330         sg_dma_len(sg) = obj->base.size;
331
332         obj->phys_handle = phys;
333
334         __i915_gem_object_set_pages(obj, st, sg->length);
335
336         return 0;
337
338 err_phys:
339         drm_pci_free(obj->base.dev, phys);
340
341         return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346         obj->read_domains = I915_GEM_DOMAIN_CPU;
347         obj->write_domain = I915_GEM_DOMAIN_CPU;
348         if (cpu_write_needs_clflush(obj))
349                 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354                                 struct sg_table *pages,
355                                 bool needs_clflush)
356 {
357         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359         if (obj->mm.madv == I915_MADV_DONTNEED)
360                 obj->mm.dirty = false;
361
362         if (needs_clflush &&
363             (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365                 drm_clflush_sg(pages);
366
367         __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372                                struct sg_table *pages)
373 {
374         __i915_gem_object_release_shmem(obj, pages, false);
375
376         if (obj->mm.dirty) {
377                 struct address_space *mapping = obj->base.filp->f_mapping;
378                 char *vaddr = obj->phys_handle->vaddr;
379                 int i;
380
381                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382                         struct page *page;
383                         char *dst;
384
385                         page = shmem_read_mapping_page(mapping, i);
386                         if (IS_ERR(page))
387                                 continue;
388
389                         dst = kmap_atomic(page);
390                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
391                         memcpy(dst, vaddr, PAGE_SIZE);
392                         kunmap_atomic(dst);
393
394                         set_page_dirty(page);
395                         if (obj->mm.madv == I915_MADV_WILLNEED)
396                                 mark_page_accessed(page);
397                         put_page(page);
398                         vaddr += PAGE_SIZE;
399                 }
400                 obj->mm.dirty = false;
401         }
402
403         sg_free_table(pages);
404         kfree(pages);
405
406         drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412         i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416         .get_pages = i915_gem_object_get_pages_phys,
417         .put_pages = i915_gem_object_put_pages_phys,
418         .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425         struct i915_vma *vma;
426         LIST_HEAD(still_in_list);
427         int ret;
428
429         lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431         /* Closed vma are removed from the obj->vma_list - but they may
432          * still have an active binding on the object. To remove those we
433          * must wait for all rendering to complete to the object (as unbinding
434          * must anyway), and retire the requests.
435          */
436         ret = i915_gem_object_set_to_cpu_domain(obj, false);
437         if (ret)
438                 return ret;
439
440         while ((vma = list_first_entry_or_null(&obj->vma_list,
441                                                struct i915_vma,
442                                                obj_link))) {
443                 list_move_tail(&vma->obj_link, &still_in_list);
444                 ret = i915_vma_unbind(vma);
445                 if (ret)
446                         break;
447         }
448         list_splice(&still_in_list, &obj->vma_list);
449
450         return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455                            unsigned int flags,
456                            long timeout,
457                            struct intel_rps_client *rps_client)
458 {
459         struct i915_request *rq;
460
461         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464                 return timeout;
465
466         if (!dma_fence_is_i915(fence))
467                 return dma_fence_wait_timeout(fence,
468                                               flags & I915_WAIT_INTERRUPTIBLE,
469                                               timeout);
470
471         rq = to_request(fence);
472         if (i915_request_completed(rq))
473                 goto out;
474
475         /*
476          * This client is about to stall waiting for the GPU. In many cases
477          * this is undesirable and limits the throughput of the system, as
478          * many clients cannot continue processing user input/output whilst
479          * blocked. RPS autotuning may take tens of milliseconds to respond
480          * to the GPU load and thus incurs additional latency for the client.
481          * We can circumvent that by promoting the GPU frequency to maximum
482          * before we wait. This makes the GPU throttle up much more quickly
483          * (good for benchmarks and user experience, e.g. window animations),
484          * but at a cost of spending more power processing the workload
485          * (bad for battery). Not all clients even want their results
486          * immediately and for them we should just let the GPU select its own
487          * frequency to maximise efficiency. To prevent a single client from
488          * forcing the clocks too high for the whole system, we only allow
489          * each client to waitboost once in a busy period.
490          */
491         if (rps_client && !i915_request_started(rq)) {
492                 if (INTEL_GEN(rq->i915) >= 6)
493                         gen6_rps_boost(rq, rps_client);
494         }
495
496         timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499         if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500                 i915_request_retire_upto(rq);
501
502         return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507                                  unsigned int flags,
508                                  long timeout,
509                                  struct intel_rps_client *rps_client)
510 {
511         unsigned int seq = __read_seqcount_begin(&resv->seq);
512         struct dma_fence *excl;
513         bool prune_fences = false;
514
515         if (flags & I915_WAIT_ALL) {
516                 struct dma_fence **shared;
517                 unsigned int count, i;
518                 int ret;
519
520                 ret = reservation_object_get_fences_rcu(resv,
521                                                         &excl, &count, &shared);
522                 if (ret)
523                         return ret;
524
525                 for (i = 0; i < count; i++) {
526                         timeout = i915_gem_object_wait_fence(shared[i],
527                                                              flags, timeout,
528                                                              rps_client);
529                         if (timeout < 0)
530                                 break;
531
532                         dma_fence_put(shared[i]);
533                 }
534
535                 for (; i < count; i++)
536                         dma_fence_put(shared[i]);
537                 kfree(shared);
538
539                 /*
540                  * If both shared fences and an exclusive fence exist,
541                  * then by construction the shared fences must be later
542                  * than the exclusive fence. If we successfully wait for
543                  * all the shared fences, we know that the exclusive fence
544                  * must all be signaled. If all the shared fences are
545                  * signaled, we can prune the array and recover the
546                  * floating references on the fences/requests.
547                  */
548                 prune_fences = count && timeout >= 0;
549         } else {
550                 excl = reservation_object_get_excl_rcu(resv);
551         }
552
553         if (excl && timeout >= 0)
554                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555                                                      rps_client);
556
557         dma_fence_put(excl);
558
559         /*
560          * Opportunistically prune the fences iff we know they have *all* been
561          * signaled and that the reservation object has not been changed (i.e.
562          * no new fences have been added).
563          */
564         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565                 if (reservation_object_trylock(resv)) {
566                         if (!__read_seqcount_retry(&resv->seq, seq))
567                                 reservation_object_add_excl_fence(resv, NULL);
568                         reservation_object_unlock(resv);
569                 }
570         }
571
572         return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576                                  const struct i915_sched_attr *attr)
577 {
578         struct i915_request *rq;
579         struct intel_engine_cs *engine;
580
581         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582                 return;
583
584         rq = to_request(fence);
585         engine = rq->engine;
586
587         local_bh_disable();
588         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589         if (engine->schedule)
590                 engine->schedule(rq, attr);
591         rcu_read_unlock();
592         local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596                                const struct i915_sched_attr *attr)
597 {
598         /* Recurse once into a fence-array */
599         if (dma_fence_is_array(fence)) {
600                 struct dma_fence_array *array = to_dma_fence_array(fence);
601                 int i;
602
603                 for (i = 0; i < array->num_fences; i++)
604                         __fence_set_priority(array->fences[i], attr);
605         } else {
606                 __fence_set_priority(fence, attr);
607         }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612                               unsigned int flags,
613                               const struct i915_sched_attr *attr)
614 {
615         struct dma_fence *excl;
616
617         if (flags & I915_WAIT_ALL) {
618                 struct dma_fence **shared;
619                 unsigned int count, i;
620                 int ret;
621
622                 ret = reservation_object_get_fences_rcu(obj->resv,
623                                                         &excl, &count, &shared);
624                 if (ret)
625                         return ret;
626
627                 for (i = 0; i < count; i++) {
628                         fence_set_priority(shared[i], attr);
629                         dma_fence_put(shared[i]);
630                 }
631
632                 kfree(shared);
633         } else {
634                 excl = reservation_object_get_excl_rcu(obj->resv);
635         }
636
637         if (excl) {
638                 fence_set_priority(excl, attr);
639                 dma_fence_put(excl);
640         }
641         return 0;
642 }
643
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653                      unsigned int flags,
654                      long timeout,
655                      struct intel_rps_client *rps_client)
656 {
657         might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659         GEM_BUG_ON(debug_locks &&
660                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661                    !!(flags & I915_WAIT_LOCKED));
662 #endif
663         GEM_BUG_ON(timeout < 0);
664
665         timeout = i915_gem_object_wait_reservation(obj->resv,
666                                                    flags, timeout,
667                                                    rps_client);
668         return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673         struct drm_i915_file_private *fpriv = file->driver_priv;
674
675         return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680                      struct drm_i915_gem_pwrite *args,
681                      struct drm_file *file)
682 {
683         void *vaddr = obj->phys_handle->vaddr + args->offset;
684         char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686         /* We manually control the domain here and pretend that it
687          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688          */
689         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690         if (copy_from_user(vaddr, user_data, args->size))
691                 return -EFAULT;
692
693         drm_clflush_virt_range(vaddr, args->size);
694         i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696         intel_fb_obj_flush(obj, ORIGIN_CPU);
697         return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708         kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713                 struct drm_i915_private *dev_priv,
714                 uint64_t size,
715                 uint32_t *handle_p)
716 {
717         struct drm_i915_gem_object *obj;
718         int ret;
719         u32 handle;
720
721         size = roundup(size, PAGE_SIZE);
722         if (size == 0)
723                 return -EINVAL;
724
725         /* Allocate the new object */
726         obj = i915_gem_object_create(dev_priv, size);
727         if (IS_ERR(obj))
728                 return PTR_ERR(obj);
729
730         ret = drm_gem_handle_create(file, &obj->base, &handle);
731         /* drop reference from allocate - handle holds it now */
732         i915_gem_object_put(obj);
733         if (ret)
734                 return ret;
735
736         *handle_p = handle;
737         return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742                      struct drm_device *dev,
743                      struct drm_mode_create_dumb *args)
744 {
745         /* have to work out size/pitch and return them */
746         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747         args->size = args->pitch * args->height;
748         return i915_gem_create(file, to_i915(dev),
749                                args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754         return !(obj->cache_level == I915_CACHE_NONE ||
755                  obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766                       struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = to_i915(dev);
769         struct drm_i915_gem_create *args = data;
770
771         i915_gem_flush_free_objects(dev_priv);
772
773         return i915_gem_create(file, dev_priv,
774                                args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780         return (domain == I915_GEM_DOMAIN_GTT ?
781                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786         /*
787          * No actual flushing is required for the GTT write domain for reads
788          * from the GTT domain. Writes to it "immediately" go to main memory
789          * as far as we know, so there's no chipset flush. It also doesn't
790          * land in the GPU render cache.
791          *
792          * However, we do have to enforce the order so that all writes through
793          * the GTT land before any writes to the device, such as updates to
794          * the GATT itself.
795          *
796          * We also have to wait a bit for the writes to land from the GTT.
797          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798          * timing. This issue has only been observed when switching quickly
799          * between GTT writes and CPU reads from inside the kernel on recent hw,
800          * and it appears to only affect discrete GTT blocks (i.e. on LLC
801          * system agents we cannot reproduce this behaviour, until Cannonlake
802          * that was!).
803          */
804
805         wmb();
806
807         if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808                 return;
809
810         i915_gem_chipset_flush(dev_priv);
811
812         intel_runtime_pm_get(dev_priv);
813         spin_lock_irq(&dev_priv->uncore.lock);
814
815         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817         spin_unlock_irq(&dev_priv->uncore.lock);
818         intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825         struct i915_vma *vma;
826
827         if (!(obj->write_domain & flush_domains))
828                 return;
829
830         switch (obj->write_domain) {
831         case I915_GEM_DOMAIN_GTT:
832                 i915_gem_flush_ggtt_writes(dev_priv);
833
834                 intel_fb_obj_flush(obj,
835                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837                 for_each_ggtt_vma(vma, obj) {
838                         if (vma->iomap)
839                                 continue;
840
841                         i915_vma_unset_ggtt_write(vma);
842                 }
843                 break;
844
845         case I915_GEM_DOMAIN_WC:
846                 wmb();
847                 break;
848
849         case I915_GEM_DOMAIN_CPU:
850                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851                 break;
852
853         case I915_GEM_DOMAIN_RENDER:
854                 if (gpu_write_needs_clflush(obj))
855                         obj->cache_dirty = true;
856                 break;
857         }
858
859         obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864                         const char *gpu_vaddr, int gpu_offset,
865                         int length)
866 {
867         int ret, cpu_offset = 0;
868
869         while (length > 0) {
870                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871                 int this_length = min(cacheline_end - gpu_offset, length);
872                 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875                                      gpu_vaddr + swizzled_gpu_offset,
876                                      this_length);
877                 if (ret)
878                         return ret + length;
879
880                 cpu_offset += this_length;
881                 gpu_offset += this_length;
882                 length -= this_length;
883         }
884
885         return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890                           const char __user *cpu_vaddr,
891                           int length)
892 {
893         int ret, cpu_offset = 0;
894
895         while (length > 0) {
896                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897                 int this_length = min(cacheline_end - gpu_offset, length);
898                 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901                                        cpu_vaddr + cpu_offset,
902                                        this_length);
903                 if (ret)
904                         return ret + length;
905
906                 cpu_offset += this_length;
907                 gpu_offset += this_length;
908                 length -= this_length;
909         }
910
911         return 0;
912 }
913
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920                                     unsigned int *needs_clflush)
921 {
922         int ret;
923
924         lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926         *needs_clflush = 0;
927         if (!i915_gem_object_has_struct_page(obj))
928                 return -ENODEV;
929
930         ret = i915_gem_object_wait(obj,
931                                    I915_WAIT_INTERRUPTIBLE |
932                                    I915_WAIT_LOCKED,
933                                    MAX_SCHEDULE_TIMEOUT,
934                                    NULL);
935         if (ret)
936                 return ret;
937
938         ret = i915_gem_object_pin_pages(obj);
939         if (ret)
940                 return ret;
941
942         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945                 if (ret)
946                         goto err_unpin;
947                 else
948                         goto out;
949         }
950
951         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953         /* If we're not in the cpu read domain, set ourself into the gtt
954          * read domain and manually flush cachelines (if required). This
955          * optimizes for the case when the gpu will dirty the data
956          * anyway again before the next pread happens.
957          */
958         if (!obj->cache_dirty &&
959             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960                 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963         /* return with the pages pinned */
964         return 0;
965
966 err_unpin:
967         i915_gem_object_unpin_pages(obj);
968         return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972                                      unsigned int *needs_clflush)
973 {
974         int ret;
975
976         lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978         *needs_clflush = 0;
979         if (!i915_gem_object_has_struct_page(obj))
980                 return -ENODEV;
981
982         ret = i915_gem_object_wait(obj,
983                                    I915_WAIT_INTERRUPTIBLE |
984                                    I915_WAIT_LOCKED |
985                                    I915_WAIT_ALL,
986                                    MAX_SCHEDULE_TIMEOUT,
987                                    NULL);
988         if (ret)
989                 return ret;
990
991         ret = i915_gem_object_pin_pages(obj);
992         if (ret)
993                 return ret;
994
995         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998                 if (ret)
999                         goto err_unpin;
1000                 else
1001                         goto out;
1002         }
1003
1004         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006         /* If we're not in the cpu write domain, set ourself into the
1007          * gtt write domain and manually flush cachelines (as required).
1008          * This optimizes for the case when the gpu will use the data
1009          * right away and we therefore have to clflush anyway.
1010          */
1011         if (!obj->cache_dirty) {
1012                 *needs_clflush |= CLFLUSH_AFTER;
1013
1014                 /*
1015                  * Same trick applies to invalidate partially written
1016                  * cachelines read before writing.
1017                  */
1018                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019                         *needs_clflush |= CLFLUSH_BEFORE;
1020         }
1021
1022 out:
1023         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024         obj->mm.dirty = true;
1025         /* return with the pages pinned */
1026         return 0;
1027
1028 err_unpin:
1029         i915_gem_object_unpin_pages(obj);
1030         return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035                              bool swizzled)
1036 {
1037         if (unlikely(swizzled)) {
1038                 unsigned long start = (unsigned long) addr;
1039                 unsigned long end = (unsigned long) addr + length;
1040
1041                 /* For swizzling simply ensure that we always flush both
1042                  * channels. Lame, but simple and it works. Swizzled
1043                  * pwrite/pread is far from a hotpath - current userspace
1044                  * doesn't use it at all. */
1045                 start = round_down(start, 128);
1046                 end = round_up(end, 128);
1047
1048                 drm_clflush_virt_range((void *)start, end - start);
1049         } else {
1050                 drm_clflush_virt_range(addr, length);
1051         }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059                  char __user *user_data,
1060                  bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062         char *vaddr;
1063         int ret;
1064
1065         vaddr = kmap(page);
1066         if (needs_clflush)
1067                 shmem_clflush_swizzled_range(vaddr + offset, length,
1068                                              page_do_bit17_swizzling);
1069
1070         if (page_do_bit17_swizzling)
1071                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072         else
1073                 ret = __copy_to_user(user_data, vaddr + offset, length);
1074         kunmap(page);
1075
1076         return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081             bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083         int ret;
1084
1085         ret = -ENODEV;
1086         if (!page_do_bit17_swizzling) {
1087                 char *vaddr = kmap_atomic(page);
1088
1089                 if (needs_clflush)
1090                         drm_clflush_virt_range(vaddr + offset, length);
1091                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092                 kunmap_atomic(vaddr);
1093         }
1094         if (ret == 0)
1095                 return 0;
1096
1097         return shmem_pread_slow(page, offset, length, user_data,
1098                                 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103                      struct drm_i915_gem_pread *args)
1104 {
1105         char __user *user_data;
1106         u64 remain;
1107         unsigned int obj_do_bit17_swizzling;
1108         unsigned int needs_clflush;
1109         unsigned int idx, offset;
1110         int ret;
1111
1112         obj_do_bit17_swizzling = 0;
1113         if (i915_gem_object_needs_bit17_swizzle(obj))
1114                 obj_do_bit17_swizzling = BIT(17);
1115
1116         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117         if (ret)
1118                 return ret;
1119
1120         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121         mutex_unlock(&obj->base.dev->struct_mutex);
1122         if (ret)
1123                 return ret;
1124
1125         remain = args->size;
1126         user_data = u64_to_user_ptr(args->data_ptr);
1127         offset = offset_in_page(args->offset);
1128         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129                 struct page *page = i915_gem_object_get_page(obj, idx);
1130                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131
1132                 ret = shmem_pread(page, offset, length, user_data,
1133                                   page_to_phys(page) & obj_do_bit17_swizzling,
1134                                   needs_clflush);
1135                 if (ret)
1136                         break;
1137
1138                 remain -= length;
1139                 user_data += length;
1140                 offset = 0;
1141         }
1142
1143         i915_gem_obj_finish_shmem_access(obj);
1144         return ret;
1145 }
1146
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149               loff_t base, int offset,
1150               char __user *user_data, int length)
1151 {
1152         void __iomem *vaddr;
1153         unsigned long unwritten;
1154
1155         /* We can use the cpu mem copy function because this is X86. */
1156         vaddr = io_mapping_map_atomic_wc(mapping, base);
1157         unwritten = __copy_to_user_inatomic(user_data,
1158                                             (void __force *)vaddr + offset,
1159                                             length);
1160         io_mapping_unmap_atomic(vaddr);
1161         if (unwritten) {
1162                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163                 unwritten = copy_to_user(user_data,
1164                                          (void __force *)vaddr + offset,
1165                                          length);
1166                 io_mapping_unmap(vaddr);
1167         }
1168         return unwritten;
1169 }
1170
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173                    const struct drm_i915_gem_pread *args)
1174 {
1175         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176         struct i915_ggtt *ggtt = &i915->ggtt;
1177         struct drm_mm_node node;
1178         struct i915_vma *vma;
1179         void __user *user_data;
1180         u64 remain, offset;
1181         int ret;
1182
1183         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184         if (ret)
1185                 return ret;
1186
1187         intel_runtime_pm_get(i915);
1188         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189                                        PIN_MAPPABLE |
1190                                        PIN_NONFAULT |
1191                                        PIN_NONBLOCK);
1192         if (!IS_ERR(vma)) {
1193                 node.start = i915_ggtt_offset(vma);
1194                 node.allocated = false;
1195                 ret = i915_vma_put_fence(vma);
1196                 if (ret) {
1197                         i915_vma_unpin(vma);
1198                         vma = ERR_PTR(ret);
1199                 }
1200         }
1201         if (IS_ERR(vma)) {
1202                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203                 if (ret)
1204                         goto out_unlock;
1205                 GEM_BUG_ON(!node.allocated);
1206         }
1207
1208         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209         if (ret)
1210                 goto out_unpin;
1211
1212         mutex_unlock(&i915->drm.struct_mutex);
1213
1214         user_data = u64_to_user_ptr(args->data_ptr);
1215         remain = args->size;
1216         offset = args->offset;
1217
1218         while (remain > 0) {
1219                 /* Operation in this page
1220                  *
1221                  * page_base = page offset within aperture
1222                  * page_offset = offset within page
1223                  * page_length = bytes to copy for this page
1224                  */
1225                 u32 page_base = node.start;
1226                 unsigned page_offset = offset_in_page(offset);
1227                 unsigned page_length = PAGE_SIZE - page_offset;
1228                 page_length = remain < page_length ? remain : page_length;
1229                 if (node.allocated) {
1230                         wmb();
1231                         ggtt->vm.insert_page(&ggtt->vm,
1232                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233                                              node.start, I915_CACHE_NONE, 0);
1234                         wmb();
1235                 } else {
1236                         page_base += offset & PAGE_MASK;
1237                 }
1238
1239                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240                                   user_data, page_length)) {
1241                         ret = -EFAULT;
1242                         break;
1243                 }
1244
1245                 remain -= page_length;
1246                 user_data += page_length;
1247                 offset += page_length;
1248         }
1249
1250         mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252         if (node.allocated) {
1253                 wmb();
1254                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255                 remove_mappable_node(&node);
1256         } else {
1257                 i915_vma_unpin(vma);
1258         }
1259 out_unlock:
1260         intel_runtime_pm_put(i915);
1261         mutex_unlock(&i915->drm.struct_mutex);
1262
1263         return ret;
1264 }
1265
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276                      struct drm_file *file)
1277 {
1278         struct drm_i915_gem_pread *args = data;
1279         struct drm_i915_gem_object *obj;
1280         int ret;
1281
1282         if (args->size == 0)
1283                 return 0;
1284
1285         if (!access_ok(VERIFY_WRITE,
1286                        u64_to_user_ptr(args->data_ptr),
1287                        args->size))
1288                 return -EFAULT;
1289
1290         obj = i915_gem_object_lookup(file, args->handle);
1291         if (!obj)
1292                 return -ENOENT;
1293
1294         /* Bounds check source.  */
1295         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296                 ret = -EINVAL;
1297                 goto out;
1298         }
1299
1300         trace_i915_gem_object_pread(obj, args->offset, args->size);
1301
1302         ret = i915_gem_object_wait(obj,
1303                                    I915_WAIT_INTERRUPTIBLE,
1304                                    MAX_SCHEDULE_TIMEOUT,
1305                                    to_rps_client(file));
1306         if (ret)
1307                 goto out;
1308
1309         ret = i915_gem_object_pin_pages(obj);
1310         if (ret)
1311                 goto out;
1312
1313         ret = i915_gem_shmem_pread(obj, args);
1314         if (ret == -EFAULT || ret == -ENODEV)
1315                 ret = i915_gem_gtt_pread(obj, args);
1316
1317         i915_gem_object_unpin_pages(obj);
1318 out:
1319         i915_gem_object_put(obj);
1320         return ret;
1321 }
1322
1323 /* This is the fast write path which cannot handle
1324  * page faults in the source data
1325  */
1326
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329            loff_t base, int offset,
1330            char __user *user_data, int length)
1331 {
1332         void __iomem *vaddr;
1333         unsigned long unwritten;
1334
1335         /* We can use the cpu mem copy function because this is X86. */
1336         vaddr = io_mapping_map_atomic_wc(mapping, base);
1337         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338                                                       user_data, length);
1339         io_mapping_unmap_atomic(vaddr);
1340         if (unwritten) {
1341                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342                 unwritten = copy_from_user((void __force *)vaddr + offset,
1343                                            user_data, length);
1344                 io_mapping_unmap(vaddr);
1345         }
1346
1347         return unwritten;
1348 }
1349
1350 /**
1351  * This is the fast pwrite path, where we copy the data directly from the
1352  * user into the GTT, uncached.
1353  * @obj: i915 GEM object
1354  * @args: pwrite arguments structure
1355  */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358                          const struct drm_i915_gem_pwrite *args)
1359 {
1360         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361         struct i915_ggtt *ggtt = &i915->ggtt;
1362         struct drm_mm_node node;
1363         struct i915_vma *vma;
1364         u64 remain, offset;
1365         void __user *user_data;
1366         int ret;
1367
1368         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369         if (ret)
1370                 return ret;
1371
1372         if (i915_gem_object_has_struct_page(obj)) {
1373                 /*
1374                  * Avoid waking the device up if we can fallback, as
1375                  * waking/resuming is very slow (worst-case 10-100 ms
1376                  * depending on PCI sleeps and our own resume time).
1377                  * This easily dwarfs any performance advantage from
1378                  * using the cache bypass of indirect GGTT access.
1379                  */
1380                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1381                         ret = -EFAULT;
1382                         goto out_unlock;
1383                 }
1384         } else {
1385                 /* No backing pages, no fallback, we must force GGTT access */
1386                 intel_runtime_pm_get(i915);
1387         }
1388
1389         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390                                        PIN_MAPPABLE |
1391                                        PIN_NONFAULT |
1392                                        PIN_NONBLOCK);
1393         if (!IS_ERR(vma)) {
1394                 node.start = i915_ggtt_offset(vma);
1395                 node.allocated = false;
1396                 ret = i915_vma_put_fence(vma);
1397                 if (ret) {
1398                         i915_vma_unpin(vma);
1399                         vma = ERR_PTR(ret);
1400                 }
1401         }
1402         if (IS_ERR(vma)) {
1403                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404                 if (ret)
1405                         goto out_rpm;
1406                 GEM_BUG_ON(!node.allocated);
1407         }
1408
1409         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410         if (ret)
1411                 goto out_unpin;
1412
1413         mutex_unlock(&i915->drm.struct_mutex);
1414
1415         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416
1417         user_data = u64_to_user_ptr(args->data_ptr);
1418         offset = args->offset;
1419         remain = args->size;
1420         while (remain) {
1421                 /* Operation in this page
1422                  *
1423                  * page_base = page offset within aperture
1424                  * page_offset = offset within page
1425                  * page_length = bytes to copy for this page
1426                  */
1427                 u32 page_base = node.start;
1428                 unsigned int page_offset = offset_in_page(offset);
1429                 unsigned int page_length = PAGE_SIZE - page_offset;
1430                 page_length = remain < page_length ? remain : page_length;
1431                 if (node.allocated) {
1432                         wmb(); /* flush the write before we modify the GGTT */
1433                         ggtt->vm.insert_page(&ggtt->vm,
1434                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435                                              node.start, I915_CACHE_NONE, 0);
1436                         wmb(); /* flush modifications to the GGTT (insert_page) */
1437                 } else {
1438                         page_base += offset & PAGE_MASK;
1439                 }
1440                 /* If we get a fault while copying data, then (presumably) our
1441                  * source page isn't available.  Return the error and we'll
1442                  * retry in the slow path.
1443                  * If the object is non-shmem backed, we retry again with the
1444                  * path that handles page fault.
1445                  */
1446                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447                                user_data, page_length)) {
1448                         ret = -EFAULT;
1449                         break;
1450                 }
1451
1452                 remain -= page_length;
1453                 user_data += page_length;
1454                 offset += page_length;
1455         }
1456         intel_fb_obj_flush(obj, ORIGIN_CPU);
1457
1458         mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460         if (node.allocated) {
1461                 wmb();
1462                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463                 remove_mappable_node(&node);
1464         } else {
1465                 i915_vma_unpin(vma);
1466         }
1467 out_rpm:
1468         intel_runtime_pm_put(i915);
1469 out_unlock:
1470         mutex_unlock(&i915->drm.struct_mutex);
1471         return ret;
1472 }
1473
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476                   char __user *user_data,
1477                   bool page_do_bit17_swizzling,
1478                   bool needs_clflush_before,
1479                   bool needs_clflush_after)
1480 {
1481         char *vaddr;
1482         int ret;
1483
1484         vaddr = kmap(page);
1485         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486                 shmem_clflush_swizzled_range(vaddr + offset, length,
1487                                              page_do_bit17_swizzling);
1488         if (page_do_bit17_swizzling)
1489                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490                                                 length);
1491         else
1492                 ret = __copy_from_user(vaddr + offset, user_data, length);
1493         if (needs_clflush_after)
1494                 shmem_clflush_swizzled_range(vaddr + offset, length,
1495                                              page_do_bit17_swizzling);
1496         kunmap(page);
1497
1498         return ret ? -EFAULT : 0;
1499 }
1500
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502  * Flushes invalid cachelines before writing to the target if
1503  * needs_clflush_before is set and flushes out any written cachelines after
1504  * writing if needs_clflush is set.
1505  */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508              bool page_do_bit17_swizzling,
1509              bool needs_clflush_before,
1510              bool needs_clflush_after)
1511 {
1512         int ret;
1513
1514         ret = -ENODEV;
1515         if (!page_do_bit17_swizzling) {
1516                 char *vaddr = kmap_atomic(page);
1517
1518                 if (needs_clflush_before)
1519                         drm_clflush_virt_range(vaddr + offset, len);
1520                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521                 if (needs_clflush_after)
1522                         drm_clflush_virt_range(vaddr + offset, len);
1523
1524                 kunmap_atomic(vaddr);
1525         }
1526         if (ret == 0)
1527                 return ret;
1528
1529         return shmem_pwrite_slow(page, offset, len, user_data,
1530                                  page_do_bit17_swizzling,
1531                                  needs_clflush_before,
1532                                  needs_clflush_after);
1533 }
1534
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537                       const struct drm_i915_gem_pwrite *args)
1538 {
1539         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540         void __user *user_data;
1541         u64 remain;
1542         unsigned int obj_do_bit17_swizzling;
1543         unsigned int partial_cacheline_write;
1544         unsigned int needs_clflush;
1545         unsigned int offset, idx;
1546         int ret;
1547
1548         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549         if (ret)
1550                 return ret;
1551
1552         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553         mutex_unlock(&i915->drm.struct_mutex);
1554         if (ret)
1555                 return ret;
1556
1557         obj_do_bit17_swizzling = 0;
1558         if (i915_gem_object_needs_bit17_swizzle(obj))
1559                 obj_do_bit17_swizzling = BIT(17);
1560
1561         /* If we don't overwrite a cacheline completely we need to be
1562          * careful to have up-to-date data by first clflushing. Don't
1563          * overcomplicate things and flush the entire patch.
1564          */
1565         partial_cacheline_write = 0;
1566         if (needs_clflush & CLFLUSH_BEFORE)
1567                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568
1569         user_data = u64_to_user_ptr(args->data_ptr);
1570         remain = args->size;
1571         offset = offset_in_page(args->offset);
1572         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573                 struct page *page = i915_gem_object_get_page(obj, idx);
1574                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575
1576                 ret = shmem_pwrite(page, offset, length, user_data,
1577                                    page_to_phys(page) & obj_do_bit17_swizzling,
1578                                    (offset | length) & partial_cacheline_write,
1579                                    needs_clflush & CLFLUSH_AFTER);
1580                 if (ret)
1581                         break;
1582
1583                 remain -= length;
1584                 user_data += length;
1585                 offset = 0;
1586         }
1587
1588         intel_fb_obj_flush(obj, ORIGIN_CPU);
1589         i915_gem_obj_finish_shmem_access(obj);
1590         return ret;
1591 }
1592
1593 /**
1594  * Writes data to the object referenced by handle.
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  *
1599  * On error, the contents of the buffer that were to be modified are undefined.
1600  */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603                       struct drm_file *file)
1604 {
1605         struct drm_i915_gem_pwrite *args = data;
1606         struct drm_i915_gem_object *obj;
1607         int ret;
1608
1609         if (args->size == 0)
1610                 return 0;
1611
1612         if (!access_ok(VERIFY_READ,
1613                        u64_to_user_ptr(args->data_ptr),
1614                        args->size))
1615                 return -EFAULT;
1616
1617         obj = i915_gem_object_lookup(file, args->handle);
1618         if (!obj)
1619                 return -ENOENT;
1620
1621         /* Bounds check destination. */
1622         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623                 ret = -EINVAL;
1624                 goto err;
1625         }
1626
1627         /* Writes not allowed into this read-only object */
1628         if (i915_gem_object_is_readonly(obj)) {
1629                 ret = -EINVAL;
1630                 goto err;
1631         }
1632
1633         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634
1635         ret = -ENODEV;
1636         if (obj->ops->pwrite)
1637                 ret = obj->ops->pwrite(obj, args);
1638         if (ret != -ENODEV)
1639                 goto err;
1640
1641         ret = i915_gem_object_wait(obj,
1642                                    I915_WAIT_INTERRUPTIBLE |
1643                                    I915_WAIT_ALL,
1644                                    MAX_SCHEDULE_TIMEOUT,
1645                                    to_rps_client(file));
1646         if (ret)
1647                 goto err;
1648
1649         ret = i915_gem_object_pin_pages(obj);
1650         if (ret)
1651                 goto err;
1652
1653         ret = -EFAULT;
1654         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1655          * it would end up going through the fenced access, and we'll get
1656          * different detiling behavior between reading and writing.
1657          * pread/pwrite currently are reading and writing from the CPU
1658          * perspective, requiring manual detiling by the client.
1659          */
1660         if (!i915_gem_object_has_struct_page(obj) ||
1661             cpu_write_needs_clflush(obj))
1662                 /* Note that the gtt paths might fail with non-page-backed user
1663                  * pointers (e.g. gtt mappings when moving data between
1664                  * textures). Fallback to the shmem path in that case.
1665                  */
1666                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1667
1668         if (ret == -EFAULT || ret == -ENOSPC) {
1669                 if (obj->phys_handle)
1670                         ret = i915_gem_phys_pwrite(obj, args, file);
1671                 else
1672                         ret = i915_gem_shmem_pwrite(obj, args);
1673         }
1674
1675         i915_gem_object_unpin_pages(obj);
1676 err:
1677         i915_gem_object_put(obj);
1678         return ret;
1679 }
1680
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683         struct drm_i915_private *i915;
1684         struct list_head *list;
1685         struct i915_vma *vma;
1686
1687         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688
1689         for_each_ggtt_vma(vma, obj) {
1690                 if (i915_vma_is_active(vma))
1691                         continue;
1692
1693                 if (!drm_mm_node_allocated(&vma->node))
1694                         continue;
1695
1696                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697         }
1698
1699         i915 = to_i915(obj->base.dev);
1700         spin_lock(&i915->mm.obj_lock);
1701         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702         list_move_tail(&obj->mm.link, list);
1703         spin_unlock(&i915->mm.obj_lock);
1704 }
1705
1706 /**
1707  * Called when user space prepares to use an object with the CPU, either
1708  * through the mmap ioctl's mapping or a GTT mapping.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715                           struct drm_file *file)
1716 {
1717         struct drm_i915_gem_set_domain *args = data;
1718         struct drm_i915_gem_object *obj;
1719         uint32_t read_domains = args->read_domains;
1720         uint32_t write_domain = args->write_domain;
1721         int err;
1722
1723         /* Only handle setting domains to types used by the CPU. */
1724         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725                 return -EINVAL;
1726
1727         /* Having something in the write domain implies it's in the read
1728          * domain, and only that read domain.  Enforce that in the request.
1729          */
1730         if (write_domain != 0 && read_domains != write_domain)
1731                 return -EINVAL;
1732
1733         obj = i915_gem_object_lookup(file, args->handle);
1734         if (!obj)
1735                 return -ENOENT;
1736
1737         /* Try to flush the object off the GPU without holding the lock.
1738          * We will repeat the flush holding the lock in the normal manner
1739          * to catch cases where we are gazumped.
1740          */
1741         err = i915_gem_object_wait(obj,
1742                                    I915_WAIT_INTERRUPTIBLE |
1743                                    I915_WAIT_PRIORITY |
1744                                    (write_domain ? I915_WAIT_ALL : 0),
1745                                    MAX_SCHEDULE_TIMEOUT,
1746                                    to_rps_client(file));
1747         if (err)
1748                 goto out;
1749
1750         /*
1751          * Proxy objects do not control access to the backing storage, ergo
1752          * they cannot be used as a means to manipulate the cache domain
1753          * tracking for that backing storage. The proxy object is always
1754          * considered to be outside of any cache domain.
1755          */
1756         if (i915_gem_object_is_proxy(obj)) {
1757                 err = -ENXIO;
1758                 goto out;
1759         }
1760
1761         /*
1762          * Flush and acquire obj->pages so that we are coherent through
1763          * direct access in memory with previous cached writes through
1764          * shmemfs and that our cache domain tracking remains valid.
1765          * For example, if the obj->filp was moved to swap without us
1766          * being notified and releasing the pages, we would mistakenly
1767          * continue to assume that the obj remained out of the CPU cached
1768          * domain.
1769          */
1770         err = i915_gem_object_pin_pages(obj);
1771         if (err)
1772                 goto out;
1773
1774         err = i915_mutex_lock_interruptible(dev);
1775         if (err)
1776                 goto out_unpin;
1777
1778         if (read_domains & I915_GEM_DOMAIN_WC)
1779                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1780         else if (read_domains & I915_GEM_DOMAIN_GTT)
1781                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782         else
1783                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784
1785         /* And bump the LRU for this access */
1786         i915_gem_object_bump_inactive_ggtt(obj);
1787
1788         mutex_unlock(&dev->struct_mutex);
1789
1790         if (write_domain != 0)
1791                 intel_fb_obj_invalidate(obj,
1792                                         fb_write_origin(obj, write_domain));
1793
1794 out_unpin:
1795         i915_gem_object_unpin_pages(obj);
1796 out:
1797         i915_gem_object_put(obj);
1798         return err;
1799 }
1800
1801 /**
1802  * Called when user space has done writes to this buffer
1803  * @dev: drm device
1804  * @data: ioctl data blob
1805  * @file: drm file
1806  */
1807 int
1808 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809                          struct drm_file *file)
1810 {
1811         struct drm_i915_gem_sw_finish *args = data;
1812         struct drm_i915_gem_object *obj;
1813
1814         obj = i915_gem_object_lookup(file, args->handle);
1815         if (!obj)
1816                 return -ENOENT;
1817
1818         /*
1819          * Proxy objects are barred from CPU access, so there is no
1820          * need to ban sw_finish as it is a nop.
1821          */
1822
1823         /* Pinned buffers may be scanout, so flush the cache */
1824         i915_gem_object_flush_if_display(obj);
1825         i915_gem_object_put(obj);
1826
1827         return 0;
1828 }
1829
1830 /**
1831  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1832  *                       it is mapped to.
1833  * @dev: drm device
1834  * @data: ioctl data blob
1835  * @file: drm file
1836  *
1837  * While the mapping holds a reference on the contents of the object, it doesn't
1838  * imply a ref on the object itself.
1839  *
1840  * IMPORTANT:
1841  *
1842  * DRM driver writers who look a this function as an example for how to do GEM
1843  * mmap support, please don't implement mmap support like here. The modern way
1844  * to implement DRM mmap support is with an mmap offset ioctl (like
1845  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1846  * That way debug tooling like valgrind will understand what's going on, hiding
1847  * the mmap call in a driver private ioctl will break that. The i915 driver only
1848  * does cpu mmaps this way because we didn't know better.
1849  */
1850 int
1851 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852                     struct drm_file *file)
1853 {
1854         struct drm_i915_gem_mmap *args = data;
1855         struct drm_i915_gem_object *obj;
1856         unsigned long addr;
1857
1858         if (args->flags & ~(I915_MMAP_WC))
1859                 return -EINVAL;
1860
1861         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862                 return -ENODEV;
1863
1864         obj = i915_gem_object_lookup(file, args->handle);
1865         if (!obj)
1866                 return -ENOENT;
1867
1868         /* prime objects have no backing filp to GEM mmap
1869          * pages from.
1870          */
1871         if (!obj->base.filp) {
1872                 i915_gem_object_put(obj);
1873                 return -ENXIO;
1874         }
1875
1876         addr = vm_mmap(obj->base.filp, 0, args->size,
1877                        PROT_READ | PROT_WRITE, MAP_SHARED,
1878                        args->offset);
1879         if (args->flags & I915_MMAP_WC) {
1880                 struct mm_struct *mm = current->mm;
1881                 struct vm_area_struct *vma;
1882
1883                 if (down_write_killable(&mm->mmap_sem)) {
1884                         i915_gem_object_put(obj);
1885                         return -EINTR;
1886                 }
1887                 vma = find_vma(mm, addr);
1888                 if (vma)
1889                         vma->vm_page_prot =
1890                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1891                 else
1892                         addr = -ENOMEM;
1893                 up_write(&mm->mmap_sem);
1894
1895                 /* This may race, but that's ok, it only gets set */
1896                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897         }
1898         i915_gem_object_put(obj);
1899         if (IS_ERR((void *)addr))
1900                 return addr;
1901
1902         args->addr_ptr = (uint64_t) addr;
1903
1904         return 0;
1905 }
1906
1907 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908 {
1909         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 }
1911
1912 /**
1913  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1914  *
1915  * A history of the GTT mmap interface:
1916  *
1917  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1918  *     aligned and suitable for fencing, and still fit into the available
1919  *     mappable space left by the pinned display objects. A classic problem
1920  *     we called the page-fault-of-doom where we would ping-pong between
1921  *     two objects that could not fit inside the GTT and so the memcpy
1922  *     would page one object in at the expense of the other between every
1923  *     single byte.
1924  *
1925  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1926  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1927  *     object is too large for the available space (or simply too large
1928  *     for the mappable aperture!), a view is created instead and faulted
1929  *     into userspace. (This view is aligned and sized appropriately for
1930  *     fenced access.)
1931  *
1932  * 2 - Recognise WC as a separate cache domain so that we can flush the
1933  *     delayed writes via GTT before performing direct access via WC.
1934  *
1935  * Restrictions:
1936  *
1937  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1938  *    hangs on some architectures, corruption on others. An attempt to service
1939  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1940  *
1941  *  * the object must be able to fit into RAM (physical memory, though no
1942  *    limited to the mappable aperture).
1943  *
1944  *
1945  * Caveats:
1946  *
1947  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1948  *    all data to system memory. Subsequent access will not be synchronized.
1949  *
1950  *  * all mappings are revoked on runtime device suspend.
1951  *
1952  *  * there are only 8, 16 or 32 fence registers to share between all users
1953  *    (older machines require fence register for display and blitter access
1954  *    as well). Contention of the fence registers will cause the previous users
1955  *    to be unmapped and any new access will generate new page faults.
1956  *
1957  *  * running out of memory while servicing a fault may generate a SIGBUS,
1958  *    rather than the expected SIGSEGV.
1959  */
1960 int i915_gem_mmap_gtt_version(void)
1961 {
1962         return 2;
1963 }
1964
1965 static inline struct i915_ggtt_view
1966 compute_partial_view(const struct drm_i915_gem_object *obj,
1967                      pgoff_t page_offset,
1968                      unsigned int chunk)
1969 {
1970         struct i915_ggtt_view view;
1971
1972         if (i915_gem_object_is_tiled(obj))
1973                 chunk = roundup(chunk, tile_row_pages(obj));
1974
1975         view.type = I915_GGTT_VIEW_PARTIAL;
1976         view.partial.offset = rounddown(page_offset, chunk);
1977         view.partial.size =
1978                 min_t(unsigned int, chunk,
1979                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980
1981         /* If the partial covers the entire object, just create a normal VMA. */
1982         if (chunk >= obj->base.size >> PAGE_SHIFT)
1983                 view.type = I915_GGTT_VIEW_NORMAL;
1984
1985         return view;
1986 }
1987
1988 /**
1989  * i915_gem_fault - fault a page into the GTT
1990  * @vmf: fault info
1991  *
1992  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993  * from userspace.  The fault handler takes care of binding the object to
1994  * the GTT (if needed), allocating and programming a fence register (again,
1995  * only if needed based on whether the old reg is still valid or the object
1996  * is tiled) and inserting a new PTE into the faulting process.
1997  *
1998  * Note that the faulting process may involve evicting existing objects
1999  * from the GTT and/or fence registers to make room.  So performance may
2000  * suffer if the GTT working set is large or there are few fence registers
2001  * left.
2002  *
2003  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2004  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005  */
2006 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007 {
2008 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009         struct vm_area_struct *area = vmf->vma;
2010         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011         struct drm_device *dev = obj->base.dev;
2012         struct drm_i915_private *dev_priv = to_i915(dev);
2013         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014         bool write = area->vm_flags & VM_WRITE;
2015         struct i915_vma *vma;
2016         pgoff_t page_offset;
2017         int ret;
2018
2019         /* Sanity check that we allow writing into this object */
2020         if (i915_gem_object_is_readonly(obj) && write)
2021                 return VM_FAULT_SIGBUS;
2022
2023         /* We don't use vmf->pgoff since that has the fake offset */
2024         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025
2026         trace_i915_gem_object_fault(obj, page_offset, true, write);
2027
2028         /* Try to flush the object off the GPU first without holding the lock.
2029          * Upon acquiring the lock, we will perform our sanity checks and then
2030          * repeat the flush holding the lock in the normal manner to catch cases
2031          * where we are gazumped.
2032          */
2033         ret = i915_gem_object_wait(obj,
2034                                    I915_WAIT_INTERRUPTIBLE,
2035                                    MAX_SCHEDULE_TIMEOUT,
2036                                    NULL);
2037         if (ret)
2038                 goto err;
2039
2040         ret = i915_gem_object_pin_pages(obj);
2041         if (ret)
2042                 goto err;
2043
2044         intel_runtime_pm_get(dev_priv);
2045
2046         ret = i915_mutex_lock_interruptible(dev);
2047         if (ret)
2048                 goto err_rpm;
2049
2050         /* Access to snoopable pages through the GTT is incoherent. */
2051         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052                 ret = -EFAULT;
2053                 goto err_unlock;
2054         }
2055
2056
2057         /* Now pin it into the GTT as needed */
2058         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2059                                        PIN_MAPPABLE |
2060                                        PIN_NONBLOCK |
2061                                        PIN_NONFAULT);
2062         if (IS_ERR(vma)) {
2063                 /* Use a partial view if it is bigger than available space */
2064                 struct i915_ggtt_view view =
2065                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066                 unsigned int flags;
2067
2068                 flags = PIN_MAPPABLE;
2069                 if (view.type == I915_GGTT_VIEW_NORMAL)
2070                         flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2071
2072                 /*
2073                  * Userspace is now writing through an untracked VMA, abandon
2074                  * all hope that the hardware is able to track future writes.
2075                  */
2076                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2077
2078                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2079                 if (IS_ERR(vma) && !view.type) {
2080                         flags = PIN_MAPPABLE;
2081                         view.type = I915_GGTT_VIEW_PARTIAL;
2082                         vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2083                 }
2084         }
2085         if (IS_ERR(vma)) {
2086                 ret = PTR_ERR(vma);
2087                 goto err_unlock;
2088         }
2089
2090         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2091         if (ret)
2092                 goto err_unpin;
2093
2094         ret = i915_vma_pin_fence(vma);
2095         if (ret)
2096                 goto err_unpin;
2097
2098         /* Finally, remap it using the new GTT offset */
2099         ret = remap_io_mapping(area,
2100                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102                                min_t(u64, vma->size, area->vm_end - area->vm_start),
2103                                &ggtt->iomap);
2104         if (ret)
2105                 goto err_fence;
2106
2107         /* Mark as being mmapped into userspace for later revocation */
2108         assert_rpm_wakelock_held(dev_priv);
2109         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2110                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2111         GEM_BUG_ON(!obj->userfault_count);
2112
2113         i915_vma_set_ggtt_write(vma);
2114
2115 err_fence:
2116         i915_vma_unpin_fence(vma);
2117 err_unpin:
2118         __i915_vma_unpin(vma);
2119 err_unlock:
2120         mutex_unlock(&dev->struct_mutex);
2121 err_rpm:
2122         intel_runtime_pm_put(dev_priv);
2123         i915_gem_object_unpin_pages(obj);
2124 err:
2125         switch (ret) {
2126         case -EIO:
2127                 /*
2128                  * We eat errors when the gpu is terminally wedged to avoid
2129                  * userspace unduly crashing (gl has no provisions for mmaps to
2130                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2131                  * and so needs to be reported.
2132                  */
2133                 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2134                         return VM_FAULT_SIGBUS;
2135                 /* else: fall through */
2136         case -EAGAIN:
2137                 /*
2138                  * EAGAIN means the gpu is hung and we'll wait for the error
2139                  * handler to reset everything when re-faulting in
2140                  * i915_mutex_lock_interruptible.
2141                  */
2142         case 0:
2143         case -ERESTARTSYS:
2144         case -EINTR:
2145         case -EBUSY:
2146                 /*
2147                  * EBUSY is ok: this just means that another thread
2148                  * already did the job.
2149                  */
2150                 return VM_FAULT_NOPAGE;
2151         case -ENOMEM:
2152                 return VM_FAULT_OOM;
2153         case -ENOSPC:
2154         case -EFAULT:
2155                 return VM_FAULT_SIGBUS;
2156         default:
2157                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158                 return VM_FAULT_SIGBUS;
2159         }
2160 }
2161
2162 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2163 {
2164         struct i915_vma *vma;
2165
2166         GEM_BUG_ON(!obj->userfault_count);
2167
2168         obj->userfault_count = 0;
2169         list_del(&obj->userfault_link);
2170         drm_vma_node_unmap(&obj->base.vma_node,
2171                            obj->base.dev->anon_inode->i_mapping);
2172
2173         for_each_ggtt_vma(vma, obj)
2174                 i915_vma_unset_userfault(vma);
2175 }
2176
2177 /**
2178  * i915_gem_release_mmap - remove physical page mappings
2179  * @obj: obj in question
2180  *
2181  * Preserve the reservation of the mmapping with the DRM core code, but
2182  * relinquish ownership of the pages back to the system.
2183  *
2184  * It is vital that we remove the page mapping if we have mapped a tiled
2185  * object through the GTT and then lose the fence register due to
2186  * resource pressure. Similarly if the object has been moved out of the
2187  * aperture, than pages mapped into userspace must be revoked. Removing the
2188  * mapping will then trigger a page fault on the next user access, allowing
2189  * fixup by i915_gem_fault().
2190  */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195
2196         /* Serialisation between user GTT access and our code depends upon
2197          * revoking the CPU's PTE whilst the mutex is held. The next user
2198          * pagefault then has to wait until we release the mutex.
2199          *
2200          * Note that RPM complicates somewhat by adding an additional
2201          * requirement that operations to the GGTT be made holding the RPM
2202          * wakeref.
2203          */
2204         lockdep_assert_held(&i915->drm.struct_mutex);
2205         intel_runtime_pm_get(i915);
2206
2207         if (!obj->userfault_count)
2208                 goto out;
2209
2210         __i915_gem_object_release_mmap(obj);
2211
2212         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2213          * memory transactions from userspace before we return. The TLB
2214          * flushing implied above by changing the PTE above *should* be
2215          * sufficient, an extra barrier here just provides us with a bit
2216          * of paranoid documentation about our requirement to serialise
2217          * memory writes before touching registers / GSM.
2218          */
2219         wmb();
2220
2221 out:
2222         intel_runtime_pm_put(i915);
2223 }
2224
2225 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226 {
2227         struct drm_i915_gem_object *obj, *on;
2228         int i;
2229
2230         /*
2231          * Only called during RPM suspend. All users of the userfault_list
2232          * must be holding an RPM wakeref to ensure that this can not
2233          * run concurrently with themselves (and use the struct_mutex for
2234          * protection between themselves).
2235          */
2236
2237         list_for_each_entry_safe(obj, on,
2238                                  &dev_priv->mm.userfault_list, userfault_link)
2239                 __i915_gem_object_release_mmap(obj);
2240
2241         /* The fence will be lost when the device powers down. If any were
2242          * in use by hardware (i.e. they are pinned), we should not be powering
2243          * down! All other fences will be reacquired by the user upon waking.
2244          */
2245         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2246                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2247
2248                 /* Ideally we want to assert that the fence register is not
2249                  * live at this point (i.e. that no piece of code will be
2250                  * trying to write through fence + GTT, as that both violates
2251                  * our tracking of activity and associated locking/barriers,
2252                  * but also is illegal given that the hw is powered down).
2253                  *
2254                  * Previously we used reg->pin_count as a "liveness" indicator.
2255                  * That is not sufficient, and we need a more fine-grained
2256                  * tool if we want to have a sanity check here.
2257                  */
2258
2259                 if (!reg->vma)
2260                         continue;
2261
2262                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263                 reg->dirty = true;
2264         }
2265 }
2266
2267 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270         int err;
2271
2272         err = drm_gem_create_mmap_offset(&obj->base);
2273         if (likely(!err))
2274                 return 0;
2275
2276         /* Attempt to reap some mmap space from dead objects */
2277         do {
2278                 err = i915_gem_wait_for_idle(dev_priv,
2279                                              I915_WAIT_INTERRUPTIBLE,
2280                                              MAX_SCHEDULE_TIMEOUT);
2281                 if (err)
2282                         break;
2283
2284                 i915_gem_drain_freed_objects(dev_priv);
2285                 err = drm_gem_create_mmap_offset(&obj->base);
2286                 if (!err)
2287                         break;
2288
2289         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2290
2291         return err;
2292 }
2293
2294 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2295 {
2296         drm_gem_free_mmap_offset(&obj->base);
2297 }
2298
2299 int
2300 i915_gem_mmap_gtt(struct drm_file *file,
2301                   struct drm_device *dev,
2302                   uint32_t handle,
2303                   uint64_t *offset)
2304 {
2305         struct drm_i915_gem_object *obj;
2306         int ret;
2307
2308         obj = i915_gem_object_lookup(file, handle);
2309         if (!obj)
2310                 return -ENOENT;
2311
2312         ret = i915_gem_object_create_mmap_offset(obj);
2313         if (ret == 0)
2314                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315
2316         i915_gem_object_put(obj);
2317         return ret;
2318 }
2319
2320 /**
2321  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2322  * @dev: DRM device
2323  * @data: GTT mapping ioctl data
2324  * @file: GEM object info
2325  *
2326  * Simply returns the fake offset to userspace so it can mmap it.
2327  * The mmap call will end up in drm_gem_mmap(), which will set things
2328  * up so we can get faults in the handler above.
2329  *
2330  * The fault handler will take care of binding the object into the GTT
2331  * (since it may have been evicted to make room for something), allocating
2332  * a fence register, and mapping the appropriate aperture address into
2333  * userspace.
2334  */
2335 int
2336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2337                         struct drm_file *file)
2338 {
2339         struct drm_i915_gem_mmap_gtt *args = data;
2340
2341         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 }
2343
2344 /* Immediately discard the backing storage */
2345 static void
2346 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347 {
2348         i915_gem_object_free_mmap_offset(obj);
2349
2350         if (obj->base.filp == NULL)
2351                 return;
2352
2353         /* Our goal here is to return as much of the memory as
2354          * is possible back to the system as we are called from OOM.
2355          * To do this we must instruct the shmfs to drop all of its
2356          * backing pages, *now*.
2357          */
2358         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2359         obj->mm.madv = __I915_MADV_PURGED;
2360         obj->mm.pages = ERR_PTR(-EFAULT);
2361 }
2362
2363 /* Try to discard unwanted pages */
2364 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2365 {
2366         struct address_space *mapping;
2367
2368         lockdep_assert_held(&obj->mm.lock);
2369         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370
2371         switch (obj->mm.madv) {
2372         case I915_MADV_DONTNEED:
2373                 i915_gem_object_truncate(obj);
2374         case __I915_MADV_PURGED:
2375                 return;
2376         }
2377
2378         if (obj->base.filp == NULL)
2379                 return;
2380
2381         mapping = obj->base.filp->f_mapping,
2382         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 }
2384
2385 /*
2386  * Move pages to appropriate lru and release the pagevec, decrementing the
2387  * ref count of those pages.
2388  */
2389 static void check_release_pagevec(struct pagevec *pvec)
2390 {
2391         check_move_unevictable_pages(pvec);
2392         __pagevec_release(pvec);
2393         cond_resched();
2394 }
2395
2396 static void
2397 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2398                               struct sg_table *pages)
2399 {
2400         struct sgt_iter sgt_iter;
2401         struct pagevec pvec;
2402         struct page *page;
2403
2404         __i915_gem_object_release_shmem(obj, pages, true);
2405
2406         i915_gem_gtt_finish_pages(obj, pages);
2407
2408         if (i915_gem_object_needs_bit17_swizzle(obj))
2409                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2410
2411         mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2412
2413         pagevec_init(&pvec);
2414         for_each_sgt_page(page, sgt_iter, pages) {
2415                 if (obj->mm.dirty)
2416                         set_page_dirty(page);
2417
2418                 if (obj->mm.madv == I915_MADV_WILLNEED)
2419                         mark_page_accessed(page);
2420
2421                 if (!pagevec_add(&pvec, page))
2422                         check_release_pagevec(&pvec);
2423         }
2424         if (pagevec_count(&pvec))
2425                 check_release_pagevec(&pvec);
2426         obj->mm.dirty = false;
2427
2428         sg_free_table(pages);
2429         kfree(pages);
2430 }
2431
2432 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2433 {
2434         struct radix_tree_iter iter;
2435         void __rcu **slot;
2436
2437         rcu_read_lock();
2438         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2439                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2440         rcu_read_unlock();
2441 }
2442
2443 static struct sg_table *
2444 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2445 {
2446         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2447         struct sg_table *pages;
2448
2449         pages = fetch_and_zero(&obj->mm.pages);
2450         if (!pages)
2451                 return NULL;
2452
2453         spin_lock(&i915->mm.obj_lock);
2454         list_del(&obj->mm.link);
2455         spin_unlock(&i915->mm.obj_lock);
2456
2457         if (obj->mm.mapping) {
2458                 void *ptr;
2459
2460                 ptr = page_mask_bits(obj->mm.mapping);
2461                 if (is_vmalloc_addr(ptr))
2462                         vunmap(ptr);
2463                 else
2464                         kunmap(kmap_to_page(ptr));
2465
2466                 obj->mm.mapping = NULL;
2467         }
2468
2469         __i915_gem_object_reset_page_iter(obj);
2470         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2471
2472         return pages;
2473 }
2474
2475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2476                                  enum i915_mm_subclass subclass)
2477 {
2478         struct sg_table *pages;
2479
2480         if (i915_gem_object_has_pinned_pages(obj))
2481                 return;
2482
2483         GEM_BUG_ON(obj->bind_count);
2484         if (!i915_gem_object_has_pages(obj))
2485                 return;
2486
2487         /* May be called by shrinker from within get_pages() (on another bo) */
2488         mutex_lock_nested(&obj->mm.lock, subclass);
2489         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2490                 goto unlock;
2491
2492         /*
2493          * ->put_pages might need to allocate memory for the bit17 swizzle
2494          * array, hence protect them from being reaped by removing them from gtt
2495          * lists early.
2496          */
2497         pages = __i915_gem_object_unset_pages(obj);
2498         if (!IS_ERR(pages))
2499                 obj->ops->put_pages(obj, pages);
2500
2501 unlock:
2502         mutex_unlock(&obj->mm.lock);
2503 }
2504
2505 bool i915_sg_trim(struct sg_table *orig_st)
2506 {
2507         struct sg_table new_st;
2508         struct scatterlist *sg, *new_sg;
2509         unsigned int i;
2510
2511         if (orig_st->nents == orig_st->orig_nents)
2512                 return false;
2513
2514         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2515                 return false;
2516
2517         new_sg = new_st.sgl;
2518         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2519                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2520                 sg_dma_address(new_sg) = sg_dma_address(sg);
2521                 sg_dma_len(new_sg) = sg_dma_len(sg);
2522
2523                 new_sg = sg_next(new_sg);
2524         }
2525         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2526
2527         sg_free_table(orig_st);
2528
2529         *orig_st = new_st;
2530         return true;
2531 }
2532
2533 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2534 {
2535         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2536         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2537         unsigned long i;
2538         struct address_space *mapping;
2539         struct sg_table *st;
2540         struct scatterlist *sg;
2541         struct sgt_iter sgt_iter;
2542         struct page *page;
2543         unsigned long last_pfn = 0;     /* suppress gcc warning */
2544         unsigned int max_segment = i915_sg_segment_size();
2545         unsigned int sg_page_sizes;
2546         struct pagevec pvec;
2547         gfp_t noreclaim;
2548         int ret;
2549
2550         /*
2551          * Assert that the object is not currently in any GPU domain. As it
2552          * wasn't in the GTT, there shouldn't be any way it could have been in
2553          * a GPU cache
2554          */
2555         GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2556         GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2557
2558         /*
2559          * If there's no chance of allocating enough pages for the whole
2560          * object, bail early.
2561          */
2562         if (page_count > totalram_pages())
2563                 return -ENOMEM;
2564
2565         st = kmalloc(sizeof(*st), GFP_KERNEL);
2566         if (st == NULL)
2567                 return -ENOMEM;
2568
2569 rebuild_st:
2570         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2571                 kfree(st);
2572                 return -ENOMEM;
2573         }
2574
2575         /*
2576          * Get the list of pages out of our struct file.  They'll be pinned
2577          * at this point until we release them.
2578          *
2579          * Fail silently without starting the shrinker
2580          */
2581         mapping = obj->base.filp->f_mapping;
2582         mapping_set_unevictable(mapping);
2583         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2584         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2585
2586         sg = st->sgl;
2587         st->nents = 0;
2588         sg_page_sizes = 0;
2589         for (i = 0; i < page_count; i++) {
2590                 const unsigned int shrink[] = {
2591                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2592                         0,
2593                 }, *s = shrink;
2594                 gfp_t gfp = noreclaim;
2595
2596                 do {
2597                         cond_resched();
2598                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2599                         if (likely(!IS_ERR(page)))
2600                                 break;
2601
2602                         if (!*s) {
2603                                 ret = PTR_ERR(page);
2604                                 goto err_sg;
2605                         }
2606
2607                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2608
2609                         /*
2610                          * We've tried hard to allocate the memory by reaping
2611                          * our own buffer, now let the real VM do its job and
2612                          * go down in flames if truly OOM.
2613                          *
2614                          * However, since graphics tend to be disposable,
2615                          * defer the oom here by reporting the ENOMEM back
2616                          * to userspace.
2617                          */
2618                         if (!*s) {
2619                                 /* reclaim and warn, but no oom */
2620                                 gfp = mapping_gfp_mask(mapping);
2621
2622                                 /*
2623                                  * Our bo are always dirty and so we require
2624                                  * kswapd to reclaim our pages (direct reclaim
2625                                  * does not effectively begin pageout of our
2626                                  * buffers on its own). However, direct reclaim
2627                                  * only waits for kswapd when under allocation
2628                                  * congestion. So as a result __GFP_RECLAIM is
2629                                  * unreliable and fails to actually reclaim our
2630                                  * dirty pages -- unless you try over and over
2631                                  * again with !__GFP_NORETRY. However, we still
2632                                  * want to fail this allocation rather than
2633                                  * trigger the out-of-memory killer and for
2634                                  * this we want __GFP_RETRY_MAYFAIL.
2635                                  */
2636                                 gfp |= __GFP_RETRY_MAYFAIL;
2637                         }
2638                 } while (1);
2639
2640                 if (!i ||
2641                     sg->length >= max_segment ||
2642                     page_to_pfn(page) != last_pfn + 1) {
2643                         if (i) {
2644                                 sg_page_sizes |= sg->length;
2645                                 sg = sg_next(sg);
2646                         }
2647                         st->nents++;
2648                         sg_set_page(sg, page, PAGE_SIZE, 0);
2649                 } else {
2650                         sg->length += PAGE_SIZE;
2651                 }
2652                 last_pfn = page_to_pfn(page);
2653
2654                 /* Check that the i965g/gm workaround works. */
2655                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2656         }
2657         if (sg) { /* loop terminated early; short sg table */
2658                 sg_page_sizes |= sg->length;
2659                 sg_mark_end(sg);
2660         }
2661
2662         /* Trim unused sg entries to avoid wasting memory. */
2663         i915_sg_trim(st);
2664
2665         ret = i915_gem_gtt_prepare_pages(obj, st);
2666         if (ret) {
2667                 /*
2668                  * DMA remapping failed? One possible cause is that
2669                  * it could not reserve enough large entries, asking
2670                  * for PAGE_SIZE chunks instead may be helpful.
2671                  */
2672                 if (max_segment > PAGE_SIZE) {
2673                         for_each_sgt_page(page, sgt_iter, st)
2674                                 put_page(page);
2675                         sg_free_table(st);
2676
2677                         max_segment = PAGE_SIZE;
2678                         goto rebuild_st;
2679                 } else {
2680                         dev_warn(&dev_priv->drm.pdev->dev,
2681                                  "Failed to DMA remap %lu pages\n",
2682                                  page_count);
2683                         goto err_pages;
2684                 }
2685         }
2686
2687         if (i915_gem_object_needs_bit17_swizzle(obj))
2688                 i915_gem_object_do_bit_17_swizzle(obj, st);
2689
2690         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2691
2692         return 0;
2693
2694 err_sg:
2695         sg_mark_end(sg);
2696 err_pages:
2697         mapping_clear_unevictable(mapping);
2698         pagevec_init(&pvec);
2699         for_each_sgt_page(page, sgt_iter, st) {
2700                 if (!pagevec_add(&pvec, page))
2701                         check_release_pagevec(&pvec);
2702         }
2703         if (pagevec_count(&pvec))
2704                 check_release_pagevec(&pvec);
2705         sg_free_table(st);
2706         kfree(st);
2707
2708         /*
2709          * shmemfs first checks if there is enough memory to allocate the page
2710          * and reports ENOSPC should there be insufficient, along with the usual
2711          * ENOMEM for a genuine allocation failure.
2712          *
2713          * We use ENOSPC in our driver to mean that we have run out of aperture
2714          * space and so want to translate the error from shmemfs back to our
2715          * usual understanding of ENOMEM.
2716          */
2717         if (ret == -ENOSPC)
2718                 ret = -ENOMEM;
2719
2720         return ret;
2721 }
2722
2723 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2724                                  struct sg_table *pages,
2725                                  unsigned int sg_page_sizes)
2726 {
2727         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2728         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2729         int i;
2730
2731         lockdep_assert_held(&obj->mm.lock);
2732
2733         obj->mm.get_page.sg_pos = pages->sgl;
2734         obj->mm.get_page.sg_idx = 0;
2735
2736         obj->mm.pages = pages;
2737
2738         if (i915_gem_object_is_tiled(obj) &&
2739             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2740                 GEM_BUG_ON(obj->mm.quirked);
2741                 __i915_gem_object_pin_pages(obj);
2742                 obj->mm.quirked = true;
2743         }
2744
2745         GEM_BUG_ON(!sg_page_sizes);
2746         obj->mm.page_sizes.phys = sg_page_sizes;
2747
2748         /*
2749          * Calculate the supported page-sizes which fit into the given
2750          * sg_page_sizes. This will give us the page-sizes which we may be able
2751          * to use opportunistically when later inserting into the GTT. For
2752          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2753          * 64K or 4K pages, although in practice this will depend on a number of
2754          * other factors.
2755          */
2756         obj->mm.page_sizes.sg = 0;
2757         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2758                 if (obj->mm.page_sizes.phys & ~0u << i)
2759                         obj->mm.page_sizes.sg |= BIT(i);
2760         }
2761         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2762
2763         spin_lock(&i915->mm.obj_lock);
2764         list_add(&obj->mm.link, &i915->mm.unbound_list);
2765         spin_unlock(&i915->mm.obj_lock);
2766 }
2767
2768 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2769 {
2770         int err;
2771
2772         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2773                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2774                 return -EFAULT;
2775         }
2776
2777         err = obj->ops->get_pages(obj);
2778         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2779
2780         return err;
2781 }
2782
2783 /* Ensure that the associated pages are gathered from the backing storage
2784  * and pinned into our object. i915_gem_object_pin_pages() may be called
2785  * multiple times before they are released by a single call to
2786  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2787  * either as a result of memory pressure (reaping pages under the shrinker)
2788  * or as the object is itself released.
2789  */
2790 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2791 {
2792         int err;
2793
2794         err = mutex_lock_interruptible(&obj->mm.lock);
2795         if (err)
2796                 return err;
2797
2798         if (unlikely(!i915_gem_object_has_pages(obj))) {
2799                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2800
2801                 err = ____i915_gem_object_get_pages(obj);
2802                 if (err)
2803                         goto unlock;
2804
2805                 smp_mb__before_atomic();
2806         }
2807         atomic_inc(&obj->mm.pages_pin_count);
2808
2809 unlock:
2810         mutex_unlock(&obj->mm.lock);
2811         return err;
2812 }
2813
2814 /* The 'mapping' part of i915_gem_object_pin_map() below */
2815 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2816                                  enum i915_map_type type)
2817 {
2818         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2819         struct sg_table *sgt = obj->mm.pages;
2820         struct sgt_iter sgt_iter;
2821         struct page *page;
2822         struct page *stack_pages[32];
2823         struct page **pages = stack_pages;
2824         unsigned long i = 0;
2825         pgprot_t pgprot;
2826         void *addr;
2827
2828         /* A single page can always be kmapped */
2829         if (n_pages == 1 && type == I915_MAP_WB)
2830                 return kmap(sg_page(sgt->sgl));
2831
2832         if (n_pages > ARRAY_SIZE(stack_pages)) {
2833                 /* Too big for stack -- allocate temporary array instead */
2834                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2835                 if (!pages)
2836                         return NULL;
2837         }
2838
2839         for_each_sgt_page(page, sgt_iter, sgt)
2840                 pages[i++] = page;
2841
2842         /* Check that we have the expected number of pages */
2843         GEM_BUG_ON(i != n_pages);
2844
2845         switch (type) {
2846         default:
2847                 MISSING_CASE(type);
2848                 /* fallthrough to use PAGE_KERNEL anyway */
2849         case I915_MAP_WB:
2850                 pgprot = PAGE_KERNEL;
2851                 break;
2852         case I915_MAP_WC:
2853                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2854                 break;
2855         }
2856         addr = vmap(pages, n_pages, 0, pgprot);
2857
2858         if (pages != stack_pages)
2859                 kvfree(pages);
2860
2861         return addr;
2862 }
2863
2864 /* get, pin, and map the pages of the object into kernel space */
2865 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2866                               enum i915_map_type type)
2867 {
2868         enum i915_map_type has_type;
2869         bool pinned;
2870         void *ptr;
2871         int ret;
2872
2873         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2874                 return ERR_PTR(-ENXIO);
2875
2876         ret = mutex_lock_interruptible(&obj->mm.lock);
2877         if (ret)
2878                 return ERR_PTR(ret);
2879
2880         pinned = !(type & I915_MAP_OVERRIDE);
2881         type &= ~I915_MAP_OVERRIDE;
2882
2883         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2884                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2885                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2886
2887                         ret = ____i915_gem_object_get_pages(obj);
2888                         if (ret)
2889                                 goto err_unlock;
2890
2891                         smp_mb__before_atomic();
2892                 }
2893                 atomic_inc(&obj->mm.pages_pin_count);
2894                 pinned = false;
2895         }
2896         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897
2898         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2899         if (ptr && has_type != type) {
2900                 if (pinned) {
2901                         ret = -EBUSY;
2902                         goto err_unpin;
2903                 }
2904
2905                 if (is_vmalloc_addr(ptr))
2906                         vunmap(ptr);
2907                 else
2908                         kunmap(kmap_to_page(ptr));
2909
2910                 ptr = obj->mm.mapping = NULL;
2911         }
2912
2913         if (!ptr) {
2914                 ptr = i915_gem_object_map(obj, type);
2915                 if (!ptr) {
2916                         ret = -ENOMEM;
2917                         goto err_unpin;
2918                 }
2919
2920                 obj->mm.mapping = page_pack_bits(ptr, type);
2921         }
2922
2923 out_unlock:
2924         mutex_unlock(&obj->mm.lock);
2925         return ptr;
2926
2927 err_unpin:
2928         atomic_dec(&obj->mm.pages_pin_count);
2929 err_unlock:
2930         ptr = ERR_PTR(ret);
2931         goto out_unlock;
2932 }
2933
2934 static int
2935 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2936                            const struct drm_i915_gem_pwrite *arg)
2937 {
2938         struct address_space *mapping = obj->base.filp->f_mapping;
2939         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2940         u64 remain, offset;
2941         unsigned int pg;
2942
2943         /* Before we instantiate/pin the backing store for our use, we
2944          * can prepopulate the shmemfs filp efficiently using a write into
2945          * the pagecache. We avoid the penalty of instantiating all the
2946          * pages, important if the user is just writing to a few and never
2947          * uses the object on the GPU, and using a direct write into shmemfs
2948          * allows it to avoid the cost of retrieving a page (either swapin
2949          * or clearing-before-use) before it is overwritten.
2950          */
2951         if (i915_gem_object_has_pages(obj))
2952                 return -ENODEV;
2953
2954         if (obj->mm.madv != I915_MADV_WILLNEED)
2955                 return -EFAULT;
2956
2957         /* Before the pages are instantiated the object is treated as being
2958          * in the CPU domain. The pages will be clflushed as required before
2959          * use, and we can freely write into the pages directly. If userspace
2960          * races pwrite with any other operation; corruption will ensue -
2961          * that is userspace's prerogative!
2962          */
2963
2964         remain = arg->size;
2965         offset = arg->offset;
2966         pg = offset_in_page(offset);
2967
2968         do {
2969                 unsigned int len, unwritten;
2970                 struct page *page;
2971                 void *data, *vaddr;
2972                 int err;
2973
2974                 len = PAGE_SIZE - pg;
2975                 if (len > remain)
2976                         len = remain;
2977
2978                 err = pagecache_write_begin(obj->base.filp, mapping,
2979                                             offset, len, 0,
2980                                             &page, &data);
2981                 if (err < 0)
2982                         return err;
2983
2984                 vaddr = kmap(page);
2985                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2986                 kunmap(page);
2987
2988                 err = pagecache_write_end(obj->base.filp, mapping,
2989                                           offset, len, len - unwritten,
2990                                           page, data);
2991                 if (err < 0)
2992                         return err;
2993
2994                 if (unwritten)
2995                         return -EFAULT;
2996
2997                 remain -= len;
2998                 user_data += len;
2999                 offset += len;
3000                 pg = 0;
3001         } while (remain);
3002
3003         return 0;
3004 }
3005
3006 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3007                                         const struct i915_gem_context *ctx)
3008 {
3009         unsigned int score;
3010         unsigned long prev_hang;
3011
3012         if (i915_gem_context_is_banned(ctx))
3013                 score = I915_CLIENT_SCORE_CONTEXT_BAN;
3014         else
3015                 score = 0;
3016
3017         prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3018         if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3019                 score += I915_CLIENT_SCORE_HANG_FAST;
3020
3021         if (score) {
3022                 atomic_add(score, &file_priv->ban_score);
3023
3024                 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3025                                  ctx->name, score,
3026                                  atomic_read(&file_priv->ban_score));
3027         }
3028 }
3029
3030 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3031 {
3032         unsigned int score;
3033         bool banned, bannable;
3034
3035         atomic_inc(&ctx->guilty_count);
3036
3037         bannable = i915_gem_context_is_bannable(ctx);
3038         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3039         banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3040
3041         /* Cool contexts don't accumulate client ban score */
3042         if (!bannable)
3043                 return;
3044
3045         if (banned) {
3046                 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3047                                  ctx->name, atomic_read(&ctx->guilty_count),
3048                                  score);
3049                 i915_gem_context_set_banned(ctx);
3050         }
3051
3052         if (!IS_ERR_OR_NULL(ctx->file_priv))
3053                 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3054 }
3055
3056 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3057 {
3058         atomic_inc(&ctx->active_count);
3059 }
3060
3061 struct i915_request *
3062 i915_gem_find_active_request(struct intel_engine_cs *engine)
3063 {
3064         struct i915_request *request, *active = NULL;
3065         unsigned long flags;
3066
3067         /*
3068          * We are called by the error capture, reset and to dump engine
3069          * state at random points in time. In particular, note that neither is
3070          * crucially ordered with an interrupt. After a hang, the GPU is dead
3071          * and we assume that no more writes can happen (we waited long enough
3072          * for all writes that were in transaction to be flushed) - adding an
3073          * extra delay for a recent interrupt is pointless. Hence, we do
3074          * not need an engine->irq_seqno_barrier() before the seqno reads.
3075          * At all other times, we must assume the GPU is still running, but
3076          * we only care about the snapshot of this moment.
3077          */
3078         spin_lock_irqsave(&engine->timeline.lock, flags);
3079         list_for_each_entry(request, &engine->timeline.requests, link) {
3080                 if (__i915_request_completed(request, request->global_seqno))
3081                         continue;
3082
3083                 active = request;
3084                 break;
3085         }
3086         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3087
3088         return active;
3089 }
3090
3091 /*
3092  * Ensure irq handler finishes, and not run again.
3093  * Also return the active request so that we only search for it once.
3094  */
3095 struct i915_request *
3096 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3097 {
3098         struct i915_request *request;
3099
3100         /*
3101          * During the reset sequence, we must prevent the engine from
3102          * entering RC6. As the context state is undefined until we restart
3103          * the engine, if it does enter RC6 during the reset, the state
3104          * written to the powercontext is undefined and so we may lose
3105          * GPU state upon resume, i.e. fail to restart after a reset.
3106          */
3107         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3108
3109         request = engine->reset.prepare(engine);
3110         if (request && request->fence.error == -EIO)
3111                 request = ERR_PTR(-EIO); /* Previous reset failed! */
3112
3113         return request;
3114 }
3115
3116 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3117 {
3118         struct intel_engine_cs *engine;
3119         struct i915_request *request;
3120         enum intel_engine_id id;
3121         int err = 0;
3122
3123         for_each_engine(engine, dev_priv, id) {
3124                 request = i915_gem_reset_prepare_engine(engine);
3125                 if (IS_ERR(request)) {
3126                         err = PTR_ERR(request);
3127                         continue;
3128                 }
3129
3130                 engine->hangcheck.active_request = request;
3131         }
3132
3133         i915_gem_revoke_fences(dev_priv);
3134         intel_uc_sanitize(dev_priv);
3135
3136         return err;
3137 }
3138
3139 static void engine_skip_context(struct i915_request *request)
3140 {
3141         struct intel_engine_cs *engine = request->engine;
3142         struct i915_gem_context *hung_ctx = request->gem_context;
3143         struct i915_timeline *timeline = request->timeline;
3144         unsigned long flags;
3145
3146         GEM_BUG_ON(timeline == &engine->timeline);
3147
3148         spin_lock_irqsave(&engine->timeline.lock, flags);
3149         spin_lock(&timeline->lock);
3150
3151         list_for_each_entry_continue(request, &engine->timeline.requests, link)
3152                 if (request->gem_context == hung_ctx)
3153                         i915_request_skip(request, -EIO);
3154
3155         list_for_each_entry(request, &timeline->requests, link)
3156                 i915_request_skip(request, -EIO);
3157
3158         spin_unlock(&timeline->lock);
3159         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3160 }
3161
3162 /* Returns the request if it was guilty of the hang */
3163 static struct i915_request *
3164 i915_gem_reset_request(struct intel_engine_cs *engine,
3165                        struct i915_request *request,
3166                        bool stalled)
3167 {
3168         /* The guilty request will get skipped on a hung engine.
3169          *
3170          * Users of client default contexts do not rely on logical
3171          * state preserved between batches so it is safe to execute
3172          * queued requests following the hang. Non default contexts
3173          * rely on preserved state, so skipping a batch loses the
3174          * evolution of the state and it needs to be considered corrupted.
3175          * Executing more queued batches on top of corrupted state is
3176          * risky. But we take the risk by trying to advance through
3177          * the queued requests in order to make the client behaviour
3178          * more predictable around resets, by not throwing away random
3179          * amount of batches it has prepared for execution. Sophisticated
3180          * clients can use gem_reset_stats_ioctl and dma fence status
3181          * (exported via sync_file info ioctl on explicit fences) to observe
3182          * when it loses the context state and should rebuild accordingly.
3183          *
3184          * The context ban, and ultimately the client ban, mechanism are safety
3185          * valves if client submission ends up resulting in nothing more than
3186          * subsequent hangs.
3187          */
3188
3189         if (i915_request_completed(request)) {
3190                 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3191                           engine->name, request->global_seqno,
3192                           request->fence.context, request->fence.seqno,
3193                           intel_engine_get_seqno(engine));
3194                 stalled = false;
3195         }
3196
3197         if (stalled) {
3198                 i915_gem_context_mark_guilty(request->gem_context);
3199                 i915_request_skip(request, -EIO);
3200
3201                 /* If this context is now banned, skip all pending requests. */
3202                 if (i915_gem_context_is_banned(request->gem_context))
3203                         engine_skip_context(request);
3204         } else {
3205                 /*
3206                  * Since this is not the hung engine, it may have advanced
3207                  * since the hang declaration. Double check by refinding
3208                  * the active request at the time of the reset.
3209                  */
3210                 request = i915_gem_find_active_request(engine);
3211                 if (request) {
3212                         unsigned long flags;
3213
3214                         i915_gem_context_mark_innocent(request->gem_context);
3215                         dma_fence_set_error(&request->fence, -EAGAIN);
3216
3217                         /* Rewind the engine to replay the incomplete rq */
3218                         spin_lock_irqsave(&engine->timeline.lock, flags);
3219                         request = list_prev_entry(request, link);
3220                         if (&request->link == &engine->timeline.requests)
3221                                 request = NULL;
3222                         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3223                 }
3224         }
3225
3226         return request;
3227 }
3228
3229 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3230                            struct i915_request *request,
3231                            bool stalled)
3232 {
3233         /*
3234          * Make sure this write is visible before we re-enable the interrupt
3235          * handlers on another CPU, as tasklet_enable() resolves to just
3236          * a compiler barrier which is insufficient for our purpose here.
3237          */
3238         smp_store_mb(engine->irq_posted, 0);
3239
3240         if (request)
3241                 request = i915_gem_reset_request(engine, request, stalled);
3242
3243         /* Setup the CS to resume from the breadcrumb of the hung request */
3244         engine->reset.reset(engine, request);
3245 }
3246
3247 void i915_gem_reset(struct drm_i915_private *dev_priv,
3248                     unsigned int stalled_mask)
3249 {
3250         struct intel_engine_cs *engine;
3251         enum intel_engine_id id;
3252
3253         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3254
3255         i915_retire_requests(dev_priv);
3256
3257         for_each_engine(engine, dev_priv, id) {
3258                 struct intel_context *ce;
3259
3260                 i915_gem_reset_engine(engine,
3261                                       engine->hangcheck.active_request,
3262                                       stalled_mask & ENGINE_MASK(id));
3263                 ce = fetch_and_zero(&engine->last_retired_context);
3264                 if (ce)
3265                         intel_context_unpin(ce);
3266
3267                 /*
3268                  * Ostensibily, we always want a context loaded for powersaving,
3269                  * so if the engine is idle after the reset, send a request
3270                  * to load our scratch kernel_context.
3271                  *
3272                  * More mysteriously, if we leave the engine idle after a reset,
3273                  * the next userspace batch may hang, with what appears to be
3274                  * an incoherent read by the CS (presumably stale TLB). An
3275                  * empty request appears sufficient to paper over the glitch.
3276                  */
3277                 if (intel_engine_is_idle(engine)) {
3278                         struct i915_request *rq;
3279
3280                         rq = i915_request_alloc(engine,
3281                                                 dev_priv->kernel_context);
3282                         if (!IS_ERR(rq))
3283                                 i915_request_add(rq);
3284                 }
3285         }
3286
3287         i915_gem_restore_fences(dev_priv);
3288 }
3289
3290 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3291 {
3292         engine->reset.finish(engine);
3293
3294         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3295 }
3296
3297 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3298 {
3299         struct intel_engine_cs *engine;
3300         enum intel_engine_id id;
3301
3302         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3303
3304         for_each_engine(engine, dev_priv, id) {
3305                 engine->hangcheck.active_request = NULL;
3306                 i915_gem_reset_finish_engine(engine);
3307         }
3308 }
3309
3310 static void nop_submit_request(struct i915_request *request)
3311 {
3312         unsigned long flags;
3313
3314         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3315                   request->engine->name,
3316                   request->fence.context, request->fence.seqno);
3317         dma_fence_set_error(&request->fence, -EIO);
3318
3319         spin_lock_irqsave(&request->engine->timeline.lock, flags);
3320         __i915_request_submit(request);
3321         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3322         spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3323 }
3324
3325 void i915_gem_set_wedged(struct drm_i915_private *i915)
3326 {
3327         struct intel_engine_cs *engine;
3328         enum intel_engine_id id;
3329
3330         GEM_TRACE("start\n");
3331
3332         if (GEM_SHOW_DEBUG()) {
3333                 struct drm_printer p = drm_debug_printer(__func__);
3334
3335                 for_each_engine(engine, i915, id)
3336                         intel_engine_dump(engine, &p, "%s\n", engine->name);
3337         }
3338
3339         if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3340                 goto out;
3341
3342         /*
3343          * First, stop submission to hw, but do not yet complete requests by
3344          * rolling the global seqno forward (since this would complete requests
3345          * for which we haven't set the fence error to EIO yet).
3346          */
3347         for_each_engine(engine, i915, id)
3348                 i915_gem_reset_prepare_engine(engine);
3349
3350         /* Even if the GPU reset fails, it should still stop the engines */
3351         if (INTEL_GEN(i915) >= 5)
3352                 intel_gpu_reset(i915, ALL_ENGINES);
3353
3354         for_each_engine(engine, i915, id) {
3355                 engine->submit_request = nop_submit_request;
3356                 engine->schedule = NULL;
3357         }
3358         i915->caps.scheduler = 0;
3359
3360         /*
3361          * Make sure no request can slip through without getting completed by
3362          * either this call here to intel_engine_init_global_seqno, or the one
3363          * in nop_submit_request.
3364          */
3365         synchronize_rcu();
3366
3367         /* Mark all executing requests as skipped */
3368         for_each_engine(engine, i915, id)
3369                 engine->cancel_requests(engine);
3370
3371         for_each_engine(engine, i915, id) {
3372                 i915_gem_reset_finish_engine(engine);
3373                 intel_engine_wakeup(engine);
3374         }
3375
3376 out:
3377         GEM_TRACE("end\n");
3378
3379         wake_up_all(&i915->gpu_error.reset_queue);
3380 }
3381
3382 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3383 {
3384         struct i915_timeline *tl;
3385
3386         lockdep_assert_held(&i915->drm.struct_mutex);
3387         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3388                 return true;
3389
3390         GEM_TRACE("start\n");
3391
3392         /*
3393          * Before unwedging, make sure that all pending operations
3394          * are flushed and errored out - we may have requests waiting upon
3395          * third party fences. We marked all inflight requests as EIO, and
3396          * every execbuf since returned EIO, for consistency we want all
3397          * the currently pending requests to also be marked as EIO, which
3398          * is done inside our nop_submit_request - and so we must wait.
3399          *
3400          * No more can be submitted until we reset the wedged bit.
3401          */
3402         list_for_each_entry(tl, &i915->gt.timelines, link) {
3403                 struct i915_request *rq;
3404
3405                 rq = i915_gem_active_peek(&tl->last_request,
3406                                           &i915->drm.struct_mutex);
3407                 if (!rq)
3408                         continue;
3409
3410                 /*
3411                  * We can't use our normal waiter as we want to
3412                  * avoid recursively trying to handle the current
3413                  * reset. The basic dma_fence_default_wait() installs
3414                  * a callback for dma_fence_signal(), which is
3415                  * triggered by our nop handler (indirectly, the
3416                  * callback enables the signaler thread which is
3417                  * woken by the nop_submit_request() advancing the seqno
3418                  * and when the seqno passes the fence, the signaler
3419                  * then signals the fence waking us up).
3420                  */
3421                 if (dma_fence_default_wait(&rq->fence, true,
3422                                            MAX_SCHEDULE_TIMEOUT) < 0)
3423                         return false;
3424         }
3425         i915_retire_requests(i915);
3426         GEM_BUG_ON(i915->gt.active_requests);
3427
3428         if (!intel_gpu_reset(i915, ALL_ENGINES))
3429                 intel_engines_sanitize(i915);
3430
3431         /*
3432          * Undo nop_submit_request. We prevent all new i915 requests from
3433          * being queued (by disallowing execbuf whilst wedged) so having
3434          * waited for all active requests above, we know the system is idle
3435          * and do not have to worry about a thread being inside
3436          * engine->submit_request() as we swap over. So unlike installing
3437          * the nop_submit_request on reset, we can do this from normal
3438          * context and do not require stop_machine().
3439          */
3440         intel_engines_reset_default_submission(i915);
3441         i915_gem_contexts_lost(i915);
3442
3443         GEM_TRACE("end\n");
3444
3445         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3446         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3447
3448         return true;
3449 }
3450
3451 static void
3452 i915_gem_retire_work_handler(struct work_struct *work)
3453 {
3454         struct drm_i915_private *dev_priv =
3455                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3456         struct drm_device *dev = &dev_priv->drm;
3457
3458         /* Come back later if the device is busy... */
3459         if (mutex_trylock(&dev->struct_mutex)) {
3460                 i915_retire_requests(dev_priv);
3461                 mutex_unlock(&dev->struct_mutex);
3462         }
3463
3464         /*
3465          * Keep the retire handler running until we are finally idle.
3466          * We do not need to do this test under locking as in the worst-case
3467          * we queue the retire worker once too often.
3468          */
3469         if (READ_ONCE(dev_priv->gt.awake))
3470                 queue_delayed_work(dev_priv->wq,
3471                                    &dev_priv->gt.retire_work,
3472                                    round_jiffies_up_relative(HZ));
3473 }
3474
3475 static void shrink_caches(struct drm_i915_private *i915)
3476 {
3477         /*
3478          * kmem_cache_shrink() discards empty slabs and reorders partially
3479          * filled slabs to prioritise allocating from the mostly full slabs,
3480          * with the aim of reducing fragmentation.
3481          */
3482         kmem_cache_shrink(i915->priorities);
3483         kmem_cache_shrink(i915->dependencies);
3484         kmem_cache_shrink(i915->requests);
3485         kmem_cache_shrink(i915->luts);
3486         kmem_cache_shrink(i915->vmas);
3487         kmem_cache_shrink(i915->objects);
3488 }
3489
3490 struct sleep_rcu_work {
3491         union {
3492                 struct rcu_head rcu;
3493                 struct work_struct work;
3494         };
3495         struct drm_i915_private *i915;
3496         unsigned int epoch;
3497 };
3498
3499 static inline bool
3500 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3501 {
3502         /*
3503          * There is a small chance that the epoch wrapped since we started
3504          * sleeping. If we assume that epoch is at least a u32, then it will
3505          * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3506          */
3507         return epoch == READ_ONCE(i915->gt.epoch);
3508 }
3509
3510 static void __sleep_work(struct work_struct *work)
3511 {
3512         struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3513         struct drm_i915_private *i915 = s->i915;
3514         unsigned int epoch = s->epoch;
3515
3516         kfree(s);
3517         if (same_epoch(i915, epoch))
3518                 shrink_caches(i915);
3519 }
3520
3521 static void __sleep_rcu(struct rcu_head *rcu)
3522 {
3523         struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3524         struct drm_i915_private *i915 = s->i915;
3525
3526         destroy_rcu_head(&s->rcu);
3527
3528         if (same_epoch(i915, s->epoch)) {
3529                 INIT_WORK(&s->work, __sleep_work);
3530                 queue_work(i915->wq, &s->work);
3531         } else {
3532                 kfree(s);
3533         }
3534 }
3535
3536 static inline bool
3537 new_requests_since_last_retire(const struct drm_i915_private *i915)
3538 {
3539         return (READ_ONCE(i915->gt.active_requests) ||
3540                 work_pending(&i915->gt.idle_work.work));
3541 }
3542
3543 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3544 {
3545         struct intel_engine_cs *engine;
3546         enum intel_engine_id id;
3547
3548         if (i915_terminally_wedged(&i915->gpu_error))
3549                 return;
3550
3551         GEM_BUG_ON(i915->gt.active_requests);
3552         for_each_engine(engine, i915, id) {
3553                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3554                 GEM_BUG_ON(engine->last_retired_context !=
3555                            to_intel_context(i915->kernel_context, engine));
3556         }
3557 }
3558
3559 static void
3560 i915_gem_idle_work_handler(struct work_struct *work)
3561 {
3562         struct drm_i915_private *dev_priv =
3563                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3564         unsigned int epoch = I915_EPOCH_INVALID;
3565         bool rearm_hangcheck;
3566
3567         if (!READ_ONCE(dev_priv->gt.awake))
3568                 return;
3569
3570         if (READ_ONCE(dev_priv->gt.active_requests))
3571                 return;
3572
3573         /*
3574          * Flush out the last user context, leaving only the pinned
3575          * kernel context resident. When we are idling on the kernel_context,
3576          * no more new requests (with a context switch) are emitted and we
3577          * can finally rest. A consequence is that the idle work handler is
3578          * always called at least twice before idling (and if the system is
3579          * idle that implies a round trip through the retire worker).
3580          */
3581         mutex_lock(&dev_priv->drm.struct_mutex);
3582         i915_gem_switch_to_kernel_context(dev_priv);
3583         mutex_unlock(&dev_priv->drm.struct_mutex);
3584
3585         GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3586                   READ_ONCE(dev_priv->gt.active_requests));
3587
3588         /*
3589          * Wait for last execlists context complete, but bail out in case a
3590          * new request is submitted. As we don't trust the hardware, we
3591          * continue on if the wait times out. This is necessary to allow
3592          * the machine to suspend even if the hardware dies, and we will
3593          * try to recover in resume (after depriving the hardware of power,
3594          * it may be in a better mmod).
3595          */
3596         __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3597                    intel_engines_are_idle(dev_priv),
3598                    I915_IDLE_ENGINES_TIMEOUT * 1000,
3599                    10, 500);
3600
3601         rearm_hangcheck =
3602                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3603
3604         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3605                 /* Currently busy, come back later */
3606                 mod_delayed_work(dev_priv->wq,
3607                                  &dev_priv->gt.idle_work,
3608                                  msecs_to_jiffies(50));
3609                 goto out_rearm;
3610         }
3611
3612         /*
3613          * New request retired after this work handler started, extend active
3614          * period until next instance of the work.
3615          */
3616         if (new_requests_since_last_retire(dev_priv))
3617                 goto out_unlock;
3618
3619         epoch = __i915_gem_park(dev_priv);
3620
3621         assert_kernel_context_is_current(dev_priv);
3622
3623         rearm_hangcheck = false;
3624 out_unlock:
3625         mutex_unlock(&dev_priv->drm.struct_mutex);
3626
3627 out_rearm:
3628         if (rearm_hangcheck) {
3629                 GEM_BUG_ON(!dev_priv->gt.awake);
3630                 i915_queue_hangcheck(dev_priv);
3631         }
3632
3633         /*
3634          * When we are idle, it is an opportune time to reap our caches.
3635          * However, we have many objects that utilise RCU and the ordered
3636          * i915->wq that this work is executing on. To try and flush any
3637          * pending frees now we are idle, we first wait for an RCU grace
3638          * period, and then queue a task (that will run last on the wq) to
3639          * shrink and re-optimize the caches.
3640          */
3641         if (same_epoch(dev_priv, epoch)) {
3642                 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3643                 if (s) {
3644                         init_rcu_head(&s->rcu);
3645                         s->i915 = dev_priv;
3646                         s->epoch = epoch;
3647                         call_rcu(&s->rcu, __sleep_rcu);
3648                 }
3649         }
3650 }
3651
3652 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3653 {
3654         struct drm_i915_private *i915 = to_i915(gem->dev);
3655         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3656         struct drm_i915_file_private *fpriv = file->driver_priv;
3657         struct i915_lut_handle *lut, *ln;
3658
3659         mutex_lock(&i915->drm.struct_mutex);
3660
3661         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3662                 struct i915_gem_context *ctx = lut->ctx;
3663                 struct i915_vma *vma;
3664
3665                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3666                 if (ctx->file_priv != fpriv)
3667                         continue;
3668
3669                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3670                 GEM_BUG_ON(vma->obj != obj);
3671
3672                 /* We allow the process to have multiple handles to the same
3673                  * vma, in the same fd namespace, by virtue of flink/open.
3674                  */
3675                 GEM_BUG_ON(!vma->open_count);
3676                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3677                         i915_vma_close(vma);
3678
3679                 list_del(&lut->obj_link);
3680                 list_del(&lut->ctx_link);
3681
3682                 kmem_cache_free(i915->luts, lut);
3683                 __i915_gem_object_release_unless_active(obj);
3684         }
3685
3686         mutex_unlock(&i915->drm.struct_mutex);
3687 }
3688
3689 static unsigned long to_wait_timeout(s64 timeout_ns)
3690 {
3691         if (timeout_ns < 0)
3692                 return MAX_SCHEDULE_TIMEOUT;
3693
3694         if (timeout_ns == 0)
3695                 return 0;
3696
3697         return nsecs_to_jiffies_timeout(timeout_ns);
3698 }
3699
3700 /**
3701  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3702  * @dev: drm device pointer
3703  * @data: ioctl data blob
3704  * @file: drm file pointer
3705  *
3706  * Returns 0 if successful, else an error is returned with the remaining time in
3707  * the timeout parameter.
3708  *  -ETIME: object is still busy after timeout
3709  *  -ERESTARTSYS: signal interrupted the wait
3710  *  -ENONENT: object doesn't exist
3711  * Also possible, but rare:
3712  *  -EAGAIN: incomplete, restart syscall
3713  *  -ENOMEM: damn
3714  *  -ENODEV: Internal IRQ fail
3715  *  -E?: The add request failed
3716  *
3717  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3718  * non-zero timeout parameter the wait ioctl will wait for the given number of
3719  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3720  * without holding struct_mutex the object may become re-busied before this
3721  * function completes. A similar but shorter * race condition exists in the busy
3722  * ioctl
3723  */
3724 int
3725 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3726 {
3727         struct drm_i915_gem_wait *args = data;
3728         struct drm_i915_gem_object *obj;
3729         ktime_t start;
3730         long ret;
3731
3732         if (args->flags != 0)
3733                 return -EINVAL;
3734
3735         obj = i915_gem_object_lookup(file, args->bo_handle);
3736         if (!obj)
3737                 return -ENOENT;
3738
3739         start = ktime_get();
3740
3741         ret = i915_gem_object_wait(obj,
3742                                    I915_WAIT_INTERRUPTIBLE |
3743                                    I915_WAIT_PRIORITY |
3744                                    I915_WAIT_ALL,
3745                                    to_wait_timeout(args->timeout_ns),
3746                                    to_rps_client(file));
3747
3748         if (args->timeout_ns > 0) {
3749                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3750                 if (args->timeout_ns < 0)
3751                         args->timeout_ns = 0;
3752
3753                 /*
3754                  * Apparently ktime isn't accurate enough and occasionally has a
3755                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3756                  * things up to make the test happy. We allow up to 1 jiffy.
3757                  *
3758                  * This is a regression from the timespec->ktime conversion.
3759                  */
3760                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3761                         args->timeout_ns = 0;
3762
3763                 /* Asked to wait beyond the jiffie/scheduler precision? */
3764                 if (ret == -ETIME && args->timeout_ns)
3765                         ret = -EAGAIN;
3766         }
3767
3768         i915_gem_object_put(obj);
3769         return ret;
3770 }
3771
3772 static long wait_for_timeline(struct i915_timeline *tl,
3773                               unsigned int flags, long timeout)
3774 {
3775         struct i915_request *rq;
3776
3777         rq = i915_gem_active_get_unlocked(&tl->last_request);
3778         if (!rq)
3779                 return timeout;
3780
3781         /*
3782          * "Race-to-idle".
3783          *
3784          * Switching to the kernel context is often used a synchronous
3785          * step prior to idling, e.g. in suspend for flushing all
3786          * current operations to memory before sleeping. These we
3787          * want to complete as quickly as possible to avoid prolonged
3788          * stalls, so allow the gpu to boost to maximum clocks.
3789          */
3790         if (flags & I915_WAIT_FOR_IDLE_BOOST)
3791                 gen6_rps_boost(rq, NULL);
3792
3793         timeout = i915_request_wait(rq, flags, timeout);
3794         i915_request_put(rq);
3795
3796         return timeout;
3797 }
3798
3799 static int wait_for_engines(struct drm_i915_private *i915)
3800 {
3801         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3802                 dev_err(i915->drm.dev,
3803                         "Failed to idle engines, declaring wedged!\n");
3804                 GEM_TRACE_DUMP();
3805                 i915_gem_set_wedged(i915);
3806                 return -EIO;
3807         }
3808
3809         return 0;
3810 }
3811
3812 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3813                            unsigned int flags, long timeout)
3814 {
3815         GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3816                   flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3817                   timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3818
3819         /* If the device is asleep, we have no requests outstanding */
3820         if (!READ_ONCE(i915->gt.awake))
3821                 return 0;
3822
3823         if (flags & I915_WAIT_LOCKED) {
3824                 struct i915_timeline *tl;
3825                 int err;
3826
3827                 lockdep_assert_held(&i915->drm.struct_mutex);
3828
3829                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3830                         timeout = wait_for_timeline(tl, flags, timeout);
3831                         if (timeout < 0)
3832                                 return timeout;
3833                 }
3834                 if (GEM_SHOW_DEBUG() && !timeout) {
3835                         /* Presume that timeout was non-zero to begin with! */
3836                         dev_warn(&i915->drm.pdev->dev,
3837                                  "Missed idle-completion interrupt!\n");
3838                         GEM_TRACE_DUMP();
3839                 }
3840
3841                 err = wait_for_engines(i915);
3842                 if (err)
3843                         return err;
3844
3845                 i915_retire_requests(i915);
3846                 GEM_BUG_ON(i915->gt.active_requests);
3847         } else {
3848                 struct intel_engine_cs *engine;
3849                 enum intel_engine_id id;
3850
3851                 for_each_engine(engine, i915, id) {
3852                         struct i915_timeline *tl = &engine->timeline;
3853
3854                         timeout = wait_for_timeline(tl, flags, timeout);
3855                         if (timeout < 0)
3856                                 return timeout;
3857                 }
3858         }
3859
3860         return 0;
3861 }
3862
3863 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3864 {
3865         /*
3866          * We manually flush the CPU domain so that we can override and
3867          * force the flush for the display, and perform it asyncrhonously.
3868          */
3869         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3870         if (obj->cache_dirty)
3871                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3872         obj->write_domain = 0;
3873 }
3874
3875 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3876 {
3877         if (!READ_ONCE(obj->pin_global))
3878                 return;
3879
3880         mutex_lock(&obj->base.dev->struct_mutex);
3881         __i915_gem_object_flush_for_display(obj);
3882         mutex_unlock(&obj->base.dev->struct_mutex);
3883 }
3884
3885 /**
3886  * Moves a single object to the WC read, and possibly write domain.
3887  * @obj: object to act on
3888  * @write: ask for write access or read only
3889  *
3890  * This function returns when the move is complete, including waiting on
3891  * flushes to occur.
3892  */
3893 int
3894 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3895 {
3896         int ret;
3897
3898         lockdep_assert_held(&obj->base.dev->struct_mutex);
3899
3900         ret = i915_gem_object_wait(obj,
3901                                    I915_WAIT_INTERRUPTIBLE |
3902                                    I915_WAIT_LOCKED |
3903                                    (write ? I915_WAIT_ALL : 0),
3904                                    MAX_SCHEDULE_TIMEOUT,
3905                                    NULL);
3906         if (ret)
3907                 return ret;
3908
3909         if (obj->write_domain == I915_GEM_DOMAIN_WC)
3910                 return 0;
3911
3912         /* Flush and acquire obj->pages so that we are coherent through
3913          * direct access in memory with previous cached writes through
3914          * shmemfs and that our cache domain tracking remains valid.
3915          * For example, if the obj->filp was moved to swap without us
3916          * being notified and releasing the pages, we would mistakenly
3917          * continue to assume that the obj remained out of the CPU cached
3918          * domain.
3919          */
3920         ret = i915_gem_object_pin_pages(obj);
3921         if (ret)
3922                 return ret;
3923
3924         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3925
3926         /* Serialise direct access to this object with the barriers for
3927          * coherent writes from the GPU, by effectively invalidating the
3928          * WC domain upon first access.
3929          */
3930         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3931                 mb();
3932
3933         /* It should now be out of any other write domains, and we can update
3934          * the domain values for our changes.
3935          */
3936         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3937         obj->read_domains |= I915_GEM_DOMAIN_WC;
3938         if (write) {
3939                 obj->read_domains = I915_GEM_DOMAIN_WC;
3940                 obj->write_domain = I915_GEM_DOMAIN_WC;
3941                 obj->mm.dirty = true;
3942         }
3943
3944         i915_gem_object_unpin_pages(obj);
3945         return 0;
3946 }
3947
3948 /**
3949  * Moves a single object to the GTT read, and possibly write domain.
3950  * @obj: object to act on
3951  * @write: ask for write access or read only
3952  *
3953  * This function returns when the move is complete, including waiting on
3954  * flushes to occur.
3955  */
3956 int
3957 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3958 {
3959         int ret;
3960
3961         lockdep_assert_held(&obj->base.dev->struct_mutex);
3962
3963         ret = i915_gem_object_wait(obj,
3964                                    I915_WAIT_INTERRUPTIBLE |
3965                                    I915_WAIT_LOCKED |
3966                                    (write ? I915_WAIT_ALL : 0),
3967                                    MAX_SCHEDULE_TIMEOUT,
3968                                    NULL);
3969         if (ret)
3970                 return ret;
3971
3972         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3973                 return 0;
3974
3975         /* Flush and acquire obj->pages so that we are coherent through
3976          * direct access in memory with previous cached writes through
3977          * shmemfs and that our cache domain tracking remains valid.
3978          * For example, if the obj->filp was moved to swap without us
3979          * being notified and releasing the pages, we would mistakenly
3980          * continue to assume that the obj remained out of the CPU cached
3981          * domain.
3982          */
3983         ret = i915_gem_object_pin_pages(obj);
3984         if (ret)
3985                 return ret;
3986
3987         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3988
3989         /* Serialise direct access to this object with the barriers for
3990          * coherent writes from the GPU, by effectively invalidating the
3991          * GTT domain upon first access.
3992          */
3993         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3994                 mb();
3995
3996         /* It should now be out of any other write domains, and we can update
3997          * the domain values for our changes.
3998          */
3999         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4000         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4001         if (write) {
4002                 obj->read_domains = I915_GEM_DOMAIN_GTT;
4003                 obj->write_domain = I915_GEM_DOMAIN_GTT;
4004                 obj->mm.dirty = true;
4005         }
4006
4007         i915_gem_object_unpin_pages(obj);
4008         return 0;
4009 }
4010
4011 /**
4012  * Changes the cache-level of an object across all VMA.
4013  * @obj: object to act on
4014  * @cache_level: new cache level to set for the object
4015  *
4016  * After this function returns, the object will be in the new cache-level
4017  * across all GTT and the contents of the backing storage will be coherent,
4018  * with respect to the new cache-level. In order to keep the backing storage
4019  * coherent for all users, we only allow a single cache level to be set
4020  * globally on the object and prevent it from being changed whilst the
4021  * hardware is reading from the object. That is if the object is currently
4022  * on the scanout it will be set to uncached (or equivalent display
4023  * cache coherency) and all non-MOCS GPU access will also be uncached so
4024  * that all direct access to the scanout remains coherent.
4025  */
4026 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4027                                     enum i915_cache_level cache_level)
4028 {
4029         struct i915_vma *vma;
4030         int ret;
4031
4032         lockdep_assert_held(&obj->base.dev->struct_mutex);
4033
4034         if (obj->cache_level == cache_level)
4035                 return 0;
4036
4037         /* Inspect the list of currently bound VMA and unbind any that would
4038          * be invalid given the new cache-level. This is principally to
4039          * catch the issue of the CS prefetch crossing page boundaries and
4040          * reading an invalid PTE on older architectures.
4041          */
4042 restart:
4043         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4044                 if (!drm_mm_node_allocated(&vma->node))
4045                         continue;
4046
4047                 if (i915_vma_is_pinned(vma)) {
4048                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4049                         return -EBUSY;
4050                 }
4051
4052                 if (!i915_vma_is_closed(vma) &&
4053                     i915_gem_valid_gtt_space(vma, cache_level))
4054                         continue;
4055
4056                 ret = i915_vma_unbind(vma);
4057                 if (ret)
4058                         return ret;
4059
4060                 /* As unbinding may affect other elements in the
4061                  * obj->vma_list (due to side-effects from retiring
4062                  * an active vma), play safe and restart the iterator.
4063                  */
4064                 goto restart;
4065         }
4066
4067         /* We can reuse the existing drm_mm nodes but need to change the
4068          * cache-level on the PTE. We could simply unbind them all and
4069          * rebind with the correct cache-level on next use. However since
4070          * we already have a valid slot, dma mapping, pages etc, we may as
4071          * rewrite the PTE in the belief that doing so tramples upon less
4072          * state and so involves less work.
4073          */
4074         if (obj->bind_count) {
4075                 /* Before we change the PTE, the GPU must not be accessing it.
4076                  * If we wait upon the object, we know that all the bound
4077                  * VMA are no longer active.
4078                  */
4079                 ret = i915_gem_object_wait(obj,
4080                                            I915_WAIT_INTERRUPTIBLE |
4081                                            I915_WAIT_LOCKED |
4082                                            I915_WAIT_ALL,
4083                                            MAX_SCHEDULE_TIMEOUT,
4084                                            NULL);
4085                 if (ret)
4086                         return ret;
4087
4088                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4089                     cache_level != I915_CACHE_NONE) {
4090                         /* Access to snoopable pages through the GTT is
4091                          * incoherent and on some machines causes a hard
4092                          * lockup. Relinquish the CPU mmaping to force
4093                          * userspace to refault in the pages and we can
4094                          * then double check if the GTT mapping is still
4095                          * valid for that pointer access.
4096                          */
4097                         i915_gem_release_mmap(obj);
4098
4099                         /* As we no longer need a fence for GTT access,
4100                          * we can relinquish it now (and so prevent having
4101                          * to steal a fence from someone else on the next
4102                          * fence request). Note GPU activity would have
4103                          * dropped the fence as all snoopable access is
4104                          * supposed to be linear.
4105                          */
4106                         for_each_ggtt_vma(vma, obj) {
4107                                 ret = i915_vma_put_fence(vma);
4108                                 if (ret)
4109                                         return ret;
4110                         }
4111                 } else {
4112                         /* We either have incoherent backing store and
4113                          * so no GTT access or the architecture is fully
4114                          * coherent. In such cases, existing GTT mmaps
4115                          * ignore the cache bit in the PTE and we can
4116                          * rewrite it without confusing the GPU or having
4117                          * to force userspace to fault back in its mmaps.
4118                          */
4119                 }
4120
4121                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4122                         if (!drm_mm_node_allocated(&vma->node))
4123                                 continue;
4124
4125                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4126                         if (ret)
4127                                 return ret;
4128                 }
4129         }
4130
4131         list_for_each_entry(vma, &obj->vma_list, obj_link)
4132                 vma->node.color = cache_level;
4133         i915_gem_object_set_cache_coherency(obj, cache_level);
4134         obj->cache_dirty = true; /* Always invalidate stale cachelines */
4135
4136         return 0;
4137 }
4138
4139 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4140                                struct drm_file *file)
4141 {
4142         struct drm_i915_gem_caching *args = data;
4143         struct drm_i915_gem_object *obj;
4144         int err = 0;
4145
4146         rcu_read_lock();
4147         obj = i915_gem_object_lookup_rcu(file, args->handle);
4148         if (!obj) {
4149                 err = -ENOENT;
4150                 goto out;
4151         }
4152
4153         switch (obj->cache_level) {
4154         case I915_CACHE_LLC:
4155         case I915_CACHE_L3_LLC:
4156                 args->caching = I915_CACHING_CACHED;
4157                 break;
4158
4159         case I915_CACHE_WT:
4160                 args->caching = I915_CACHING_DISPLAY;
4161                 break;
4162
4163         default:
4164                 args->caching = I915_CACHING_NONE;
4165                 break;
4166         }
4167 out:
4168         rcu_read_unlock();
4169         return err;
4170 }
4171
4172 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4173                                struct drm_file *file)
4174 {
4175         struct drm_i915_private *i915 = to_i915(dev);
4176         struct drm_i915_gem_caching *args = data;
4177         struct drm_i915_gem_object *obj;
4178         enum i915_cache_level level;
4179         int ret = 0;
4180
4181         switch (args->caching) {
4182         case I915_CACHING_NONE:
4183                 level = I915_CACHE_NONE;
4184                 break;
4185         case I915_CACHING_CACHED:
4186                 /*
4187                  * Due to a HW issue on BXT A stepping, GPU stores via a
4188                  * snooped mapping may leave stale data in a corresponding CPU
4189                  * cacheline, whereas normally such cachelines would get
4190                  * invalidated.
4191                  */
4192                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4193                         return -ENODEV;
4194
4195                 level = I915_CACHE_LLC;
4196                 break;
4197         case I915_CACHING_DISPLAY:
4198                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4199                 break;
4200         default:
4201                 return -EINVAL;
4202         }
4203
4204         obj = i915_gem_object_lookup(file, args->handle);
4205         if (!obj)
4206                 return -ENOENT;
4207
4208         /*
4209          * The caching mode of proxy object is handled by its generator, and
4210          * not allowed to be changed by userspace.
4211          */
4212         if (i915_gem_object_is_proxy(obj)) {
4213                 ret = -ENXIO;
4214                 goto out;
4215         }
4216
4217         if (obj->cache_level == level)
4218                 goto out;
4219
4220         ret = i915_gem_object_wait(obj,
4221                                    I915_WAIT_INTERRUPTIBLE,
4222                                    MAX_SCHEDULE_TIMEOUT,
4223                                    to_rps_client(file));
4224         if (ret)
4225                 goto out;
4226
4227         ret = i915_mutex_lock_interruptible(dev);
4228         if (ret)
4229                 goto out;
4230
4231         ret = i915_gem_object_set_cache_level(obj, level);
4232         mutex_unlock(&dev->struct_mutex);
4233
4234 out:
4235         i915_gem_object_put(obj);
4236         return ret;
4237 }
4238
4239 /*
4240  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4241  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4242  * (for pageflips). We only flush the caches while preparing the buffer for
4243  * display, the callers are responsible for frontbuffer flush.
4244  */
4245 struct i915_vma *
4246 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4247                                      u32 alignment,
4248                                      const struct i915_ggtt_view *view,
4249                                      unsigned int flags)
4250 {
4251         struct i915_vma *vma;
4252         int ret;
4253
4254         lockdep_assert_held(&obj->base.dev->struct_mutex);
4255
4256         /* Mark the global pin early so that we account for the
4257          * display coherency whilst setting up the cache domains.
4258          */
4259         obj->pin_global++;
4260
4261         /* The display engine is not coherent with the LLC cache on gen6.  As
4262          * a result, we make sure that the pinning that is about to occur is
4263          * done with uncached PTEs. This is lowest common denominator for all
4264          * chipsets.
4265          *
4266          * However for gen6+, we could do better by using the GFDT bit instead
4267          * of uncaching, which would allow us to flush all the LLC-cached data
4268          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4269          */
4270         ret = i915_gem_object_set_cache_level(obj,
4271                                               HAS_WT(to_i915(obj->base.dev)) ?
4272                                               I915_CACHE_WT : I915_CACHE_NONE);
4273         if (ret) {
4274                 vma = ERR_PTR(ret);
4275                 goto err_unpin_global;
4276         }
4277
4278         /* As the user may map the buffer once pinned in the display plane
4279          * (e.g. libkms for the bootup splash), we have to ensure that we
4280          * always use map_and_fenceable for all scanout buffers. However,
4281          * it may simply be too big to fit into mappable, in which case
4282          * put it anyway and hope that userspace can cope (but always first
4283          * try to preserve the existing ABI).
4284          */
4285         vma = ERR_PTR(-ENOSPC);
4286         if ((flags & PIN_MAPPABLE) == 0 &&
4287             (!view || view->type == I915_GGTT_VIEW_NORMAL))
4288                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4289                                                flags |
4290                                                PIN_MAPPABLE |
4291                                                PIN_NONBLOCK);
4292         if (IS_ERR(vma))
4293                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4294         if (IS_ERR(vma))
4295                 goto err_unpin_global;
4296
4297         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4298
4299         __i915_gem_object_flush_for_display(obj);
4300
4301         /* It should now be out of any other write domains, and we can update
4302          * the domain values for our changes.
4303          */
4304         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4305
4306         return vma;
4307
4308 err_unpin_global:
4309         obj->pin_global--;
4310         return vma;
4311 }
4312
4313 void
4314 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4315 {
4316         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4317
4318         if (WARN_ON(vma->obj->pin_global == 0))
4319                 return;
4320
4321         if (--vma->obj->pin_global == 0)
4322                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4323
4324         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4325         i915_gem_object_bump_inactive_ggtt(vma->obj);
4326
4327         i915_vma_unpin(vma);
4328 }
4329
4330 /**
4331  * Moves a single object to the CPU read, and possibly write domain.
4332  * @obj: object to act on
4333  * @write: requesting write or read-only access
4334  *
4335  * This function returns when the move is complete, including waiting on
4336  * flushes to occur.
4337  */
4338 int
4339 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4340 {
4341         int ret;
4342
4343         lockdep_assert_held(&obj->base.dev->struct_mutex);
4344
4345         ret = i915_gem_object_wait(obj,
4346                                    I915_WAIT_INTERRUPTIBLE |
4347                                    I915_WAIT_LOCKED |
4348                                    (write ? I915_WAIT_ALL : 0),
4349                                    MAX_SCHEDULE_TIMEOUT,
4350                                    NULL);
4351         if (ret)
4352                 return ret;
4353
4354         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4355
4356         /* Flush the CPU cache if it's still invalid. */
4357         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4358                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4359                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4360         }
4361
4362         /* It should now be out of any other write domains, and we can update
4363          * the domain values for our changes.
4364          */
4365         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4366
4367         /* If we're writing through the CPU, then the GPU read domains will
4368          * need to be invalidated at next use.
4369          */
4370         if (write)
4371                 __start_cpu_write(obj);
4372
4373         return 0;
4374 }
4375
4376 /* Throttle our rendering by waiting until the ring has completed our requests
4377  * emitted over 20 msec ago.
4378  *
4379  * Note that if we were to use the current jiffies each time around the loop,
4380  * we wouldn't escape the function with any frames outstanding if the time to
4381  * render a frame was over 20ms.
4382  *
4383  * This should get us reasonable parallelism between CPU and GPU but also
4384  * relatively low latency when blocking on a particular request to finish.
4385  */
4386 static int
4387 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4388 {
4389         struct drm_i915_private *dev_priv = to_i915(dev);
4390         struct drm_i915_file_private *file_priv = file->driver_priv;
4391         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4392         struct i915_request *request, *target = NULL;
4393         long ret;
4394
4395         /* ABI: return -EIO if already wedged */
4396         if (i915_terminally_wedged(&dev_priv->gpu_error))
4397                 return -EIO;
4398
4399         spin_lock(&file_priv->mm.lock);
4400         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4401                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4402                         break;
4403
4404                 if (target) {
4405                         list_del(&target->client_link);
4406                         target->file_priv = NULL;
4407                 }
4408
4409                 target = request;
4410         }
4411         if (target)
4412                 i915_request_get(target);
4413         spin_unlock(&file_priv->mm.lock);
4414
4415         if (target == NULL)
4416                 return 0;
4417
4418         ret = i915_request_wait(target,
4419                                 I915_WAIT_INTERRUPTIBLE,
4420                                 MAX_SCHEDULE_TIMEOUT);
4421         i915_request_put(target);
4422
4423         return ret < 0 ? ret : 0;
4424 }
4425
4426 struct i915_vma *
4427 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4428                          const struct i915_ggtt_view *view,
4429                          u64 size,
4430                          u64 alignment,
4431                          u64 flags)
4432 {
4433         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4434         struct i915_address_space *vm = &dev_priv->ggtt.vm;
4435         struct i915_vma *vma;
4436         int ret;
4437
4438         lockdep_assert_held(&obj->base.dev->struct_mutex);
4439
4440         if (flags & PIN_MAPPABLE &&
4441             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4442                 /* If the required space is larger than the available
4443                  * aperture, we will not able to find a slot for the
4444                  * object and unbinding the object now will be in
4445                  * vain. Worse, doing so may cause us to ping-pong
4446                  * the object in and out of the Global GTT and
4447                  * waste a lot of cycles under the mutex.
4448                  */
4449                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4450                         return ERR_PTR(-E2BIG);
4451
4452                 /* If NONBLOCK is set the caller is optimistically
4453                  * trying to cache the full object within the mappable
4454                  * aperture, and *must* have a fallback in place for
4455                  * situations where we cannot bind the object. We
4456                  * can be a little more lax here and use the fallback
4457                  * more often to avoid costly migrations of ourselves
4458                  * and other objects within the aperture.
4459                  *
4460                  * Half-the-aperture is used as a simple heuristic.
4461                  * More interesting would to do search for a free
4462                  * block prior to making the commitment to unbind.
4463                  * That caters for the self-harm case, and with a
4464                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4465                  * we could try to minimise harm to others.
4466                  */
4467                 if (flags & PIN_NONBLOCK &&
4468                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4469                         return ERR_PTR(-ENOSPC);
4470         }
4471
4472         vma = i915_vma_instance(obj, vm, view);
4473         if (unlikely(IS_ERR(vma)))
4474                 return vma;
4475
4476         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4477                 if (flags & PIN_NONBLOCK) {
4478                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4479                                 return ERR_PTR(-ENOSPC);
4480
4481                         if (flags & PIN_MAPPABLE &&
4482                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4483                                 return ERR_PTR(-ENOSPC);
4484                 }
4485
4486                 WARN(i915_vma_is_pinned(vma),
4487                      "bo is already pinned in ggtt with incorrect alignment:"
4488                      " offset=%08x, req.alignment=%llx,"
4489                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4490                      i915_ggtt_offset(vma), alignment,
4491                      !!(flags & PIN_MAPPABLE),
4492                      i915_vma_is_map_and_fenceable(vma));
4493                 ret = i915_vma_unbind(vma);
4494                 if (ret)
4495                         return ERR_PTR(ret);
4496         }
4497
4498         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4499         if (ret)
4500                 return ERR_PTR(ret);
4501
4502         return vma;
4503 }
4504
4505 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4506 {
4507         /* Note that we could alias engines in the execbuf API, but
4508          * that would be very unwise as it prevents userspace from
4509          * fine control over engine selection. Ahem.
4510          *
4511          * This should be something like EXEC_MAX_ENGINE instead of
4512          * I915_NUM_ENGINES.
4513          */
4514         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4515         return 0x10000 << id;
4516 }
4517
4518 static __always_inline unsigned int __busy_write_id(unsigned int id)
4519 {
4520         /* The uABI guarantees an active writer is also amongst the read
4521          * engines. This would be true if we accessed the activity tracking
4522          * under the lock, but as we perform the lookup of the object and
4523          * its activity locklessly we can not guarantee that the last_write
4524          * being active implies that we have set the same engine flag from
4525          * last_read - hence we always set both read and write busy for
4526          * last_write.
4527          */
4528         return id | __busy_read_flag(id);
4529 }
4530
4531 static __always_inline unsigned int
4532 __busy_set_if_active(const struct dma_fence *fence,
4533                      unsigned int (*flag)(unsigned int id))
4534 {
4535         struct i915_request *rq;
4536
4537         /* We have to check the current hw status of the fence as the uABI
4538          * guarantees forward progress. We could rely on the idle worker
4539          * to eventually flush us, but to minimise latency just ask the
4540          * hardware.
4541          *
4542          * Note we only report on the status of native fences.
4543          */
4544         if (!dma_fence_is_i915(fence))
4545                 return 0;
4546
4547         /* opencode to_request() in order to avoid const warnings */
4548         rq = container_of(fence, struct i915_request, fence);
4549         if (i915_request_completed(rq))
4550                 return 0;
4551
4552         return flag(rq->engine->uabi_id);
4553 }
4554
4555 static __always_inline unsigned int
4556 busy_check_reader(const struct dma_fence *fence)
4557 {
4558         return __busy_set_if_active(fence, __busy_read_flag);
4559 }
4560
4561 static __always_inline unsigned int
4562 busy_check_writer(const struct dma_fence *fence)
4563 {
4564         if (!fence)
4565                 return 0;
4566
4567         return __busy_set_if_active(fence, __busy_write_id);
4568 }
4569
4570 int
4571 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4572                     struct drm_file *file)
4573 {
4574         struct drm_i915_gem_busy *args = data;
4575         struct drm_i915_gem_object *obj;
4576         struct reservation_object_list *list;
4577         unsigned int seq;
4578         int err;
4579
4580         err = -ENOENT;
4581         rcu_read_lock();
4582         obj = i915_gem_object_lookup_rcu(file, args->handle);
4583         if (!obj)
4584                 goto out;
4585
4586         /* A discrepancy here is that we do not report the status of
4587          * non-i915 fences, i.e. even though we may report the object as idle,
4588          * a call to set-domain may still stall waiting for foreign rendering.
4589          * This also means that wait-ioctl may report an object as busy,
4590          * where busy-ioctl considers it idle.
4591          *
4592          * We trade the ability to warn of foreign fences to report on which
4593          * i915 engines are active for the object.
4594          *
4595          * Alternatively, we can trade that extra information on read/write
4596          * activity with
4597          *      args->busy =
4598          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4599          * to report the overall busyness. This is what the wait-ioctl does.
4600          *
4601          */
4602 retry:
4603         seq = raw_read_seqcount(&obj->resv->seq);
4604
4605         /* Translate the exclusive fence to the READ *and* WRITE engine */
4606         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4607
4608         /* Translate shared fences to READ set of engines */
4609         list = rcu_dereference(obj->resv->fence);
4610         if (list) {
4611                 unsigned int shared_count = list->shared_count, i;
4612
4613                 for (i = 0; i < shared_count; ++i) {
4614                         struct dma_fence *fence =
4615                                 rcu_dereference(list->shared[i]);
4616
4617                         args->busy |= busy_check_reader(fence);
4618                 }
4619         }
4620
4621         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4622                 goto retry;
4623
4624         err = 0;
4625 out:
4626         rcu_read_unlock();
4627         return err;
4628 }
4629
4630 int
4631 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4632                         struct drm_file *file_priv)
4633 {
4634         return i915_gem_ring_throttle(dev, file_priv);
4635 }
4636
4637 int
4638 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4639                        struct drm_file *file_priv)
4640 {
4641         struct drm_i915_private *dev_priv = to_i915(dev);
4642         struct drm_i915_gem_madvise *args = data;
4643         struct drm_i915_gem_object *obj;
4644         int err;
4645
4646         switch (args->madv) {
4647         case I915_MADV_DONTNEED:
4648         case I915_MADV_WILLNEED:
4649             break;
4650         default:
4651             return -EINVAL;
4652         }
4653
4654         obj = i915_gem_object_lookup(file_priv, args->handle);
4655         if (!obj)
4656                 return -ENOENT;
4657
4658         err = mutex_lock_interruptible(&obj->mm.lock);
4659         if (err)
4660                 goto out;
4661
4662         if (i915_gem_object_has_pages(obj) &&
4663             i915_gem_object_is_tiled(obj) &&
4664             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4665                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4666                         GEM_BUG_ON(!obj->mm.quirked);
4667                         __i915_gem_object_unpin_pages(obj);
4668                         obj->mm.quirked = false;
4669                 }
4670                 if (args->madv == I915_MADV_WILLNEED) {
4671                         GEM_BUG_ON(obj->mm.quirked);
4672                         __i915_gem_object_pin_pages(obj);
4673                         obj->mm.quirked = true;
4674                 }
4675         }
4676
4677         if (obj->mm.madv != __I915_MADV_PURGED)
4678                 obj->mm.madv = args->madv;
4679
4680         /* if the object is no longer attached, discard its backing storage */
4681         if (obj->mm.madv == I915_MADV_DONTNEED &&
4682             !i915_gem_object_has_pages(obj))
4683                 i915_gem_object_truncate(obj);
4684
4685         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4686         mutex_unlock(&obj->mm.lock);
4687
4688 out:
4689         i915_gem_object_put(obj);
4690         return err;
4691 }
4692
4693 static void
4694 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4695 {
4696         struct drm_i915_gem_object *obj =
4697                 container_of(active, typeof(*obj), frontbuffer_write);
4698
4699         intel_fb_obj_flush(obj, ORIGIN_CS);
4700 }
4701
4702 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4703                           const struct drm_i915_gem_object_ops *ops)
4704 {
4705         mutex_init(&obj->mm.lock);
4706
4707         INIT_LIST_HEAD(&obj->vma_list);
4708         INIT_LIST_HEAD(&obj->lut_list);
4709         INIT_LIST_HEAD(&obj->batch_pool_link);
4710
4711         init_rcu_head(&obj->rcu);
4712
4713         obj->ops = ops;
4714
4715         reservation_object_init(&obj->__builtin_resv);
4716         obj->resv = &obj->__builtin_resv;
4717
4718         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4720
4721         obj->mm.madv = I915_MADV_WILLNEED;
4722         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723         mutex_init(&obj->mm.get_page.lock);
4724
4725         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 }
4727
4728 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730                  I915_GEM_OBJECT_IS_SHRINKABLE,
4731
4732         .get_pages = i915_gem_object_get_pages_gtt,
4733         .put_pages = i915_gem_object_put_pages_gtt,
4734
4735         .pwrite = i915_gem_object_pwrite_gtt,
4736 };
4737
4738 static int i915_gem_object_create_shmem(struct drm_device *dev,
4739                                         struct drm_gem_object *obj,
4740                                         size_t size)
4741 {
4742         struct drm_i915_private *i915 = to_i915(dev);
4743         unsigned long flags = VM_NORESERVE;
4744         struct file *filp;
4745
4746         drm_gem_private_object_init(dev, obj, size);
4747
4748         if (i915->mm.gemfs)
4749                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750                                                  flags);
4751         else
4752                 filp = shmem_file_setup("i915", size, flags);
4753
4754         if (IS_ERR(filp))
4755                 return PTR_ERR(filp);
4756
4757         obj->filp = filp;
4758
4759         return 0;
4760 }
4761
4762 struct drm_i915_gem_object *
4763 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764 {
4765         struct drm_i915_gem_object *obj;
4766         struct address_space *mapping;
4767         unsigned int cache_level;
4768         gfp_t mask;
4769         int ret;
4770
4771         /* There is a prevalence of the assumption that we fit the object's
4772          * page count inside a 32bit _signed_ variable. Let's document this and
4773          * catch if we ever need to fix it. In the meantime, if you do spot
4774          * such a local variable, please consider fixing!
4775          */
4776         if (size >> PAGE_SHIFT > INT_MAX)
4777                 return ERR_PTR(-E2BIG);
4778
4779         if (overflows_type(size, obj->base.size))
4780                 return ERR_PTR(-E2BIG);
4781
4782         obj = i915_gem_object_alloc(dev_priv);
4783         if (obj == NULL)
4784                 return ERR_PTR(-ENOMEM);
4785
4786         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787         if (ret)
4788                 goto fail;
4789
4790         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792                 /* 965gm cannot relocate objects above 4GiB. */
4793                 mask &= ~__GFP_HIGHMEM;
4794                 mask |= __GFP_DMA32;
4795         }
4796
4797         mapping = obj->base.filp->f_mapping;
4798         mapping_set_gfp_mask(mapping, mask);
4799         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800
4801         i915_gem_object_init(obj, &i915_gem_object_ops);
4802
4803         obj->write_domain = I915_GEM_DOMAIN_CPU;
4804         obj->read_domains = I915_GEM_DOMAIN_CPU;
4805
4806         if (HAS_LLC(dev_priv))
4807                 /* On some devices, we can have the GPU use the LLC (the CPU
4808                  * cache) for about a 10% performance improvement
4809                  * compared to uncached.  Graphics requests other than
4810                  * display scanout are coherent with the CPU in
4811                  * accessing this cache.  This means in this mode we
4812                  * don't need to clflush on the CPU side, and on the
4813                  * GPU side we only need to flush internal caches to
4814                  * get data visible to the CPU.
4815                  *
4816                  * However, we maintain the display planes as UC, and so
4817                  * need to rebind when first used as such.
4818                  */
4819                 cache_level = I915_CACHE_LLC;
4820         else
4821                 cache_level = I915_CACHE_NONE;
4822
4823         i915_gem_object_set_cache_coherency(obj, cache_level);
4824
4825         trace_i915_gem_object_create(obj);
4826
4827         return obj;
4828
4829 fail:
4830         i915_gem_object_free(obj);
4831         return ERR_PTR(ret);
4832 }
4833
4834 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835 {
4836         /* If we are the last user of the backing storage (be it shmemfs
4837          * pages or stolen etc), we know that the pages are going to be
4838          * immediately released. In this case, we can then skip copying
4839          * back the contents from the GPU.
4840          */
4841
4842         if (obj->mm.madv != I915_MADV_WILLNEED)
4843                 return false;
4844
4845         if (obj->base.filp == NULL)
4846                 return true;
4847
4848         /* At first glance, this looks racy, but then again so would be
4849          * userspace racing mmap against close. However, the first external
4850          * reference to the filp can only be obtained through the
4851          * i915_gem_mmap_ioctl() which safeguards us against the user
4852          * acquiring such a reference whilst we are in the middle of
4853          * freeing the object.
4854          */
4855         return atomic_long_read(&obj->base.filp->f_count) == 1;
4856 }
4857
4858 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859                                     struct llist_node *freed)
4860 {
4861         struct drm_i915_gem_object *obj, *on;
4862
4863         intel_runtime_pm_get(i915);
4864         llist_for_each_entry_safe(obj, on, freed, freed) {
4865                 struct i915_vma *vma, *vn;
4866
4867                 trace_i915_gem_object_destroy(obj);
4868
4869                 mutex_lock(&i915->drm.struct_mutex);
4870
4871                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4872                 list_for_each_entry_safe(vma, vn,
4873                                          &obj->vma_list, obj_link) {
4874                         GEM_BUG_ON(i915_vma_is_active(vma));
4875                         vma->flags &= ~I915_VMA_PIN_MASK;
4876                         i915_vma_destroy(vma);
4877                 }
4878                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4879                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880
4881                 /* This serializes freeing with the shrinker. Since the free
4882                  * is delayed, first by RCU then by the workqueue, we want the
4883                  * shrinker to be able to free pages of unreferenced objects,
4884                  * or else we may oom whilst there are plenty of deferred
4885                  * freed objects.
4886                  */
4887                 if (i915_gem_object_has_pages(obj)) {
4888                         spin_lock(&i915->mm.obj_lock);
4889                         list_del_init(&obj->mm.link);
4890                         spin_unlock(&i915->mm.obj_lock);
4891                 }
4892
4893                 mutex_unlock(&i915->drm.struct_mutex);
4894
4895                 GEM_BUG_ON(obj->bind_count);
4896                 GEM_BUG_ON(obj->userfault_count);
4897                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4899
4900                 if (obj->ops->release)
4901                         obj->ops->release(obj);
4902
4903                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904                         atomic_set(&obj->mm.pages_pin_count, 0);
4905                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907
4908                 if (obj->base.import_attach)
4909                         drm_prime_gem_destroy(&obj->base, NULL);
4910
4911                 reservation_object_fini(&obj->__builtin_resv);
4912                 drm_gem_object_release(&obj->base);
4913                 i915_gem_info_remove_obj(i915, obj->base.size);
4914
4915                 kfree(obj->bit_17);
4916                 i915_gem_object_free(obj);
4917
4918                 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919                 atomic_dec(&i915->mm.free_count);
4920
4921                 if (on)
4922                         cond_resched();
4923         }
4924         intel_runtime_pm_put(i915);
4925 }
4926
4927 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928 {
4929         struct llist_node *freed;
4930
4931         /* Free the oldest, most stale object to keep the free_list short */
4932         freed = NULL;
4933         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934                 /* Only one consumer of llist_del_first() allowed */
4935                 spin_lock(&i915->mm.free_lock);
4936                 freed = llist_del_first(&i915->mm.free_list);
4937                 spin_unlock(&i915->mm.free_lock);
4938         }
4939         if (unlikely(freed)) {
4940                 freed->next = NULL;
4941                 __i915_gem_free_objects(i915, freed);
4942         }
4943 }
4944
4945 static void __i915_gem_free_work(struct work_struct *work)
4946 {
4947         struct drm_i915_private *i915 =
4948                 container_of(work, struct drm_i915_private, mm.free_work);
4949         struct llist_node *freed;
4950
4951         /*
4952          * All file-owned VMA should have been released by this point through
4953          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954          * However, the object may also be bound into the global GTT (e.g.
4955          * older GPUs without per-process support, or for direct access through
4956          * the GTT either for the user or for scanout). Those VMA still need to
4957          * unbound now.
4958          */
4959
4960         spin_lock(&i915->mm.free_lock);
4961         while ((freed = llist_del_all(&i915->mm.free_list))) {
4962                 spin_unlock(&i915->mm.free_lock);
4963
4964                 __i915_gem_free_objects(i915, freed);
4965                 if (need_resched())
4966                         return;
4967
4968                 spin_lock(&i915->mm.free_lock);
4969         }
4970         spin_unlock(&i915->mm.free_lock);
4971 }
4972
4973 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974 {
4975         struct drm_i915_gem_object *obj =
4976                 container_of(head, typeof(*obj), rcu);
4977         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978
4979         /*
4980          * We reuse obj->rcu for the freed list, so we had better not treat
4981          * it like a rcu_head from this point forwards. And we expect all
4982          * objects to be freed via this path.
4983          */
4984         destroy_rcu_head(&obj->rcu);
4985
4986         /*
4987          * Since we require blocking on struct_mutex to unbind the freed
4988          * object from the GPU before releasing resources back to the
4989          * system, we can not do that directly from the RCU callback (which may
4990          * be a softirq context), but must instead then defer that work onto a
4991          * kthread. We use the RCU callback rather than move the freed object
4992          * directly onto the work queue so that we can mix between using the
4993          * worker and performing frees directly from subsequent allocations for
4994          * crude but effective memory throttling.
4995          */
4996         if (llist_add(&obj->freed, &i915->mm.free_list))
4997                 queue_work(i915->wq, &i915->mm.free_work);
4998 }
4999
5000 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5001 {
5002         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5003
5004         if (obj->mm.quirked)
5005                 __i915_gem_object_unpin_pages(obj);
5006
5007         if (discard_backing_storage(obj))
5008                 obj->mm.madv = I915_MADV_DONTNEED;
5009
5010         /*
5011          * Before we free the object, make sure any pure RCU-only
5012          * read-side critical sections are complete, e.g.
5013          * i915_gem_busy_ioctl(). For the corresponding synchronized
5014          * lookup see i915_gem_object_lookup_rcu().
5015          */
5016         atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5017         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5018 }
5019
5020 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5021 {
5022         lockdep_assert_held(&obj->base.dev->struct_mutex);
5023
5024         if (!i915_gem_object_has_active_reference(obj) &&
5025             i915_gem_object_is_active(obj))
5026                 i915_gem_object_set_active_reference(obj);
5027         else
5028                 i915_gem_object_put(obj);
5029 }
5030
5031 void i915_gem_sanitize(struct drm_i915_private *i915)
5032 {
5033         int err;
5034
5035         GEM_TRACE("\n");
5036
5037         mutex_lock(&i915->drm.struct_mutex);
5038
5039         intel_runtime_pm_get(i915);
5040         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5041
5042         /*
5043          * As we have just resumed the machine and woken the device up from
5044          * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5045          * back to defaults, recovering from whatever wedged state we left it
5046          * in and so worth trying to use the device once more.
5047          */
5048         if (i915_terminally_wedged(&i915->gpu_error))
5049                 i915_gem_unset_wedged(i915);
5050
5051         /*
5052          * If we inherit context state from the BIOS or earlier occupants
5053          * of the GPU, the GPU may be in an inconsistent state when we
5054          * try to take over. The only way to remove the earlier state
5055          * is by resetting. However, resetting on earlier gen is tricky as
5056          * it may impact the display and we are uncertain about the stability
5057          * of the reset, so this could be applied to even earlier gen.
5058          */
5059         err = -ENODEV;
5060         if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5061                 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5062         if (!err)
5063                 intel_engines_sanitize(i915);
5064
5065         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5066         intel_runtime_pm_put(i915);
5067
5068         i915_gem_contexts_lost(i915);
5069         mutex_unlock(&i915->drm.struct_mutex);
5070 }
5071
5072 int i915_gem_suspend(struct drm_i915_private *i915)
5073 {
5074         int ret;
5075
5076         GEM_TRACE("\n");
5077
5078         intel_runtime_pm_get(i915);
5079         intel_suspend_gt_powersave(i915);
5080
5081         mutex_lock(&i915->drm.struct_mutex);
5082
5083         /*
5084          * We have to flush all the executing contexts to main memory so
5085          * that they can saved in the hibernation image. To ensure the last
5086          * context image is coherent, we have to switch away from it. That
5087          * leaves the i915->kernel_context still active when
5088          * we actually suspend, and its image in memory may not match the GPU
5089          * state. Fortunately, the kernel_context is disposable and we do
5090          * not rely on its state.
5091          */
5092         if (!i915_terminally_wedged(&i915->gpu_error)) {
5093                 ret = i915_gem_switch_to_kernel_context(i915);
5094                 if (ret)
5095                         goto err_unlock;
5096
5097                 ret = i915_gem_wait_for_idle(i915,
5098                                              I915_WAIT_INTERRUPTIBLE |
5099                                              I915_WAIT_LOCKED |
5100                                              I915_WAIT_FOR_IDLE_BOOST,
5101                                              MAX_SCHEDULE_TIMEOUT);
5102                 if (ret && ret != -EIO)
5103                         goto err_unlock;
5104
5105                 assert_kernel_context_is_current(i915);
5106         }
5107         i915_retire_requests(i915); /* ensure we flush after wedging */
5108
5109         mutex_unlock(&i915->drm.struct_mutex);
5110
5111         intel_uc_suspend(i915);
5112
5113         cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5114         cancel_delayed_work_sync(&i915->gt.retire_work);
5115
5116         /*
5117          * As the idle_work is rearming if it detects a race, play safe and
5118          * repeat the flush until it is definitely idle.
5119          */
5120         drain_delayed_work(&i915->gt.idle_work);
5121
5122         /*
5123          * Assert that we successfully flushed all the work and
5124          * reset the GPU back to its idle, low power state.
5125          */
5126         WARN_ON(i915->gt.awake);
5127         if (WARN_ON(!intel_engines_are_idle(i915)))
5128                 i915_gem_set_wedged(i915); /* no hope, discard everything */
5129
5130         intel_runtime_pm_put(i915);
5131         return 0;
5132
5133 err_unlock:
5134         mutex_unlock(&i915->drm.struct_mutex);
5135         intel_runtime_pm_put(i915);
5136         return ret;
5137 }
5138
5139 void i915_gem_suspend_late(struct drm_i915_private *i915)
5140 {
5141         struct drm_i915_gem_object *obj;
5142         struct list_head *phases[] = {
5143                 &i915->mm.unbound_list,
5144                 &i915->mm.bound_list,
5145                 NULL
5146         }, **phase;
5147
5148         /*
5149          * Neither the BIOS, ourselves or any other kernel
5150          * expects the system to be in execlists mode on startup,
5151          * so we need to reset the GPU back to legacy mode. And the only
5152          * known way to disable logical contexts is through a GPU reset.
5153          *
5154          * So in order to leave the system in a known default configuration,
5155          * always reset the GPU upon unload and suspend. Afterwards we then
5156          * clean up the GEM state tracking, flushing off the requests and
5157          * leaving the system in a known idle state.
5158          *
5159          * Note that is of the upmost importance that the GPU is idle and
5160          * all stray writes are flushed *before* we dismantle the backing
5161          * storage for the pinned objects.
5162          *
5163          * However, since we are uncertain that resetting the GPU on older
5164          * machines is a good idea, we don't - just in case it leaves the
5165          * machine in an unusable condition.
5166          */
5167
5168         mutex_lock(&i915->drm.struct_mutex);
5169         for (phase = phases; *phase; phase++) {
5170                 list_for_each_entry(obj, *phase, mm.link)
5171                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5172         }
5173         mutex_unlock(&i915->drm.struct_mutex);
5174
5175         intel_uc_sanitize(i915);
5176         i915_gem_sanitize(i915);
5177 }
5178
5179 void i915_gem_resume(struct drm_i915_private *i915)
5180 {
5181         GEM_TRACE("\n");
5182
5183         WARN_ON(i915->gt.awake);
5184
5185         mutex_lock(&i915->drm.struct_mutex);
5186         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5187
5188         i915_gem_restore_gtt_mappings(i915);
5189         i915_gem_restore_fences(i915);
5190
5191         /*
5192          * As we didn't flush the kernel context before suspend, we cannot
5193          * guarantee that the context image is complete. So let's just reset
5194          * it and start again.
5195          */
5196         i915->gt.resume(i915);
5197
5198         if (i915_gem_init_hw(i915))
5199                 goto err_wedged;
5200
5201         intel_uc_resume(i915);
5202
5203         /* Always reload a context for powersaving. */
5204         if (i915_gem_switch_to_kernel_context(i915))
5205                 goto err_wedged;
5206
5207 out_unlock:
5208         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5209         mutex_unlock(&i915->drm.struct_mutex);
5210         return;
5211
5212 err_wedged:
5213         if (!i915_terminally_wedged(&i915->gpu_error)) {
5214                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5215                 i915_gem_set_wedged(i915);
5216         }
5217         goto out_unlock;
5218 }
5219
5220 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5221 {
5222         if (INTEL_GEN(dev_priv) < 5 ||
5223             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5224                 return;
5225
5226         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5227                                  DISP_TILE_SURFACE_SWIZZLING);
5228
5229         if (IS_GEN5(dev_priv))
5230                 return;
5231
5232         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5233         if (IS_GEN6(dev_priv))
5234                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5235         else if (IS_GEN7(dev_priv))
5236                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5237         else if (IS_GEN8(dev_priv))
5238                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5239         else
5240                 BUG();
5241 }
5242
5243 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5244 {
5245         I915_WRITE(RING_CTL(base), 0);
5246         I915_WRITE(RING_HEAD(base), 0);
5247         I915_WRITE(RING_TAIL(base), 0);
5248         I915_WRITE(RING_START(base), 0);
5249 }
5250
5251 static void init_unused_rings(struct drm_i915_private *dev_priv)
5252 {
5253         if (IS_I830(dev_priv)) {
5254                 init_unused_ring(dev_priv, PRB1_BASE);
5255                 init_unused_ring(dev_priv, SRB0_BASE);
5256                 init_unused_ring(dev_priv, SRB1_BASE);
5257                 init_unused_ring(dev_priv, SRB2_BASE);
5258                 init_unused_ring(dev_priv, SRB3_BASE);
5259         } else if (IS_GEN2(dev_priv)) {
5260                 init_unused_ring(dev_priv, SRB0_BASE);
5261                 init_unused_ring(dev_priv, SRB1_BASE);
5262         } else if (IS_GEN3(dev_priv)) {
5263                 init_unused_ring(dev_priv, PRB1_BASE);
5264                 init_unused_ring(dev_priv, PRB2_BASE);
5265         }
5266 }
5267
5268 static int __i915_gem_restart_engines(void *data)
5269 {
5270         struct drm_i915_private *i915 = data;
5271         struct intel_engine_cs *engine;
5272         enum intel_engine_id id;
5273         int err;
5274
5275         for_each_engine(engine, i915, id) {
5276                 err = engine->init_hw(engine);
5277                 if (err) {
5278                         DRM_ERROR("Failed to restart %s (%d)\n",
5279                                   engine->name, err);
5280                         return err;
5281                 }
5282         }
5283
5284         return 0;
5285 }
5286
5287 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5288 {
5289         int ret;
5290
5291         dev_priv->gt.last_init_time = ktime_get();
5292
5293         /* Double layer security blanket, see i915_gem_init() */
5294         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5295
5296         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5297                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5298
5299         if (IS_HASWELL(dev_priv))
5300                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5301                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5302
5303         /* Apply the GT workarounds... */
5304         intel_gt_apply_workarounds(dev_priv);
5305         /* ...and determine whether they are sticking. */
5306         intel_gt_verify_workarounds(dev_priv, "init");
5307
5308         i915_gem_init_swizzling(dev_priv);
5309
5310         /*
5311          * At least 830 can leave some of the unused rings
5312          * "active" (ie. head != tail) after resume which
5313          * will prevent c3 entry. Makes sure all unused rings
5314          * are totally idle.
5315          */
5316         init_unused_rings(dev_priv);
5317
5318         BUG_ON(!dev_priv->kernel_context);
5319         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5320                 ret = -EIO;
5321                 goto out;
5322         }
5323
5324         ret = i915_ppgtt_init_hw(dev_priv);
5325         if (ret) {
5326                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5327                 goto out;
5328         }
5329
5330         ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5331         if (ret) {
5332                 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5333                 goto out;
5334         }
5335
5336         /* We can't enable contexts until all firmware is loaded */
5337         ret = intel_uc_init_hw(dev_priv);
5338         if (ret) {
5339                 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5340                 goto out;
5341         }
5342
5343         intel_mocs_init_l3cc_table(dev_priv);
5344
5345         /* Only when the HW is re-initialised, can we replay the requests */
5346         ret = __i915_gem_restart_engines(dev_priv);
5347         if (ret)
5348                 goto cleanup_uc;
5349
5350         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5351
5352         return 0;
5353
5354 cleanup_uc:
5355         intel_uc_fini_hw(dev_priv);
5356 out:
5357         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5358
5359         return ret;
5360 }
5361
5362 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5363 {
5364         struct i915_gem_context *ctx;
5365         struct intel_engine_cs *engine;
5366         enum intel_engine_id id;
5367         int err;
5368
5369         /*
5370          * As we reset the gpu during very early sanitisation, the current
5371          * register state on the GPU should reflect its defaults values.
5372          * We load a context onto the hw (with restore-inhibit), then switch
5373          * over to a second context to save that default register state. We
5374          * can then prime every new context with that state so they all start
5375          * from the same default HW values.
5376          */
5377
5378         ctx = i915_gem_context_create_kernel(i915, 0);
5379         if (IS_ERR(ctx))
5380                 return PTR_ERR(ctx);
5381
5382         for_each_engine(engine, i915, id) {
5383                 struct i915_request *rq;
5384
5385                 rq = i915_request_alloc(engine, ctx);
5386                 if (IS_ERR(rq)) {
5387                         err = PTR_ERR(rq);
5388                         goto out_ctx;
5389                 }
5390
5391                 err = 0;
5392                 if (engine->init_context)
5393                         err = engine->init_context(rq);
5394
5395                 i915_request_add(rq);
5396                 if (err)
5397                         goto err_active;
5398         }
5399
5400         err = i915_gem_switch_to_kernel_context(i915);
5401         if (err)
5402                 goto err_active;
5403
5404         if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5405                 i915_gem_set_wedged(i915);
5406                 err = -EIO; /* Caller will declare us wedged */
5407                 goto err_active;
5408         }
5409
5410         assert_kernel_context_is_current(i915);
5411
5412         /*
5413          * Immediately park the GPU so that we enable powersaving and
5414          * treat it as idle. The next time we issue a request, we will
5415          * unpark and start using the engine->pinned_default_state, otherwise
5416          * it is in limbo and an early reset may fail.
5417          */
5418         __i915_gem_park(i915);
5419
5420         for_each_engine(engine, i915, id) {
5421                 struct i915_vma *state;
5422                 void *vaddr;
5423
5424                 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5425
5426                 state = to_intel_context(ctx, engine)->state;
5427                 if (!state)
5428                         continue;
5429
5430                 /*
5431                  * As we will hold a reference to the logical state, it will
5432                  * not be torn down with the context, and importantly the
5433                  * object will hold onto its vma (making it possible for a
5434                  * stray GTT write to corrupt our defaults). Unmap the vma
5435                  * from the GTT to prevent such accidents and reclaim the
5436                  * space.
5437                  */
5438                 err = i915_vma_unbind(state);
5439                 if (err)
5440                         goto err_active;
5441
5442                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5443                 if (err)
5444                         goto err_active;
5445
5446                 engine->default_state = i915_gem_object_get(state->obj);
5447
5448                 /* Check we can acquire the image of the context state */
5449                 vaddr = i915_gem_object_pin_map(engine->default_state,
5450                                                 I915_MAP_FORCE_WB);
5451                 if (IS_ERR(vaddr)) {
5452                         err = PTR_ERR(vaddr);
5453                         goto err_active;
5454                 }
5455
5456                 i915_gem_object_unpin_map(engine->default_state);
5457         }
5458
5459         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5460                 unsigned int found = intel_engines_has_context_isolation(i915);
5461
5462                 /*
5463                  * Make sure that classes with multiple engine instances all
5464                  * share the same basic configuration.
5465                  */
5466                 for_each_engine(engine, i915, id) {
5467                         unsigned int bit = BIT(engine->uabi_class);
5468                         unsigned int expected = engine->default_state ? bit : 0;
5469
5470                         if ((found & bit) != expected) {
5471                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5472                                           engine->uabi_class, engine->name);
5473                         }
5474                 }
5475         }
5476
5477 out_ctx:
5478         i915_gem_context_set_closed(ctx);
5479         i915_gem_context_put(ctx);
5480         return err;
5481
5482 err_active:
5483         /*
5484          * If we have to abandon now, we expect the engines to be idle
5485          * and ready to be torn-down. First try to flush any remaining
5486          * request, ensure we are pointing at the kernel context and
5487          * then remove it.
5488          */
5489         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5490                 goto out_ctx;
5491
5492         if (WARN_ON(i915_gem_wait_for_idle(i915,
5493                                            I915_WAIT_LOCKED,
5494                                            MAX_SCHEDULE_TIMEOUT)))
5495                 goto out_ctx;
5496
5497         i915_gem_contexts_lost(i915);
5498         goto out_ctx;
5499 }
5500
5501 static int
5502 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5503 {
5504         struct drm_i915_gem_object *obj;
5505         struct i915_vma *vma;
5506         int ret;
5507
5508         obj = i915_gem_object_create_stolen(i915, size);
5509         if (!obj)
5510                 obj = i915_gem_object_create_internal(i915, size);
5511         if (IS_ERR(obj)) {
5512                 DRM_ERROR("Failed to allocate scratch page\n");
5513                 return PTR_ERR(obj);
5514         }
5515
5516         vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5517         if (IS_ERR(vma)) {
5518                 ret = PTR_ERR(vma);
5519                 goto err_unref;
5520         }
5521
5522         ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5523         if (ret)
5524                 goto err_unref;
5525
5526         i915->gt.scratch = vma;
5527         return 0;
5528
5529 err_unref:
5530         i915_gem_object_put(obj);
5531         return ret;
5532 }
5533
5534 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5535 {
5536         i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5537 }
5538
5539 int i915_gem_init(struct drm_i915_private *dev_priv)
5540 {
5541         int ret;
5542
5543         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5544         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5545                 mkwrite_device_info(dev_priv)->page_sizes =
5546                         I915_GTT_PAGE_SIZE_4K;
5547
5548         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5549
5550         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5551                 dev_priv->gt.resume = intel_lr_context_resume;
5552                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5553         } else {
5554                 dev_priv->gt.resume = intel_legacy_submission_resume;
5555                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5556         }
5557
5558         ret = i915_gem_init_userptr(dev_priv);
5559         if (ret)
5560                 return ret;
5561
5562         ret = intel_uc_init_misc(dev_priv);
5563         if (ret)
5564                 return ret;
5565
5566         ret = intel_wopcm_init(&dev_priv->wopcm);
5567         if (ret)
5568                 goto err_uc_misc;
5569
5570         /* This is just a security blanket to placate dragons.
5571          * On some systems, we very sporadically observe that the first TLBs
5572          * used by the CS may be stale, despite us poking the TLB reset. If
5573          * we hold the forcewake during initialisation these problems
5574          * just magically go away.
5575          */
5576         mutex_lock(&dev_priv->drm.struct_mutex);
5577         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5578
5579         ret = i915_gem_init_ggtt(dev_priv);
5580         if (ret) {
5581                 GEM_BUG_ON(ret == -EIO);
5582                 goto err_unlock;
5583         }
5584
5585         ret = i915_gem_init_scratch(dev_priv,
5586                                     IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5587         if (ret) {
5588                 GEM_BUG_ON(ret == -EIO);
5589                 goto err_ggtt;
5590         }
5591
5592         ret = i915_gem_contexts_init(dev_priv);
5593         if (ret) {
5594                 GEM_BUG_ON(ret == -EIO);
5595                 goto err_scratch;
5596         }
5597
5598         ret = intel_engines_init(dev_priv);
5599         if (ret) {
5600                 GEM_BUG_ON(ret == -EIO);
5601                 goto err_context;
5602         }
5603
5604         intel_init_gt_powersave(dev_priv);
5605
5606         ret = intel_uc_init(dev_priv);
5607         if (ret)
5608                 goto err_pm;
5609
5610         ret = i915_gem_init_hw(dev_priv);
5611         if (ret)
5612                 goto err_uc_init;
5613
5614         /*
5615          * Despite its name intel_init_clock_gating applies both display
5616          * clock gating workarounds; GT mmio workarounds and the occasional
5617          * GT power context workaround. Worse, sometimes it includes a context
5618          * register workaround which we need to apply before we record the
5619          * default HW state for all contexts.
5620          *
5621          * FIXME: break up the workarounds and apply them at the right time!
5622          */
5623         intel_init_clock_gating(dev_priv);
5624
5625         ret = __intel_engines_record_defaults(dev_priv);
5626         if (ret)
5627                 goto err_init_hw;
5628
5629         if (i915_inject_load_failure()) {
5630                 ret = -ENODEV;
5631                 goto err_init_hw;
5632         }
5633
5634         if (i915_inject_load_failure()) {
5635                 ret = -EIO;
5636                 goto err_init_hw;
5637         }
5638
5639         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5640         mutex_unlock(&dev_priv->drm.struct_mutex);
5641
5642         return 0;
5643
5644         /*
5645          * Unwinding is complicated by that we want to handle -EIO to mean
5646          * disable GPU submission but keep KMS alive. We want to mark the
5647          * HW as irrevisibly wedged, but keep enough state around that the
5648          * driver doesn't explode during runtime.
5649          */
5650 err_init_hw:
5651         mutex_unlock(&dev_priv->drm.struct_mutex);
5652
5653         WARN_ON(i915_gem_suspend(dev_priv));
5654         i915_gem_suspend_late(dev_priv);
5655
5656         i915_gem_drain_workqueue(dev_priv);
5657
5658         mutex_lock(&dev_priv->drm.struct_mutex);
5659         intel_uc_fini_hw(dev_priv);
5660 err_uc_init:
5661         intel_uc_fini(dev_priv);
5662 err_pm:
5663         if (ret != -EIO) {
5664                 intel_cleanup_gt_powersave(dev_priv);
5665                 i915_gem_cleanup_engines(dev_priv);
5666         }
5667 err_context:
5668         if (ret != -EIO)
5669                 i915_gem_contexts_fini(dev_priv);
5670 err_scratch:
5671         i915_gem_fini_scratch(dev_priv);
5672 err_ggtt:
5673 err_unlock:
5674         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5675         mutex_unlock(&dev_priv->drm.struct_mutex);
5676
5677 err_uc_misc:
5678         intel_uc_fini_misc(dev_priv);
5679
5680         if (ret != -EIO)
5681                 i915_gem_cleanup_userptr(dev_priv);
5682
5683         if (ret == -EIO) {
5684                 mutex_lock(&dev_priv->drm.struct_mutex);
5685
5686                 /*
5687                  * Allow engine initialisation to fail by marking the GPU as
5688                  * wedged. But we only want to do this where the GPU is angry,
5689                  * for all other failure, such as an allocation failure, bail.
5690                  */
5691                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5692                         i915_load_error(dev_priv,
5693                                         "Failed to initialize GPU, declaring it wedged!\n");
5694                         i915_gem_set_wedged(dev_priv);
5695                 }
5696
5697                 /* Minimal basic recovery for KMS */
5698                 ret = i915_ggtt_enable_hw(dev_priv);
5699                 i915_gem_restore_gtt_mappings(dev_priv);
5700                 i915_gem_restore_fences(dev_priv);
5701                 intel_init_clock_gating(dev_priv);
5702
5703                 mutex_unlock(&dev_priv->drm.struct_mutex);
5704         }
5705
5706         i915_gem_drain_freed_objects(dev_priv);
5707         return ret;
5708 }
5709
5710 void i915_gem_fini(struct drm_i915_private *dev_priv)
5711 {
5712         i915_gem_suspend_late(dev_priv);
5713         intel_disable_gt_powersave(dev_priv);
5714
5715         /* Flush any outstanding unpin_work. */
5716         i915_gem_drain_workqueue(dev_priv);
5717
5718         mutex_lock(&dev_priv->drm.struct_mutex);
5719         intel_uc_fini_hw(dev_priv);
5720         intel_uc_fini(dev_priv);
5721         i915_gem_cleanup_engines(dev_priv);
5722         i915_gem_contexts_fini(dev_priv);
5723         i915_gem_fini_scratch(dev_priv);
5724         mutex_unlock(&dev_priv->drm.struct_mutex);
5725
5726         intel_wa_list_free(&dev_priv->gt_wa_list);
5727
5728         intel_cleanup_gt_powersave(dev_priv);
5729
5730         intel_uc_fini_misc(dev_priv);
5731         i915_gem_cleanup_userptr(dev_priv);
5732
5733         i915_gem_drain_freed_objects(dev_priv);
5734
5735         WARN_ON(!list_empty(&dev_priv->contexts.list));
5736 }
5737
5738 void i915_gem_init_mmio(struct drm_i915_private *i915)
5739 {
5740         i915_gem_sanitize(i915);
5741 }
5742
5743 void
5744 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5745 {
5746         struct intel_engine_cs *engine;
5747         enum intel_engine_id id;
5748
5749         for_each_engine(engine, dev_priv, id)
5750                 dev_priv->gt.cleanup_engine(engine);
5751 }
5752
5753 void
5754 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5755 {
5756         int i;
5757
5758         if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5759             !IS_CHERRYVIEW(dev_priv))
5760                 dev_priv->num_fence_regs = 32;
5761         else if (INTEL_GEN(dev_priv) >= 4 ||
5762                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5763                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5764                 dev_priv->num_fence_regs = 16;
5765         else
5766                 dev_priv->num_fence_regs = 8;
5767
5768         if (intel_vgpu_active(dev_priv))
5769                 dev_priv->num_fence_regs =
5770                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5771
5772         /* Initialize fence registers to zero */
5773         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5774                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5775
5776                 fence->i915 = dev_priv;
5777                 fence->id = i;
5778                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5779         }
5780         i915_gem_restore_fences(dev_priv);
5781
5782         i915_gem_detect_bit_6_swizzle(dev_priv);
5783 }
5784
5785 static void i915_gem_init__mm(struct drm_i915_private *i915)
5786 {
5787         spin_lock_init(&i915->mm.object_stat_lock);
5788         spin_lock_init(&i915->mm.obj_lock);
5789         spin_lock_init(&i915->mm.free_lock);
5790
5791         init_llist_head(&i915->mm.free_list);
5792
5793         INIT_LIST_HEAD(&i915->mm.unbound_list);
5794         INIT_LIST_HEAD(&i915->mm.bound_list);
5795         INIT_LIST_HEAD(&i915->mm.fence_list);
5796         INIT_LIST_HEAD(&i915->mm.userfault_list);
5797
5798         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5799 }
5800
5801 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5802 {
5803         int err = -ENOMEM;
5804
5805         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5806         if (!dev_priv->objects)
5807                 goto err_out;
5808
5809         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5810         if (!dev_priv->vmas)
5811                 goto err_objects;
5812
5813         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5814         if (!dev_priv->luts)
5815                 goto err_vmas;
5816
5817         dev_priv->requests = KMEM_CACHE(i915_request,
5818                                         SLAB_HWCACHE_ALIGN |
5819                                         SLAB_RECLAIM_ACCOUNT |
5820                                         SLAB_TYPESAFE_BY_RCU);
5821         if (!dev_priv->requests)
5822                 goto err_luts;
5823
5824         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5825                                             SLAB_HWCACHE_ALIGN |
5826                                             SLAB_RECLAIM_ACCOUNT);
5827         if (!dev_priv->dependencies)
5828                 goto err_requests;
5829
5830         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5831         if (!dev_priv->priorities)
5832                 goto err_dependencies;
5833
5834         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5835         INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5836         INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5837
5838         i915_gem_init__mm(dev_priv);
5839
5840         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5841                           i915_gem_retire_work_handler);
5842         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5843                           i915_gem_idle_work_handler);
5844         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5845         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5846
5847         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5848
5849         spin_lock_init(&dev_priv->fb_tracking.lock);
5850
5851         err = i915_gemfs_init(dev_priv);
5852         if (err)
5853                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5854
5855         return 0;
5856
5857 err_dependencies:
5858         kmem_cache_destroy(dev_priv->dependencies);
5859 err_requests:
5860         kmem_cache_destroy(dev_priv->requests);
5861 err_luts:
5862         kmem_cache_destroy(dev_priv->luts);
5863 err_vmas:
5864         kmem_cache_destroy(dev_priv->vmas);
5865 err_objects:
5866         kmem_cache_destroy(dev_priv->objects);
5867 err_out:
5868         return err;
5869 }
5870
5871 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5872 {
5873         i915_gem_drain_freed_objects(dev_priv);
5874         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5875         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5876         WARN_ON(dev_priv->mm.object_count);
5877         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5878
5879         kmem_cache_destroy(dev_priv->priorities);
5880         kmem_cache_destroy(dev_priv->dependencies);
5881         kmem_cache_destroy(dev_priv->requests);
5882         kmem_cache_destroy(dev_priv->luts);
5883         kmem_cache_destroy(dev_priv->vmas);
5884         kmem_cache_destroy(dev_priv->objects);
5885
5886         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5887         rcu_barrier();
5888
5889         i915_gemfs_fini(dev_priv);
5890 }
5891
5892 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5893 {
5894         /* Discard all purgeable objects, let userspace recover those as
5895          * required after resuming.
5896          */
5897         i915_gem_shrink_all(dev_priv);
5898
5899         return 0;
5900 }
5901
5902 int i915_gem_freeze_late(struct drm_i915_private *i915)
5903 {
5904         struct drm_i915_gem_object *obj;
5905         struct list_head *phases[] = {
5906                 &i915->mm.unbound_list,
5907                 &i915->mm.bound_list,
5908                 NULL
5909         }, **phase;
5910
5911         /*
5912          * Called just before we write the hibernation image.
5913          *
5914          * We need to update the domain tracking to reflect that the CPU
5915          * will be accessing all the pages to create and restore from the
5916          * hibernation, and so upon restoration those pages will be in the
5917          * CPU domain.
5918          *
5919          * To make sure the hibernation image contains the latest state,
5920          * we update that state just before writing out the image.
5921          *
5922          * To try and reduce the hibernation image, we manually shrink
5923          * the objects as well, see i915_gem_freeze()
5924          */
5925
5926         i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5927         i915_gem_drain_freed_objects(i915);
5928
5929         mutex_lock(&i915->drm.struct_mutex);
5930         for (phase = phases; *phase; phase++) {
5931                 list_for_each_entry(obj, *phase, mm.link)
5932                         WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5933         }
5934         mutex_unlock(&i915->drm.struct_mutex);
5935
5936         return 0;
5937 }
5938
5939 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5940 {
5941         struct drm_i915_file_private *file_priv = file->driver_priv;
5942         struct i915_request *request;
5943
5944         /* Clean up our request list when the client is going away, so that
5945          * later retire_requests won't dereference our soon-to-be-gone
5946          * file_priv.
5947          */
5948         spin_lock(&file_priv->mm.lock);
5949         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5950                 request->file_priv = NULL;
5951         spin_unlock(&file_priv->mm.lock);
5952 }
5953
5954 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5955 {
5956         struct drm_i915_file_private *file_priv;
5957         int ret;
5958
5959         DRM_DEBUG("\n");
5960
5961         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5962         if (!file_priv)
5963                 return -ENOMEM;
5964
5965         file->driver_priv = file_priv;
5966         file_priv->dev_priv = i915;
5967         file_priv->file = file;
5968
5969         spin_lock_init(&file_priv->mm.lock);
5970         INIT_LIST_HEAD(&file_priv->mm.request_list);
5971
5972         file_priv->bsd_engine = -1;
5973         file_priv->hang_timestamp = jiffies;
5974
5975         ret = i915_gem_context_open(i915, file);
5976         if (ret)
5977                 kfree(file_priv);
5978
5979         return ret;
5980 }
5981
5982 /**
5983  * i915_gem_track_fb - update frontbuffer tracking
5984  * @old: current GEM buffer for the frontbuffer slots
5985  * @new: new GEM buffer for the frontbuffer slots
5986  * @frontbuffer_bits: bitmask of frontbuffer slots
5987  *
5988  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5989  * from @old and setting them in @new. Both @old and @new can be NULL.
5990  */
5991 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5992                        struct drm_i915_gem_object *new,
5993                        unsigned frontbuffer_bits)
5994 {
5995         /* Control of individual bits within the mask are guarded by
5996          * the owning plane->mutex, i.e. we can never see concurrent
5997          * manipulation of individual bits. But since the bitfield as a whole
5998          * is updated using RMW, we need to use atomics in order to update
5999          * the bits.
6000          */
6001         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6002                      BITS_PER_TYPE(atomic_t));
6003
6004         if (old) {
6005                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6006                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6007         }
6008
6009         if (new) {
6010                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6011                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6012         }
6013 }
6014
6015 /* Allocate a new GEM object and fill it with the supplied data */
6016 struct drm_i915_gem_object *
6017 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6018                                  const void *data, size_t size)
6019 {
6020         struct drm_i915_gem_object *obj;
6021         struct file *file;
6022         size_t offset;
6023         int err;
6024
6025         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6026         if (IS_ERR(obj))
6027                 return obj;
6028
6029         GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6030
6031         file = obj->base.filp;
6032         offset = 0;
6033         do {
6034                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6035                 struct page *page;
6036                 void *pgdata, *vaddr;
6037
6038                 err = pagecache_write_begin(file, file->f_mapping,
6039                                             offset, len, 0,
6040                                             &page, &pgdata);
6041                 if (err < 0)
6042                         goto fail;
6043
6044                 vaddr = kmap(page);
6045                 memcpy(vaddr, data, len);
6046                 kunmap(page);
6047
6048                 err = pagecache_write_end(file, file->f_mapping,
6049                                           offset, len, len,
6050                                           page, pgdata);
6051                 if (err < 0)
6052                         goto fail;
6053
6054                 size -= len;
6055                 data += len;
6056                 offset += len;
6057         } while (size);
6058
6059         return obj;
6060
6061 fail:
6062         i915_gem_object_put(obj);
6063         return ERR_PTR(err);
6064 }
6065
6066 struct scatterlist *
6067 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6068                        unsigned int n,
6069                        unsigned int *offset)
6070 {
6071         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6072         struct scatterlist *sg;
6073         unsigned int idx, count;
6074
6075         might_sleep();
6076         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6077         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6078
6079         /* As we iterate forward through the sg, we record each entry in a
6080          * radixtree for quick repeated (backwards) lookups. If we have seen
6081          * this index previously, we will have an entry for it.
6082          *
6083          * Initial lookup is O(N), but this is amortized to O(1) for
6084          * sequential page access (where each new request is consecutive
6085          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6086          * i.e. O(1) with a large constant!
6087          */
6088         if (n < READ_ONCE(iter->sg_idx))
6089                 goto lookup;
6090
6091         mutex_lock(&iter->lock);
6092
6093         /* We prefer to reuse the last sg so that repeated lookup of this
6094          * (or the subsequent) sg are fast - comparing against the last
6095          * sg is faster than going through the radixtree.
6096          */
6097
6098         sg = iter->sg_pos;
6099         idx = iter->sg_idx;
6100         count = __sg_page_count(sg);
6101
6102         while (idx + count <= n) {
6103                 void *entry;
6104                 unsigned long i;
6105                 int ret;
6106
6107                 /* If we cannot allocate and insert this entry, or the
6108                  * individual pages from this range, cancel updating the
6109                  * sg_idx so that on this lookup we are forced to linearly
6110                  * scan onwards, but on future lookups we will try the
6111                  * insertion again (in which case we need to be careful of
6112                  * the error return reporting that we have already inserted
6113                  * this index).
6114                  */
6115                 ret = radix_tree_insert(&iter->radix, idx, sg);
6116                 if (ret && ret != -EEXIST)
6117                         goto scan;
6118
6119                 entry = xa_mk_value(idx);
6120                 for (i = 1; i < count; i++) {
6121                         ret = radix_tree_insert(&iter->radix, idx + i, entry);
6122                         if (ret && ret != -EEXIST)
6123                                 goto scan;
6124                 }
6125
6126                 idx += count;
6127                 sg = ____sg_next(sg);
6128                 count = __sg_page_count(sg);
6129         }
6130
6131 scan:
6132         iter->sg_pos = sg;
6133         iter->sg_idx = idx;
6134
6135         mutex_unlock(&iter->lock);
6136
6137         if (unlikely(n < idx)) /* insertion completed by another thread */
6138                 goto lookup;
6139
6140         /* In case we failed to insert the entry into the radixtree, we need
6141          * to look beyond the current sg.
6142          */
6143         while (idx + count <= n) {
6144                 idx += count;
6145                 sg = ____sg_next(sg);
6146                 count = __sg_page_count(sg);
6147         }
6148
6149         *offset = n - idx;
6150         return sg;
6151
6152 lookup:
6153         rcu_read_lock();
6154
6155         sg = radix_tree_lookup(&iter->radix, n);
6156         GEM_BUG_ON(!sg);
6157
6158         /* If this index is in the middle of multi-page sg entry,
6159          * the radix tree will contain a value entry that points
6160          * to the start of that range. We will return the pointer to
6161          * the base page and the offset of this page within the
6162          * sg entry's range.
6163          */
6164         *offset = 0;
6165         if (unlikely(xa_is_value(sg))) {
6166                 unsigned long base = xa_to_value(sg);
6167
6168                 sg = radix_tree_lookup(&iter->radix, base);
6169                 GEM_BUG_ON(!sg);
6170
6171                 *offset = n - base;
6172         }
6173
6174         rcu_read_unlock();
6175
6176         return sg;
6177 }
6178
6179 struct page *
6180 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6181 {
6182         struct scatterlist *sg;
6183         unsigned int offset;
6184
6185         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6186
6187         sg = i915_gem_object_get_sg(obj, n, &offset);
6188         return nth_page(sg_page(sg), offset);
6189 }
6190
6191 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6192 struct page *
6193 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6194                                unsigned int n)
6195 {
6196         struct page *page;
6197
6198         page = i915_gem_object_get_page(obj, n);
6199         if (!obj->mm.dirty)
6200                 set_page_dirty(page);
6201
6202         return page;
6203 }
6204
6205 dma_addr_t
6206 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6207                                 unsigned long n)
6208 {
6209         struct scatterlist *sg;
6210         unsigned int offset;
6211
6212         sg = i915_gem_object_get_sg(obj, n, &offset);
6213         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6214 }
6215
6216 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6217 {
6218         struct sg_table *pages;
6219         int err;
6220
6221         if (align > obj->base.size)
6222                 return -EINVAL;
6223
6224         if (obj->ops == &i915_gem_phys_ops)
6225                 return 0;
6226
6227         if (obj->ops != &i915_gem_object_ops)
6228                 return -EINVAL;
6229
6230         err = i915_gem_object_unbind(obj);
6231         if (err)
6232                 return err;
6233
6234         mutex_lock(&obj->mm.lock);
6235
6236         if (obj->mm.madv != I915_MADV_WILLNEED) {
6237                 err = -EFAULT;
6238                 goto err_unlock;
6239         }
6240
6241         if (obj->mm.quirked) {
6242                 err = -EFAULT;
6243                 goto err_unlock;
6244         }
6245
6246         if (obj->mm.mapping) {
6247                 err = -EBUSY;
6248                 goto err_unlock;
6249         }
6250
6251         pages = __i915_gem_object_unset_pages(obj);
6252
6253         obj->ops = &i915_gem_phys_ops;
6254
6255         err = ____i915_gem_object_get_pages(obj);
6256         if (err)
6257                 goto err_xfer;
6258
6259         /* Perma-pin (until release) the physical set of pages */
6260         __i915_gem_object_pin_pages(obj);
6261
6262         if (!IS_ERR_OR_NULL(pages))
6263                 i915_gem_object_ops.put_pages(obj, pages);
6264         mutex_unlock(&obj->mm.lock);
6265         return 0;
6266
6267 err_xfer:
6268         obj->ops = &i915_gem_object_ops;
6269         if (!IS_ERR_OR_NULL(pages)) {
6270                 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6271
6272                 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6273         }
6274 err_unlock:
6275         mutex_unlock(&obj->mm.lock);
6276         return err;
6277 }
6278
6279 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6280 #include "selftests/scatterlist.c"
6281 #include "selftests/mock_gem_device.c"
6282 #include "selftests/huge_gem_object.c"
6283 #include "selftests/huge_pages.c"
6284 #include "selftests/i915_gem_object.c"
6285 #include "selftests/i915_gem_coherency.c"
6286 #include "selftests/i915_gem.c"
6287 #endif