Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq, rps);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407                                  unsigned int flags,
408                                  long timeout,
409                                  struct intel_rps_client *rps)
410 {
411         unsigned int seq = __read_seqcount_begin(&resv->seq);
412         struct dma_fence *excl;
413         bool prune_fences = false;
414
415         if (flags & I915_WAIT_ALL) {
416                 struct dma_fence **shared;
417                 unsigned int count, i;
418                 int ret;
419
420                 ret = reservation_object_get_fences_rcu(resv,
421                                                         &excl, &count, &shared);
422                 if (ret)
423                         return ret;
424
425                 for (i = 0; i < count; i++) {
426                         timeout = i915_gem_object_wait_fence(shared[i],
427                                                              flags, timeout,
428                                                              rps);
429                         if (timeout < 0)
430                                 break;
431
432                         dma_fence_put(shared[i]);
433                 }
434
435                 for (; i < count; i++)
436                         dma_fence_put(shared[i]);
437                 kfree(shared);
438
439                 prune_fences = count && timeout >= 0;
440         } else {
441                 excl = reservation_object_get_excl_rcu(resv);
442         }
443
444         if (excl && timeout >= 0) {
445                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446                 prune_fences = timeout >= 0;
447         }
448
449         dma_fence_put(excl);
450
451         /* Oportunistically prune the fences iff we know they have *all* been
452          * signaled and that the reservation object has not been changed (i.e.
453          * no new fences have been added).
454          */
455         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456                 if (reservation_object_trylock(resv)) {
457                         if (!__read_seqcount_retry(&resv->seq, seq))
458                                 reservation_object_add_excl_fence(resv, NULL);
459                         reservation_object_unlock(resv);
460                 }
461         }
462
463         return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468         struct drm_i915_gem_request *rq;
469         struct intel_engine_cs *engine;
470
471         if (!dma_fence_is_i915(fence))
472                 return;
473
474         rq = to_request(fence);
475         engine = rq->engine;
476         if (!engine->schedule)
477                 return;
478
479         engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         /* Recurse once into a fence-array */
485         if (dma_fence_is_array(fence)) {
486                 struct dma_fence_array *array = to_dma_fence_array(fence);
487                 int i;
488
489                 for (i = 0; i < array->num_fences; i++)
490                         __fence_set_priority(array->fences[i], prio);
491         } else {
492                 __fence_set_priority(fence, prio);
493         }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498                               unsigned int flags,
499                               int prio)
500 {
501         struct dma_fence *excl;
502
503         if (flags & I915_WAIT_ALL) {
504                 struct dma_fence **shared;
505                 unsigned int count, i;
506                 int ret;
507
508                 ret = reservation_object_get_fences_rcu(obj->resv,
509                                                         &excl, &count, &shared);
510                 if (ret)
511                         return ret;
512
513                 for (i = 0; i < count; i++) {
514                         fence_set_priority(shared[i], prio);
515                         dma_fence_put(shared[i]);
516                 }
517
518                 kfree(shared);
519         } else {
520                 excl = reservation_object_get_excl_rcu(obj->resv);
521         }
522
523         if (excl) {
524                 fence_set_priority(excl, prio);
525                 dma_fence_put(excl);
526         }
527         return 0;
528 }
529
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539                      unsigned int flags,
540                      long timeout,
541                      struct intel_rps_client *rps)
542 {
543         might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545         GEM_BUG_ON(debug_locks &&
546                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547                    !!(flags & I915_WAIT_LOCKED));
548 #endif
549         GEM_BUG_ON(timeout < 0);
550
551         timeout = i915_gem_object_wait_reservation(obj->resv,
552                                                    flags, timeout,
553                                                    rps);
554         return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559         struct drm_i915_file_private *fpriv = file->driver_priv;
560
561         return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566                      struct drm_i915_gem_pwrite *args,
567                      struct drm_file *file)
568 {
569         void *vaddr = obj->phys_handle->vaddr + args->offset;
570         char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572         /* We manually control the domain here and pretend that it
573          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574          */
575         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576         if (copy_from_user(vaddr, user_data, args->size))
577                 return -EFAULT;
578
579         drm_clflush_virt_range(vaddr, args->size);
580         i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582         intel_fb_obj_flush(obj, ORIGIN_CPU);
583         return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594         kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599                 struct drm_i915_private *dev_priv,
600                 uint64_t size,
601                 uint32_t *handle_p)
602 {
603         struct drm_i915_gem_object *obj;
604         int ret;
605         u32 handle;
606
607         size = roundup(size, PAGE_SIZE);
608         if (size == 0)
609                 return -EINVAL;
610
611         /* Allocate the new object */
612         obj = i915_gem_object_create(dev_priv, size);
613         if (IS_ERR(obj))
614                 return PTR_ERR(obj);
615
616         ret = drm_gem_handle_create(file, &obj->base, &handle);
617         /* drop reference from allocate - handle holds it now */
618         i915_gem_object_put(obj);
619         if (ret)
620                 return ret;
621
622         *handle_p = handle;
623         return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628                      struct drm_device *dev,
629                      struct drm_mode_create_dumb *args)
630 {
631         /* have to work out size/pitch and return them */
632         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633         args->size = args->pitch * args->height;
634         return i915_gem_create(file, to_i915(dev),
635                                args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640         return !(obj->cache_level == I915_CACHE_NONE ||
641                  obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652                       struct drm_file *file)
653 {
654         struct drm_i915_private *dev_priv = to_i915(dev);
655         struct drm_i915_gem_create *args = data;
656
657         i915_gem_flush_free_objects(dev_priv);
658
659         return i915_gem_create(file, dev_priv,
660                                args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666         return (domain == I915_GEM_DOMAIN_GTT ?
667                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675         if (!(obj->base.write_domain & flush_domains))
676                 return;
677
678         /* No actual flushing is required for the GTT write domain.  Writes
679          * to it "immediately" go to main memory as far as we know, so there's
680          * no chipset flush.  It also doesn't land in render cache.
681          *
682          * However, we do have to enforce the order so that all writes through
683          * the GTT land before any writes to the device, such as updates to
684          * the GATT itself.
685          *
686          * We also have to wait a bit for the writes to land from the GTT.
687          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688          * timing. This issue has only been observed when switching quickly
689          * between GTT writes and CPU reads from inside the kernel on recent hw,
690          * and it appears to only affect discrete GTT blocks (i.e. on LLC
691          * system agents we cannot reproduce this behaviour).
692          */
693         wmb();
694
695         switch (obj->base.write_domain) {
696         case I915_GEM_DOMAIN_GTT:
697                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
699                                 spin_lock_irq(&dev_priv->uncore.lock);
700                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701                                 spin_unlock_irq(&dev_priv->uncore.lock);
702                                 intel_runtime_pm_put(dev_priv);
703                         }
704                 }
705
706                 intel_fb_obj_flush(obj,
707                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
708                 break;
709
710         case I915_GEM_DOMAIN_CPU:
711                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
712                 break;
713
714         case I915_GEM_DOMAIN_RENDER:
715                 if (gpu_write_needs_clflush(obj))
716                         obj->cache_dirty = true;
717                 break;
718         }
719
720         obj->base.write_domain = 0;
721 }
722
723 static inline int
724 __copy_to_user_swizzled(char __user *cpu_vaddr,
725                         const char *gpu_vaddr, int gpu_offset,
726                         int length)
727 {
728         int ret, cpu_offset = 0;
729
730         while (length > 0) {
731                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
732                 int this_length = min(cacheline_end - gpu_offset, length);
733                 int swizzled_gpu_offset = gpu_offset ^ 64;
734
735                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
736                                      gpu_vaddr + swizzled_gpu_offset,
737                                      this_length);
738                 if (ret)
739                         return ret + length;
740
741                 cpu_offset += this_length;
742                 gpu_offset += this_length;
743                 length -= this_length;
744         }
745
746         return 0;
747 }
748
749 static inline int
750 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
751                           const char __user *cpu_vaddr,
752                           int length)
753 {
754         int ret, cpu_offset = 0;
755
756         while (length > 0) {
757                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
758                 int this_length = min(cacheline_end - gpu_offset, length);
759                 int swizzled_gpu_offset = gpu_offset ^ 64;
760
761                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
762                                        cpu_vaddr + cpu_offset,
763                                        this_length);
764                 if (ret)
765                         return ret + length;
766
767                 cpu_offset += this_length;
768                 gpu_offset += this_length;
769                 length -= this_length;
770         }
771
772         return 0;
773 }
774
775 /*
776  * Pins the specified object's pages and synchronizes the object with
777  * GPU accesses. Sets needs_clflush to non-zero if the caller should
778  * flush the object from the CPU cache.
779  */
780 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781                                     unsigned int *needs_clflush)
782 {
783         int ret;
784
785         lockdep_assert_held(&obj->base.dev->struct_mutex);
786
787         *needs_clflush = 0;
788         if (!i915_gem_object_has_struct_page(obj))
789                 return -ENODEV;
790
791         ret = i915_gem_object_wait(obj,
792                                    I915_WAIT_INTERRUPTIBLE |
793                                    I915_WAIT_LOCKED,
794                                    MAX_SCHEDULE_TIMEOUT,
795                                    NULL);
796         if (ret)
797                 return ret;
798
799         ret = i915_gem_object_pin_pages(obj);
800         if (ret)
801                 return ret;
802
803         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
804             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
806                 if (ret)
807                         goto err_unpin;
808                 else
809                         goto out;
810         }
811
812         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813
814         /* If we're not in the cpu read domain, set ourself into the gtt
815          * read domain and manually flush cachelines (if required). This
816          * optimizes for the case when the gpu will dirty the data
817          * anyway again before the next pread happens.
818          */
819         if (!obj->cache_dirty &&
820             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821                 *needs_clflush = CLFLUSH_BEFORE;
822
823 out:
824         /* return with the pages pinned */
825         return 0;
826
827 err_unpin:
828         i915_gem_object_unpin_pages(obj);
829         return ret;
830 }
831
832 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
833                                      unsigned int *needs_clflush)
834 {
835         int ret;
836
837         lockdep_assert_held(&obj->base.dev->struct_mutex);
838
839         *needs_clflush = 0;
840         if (!i915_gem_object_has_struct_page(obj))
841                 return -ENODEV;
842
843         ret = i915_gem_object_wait(obj,
844                                    I915_WAIT_INTERRUPTIBLE |
845                                    I915_WAIT_LOCKED |
846                                    I915_WAIT_ALL,
847                                    MAX_SCHEDULE_TIMEOUT,
848                                    NULL);
849         if (ret)
850                 return ret;
851
852         ret = i915_gem_object_pin_pages(obj);
853         if (ret)
854                 return ret;
855
856         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
857             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
859                 if (ret)
860                         goto err_unpin;
861                 else
862                         goto out;
863         }
864
865         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866
867         /* If we're not in the cpu write domain, set ourself into the
868          * gtt write domain and manually flush cachelines (as required).
869          * This optimizes for the case when the gpu will use the data
870          * right away and we therefore have to clflush anyway.
871          */
872         if (!obj->cache_dirty) {
873                 *needs_clflush |= CLFLUSH_AFTER;
874
875                 /*
876                  * Same trick applies to invalidate partially written
877                  * cachelines read before writing.
878                  */
879                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
880                         *needs_clflush |= CLFLUSH_BEFORE;
881         }
882
883 out:
884         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
885         obj->mm.dirty = true;
886         /* return with the pages pinned */
887         return 0;
888
889 err_unpin:
890         i915_gem_object_unpin_pages(obj);
891         return ret;
892 }
893
894 static void
895 shmem_clflush_swizzled_range(char *addr, unsigned long length,
896                              bool swizzled)
897 {
898         if (unlikely(swizzled)) {
899                 unsigned long start = (unsigned long) addr;
900                 unsigned long end = (unsigned long) addr + length;
901
902                 /* For swizzling simply ensure that we always flush both
903                  * channels. Lame, but simple and it works. Swizzled
904                  * pwrite/pread is far from a hotpath - current userspace
905                  * doesn't use it at all. */
906                 start = round_down(start, 128);
907                 end = round_up(end, 128);
908
909                 drm_clflush_virt_range((void *)start, end - start);
910         } else {
911                 drm_clflush_virt_range(addr, length);
912         }
913
914 }
915
916 /* Only difference to the fast-path function is that this can handle bit17
917  * and uses non-atomic copy and kmap functions. */
918 static int
919 shmem_pread_slow(struct page *page, int offset, int length,
920                  char __user *user_data,
921                  bool page_do_bit17_swizzling, bool needs_clflush)
922 {
923         char *vaddr;
924         int ret;
925
926         vaddr = kmap(page);
927         if (needs_clflush)
928                 shmem_clflush_swizzled_range(vaddr + offset, length,
929                                              page_do_bit17_swizzling);
930
931         if (page_do_bit17_swizzling)
932                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933         else
934                 ret = __copy_to_user(user_data, vaddr + offset, length);
935         kunmap(page);
936
937         return ret ? - EFAULT : 0;
938 }
939
940 static int
941 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
942             bool page_do_bit17_swizzling, bool needs_clflush)
943 {
944         int ret;
945
946         ret = -ENODEV;
947         if (!page_do_bit17_swizzling) {
948                 char *vaddr = kmap_atomic(page);
949
950                 if (needs_clflush)
951                         drm_clflush_virt_range(vaddr + offset, length);
952                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
953                 kunmap_atomic(vaddr);
954         }
955         if (ret == 0)
956                 return 0;
957
958         return shmem_pread_slow(page, offset, length, user_data,
959                                 page_do_bit17_swizzling, needs_clflush);
960 }
961
962 static int
963 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
964                      struct drm_i915_gem_pread *args)
965 {
966         char __user *user_data;
967         u64 remain;
968         unsigned int obj_do_bit17_swizzling;
969         unsigned int needs_clflush;
970         unsigned int idx, offset;
971         int ret;
972
973         obj_do_bit17_swizzling = 0;
974         if (i915_gem_object_needs_bit17_swizzle(obj))
975                 obj_do_bit17_swizzling = BIT(17);
976
977         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
978         if (ret)
979                 return ret;
980
981         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
982         mutex_unlock(&obj->base.dev->struct_mutex);
983         if (ret)
984                 return ret;
985
986         remain = args->size;
987         user_data = u64_to_user_ptr(args->data_ptr);
988         offset = offset_in_page(args->offset);
989         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
990                 struct page *page = i915_gem_object_get_page(obj, idx);
991                 int length;
992
993                 length = remain;
994                 if (offset + length > PAGE_SIZE)
995                         length = PAGE_SIZE - offset;
996
997                 ret = shmem_pread(page, offset, length, user_data,
998                                   page_to_phys(page) & obj_do_bit17_swizzling,
999                                   needs_clflush);
1000                 if (ret)
1001                         break;
1002
1003                 remain -= length;
1004                 user_data += length;
1005                 offset = 0;
1006         }
1007
1008         i915_gem_obj_finish_shmem_access(obj);
1009         return ret;
1010 }
1011
1012 static inline bool
1013 gtt_user_read(struct io_mapping *mapping,
1014               loff_t base, int offset,
1015               char __user *user_data, int length)
1016 {
1017         void *vaddr;
1018         unsigned long unwritten;
1019
1020         /* We can use the cpu mem copy function because this is X86. */
1021         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1022         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1023         io_mapping_unmap_atomic(vaddr);
1024         if (unwritten) {
1025                 vaddr = (void __force *)
1026                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1027                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1028                 io_mapping_unmap(vaddr);
1029         }
1030         return unwritten;
1031 }
1032
1033 static int
1034 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1035                    const struct drm_i915_gem_pread *args)
1036 {
1037         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1038         struct i915_ggtt *ggtt = &i915->ggtt;
1039         struct drm_mm_node node;
1040         struct i915_vma *vma;
1041         void __user *user_data;
1042         u64 remain, offset;
1043         int ret;
1044
1045         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1046         if (ret)
1047                 return ret;
1048
1049         intel_runtime_pm_get(i915);
1050         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1051                                        PIN_MAPPABLE | PIN_NONBLOCK);
1052         if (!IS_ERR(vma)) {
1053                 node.start = i915_ggtt_offset(vma);
1054                 node.allocated = false;
1055                 ret = i915_vma_put_fence(vma);
1056                 if (ret) {
1057                         i915_vma_unpin(vma);
1058                         vma = ERR_PTR(ret);
1059                 }
1060         }
1061         if (IS_ERR(vma)) {
1062                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1063                 if (ret)
1064                         goto out_unlock;
1065                 GEM_BUG_ON(!node.allocated);
1066         }
1067
1068         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1069         if (ret)
1070                 goto out_unpin;
1071
1072         mutex_unlock(&i915->drm.struct_mutex);
1073
1074         user_data = u64_to_user_ptr(args->data_ptr);
1075         remain = args->size;
1076         offset = args->offset;
1077
1078         while (remain > 0) {
1079                 /* Operation in this page
1080                  *
1081                  * page_base = page offset within aperture
1082                  * page_offset = offset within page
1083                  * page_length = bytes to copy for this page
1084                  */
1085                 u32 page_base = node.start;
1086                 unsigned page_offset = offset_in_page(offset);
1087                 unsigned page_length = PAGE_SIZE - page_offset;
1088                 page_length = remain < page_length ? remain : page_length;
1089                 if (node.allocated) {
1090                         wmb();
1091                         ggtt->base.insert_page(&ggtt->base,
1092                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1093                                                node.start, I915_CACHE_NONE, 0);
1094                         wmb();
1095                 } else {
1096                         page_base += offset & PAGE_MASK;
1097                 }
1098
1099                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1100                                   user_data, page_length)) {
1101                         ret = -EFAULT;
1102                         break;
1103                 }
1104
1105                 remain -= page_length;
1106                 user_data += page_length;
1107                 offset += page_length;
1108         }
1109
1110         mutex_lock(&i915->drm.struct_mutex);
1111 out_unpin:
1112         if (node.allocated) {
1113                 wmb();
1114                 ggtt->base.clear_range(&ggtt->base,
1115                                        node.start, node.size);
1116                 remove_mappable_node(&node);
1117         } else {
1118                 i915_vma_unpin(vma);
1119         }
1120 out_unlock:
1121         intel_runtime_pm_put(i915);
1122         mutex_unlock(&i915->drm.struct_mutex);
1123
1124         return ret;
1125 }
1126
1127 /**
1128  * Reads data from the object referenced by handle.
1129  * @dev: drm device pointer
1130  * @data: ioctl data blob
1131  * @file: drm file pointer
1132  *
1133  * On error, the contents of *data are undefined.
1134  */
1135 int
1136 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1137                      struct drm_file *file)
1138 {
1139         struct drm_i915_gem_pread *args = data;
1140         struct drm_i915_gem_object *obj;
1141         int ret;
1142
1143         if (args->size == 0)
1144                 return 0;
1145
1146         if (!access_ok(VERIFY_WRITE,
1147                        u64_to_user_ptr(args->data_ptr),
1148                        args->size))
1149                 return -EFAULT;
1150
1151         obj = i915_gem_object_lookup(file, args->handle);
1152         if (!obj)
1153                 return -ENOENT;
1154
1155         /* Bounds check source.  */
1156         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1157                 ret = -EINVAL;
1158                 goto out;
1159         }
1160
1161         trace_i915_gem_object_pread(obj, args->offset, args->size);
1162
1163         ret = i915_gem_object_wait(obj,
1164                                    I915_WAIT_INTERRUPTIBLE,
1165                                    MAX_SCHEDULE_TIMEOUT,
1166                                    to_rps_client(file));
1167         if (ret)
1168                 goto out;
1169
1170         ret = i915_gem_object_pin_pages(obj);
1171         if (ret)
1172                 goto out;
1173
1174         ret = i915_gem_shmem_pread(obj, args);
1175         if (ret == -EFAULT || ret == -ENODEV)
1176                 ret = i915_gem_gtt_pread(obj, args);
1177
1178         i915_gem_object_unpin_pages(obj);
1179 out:
1180         i915_gem_object_put(obj);
1181         return ret;
1182 }
1183
1184 /* This is the fast write path which cannot handle
1185  * page faults in the source data
1186  */
1187
1188 static inline bool
1189 ggtt_write(struct io_mapping *mapping,
1190            loff_t base, int offset,
1191            char __user *user_data, int length)
1192 {
1193         void *vaddr;
1194         unsigned long unwritten;
1195
1196         /* We can use the cpu mem copy function because this is X86. */
1197         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1198         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199                                                       user_data, length);
1200         io_mapping_unmap_atomic(vaddr);
1201         if (unwritten) {
1202                 vaddr = (void __force *)
1203                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1204                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1205                 io_mapping_unmap(vaddr);
1206         }
1207
1208         return unwritten;
1209 }
1210
1211 /**
1212  * This is the fast pwrite path, where we copy the data directly from the
1213  * user into the GTT, uncached.
1214  * @obj: i915 GEM object
1215  * @args: pwrite arguments structure
1216  */
1217 static int
1218 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1219                          const struct drm_i915_gem_pwrite *args)
1220 {
1221         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222         struct i915_ggtt *ggtt = &i915->ggtt;
1223         struct drm_mm_node node;
1224         struct i915_vma *vma;
1225         u64 remain, offset;
1226         void __user *user_data;
1227         int ret;
1228
1229         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1230         if (ret)
1231                 return ret;
1232
1233         intel_runtime_pm_get(i915);
1234         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1235                                        PIN_MAPPABLE | PIN_NONBLOCK);
1236         if (!IS_ERR(vma)) {
1237                 node.start = i915_ggtt_offset(vma);
1238                 node.allocated = false;
1239                 ret = i915_vma_put_fence(vma);
1240                 if (ret) {
1241                         i915_vma_unpin(vma);
1242                         vma = ERR_PTR(ret);
1243                 }
1244         }
1245         if (IS_ERR(vma)) {
1246                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1247                 if (ret)
1248                         goto out_unlock;
1249                 GEM_BUG_ON(!node.allocated);
1250         }
1251
1252         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1253         if (ret)
1254                 goto out_unpin;
1255
1256         mutex_unlock(&i915->drm.struct_mutex);
1257
1258         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259
1260         user_data = u64_to_user_ptr(args->data_ptr);
1261         offset = args->offset;
1262         remain = args->size;
1263         while (remain) {
1264                 /* Operation in this page
1265                  *
1266                  * page_base = page offset within aperture
1267                  * page_offset = offset within page
1268                  * page_length = bytes to copy for this page
1269                  */
1270                 u32 page_base = node.start;
1271                 unsigned int page_offset = offset_in_page(offset);
1272                 unsigned int page_length = PAGE_SIZE - page_offset;
1273                 page_length = remain < page_length ? remain : page_length;
1274                 if (node.allocated) {
1275                         wmb(); /* flush the write before we modify the GGTT */
1276                         ggtt->base.insert_page(&ggtt->base,
1277                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1278                                                node.start, I915_CACHE_NONE, 0);
1279                         wmb(); /* flush modifications to the GGTT (insert_page) */
1280                 } else {
1281                         page_base += offset & PAGE_MASK;
1282                 }
1283                 /* If we get a fault while copying data, then (presumably) our
1284                  * source page isn't available.  Return the error and we'll
1285                  * retry in the slow path.
1286                  * If the object is non-shmem backed, we retry again with the
1287                  * path that handles page fault.
1288                  */
1289                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1290                                user_data, page_length)) {
1291                         ret = -EFAULT;
1292                         break;
1293                 }
1294
1295                 remain -= page_length;
1296                 user_data += page_length;
1297                 offset += page_length;
1298         }
1299         intel_fb_obj_flush(obj, ORIGIN_CPU);
1300
1301         mutex_lock(&i915->drm.struct_mutex);
1302 out_unpin:
1303         if (node.allocated) {
1304                 wmb();
1305                 ggtt->base.clear_range(&ggtt->base,
1306                                        node.start, node.size);
1307                 remove_mappable_node(&node);
1308         } else {
1309                 i915_vma_unpin(vma);
1310         }
1311 out_unlock:
1312         intel_runtime_pm_put(i915);
1313         mutex_unlock(&i915->drm.struct_mutex);
1314         return ret;
1315 }
1316
1317 static int
1318 shmem_pwrite_slow(struct page *page, int offset, int length,
1319                   char __user *user_data,
1320                   bool page_do_bit17_swizzling,
1321                   bool needs_clflush_before,
1322                   bool needs_clflush_after)
1323 {
1324         char *vaddr;
1325         int ret;
1326
1327         vaddr = kmap(page);
1328         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1329                 shmem_clflush_swizzled_range(vaddr + offset, length,
1330                                              page_do_bit17_swizzling);
1331         if (page_do_bit17_swizzling)
1332                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1333                                                 length);
1334         else
1335                 ret = __copy_from_user(vaddr + offset, user_data, length);
1336         if (needs_clflush_after)
1337                 shmem_clflush_swizzled_range(vaddr + offset, length,
1338                                              page_do_bit17_swizzling);
1339         kunmap(page);
1340
1341         return ret ? -EFAULT : 0;
1342 }
1343
1344 /* Per-page copy function for the shmem pwrite fastpath.
1345  * Flushes invalid cachelines before writing to the target if
1346  * needs_clflush_before is set and flushes out any written cachelines after
1347  * writing if needs_clflush is set.
1348  */
1349 static int
1350 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1351              bool page_do_bit17_swizzling,
1352              bool needs_clflush_before,
1353              bool needs_clflush_after)
1354 {
1355         int ret;
1356
1357         ret = -ENODEV;
1358         if (!page_do_bit17_swizzling) {
1359                 char *vaddr = kmap_atomic(page);
1360
1361                 if (needs_clflush_before)
1362                         drm_clflush_virt_range(vaddr + offset, len);
1363                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1364                 if (needs_clflush_after)
1365                         drm_clflush_virt_range(vaddr + offset, len);
1366
1367                 kunmap_atomic(vaddr);
1368         }
1369         if (ret == 0)
1370                 return ret;
1371
1372         return shmem_pwrite_slow(page, offset, len, user_data,
1373                                  page_do_bit17_swizzling,
1374                                  needs_clflush_before,
1375                                  needs_clflush_after);
1376 }
1377
1378 static int
1379 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1380                       const struct drm_i915_gem_pwrite *args)
1381 {
1382         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1383         void __user *user_data;
1384         u64 remain;
1385         unsigned int obj_do_bit17_swizzling;
1386         unsigned int partial_cacheline_write;
1387         unsigned int needs_clflush;
1388         unsigned int offset, idx;
1389         int ret;
1390
1391         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1392         if (ret)
1393                 return ret;
1394
1395         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1396         mutex_unlock(&i915->drm.struct_mutex);
1397         if (ret)
1398                 return ret;
1399
1400         obj_do_bit17_swizzling = 0;
1401         if (i915_gem_object_needs_bit17_swizzle(obj))
1402                 obj_do_bit17_swizzling = BIT(17);
1403
1404         /* If we don't overwrite a cacheline completely we need to be
1405          * careful to have up-to-date data by first clflushing. Don't
1406          * overcomplicate things and flush the entire patch.
1407          */
1408         partial_cacheline_write = 0;
1409         if (needs_clflush & CLFLUSH_BEFORE)
1410                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411
1412         user_data = u64_to_user_ptr(args->data_ptr);
1413         remain = args->size;
1414         offset = offset_in_page(args->offset);
1415         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1416                 struct page *page = i915_gem_object_get_page(obj, idx);
1417                 int length;
1418
1419                 length = remain;
1420                 if (offset + length > PAGE_SIZE)
1421                         length = PAGE_SIZE - offset;
1422
1423                 ret = shmem_pwrite(page, offset, length, user_data,
1424                                    page_to_phys(page) & obj_do_bit17_swizzling,
1425                                    (offset | length) & partial_cacheline_write,
1426                                    needs_clflush & CLFLUSH_AFTER);
1427                 if (ret)
1428                         break;
1429
1430                 remain -= length;
1431                 user_data += length;
1432                 offset = 0;
1433         }
1434
1435         intel_fb_obj_flush(obj, ORIGIN_CPU);
1436         i915_gem_obj_finish_shmem_access(obj);
1437         return ret;
1438 }
1439
1440 /**
1441  * Writes data to the object referenced by handle.
1442  * @dev: drm device
1443  * @data: ioctl data blob
1444  * @file: drm file
1445  *
1446  * On error, the contents of the buffer that were to be modified are undefined.
1447  */
1448 int
1449 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1450                       struct drm_file *file)
1451 {
1452         struct drm_i915_gem_pwrite *args = data;
1453         struct drm_i915_gem_object *obj;
1454         int ret;
1455
1456         if (args->size == 0)
1457                 return 0;
1458
1459         if (!access_ok(VERIFY_READ,
1460                        u64_to_user_ptr(args->data_ptr),
1461                        args->size))
1462                 return -EFAULT;
1463
1464         obj = i915_gem_object_lookup(file, args->handle);
1465         if (!obj)
1466                 return -ENOENT;
1467
1468         /* Bounds check destination. */
1469         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1470                 ret = -EINVAL;
1471                 goto err;
1472         }
1473
1474         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1475
1476         ret = -ENODEV;
1477         if (obj->ops->pwrite)
1478                 ret = obj->ops->pwrite(obj, args);
1479         if (ret != -ENODEV)
1480                 goto err;
1481
1482         ret = i915_gem_object_wait(obj,
1483                                    I915_WAIT_INTERRUPTIBLE |
1484                                    I915_WAIT_ALL,
1485                                    MAX_SCHEDULE_TIMEOUT,
1486                                    to_rps_client(file));
1487         if (ret)
1488                 goto err;
1489
1490         ret = i915_gem_object_pin_pages(obj);
1491         if (ret)
1492                 goto err;
1493
1494         ret = -EFAULT;
1495         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1496          * it would end up going through the fenced access, and we'll get
1497          * different detiling behavior between reading and writing.
1498          * pread/pwrite currently are reading and writing from the CPU
1499          * perspective, requiring manual detiling by the client.
1500          */
1501         if (!i915_gem_object_has_struct_page(obj) ||
1502             cpu_write_needs_clflush(obj))
1503                 /* Note that the gtt paths might fail with non-page-backed user
1504                  * pointers (e.g. gtt mappings when moving data between
1505                  * textures). Fallback to the shmem path in that case.
1506                  */
1507                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1508
1509         if (ret == -EFAULT || ret == -ENOSPC) {
1510                 if (obj->phys_handle)
1511                         ret = i915_gem_phys_pwrite(obj, args, file);
1512                 else
1513                         ret = i915_gem_shmem_pwrite(obj, args);
1514         }
1515
1516         i915_gem_object_unpin_pages(obj);
1517 err:
1518         i915_gem_object_put(obj);
1519         return ret;
1520 }
1521
1522 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1523 {
1524         struct drm_i915_private *i915;
1525         struct list_head *list;
1526         struct i915_vma *vma;
1527
1528         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1529                 if (!i915_vma_is_ggtt(vma))
1530                         break;
1531
1532                 if (i915_vma_is_active(vma))
1533                         continue;
1534
1535                 if (!drm_mm_node_allocated(&vma->node))
1536                         continue;
1537
1538                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1539         }
1540
1541         i915 = to_i915(obj->base.dev);
1542         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1543         list_move_tail(&obj->global_link, list);
1544 }
1545
1546 /**
1547  * Called when user space prepares to use an object with the CPU, either
1548  * through the mmap ioctl's mapping or a GTT mapping.
1549  * @dev: drm device
1550  * @data: ioctl data blob
1551  * @file: drm file
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555                           struct drm_file *file)
1556 {
1557         struct drm_i915_gem_set_domain *args = data;
1558         struct drm_i915_gem_object *obj;
1559         uint32_t read_domains = args->read_domains;
1560         uint32_t write_domain = args->write_domain;
1561         int err;
1562
1563         /* Only handle setting domains to types used by the CPU. */
1564         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1565                 return -EINVAL;
1566
1567         /* Having something in the write domain implies it's in the read
1568          * domain, and only that read domain.  Enforce that in the request.
1569          */
1570         if (write_domain != 0 && read_domains != write_domain)
1571                 return -EINVAL;
1572
1573         obj = i915_gem_object_lookup(file, args->handle);
1574         if (!obj)
1575                 return -ENOENT;
1576
1577         /* Try to flush the object off the GPU without holding the lock.
1578          * We will repeat the flush holding the lock in the normal manner
1579          * to catch cases where we are gazumped.
1580          */
1581         err = i915_gem_object_wait(obj,
1582                                    I915_WAIT_INTERRUPTIBLE |
1583                                    (write_domain ? I915_WAIT_ALL : 0),
1584                                    MAX_SCHEDULE_TIMEOUT,
1585                                    to_rps_client(file));
1586         if (err)
1587                 goto out;
1588
1589         /* Flush and acquire obj->pages so that we are coherent through
1590          * direct access in memory with previous cached writes through
1591          * shmemfs and that our cache domain tracking remains valid.
1592          * For example, if the obj->filp was moved to swap without us
1593          * being notified and releasing the pages, we would mistakenly
1594          * continue to assume that the obj remained out of the CPU cached
1595          * domain.
1596          */
1597         err = i915_gem_object_pin_pages(obj);
1598         if (err)
1599                 goto out;
1600
1601         err = i915_mutex_lock_interruptible(dev);
1602         if (err)
1603                 goto out_unpin;
1604
1605         if (read_domains & I915_GEM_DOMAIN_WC)
1606                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1607         else if (read_domains & I915_GEM_DOMAIN_GTT)
1608                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609         else
1610                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611
1612         /* And bump the LRU for this access */
1613         i915_gem_object_bump_inactive_ggtt(obj);
1614
1615         mutex_unlock(&dev->struct_mutex);
1616
1617         if (write_domain != 0)
1618                 intel_fb_obj_invalidate(obj,
1619                                         fb_write_origin(obj, write_domain));
1620
1621 out_unpin:
1622         i915_gem_object_unpin_pages(obj);
1623 out:
1624         i915_gem_object_put(obj);
1625         return err;
1626 }
1627
1628 /**
1629  * Called when user space has done writes to this buffer
1630  * @dev: drm device
1631  * @data: ioctl data blob
1632  * @file: drm file
1633  */
1634 int
1635 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1636                          struct drm_file *file)
1637 {
1638         struct drm_i915_gem_sw_finish *args = data;
1639         struct drm_i915_gem_object *obj;
1640
1641         obj = i915_gem_object_lookup(file, args->handle);
1642         if (!obj)
1643                 return -ENOENT;
1644
1645         /* Pinned buffers may be scanout, so flush the cache */
1646         i915_gem_object_flush_if_display(obj);
1647         i915_gem_object_put(obj);
1648
1649         return 0;
1650 }
1651
1652 /**
1653  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1654  *                       it is mapped to.
1655  * @dev: drm device
1656  * @data: ioctl data blob
1657  * @file: drm file
1658  *
1659  * While the mapping holds a reference on the contents of the object, it doesn't
1660  * imply a ref on the object itself.
1661  *
1662  * IMPORTANT:
1663  *
1664  * DRM driver writers who look a this function as an example for how to do GEM
1665  * mmap support, please don't implement mmap support like here. The modern way
1666  * to implement DRM mmap support is with an mmap offset ioctl (like
1667  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1668  * That way debug tooling like valgrind will understand what's going on, hiding
1669  * the mmap call in a driver private ioctl will break that. The i915 driver only
1670  * does cpu mmaps this way because we didn't know better.
1671  */
1672 int
1673 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1674                     struct drm_file *file)
1675 {
1676         struct drm_i915_gem_mmap *args = data;
1677         struct drm_i915_gem_object *obj;
1678         unsigned long addr;
1679
1680         if (args->flags & ~(I915_MMAP_WC))
1681                 return -EINVAL;
1682
1683         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1684                 return -ENODEV;
1685
1686         obj = i915_gem_object_lookup(file, args->handle);
1687         if (!obj)
1688                 return -ENOENT;
1689
1690         /* prime objects have no backing filp to GEM mmap
1691          * pages from.
1692          */
1693         if (!obj->base.filp) {
1694                 i915_gem_object_put(obj);
1695                 return -EINVAL;
1696         }
1697
1698         addr = vm_mmap(obj->base.filp, 0, args->size,
1699                        PROT_READ | PROT_WRITE, MAP_SHARED,
1700                        args->offset);
1701         if (args->flags & I915_MMAP_WC) {
1702                 struct mm_struct *mm = current->mm;
1703                 struct vm_area_struct *vma;
1704
1705                 if (down_write_killable(&mm->mmap_sem)) {
1706                         i915_gem_object_put(obj);
1707                         return -EINTR;
1708                 }
1709                 vma = find_vma(mm, addr);
1710                 if (vma)
1711                         vma->vm_page_prot =
1712                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1713                 else
1714                         addr = -ENOMEM;
1715                 up_write(&mm->mmap_sem);
1716
1717                 /* This may race, but that's ok, it only gets set */
1718                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719         }
1720         i915_gem_object_put(obj);
1721         if (IS_ERR((void *)addr))
1722                 return addr;
1723
1724         args->addr_ptr = (uint64_t) addr;
1725
1726         return 0;
1727 }
1728
1729 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1730 {
1731         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1732 }
1733
1734 /**
1735  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1736  *
1737  * A history of the GTT mmap interface:
1738  *
1739  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1740  *     aligned and suitable for fencing, and still fit into the available
1741  *     mappable space left by the pinned display objects. A classic problem
1742  *     we called the page-fault-of-doom where we would ping-pong between
1743  *     two objects that could not fit inside the GTT and so the memcpy
1744  *     would page one object in at the expense of the other between every
1745  *     single byte.
1746  *
1747  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1748  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1749  *     object is too large for the available space (or simply too large
1750  *     for the mappable aperture!), a view is created instead and faulted
1751  *     into userspace. (This view is aligned and sized appropriately for
1752  *     fenced access.)
1753  *
1754  * 2 - Recognise WC as a separate cache domain so that we can flush the
1755  *     delayed writes via GTT before performing direct access via WC.
1756  *
1757  * Restrictions:
1758  *
1759  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1760  *    hangs on some architectures, corruption on others. An attempt to service
1761  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1762  *
1763  *  * the object must be able to fit into RAM (physical memory, though no
1764  *    limited to the mappable aperture).
1765  *
1766  *
1767  * Caveats:
1768  *
1769  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1770  *    all data to system memory. Subsequent access will not be synchronized.
1771  *
1772  *  * all mappings are revoked on runtime device suspend.
1773  *
1774  *  * there are only 8, 16 or 32 fence registers to share between all users
1775  *    (older machines require fence register for display and blitter access
1776  *    as well). Contention of the fence registers will cause the previous users
1777  *    to be unmapped and any new access will generate new page faults.
1778  *
1779  *  * running out of memory while servicing a fault may generate a SIGBUS,
1780  *    rather than the expected SIGSEGV.
1781  */
1782 int i915_gem_mmap_gtt_version(void)
1783 {
1784         return 2;
1785 }
1786
1787 static inline struct i915_ggtt_view
1788 compute_partial_view(struct drm_i915_gem_object *obj,
1789                      pgoff_t page_offset,
1790                      unsigned int chunk)
1791 {
1792         struct i915_ggtt_view view;
1793
1794         if (i915_gem_object_is_tiled(obj))
1795                 chunk = roundup(chunk, tile_row_pages(obj));
1796
1797         view.type = I915_GGTT_VIEW_PARTIAL;
1798         view.partial.offset = rounddown(page_offset, chunk);
1799         view.partial.size =
1800                 min_t(unsigned int, chunk,
1801                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802
1803         /* If the partial covers the entire object, just create a normal VMA. */
1804         if (chunk >= obj->base.size >> PAGE_SHIFT)
1805                 view.type = I915_GGTT_VIEW_NORMAL;
1806
1807         return view;
1808 }
1809
1810 /**
1811  * i915_gem_fault - fault a page into the GTT
1812  * @vmf: fault info
1813  *
1814  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1815  * from userspace.  The fault handler takes care of binding the object to
1816  * the GTT (if needed), allocating and programming a fence register (again,
1817  * only if needed based on whether the old reg is still valid or the object
1818  * is tiled) and inserting a new PTE into the faulting process.
1819  *
1820  * Note that the faulting process may involve evicting existing objects
1821  * from the GTT and/or fence registers to make room.  So performance may
1822  * suffer if the GTT working set is large or there are few fence registers
1823  * left.
1824  *
1825  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1826  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827  */
1828 int i915_gem_fault(struct vm_fault *vmf)
1829 {
1830 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1831         struct vm_area_struct *area = vmf->vma;
1832         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1833         struct drm_device *dev = obj->base.dev;
1834         struct drm_i915_private *dev_priv = to_i915(dev);
1835         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1836         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1837         struct i915_vma *vma;
1838         pgoff_t page_offset;
1839         unsigned int flags;
1840         int ret;
1841
1842         /* We don't use vmf->pgoff since that has the fake offset */
1843         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844
1845         trace_i915_gem_object_fault(obj, page_offset, true, write);
1846
1847         /* Try to flush the object off the GPU first without holding the lock.
1848          * Upon acquiring the lock, we will perform our sanity checks and then
1849          * repeat the flush holding the lock in the normal manner to catch cases
1850          * where we are gazumped.
1851          */
1852         ret = i915_gem_object_wait(obj,
1853                                    I915_WAIT_INTERRUPTIBLE,
1854                                    MAX_SCHEDULE_TIMEOUT,
1855                                    NULL);
1856         if (ret)
1857                 goto err;
1858
1859         ret = i915_gem_object_pin_pages(obj);
1860         if (ret)
1861                 goto err;
1862
1863         intel_runtime_pm_get(dev_priv);
1864
1865         ret = i915_mutex_lock_interruptible(dev);
1866         if (ret)
1867                 goto err_rpm;
1868
1869         /* Access to snoopable pages through the GTT is incoherent. */
1870         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1871                 ret = -EFAULT;
1872                 goto err_unlock;
1873         }
1874
1875         /* If the object is smaller than a couple of partial vma, it is
1876          * not worth only creating a single partial vma - we may as well
1877          * clear enough space for the full object.
1878          */
1879         flags = PIN_MAPPABLE;
1880         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1881                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1882
1883         /* Now pin it into the GTT as needed */
1884         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885         if (IS_ERR(vma)) {
1886                 /* Use a partial view if it is bigger than available space */
1887                 struct i915_ggtt_view view =
1888                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889
1890                 /* Userspace is now writing through an untracked VMA, abandon
1891                  * all hope that the hardware is able to track future writes.
1892                  */
1893                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1894
1895                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1896         }
1897         if (IS_ERR(vma)) {
1898                 ret = PTR_ERR(vma);
1899                 goto err_unlock;
1900         }
1901
1902         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1903         if (ret)
1904                 goto err_unpin;
1905
1906         ret = i915_vma_get_fence(vma);
1907         if (ret)
1908                 goto err_unpin;
1909
1910         /* Mark as being mmapped into userspace for later revocation */
1911         assert_rpm_wakelock_held(dev_priv);
1912         if (list_empty(&obj->userfault_link))
1913                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1914
1915         /* Finally, remap it using the new GTT offset */
1916         ret = remap_io_mapping(area,
1917                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1918                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1919                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1920                                &ggtt->mappable);
1921
1922 err_unpin:
1923         __i915_vma_unpin(vma);
1924 err_unlock:
1925         mutex_unlock(&dev->struct_mutex);
1926 err_rpm:
1927         intel_runtime_pm_put(dev_priv);
1928         i915_gem_object_unpin_pages(obj);
1929 err:
1930         switch (ret) {
1931         case -EIO:
1932                 /*
1933                  * We eat errors when the gpu is terminally wedged to avoid
1934                  * userspace unduly crashing (gl has no provisions for mmaps to
1935                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1936                  * and so needs to be reported.
1937                  */
1938                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1939                         ret = VM_FAULT_SIGBUS;
1940                         break;
1941                 }
1942         case -EAGAIN:
1943                 /*
1944                  * EAGAIN means the gpu is hung and we'll wait for the error
1945                  * handler to reset everything when re-faulting in
1946                  * i915_mutex_lock_interruptible.
1947                  */
1948         case 0:
1949         case -ERESTARTSYS:
1950         case -EINTR:
1951         case -EBUSY:
1952                 /*
1953                  * EBUSY is ok: this just means that another thread
1954                  * already did the job.
1955                  */
1956                 ret = VM_FAULT_NOPAGE;
1957                 break;
1958         case -ENOMEM:
1959                 ret = VM_FAULT_OOM;
1960                 break;
1961         case -ENOSPC:
1962         case -EFAULT:
1963                 ret = VM_FAULT_SIGBUS;
1964                 break;
1965         default:
1966                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1967                 ret = VM_FAULT_SIGBUS;
1968                 break;
1969         }
1970         return ret;
1971 }
1972
1973 /**
1974  * i915_gem_release_mmap - remove physical page mappings
1975  * @obj: obj in question
1976  *
1977  * Preserve the reservation of the mmapping with the DRM core code, but
1978  * relinquish ownership of the pages back to the system.
1979  *
1980  * It is vital that we remove the page mapping if we have mapped a tiled
1981  * object through the GTT and then lose the fence register due to
1982  * resource pressure. Similarly if the object has been moved out of the
1983  * aperture, than pages mapped into userspace must be revoked. Removing the
1984  * mapping will then trigger a page fault on the next user access, allowing
1985  * fixup by i915_gem_fault().
1986  */
1987 void
1988 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989 {
1990         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1991
1992         /* Serialisation between user GTT access and our code depends upon
1993          * revoking the CPU's PTE whilst the mutex is held. The next user
1994          * pagefault then has to wait until we release the mutex.
1995          *
1996          * Note that RPM complicates somewhat by adding an additional
1997          * requirement that operations to the GGTT be made holding the RPM
1998          * wakeref.
1999          */
2000         lockdep_assert_held(&i915->drm.struct_mutex);
2001         intel_runtime_pm_get(i915);
2002
2003         if (list_empty(&obj->userfault_link))
2004                 goto out;
2005
2006         list_del_init(&obj->userfault_link);
2007         drm_vma_node_unmap(&obj->base.vma_node,
2008                            obj->base.dev->anon_inode->i_mapping);
2009
2010         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2011          * memory transactions from userspace before we return. The TLB
2012          * flushing implied above by changing the PTE above *should* be
2013          * sufficient, an extra barrier here just provides us with a bit
2014          * of paranoid documentation about our requirement to serialise
2015          * memory writes before touching registers / GSM.
2016          */
2017         wmb();
2018
2019 out:
2020         intel_runtime_pm_put(i915);
2021 }
2022
2023 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024 {
2025         struct drm_i915_gem_object *obj, *on;
2026         int i;
2027
2028         /*
2029          * Only called during RPM suspend. All users of the userfault_list
2030          * must be holding an RPM wakeref to ensure that this can not
2031          * run concurrently with themselves (and use the struct_mutex for
2032          * protection between themselves).
2033          */
2034
2035         list_for_each_entry_safe(obj, on,
2036                                  &dev_priv->mm.userfault_list, userfault_link) {
2037                 list_del_init(&obj->userfault_link);
2038                 drm_vma_node_unmap(&obj->base.vma_node,
2039                                    obj->base.dev->anon_inode->i_mapping);
2040         }
2041
2042         /* The fence will be lost when the device powers down. If any were
2043          * in use by hardware (i.e. they are pinned), we should not be powering
2044          * down! All other fences will be reacquired by the user upon waking.
2045          */
2046         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2047                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2048
2049                 /* Ideally we want to assert that the fence register is not
2050                  * live at this point (i.e. that no piece of code will be
2051                  * trying to write through fence + GTT, as that both violates
2052                  * our tracking of activity and associated locking/barriers,
2053                  * but also is illegal given that the hw is powered down).
2054                  *
2055                  * Previously we used reg->pin_count as a "liveness" indicator.
2056                  * That is not sufficient, and we need a more fine-grained
2057                  * tool if we want to have a sanity check here.
2058                  */
2059
2060                 if (!reg->vma)
2061                         continue;
2062
2063                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2064                 reg->dirty = true;
2065         }
2066 }
2067
2068 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2069 {
2070         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071         int err;
2072
2073         err = drm_gem_create_mmap_offset(&obj->base);
2074         if (likely(!err))
2075                 return 0;
2076
2077         /* Attempt to reap some mmap space from dead objects */
2078         do {
2079                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2080                 if (err)
2081                         break;
2082
2083                 i915_gem_drain_freed_objects(dev_priv);
2084                 err = drm_gem_create_mmap_offset(&obj->base);
2085                 if (!err)
2086                         break;
2087
2088         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2089
2090         return err;
2091 }
2092
2093 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2094 {
2095         drm_gem_free_mmap_offset(&obj->base);
2096 }
2097
2098 int
2099 i915_gem_mmap_gtt(struct drm_file *file,
2100                   struct drm_device *dev,
2101                   uint32_t handle,
2102                   uint64_t *offset)
2103 {
2104         struct drm_i915_gem_object *obj;
2105         int ret;
2106
2107         obj = i915_gem_object_lookup(file, handle);
2108         if (!obj)
2109                 return -ENOENT;
2110
2111         ret = i915_gem_object_create_mmap_offset(obj);
2112         if (ret == 0)
2113                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114
2115         i915_gem_object_put(obj);
2116         return ret;
2117 }
2118
2119 /**
2120  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2121  * @dev: DRM device
2122  * @data: GTT mapping ioctl data
2123  * @file: GEM object info
2124  *
2125  * Simply returns the fake offset to userspace so it can mmap it.
2126  * The mmap call will end up in drm_gem_mmap(), which will set things
2127  * up so we can get faults in the handler above.
2128  *
2129  * The fault handler will take care of binding the object into the GTT
2130  * (since it may have been evicted to make room for something), allocating
2131  * a fence register, and mapping the appropriate aperture address into
2132  * userspace.
2133  */
2134 int
2135 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2136                         struct drm_file *file)
2137 {
2138         struct drm_i915_gem_mmap_gtt *args = data;
2139
2140         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2141 }
2142
2143 /* Immediately discard the backing storage */
2144 static void
2145 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146 {
2147         i915_gem_object_free_mmap_offset(obj);
2148
2149         if (obj->base.filp == NULL)
2150                 return;
2151
2152         /* Our goal here is to return as much of the memory as
2153          * is possible back to the system as we are called from OOM.
2154          * To do this we must instruct the shmfs to drop all of its
2155          * backing pages, *now*.
2156          */
2157         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2158         obj->mm.madv = __I915_MADV_PURGED;
2159         obj->mm.pages = ERR_PTR(-EFAULT);
2160 }
2161
2162 /* Try to discard unwanted pages */
2163 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2164 {
2165         struct address_space *mapping;
2166
2167         lockdep_assert_held(&obj->mm.lock);
2168         GEM_BUG_ON(obj->mm.pages);
2169
2170         switch (obj->mm.madv) {
2171         case I915_MADV_DONTNEED:
2172                 i915_gem_object_truncate(obj);
2173         case __I915_MADV_PURGED:
2174                 return;
2175         }
2176
2177         if (obj->base.filp == NULL)
2178                 return;
2179
2180         mapping = obj->base.filp->f_mapping,
2181         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2182 }
2183
2184 static void
2185 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2186                               struct sg_table *pages)
2187 {
2188         struct sgt_iter sgt_iter;
2189         struct page *page;
2190
2191         __i915_gem_object_release_shmem(obj, pages, true);
2192
2193         i915_gem_gtt_finish_pages(obj, pages);
2194
2195         if (i915_gem_object_needs_bit17_swizzle(obj))
2196                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2197
2198         for_each_sgt_page(page, sgt_iter, pages) {
2199                 if (obj->mm.dirty)
2200                         set_page_dirty(page);
2201
2202                 if (obj->mm.madv == I915_MADV_WILLNEED)
2203                         mark_page_accessed(page);
2204
2205                 put_page(page);
2206         }
2207         obj->mm.dirty = false;
2208
2209         sg_free_table(pages);
2210         kfree(pages);
2211 }
2212
2213 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2214 {
2215         struct radix_tree_iter iter;
2216         void **slot;
2217
2218         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 }
2221
2222 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2223                                  enum i915_mm_subclass subclass)
2224 {
2225         struct sg_table *pages;
2226
2227         if (i915_gem_object_has_pinned_pages(obj))
2228                 return;
2229
2230         GEM_BUG_ON(obj->bind_count);
2231         if (!READ_ONCE(obj->mm.pages))
2232                 return;
2233
2234         /* May be called by shrinker from within get_pages() (on another bo) */
2235         mutex_lock_nested(&obj->mm.lock, subclass);
2236         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2237                 goto unlock;
2238
2239         /* ->put_pages might need to allocate memory for the bit17 swizzle
2240          * array, hence protect them from being reaped by removing them from gtt
2241          * lists early. */
2242         pages = fetch_and_zero(&obj->mm.pages);
2243         GEM_BUG_ON(!pages);
2244
2245         if (obj->mm.mapping) {
2246                 void *ptr;
2247
2248                 ptr = page_mask_bits(obj->mm.mapping);
2249                 if (is_vmalloc_addr(ptr))
2250                         vunmap(ptr);
2251                 else
2252                         kunmap(kmap_to_page(ptr));
2253
2254                 obj->mm.mapping = NULL;
2255         }
2256
2257         __i915_gem_object_reset_page_iter(obj);
2258
2259         if (!IS_ERR(pages))
2260                 obj->ops->put_pages(obj, pages);
2261
2262 unlock:
2263         mutex_unlock(&obj->mm.lock);
2264 }
2265
2266 static bool i915_sg_trim(struct sg_table *orig_st)
2267 {
2268         struct sg_table new_st;
2269         struct scatterlist *sg, *new_sg;
2270         unsigned int i;
2271
2272         if (orig_st->nents == orig_st->orig_nents)
2273                 return false;
2274
2275         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2276                 return false;
2277
2278         new_sg = new_st.sgl;
2279         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2280                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2281                 /* called before being DMA mapped, no need to copy sg->dma_* */
2282                 new_sg = sg_next(new_sg);
2283         }
2284         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285
2286         sg_free_table(orig_st);
2287
2288         *orig_st = new_st;
2289         return true;
2290 }
2291
2292 static struct sg_table *
2293 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294 {
2295         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2296         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2297         unsigned long i;
2298         struct address_space *mapping;
2299         struct sg_table *st;
2300         struct scatterlist *sg;
2301         struct sgt_iter sgt_iter;
2302         struct page *page;
2303         unsigned long last_pfn = 0;     /* suppress gcc warning */
2304         unsigned int max_segment;
2305         gfp_t noreclaim;
2306         int ret;
2307
2308         /* Assert that the object is not currently in any GPU domain. As it
2309          * wasn't in the GTT, there shouldn't be any way it could have been in
2310          * a GPU cache
2311          */
2312         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2313         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2314
2315         max_segment = swiotlb_max_segment();
2316         if (!max_segment)
2317                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318
2319         st = kmalloc(sizeof(*st), GFP_KERNEL);
2320         if (st == NULL)
2321                 return ERR_PTR(-ENOMEM);
2322
2323 rebuild_st:
2324         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2325                 kfree(st);
2326                 return ERR_PTR(-ENOMEM);
2327         }
2328
2329         /* Get the list of pages out of our struct file.  They'll be pinned
2330          * at this point until we release them.
2331          *
2332          * Fail silently without starting the shrinker
2333          */
2334         mapping = obj->base.filp->f_mapping;
2335         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2336         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2337
2338         sg = st->sgl;
2339         st->nents = 0;
2340         for (i = 0; i < page_count; i++) {
2341                 const unsigned int shrink[] = {
2342                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2343                         0,
2344                 }, *s = shrink;
2345                 gfp_t gfp = noreclaim;
2346
2347                 do {
2348                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2349                         if (likely(!IS_ERR(page)))
2350                                 break;
2351
2352                         if (!*s) {
2353                                 ret = PTR_ERR(page);
2354                                 goto err_sg;
2355                         }
2356
2357                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2358                         cond_resched();
2359
2360                         /* We've tried hard to allocate the memory by reaping
2361                          * our own buffer, now let the real VM do its job and
2362                          * go down in flames if truly OOM.
2363                          *
2364                          * However, since graphics tend to be disposable,
2365                          * defer the oom here by reporting the ENOMEM back
2366                          * to userspace.
2367                          */
2368                         if (!*s) {
2369                                 /* reclaim and warn, but no oom */
2370                                 gfp = mapping_gfp_mask(mapping);
2371
2372                                 /* Our bo are always dirty and so we require
2373                                  * kswapd to reclaim our pages (direct reclaim
2374                                  * does not effectively begin pageout of our
2375                                  * buffers on its own). However, direct reclaim
2376                                  * only waits for kswapd when under allocation
2377                                  * congestion. So as a result __GFP_RECLAIM is
2378                                  * unreliable and fails to actually reclaim our
2379                                  * dirty pages -- unless you try over and over
2380                                  * again with !__GFP_NORETRY. However, we still
2381                                  * want to fail this allocation rather than
2382                                  * trigger the out-of-memory killer and for
2383                                  * this we want __GFP_RETRY_MAYFAIL.
2384                                  */
2385                                 gfp |= __GFP_RETRY_MAYFAIL;
2386                         }
2387                 } while (1);
2388
2389                 if (!i ||
2390                     sg->length >= max_segment ||
2391                     page_to_pfn(page) != last_pfn + 1) {
2392                         if (i)
2393                                 sg = sg_next(sg);
2394                         st->nents++;
2395                         sg_set_page(sg, page, PAGE_SIZE, 0);
2396                 } else {
2397                         sg->length += PAGE_SIZE;
2398                 }
2399                 last_pfn = page_to_pfn(page);
2400
2401                 /* Check that the i965g/gm workaround works. */
2402                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403         }
2404         if (sg) /* loop terminated early; short sg table */
2405                 sg_mark_end(sg);
2406
2407         /* Trim unused sg entries to avoid wasting memory. */
2408         i915_sg_trim(st);
2409
2410         ret = i915_gem_gtt_prepare_pages(obj, st);
2411         if (ret) {
2412                 /* DMA remapping failed? One possible cause is that
2413                  * it could not reserve enough large entries, asking
2414                  * for PAGE_SIZE chunks instead may be helpful.
2415                  */
2416                 if (max_segment > PAGE_SIZE) {
2417                         for_each_sgt_page(page, sgt_iter, st)
2418                                 put_page(page);
2419                         sg_free_table(st);
2420
2421                         max_segment = PAGE_SIZE;
2422                         goto rebuild_st;
2423                 } else {
2424                         dev_warn(&dev_priv->drm.pdev->dev,
2425                                  "Failed to DMA remap %lu pages\n",
2426                                  page_count);
2427                         goto err_pages;
2428                 }
2429         }
2430
2431         if (i915_gem_object_needs_bit17_swizzle(obj))
2432                 i915_gem_object_do_bit_17_swizzle(obj, st);
2433
2434         return st;
2435
2436 err_sg:
2437         sg_mark_end(sg);
2438 err_pages:
2439         for_each_sgt_page(page, sgt_iter, st)
2440                 put_page(page);
2441         sg_free_table(st);
2442         kfree(st);
2443
2444         /* shmemfs first checks if there is enough memory to allocate the page
2445          * and reports ENOSPC should there be insufficient, along with the usual
2446          * ENOMEM for a genuine allocation failure.
2447          *
2448          * We use ENOSPC in our driver to mean that we have run out of aperture
2449          * space and so want to translate the error from shmemfs back to our
2450          * usual understanding of ENOMEM.
2451          */
2452         if (ret == -ENOSPC)
2453                 ret = -ENOMEM;
2454
2455         return ERR_PTR(ret);
2456 }
2457
2458 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2459                                  struct sg_table *pages)
2460 {
2461         lockdep_assert_held(&obj->mm.lock);
2462
2463         obj->mm.get_page.sg_pos = pages->sgl;
2464         obj->mm.get_page.sg_idx = 0;
2465
2466         obj->mm.pages = pages;
2467
2468         if (i915_gem_object_is_tiled(obj) &&
2469             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2470                 GEM_BUG_ON(obj->mm.quirked);
2471                 __i915_gem_object_pin_pages(obj);
2472                 obj->mm.quirked = true;
2473         }
2474 }
2475
2476 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2477 {
2478         struct sg_table *pages;
2479
2480         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2481
2482         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2483                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2484                 return -EFAULT;
2485         }
2486
2487         pages = obj->ops->get_pages(obj);
2488         if (unlikely(IS_ERR(pages)))
2489                 return PTR_ERR(pages);
2490
2491         __i915_gem_object_set_pages(obj, pages);
2492         return 0;
2493 }
2494
2495 /* Ensure that the associated pages are gathered from the backing storage
2496  * and pinned into our object. i915_gem_object_pin_pages() may be called
2497  * multiple times before they are released by a single call to
2498  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499  * either as a result of memory pressure (reaping pages under the shrinker)
2500  * or as the object is itself released.
2501  */
2502 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503 {
2504         int err;
2505
2506         err = mutex_lock_interruptible(&obj->mm.lock);
2507         if (err)
2508                 return err;
2509
2510         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511                 err = ____i915_gem_object_get_pages(obj);
2512                 if (err)
2513                         goto unlock;
2514
2515                 smp_mb__before_atomic();
2516         }
2517         atomic_inc(&obj->mm.pages_pin_count);
2518
2519 unlock:
2520         mutex_unlock(&obj->mm.lock);
2521         return err;
2522 }
2523
2524 /* The 'mapping' part of i915_gem_object_pin_map() below */
2525 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2526                                  enum i915_map_type type)
2527 {
2528         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2529         struct sg_table *sgt = obj->mm.pages;
2530         struct sgt_iter sgt_iter;
2531         struct page *page;
2532         struct page *stack_pages[32];
2533         struct page **pages = stack_pages;
2534         unsigned long i = 0;
2535         pgprot_t pgprot;
2536         void *addr;
2537
2538         /* A single page can always be kmapped */
2539         if (n_pages == 1 && type == I915_MAP_WB)
2540                 return kmap(sg_page(sgt->sgl));
2541
2542         if (n_pages > ARRAY_SIZE(stack_pages)) {
2543                 /* Too big for stack -- allocate temporary array instead */
2544                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2545                 if (!pages)
2546                         return NULL;
2547         }
2548
2549         for_each_sgt_page(page, sgt_iter, sgt)
2550                 pages[i++] = page;
2551
2552         /* Check that we have the expected number of pages */
2553         GEM_BUG_ON(i != n_pages);
2554
2555         switch (type) {
2556         case I915_MAP_WB:
2557                 pgprot = PAGE_KERNEL;
2558                 break;
2559         case I915_MAP_WC:
2560                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2561                 break;
2562         }
2563         addr = vmap(pages, n_pages, 0, pgprot);
2564
2565         if (pages != stack_pages)
2566                 kvfree(pages);
2567
2568         return addr;
2569 }
2570
2571 /* get, pin, and map the pages of the object into kernel space */
2572 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2573                               enum i915_map_type type)
2574 {
2575         enum i915_map_type has_type;
2576         bool pinned;
2577         void *ptr;
2578         int ret;
2579
2580         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2581
2582         ret = mutex_lock_interruptible(&obj->mm.lock);
2583         if (ret)
2584                 return ERR_PTR(ret);
2585
2586         pinned = true;
2587         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2588                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2589                         ret = ____i915_gem_object_get_pages(obj);
2590                         if (ret)
2591                                 goto err_unlock;
2592
2593                         smp_mb__before_atomic();
2594                 }
2595                 atomic_inc(&obj->mm.pages_pin_count);
2596                 pinned = false;
2597         }
2598         GEM_BUG_ON(!obj->mm.pages);
2599
2600         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2601         if (ptr && has_type != type) {
2602                 if (pinned) {
2603                         ret = -EBUSY;
2604                         goto err_unpin;
2605                 }
2606
2607                 if (is_vmalloc_addr(ptr))
2608                         vunmap(ptr);
2609                 else
2610                         kunmap(kmap_to_page(ptr));
2611
2612                 ptr = obj->mm.mapping = NULL;
2613         }
2614
2615         if (!ptr) {
2616                 ptr = i915_gem_object_map(obj, type);
2617                 if (!ptr) {
2618                         ret = -ENOMEM;
2619                         goto err_unpin;
2620                 }
2621
2622                 obj->mm.mapping = page_pack_bits(ptr, type);
2623         }
2624
2625 out_unlock:
2626         mutex_unlock(&obj->mm.lock);
2627         return ptr;
2628
2629 err_unpin:
2630         atomic_dec(&obj->mm.pages_pin_count);
2631 err_unlock:
2632         ptr = ERR_PTR(ret);
2633         goto out_unlock;
2634 }
2635
2636 static int
2637 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2638                            const struct drm_i915_gem_pwrite *arg)
2639 {
2640         struct address_space *mapping = obj->base.filp->f_mapping;
2641         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2642         u64 remain, offset;
2643         unsigned int pg;
2644
2645         /* Before we instantiate/pin the backing store for our use, we
2646          * can prepopulate the shmemfs filp efficiently using a write into
2647          * the pagecache. We avoid the penalty of instantiating all the
2648          * pages, important if the user is just writing to a few and never
2649          * uses the object on the GPU, and using a direct write into shmemfs
2650          * allows it to avoid the cost of retrieving a page (either swapin
2651          * or clearing-before-use) before it is overwritten.
2652          */
2653         if (READ_ONCE(obj->mm.pages))
2654                 return -ENODEV;
2655
2656         /* Before the pages are instantiated the object is treated as being
2657          * in the CPU domain. The pages will be clflushed as required before
2658          * use, and we can freely write into the pages directly. If userspace
2659          * races pwrite with any other operation; corruption will ensue -
2660          * that is userspace's prerogative!
2661          */
2662
2663         remain = arg->size;
2664         offset = arg->offset;
2665         pg = offset_in_page(offset);
2666
2667         do {
2668                 unsigned int len, unwritten;
2669                 struct page *page;
2670                 void *data, *vaddr;
2671                 int err;
2672
2673                 len = PAGE_SIZE - pg;
2674                 if (len > remain)
2675                         len = remain;
2676
2677                 err = pagecache_write_begin(obj->base.filp, mapping,
2678                                             offset, len, 0,
2679                                             &page, &data);
2680                 if (err < 0)
2681                         return err;
2682
2683                 vaddr = kmap(page);
2684                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2685                 kunmap(page);
2686
2687                 err = pagecache_write_end(obj->base.filp, mapping,
2688                                           offset, len, len - unwritten,
2689                                           page, data);
2690                 if (err < 0)
2691                         return err;
2692
2693                 if (unwritten)
2694                         return -EFAULT;
2695
2696                 remain -= len;
2697                 user_data += len;
2698                 offset += len;
2699                 pg = 0;
2700         } while (remain);
2701
2702         return 0;
2703 }
2704
2705 static bool ban_context(const struct i915_gem_context *ctx,
2706                         unsigned int score)
2707 {
2708         return (i915_gem_context_is_bannable(ctx) &&
2709                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2710 }
2711
2712 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2713 {
2714         unsigned int score;
2715         bool banned;
2716
2717         atomic_inc(&ctx->guilty_count);
2718
2719         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2720         banned = ban_context(ctx, score);
2721         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2722                          ctx->name, score, yesno(banned));
2723         if (!banned)
2724                 return;
2725
2726         i915_gem_context_set_banned(ctx);
2727         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2728                 atomic_inc(&ctx->file_priv->context_bans);
2729                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2730                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2731         }
2732 }
2733
2734 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2735 {
2736         atomic_inc(&ctx->active_count);
2737 }
2738
2739 struct drm_i915_gem_request *
2740 i915_gem_find_active_request(struct intel_engine_cs *engine)
2741 {
2742         struct drm_i915_gem_request *request, *active = NULL;
2743         unsigned long flags;
2744
2745         /* We are called by the error capture and reset at a random
2746          * point in time. In particular, note that neither is crucially
2747          * ordered with an interrupt. After a hang, the GPU is dead and we
2748          * assume that no more writes can happen (we waited long enough for
2749          * all writes that were in transaction to be flushed) - adding an
2750          * extra delay for a recent interrupt is pointless. Hence, we do
2751          * not need an engine->irq_seqno_barrier() before the seqno reads.
2752          */
2753         spin_lock_irqsave(&engine->timeline->lock, flags);
2754         list_for_each_entry(request, &engine->timeline->requests, link) {
2755                 if (__i915_gem_request_completed(request,
2756                                                  request->global_seqno))
2757                         continue;
2758
2759                 GEM_BUG_ON(request->engine != engine);
2760                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2761                                     &request->fence.flags));
2762
2763                 active = request;
2764                 break;
2765         }
2766         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2767
2768         return active;
2769 }
2770
2771 static bool engine_stalled(struct intel_engine_cs *engine)
2772 {
2773         if (!engine->hangcheck.stalled)
2774                 return false;
2775
2776         /* Check for possible seqno movement after hang declaration */
2777         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2778                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2779                 return false;
2780         }
2781
2782         return true;
2783 }
2784
2785 /*
2786  * Ensure irq handler finishes, and not run again.
2787  * Also return the active request so that we only search for it once.
2788  */
2789 struct drm_i915_gem_request *
2790 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2791 {
2792         struct drm_i915_gem_request *request = NULL;
2793
2794         /* Prevent the signaler thread from updating the request
2795          * state (by calling dma_fence_signal) as we are processing
2796          * the reset. The write from the GPU of the seqno is
2797          * asynchronous and the signaler thread may see a different
2798          * value to us and declare the request complete, even though
2799          * the reset routine have picked that request as the active
2800          * (incomplete) request. This conflict is not handled
2801          * gracefully!
2802          */
2803         kthread_park(engine->breadcrumbs.signaler);
2804
2805         /* Prevent request submission to the hardware until we have
2806          * completed the reset in i915_gem_reset_finish(). If a request
2807          * is completed by one engine, it may then queue a request
2808          * to a second via its engine->irq_tasklet *just* as we are
2809          * calling engine->init_hw() and also writing the ELSP.
2810          * Turning off the engine->irq_tasklet until the reset is over
2811          * prevents the race.
2812          */
2813         tasklet_kill(&engine->irq_tasklet);
2814         tasklet_disable(&engine->irq_tasklet);
2815
2816         if (engine->irq_seqno_barrier)
2817                 engine->irq_seqno_barrier(engine);
2818
2819         request = i915_gem_find_active_request(engine);
2820         if (request && request->fence.error == -EIO)
2821                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2822
2823         return request;
2824 }
2825
2826 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2827 {
2828         struct intel_engine_cs *engine;
2829         struct drm_i915_gem_request *request;
2830         enum intel_engine_id id;
2831         int err = 0;
2832
2833         for_each_engine(engine, dev_priv, id) {
2834                 request = i915_gem_reset_prepare_engine(engine);
2835                 if (IS_ERR(request)) {
2836                         err = PTR_ERR(request);
2837                         continue;
2838                 }
2839
2840                 engine->hangcheck.active_request = request;
2841         }
2842
2843         i915_gem_revoke_fences(dev_priv);
2844
2845         return err;
2846 }
2847
2848 static void skip_request(struct drm_i915_gem_request *request)
2849 {
2850         void *vaddr = request->ring->vaddr;
2851         u32 head;
2852
2853         /* As this request likely depends on state from the lost
2854          * context, clear out all the user operations leaving the
2855          * breadcrumb at the end (so we get the fence notifications).
2856          */
2857         head = request->head;
2858         if (request->postfix < head) {
2859                 memset(vaddr + head, 0, request->ring->size - head);
2860                 head = 0;
2861         }
2862         memset(vaddr + head, 0, request->postfix - head);
2863
2864         dma_fence_set_error(&request->fence, -EIO);
2865 }
2866
2867 static void engine_skip_context(struct drm_i915_gem_request *request)
2868 {
2869         struct intel_engine_cs *engine = request->engine;
2870         struct i915_gem_context *hung_ctx = request->ctx;
2871         struct intel_timeline *timeline;
2872         unsigned long flags;
2873
2874         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2875
2876         spin_lock_irqsave(&engine->timeline->lock, flags);
2877         spin_lock(&timeline->lock);
2878
2879         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2880                 if (request->ctx == hung_ctx)
2881                         skip_request(request);
2882
2883         list_for_each_entry(request, &timeline->requests, link)
2884                 skip_request(request);
2885
2886         spin_unlock(&timeline->lock);
2887         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2888 }
2889
2890 /* Returns the request if it was guilty of the hang */
2891 static struct drm_i915_gem_request *
2892 i915_gem_reset_request(struct intel_engine_cs *engine,
2893                        struct drm_i915_gem_request *request)
2894 {
2895         /* The guilty request will get skipped on a hung engine.
2896          *
2897          * Users of client default contexts do not rely on logical
2898          * state preserved between batches so it is safe to execute
2899          * queued requests following the hang. Non default contexts
2900          * rely on preserved state, so skipping a batch loses the
2901          * evolution of the state and it needs to be considered corrupted.
2902          * Executing more queued batches on top of corrupted state is
2903          * risky. But we take the risk by trying to advance through
2904          * the queued requests in order to make the client behaviour
2905          * more predictable around resets, by not throwing away random
2906          * amount of batches it has prepared for execution. Sophisticated
2907          * clients can use gem_reset_stats_ioctl and dma fence status
2908          * (exported via sync_file info ioctl on explicit fences) to observe
2909          * when it loses the context state and should rebuild accordingly.
2910          *
2911          * The context ban, and ultimately the client ban, mechanism are safety
2912          * valves if client submission ends up resulting in nothing more than
2913          * subsequent hangs.
2914          */
2915
2916         if (engine_stalled(engine)) {
2917                 i915_gem_context_mark_guilty(request->ctx);
2918                 skip_request(request);
2919
2920                 /* If this context is now banned, skip all pending requests. */
2921                 if (i915_gem_context_is_banned(request->ctx))
2922                         engine_skip_context(request);
2923         } else {
2924                 /*
2925                  * Since this is not the hung engine, it may have advanced
2926                  * since the hang declaration. Double check by refinding
2927                  * the active request at the time of the reset.
2928                  */
2929                 request = i915_gem_find_active_request(engine);
2930                 if (request) {
2931                         i915_gem_context_mark_innocent(request->ctx);
2932                         dma_fence_set_error(&request->fence, -EAGAIN);
2933
2934                         /* Rewind the engine to replay the incomplete rq */
2935                         spin_lock_irq(&engine->timeline->lock);
2936                         request = list_prev_entry(request, link);
2937                         if (&request->link == &engine->timeline->requests)
2938                                 request = NULL;
2939                         spin_unlock_irq(&engine->timeline->lock);
2940                 }
2941         }
2942
2943         return request;
2944 }
2945
2946 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2947                            struct drm_i915_gem_request *request)
2948 {
2949         engine->irq_posted = 0;
2950
2951         if (request)
2952                 request = i915_gem_reset_request(engine, request);
2953
2954         if (request) {
2955                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2956                                  engine->name, request->global_seqno);
2957         }
2958
2959         /* Setup the CS to resume from the breadcrumb of the hung request */
2960         engine->reset_hw(engine, request);
2961 }
2962
2963 void i915_gem_reset(struct drm_i915_private *dev_priv)
2964 {
2965         struct intel_engine_cs *engine;
2966         enum intel_engine_id id;
2967
2968         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2969
2970         i915_gem_retire_requests(dev_priv);
2971
2972         for_each_engine(engine, dev_priv, id) {
2973                 struct i915_gem_context *ctx;
2974
2975                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2976                 ctx = fetch_and_zero(&engine->last_retired_context);
2977                 if (ctx)
2978                         engine->context_unpin(engine, ctx);
2979         }
2980
2981         i915_gem_restore_fences(dev_priv);
2982
2983         if (dev_priv->gt.awake) {
2984                 intel_sanitize_gt_powersave(dev_priv);
2985                 intel_enable_gt_powersave(dev_priv);
2986                 if (INTEL_GEN(dev_priv) >= 6)
2987                         gen6_rps_busy(dev_priv);
2988         }
2989 }
2990
2991 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2992 {
2993         tasklet_enable(&engine->irq_tasklet);
2994         kthread_unpark(engine->breadcrumbs.signaler);
2995 }
2996
2997 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2998 {
2999         struct intel_engine_cs *engine;
3000         enum intel_engine_id id;
3001
3002         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3003
3004         for_each_engine(engine, dev_priv, id) {
3005                 engine->hangcheck.active_request = NULL;
3006                 i915_gem_reset_finish_engine(engine);
3007         }
3008 }
3009
3010 static void nop_submit_request(struct drm_i915_gem_request *request)
3011 {
3012         GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3013         dma_fence_set_error(&request->fence, -EIO);
3014         i915_gem_request_submit(request);
3015         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3016 }
3017
3018 static void engine_set_wedged(struct intel_engine_cs *engine)
3019 {
3020         struct drm_i915_gem_request *request;
3021         unsigned long flags;
3022
3023         /* We need to be sure that no thread is running the old callback as
3024          * we install the nop handler (otherwise we would submit a request
3025          * to hardware that will never complete). In order to prevent this
3026          * race, we wait until the machine is idle before making the swap
3027          * (using stop_machine()).
3028          */
3029         engine->submit_request = nop_submit_request;
3030
3031         /* Mark all executing requests as skipped */
3032         spin_lock_irqsave(&engine->timeline->lock, flags);
3033         list_for_each_entry(request, &engine->timeline->requests, link)
3034                 if (!i915_gem_request_completed(request))
3035                         dma_fence_set_error(&request->fence, -EIO);
3036         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3037
3038         /*
3039          * Clear the execlists queue up before freeing the requests, as those
3040          * are the ones that keep the context and ringbuffer backing objects
3041          * pinned in place.
3042          */
3043
3044         if (i915.enable_execlists) {
3045                 struct execlist_port *port = engine->execlist_port;
3046                 unsigned long flags;
3047                 unsigned int n;
3048
3049                 spin_lock_irqsave(&engine->timeline->lock, flags);
3050
3051                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3052                         i915_gem_request_put(port_request(&port[n]));
3053                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3054                 engine->execlist_queue = RB_ROOT;
3055                 engine->execlist_first = NULL;
3056
3057                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3058
3059                 /* The port is checked prior to scheduling a tasklet, but
3060                  * just in case we have suspended the tasklet to do the
3061                  * wedging make sure that when it wakes, it decides there
3062                  * is no work to do by clearing the irq_posted bit.
3063                  */
3064                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3065         }
3066
3067         /* Mark all pending requests as complete so that any concurrent
3068          * (lockless) lookup doesn't try and wait upon the request as we
3069          * reset it.
3070          */
3071         intel_engine_init_global_seqno(engine,
3072                                        intel_engine_last_submit(engine));
3073 }
3074
3075 static int __i915_gem_set_wedged_BKL(void *data)
3076 {
3077         struct drm_i915_private *i915 = data;
3078         struct intel_engine_cs *engine;
3079         enum intel_engine_id id;
3080
3081         for_each_engine(engine, i915, id)
3082                 engine_set_wedged(engine);
3083
3084         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3085         wake_up_all(&i915->gpu_error.reset_queue);
3086
3087         return 0;
3088 }
3089
3090 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3091 {
3092         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3093 }
3094
3095 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3096 {
3097         struct i915_gem_timeline *tl;
3098         int i;
3099
3100         lockdep_assert_held(&i915->drm.struct_mutex);
3101         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3102                 return true;
3103
3104         /* Before unwedging, make sure that all pending operations
3105          * are flushed and errored out - we may have requests waiting upon
3106          * third party fences. We marked all inflight requests as EIO, and
3107          * every execbuf since returned EIO, for consistency we want all
3108          * the currently pending requests to also be marked as EIO, which
3109          * is done inside our nop_submit_request - and so we must wait.
3110          *
3111          * No more can be submitted until we reset the wedged bit.
3112          */
3113         list_for_each_entry(tl, &i915->gt.timelines, link) {
3114                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3115                         struct drm_i915_gem_request *rq;
3116
3117                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3118                                                   &i915->drm.struct_mutex);
3119                         if (!rq)
3120                                 continue;
3121
3122                         /* We can't use our normal waiter as we want to
3123                          * avoid recursively trying to handle the current
3124                          * reset. The basic dma_fence_default_wait() installs
3125                          * a callback for dma_fence_signal(), which is
3126                          * triggered by our nop handler (indirectly, the
3127                          * callback enables the signaler thread which is
3128                          * woken by the nop_submit_request() advancing the seqno
3129                          * and when the seqno passes the fence, the signaler
3130                          * then signals the fence waking us up).
3131                          */
3132                         if (dma_fence_default_wait(&rq->fence, true,
3133                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3134                                 return false;
3135                 }
3136         }
3137
3138         /* Undo nop_submit_request. We prevent all new i915 requests from
3139          * being queued (by disallowing execbuf whilst wedged) so having
3140          * waited for all active requests above, we know the system is idle
3141          * and do not have to worry about a thread being inside
3142          * engine->submit_request() as we swap over. So unlike installing
3143          * the nop_submit_request on reset, we can do this from normal
3144          * context and do not require stop_machine().
3145          */
3146         intel_engines_reset_default_submission(i915);
3147         i915_gem_contexts_lost(i915);
3148
3149         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3150         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3151
3152         return true;
3153 }
3154
3155 static void
3156 i915_gem_retire_work_handler(struct work_struct *work)
3157 {
3158         struct drm_i915_private *dev_priv =
3159                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3160         struct drm_device *dev = &dev_priv->drm;
3161
3162         /* Come back later if the device is busy... */
3163         if (mutex_trylock(&dev->struct_mutex)) {
3164                 i915_gem_retire_requests(dev_priv);
3165                 mutex_unlock(&dev->struct_mutex);
3166         }
3167
3168         /* Keep the retire handler running until we are finally idle.
3169          * We do not need to do this test under locking as in the worst-case
3170          * we queue the retire worker once too often.
3171          */
3172         if (READ_ONCE(dev_priv->gt.awake)) {
3173                 i915_queue_hangcheck(dev_priv);
3174                 queue_delayed_work(dev_priv->wq,
3175                                    &dev_priv->gt.retire_work,
3176                                    round_jiffies_up_relative(HZ));
3177         }
3178 }
3179
3180 static void
3181 i915_gem_idle_work_handler(struct work_struct *work)
3182 {
3183         struct drm_i915_private *dev_priv =
3184                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3185         struct drm_device *dev = &dev_priv->drm;
3186         bool rearm_hangcheck;
3187
3188         if (!READ_ONCE(dev_priv->gt.awake))
3189                 return;
3190
3191         /*
3192          * Wait for last execlists context complete, but bail out in case a
3193          * new request is submitted.
3194          */
3195         wait_for(intel_engines_are_idle(dev_priv), 10);
3196         if (READ_ONCE(dev_priv->gt.active_requests))
3197                 return;
3198
3199         rearm_hangcheck =
3200                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3201
3202         if (!mutex_trylock(&dev->struct_mutex)) {
3203                 /* Currently busy, come back later */
3204                 mod_delayed_work(dev_priv->wq,
3205                                  &dev_priv->gt.idle_work,
3206                                  msecs_to_jiffies(50));
3207                 goto out_rearm;
3208         }
3209
3210         /*
3211          * New request retired after this work handler started, extend active
3212          * period until next instance of the work.
3213          */
3214         if (work_pending(work))
3215                 goto out_unlock;
3216
3217         if (dev_priv->gt.active_requests)
3218                 goto out_unlock;
3219
3220         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3221                 DRM_ERROR("Timeout waiting for engines to idle\n");
3222
3223         intel_engines_mark_idle(dev_priv);
3224         i915_gem_timelines_mark_idle(dev_priv);
3225
3226         GEM_BUG_ON(!dev_priv->gt.awake);
3227         dev_priv->gt.awake = false;
3228         rearm_hangcheck = false;
3229
3230         if (INTEL_GEN(dev_priv) >= 6)
3231                 gen6_rps_idle(dev_priv);
3232         intel_runtime_pm_put(dev_priv);
3233 out_unlock:
3234         mutex_unlock(&dev->struct_mutex);
3235
3236 out_rearm:
3237         if (rearm_hangcheck) {
3238                 GEM_BUG_ON(!dev_priv->gt.awake);
3239                 i915_queue_hangcheck(dev_priv);
3240         }
3241 }
3242
3243 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3244 {
3245         struct drm_i915_private *i915 = to_i915(gem->dev);
3246         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3247         struct drm_i915_file_private *fpriv = file->driver_priv;
3248         struct i915_lut_handle *lut, *ln;
3249
3250         mutex_lock(&i915->drm.struct_mutex);
3251
3252         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3253                 struct i915_gem_context *ctx = lut->ctx;
3254                 struct i915_vma *vma;
3255
3256                 if (ctx->file_priv != fpriv)
3257                         continue;
3258
3259                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3260
3261                 if (!i915_vma_is_ggtt(vma))
3262                         i915_vma_close(vma);
3263
3264                 list_del(&lut->obj_link);
3265                 list_del(&lut->ctx_link);
3266
3267                 kmem_cache_free(i915->luts, lut);
3268                 __i915_gem_object_release_unless_active(obj);
3269         }
3270
3271         mutex_unlock(&i915->drm.struct_mutex);
3272 }
3273
3274 static unsigned long to_wait_timeout(s64 timeout_ns)
3275 {
3276         if (timeout_ns < 0)
3277                 return MAX_SCHEDULE_TIMEOUT;
3278
3279         if (timeout_ns == 0)
3280                 return 0;
3281
3282         return nsecs_to_jiffies_timeout(timeout_ns);
3283 }
3284
3285 /**
3286  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3287  * @dev: drm device pointer
3288  * @data: ioctl data blob
3289  * @file: drm file pointer
3290  *
3291  * Returns 0 if successful, else an error is returned with the remaining time in
3292  * the timeout parameter.
3293  *  -ETIME: object is still busy after timeout
3294  *  -ERESTARTSYS: signal interrupted the wait
3295  *  -ENONENT: object doesn't exist
3296  * Also possible, but rare:
3297  *  -EAGAIN: incomplete, restart syscall
3298  *  -ENOMEM: damn
3299  *  -ENODEV: Internal IRQ fail
3300  *  -E?: The add request failed
3301  *
3302  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3303  * non-zero timeout parameter the wait ioctl will wait for the given number of
3304  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3305  * without holding struct_mutex the object may become re-busied before this
3306  * function completes. A similar but shorter * race condition exists in the busy
3307  * ioctl
3308  */
3309 int
3310 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3311 {
3312         struct drm_i915_gem_wait *args = data;
3313         struct drm_i915_gem_object *obj;
3314         ktime_t start;
3315         long ret;
3316
3317         if (args->flags != 0)
3318                 return -EINVAL;
3319
3320         obj = i915_gem_object_lookup(file, args->bo_handle);
3321         if (!obj)
3322                 return -ENOENT;
3323
3324         start = ktime_get();
3325
3326         ret = i915_gem_object_wait(obj,
3327                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3328                                    to_wait_timeout(args->timeout_ns),
3329                                    to_rps_client(file));
3330
3331         if (args->timeout_ns > 0) {
3332                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3333                 if (args->timeout_ns < 0)
3334                         args->timeout_ns = 0;
3335
3336                 /*
3337                  * Apparently ktime isn't accurate enough and occasionally has a
3338                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3339                  * things up to make the test happy. We allow up to 1 jiffy.
3340                  *
3341                  * This is a regression from the timespec->ktime conversion.
3342                  */
3343                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3344                         args->timeout_ns = 0;
3345
3346                 /* Asked to wait beyond the jiffie/scheduler precision? */
3347                 if (ret == -ETIME && args->timeout_ns)
3348                         ret = -EAGAIN;
3349         }
3350
3351         i915_gem_object_put(obj);
3352         return ret;
3353 }
3354
3355 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3356 {
3357         int ret, i;
3358
3359         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3360                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3361                 if (ret)
3362                         return ret;
3363         }
3364
3365         return 0;
3366 }
3367
3368 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3369 {
3370         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3371 }
3372
3373 static int wait_for_engines(struct drm_i915_private *i915)
3374 {
3375         struct intel_engine_cs *engine;
3376         enum intel_engine_id id;
3377
3378         for_each_engine(engine, i915, id) {
3379                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3380                         i915_gem_set_wedged(i915);
3381                         return -EIO;
3382                 }
3383
3384                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3385                            intel_engine_last_submit(engine));
3386         }
3387
3388         return 0;
3389 }
3390
3391 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3392 {
3393         int ret;
3394
3395         /* If the device is asleep, we have no requests outstanding */
3396         if (!READ_ONCE(i915->gt.awake))
3397                 return 0;
3398
3399         if (flags & I915_WAIT_LOCKED) {
3400                 struct i915_gem_timeline *tl;
3401
3402                 lockdep_assert_held(&i915->drm.struct_mutex);
3403
3404                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3405                         ret = wait_for_timeline(tl, flags);
3406                         if (ret)
3407                                 return ret;
3408                 }
3409
3410                 i915_gem_retire_requests(i915);
3411                 GEM_BUG_ON(i915->gt.active_requests);
3412
3413                 ret = wait_for_engines(i915);
3414         } else {
3415                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3416         }
3417
3418         return ret;
3419 }
3420
3421 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3422 {
3423         /*
3424          * We manually flush the CPU domain so that we can override and
3425          * force the flush for the display, and perform it asyncrhonously.
3426          */
3427         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3428         if (obj->cache_dirty)
3429                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3430         obj->base.write_domain = 0;
3431 }
3432
3433 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3434 {
3435         if (!READ_ONCE(obj->pin_display))
3436                 return;
3437
3438         mutex_lock(&obj->base.dev->struct_mutex);
3439         __i915_gem_object_flush_for_display(obj);
3440         mutex_unlock(&obj->base.dev->struct_mutex);
3441 }
3442
3443 /**
3444  * Moves a single object to the WC read, and possibly write domain.
3445  * @obj: object to act on
3446  * @write: ask for write access or read only
3447  *
3448  * This function returns when the move is complete, including waiting on
3449  * flushes to occur.
3450  */
3451 int
3452 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3453 {
3454         int ret;
3455
3456         lockdep_assert_held(&obj->base.dev->struct_mutex);
3457
3458         ret = i915_gem_object_wait(obj,
3459                                    I915_WAIT_INTERRUPTIBLE |
3460                                    I915_WAIT_LOCKED |
3461                                    (write ? I915_WAIT_ALL : 0),
3462                                    MAX_SCHEDULE_TIMEOUT,
3463                                    NULL);
3464         if (ret)
3465                 return ret;
3466
3467         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3468                 return 0;
3469
3470         /* Flush and acquire obj->pages so that we are coherent through
3471          * direct access in memory with previous cached writes through
3472          * shmemfs and that our cache domain tracking remains valid.
3473          * For example, if the obj->filp was moved to swap without us
3474          * being notified and releasing the pages, we would mistakenly
3475          * continue to assume that the obj remained out of the CPU cached
3476          * domain.
3477          */
3478         ret = i915_gem_object_pin_pages(obj);
3479         if (ret)
3480                 return ret;
3481
3482         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3483
3484         /* Serialise direct access to this object with the barriers for
3485          * coherent writes from the GPU, by effectively invalidating the
3486          * WC domain upon first access.
3487          */
3488         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3489                 mb();
3490
3491         /* It should now be out of any other write domains, and we can update
3492          * the domain values for our changes.
3493          */
3494         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3495         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3496         if (write) {
3497                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3498                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3499                 obj->mm.dirty = true;
3500         }
3501
3502         i915_gem_object_unpin_pages(obj);
3503         return 0;
3504 }
3505
3506 /**
3507  * Moves a single object to the GTT read, and possibly write domain.
3508  * @obj: object to act on
3509  * @write: ask for write access or read only
3510  *
3511  * This function returns when the move is complete, including waiting on
3512  * flushes to occur.
3513  */
3514 int
3515 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3516 {
3517         int ret;
3518
3519         lockdep_assert_held(&obj->base.dev->struct_mutex);
3520
3521         ret = i915_gem_object_wait(obj,
3522                                    I915_WAIT_INTERRUPTIBLE |
3523                                    I915_WAIT_LOCKED |
3524                                    (write ? I915_WAIT_ALL : 0),
3525                                    MAX_SCHEDULE_TIMEOUT,
3526                                    NULL);
3527         if (ret)
3528                 return ret;
3529
3530         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3531                 return 0;
3532
3533         /* Flush and acquire obj->pages so that we are coherent through
3534          * direct access in memory with previous cached writes through
3535          * shmemfs and that our cache domain tracking remains valid.
3536          * For example, if the obj->filp was moved to swap without us
3537          * being notified and releasing the pages, we would mistakenly
3538          * continue to assume that the obj remained out of the CPU cached
3539          * domain.
3540          */
3541         ret = i915_gem_object_pin_pages(obj);
3542         if (ret)
3543                 return ret;
3544
3545         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3546
3547         /* Serialise direct access to this object with the barriers for
3548          * coherent writes from the GPU, by effectively invalidating the
3549          * GTT domain upon first access.
3550          */
3551         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3552                 mb();
3553
3554         /* It should now be out of any other write domains, and we can update
3555          * the domain values for our changes.
3556          */
3557         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3558         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3559         if (write) {
3560                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3561                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3562                 obj->mm.dirty = true;
3563         }
3564
3565         i915_gem_object_unpin_pages(obj);
3566         return 0;
3567 }
3568
3569 /**
3570  * Changes the cache-level of an object across all VMA.
3571  * @obj: object to act on
3572  * @cache_level: new cache level to set for the object
3573  *
3574  * After this function returns, the object will be in the new cache-level
3575  * across all GTT and the contents of the backing storage will be coherent,
3576  * with respect to the new cache-level. In order to keep the backing storage
3577  * coherent for all users, we only allow a single cache level to be set
3578  * globally on the object and prevent it from being changed whilst the
3579  * hardware is reading from the object. That is if the object is currently
3580  * on the scanout it will be set to uncached (or equivalent display
3581  * cache coherency) and all non-MOCS GPU access will also be uncached so
3582  * that all direct access to the scanout remains coherent.
3583  */
3584 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3585                                     enum i915_cache_level cache_level)
3586 {
3587         struct i915_vma *vma;
3588         int ret;
3589
3590         lockdep_assert_held(&obj->base.dev->struct_mutex);
3591
3592         if (obj->cache_level == cache_level)
3593                 return 0;
3594
3595         /* Inspect the list of currently bound VMA and unbind any that would
3596          * be invalid given the new cache-level. This is principally to
3597          * catch the issue of the CS prefetch crossing page boundaries and
3598          * reading an invalid PTE on older architectures.
3599          */
3600 restart:
3601         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3602                 if (!drm_mm_node_allocated(&vma->node))
3603                         continue;
3604
3605                 if (i915_vma_is_pinned(vma)) {
3606                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3607                         return -EBUSY;
3608                 }
3609
3610                 if (i915_gem_valid_gtt_space(vma, cache_level))
3611                         continue;
3612
3613                 ret = i915_vma_unbind(vma);
3614                 if (ret)
3615                         return ret;
3616
3617                 /* As unbinding may affect other elements in the
3618                  * obj->vma_list (due to side-effects from retiring
3619                  * an active vma), play safe and restart the iterator.
3620                  */
3621                 goto restart;
3622         }
3623
3624         /* We can reuse the existing drm_mm nodes but need to change the
3625          * cache-level on the PTE. We could simply unbind them all and
3626          * rebind with the correct cache-level on next use. However since
3627          * we already have a valid slot, dma mapping, pages etc, we may as
3628          * rewrite the PTE in the belief that doing so tramples upon less
3629          * state and so involves less work.
3630          */
3631         if (obj->bind_count) {
3632                 /* Before we change the PTE, the GPU must not be accessing it.
3633                  * If we wait upon the object, we know that all the bound
3634                  * VMA are no longer active.
3635                  */
3636                 ret = i915_gem_object_wait(obj,
3637                                            I915_WAIT_INTERRUPTIBLE |
3638                                            I915_WAIT_LOCKED |
3639                                            I915_WAIT_ALL,
3640                                            MAX_SCHEDULE_TIMEOUT,
3641                                            NULL);
3642                 if (ret)
3643                         return ret;
3644
3645                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3646                     cache_level != I915_CACHE_NONE) {
3647                         /* Access to snoopable pages through the GTT is
3648                          * incoherent and on some machines causes a hard
3649                          * lockup. Relinquish the CPU mmaping to force
3650                          * userspace to refault in the pages and we can
3651                          * then double check if the GTT mapping is still
3652                          * valid for that pointer access.
3653                          */
3654                         i915_gem_release_mmap(obj);
3655
3656                         /* As we no longer need a fence for GTT access,
3657                          * we can relinquish it now (and so prevent having
3658                          * to steal a fence from someone else on the next
3659                          * fence request). Note GPU activity would have
3660                          * dropped the fence as all snoopable access is
3661                          * supposed to be linear.
3662                          */
3663                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3664                                 ret = i915_vma_put_fence(vma);
3665                                 if (ret)
3666                                         return ret;
3667                         }
3668                 } else {
3669                         /* We either have incoherent backing store and
3670                          * so no GTT access or the architecture is fully
3671                          * coherent. In such cases, existing GTT mmaps
3672                          * ignore the cache bit in the PTE and we can
3673                          * rewrite it without confusing the GPU or having
3674                          * to force userspace to fault back in its mmaps.
3675                          */
3676                 }
3677
3678                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3679                         if (!drm_mm_node_allocated(&vma->node))
3680                                 continue;
3681
3682                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3683                         if (ret)
3684                                 return ret;
3685                 }
3686         }
3687
3688         list_for_each_entry(vma, &obj->vma_list, obj_link)
3689                 vma->node.color = cache_level;
3690         i915_gem_object_set_cache_coherency(obj, cache_level);
3691         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3692
3693         return 0;
3694 }
3695
3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3697                                struct drm_file *file)
3698 {
3699         struct drm_i915_gem_caching *args = data;
3700         struct drm_i915_gem_object *obj;
3701         int err = 0;
3702
3703         rcu_read_lock();
3704         obj = i915_gem_object_lookup_rcu(file, args->handle);
3705         if (!obj) {
3706                 err = -ENOENT;
3707                 goto out;
3708         }
3709
3710         switch (obj->cache_level) {
3711         case I915_CACHE_LLC:
3712         case I915_CACHE_L3_LLC:
3713                 args->caching = I915_CACHING_CACHED;
3714                 break;
3715
3716         case I915_CACHE_WT:
3717                 args->caching = I915_CACHING_DISPLAY;
3718                 break;
3719
3720         default:
3721                 args->caching = I915_CACHING_NONE;
3722                 break;
3723         }
3724 out:
3725         rcu_read_unlock();
3726         return err;
3727 }
3728
3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730                                struct drm_file *file)
3731 {
3732         struct drm_i915_private *i915 = to_i915(dev);
3733         struct drm_i915_gem_caching *args = data;
3734         struct drm_i915_gem_object *obj;
3735         enum i915_cache_level level;
3736         int ret = 0;
3737
3738         switch (args->caching) {
3739         case I915_CACHING_NONE:
3740                 level = I915_CACHE_NONE;
3741                 break;
3742         case I915_CACHING_CACHED:
3743                 /*
3744                  * Due to a HW issue on BXT A stepping, GPU stores via a
3745                  * snooped mapping may leave stale data in a corresponding CPU
3746                  * cacheline, whereas normally such cachelines would get
3747                  * invalidated.
3748                  */
3749                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3750                         return -ENODEV;
3751
3752                 level = I915_CACHE_LLC;
3753                 break;
3754         case I915_CACHING_DISPLAY:
3755                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3756                 break;
3757         default:
3758                 return -EINVAL;
3759         }
3760
3761         obj = i915_gem_object_lookup(file, args->handle);
3762         if (!obj)
3763                 return -ENOENT;
3764
3765         if (obj->cache_level == level)
3766                 goto out;
3767
3768         ret = i915_gem_object_wait(obj,
3769                                    I915_WAIT_INTERRUPTIBLE,
3770                                    MAX_SCHEDULE_TIMEOUT,
3771                                    to_rps_client(file));
3772         if (ret)
3773                 goto out;
3774
3775         ret = i915_mutex_lock_interruptible(dev);
3776         if (ret)
3777                 goto out;
3778
3779         ret = i915_gem_object_set_cache_level(obj, level);
3780         mutex_unlock(&dev->struct_mutex);
3781
3782 out:
3783         i915_gem_object_put(obj);
3784         return ret;
3785 }
3786
3787 /*
3788  * Prepare buffer for display plane (scanout, cursors, etc).
3789  * Can be called from an uninterruptible phase (modesetting) and allows
3790  * any flushes to be pipelined (for pageflips).
3791  */
3792 struct i915_vma *
3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3794                                      u32 alignment,
3795                                      const struct i915_ggtt_view *view)
3796 {
3797         struct i915_vma *vma;
3798         int ret;
3799
3800         lockdep_assert_held(&obj->base.dev->struct_mutex);
3801
3802         /* Mark the pin_display early so that we account for the
3803          * display coherency whilst setting up the cache domains.
3804          */
3805         obj->pin_display++;
3806
3807         /* The display engine is not coherent with the LLC cache on gen6.  As
3808          * a result, we make sure that the pinning that is about to occur is
3809          * done with uncached PTEs. This is lowest common denominator for all
3810          * chipsets.
3811          *
3812          * However for gen6+, we could do better by using the GFDT bit instead
3813          * of uncaching, which would allow us to flush all the LLC-cached data
3814          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3815          */
3816         ret = i915_gem_object_set_cache_level(obj,
3817                                               HAS_WT(to_i915(obj->base.dev)) ?
3818                                               I915_CACHE_WT : I915_CACHE_NONE);
3819         if (ret) {
3820                 vma = ERR_PTR(ret);
3821                 goto err_unpin_display;
3822         }
3823
3824         /* As the user may map the buffer once pinned in the display plane
3825          * (e.g. libkms for the bootup splash), we have to ensure that we
3826          * always use map_and_fenceable for all scanout buffers. However,
3827          * it may simply be too big to fit into mappable, in which case
3828          * put it anyway and hope that userspace can cope (but always first
3829          * try to preserve the existing ABI).
3830          */
3831         vma = ERR_PTR(-ENOSPC);
3832         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3833                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3834                                                PIN_MAPPABLE | PIN_NONBLOCK);
3835         if (IS_ERR(vma)) {
3836                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3837                 unsigned int flags;
3838
3839                 /* Valleyview is definitely limited to scanning out the first
3840                  * 512MiB. Lets presume this behaviour was inherited from the
3841                  * g4x display engine and that all earlier gen are similarly
3842                  * limited. Testing suggests that it is a little more
3843                  * complicated than this. For example, Cherryview appears quite
3844                  * happy to scanout from anywhere within its global aperture.
3845                  */
3846                 flags = 0;
3847                 if (HAS_GMCH_DISPLAY(i915))
3848                         flags = PIN_MAPPABLE;
3849                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3850         }
3851         if (IS_ERR(vma))
3852                 goto err_unpin_display;
3853
3854         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3855
3856         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3857         __i915_gem_object_flush_for_display(obj);
3858         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3859
3860         /* It should now be out of any other write domains, and we can update
3861          * the domain values for our changes.
3862          */
3863         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3864
3865         return vma;
3866
3867 err_unpin_display:
3868         obj->pin_display--;
3869         return vma;
3870 }
3871
3872 void
3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3874 {
3875         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3876
3877         if (WARN_ON(vma->obj->pin_display == 0))
3878                 return;
3879
3880         if (--vma->obj->pin_display == 0)
3881                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3882
3883         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3884         i915_gem_object_bump_inactive_ggtt(vma->obj);
3885
3886         i915_vma_unpin(vma);
3887 }
3888
3889 /**
3890  * Moves a single object to the CPU read, and possibly write domain.
3891  * @obj: object to act on
3892  * @write: requesting write or read-only access
3893  *
3894  * This function returns when the move is complete, including waiting on
3895  * flushes to occur.
3896  */
3897 int
3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3899 {
3900         int ret;
3901
3902         lockdep_assert_held(&obj->base.dev->struct_mutex);
3903
3904         ret = i915_gem_object_wait(obj,
3905                                    I915_WAIT_INTERRUPTIBLE |
3906                                    I915_WAIT_LOCKED |
3907                                    (write ? I915_WAIT_ALL : 0),
3908                                    MAX_SCHEDULE_TIMEOUT,
3909                                    NULL);
3910         if (ret)
3911                 return ret;
3912
3913         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3914
3915         /* Flush the CPU cache if it's still invalid. */
3916         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3917                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3918                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3919         }
3920
3921         /* It should now be out of any other write domains, and we can update
3922          * the domain values for our changes.
3923          */
3924         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3925
3926         /* If we're writing through the CPU, then the GPU read domains will
3927          * need to be invalidated at next use.
3928          */
3929         if (write)
3930                 __start_cpu_write(obj);
3931
3932         return 0;
3933 }
3934
3935 /* Throttle our rendering by waiting until the ring has completed our requests
3936  * emitted over 20 msec ago.
3937  *
3938  * Note that if we were to use the current jiffies each time around the loop,
3939  * we wouldn't escape the function with any frames outstanding if the time to
3940  * render a frame was over 20ms.
3941  *
3942  * This should get us reasonable parallelism between CPU and GPU but also
3943  * relatively low latency when blocking on a particular request to finish.
3944  */
3945 static int
3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3947 {
3948         struct drm_i915_private *dev_priv = to_i915(dev);
3949         struct drm_i915_file_private *file_priv = file->driver_priv;
3950         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3951         struct drm_i915_gem_request *request, *target = NULL;
3952         long ret;
3953
3954         /* ABI: return -EIO if already wedged */
3955         if (i915_terminally_wedged(&dev_priv->gpu_error))
3956                 return -EIO;
3957
3958         spin_lock(&file_priv->mm.lock);
3959         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3960                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3961                         break;
3962
3963                 if (target) {
3964                         list_del(&target->client_link);
3965                         target->file_priv = NULL;
3966                 }
3967
3968                 target = request;
3969         }
3970         if (target)
3971                 i915_gem_request_get(target);
3972         spin_unlock(&file_priv->mm.lock);
3973
3974         if (target == NULL)
3975                 return 0;
3976
3977         ret = i915_wait_request(target,
3978                                 I915_WAIT_INTERRUPTIBLE,
3979                                 MAX_SCHEDULE_TIMEOUT);
3980         i915_gem_request_put(target);
3981
3982         return ret < 0 ? ret : 0;
3983 }
3984
3985 struct i915_vma *
3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3987                          const struct i915_ggtt_view *view,
3988                          u64 size,
3989                          u64 alignment,
3990                          u64 flags)
3991 {
3992         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3993         struct i915_address_space *vm = &dev_priv->ggtt.base;
3994         struct i915_vma *vma;
3995         int ret;
3996
3997         lockdep_assert_held(&obj->base.dev->struct_mutex);
3998
3999         vma = i915_vma_instance(obj, vm, view);
4000         if (unlikely(IS_ERR(vma)))
4001                 return vma;
4002
4003         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4004                 if (flags & PIN_NONBLOCK &&
4005                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4006                         return ERR_PTR(-ENOSPC);
4007
4008                 if (flags & PIN_MAPPABLE) {
4009                         /* If the required space is larger than the available
4010                          * aperture, we will not able to find a slot for the
4011                          * object and unbinding the object now will be in
4012                          * vain. Worse, doing so may cause us to ping-pong
4013                          * the object in and out of the Global GTT and
4014                          * waste a lot of cycles under the mutex.
4015                          */
4016                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4017                                 return ERR_PTR(-E2BIG);
4018
4019                         /* If NONBLOCK is set the caller is optimistically
4020                          * trying to cache the full object within the mappable
4021                          * aperture, and *must* have a fallback in place for
4022                          * situations where we cannot bind the object. We
4023                          * can be a little more lax here and use the fallback
4024                          * more often to avoid costly migrations of ourselves
4025                          * and other objects within the aperture.
4026                          *
4027                          * Half-the-aperture is used as a simple heuristic.
4028                          * More interesting would to do search for a free
4029                          * block prior to making the commitment to unbind.
4030                          * That caters for the self-harm case, and with a
4031                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4032                          * we could try to minimise harm to others.
4033                          */
4034                         if (flags & PIN_NONBLOCK &&
4035                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4036                                 return ERR_PTR(-ENOSPC);
4037                 }
4038
4039                 WARN(i915_vma_is_pinned(vma),
4040                      "bo is already pinned in ggtt with incorrect alignment:"
4041                      " offset=%08x, req.alignment=%llx,"
4042                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4043                      i915_ggtt_offset(vma), alignment,
4044                      !!(flags & PIN_MAPPABLE),
4045                      i915_vma_is_map_and_fenceable(vma));
4046                 ret = i915_vma_unbind(vma);
4047                 if (ret)
4048                         return ERR_PTR(ret);
4049         }
4050
4051         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4052         if (ret)
4053                 return ERR_PTR(ret);
4054
4055         return vma;
4056 }
4057
4058 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4059 {
4060         /* Note that we could alias engines in the execbuf API, but
4061          * that would be very unwise as it prevents userspace from
4062          * fine control over engine selection. Ahem.
4063          *
4064          * This should be something like EXEC_MAX_ENGINE instead of
4065          * I915_NUM_ENGINES.
4066          */
4067         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4068         return 0x10000 << id;
4069 }
4070
4071 static __always_inline unsigned int __busy_write_id(unsigned int id)
4072 {
4073         /* The uABI guarantees an active writer is also amongst the read
4074          * engines. This would be true if we accessed the activity tracking
4075          * under the lock, but as we perform the lookup of the object and
4076          * its activity locklessly we can not guarantee that the last_write
4077          * being active implies that we have set the same engine flag from
4078          * last_read - hence we always set both read and write busy for
4079          * last_write.
4080          */
4081         return id | __busy_read_flag(id);
4082 }
4083
4084 static __always_inline unsigned int
4085 __busy_set_if_active(const struct dma_fence *fence,
4086                      unsigned int (*flag)(unsigned int id))
4087 {
4088         struct drm_i915_gem_request *rq;
4089
4090         /* We have to check the current hw status of the fence as the uABI
4091          * guarantees forward progress. We could rely on the idle worker
4092          * to eventually flush us, but to minimise latency just ask the
4093          * hardware.
4094          *
4095          * Note we only report on the status of native fences.
4096          */
4097         if (!dma_fence_is_i915(fence))
4098                 return 0;
4099
4100         /* opencode to_request() in order to avoid const warnings */
4101         rq = container_of(fence, struct drm_i915_gem_request, fence);
4102         if (i915_gem_request_completed(rq))
4103                 return 0;
4104
4105         return flag(rq->engine->uabi_id);
4106 }
4107
4108 static __always_inline unsigned int
4109 busy_check_reader(const struct dma_fence *fence)
4110 {
4111         return __busy_set_if_active(fence, __busy_read_flag);
4112 }
4113
4114 static __always_inline unsigned int
4115 busy_check_writer(const struct dma_fence *fence)
4116 {
4117         if (!fence)
4118                 return 0;
4119
4120         return __busy_set_if_active(fence, __busy_write_id);
4121 }
4122
4123 int
4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4125                     struct drm_file *file)
4126 {
4127         struct drm_i915_gem_busy *args = data;
4128         struct drm_i915_gem_object *obj;
4129         struct reservation_object_list *list;
4130         unsigned int seq;
4131         int err;
4132
4133         err = -ENOENT;
4134         rcu_read_lock();
4135         obj = i915_gem_object_lookup_rcu(file, args->handle);
4136         if (!obj)
4137                 goto out;
4138
4139         /* A discrepancy here is that we do not report the status of
4140          * non-i915 fences, i.e. even though we may report the object as idle,
4141          * a call to set-domain may still stall waiting for foreign rendering.
4142          * This also means that wait-ioctl may report an object as busy,
4143          * where busy-ioctl considers it idle.
4144          *
4145          * We trade the ability to warn of foreign fences to report on which
4146          * i915 engines are active for the object.
4147          *
4148          * Alternatively, we can trade that extra information on read/write
4149          * activity with
4150          *      args->busy =
4151          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4152          * to report the overall busyness. This is what the wait-ioctl does.
4153          *
4154          */
4155 retry:
4156         seq = raw_read_seqcount(&obj->resv->seq);
4157
4158         /* Translate the exclusive fence to the READ *and* WRITE engine */
4159         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4160
4161         /* Translate shared fences to READ set of engines */
4162         list = rcu_dereference(obj->resv->fence);
4163         if (list) {
4164                 unsigned int shared_count = list->shared_count, i;
4165
4166                 for (i = 0; i < shared_count; ++i) {
4167                         struct dma_fence *fence =
4168                                 rcu_dereference(list->shared[i]);
4169
4170                         args->busy |= busy_check_reader(fence);
4171                 }
4172         }
4173
4174         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4175                 goto retry;
4176
4177         err = 0;
4178 out:
4179         rcu_read_unlock();
4180         return err;
4181 }
4182
4183 int
4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4185                         struct drm_file *file_priv)
4186 {
4187         return i915_gem_ring_throttle(dev, file_priv);
4188 }
4189
4190 int
4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4192                        struct drm_file *file_priv)
4193 {
4194         struct drm_i915_private *dev_priv = to_i915(dev);
4195         struct drm_i915_gem_madvise *args = data;
4196         struct drm_i915_gem_object *obj;
4197         int err;
4198
4199         switch (args->madv) {
4200         case I915_MADV_DONTNEED:
4201         case I915_MADV_WILLNEED:
4202             break;
4203         default:
4204             return -EINVAL;
4205         }
4206
4207         obj = i915_gem_object_lookup(file_priv, args->handle);
4208         if (!obj)
4209                 return -ENOENT;
4210
4211         err = mutex_lock_interruptible(&obj->mm.lock);
4212         if (err)
4213                 goto out;
4214
4215         if (obj->mm.pages &&
4216             i915_gem_object_is_tiled(obj) &&
4217             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4218                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4219                         GEM_BUG_ON(!obj->mm.quirked);
4220                         __i915_gem_object_unpin_pages(obj);
4221                         obj->mm.quirked = false;
4222                 }
4223                 if (args->madv == I915_MADV_WILLNEED) {
4224                         GEM_BUG_ON(obj->mm.quirked);
4225                         __i915_gem_object_pin_pages(obj);
4226                         obj->mm.quirked = true;
4227                 }
4228         }
4229
4230         if (obj->mm.madv != __I915_MADV_PURGED)
4231                 obj->mm.madv = args->madv;
4232
4233         /* if the object is no longer attached, discard its backing storage */
4234         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4235                 i915_gem_object_truncate(obj);
4236
4237         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4238         mutex_unlock(&obj->mm.lock);
4239
4240 out:
4241         i915_gem_object_put(obj);
4242         return err;
4243 }
4244
4245 static void
4246 frontbuffer_retire(struct i915_gem_active *active,
4247                    struct drm_i915_gem_request *request)
4248 {
4249         struct drm_i915_gem_object *obj =
4250                 container_of(active, typeof(*obj), frontbuffer_write);
4251
4252         intel_fb_obj_flush(obj, ORIGIN_CS);
4253 }
4254
4255 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4256                           const struct drm_i915_gem_object_ops *ops)
4257 {
4258         mutex_init(&obj->mm.lock);
4259
4260         INIT_LIST_HEAD(&obj->global_link);
4261         INIT_LIST_HEAD(&obj->userfault_link);
4262         INIT_LIST_HEAD(&obj->vma_list);
4263         INIT_LIST_HEAD(&obj->lut_list);
4264         INIT_LIST_HEAD(&obj->batch_pool_link);
4265
4266         obj->ops = ops;
4267
4268         reservation_object_init(&obj->__builtin_resv);
4269         obj->resv = &obj->__builtin_resv;
4270
4271         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4272         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4273
4274         obj->mm.madv = I915_MADV_WILLNEED;
4275         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4276         mutex_init(&obj->mm.get_page.lock);
4277
4278         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4279 }
4280
4281 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4282         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4283                  I915_GEM_OBJECT_IS_SHRINKABLE,
4284
4285         .get_pages = i915_gem_object_get_pages_gtt,
4286         .put_pages = i915_gem_object_put_pages_gtt,
4287
4288         .pwrite = i915_gem_object_pwrite_gtt,
4289 };
4290
4291 struct drm_i915_gem_object *
4292 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4293 {
4294         struct drm_i915_gem_object *obj;
4295         struct address_space *mapping;
4296         unsigned int cache_level;
4297         gfp_t mask;
4298         int ret;
4299
4300         /* There is a prevalence of the assumption that we fit the object's
4301          * page count inside a 32bit _signed_ variable. Let's document this and
4302          * catch if we ever need to fix it. In the meantime, if you do spot
4303          * such a local variable, please consider fixing!
4304          */
4305         if (size >> PAGE_SHIFT > INT_MAX)
4306                 return ERR_PTR(-E2BIG);
4307
4308         if (overflows_type(size, obj->base.size))
4309                 return ERR_PTR(-E2BIG);
4310
4311         obj = i915_gem_object_alloc(dev_priv);
4312         if (obj == NULL)
4313                 return ERR_PTR(-ENOMEM);
4314
4315         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4316         if (ret)
4317                 goto fail;
4318
4319         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4320         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4321                 /* 965gm cannot relocate objects above 4GiB. */
4322                 mask &= ~__GFP_HIGHMEM;
4323                 mask |= __GFP_DMA32;
4324         }
4325
4326         mapping = obj->base.filp->f_mapping;
4327         mapping_set_gfp_mask(mapping, mask);
4328         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4329
4330         i915_gem_object_init(obj, &i915_gem_object_ops);
4331
4332         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4333         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4334
4335         if (HAS_LLC(dev_priv))
4336                 /* On some devices, we can have the GPU use the LLC (the CPU
4337                  * cache) for about a 10% performance improvement
4338                  * compared to uncached.  Graphics requests other than
4339                  * display scanout are coherent with the CPU in
4340                  * accessing this cache.  This means in this mode we
4341                  * don't need to clflush on the CPU side, and on the
4342                  * GPU side we only need to flush internal caches to
4343                  * get data visible to the CPU.
4344                  *
4345                  * However, we maintain the display planes as UC, and so
4346                  * need to rebind when first used as such.
4347                  */
4348                 cache_level = I915_CACHE_LLC;
4349         else
4350                 cache_level = I915_CACHE_NONE;
4351
4352         i915_gem_object_set_cache_coherency(obj, cache_level);
4353
4354         trace_i915_gem_object_create(obj);
4355
4356         return obj;
4357
4358 fail:
4359         i915_gem_object_free(obj);
4360         return ERR_PTR(ret);
4361 }
4362
4363 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4364 {
4365         /* If we are the last user of the backing storage (be it shmemfs
4366          * pages or stolen etc), we know that the pages are going to be
4367          * immediately released. In this case, we can then skip copying
4368          * back the contents from the GPU.
4369          */
4370
4371         if (obj->mm.madv != I915_MADV_WILLNEED)
4372                 return false;
4373
4374         if (obj->base.filp == NULL)
4375                 return true;
4376
4377         /* At first glance, this looks racy, but then again so would be
4378          * userspace racing mmap against close. However, the first external
4379          * reference to the filp can only be obtained through the
4380          * i915_gem_mmap_ioctl() which safeguards us against the user
4381          * acquiring such a reference whilst we are in the middle of
4382          * freeing the object.
4383          */
4384         return atomic_long_read(&obj->base.filp->f_count) == 1;
4385 }
4386
4387 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4388                                     struct llist_node *freed)
4389 {
4390         struct drm_i915_gem_object *obj, *on;
4391
4392         mutex_lock(&i915->drm.struct_mutex);
4393         intel_runtime_pm_get(i915);
4394         llist_for_each_entry(obj, freed, freed) {
4395                 struct i915_vma *vma, *vn;
4396
4397                 trace_i915_gem_object_destroy(obj);
4398
4399                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4400                 list_for_each_entry_safe(vma, vn,
4401                                          &obj->vma_list, obj_link) {
4402                         GEM_BUG_ON(i915_vma_is_active(vma));
4403                         vma->flags &= ~I915_VMA_PIN_MASK;
4404                         i915_vma_close(vma);
4405                 }
4406                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4407                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4408
4409                 list_del(&obj->global_link);
4410         }
4411         intel_runtime_pm_put(i915);
4412         mutex_unlock(&i915->drm.struct_mutex);
4413
4414         cond_resched();
4415
4416         llist_for_each_entry_safe(obj, on, freed, freed) {
4417                 GEM_BUG_ON(obj->bind_count);
4418                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4419
4420                 if (obj->ops->release)
4421                         obj->ops->release(obj);
4422
4423                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4424                         atomic_set(&obj->mm.pages_pin_count, 0);
4425                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4426                 GEM_BUG_ON(obj->mm.pages);
4427
4428                 if (obj->base.import_attach)
4429                         drm_prime_gem_destroy(&obj->base, NULL);
4430
4431                 reservation_object_fini(&obj->__builtin_resv);
4432                 drm_gem_object_release(&obj->base);
4433                 i915_gem_info_remove_obj(i915, obj->base.size);
4434
4435                 kfree(obj->bit_17);
4436                 i915_gem_object_free(obj);
4437         }
4438 }
4439
4440 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4441 {
4442         struct llist_node *freed;
4443
4444         freed = llist_del_all(&i915->mm.free_list);
4445         if (unlikely(freed))
4446                 __i915_gem_free_objects(i915, freed);
4447 }
4448
4449 static void __i915_gem_free_work(struct work_struct *work)
4450 {
4451         struct drm_i915_private *i915 =
4452                 container_of(work, struct drm_i915_private, mm.free_work);
4453         struct llist_node *freed;
4454
4455         /* All file-owned VMA should have been released by this point through
4456          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4457          * However, the object may also be bound into the global GTT (e.g.
4458          * older GPUs without per-process support, or for direct access through
4459          * the GTT either for the user or for scanout). Those VMA still need to
4460          * unbound now.
4461          */
4462
4463         while ((freed = llist_del_all(&i915->mm.free_list))) {
4464                 __i915_gem_free_objects(i915, freed);
4465                 if (need_resched())
4466                         break;
4467         }
4468 }
4469
4470 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4471 {
4472         struct drm_i915_gem_object *obj =
4473                 container_of(head, typeof(*obj), rcu);
4474         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4475
4476         /* We can't simply use call_rcu() from i915_gem_free_object()
4477          * as we need to block whilst unbinding, and the call_rcu
4478          * task may be called from softirq context. So we take a
4479          * detour through a worker.
4480          */
4481         if (llist_add(&obj->freed, &i915->mm.free_list))
4482                 schedule_work(&i915->mm.free_work);
4483 }
4484
4485 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4486 {
4487         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4488
4489         if (obj->mm.quirked)
4490                 __i915_gem_object_unpin_pages(obj);
4491
4492         if (discard_backing_storage(obj))
4493                 obj->mm.madv = I915_MADV_DONTNEED;
4494
4495         /* Before we free the object, make sure any pure RCU-only
4496          * read-side critical sections are complete, e.g.
4497          * i915_gem_busy_ioctl(). For the corresponding synchronized
4498          * lookup see i915_gem_object_lookup_rcu().
4499          */
4500         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4501 }
4502
4503 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4504 {
4505         lockdep_assert_held(&obj->base.dev->struct_mutex);
4506
4507         if (!i915_gem_object_has_active_reference(obj) &&
4508             i915_gem_object_is_active(obj))
4509                 i915_gem_object_set_active_reference(obj);
4510         else
4511                 i915_gem_object_put(obj);
4512 }
4513
4514 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4515 {
4516         struct intel_engine_cs *engine;
4517         enum intel_engine_id id;
4518
4519         for_each_engine(engine, dev_priv, id)
4520                 GEM_BUG_ON(engine->last_retired_context &&
4521                            !i915_gem_context_is_kernel(engine->last_retired_context));
4522 }
4523
4524 void i915_gem_sanitize(struct drm_i915_private *i915)
4525 {
4526         /*
4527          * If we inherit context state from the BIOS or earlier occupants
4528          * of the GPU, the GPU may be in an inconsistent state when we
4529          * try to take over. The only way to remove the earlier state
4530          * is by resetting. However, resetting on earlier gen is tricky as
4531          * it may impact the display and we are uncertain about the stability
4532          * of the reset, so this could be applied to even earlier gen.
4533          */
4534         if (INTEL_GEN(i915) >= 5) {
4535                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4536                 WARN_ON(reset && reset != -ENODEV);
4537         }
4538 }
4539
4540 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4541 {
4542         struct drm_device *dev = &dev_priv->drm;
4543         int ret;
4544
4545         intel_runtime_pm_get(dev_priv);
4546         intel_suspend_gt_powersave(dev_priv);
4547
4548         mutex_lock(&dev->struct_mutex);
4549
4550         /* We have to flush all the executing contexts to main memory so
4551          * that they can saved in the hibernation image. To ensure the last
4552          * context image is coherent, we have to switch away from it. That
4553          * leaves the dev_priv->kernel_context still active when
4554          * we actually suspend, and its image in memory may not match the GPU
4555          * state. Fortunately, the kernel_context is disposable and we do
4556          * not rely on its state.
4557          */
4558         ret = i915_gem_switch_to_kernel_context(dev_priv);
4559         if (ret)
4560                 goto err_unlock;
4561
4562         ret = i915_gem_wait_for_idle(dev_priv,
4563                                      I915_WAIT_INTERRUPTIBLE |
4564                                      I915_WAIT_LOCKED);
4565         if (ret)
4566                 goto err_unlock;
4567
4568         assert_kernel_context_is_current(dev_priv);
4569         i915_gem_contexts_lost(dev_priv);
4570         mutex_unlock(&dev->struct_mutex);
4571
4572         intel_guc_suspend(dev_priv);
4573
4574         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4575         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4576
4577         /* As the idle_work is rearming if it detects a race, play safe and
4578          * repeat the flush until it is definitely idle.
4579          */
4580         while (flush_delayed_work(&dev_priv->gt.idle_work))
4581                 ;
4582
4583         /* Assert that we sucessfully flushed all the work and
4584          * reset the GPU back to its idle, low power state.
4585          */
4586         WARN_ON(dev_priv->gt.awake);
4587         WARN_ON(!intel_engines_are_idle(dev_priv));
4588
4589         /*
4590          * Neither the BIOS, ourselves or any other kernel
4591          * expects the system to be in execlists mode on startup,
4592          * so we need to reset the GPU back to legacy mode. And the only
4593          * known way to disable logical contexts is through a GPU reset.
4594          *
4595          * So in order to leave the system in a known default configuration,
4596          * always reset the GPU upon unload and suspend. Afterwards we then
4597          * clean up the GEM state tracking, flushing off the requests and
4598          * leaving the system in a known idle state.
4599          *
4600          * Note that is of the upmost importance that the GPU is idle and
4601          * all stray writes are flushed *before* we dismantle the backing
4602          * storage for the pinned objects.
4603          *
4604          * However, since we are uncertain that resetting the GPU on older
4605          * machines is a good idea, we don't - just in case it leaves the
4606          * machine in an unusable condition.
4607          */
4608         i915_gem_sanitize(dev_priv);
4609         goto out_rpm_put;
4610
4611 err_unlock:
4612         mutex_unlock(&dev->struct_mutex);
4613 out_rpm_put:
4614         intel_runtime_pm_put(dev_priv);
4615         return ret;
4616 }
4617
4618 void i915_gem_resume(struct drm_i915_private *dev_priv)
4619 {
4620         struct drm_device *dev = &dev_priv->drm;
4621
4622         WARN_ON(dev_priv->gt.awake);
4623
4624         mutex_lock(&dev->struct_mutex);
4625         i915_gem_restore_gtt_mappings(dev_priv);
4626
4627         /* As we didn't flush the kernel context before suspend, we cannot
4628          * guarantee that the context image is complete. So let's just reset
4629          * it and start again.
4630          */
4631         dev_priv->gt.resume(dev_priv);
4632
4633         mutex_unlock(&dev->struct_mutex);
4634 }
4635
4636 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4637 {
4638         if (INTEL_GEN(dev_priv) < 5 ||
4639             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4640                 return;
4641
4642         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4643                                  DISP_TILE_SURFACE_SWIZZLING);
4644
4645         if (IS_GEN5(dev_priv))
4646                 return;
4647
4648         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4649         if (IS_GEN6(dev_priv))
4650                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4651         else if (IS_GEN7(dev_priv))
4652                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4653         else if (IS_GEN8(dev_priv))
4654                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4655         else
4656                 BUG();
4657 }
4658
4659 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4660 {
4661         I915_WRITE(RING_CTL(base), 0);
4662         I915_WRITE(RING_HEAD(base), 0);
4663         I915_WRITE(RING_TAIL(base), 0);
4664         I915_WRITE(RING_START(base), 0);
4665 }
4666
4667 static void init_unused_rings(struct drm_i915_private *dev_priv)
4668 {
4669         if (IS_I830(dev_priv)) {
4670                 init_unused_ring(dev_priv, PRB1_BASE);
4671                 init_unused_ring(dev_priv, SRB0_BASE);
4672                 init_unused_ring(dev_priv, SRB1_BASE);
4673                 init_unused_ring(dev_priv, SRB2_BASE);
4674                 init_unused_ring(dev_priv, SRB3_BASE);
4675         } else if (IS_GEN2(dev_priv)) {
4676                 init_unused_ring(dev_priv, SRB0_BASE);
4677                 init_unused_ring(dev_priv, SRB1_BASE);
4678         } else if (IS_GEN3(dev_priv)) {
4679                 init_unused_ring(dev_priv, PRB1_BASE);
4680                 init_unused_ring(dev_priv, PRB2_BASE);
4681         }
4682 }
4683
4684 static int __i915_gem_restart_engines(void *data)
4685 {
4686         struct drm_i915_private *i915 = data;
4687         struct intel_engine_cs *engine;
4688         enum intel_engine_id id;
4689         int err;
4690
4691         for_each_engine(engine, i915, id) {
4692                 err = engine->init_hw(engine);
4693                 if (err)
4694                         return err;
4695         }
4696
4697         return 0;
4698 }
4699
4700 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4701 {
4702         int ret;
4703
4704         dev_priv->gt.last_init_time = ktime_get();
4705
4706         /* Double layer security blanket, see i915_gem_init() */
4707         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4708
4709         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4710                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4711
4712         if (IS_HASWELL(dev_priv))
4713                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4714                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4715
4716         if (HAS_PCH_NOP(dev_priv)) {
4717                 if (IS_IVYBRIDGE(dev_priv)) {
4718                         u32 temp = I915_READ(GEN7_MSG_CTL);
4719                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4720                         I915_WRITE(GEN7_MSG_CTL, temp);
4721                 } else if (INTEL_GEN(dev_priv) >= 7) {
4722                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4723                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4724                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4725                 }
4726         }
4727
4728         i915_gem_init_swizzling(dev_priv);
4729
4730         /*
4731          * At least 830 can leave some of the unused rings
4732          * "active" (ie. head != tail) after resume which
4733          * will prevent c3 entry. Makes sure all unused rings
4734          * are totally idle.
4735          */
4736         init_unused_rings(dev_priv);
4737
4738         BUG_ON(!dev_priv->kernel_context);
4739
4740         ret = i915_ppgtt_init_hw(dev_priv);
4741         if (ret) {
4742                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4743                 goto out;
4744         }
4745
4746         /* Need to do basic initialisation of all rings first: */
4747         ret = __i915_gem_restart_engines(dev_priv);
4748         if (ret)
4749                 goto out;
4750
4751         intel_mocs_init_l3cc_table(dev_priv);
4752
4753         /* We can't enable contexts until all firmware is loaded */
4754         ret = intel_uc_init_hw(dev_priv);
4755         if (ret)
4756                 goto out;
4757
4758 out:
4759         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4760         return ret;
4761 }
4762
4763 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4764 {
4765         if (INTEL_INFO(dev_priv)->gen < 6)
4766                 return false;
4767
4768         /* TODO: make semaphores and Execlists play nicely together */
4769         if (i915.enable_execlists)
4770                 return false;
4771
4772         if (value >= 0)
4773                 return value;
4774
4775         /* Enable semaphores on SNB when IO remapping is off */
4776         if (IS_GEN6(dev_priv) && intel_vtd_active())
4777                 return false;
4778
4779         return true;
4780 }
4781
4782 int i915_gem_init(struct drm_i915_private *dev_priv)
4783 {
4784         int ret;
4785
4786         mutex_lock(&dev_priv->drm.struct_mutex);
4787
4788         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4789
4790         if (!i915.enable_execlists) {
4791                 dev_priv->gt.resume = intel_legacy_submission_resume;
4792                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4793         } else {
4794                 dev_priv->gt.resume = intel_lr_context_resume;
4795                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4796         }
4797
4798         /* This is just a security blanket to placate dragons.
4799          * On some systems, we very sporadically observe that the first TLBs
4800          * used by the CS may be stale, despite us poking the TLB reset. If
4801          * we hold the forcewake during initialisation these problems
4802          * just magically go away.
4803          */
4804         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4805
4806         ret = i915_gem_init_userptr(dev_priv);
4807         if (ret)
4808                 goto out_unlock;
4809
4810         ret = i915_gem_init_ggtt(dev_priv);
4811         if (ret)
4812                 goto out_unlock;
4813
4814         ret = i915_gem_contexts_init(dev_priv);
4815         if (ret)
4816                 goto out_unlock;
4817
4818         ret = intel_engines_init(dev_priv);
4819         if (ret)
4820                 goto out_unlock;
4821
4822         ret = i915_gem_init_hw(dev_priv);
4823         if (ret == -EIO) {
4824                 /* Allow engine initialisation to fail by marking the GPU as
4825                  * wedged. But we only want to do this where the GPU is angry,
4826                  * for all other failure, such as an allocation failure, bail.
4827                  */
4828                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4829                 i915_gem_set_wedged(dev_priv);
4830                 ret = 0;
4831         }
4832
4833 out_unlock:
4834         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4835         mutex_unlock(&dev_priv->drm.struct_mutex);
4836
4837         return ret;
4838 }
4839
4840 void i915_gem_init_mmio(struct drm_i915_private *i915)
4841 {
4842         i915_gem_sanitize(i915);
4843 }
4844
4845 void
4846 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4847 {
4848         struct intel_engine_cs *engine;
4849         enum intel_engine_id id;
4850
4851         for_each_engine(engine, dev_priv, id)
4852                 dev_priv->gt.cleanup_engine(engine);
4853 }
4854
4855 void
4856 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4857 {
4858         int i;
4859
4860         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4861             !IS_CHERRYVIEW(dev_priv))
4862                 dev_priv->num_fence_regs = 32;
4863         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4864                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4865                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4866                 dev_priv->num_fence_regs = 16;
4867         else
4868                 dev_priv->num_fence_regs = 8;
4869
4870         if (intel_vgpu_active(dev_priv))
4871                 dev_priv->num_fence_regs =
4872                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4873
4874         /* Initialize fence registers to zero */
4875         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4876                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4877
4878                 fence->i915 = dev_priv;
4879                 fence->id = i;
4880                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4881         }
4882         i915_gem_restore_fences(dev_priv);
4883
4884         i915_gem_detect_bit_6_swizzle(dev_priv);
4885 }
4886
4887 int
4888 i915_gem_load_init(struct drm_i915_private *dev_priv)
4889 {
4890         int err = -ENOMEM;
4891
4892         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4893         if (!dev_priv->objects)
4894                 goto err_out;
4895
4896         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4897         if (!dev_priv->vmas)
4898                 goto err_objects;
4899
4900         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4901         if (!dev_priv->luts)
4902                 goto err_vmas;
4903
4904         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4905                                         SLAB_HWCACHE_ALIGN |
4906                                         SLAB_RECLAIM_ACCOUNT |
4907                                         SLAB_TYPESAFE_BY_RCU);
4908         if (!dev_priv->requests)
4909                 goto err_luts;
4910
4911         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4912                                             SLAB_HWCACHE_ALIGN |
4913                                             SLAB_RECLAIM_ACCOUNT);
4914         if (!dev_priv->dependencies)
4915                 goto err_requests;
4916
4917         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4918         if (!dev_priv->priorities)
4919                 goto err_dependencies;
4920
4921         mutex_lock(&dev_priv->drm.struct_mutex);
4922         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4923         err = i915_gem_timeline_init__global(dev_priv);
4924         mutex_unlock(&dev_priv->drm.struct_mutex);
4925         if (err)
4926                 goto err_priorities;
4927
4928         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4929         init_llist_head(&dev_priv->mm.free_list);
4930         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4931         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4932         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4933         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4934         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4935                           i915_gem_retire_work_handler);
4936         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4937                           i915_gem_idle_work_handler);
4938         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4939         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4940
4941         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4942
4943         spin_lock_init(&dev_priv->fb_tracking.lock);
4944
4945         return 0;
4946
4947 err_priorities:
4948         kmem_cache_destroy(dev_priv->priorities);
4949 err_dependencies:
4950         kmem_cache_destroy(dev_priv->dependencies);
4951 err_requests:
4952         kmem_cache_destroy(dev_priv->requests);
4953 err_luts:
4954         kmem_cache_destroy(dev_priv->luts);
4955 err_vmas:
4956         kmem_cache_destroy(dev_priv->vmas);
4957 err_objects:
4958         kmem_cache_destroy(dev_priv->objects);
4959 err_out:
4960         return err;
4961 }
4962
4963 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4964 {
4965         i915_gem_drain_freed_objects(dev_priv);
4966         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4967         WARN_ON(dev_priv->mm.object_count);
4968
4969         mutex_lock(&dev_priv->drm.struct_mutex);
4970         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4971         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4972         mutex_unlock(&dev_priv->drm.struct_mutex);
4973
4974         kmem_cache_destroy(dev_priv->priorities);
4975         kmem_cache_destroy(dev_priv->dependencies);
4976         kmem_cache_destroy(dev_priv->requests);
4977         kmem_cache_destroy(dev_priv->luts);
4978         kmem_cache_destroy(dev_priv->vmas);
4979         kmem_cache_destroy(dev_priv->objects);
4980
4981         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4982         rcu_barrier();
4983 }
4984
4985 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4986 {
4987         /* Discard all purgeable objects, let userspace recover those as
4988          * required after resuming.
4989          */
4990         i915_gem_shrink_all(dev_priv);
4991
4992         return 0;
4993 }
4994
4995 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4996 {
4997         struct drm_i915_gem_object *obj;
4998         struct list_head *phases[] = {
4999                 &dev_priv->mm.unbound_list,
5000                 &dev_priv->mm.bound_list,
5001                 NULL
5002         }, **p;
5003
5004         /* Called just before we write the hibernation image.
5005          *
5006          * We need to update the domain tracking to reflect that the CPU
5007          * will be accessing all the pages to create and restore from the
5008          * hibernation, and so upon restoration those pages will be in the
5009          * CPU domain.
5010          *
5011          * To make sure the hibernation image contains the latest state,
5012          * we update that state just before writing out the image.
5013          *
5014          * To try and reduce the hibernation image, we manually shrink
5015          * the objects as well, see i915_gem_freeze()
5016          */
5017
5018         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5019         i915_gem_drain_freed_objects(dev_priv);
5020
5021         mutex_lock(&dev_priv->drm.struct_mutex);
5022         for (p = phases; *p; p++) {
5023                 list_for_each_entry(obj, *p, global_link)
5024                         __start_cpu_write(obj);
5025         }
5026         mutex_unlock(&dev_priv->drm.struct_mutex);
5027
5028         return 0;
5029 }
5030
5031 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5032 {
5033         struct drm_i915_file_private *file_priv = file->driver_priv;
5034         struct drm_i915_gem_request *request;
5035
5036         /* Clean up our request list when the client is going away, so that
5037          * later retire_requests won't dereference our soon-to-be-gone
5038          * file_priv.
5039          */
5040         spin_lock(&file_priv->mm.lock);
5041         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5042                 request->file_priv = NULL;
5043         spin_unlock(&file_priv->mm.lock);
5044 }
5045
5046 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5047 {
5048         struct drm_i915_file_private *file_priv;
5049         int ret;
5050
5051         DRM_DEBUG("\n");
5052
5053         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5054         if (!file_priv)
5055                 return -ENOMEM;
5056
5057         file->driver_priv = file_priv;
5058         file_priv->dev_priv = i915;
5059         file_priv->file = file;
5060
5061         spin_lock_init(&file_priv->mm.lock);
5062         INIT_LIST_HEAD(&file_priv->mm.request_list);
5063
5064         file_priv->bsd_engine = -1;
5065
5066         ret = i915_gem_context_open(i915, file);
5067         if (ret)
5068                 kfree(file_priv);
5069
5070         return ret;
5071 }
5072
5073 /**
5074  * i915_gem_track_fb - update frontbuffer tracking
5075  * @old: current GEM buffer for the frontbuffer slots
5076  * @new: new GEM buffer for the frontbuffer slots
5077  * @frontbuffer_bits: bitmask of frontbuffer slots
5078  *
5079  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5080  * from @old and setting them in @new. Both @old and @new can be NULL.
5081  */
5082 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5083                        struct drm_i915_gem_object *new,
5084                        unsigned frontbuffer_bits)
5085 {
5086         /* Control of individual bits within the mask are guarded by
5087          * the owning plane->mutex, i.e. we can never see concurrent
5088          * manipulation of individual bits. But since the bitfield as a whole
5089          * is updated using RMW, we need to use atomics in order to update
5090          * the bits.
5091          */
5092         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5093                      sizeof(atomic_t) * BITS_PER_BYTE);
5094
5095         if (old) {
5096                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5097                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5098         }
5099
5100         if (new) {
5101                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5102                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5103         }
5104 }
5105
5106 /* Allocate a new GEM object and fill it with the supplied data */
5107 struct drm_i915_gem_object *
5108 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5109                                  const void *data, size_t size)
5110 {
5111         struct drm_i915_gem_object *obj;
5112         struct file *file;
5113         size_t offset;
5114         int err;
5115
5116         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5117         if (IS_ERR(obj))
5118                 return obj;
5119
5120         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5121
5122         file = obj->base.filp;
5123         offset = 0;
5124         do {
5125                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5126                 struct page *page;
5127                 void *pgdata, *vaddr;
5128
5129                 err = pagecache_write_begin(file, file->f_mapping,
5130                                             offset, len, 0,
5131                                             &page, &pgdata);
5132                 if (err < 0)
5133                         goto fail;
5134
5135                 vaddr = kmap(page);
5136                 memcpy(vaddr, data, len);
5137                 kunmap(page);
5138
5139                 err = pagecache_write_end(file, file->f_mapping,
5140                                           offset, len, len,
5141                                           page, pgdata);
5142                 if (err < 0)
5143                         goto fail;
5144
5145                 size -= len;
5146                 data += len;
5147                 offset += len;
5148         } while (size);
5149
5150         return obj;
5151
5152 fail:
5153         i915_gem_object_put(obj);
5154         return ERR_PTR(err);
5155 }
5156
5157 struct scatterlist *
5158 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5159                        unsigned int n,
5160                        unsigned int *offset)
5161 {
5162         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5163         struct scatterlist *sg;
5164         unsigned int idx, count;
5165
5166         might_sleep();
5167         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5168         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5169
5170         /* As we iterate forward through the sg, we record each entry in a
5171          * radixtree for quick repeated (backwards) lookups. If we have seen
5172          * this index previously, we will have an entry for it.
5173          *
5174          * Initial lookup is O(N), but this is amortized to O(1) for
5175          * sequential page access (where each new request is consecutive
5176          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5177          * i.e. O(1) with a large constant!
5178          */
5179         if (n < READ_ONCE(iter->sg_idx))
5180                 goto lookup;
5181
5182         mutex_lock(&iter->lock);
5183
5184         /* We prefer to reuse the last sg so that repeated lookup of this
5185          * (or the subsequent) sg are fast - comparing against the last
5186          * sg is faster than going through the radixtree.
5187          */
5188
5189         sg = iter->sg_pos;
5190         idx = iter->sg_idx;
5191         count = __sg_page_count(sg);
5192
5193         while (idx + count <= n) {
5194                 unsigned long exception, i;
5195                 int ret;
5196
5197                 /* If we cannot allocate and insert this entry, or the
5198                  * individual pages from this range, cancel updating the
5199                  * sg_idx so that on this lookup we are forced to linearly
5200                  * scan onwards, but on future lookups we will try the
5201                  * insertion again (in which case we need to be careful of
5202                  * the error return reporting that we have already inserted
5203                  * this index).
5204                  */
5205                 ret = radix_tree_insert(&iter->radix, idx, sg);
5206                 if (ret && ret != -EEXIST)
5207                         goto scan;
5208
5209                 exception =
5210                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5211                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5212                 for (i = 1; i < count; i++) {
5213                         ret = radix_tree_insert(&iter->radix, idx + i,
5214                                                 (void *)exception);
5215                         if (ret && ret != -EEXIST)
5216                                 goto scan;
5217                 }
5218
5219                 idx += count;
5220                 sg = ____sg_next(sg);
5221                 count = __sg_page_count(sg);
5222         }
5223
5224 scan:
5225         iter->sg_pos = sg;
5226         iter->sg_idx = idx;
5227
5228         mutex_unlock(&iter->lock);
5229
5230         if (unlikely(n < idx)) /* insertion completed by another thread */
5231                 goto lookup;
5232
5233         /* In case we failed to insert the entry into the radixtree, we need
5234          * to look beyond the current sg.
5235          */
5236         while (idx + count <= n) {
5237                 idx += count;
5238                 sg = ____sg_next(sg);
5239                 count = __sg_page_count(sg);
5240         }
5241
5242         *offset = n - idx;
5243         return sg;
5244
5245 lookup:
5246         rcu_read_lock();
5247
5248         sg = radix_tree_lookup(&iter->radix, n);
5249         GEM_BUG_ON(!sg);
5250
5251         /* If this index is in the middle of multi-page sg entry,
5252          * the radixtree will contain an exceptional entry that points
5253          * to the start of that range. We will return the pointer to
5254          * the base page and the offset of this page within the
5255          * sg entry's range.
5256          */
5257         *offset = 0;
5258         if (unlikely(radix_tree_exception(sg))) {
5259                 unsigned long base =
5260                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5261
5262                 sg = radix_tree_lookup(&iter->radix, base);
5263                 GEM_BUG_ON(!sg);
5264
5265                 *offset = n - base;
5266         }
5267
5268         rcu_read_unlock();
5269
5270         return sg;
5271 }
5272
5273 struct page *
5274 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5275 {
5276         struct scatterlist *sg;
5277         unsigned int offset;
5278
5279         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5280
5281         sg = i915_gem_object_get_sg(obj, n, &offset);
5282         return nth_page(sg_page(sg), offset);
5283 }
5284
5285 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5286 struct page *
5287 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5288                                unsigned int n)
5289 {
5290         struct page *page;
5291
5292         page = i915_gem_object_get_page(obj, n);
5293         if (!obj->mm.dirty)
5294                 set_page_dirty(page);
5295
5296         return page;
5297 }
5298
5299 dma_addr_t
5300 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5301                                 unsigned long n)
5302 {
5303         struct scatterlist *sg;
5304         unsigned int offset;
5305
5306         sg = i915_gem_object_get_sg(obj, n, &offset);
5307         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5308 }
5309
5310 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5311 {
5312         struct sg_table *pages;
5313         int err;
5314
5315         if (align > obj->base.size)
5316                 return -EINVAL;
5317
5318         if (obj->ops == &i915_gem_phys_ops)
5319                 return 0;
5320
5321         if (obj->ops != &i915_gem_object_ops)
5322                 return -EINVAL;
5323
5324         err = i915_gem_object_unbind(obj);
5325         if (err)
5326                 return err;
5327
5328         mutex_lock(&obj->mm.lock);
5329
5330         if (obj->mm.madv != I915_MADV_WILLNEED) {
5331                 err = -EFAULT;
5332                 goto err_unlock;
5333         }
5334
5335         if (obj->mm.quirked) {
5336                 err = -EFAULT;
5337                 goto err_unlock;
5338         }
5339
5340         if (obj->mm.mapping) {
5341                 err = -EBUSY;
5342                 goto err_unlock;
5343         }
5344
5345         pages = obj->mm.pages;
5346         obj->ops = &i915_gem_phys_ops;
5347
5348         err = ____i915_gem_object_get_pages(obj);
5349         if (err)
5350                 goto err_xfer;
5351
5352         /* Perma-pin (until release) the physical set of pages */
5353         __i915_gem_object_pin_pages(obj);
5354
5355         if (!IS_ERR_OR_NULL(pages))
5356                 i915_gem_object_ops.put_pages(obj, pages);
5357         mutex_unlock(&obj->mm.lock);
5358         return 0;
5359
5360 err_xfer:
5361         obj->ops = &i915_gem_object_ops;
5362         obj->mm.pages = pages;
5363 err_unlock:
5364         mutex_unlock(&obj->mm.lock);
5365         return err;
5366 }
5367
5368 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5369 #include "selftests/scatterlist.c"
5370 #include "selftests/mock_gem_device.c"
5371 #include "selftests/huge_gem_object.c"
5372 #include "selftests/i915_gem_object.c"
5373 #include "selftests/i915_gem_coherency.c"
5374 #endif