drm/i915: Don't touch fence->error when resetting an innocent request
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!obj->cache_coherent)
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !obj->cache_coherent)
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq, rps);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407                                  unsigned int flags,
408                                  long timeout,
409                                  struct intel_rps_client *rps)
410 {
411         unsigned int seq = __read_seqcount_begin(&resv->seq);
412         struct dma_fence *excl;
413         bool prune_fences = false;
414
415         if (flags & I915_WAIT_ALL) {
416                 struct dma_fence **shared;
417                 unsigned int count, i;
418                 int ret;
419
420                 ret = reservation_object_get_fences_rcu(resv,
421                                                         &excl, &count, &shared);
422                 if (ret)
423                         return ret;
424
425                 for (i = 0; i < count; i++) {
426                         timeout = i915_gem_object_wait_fence(shared[i],
427                                                              flags, timeout,
428                                                              rps);
429                         if (timeout < 0)
430                                 break;
431
432                         dma_fence_put(shared[i]);
433                 }
434
435                 for (; i < count; i++)
436                         dma_fence_put(shared[i]);
437                 kfree(shared);
438
439                 prune_fences = count && timeout >= 0;
440         } else {
441                 excl = reservation_object_get_excl_rcu(resv);
442         }
443
444         if (excl && timeout >= 0) {
445                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446                 prune_fences = timeout >= 0;
447         }
448
449         dma_fence_put(excl);
450
451         /* Oportunistically prune the fences iff we know they have *all* been
452          * signaled and that the reservation object has not been changed (i.e.
453          * no new fences have been added).
454          */
455         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456                 if (reservation_object_trylock(resv)) {
457                         if (!__read_seqcount_retry(&resv->seq, seq))
458                                 reservation_object_add_excl_fence(resv, NULL);
459                         reservation_object_unlock(resv);
460                 }
461         }
462
463         return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468         struct drm_i915_gem_request *rq;
469         struct intel_engine_cs *engine;
470
471         if (!dma_fence_is_i915(fence))
472                 return;
473
474         rq = to_request(fence);
475         engine = rq->engine;
476         if (!engine->schedule)
477                 return;
478
479         engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         /* Recurse once into a fence-array */
485         if (dma_fence_is_array(fence)) {
486                 struct dma_fence_array *array = to_dma_fence_array(fence);
487                 int i;
488
489                 for (i = 0; i < array->num_fences; i++)
490                         __fence_set_priority(array->fences[i], prio);
491         } else {
492                 __fence_set_priority(fence, prio);
493         }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498                               unsigned int flags,
499                               int prio)
500 {
501         struct dma_fence *excl;
502
503         if (flags & I915_WAIT_ALL) {
504                 struct dma_fence **shared;
505                 unsigned int count, i;
506                 int ret;
507
508                 ret = reservation_object_get_fences_rcu(obj->resv,
509                                                         &excl, &count, &shared);
510                 if (ret)
511                         return ret;
512
513                 for (i = 0; i < count; i++) {
514                         fence_set_priority(shared[i], prio);
515                         dma_fence_put(shared[i]);
516                 }
517
518                 kfree(shared);
519         } else {
520                 excl = reservation_object_get_excl_rcu(obj->resv);
521         }
522
523         if (excl) {
524                 fence_set_priority(excl, prio);
525                 dma_fence_put(excl);
526         }
527         return 0;
528 }
529
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539                      unsigned int flags,
540                      long timeout,
541                      struct intel_rps_client *rps)
542 {
543         might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545         GEM_BUG_ON(debug_locks &&
546                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547                    !!(flags & I915_WAIT_LOCKED));
548 #endif
549         GEM_BUG_ON(timeout < 0);
550
551         timeout = i915_gem_object_wait_reservation(obj->resv,
552                                                    flags, timeout,
553                                                    rps);
554         return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559         struct drm_i915_file_private *fpriv = file->driver_priv;
560
561         return &fpriv->rps;
562 }
563
564 int
565 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
566                             int align)
567 {
568         int ret;
569
570         if (align > obj->base.size)
571                 return -EINVAL;
572
573         if (obj->ops == &i915_gem_phys_ops)
574                 return 0;
575
576         if (obj->mm.madv != I915_MADV_WILLNEED)
577                 return -EFAULT;
578
579         if (obj->base.filp == NULL)
580                 return -EINVAL;
581
582         ret = i915_gem_object_unbind(obj);
583         if (ret)
584                 return ret;
585
586         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587         if (obj->mm.pages)
588                 return -EBUSY;
589
590         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
591         obj->ops = &i915_gem_phys_ops;
592
593         ret = i915_gem_object_pin_pages(obj);
594         if (ret)
595                 goto err_xfer;
596
597         return 0;
598
599 err_xfer:
600         obj->ops = &i915_gem_object_ops;
601         return ret;
602 }
603
604 static int
605 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
606                      struct drm_i915_gem_pwrite *args,
607                      struct drm_file *file)
608 {
609         void *vaddr = obj->phys_handle->vaddr + args->offset;
610         char __user *user_data = u64_to_user_ptr(args->data_ptr);
611
612         /* We manually control the domain here and pretend that it
613          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
614          */
615         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
616         if (copy_from_user(vaddr, user_data, args->size))
617                 return -EFAULT;
618
619         drm_clflush_virt_range(vaddr, args->size);
620         i915_gem_chipset_flush(to_i915(obj->base.dev));
621
622         intel_fb_obj_flush(obj, ORIGIN_CPU);
623         return 0;
624 }
625
626 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
627 {
628         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
629 }
630
631 void i915_gem_object_free(struct drm_i915_gem_object *obj)
632 {
633         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
634         kmem_cache_free(dev_priv->objects, obj);
635 }
636
637 static int
638 i915_gem_create(struct drm_file *file,
639                 struct drm_i915_private *dev_priv,
640                 uint64_t size,
641                 uint32_t *handle_p)
642 {
643         struct drm_i915_gem_object *obj;
644         int ret;
645         u32 handle;
646
647         size = roundup(size, PAGE_SIZE);
648         if (size == 0)
649                 return -EINVAL;
650
651         /* Allocate the new object */
652         obj = i915_gem_object_create(dev_priv, size);
653         if (IS_ERR(obj))
654                 return PTR_ERR(obj);
655
656         ret = drm_gem_handle_create(file, &obj->base, &handle);
657         /* drop reference from allocate - handle holds it now */
658         i915_gem_object_put(obj);
659         if (ret)
660                 return ret;
661
662         *handle_p = handle;
663         return 0;
664 }
665
666 int
667 i915_gem_dumb_create(struct drm_file *file,
668                      struct drm_device *dev,
669                      struct drm_mode_create_dumb *args)
670 {
671         /* have to work out size/pitch and return them */
672         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
673         args->size = args->pitch * args->height;
674         return i915_gem_create(file, to_i915(dev),
675                                args->size, &args->handle);
676 }
677
678 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
679 {
680         return !(obj->cache_level == I915_CACHE_NONE ||
681                  obj->cache_level == I915_CACHE_WT);
682 }
683
684 /**
685  * Creates a new mm object and returns a handle to it.
686  * @dev: drm device pointer
687  * @data: ioctl data blob
688  * @file: drm file pointer
689  */
690 int
691 i915_gem_create_ioctl(struct drm_device *dev, void *data,
692                       struct drm_file *file)
693 {
694         struct drm_i915_private *dev_priv = to_i915(dev);
695         struct drm_i915_gem_create *args = data;
696
697         i915_gem_flush_free_objects(dev_priv);
698
699         return i915_gem_create(file, dev_priv,
700                                args->size, &args->handle);
701 }
702
703 static inline enum fb_op_origin
704 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
705 {
706         return (domain == I915_GEM_DOMAIN_GTT ?
707                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
708 }
709
710 static void
711 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
712 {
713         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
714
715         if (!(obj->base.write_domain & flush_domains))
716                 return;
717
718         /* No actual flushing is required for the GTT write domain.  Writes
719          * to it "immediately" go to main memory as far as we know, so there's
720          * no chipset flush.  It also doesn't land in render cache.
721          *
722          * However, we do have to enforce the order so that all writes through
723          * the GTT land before any writes to the device, such as updates to
724          * the GATT itself.
725          *
726          * We also have to wait a bit for the writes to land from the GTT.
727          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
728          * timing. This issue has only been observed when switching quickly
729          * between GTT writes and CPU reads from inside the kernel on recent hw,
730          * and it appears to only affect discrete GTT blocks (i.e. on LLC
731          * system agents we cannot reproduce this behaviour).
732          */
733         wmb();
734
735         switch (obj->base.write_domain) {
736         case I915_GEM_DOMAIN_GTT:
737                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
738                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
739                                 spin_lock_irq(&dev_priv->uncore.lock);
740                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
741                                 spin_unlock_irq(&dev_priv->uncore.lock);
742                                 intel_runtime_pm_put(dev_priv);
743                         }
744                 }
745
746                 intel_fb_obj_flush(obj,
747                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
748                 break;
749
750         case I915_GEM_DOMAIN_CPU:
751                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
752                 break;
753
754         case I915_GEM_DOMAIN_RENDER:
755                 if (gpu_write_needs_clflush(obj))
756                         obj->cache_dirty = true;
757                 break;
758         }
759
760         obj->base.write_domain = 0;
761 }
762
763 static inline int
764 __copy_to_user_swizzled(char __user *cpu_vaddr,
765                         const char *gpu_vaddr, int gpu_offset,
766                         int length)
767 {
768         int ret, cpu_offset = 0;
769
770         while (length > 0) {
771                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
772                 int this_length = min(cacheline_end - gpu_offset, length);
773                 int swizzled_gpu_offset = gpu_offset ^ 64;
774
775                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
776                                      gpu_vaddr + swizzled_gpu_offset,
777                                      this_length);
778                 if (ret)
779                         return ret + length;
780
781                 cpu_offset += this_length;
782                 gpu_offset += this_length;
783                 length -= this_length;
784         }
785
786         return 0;
787 }
788
789 static inline int
790 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
791                           const char __user *cpu_vaddr,
792                           int length)
793 {
794         int ret, cpu_offset = 0;
795
796         while (length > 0) {
797                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
798                 int this_length = min(cacheline_end - gpu_offset, length);
799                 int swizzled_gpu_offset = gpu_offset ^ 64;
800
801                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
802                                        cpu_vaddr + cpu_offset,
803                                        this_length);
804                 if (ret)
805                         return ret + length;
806
807                 cpu_offset += this_length;
808                 gpu_offset += this_length;
809                 length -= this_length;
810         }
811
812         return 0;
813 }
814
815 /*
816  * Pins the specified object's pages and synchronizes the object with
817  * GPU accesses. Sets needs_clflush to non-zero if the caller should
818  * flush the object from the CPU cache.
819  */
820 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
821                                     unsigned int *needs_clflush)
822 {
823         int ret;
824
825         lockdep_assert_held(&obj->base.dev->struct_mutex);
826
827         *needs_clflush = 0;
828         if (!i915_gem_object_has_struct_page(obj))
829                 return -ENODEV;
830
831         ret = i915_gem_object_wait(obj,
832                                    I915_WAIT_INTERRUPTIBLE |
833                                    I915_WAIT_LOCKED,
834                                    MAX_SCHEDULE_TIMEOUT,
835                                    NULL);
836         if (ret)
837                 return ret;
838
839         ret = i915_gem_object_pin_pages(obj);
840         if (ret)
841                 return ret;
842
843         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
845                 if (ret)
846                         goto err_unpin;
847                 else
848                         goto out;
849         }
850
851         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
852
853         /* If we're not in the cpu read domain, set ourself into the gtt
854          * read domain and manually flush cachelines (if required). This
855          * optimizes for the case when the gpu will dirty the data
856          * anyway again before the next pread happens.
857          */
858         if (!obj->cache_dirty &&
859             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
860                 *needs_clflush = CLFLUSH_BEFORE;
861
862 out:
863         /* return with the pages pinned */
864         return 0;
865
866 err_unpin:
867         i915_gem_object_unpin_pages(obj);
868         return ret;
869 }
870
871 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
872                                      unsigned int *needs_clflush)
873 {
874         int ret;
875
876         lockdep_assert_held(&obj->base.dev->struct_mutex);
877
878         *needs_clflush = 0;
879         if (!i915_gem_object_has_struct_page(obj))
880                 return -ENODEV;
881
882         ret = i915_gem_object_wait(obj,
883                                    I915_WAIT_INTERRUPTIBLE |
884                                    I915_WAIT_LOCKED |
885                                    I915_WAIT_ALL,
886                                    MAX_SCHEDULE_TIMEOUT,
887                                    NULL);
888         if (ret)
889                 return ret;
890
891         ret = i915_gem_object_pin_pages(obj);
892         if (ret)
893                 return ret;
894
895         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
896                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
897                 if (ret)
898                         goto err_unpin;
899                 else
900                         goto out;
901         }
902
903         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
904
905         /* If we're not in the cpu write domain, set ourself into the
906          * gtt write domain and manually flush cachelines (as required).
907          * This optimizes for the case when the gpu will use the data
908          * right away and we therefore have to clflush anyway.
909          */
910         if (!obj->cache_dirty) {
911                 *needs_clflush |= CLFLUSH_AFTER;
912
913                 /*
914                  * Same trick applies to invalidate partially written
915                  * cachelines read before writing.
916                  */
917                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
918                         *needs_clflush |= CLFLUSH_BEFORE;
919         }
920
921 out:
922         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
923         obj->mm.dirty = true;
924         /* return with the pages pinned */
925         return 0;
926
927 err_unpin:
928         i915_gem_object_unpin_pages(obj);
929         return ret;
930 }
931
932 static void
933 shmem_clflush_swizzled_range(char *addr, unsigned long length,
934                              bool swizzled)
935 {
936         if (unlikely(swizzled)) {
937                 unsigned long start = (unsigned long) addr;
938                 unsigned long end = (unsigned long) addr + length;
939
940                 /* For swizzling simply ensure that we always flush both
941                  * channels. Lame, but simple and it works. Swizzled
942                  * pwrite/pread is far from a hotpath - current userspace
943                  * doesn't use it at all. */
944                 start = round_down(start, 128);
945                 end = round_up(end, 128);
946
947                 drm_clflush_virt_range((void *)start, end - start);
948         } else {
949                 drm_clflush_virt_range(addr, length);
950         }
951
952 }
953
954 /* Only difference to the fast-path function is that this can handle bit17
955  * and uses non-atomic copy and kmap functions. */
956 static int
957 shmem_pread_slow(struct page *page, int offset, int length,
958                  char __user *user_data,
959                  bool page_do_bit17_swizzling, bool needs_clflush)
960 {
961         char *vaddr;
962         int ret;
963
964         vaddr = kmap(page);
965         if (needs_clflush)
966                 shmem_clflush_swizzled_range(vaddr + offset, length,
967                                              page_do_bit17_swizzling);
968
969         if (page_do_bit17_swizzling)
970                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
971         else
972                 ret = __copy_to_user(user_data, vaddr + offset, length);
973         kunmap(page);
974
975         return ret ? - EFAULT : 0;
976 }
977
978 static int
979 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
980             bool page_do_bit17_swizzling, bool needs_clflush)
981 {
982         int ret;
983
984         ret = -ENODEV;
985         if (!page_do_bit17_swizzling) {
986                 char *vaddr = kmap_atomic(page);
987
988                 if (needs_clflush)
989                         drm_clflush_virt_range(vaddr + offset, length);
990                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
991                 kunmap_atomic(vaddr);
992         }
993         if (ret == 0)
994                 return 0;
995
996         return shmem_pread_slow(page, offset, length, user_data,
997                                 page_do_bit17_swizzling, needs_clflush);
998 }
999
1000 static int
1001 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1002                      struct drm_i915_gem_pread *args)
1003 {
1004         char __user *user_data;
1005         u64 remain;
1006         unsigned int obj_do_bit17_swizzling;
1007         unsigned int needs_clflush;
1008         unsigned int idx, offset;
1009         int ret;
1010
1011         obj_do_bit17_swizzling = 0;
1012         if (i915_gem_object_needs_bit17_swizzle(obj))
1013                 obj_do_bit17_swizzling = BIT(17);
1014
1015         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1016         if (ret)
1017                 return ret;
1018
1019         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1020         mutex_unlock(&obj->base.dev->struct_mutex);
1021         if (ret)
1022                 return ret;
1023
1024         remain = args->size;
1025         user_data = u64_to_user_ptr(args->data_ptr);
1026         offset = offset_in_page(args->offset);
1027         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1028                 struct page *page = i915_gem_object_get_page(obj, idx);
1029                 int length;
1030
1031                 length = remain;
1032                 if (offset + length > PAGE_SIZE)
1033                         length = PAGE_SIZE - offset;
1034
1035                 ret = shmem_pread(page, offset, length, user_data,
1036                                   page_to_phys(page) & obj_do_bit17_swizzling,
1037                                   needs_clflush);
1038                 if (ret)
1039                         break;
1040
1041                 remain -= length;
1042                 user_data += length;
1043                 offset = 0;
1044         }
1045
1046         i915_gem_obj_finish_shmem_access(obj);
1047         return ret;
1048 }
1049
1050 static inline bool
1051 gtt_user_read(struct io_mapping *mapping,
1052               loff_t base, int offset,
1053               char __user *user_data, int length)
1054 {
1055         void *vaddr;
1056         unsigned long unwritten;
1057
1058         /* We can use the cpu mem copy function because this is X86. */
1059         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1060         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1061         io_mapping_unmap_atomic(vaddr);
1062         if (unwritten) {
1063                 vaddr = (void __force *)
1064                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1065                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1066                 io_mapping_unmap(vaddr);
1067         }
1068         return unwritten;
1069 }
1070
1071 static int
1072 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1073                    const struct drm_i915_gem_pread *args)
1074 {
1075         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1076         struct i915_ggtt *ggtt = &i915->ggtt;
1077         struct drm_mm_node node;
1078         struct i915_vma *vma;
1079         void __user *user_data;
1080         u64 remain, offset;
1081         int ret;
1082
1083         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1084         if (ret)
1085                 return ret;
1086
1087         intel_runtime_pm_get(i915);
1088         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1089                                        PIN_MAPPABLE | PIN_NONBLOCK);
1090         if (!IS_ERR(vma)) {
1091                 node.start = i915_ggtt_offset(vma);
1092                 node.allocated = false;
1093                 ret = i915_vma_put_fence(vma);
1094                 if (ret) {
1095                         i915_vma_unpin(vma);
1096                         vma = ERR_PTR(ret);
1097                 }
1098         }
1099         if (IS_ERR(vma)) {
1100                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1101                 if (ret)
1102                         goto out_unlock;
1103                 GEM_BUG_ON(!node.allocated);
1104         }
1105
1106         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1107         if (ret)
1108                 goto out_unpin;
1109
1110         mutex_unlock(&i915->drm.struct_mutex);
1111
1112         user_data = u64_to_user_ptr(args->data_ptr);
1113         remain = args->size;
1114         offset = args->offset;
1115
1116         while (remain > 0) {
1117                 /* Operation in this page
1118                  *
1119                  * page_base = page offset within aperture
1120                  * page_offset = offset within page
1121                  * page_length = bytes to copy for this page
1122                  */
1123                 u32 page_base = node.start;
1124                 unsigned page_offset = offset_in_page(offset);
1125                 unsigned page_length = PAGE_SIZE - page_offset;
1126                 page_length = remain < page_length ? remain : page_length;
1127                 if (node.allocated) {
1128                         wmb();
1129                         ggtt->base.insert_page(&ggtt->base,
1130                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1131                                                node.start, I915_CACHE_NONE, 0);
1132                         wmb();
1133                 } else {
1134                         page_base += offset & PAGE_MASK;
1135                 }
1136
1137                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1138                                   user_data, page_length)) {
1139                         ret = -EFAULT;
1140                         break;
1141                 }
1142
1143                 remain -= page_length;
1144                 user_data += page_length;
1145                 offset += page_length;
1146         }
1147
1148         mutex_lock(&i915->drm.struct_mutex);
1149 out_unpin:
1150         if (node.allocated) {
1151                 wmb();
1152                 ggtt->base.clear_range(&ggtt->base,
1153                                        node.start, node.size);
1154                 remove_mappable_node(&node);
1155         } else {
1156                 i915_vma_unpin(vma);
1157         }
1158 out_unlock:
1159         intel_runtime_pm_put(i915);
1160         mutex_unlock(&i915->drm.struct_mutex);
1161
1162         return ret;
1163 }
1164
1165 /**
1166  * Reads data from the object referenced by handle.
1167  * @dev: drm device pointer
1168  * @data: ioctl data blob
1169  * @file: drm file pointer
1170  *
1171  * On error, the contents of *data are undefined.
1172  */
1173 int
1174 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1175                      struct drm_file *file)
1176 {
1177         struct drm_i915_gem_pread *args = data;
1178         struct drm_i915_gem_object *obj;
1179         int ret;
1180
1181         if (args->size == 0)
1182                 return 0;
1183
1184         if (!access_ok(VERIFY_WRITE,
1185                        u64_to_user_ptr(args->data_ptr),
1186                        args->size))
1187                 return -EFAULT;
1188
1189         obj = i915_gem_object_lookup(file, args->handle);
1190         if (!obj)
1191                 return -ENOENT;
1192
1193         /* Bounds check source.  */
1194         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1195                 ret = -EINVAL;
1196                 goto out;
1197         }
1198
1199         trace_i915_gem_object_pread(obj, args->offset, args->size);
1200
1201         ret = i915_gem_object_wait(obj,
1202                                    I915_WAIT_INTERRUPTIBLE,
1203                                    MAX_SCHEDULE_TIMEOUT,
1204                                    to_rps_client(file));
1205         if (ret)
1206                 goto out;
1207
1208         ret = i915_gem_object_pin_pages(obj);
1209         if (ret)
1210                 goto out;
1211
1212         ret = i915_gem_shmem_pread(obj, args);
1213         if (ret == -EFAULT || ret == -ENODEV)
1214                 ret = i915_gem_gtt_pread(obj, args);
1215
1216         i915_gem_object_unpin_pages(obj);
1217 out:
1218         i915_gem_object_put(obj);
1219         return ret;
1220 }
1221
1222 /* This is the fast write path which cannot handle
1223  * page faults in the source data
1224  */
1225
1226 static inline bool
1227 ggtt_write(struct io_mapping *mapping,
1228            loff_t base, int offset,
1229            char __user *user_data, int length)
1230 {
1231         void *vaddr;
1232         unsigned long unwritten;
1233
1234         /* We can use the cpu mem copy function because this is X86. */
1235         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1236         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1237                                                       user_data, length);
1238         io_mapping_unmap_atomic(vaddr);
1239         if (unwritten) {
1240                 vaddr = (void __force *)
1241                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1242                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1243                 io_mapping_unmap(vaddr);
1244         }
1245
1246         return unwritten;
1247 }
1248
1249 /**
1250  * This is the fast pwrite path, where we copy the data directly from the
1251  * user into the GTT, uncached.
1252  * @obj: i915 GEM object
1253  * @args: pwrite arguments structure
1254  */
1255 static int
1256 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1257                          const struct drm_i915_gem_pwrite *args)
1258 {
1259         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1260         struct i915_ggtt *ggtt = &i915->ggtt;
1261         struct drm_mm_node node;
1262         struct i915_vma *vma;
1263         u64 remain, offset;
1264         void __user *user_data;
1265         int ret;
1266
1267         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1268         if (ret)
1269                 return ret;
1270
1271         intel_runtime_pm_get(i915);
1272         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1273                                        PIN_MAPPABLE | PIN_NONBLOCK);
1274         if (!IS_ERR(vma)) {
1275                 node.start = i915_ggtt_offset(vma);
1276                 node.allocated = false;
1277                 ret = i915_vma_put_fence(vma);
1278                 if (ret) {
1279                         i915_vma_unpin(vma);
1280                         vma = ERR_PTR(ret);
1281                 }
1282         }
1283         if (IS_ERR(vma)) {
1284                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1285                 if (ret)
1286                         goto out_unlock;
1287                 GEM_BUG_ON(!node.allocated);
1288         }
1289
1290         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1291         if (ret)
1292                 goto out_unpin;
1293
1294         mutex_unlock(&i915->drm.struct_mutex);
1295
1296         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1297
1298         user_data = u64_to_user_ptr(args->data_ptr);
1299         offset = args->offset;
1300         remain = args->size;
1301         while (remain) {
1302                 /* Operation in this page
1303                  *
1304                  * page_base = page offset within aperture
1305                  * page_offset = offset within page
1306                  * page_length = bytes to copy for this page
1307                  */
1308                 u32 page_base = node.start;
1309                 unsigned int page_offset = offset_in_page(offset);
1310                 unsigned int page_length = PAGE_SIZE - page_offset;
1311                 page_length = remain < page_length ? remain : page_length;
1312                 if (node.allocated) {
1313                         wmb(); /* flush the write before we modify the GGTT */
1314                         ggtt->base.insert_page(&ggtt->base,
1315                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1316                                                node.start, I915_CACHE_NONE, 0);
1317                         wmb(); /* flush modifications to the GGTT (insert_page) */
1318                 } else {
1319                         page_base += offset & PAGE_MASK;
1320                 }
1321                 /* If we get a fault while copying data, then (presumably) our
1322                  * source page isn't available.  Return the error and we'll
1323                  * retry in the slow path.
1324                  * If the object is non-shmem backed, we retry again with the
1325                  * path that handles page fault.
1326                  */
1327                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1328                                user_data, page_length)) {
1329                         ret = -EFAULT;
1330                         break;
1331                 }
1332
1333                 remain -= page_length;
1334                 user_data += page_length;
1335                 offset += page_length;
1336         }
1337         intel_fb_obj_flush(obj, ORIGIN_CPU);
1338
1339         mutex_lock(&i915->drm.struct_mutex);
1340 out_unpin:
1341         if (node.allocated) {
1342                 wmb();
1343                 ggtt->base.clear_range(&ggtt->base,
1344                                        node.start, node.size);
1345                 remove_mappable_node(&node);
1346         } else {
1347                 i915_vma_unpin(vma);
1348         }
1349 out_unlock:
1350         intel_runtime_pm_put(i915);
1351         mutex_unlock(&i915->drm.struct_mutex);
1352         return ret;
1353 }
1354
1355 static int
1356 shmem_pwrite_slow(struct page *page, int offset, int length,
1357                   char __user *user_data,
1358                   bool page_do_bit17_swizzling,
1359                   bool needs_clflush_before,
1360                   bool needs_clflush_after)
1361 {
1362         char *vaddr;
1363         int ret;
1364
1365         vaddr = kmap(page);
1366         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1367                 shmem_clflush_swizzled_range(vaddr + offset, length,
1368                                              page_do_bit17_swizzling);
1369         if (page_do_bit17_swizzling)
1370                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1371                                                 length);
1372         else
1373                 ret = __copy_from_user(vaddr + offset, user_data, length);
1374         if (needs_clflush_after)
1375                 shmem_clflush_swizzled_range(vaddr + offset, length,
1376                                              page_do_bit17_swizzling);
1377         kunmap(page);
1378
1379         return ret ? -EFAULT : 0;
1380 }
1381
1382 /* Per-page copy function for the shmem pwrite fastpath.
1383  * Flushes invalid cachelines before writing to the target if
1384  * needs_clflush_before is set and flushes out any written cachelines after
1385  * writing if needs_clflush is set.
1386  */
1387 static int
1388 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1389              bool page_do_bit17_swizzling,
1390              bool needs_clflush_before,
1391              bool needs_clflush_after)
1392 {
1393         int ret;
1394
1395         ret = -ENODEV;
1396         if (!page_do_bit17_swizzling) {
1397                 char *vaddr = kmap_atomic(page);
1398
1399                 if (needs_clflush_before)
1400                         drm_clflush_virt_range(vaddr + offset, len);
1401                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1402                 if (needs_clflush_after)
1403                         drm_clflush_virt_range(vaddr + offset, len);
1404
1405                 kunmap_atomic(vaddr);
1406         }
1407         if (ret == 0)
1408                 return ret;
1409
1410         return shmem_pwrite_slow(page, offset, len, user_data,
1411                                  page_do_bit17_swizzling,
1412                                  needs_clflush_before,
1413                                  needs_clflush_after);
1414 }
1415
1416 static int
1417 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1418                       const struct drm_i915_gem_pwrite *args)
1419 {
1420         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1421         void __user *user_data;
1422         u64 remain;
1423         unsigned int obj_do_bit17_swizzling;
1424         unsigned int partial_cacheline_write;
1425         unsigned int needs_clflush;
1426         unsigned int offset, idx;
1427         int ret;
1428
1429         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1430         if (ret)
1431                 return ret;
1432
1433         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1434         mutex_unlock(&i915->drm.struct_mutex);
1435         if (ret)
1436                 return ret;
1437
1438         obj_do_bit17_swizzling = 0;
1439         if (i915_gem_object_needs_bit17_swizzle(obj))
1440                 obj_do_bit17_swizzling = BIT(17);
1441
1442         /* If we don't overwrite a cacheline completely we need to be
1443          * careful to have up-to-date data by first clflushing. Don't
1444          * overcomplicate things and flush the entire patch.
1445          */
1446         partial_cacheline_write = 0;
1447         if (needs_clflush & CLFLUSH_BEFORE)
1448                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1449
1450         user_data = u64_to_user_ptr(args->data_ptr);
1451         remain = args->size;
1452         offset = offset_in_page(args->offset);
1453         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1454                 struct page *page = i915_gem_object_get_page(obj, idx);
1455                 int length;
1456
1457                 length = remain;
1458                 if (offset + length > PAGE_SIZE)
1459                         length = PAGE_SIZE - offset;
1460
1461                 ret = shmem_pwrite(page, offset, length, user_data,
1462                                    page_to_phys(page) & obj_do_bit17_swizzling,
1463                                    (offset | length) & partial_cacheline_write,
1464                                    needs_clflush & CLFLUSH_AFTER);
1465                 if (ret)
1466                         break;
1467
1468                 remain -= length;
1469                 user_data += length;
1470                 offset = 0;
1471         }
1472
1473         intel_fb_obj_flush(obj, ORIGIN_CPU);
1474         i915_gem_obj_finish_shmem_access(obj);
1475         return ret;
1476 }
1477
1478 /**
1479  * Writes data to the object referenced by handle.
1480  * @dev: drm device
1481  * @data: ioctl data blob
1482  * @file: drm file
1483  *
1484  * On error, the contents of the buffer that were to be modified are undefined.
1485  */
1486 int
1487 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1488                       struct drm_file *file)
1489 {
1490         struct drm_i915_gem_pwrite *args = data;
1491         struct drm_i915_gem_object *obj;
1492         int ret;
1493
1494         if (args->size == 0)
1495                 return 0;
1496
1497         if (!access_ok(VERIFY_READ,
1498                        u64_to_user_ptr(args->data_ptr),
1499                        args->size))
1500                 return -EFAULT;
1501
1502         obj = i915_gem_object_lookup(file, args->handle);
1503         if (!obj)
1504                 return -ENOENT;
1505
1506         /* Bounds check destination. */
1507         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1508                 ret = -EINVAL;
1509                 goto err;
1510         }
1511
1512         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1513
1514         ret = -ENODEV;
1515         if (obj->ops->pwrite)
1516                 ret = obj->ops->pwrite(obj, args);
1517         if (ret != -ENODEV)
1518                 goto err;
1519
1520         ret = i915_gem_object_wait(obj,
1521                                    I915_WAIT_INTERRUPTIBLE |
1522                                    I915_WAIT_ALL,
1523                                    MAX_SCHEDULE_TIMEOUT,
1524                                    to_rps_client(file));
1525         if (ret)
1526                 goto err;
1527
1528         ret = i915_gem_object_pin_pages(obj);
1529         if (ret)
1530                 goto err;
1531
1532         ret = -EFAULT;
1533         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1534          * it would end up going through the fenced access, and we'll get
1535          * different detiling behavior between reading and writing.
1536          * pread/pwrite currently are reading and writing from the CPU
1537          * perspective, requiring manual detiling by the client.
1538          */
1539         if (!i915_gem_object_has_struct_page(obj) ||
1540             cpu_write_needs_clflush(obj))
1541                 /* Note that the gtt paths might fail with non-page-backed user
1542                  * pointers (e.g. gtt mappings when moving data between
1543                  * textures). Fallback to the shmem path in that case.
1544                  */
1545                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1546
1547         if (ret == -EFAULT || ret == -ENOSPC) {
1548                 if (obj->phys_handle)
1549                         ret = i915_gem_phys_pwrite(obj, args, file);
1550                 else
1551                         ret = i915_gem_shmem_pwrite(obj, args);
1552         }
1553
1554         i915_gem_object_unpin_pages(obj);
1555 err:
1556         i915_gem_object_put(obj);
1557         return ret;
1558 }
1559
1560 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1561 {
1562         struct drm_i915_private *i915;
1563         struct list_head *list;
1564         struct i915_vma *vma;
1565
1566         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1567                 if (!i915_vma_is_ggtt(vma))
1568                         break;
1569
1570                 if (i915_vma_is_active(vma))
1571                         continue;
1572
1573                 if (!drm_mm_node_allocated(&vma->node))
1574                         continue;
1575
1576                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1577         }
1578
1579         i915 = to_i915(obj->base.dev);
1580         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1581         list_move_tail(&obj->global_link, list);
1582 }
1583
1584 /**
1585  * Called when user space prepares to use an object with the CPU, either
1586  * through the mmap ioctl's mapping or a GTT mapping.
1587  * @dev: drm device
1588  * @data: ioctl data blob
1589  * @file: drm file
1590  */
1591 int
1592 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1593                           struct drm_file *file)
1594 {
1595         struct drm_i915_gem_set_domain *args = data;
1596         struct drm_i915_gem_object *obj;
1597         uint32_t read_domains = args->read_domains;
1598         uint32_t write_domain = args->write_domain;
1599         int err;
1600
1601         /* Only handle setting domains to types used by the CPU. */
1602         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1603                 return -EINVAL;
1604
1605         /* Having something in the write domain implies it's in the read
1606          * domain, and only that read domain.  Enforce that in the request.
1607          */
1608         if (write_domain != 0 && read_domains != write_domain)
1609                 return -EINVAL;
1610
1611         obj = i915_gem_object_lookup(file, args->handle);
1612         if (!obj)
1613                 return -ENOENT;
1614
1615         /* Try to flush the object off the GPU without holding the lock.
1616          * We will repeat the flush holding the lock in the normal manner
1617          * to catch cases where we are gazumped.
1618          */
1619         err = i915_gem_object_wait(obj,
1620                                    I915_WAIT_INTERRUPTIBLE |
1621                                    (write_domain ? I915_WAIT_ALL : 0),
1622                                    MAX_SCHEDULE_TIMEOUT,
1623                                    to_rps_client(file));
1624         if (err)
1625                 goto out;
1626
1627         /* Flush and acquire obj->pages so that we are coherent through
1628          * direct access in memory with previous cached writes through
1629          * shmemfs and that our cache domain tracking remains valid.
1630          * For example, if the obj->filp was moved to swap without us
1631          * being notified and releasing the pages, we would mistakenly
1632          * continue to assume that the obj remained out of the CPU cached
1633          * domain.
1634          */
1635         err = i915_gem_object_pin_pages(obj);
1636         if (err)
1637                 goto out;
1638
1639         err = i915_mutex_lock_interruptible(dev);
1640         if (err)
1641                 goto out_unpin;
1642
1643         if (read_domains & I915_GEM_DOMAIN_WC)
1644                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1645         else if (read_domains & I915_GEM_DOMAIN_GTT)
1646                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1647         else
1648                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1649
1650         /* And bump the LRU for this access */
1651         i915_gem_object_bump_inactive_ggtt(obj);
1652
1653         mutex_unlock(&dev->struct_mutex);
1654
1655         if (write_domain != 0)
1656                 intel_fb_obj_invalidate(obj,
1657                                         fb_write_origin(obj, write_domain));
1658
1659 out_unpin:
1660         i915_gem_object_unpin_pages(obj);
1661 out:
1662         i915_gem_object_put(obj);
1663         return err;
1664 }
1665
1666 /**
1667  * Called when user space has done writes to this buffer
1668  * @dev: drm device
1669  * @data: ioctl data blob
1670  * @file: drm file
1671  */
1672 int
1673 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1674                          struct drm_file *file)
1675 {
1676         struct drm_i915_gem_sw_finish *args = data;
1677         struct drm_i915_gem_object *obj;
1678
1679         obj = i915_gem_object_lookup(file, args->handle);
1680         if (!obj)
1681                 return -ENOENT;
1682
1683         /* Pinned buffers may be scanout, so flush the cache */
1684         i915_gem_object_flush_if_display(obj);
1685         i915_gem_object_put(obj);
1686
1687         return 0;
1688 }
1689
1690 /**
1691  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1692  *                       it is mapped to.
1693  * @dev: drm device
1694  * @data: ioctl data blob
1695  * @file: drm file
1696  *
1697  * While the mapping holds a reference on the contents of the object, it doesn't
1698  * imply a ref on the object itself.
1699  *
1700  * IMPORTANT:
1701  *
1702  * DRM driver writers who look a this function as an example for how to do GEM
1703  * mmap support, please don't implement mmap support like here. The modern way
1704  * to implement DRM mmap support is with an mmap offset ioctl (like
1705  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1706  * That way debug tooling like valgrind will understand what's going on, hiding
1707  * the mmap call in a driver private ioctl will break that. The i915 driver only
1708  * does cpu mmaps this way because we didn't know better.
1709  */
1710 int
1711 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1712                     struct drm_file *file)
1713 {
1714         struct drm_i915_gem_mmap *args = data;
1715         struct drm_i915_gem_object *obj;
1716         unsigned long addr;
1717
1718         if (args->flags & ~(I915_MMAP_WC))
1719                 return -EINVAL;
1720
1721         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1722                 return -ENODEV;
1723
1724         obj = i915_gem_object_lookup(file, args->handle);
1725         if (!obj)
1726                 return -ENOENT;
1727
1728         /* prime objects have no backing filp to GEM mmap
1729          * pages from.
1730          */
1731         if (!obj->base.filp) {
1732                 i915_gem_object_put(obj);
1733                 return -EINVAL;
1734         }
1735
1736         addr = vm_mmap(obj->base.filp, 0, args->size,
1737                        PROT_READ | PROT_WRITE, MAP_SHARED,
1738                        args->offset);
1739         if (args->flags & I915_MMAP_WC) {
1740                 struct mm_struct *mm = current->mm;
1741                 struct vm_area_struct *vma;
1742
1743                 if (down_write_killable(&mm->mmap_sem)) {
1744                         i915_gem_object_put(obj);
1745                         return -EINTR;
1746                 }
1747                 vma = find_vma(mm, addr);
1748                 if (vma)
1749                         vma->vm_page_prot =
1750                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1751                 else
1752                         addr = -ENOMEM;
1753                 up_write(&mm->mmap_sem);
1754
1755                 /* This may race, but that's ok, it only gets set */
1756                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1757         }
1758         i915_gem_object_put(obj);
1759         if (IS_ERR((void *)addr))
1760                 return addr;
1761
1762         args->addr_ptr = (uint64_t) addr;
1763
1764         return 0;
1765 }
1766
1767 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1768 {
1769         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1770 }
1771
1772 /**
1773  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1774  *
1775  * A history of the GTT mmap interface:
1776  *
1777  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1778  *     aligned and suitable for fencing, and still fit into the available
1779  *     mappable space left by the pinned display objects. A classic problem
1780  *     we called the page-fault-of-doom where we would ping-pong between
1781  *     two objects that could not fit inside the GTT and so the memcpy
1782  *     would page one object in at the expense of the other between every
1783  *     single byte.
1784  *
1785  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1786  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1787  *     object is too large for the available space (or simply too large
1788  *     for the mappable aperture!), a view is created instead and faulted
1789  *     into userspace. (This view is aligned and sized appropriately for
1790  *     fenced access.)
1791  *
1792  * 2 - Recognise WC as a separate cache domain so that we can flush the
1793  *     delayed writes via GTT before performing direct access via WC.
1794  *
1795  * Restrictions:
1796  *
1797  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1798  *    hangs on some architectures, corruption on others. An attempt to service
1799  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1800  *
1801  *  * the object must be able to fit into RAM (physical memory, though no
1802  *    limited to the mappable aperture).
1803  *
1804  *
1805  * Caveats:
1806  *
1807  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1808  *    all data to system memory. Subsequent access will not be synchronized.
1809  *
1810  *  * all mappings are revoked on runtime device suspend.
1811  *
1812  *  * there are only 8, 16 or 32 fence registers to share between all users
1813  *    (older machines require fence register for display and blitter access
1814  *    as well). Contention of the fence registers will cause the previous users
1815  *    to be unmapped and any new access will generate new page faults.
1816  *
1817  *  * running out of memory while servicing a fault may generate a SIGBUS,
1818  *    rather than the expected SIGSEGV.
1819  */
1820 int i915_gem_mmap_gtt_version(void)
1821 {
1822         return 2;
1823 }
1824
1825 static inline struct i915_ggtt_view
1826 compute_partial_view(struct drm_i915_gem_object *obj,
1827                      pgoff_t page_offset,
1828                      unsigned int chunk)
1829 {
1830         struct i915_ggtt_view view;
1831
1832         if (i915_gem_object_is_tiled(obj))
1833                 chunk = roundup(chunk, tile_row_pages(obj));
1834
1835         view.type = I915_GGTT_VIEW_PARTIAL;
1836         view.partial.offset = rounddown(page_offset, chunk);
1837         view.partial.size =
1838                 min_t(unsigned int, chunk,
1839                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1840
1841         /* If the partial covers the entire object, just create a normal VMA. */
1842         if (chunk >= obj->base.size >> PAGE_SHIFT)
1843                 view.type = I915_GGTT_VIEW_NORMAL;
1844
1845         return view;
1846 }
1847
1848 /**
1849  * i915_gem_fault - fault a page into the GTT
1850  * @vmf: fault info
1851  *
1852  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1853  * from userspace.  The fault handler takes care of binding the object to
1854  * the GTT (if needed), allocating and programming a fence register (again,
1855  * only if needed based on whether the old reg is still valid or the object
1856  * is tiled) and inserting a new PTE into the faulting process.
1857  *
1858  * Note that the faulting process may involve evicting existing objects
1859  * from the GTT and/or fence registers to make room.  So performance may
1860  * suffer if the GTT working set is large or there are few fence registers
1861  * left.
1862  *
1863  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1864  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1865  */
1866 int i915_gem_fault(struct vm_fault *vmf)
1867 {
1868 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1869         struct vm_area_struct *area = vmf->vma;
1870         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1871         struct drm_device *dev = obj->base.dev;
1872         struct drm_i915_private *dev_priv = to_i915(dev);
1873         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1874         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1875         struct i915_vma *vma;
1876         pgoff_t page_offset;
1877         unsigned int flags;
1878         int ret;
1879
1880         /* We don't use vmf->pgoff since that has the fake offset */
1881         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1882
1883         trace_i915_gem_object_fault(obj, page_offset, true, write);
1884
1885         /* Try to flush the object off the GPU first without holding the lock.
1886          * Upon acquiring the lock, we will perform our sanity checks and then
1887          * repeat the flush holding the lock in the normal manner to catch cases
1888          * where we are gazumped.
1889          */
1890         ret = i915_gem_object_wait(obj,
1891                                    I915_WAIT_INTERRUPTIBLE,
1892                                    MAX_SCHEDULE_TIMEOUT,
1893                                    NULL);
1894         if (ret)
1895                 goto err;
1896
1897         ret = i915_gem_object_pin_pages(obj);
1898         if (ret)
1899                 goto err;
1900
1901         intel_runtime_pm_get(dev_priv);
1902
1903         ret = i915_mutex_lock_interruptible(dev);
1904         if (ret)
1905                 goto err_rpm;
1906
1907         /* Access to snoopable pages through the GTT is incoherent. */
1908         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1909                 ret = -EFAULT;
1910                 goto err_unlock;
1911         }
1912
1913         /* If the object is smaller than a couple of partial vma, it is
1914          * not worth only creating a single partial vma - we may as well
1915          * clear enough space for the full object.
1916          */
1917         flags = PIN_MAPPABLE;
1918         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1919                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1920
1921         /* Now pin it into the GTT as needed */
1922         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1923         if (IS_ERR(vma)) {
1924                 /* Use a partial view if it is bigger than available space */
1925                 struct i915_ggtt_view view =
1926                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1927
1928                 /* Userspace is now writing through an untracked VMA, abandon
1929                  * all hope that the hardware is able to track future writes.
1930                  */
1931                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1932
1933                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1934         }
1935         if (IS_ERR(vma)) {
1936                 ret = PTR_ERR(vma);
1937                 goto err_unlock;
1938         }
1939
1940         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1941         if (ret)
1942                 goto err_unpin;
1943
1944         ret = i915_vma_get_fence(vma);
1945         if (ret)
1946                 goto err_unpin;
1947
1948         /* Mark as being mmapped into userspace for later revocation */
1949         assert_rpm_wakelock_held(dev_priv);
1950         if (list_empty(&obj->userfault_link))
1951                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1952
1953         /* Finally, remap it using the new GTT offset */
1954         ret = remap_io_mapping(area,
1955                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1956                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1957                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1958                                &ggtt->mappable);
1959
1960 err_unpin:
1961         __i915_vma_unpin(vma);
1962 err_unlock:
1963         mutex_unlock(&dev->struct_mutex);
1964 err_rpm:
1965         intel_runtime_pm_put(dev_priv);
1966         i915_gem_object_unpin_pages(obj);
1967 err:
1968         switch (ret) {
1969         case -EIO:
1970                 /*
1971                  * We eat errors when the gpu is terminally wedged to avoid
1972                  * userspace unduly crashing (gl has no provisions for mmaps to
1973                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1974                  * and so needs to be reported.
1975                  */
1976                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1977                         ret = VM_FAULT_SIGBUS;
1978                         break;
1979                 }
1980         case -EAGAIN:
1981                 /*
1982                  * EAGAIN means the gpu is hung and we'll wait for the error
1983                  * handler to reset everything when re-faulting in
1984                  * i915_mutex_lock_interruptible.
1985                  */
1986         case 0:
1987         case -ERESTARTSYS:
1988         case -EINTR:
1989         case -EBUSY:
1990                 /*
1991                  * EBUSY is ok: this just means that another thread
1992                  * already did the job.
1993                  */
1994                 ret = VM_FAULT_NOPAGE;
1995                 break;
1996         case -ENOMEM:
1997                 ret = VM_FAULT_OOM;
1998                 break;
1999         case -ENOSPC:
2000         case -EFAULT:
2001                 ret = VM_FAULT_SIGBUS;
2002                 break;
2003         default:
2004                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2005                 ret = VM_FAULT_SIGBUS;
2006                 break;
2007         }
2008         return ret;
2009 }
2010
2011 /**
2012  * i915_gem_release_mmap - remove physical page mappings
2013  * @obj: obj in question
2014  *
2015  * Preserve the reservation of the mmapping with the DRM core code, but
2016  * relinquish ownership of the pages back to the system.
2017  *
2018  * It is vital that we remove the page mapping if we have mapped a tiled
2019  * object through the GTT and then lose the fence register due to
2020  * resource pressure. Similarly if the object has been moved out of the
2021  * aperture, than pages mapped into userspace must be revoked. Removing the
2022  * mapping will then trigger a page fault on the next user access, allowing
2023  * fixup by i915_gem_fault().
2024  */
2025 void
2026 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2027 {
2028         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2029
2030         /* Serialisation between user GTT access and our code depends upon
2031          * revoking the CPU's PTE whilst the mutex is held. The next user
2032          * pagefault then has to wait until we release the mutex.
2033          *
2034          * Note that RPM complicates somewhat by adding an additional
2035          * requirement that operations to the GGTT be made holding the RPM
2036          * wakeref.
2037          */
2038         lockdep_assert_held(&i915->drm.struct_mutex);
2039         intel_runtime_pm_get(i915);
2040
2041         if (list_empty(&obj->userfault_link))
2042                 goto out;
2043
2044         list_del_init(&obj->userfault_link);
2045         drm_vma_node_unmap(&obj->base.vma_node,
2046                            obj->base.dev->anon_inode->i_mapping);
2047
2048         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2049          * memory transactions from userspace before we return. The TLB
2050          * flushing implied above by changing the PTE above *should* be
2051          * sufficient, an extra barrier here just provides us with a bit
2052          * of paranoid documentation about our requirement to serialise
2053          * memory writes before touching registers / GSM.
2054          */
2055         wmb();
2056
2057 out:
2058         intel_runtime_pm_put(i915);
2059 }
2060
2061 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2062 {
2063         struct drm_i915_gem_object *obj, *on;
2064         int i;
2065
2066         /*
2067          * Only called during RPM suspend. All users of the userfault_list
2068          * must be holding an RPM wakeref to ensure that this can not
2069          * run concurrently with themselves (and use the struct_mutex for
2070          * protection between themselves).
2071          */
2072
2073         list_for_each_entry_safe(obj, on,
2074                                  &dev_priv->mm.userfault_list, userfault_link) {
2075                 list_del_init(&obj->userfault_link);
2076                 drm_vma_node_unmap(&obj->base.vma_node,
2077                                    obj->base.dev->anon_inode->i_mapping);
2078         }
2079
2080         /* The fence will be lost when the device powers down. If any were
2081          * in use by hardware (i.e. they are pinned), we should not be powering
2082          * down! All other fences will be reacquired by the user upon waking.
2083          */
2084         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
2087                 /* Ideally we want to assert that the fence register is not
2088                  * live at this point (i.e. that no piece of code will be
2089                  * trying to write through fence + GTT, as that both violates
2090                  * our tracking of activity and associated locking/barriers,
2091                  * but also is illegal given that the hw is powered down).
2092                  *
2093                  * Previously we used reg->pin_count as a "liveness" indicator.
2094                  * That is not sufficient, and we need a more fine-grained
2095                  * tool if we want to have a sanity check here.
2096                  */
2097
2098                 if (!reg->vma)
2099                         continue;
2100
2101                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2102                 reg->dirty = true;
2103         }
2104 }
2105
2106 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2107 {
2108         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2109         int err;
2110
2111         err = drm_gem_create_mmap_offset(&obj->base);
2112         if (likely(!err))
2113                 return 0;
2114
2115         /* Attempt to reap some mmap space from dead objects */
2116         do {
2117                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2118                 if (err)
2119                         break;
2120
2121                 i915_gem_drain_freed_objects(dev_priv);
2122                 err = drm_gem_create_mmap_offset(&obj->base);
2123                 if (!err)
2124                         break;
2125
2126         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2127
2128         return err;
2129 }
2130
2131 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2132 {
2133         drm_gem_free_mmap_offset(&obj->base);
2134 }
2135
2136 int
2137 i915_gem_mmap_gtt(struct drm_file *file,
2138                   struct drm_device *dev,
2139                   uint32_t handle,
2140                   uint64_t *offset)
2141 {
2142         struct drm_i915_gem_object *obj;
2143         int ret;
2144
2145         obj = i915_gem_object_lookup(file, handle);
2146         if (!obj)
2147                 return -ENOENT;
2148
2149         ret = i915_gem_object_create_mmap_offset(obj);
2150         if (ret == 0)
2151                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2152
2153         i915_gem_object_put(obj);
2154         return ret;
2155 }
2156
2157 /**
2158  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2159  * @dev: DRM device
2160  * @data: GTT mapping ioctl data
2161  * @file: GEM object info
2162  *
2163  * Simply returns the fake offset to userspace so it can mmap it.
2164  * The mmap call will end up in drm_gem_mmap(), which will set things
2165  * up so we can get faults in the handler above.
2166  *
2167  * The fault handler will take care of binding the object into the GTT
2168  * (since it may have been evicted to make room for something), allocating
2169  * a fence register, and mapping the appropriate aperture address into
2170  * userspace.
2171  */
2172 int
2173 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2174                         struct drm_file *file)
2175 {
2176         struct drm_i915_gem_mmap_gtt *args = data;
2177
2178         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2179 }
2180
2181 /* Immediately discard the backing storage */
2182 static void
2183 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2184 {
2185         i915_gem_object_free_mmap_offset(obj);
2186
2187         if (obj->base.filp == NULL)
2188                 return;
2189
2190         /* Our goal here is to return as much of the memory as
2191          * is possible back to the system as we are called from OOM.
2192          * To do this we must instruct the shmfs to drop all of its
2193          * backing pages, *now*.
2194          */
2195         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2196         obj->mm.madv = __I915_MADV_PURGED;
2197         obj->mm.pages = ERR_PTR(-EFAULT);
2198 }
2199
2200 /* Try to discard unwanted pages */
2201 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2202 {
2203         struct address_space *mapping;
2204
2205         lockdep_assert_held(&obj->mm.lock);
2206         GEM_BUG_ON(obj->mm.pages);
2207
2208         switch (obj->mm.madv) {
2209         case I915_MADV_DONTNEED:
2210                 i915_gem_object_truncate(obj);
2211         case __I915_MADV_PURGED:
2212                 return;
2213         }
2214
2215         if (obj->base.filp == NULL)
2216                 return;
2217
2218         mapping = obj->base.filp->f_mapping,
2219         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2220 }
2221
2222 static void
2223 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2224                               struct sg_table *pages)
2225 {
2226         struct sgt_iter sgt_iter;
2227         struct page *page;
2228
2229         __i915_gem_object_release_shmem(obj, pages, true);
2230
2231         i915_gem_gtt_finish_pages(obj, pages);
2232
2233         if (i915_gem_object_needs_bit17_swizzle(obj))
2234                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2235
2236         for_each_sgt_page(page, sgt_iter, pages) {
2237                 if (obj->mm.dirty)
2238                         set_page_dirty(page);
2239
2240                 if (obj->mm.madv == I915_MADV_WILLNEED)
2241                         mark_page_accessed(page);
2242
2243                 put_page(page);
2244         }
2245         obj->mm.dirty = false;
2246
2247         sg_free_table(pages);
2248         kfree(pages);
2249 }
2250
2251 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2252 {
2253         struct radix_tree_iter iter;
2254         void **slot;
2255
2256         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2257                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2258 }
2259
2260 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2261                                  enum i915_mm_subclass subclass)
2262 {
2263         struct sg_table *pages;
2264
2265         if (i915_gem_object_has_pinned_pages(obj))
2266                 return;
2267
2268         GEM_BUG_ON(obj->bind_count);
2269         if (!READ_ONCE(obj->mm.pages))
2270                 return;
2271
2272         /* May be called by shrinker from within get_pages() (on another bo) */
2273         mutex_lock_nested(&obj->mm.lock, subclass);
2274         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2275                 goto unlock;
2276
2277         /* ->put_pages might need to allocate memory for the bit17 swizzle
2278          * array, hence protect them from being reaped by removing them from gtt
2279          * lists early. */
2280         pages = fetch_and_zero(&obj->mm.pages);
2281         GEM_BUG_ON(!pages);
2282
2283         if (obj->mm.mapping) {
2284                 void *ptr;
2285
2286                 ptr = page_mask_bits(obj->mm.mapping);
2287                 if (is_vmalloc_addr(ptr))
2288                         vunmap(ptr);
2289                 else
2290                         kunmap(kmap_to_page(ptr));
2291
2292                 obj->mm.mapping = NULL;
2293         }
2294
2295         __i915_gem_object_reset_page_iter(obj);
2296
2297         if (!IS_ERR(pages))
2298                 obj->ops->put_pages(obj, pages);
2299
2300 unlock:
2301         mutex_unlock(&obj->mm.lock);
2302 }
2303
2304 static bool i915_sg_trim(struct sg_table *orig_st)
2305 {
2306         struct sg_table new_st;
2307         struct scatterlist *sg, *new_sg;
2308         unsigned int i;
2309
2310         if (orig_st->nents == orig_st->orig_nents)
2311                 return false;
2312
2313         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2314                 return false;
2315
2316         new_sg = new_st.sgl;
2317         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2318                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2319                 /* called before being DMA mapped, no need to copy sg->dma_* */
2320                 new_sg = sg_next(new_sg);
2321         }
2322         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2323
2324         sg_free_table(orig_st);
2325
2326         *orig_st = new_st;
2327         return true;
2328 }
2329
2330 static struct sg_table *
2331 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 {
2333         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2334         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2335         unsigned long i;
2336         struct address_space *mapping;
2337         struct sg_table *st;
2338         struct scatterlist *sg;
2339         struct sgt_iter sgt_iter;
2340         struct page *page;
2341         unsigned long last_pfn = 0;     /* suppress gcc warning */
2342         unsigned int max_segment;
2343         gfp_t noreclaim;
2344         int ret;
2345
2346         /* Assert that the object is not currently in any GPU domain. As it
2347          * wasn't in the GTT, there shouldn't be any way it could have been in
2348          * a GPU cache
2349          */
2350         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2351         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2352
2353         max_segment = swiotlb_max_segment();
2354         if (!max_segment)
2355                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2356
2357         st = kmalloc(sizeof(*st), GFP_KERNEL);
2358         if (st == NULL)
2359                 return ERR_PTR(-ENOMEM);
2360
2361 rebuild_st:
2362         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2363                 kfree(st);
2364                 return ERR_PTR(-ENOMEM);
2365         }
2366
2367         /* Get the list of pages out of our struct file.  They'll be pinned
2368          * at this point until we release them.
2369          *
2370          * Fail silently without starting the shrinker
2371          */
2372         mapping = obj->base.filp->f_mapping;
2373         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2374         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2375
2376         sg = st->sgl;
2377         st->nents = 0;
2378         for (i = 0; i < page_count; i++) {
2379                 const unsigned int shrink[] = {
2380                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2381                         0,
2382                 }, *s = shrink;
2383                 gfp_t gfp = noreclaim;
2384
2385                 do {
2386                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2387                         if (likely(!IS_ERR(page)))
2388                                 break;
2389
2390                         if (!*s) {
2391                                 ret = PTR_ERR(page);
2392                                 goto err_sg;
2393                         }
2394
2395                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2396                         cond_resched();
2397
2398                         /* We've tried hard to allocate the memory by reaping
2399                          * our own buffer, now let the real VM do its job and
2400                          * go down in flames if truly OOM.
2401                          *
2402                          * However, since graphics tend to be disposable,
2403                          * defer the oom here by reporting the ENOMEM back
2404                          * to userspace.
2405                          */
2406                         if (!*s) {
2407                                 /* reclaim and warn, but no oom */
2408                                 gfp = mapping_gfp_mask(mapping);
2409
2410                                 /* Our bo are always dirty and so we require
2411                                  * kswapd to reclaim our pages (direct reclaim
2412                                  * does not effectively begin pageout of our
2413                                  * buffers on its own). However, direct reclaim
2414                                  * only waits for kswapd when under allocation
2415                                  * congestion. So as a result __GFP_RECLAIM is
2416                                  * unreliable and fails to actually reclaim our
2417                                  * dirty pages -- unless you try over and over
2418                                  * again with !__GFP_NORETRY. However, we still
2419                                  * want to fail this allocation rather than
2420                                  * trigger the out-of-memory killer and for
2421                                  * this we want __GFP_RETRY_MAYFAIL.
2422                                  */
2423                                 gfp |= __GFP_RETRY_MAYFAIL;
2424                         }
2425                 } while (1);
2426
2427                 if (!i ||
2428                     sg->length >= max_segment ||
2429                     page_to_pfn(page) != last_pfn + 1) {
2430                         if (i)
2431                                 sg = sg_next(sg);
2432                         st->nents++;
2433                         sg_set_page(sg, page, PAGE_SIZE, 0);
2434                 } else {
2435                         sg->length += PAGE_SIZE;
2436                 }
2437                 last_pfn = page_to_pfn(page);
2438
2439                 /* Check that the i965g/gm workaround works. */
2440                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2441         }
2442         if (sg) /* loop terminated early; short sg table */
2443                 sg_mark_end(sg);
2444
2445         /* Trim unused sg entries to avoid wasting memory. */
2446         i915_sg_trim(st);
2447
2448         ret = i915_gem_gtt_prepare_pages(obj, st);
2449         if (ret) {
2450                 /* DMA remapping failed? One possible cause is that
2451                  * it could not reserve enough large entries, asking
2452                  * for PAGE_SIZE chunks instead may be helpful.
2453                  */
2454                 if (max_segment > PAGE_SIZE) {
2455                         for_each_sgt_page(page, sgt_iter, st)
2456                                 put_page(page);
2457                         sg_free_table(st);
2458
2459                         max_segment = PAGE_SIZE;
2460                         goto rebuild_st;
2461                 } else {
2462                         dev_warn(&dev_priv->drm.pdev->dev,
2463                                  "Failed to DMA remap %lu pages\n",
2464                                  page_count);
2465                         goto err_pages;
2466                 }
2467         }
2468
2469         if (i915_gem_object_needs_bit17_swizzle(obj))
2470                 i915_gem_object_do_bit_17_swizzle(obj, st);
2471
2472         return st;
2473
2474 err_sg:
2475         sg_mark_end(sg);
2476 err_pages:
2477         for_each_sgt_page(page, sgt_iter, st)
2478                 put_page(page);
2479         sg_free_table(st);
2480         kfree(st);
2481
2482         /* shmemfs first checks if there is enough memory to allocate the page
2483          * and reports ENOSPC should there be insufficient, along with the usual
2484          * ENOMEM for a genuine allocation failure.
2485          *
2486          * We use ENOSPC in our driver to mean that we have run out of aperture
2487          * space and so want to translate the error from shmemfs back to our
2488          * usual understanding of ENOMEM.
2489          */
2490         if (ret == -ENOSPC)
2491                 ret = -ENOMEM;
2492
2493         return ERR_PTR(ret);
2494 }
2495
2496 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2497                                  struct sg_table *pages)
2498 {
2499         lockdep_assert_held(&obj->mm.lock);
2500
2501         obj->mm.get_page.sg_pos = pages->sgl;
2502         obj->mm.get_page.sg_idx = 0;
2503
2504         obj->mm.pages = pages;
2505
2506         if (i915_gem_object_is_tiled(obj) &&
2507             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2508                 GEM_BUG_ON(obj->mm.quirked);
2509                 __i915_gem_object_pin_pages(obj);
2510                 obj->mm.quirked = true;
2511         }
2512 }
2513
2514 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2515 {
2516         struct sg_table *pages;
2517
2518         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2519
2520         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2521                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2522                 return -EFAULT;
2523         }
2524
2525         pages = obj->ops->get_pages(obj);
2526         if (unlikely(IS_ERR(pages)))
2527                 return PTR_ERR(pages);
2528
2529         __i915_gem_object_set_pages(obj, pages);
2530         return 0;
2531 }
2532
2533 /* Ensure that the associated pages are gathered from the backing storage
2534  * and pinned into our object. i915_gem_object_pin_pages() may be called
2535  * multiple times before they are released by a single call to
2536  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2537  * either as a result of memory pressure (reaping pages under the shrinker)
2538  * or as the object is itself released.
2539  */
2540 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2541 {
2542         int err;
2543
2544         err = mutex_lock_interruptible(&obj->mm.lock);
2545         if (err)
2546                 return err;
2547
2548         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2549                 err = ____i915_gem_object_get_pages(obj);
2550                 if (err)
2551                         goto unlock;
2552
2553                 smp_mb__before_atomic();
2554         }
2555         atomic_inc(&obj->mm.pages_pin_count);
2556
2557 unlock:
2558         mutex_unlock(&obj->mm.lock);
2559         return err;
2560 }
2561
2562 /* The 'mapping' part of i915_gem_object_pin_map() below */
2563 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2564                                  enum i915_map_type type)
2565 {
2566         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2567         struct sg_table *sgt = obj->mm.pages;
2568         struct sgt_iter sgt_iter;
2569         struct page *page;
2570         struct page *stack_pages[32];
2571         struct page **pages = stack_pages;
2572         unsigned long i = 0;
2573         pgprot_t pgprot;
2574         void *addr;
2575
2576         /* A single page can always be kmapped */
2577         if (n_pages == 1 && type == I915_MAP_WB)
2578                 return kmap(sg_page(sgt->sgl));
2579
2580         if (n_pages > ARRAY_SIZE(stack_pages)) {
2581                 /* Too big for stack -- allocate temporary array instead */
2582                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2583                 if (!pages)
2584                         return NULL;
2585         }
2586
2587         for_each_sgt_page(page, sgt_iter, sgt)
2588                 pages[i++] = page;
2589
2590         /* Check that we have the expected number of pages */
2591         GEM_BUG_ON(i != n_pages);
2592
2593         switch (type) {
2594         case I915_MAP_WB:
2595                 pgprot = PAGE_KERNEL;
2596                 break;
2597         case I915_MAP_WC:
2598                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2599                 break;
2600         }
2601         addr = vmap(pages, n_pages, 0, pgprot);
2602
2603         if (pages != stack_pages)
2604                 kvfree(pages);
2605
2606         return addr;
2607 }
2608
2609 /* get, pin, and map the pages of the object into kernel space */
2610 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2611                               enum i915_map_type type)
2612 {
2613         enum i915_map_type has_type;
2614         bool pinned;
2615         void *ptr;
2616         int ret;
2617
2618         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2619
2620         ret = mutex_lock_interruptible(&obj->mm.lock);
2621         if (ret)
2622                 return ERR_PTR(ret);
2623
2624         pinned = true;
2625         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2626                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2627                         ret = ____i915_gem_object_get_pages(obj);
2628                         if (ret)
2629                                 goto err_unlock;
2630
2631                         smp_mb__before_atomic();
2632                 }
2633                 atomic_inc(&obj->mm.pages_pin_count);
2634                 pinned = false;
2635         }
2636         GEM_BUG_ON(!obj->mm.pages);
2637
2638         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2639         if (ptr && has_type != type) {
2640                 if (pinned) {
2641                         ret = -EBUSY;
2642                         goto err_unpin;
2643                 }
2644
2645                 if (is_vmalloc_addr(ptr))
2646                         vunmap(ptr);
2647                 else
2648                         kunmap(kmap_to_page(ptr));
2649
2650                 ptr = obj->mm.mapping = NULL;
2651         }
2652
2653         if (!ptr) {
2654                 ptr = i915_gem_object_map(obj, type);
2655                 if (!ptr) {
2656                         ret = -ENOMEM;
2657                         goto err_unpin;
2658                 }
2659
2660                 obj->mm.mapping = page_pack_bits(ptr, type);
2661         }
2662
2663 out_unlock:
2664         mutex_unlock(&obj->mm.lock);
2665         return ptr;
2666
2667 err_unpin:
2668         atomic_dec(&obj->mm.pages_pin_count);
2669 err_unlock:
2670         ptr = ERR_PTR(ret);
2671         goto out_unlock;
2672 }
2673
2674 static int
2675 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2676                            const struct drm_i915_gem_pwrite *arg)
2677 {
2678         struct address_space *mapping = obj->base.filp->f_mapping;
2679         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2680         u64 remain, offset;
2681         unsigned int pg;
2682
2683         /* Before we instantiate/pin the backing store for our use, we
2684          * can prepopulate the shmemfs filp efficiently using a write into
2685          * the pagecache. We avoid the penalty of instantiating all the
2686          * pages, important if the user is just writing to a few and never
2687          * uses the object on the GPU, and using a direct write into shmemfs
2688          * allows it to avoid the cost of retrieving a page (either swapin
2689          * or clearing-before-use) before it is overwritten.
2690          */
2691         if (READ_ONCE(obj->mm.pages))
2692                 return -ENODEV;
2693
2694         /* Before the pages are instantiated the object is treated as being
2695          * in the CPU domain. The pages will be clflushed as required before
2696          * use, and we can freely write into the pages directly. If userspace
2697          * races pwrite with any other operation; corruption will ensue -
2698          * that is userspace's prerogative!
2699          */
2700
2701         remain = arg->size;
2702         offset = arg->offset;
2703         pg = offset_in_page(offset);
2704
2705         do {
2706                 unsigned int len, unwritten;
2707                 struct page *page;
2708                 void *data, *vaddr;
2709                 int err;
2710
2711                 len = PAGE_SIZE - pg;
2712                 if (len > remain)
2713                         len = remain;
2714
2715                 err = pagecache_write_begin(obj->base.filp, mapping,
2716                                             offset, len, 0,
2717                                             &page, &data);
2718                 if (err < 0)
2719                         return err;
2720
2721                 vaddr = kmap(page);
2722                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2723                 kunmap(page);
2724
2725                 err = pagecache_write_end(obj->base.filp, mapping,
2726                                           offset, len, len - unwritten,
2727                                           page, data);
2728                 if (err < 0)
2729                         return err;
2730
2731                 if (unwritten)
2732                         return -EFAULT;
2733
2734                 remain -= len;
2735                 user_data += len;
2736                 offset += len;
2737                 pg = 0;
2738         } while (remain);
2739
2740         return 0;
2741 }
2742
2743 static bool ban_context(const struct i915_gem_context *ctx,
2744                         unsigned int score)
2745 {
2746         return (i915_gem_context_is_bannable(ctx) &&
2747                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2748 }
2749
2750 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2751 {
2752         unsigned int score;
2753         bool banned;
2754
2755         atomic_inc(&ctx->guilty_count);
2756
2757         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2758         banned = ban_context(ctx, score);
2759         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2760                          ctx->name, score, yesno(banned));
2761         if (!banned)
2762                 return;
2763
2764         i915_gem_context_set_banned(ctx);
2765         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2766                 atomic_inc(&ctx->file_priv->context_bans);
2767                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2768                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2769         }
2770 }
2771
2772 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2773 {
2774         atomic_inc(&ctx->active_count);
2775 }
2776
2777 struct drm_i915_gem_request *
2778 i915_gem_find_active_request(struct intel_engine_cs *engine)
2779 {
2780         struct drm_i915_gem_request *request, *active = NULL;
2781         unsigned long flags;
2782
2783         /* We are called by the error capture and reset at a random
2784          * point in time. In particular, note that neither is crucially
2785          * ordered with an interrupt. After a hang, the GPU is dead and we
2786          * assume that no more writes can happen (we waited long enough for
2787          * all writes that were in transaction to be flushed) - adding an
2788          * extra delay for a recent interrupt is pointless. Hence, we do
2789          * not need an engine->irq_seqno_barrier() before the seqno reads.
2790          */
2791         spin_lock_irqsave(&engine->timeline->lock, flags);
2792         list_for_each_entry(request, &engine->timeline->requests, link) {
2793                 if (__i915_gem_request_completed(request,
2794                                                  request->global_seqno))
2795                         continue;
2796
2797                 GEM_BUG_ON(request->engine != engine);
2798                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2799                                     &request->fence.flags));
2800
2801                 active = request;
2802                 break;
2803         }
2804         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2805
2806         return active;
2807 }
2808
2809 static bool engine_stalled(struct intel_engine_cs *engine)
2810 {
2811         if (!engine->hangcheck.stalled)
2812                 return false;
2813
2814         /* Check for possible seqno movement after hang declaration */
2815         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2816                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2817                 return false;
2818         }
2819
2820         return true;
2821 }
2822
2823 /*
2824  * Ensure irq handler finishes, and not run again.
2825  * Also return the active request so that we only search for it once.
2826  */
2827 struct drm_i915_gem_request *
2828 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2829 {
2830         struct drm_i915_gem_request *request = NULL;
2831
2832         /* Prevent the signaler thread from updating the request
2833          * state (by calling dma_fence_signal) as we are processing
2834          * the reset. The write from the GPU of the seqno is
2835          * asynchronous and the signaler thread may see a different
2836          * value to us and declare the request complete, even though
2837          * the reset routine have picked that request as the active
2838          * (incomplete) request. This conflict is not handled
2839          * gracefully!
2840          */
2841         kthread_park(engine->breadcrumbs.signaler);
2842
2843         /* Prevent request submission to the hardware until we have
2844          * completed the reset in i915_gem_reset_finish(). If a request
2845          * is completed by one engine, it may then queue a request
2846          * to a second via its engine->irq_tasklet *just* as we are
2847          * calling engine->init_hw() and also writing the ELSP.
2848          * Turning off the engine->irq_tasklet until the reset is over
2849          * prevents the race.
2850          */
2851         tasklet_kill(&engine->irq_tasklet);
2852         tasklet_disable(&engine->irq_tasklet);
2853
2854         if (engine->irq_seqno_barrier)
2855                 engine->irq_seqno_barrier(engine);
2856
2857         request = i915_gem_find_active_request(engine);
2858         if (request && request->fence.error == -EIO)
2859                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2860
2861         return request;
2862 }
2863
2864 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2865 {
2866         struct intel_engine_cs *engine;
2867         struct drm_i915_gem_request *request;
2868         enum intel_engine_id id;
2869         int err = 0;
2870
2871         for_each_engine(engine, dev_priv, id) {
2872                 request = i915_gem_reset_prepare_engine(engine);
2873                 if (IS_ERR(request)) {
2874                         err = PTR_ERR(request);
2875                         continue;
2876                 }
2877
2878                 engine->hangcheck.active_request = request;
2879         }
2880
2881         i915_gem_revoke_fences(dev_priv);
2882
2883         return err;
2884 }
2885
2886 static void skip_request(struct drm_i915_gem_request *request)
2887 {
2888         void *vaddr = request->ring->vaddr;
2889         u32 head;
2890
2891         /* As this request likely depends on state from the lost
2892          * context, clear out all the user operations leaving the
2893          * breadcrumb at the end (so we get the fence notifications).
2894          */
2895         head = request->head;
2896         if (request->postfix < head) {
2897                 memset(vaddr + head, 0, request->ring->size - head);
2898                 head = 0;
2899         }
2900         memset(vaddr + head, 0, request->postfix - head);
2901
2902         dma_fence_set_error(&request->fence, -EIO);
2903 }
2904
2905 static void engine_skip_context(struct drm_i915_gem_request *request)
2906 {
2907         struct intel_engine_cs *engine = request->engine;
2908         struct i915_gem_context *hung_ctx = request->ctx;
2909         struct intel_timeline *timeline;
2910         unsigned long flags;
2911
2912         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2913
2914         spin_lock_irqsave(&engine->timeline->lock, flags);
2915         spin_lock(&timeline->lock);
2916
2917         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2918                 if (request->ctx == hung_ctx)
2919                         skip_request(request);
2920
2921         list_for_each_entry(request, &timeline->requests, link)
2922                 skip_request(request);
2923
2924         spin_unlock(&timeline->lock);
2925         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2926 }
2927
2928 /* Returns the request if it was guilty of the hang */
2929 static struct drm_i915_gem_request *
2930 i915_gem_reset_request(struct intel_engine_cs *engine,
2931                        struct drm_i915_gem_request *request)
2932 {
2933         /* The guilty request will get skipped on a hung engine.
2934          *
2935          * Users of client default contexts do not rely on logical
2936          * state preserved between batches so it is safe to execute
2937          * queued requests following the hang. Non default contexts
2938          * rely on preserved state, so skipping a batch loses the
2939          * evolution of the state and it needs to be considered corrupted.
2940          * Executing more queued batches on top of corrupted state is
2941          * risky. But we take the risk by trying to advance through
2942          * the queued requests in order to make the client behaviour
2943          * more predictable around resets, by not throwing away random
2944          * amount of batches it has prepared for execution. Sophisticated
2945          * clients can use gem_reset_stats_ioctl and dma fence status
2946          * (exported via sync_file info ioctl on explicit fences) to observe
2947          * when it loses the context state and should rebuild accordingly.
2948          *
2949          * The context ban, and ultimately the client ban, mechanism are safety
2950          * valves if client submission ends up resulting in nothing more than
2951          * subsequent hangs.
2952          */
2953
2954         if (engine_stalled(engine)) {
2955                 i915_gem_context_mark_guilty(request->ctx);
2956                 skip_request(request);
2957
2958                 /* If this context is now banned, skip all pending requests. */
2959                 if (i915_gem_context_is_banned(request->ctx))
2960                         engine_skip_context(request);
2961         } else {
2962                 /*
2963                  * Since this is not the hung engine, it may have advanced
2964                  * since the hang declaration. Double check by refinding
2965                  * the active request at the time of the reset.
2966                  */
2967                 request = i915_gem_find_active_request(engine);
2968                 if (request) {
2969                         i915_gem_context_mark_innocent(request->ctx);
2970                         dma_fence_set_error(&request->fence, -EAGAIN);
2971
2972                         /* Rewind the engine to replay the incomplete rq */
2973                         spin_lock_irq(&engine->timeline->lock);
2974                         request = list_prev_entry(request, link);
2975                         if (&request->link == &engine->timeline->requests)
2976                                 request = NULL;
2977                         spin_unlock_irq(&engine->timeline->lock);
2978                 }
2979         }
2980
2981         return request;
2982 }
2983
2984 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2985                            struct drm_i915_gem_request *request)
2986 {
2987         engine->irq_posted = 0;
2988
2989         if (request)
2990                 request = i915_gem_reset_request(engine, request);
2991
2992         if (request) {
2993                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2994                                  engine->name, request->global_seqno);
2995         }
2996
2997         /* Setup the CS to resume from the breadcrumb of the hung request */
2998         engine->reset_hw(engine, request);
2999 }
3000
3001 void i915_gem_reset(struct drm_i915_private *dev_priv)
3002 {
3003         struct intel_engine_cs *engine;
3004         enum intel_engine_id id;
3005
3006         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3007
3008         i915_gem_retire_requests(dev_priv);
3009
3010         for_each_engine(engine, dev_priv, id) {
3011                 struct i915_gem_context *ctx;
3012
3013                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3014                 ctx = fetch_and_zero(&engine->last_retired_context);
3015                 if (ctx)
3016                         engine->context_unpin(engine, ctx);
3017         }
3018
3019         i915_gem_restore_fences(dev_priv);
3020
3021         if (dev_priv->gt.awake) {
3022                 intel_sanitize_gt_powersave(dev_priv);
3023                 intel_enable_gt_powersave(dev_priv);
3024                 if (INTEL_GEN(dev_priv) >= 6)
3025                         gen6_rps_busy(dev_priv);
3026         }
3027 }
3028
3029 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3030 {
3031         tasklet_enable(&engine->irq_tasklet);
3032         kthread_unpark(engine->breadcrumbs.signaler);
3033 }
3034
3035 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3036 {
3037         struct intel_engine_cs *engine;
3038         enum intel_engine_id id;
3039
3040         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3041
3042         for_each_engine(engine, dev_priv, id) {
3043                 engine->hangcheck.active_request = NULL;
3044                 i915_gem_reset_finish_engine(engine);
3045         }
3046 }
3047
3048 static void nop_submit_request(struct drm_i915_gem_request *request)
3049 {
3050         GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3051         dma_fence_set_error(&request->fence, -EIO);
3052         i915_gem_request_submit(request);
3053         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3054 }
3055
3056 static void engine_set_wedged(struct intel_engine_cs *engine)
3057 {
3058         struct drm_i915_gem_request *request;
3059         unsigned long flags;
3060
3061         /* We need to be sure that no thread is running the old callback as
3062          * we install the nop handler (otherwise we would submit a request
3063          * to hardware that will never complete). In order to prevent this
3064          * race, we wait until the machine is idle before making the swap
3065          * (using stop_machine()).
3066          */
3067         engine->submit_request = nop_submit_request;
3068
3069         /* Mark all executing requests as skipped */
3070         spin_lock_irqsave(&engine->timeline->lock, flags);
3071         list_for_each_entry(request, &engine->timeline->requests, link)
3072                 if (!i915_gem_request_completed(request))
3073                         dma_fence_set_error(&request->fence, -EIO);
3074         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3075
3076         /*
3077          * Clear the execlists queue up before freeing the requests, as those
3078          * are the ones that keep the context and ringbuffer backing objects
3079          * pinned in place.
3080          */
3081
3082         if (i915.enable_execlists) {
3083                 struct execlist_port *port = engine->execlist_port;
3084                 unsigned long flags;
3085                 unsigned int n;
3086
3087                 spin_lock_irqsave(&engine->timeline->lock, flags);
3088
3089                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3090                         i915_gem_request_put(port_request(&port[n]));
3091                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3092                 engine->execlist_queue = RB_ROOT;
3093                 engine->execlist_first = NULL;
3094
3095                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3096
3097                 /* The port is checked prior to scheduling a tasklet, but
3098                  * just in case we have suspended the tasklet to do the
3099                  * wedging make sure that when it wakes, it decides there
3100                  * is no work to do by clearing the irq_posted bit.
3101                  */
3102                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3103         }
3104
3105         /* Mark all pending requests as complete so that any concurrent
3106          * (lockless) lookup doesn't try and wait upon the request as we
3107          * reset it.
3108          */
3109         intel_engine_init_global_seqno(engine,
3110                                        intel_engine_last_submit(engine));
3111 }
3112
3113 static int __i915_gem_set_wedged_BKL(void *data)
3114 {
3115         struct drm_i915_private *i915 = data;
3116         struct intel_engine_cs *engine;
3117         enum intel_engine_id id;
3118
3119         for_each_engine(engine, i915, id)
3120                 engine_set_wedged(engine);
3121
3122         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3123         wake_up_all(&i915->gpu_error.reset_queue);
3124
3125         return 0;
3126 }
3127
3128 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3129 {
3130         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3131 }
3132
3133 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3134 {
3135         struct i915_gem_timeline *tl;
3136         int i;
3137
3138         lockdep_assert_held(&i915->drm.struct_mutex);
3139         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3140                 return true;
3141
3142         /* Before unwedging, make sure that all pending operations
3143          * are flushed and errored out - we may have requests waiting upon
3144          * third party fences. We marked all inflight requests as EIO, and
3145          * every execbuf since returned EIO, for consistency we want all
3146          * the currently pending requests to also be marked as EIO, which
3147          * is done inside our nop_submit_request - and so we must wait.
3148          *
3149          * No more can be submitted until we reset the wedged bit.
3150          */
3151         list_for_each_entry(tl, &i915->gt.timelines, link) {
3152                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3153                         struct drm_i915_gem_request *rq;
3154
3155                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3156                                                   &i915->drm.struct_mutex);
3157                         if (!rq)
3158                                 continue;
3159
3160                         /* We can't use our normal waiter as we want to
3161                          * avoid recursively trying to handle the current
3162                          * reset. The basic dma_fence_default_wait() installs
3163                          * a callback for dma_fence_signal(), which is
3164                          * triggered by our nop handler (indirectly, the
3165                          * callback enables the signaler thread which is
3166                          * woken by the nop_submit_request() advancing the seqno
3167                          * and when the seqno passes the fence, the signaler
3168                          * then signals the fence waking us up).
3169                          */
3170                         if (dma_fence_default_wait(&rq->fence, true,
3171                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3172                                 return false;
3173                 }
3174         }
3175
3176         /* Undo nop_submit_request. We prevent all new i915 requests from
3177          * being queued (by disallowing execbuf whilst wedged) so having
3178          * waited for all active requests above, we know the system is idle
3179          * and do not have to worry about a thread being inside
3180          * engine->submit_request() as we swap over. So unlike installing
3181          * the nop_submit_request on reset, we can do this from normal
3182          * context and do not require stop_machine().
3183          */
3184         intel_engines_reset_default_submission(i915);
3185         i915_gem_contexts_lost(i915);
3186
3187         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3188         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3189
3190         return true;
3191 }
3192
3193 static void
3194 i915_gem_retire_work_handler(struct work_struct *work)
3195 {
3196         struct drm_i915_private *dev_priv =
3197                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3198         struct drm_device *dev = &dev_priv->drm;
3199
3200         /* Come back later if the device is busy... */
3201         if (mutex_trylock(&dev->struct_mutex)) {
3202                 i915_gem_retire_requests(dev_priv);
3203                 mutex_unlock(&dev->struct_mutex);
3204         }
3205
3206         /* Keep the retire handler running until we are finally idle.
3207          * We do not need to do this test under locking as in the worst-case
3208          * we queue the retire worker once too often.
3209          */
3210         if (READ_ONCE(dev_priv->gt.awake)) {
3211                 i915_queue_hangcheck(dev_priv);
3212                 queue_delayed_work(dev_priv->wq,
3213                                    &dev_priv->gt.retire_work,
3214                                    round_jiffies_up_relative(HZ));
3215         }
3216 }
3217
3218 static void
3219 i915_gem_idle_work_handler(struct work_struct *work)
3220 {
3221         struct drm_i915_private *dev_priv =
3222                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3223         struct drm_device *dev = &dev_priv->drm;
3224         bool rearm_hangcheck;
3225
3226         if (!READ_ONCE(dev_priv->gt.awake))
3227                 return;
3228
3229         /*
3230          * Wait for last execlists context complete, but bail out in case a
3231          * new request is submitted.
3232          */
3233         wait_for(intel_engines_are_idle(dev_priv), 10);
3234         if (READ_ONCE(dev_priv->gt.active_requests))
3235                 return;
3236
3237         rearm_hangcheck =
3238                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3239
3240         if (!mutex_trylock(&dev->struct_mutex)) {
3241                 /* Currently busy, come back later */
3242                 mod_delayed_work(dev_priv->wq,
3243                                  &dev_priv->gt.idle_work,
3244                                  msecs_to_jiffies(50));
3245                 goto out_rearm;
3246         }
3247
3248         /*
3249          * New request retired after this work handler started, extend active
3250          * period until next instance of the work.
3251          */
3252         if (work_pending(work))
3253                 goto out_unlock;
3254
3255         if (dev_priv->gt.active_requests)
3256                 goto out_unlock;
3257
3258         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3259                 DRM_ERROR("Timeout waiting for engines to idle\n");
3260
3261         intel_engines_mark_idle(dev_priv);
3262         i915_gem_timelines_mark_idle(dev_priv);
3263
3264         GEM_BUG_ON(!dev_priv->gt.awake);
3265         dev_priv->gt.awake = false;
3266         rearm_hangcheck = false;
3267
3268         if (INTEL_GEN(dev_priv) >= 6)
3269                 gen6_rps_idle(dev_priv);
3270         intel_runtime_pm_put(dev_priv);
3271 out_unlock:
3272         mutex_unlock(&dev->struct_mutex);
3273
3274 out_rearm:
3275         if (rearm_hangcheck) {
3276                 GEM_BUG_ON(!dev_priv->gt.awake);
3277                 i915_queue_hangcheck(dev_priv);
3278         }
3279 }
3280
3281 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3282 {
3283         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3284         struct drm_i915_file_private *fpriv = file->driver_priv;
3285         struct i915_vma *vma, *vn;
3286
3287         mutex_lock(&obj->base.dev->struct_mutex);
3288         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3289                 if (vma->vm->file == fpriv)
3290                         i915_vma_close(vma);
3291
3292         vma = obj->vma_hashed;
3293         if (vma && vma->ctx->file_priv == fpriv)
3294                 i915_vma_unlink_ctx(vma);
3295
3296         if (i915_gem_object_is_active(obj) &&
3297             !i915_gem_object_has_active_reference(obj)) {
3298                 i915_gem_object_set_active_reference(obj);
3299                 i915_gem_object_get(obj);
3300         }
3301         mutex_unlock(&obj->base.dev->struct_mutex);
3302 }
3303
3304 static unsigned long to_wait_timeout(s64 timeout_ns)
3305 {
3306         if (timeout_ns < 0)
3307                 return MAX_SCHEDULE_TIMEOUT;
3308
3309         if (timeout_ns == 0)
3310                 return 0;
3311
3312         return nsecs_to_jiffies_timeout(timeout_ns);
3313 }
3314
3315 /**
3316  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3317  * @dev: drm device pointer
3318  * @data: ioctl data blob
3319  * @file: drm file pointer
3320  *
3321  * Returns 0 if successful, else an error is returned with the remaining time in
3322  * the timeout parameter.
3323  *  -ETIME: object is still busy after timeout
3324  *  -ERESTARTSYS: signal interrupted the wait
3325  *  -ENONENT: object doesn't exist
3326  * Also possible, but rare:
3327  *  -EAGAIN: GPU wedged
3328  *  -ENOMEM: damn
3329  *  -ENODEV: Internal IRQ fail
3330  *  -E?: The add request failed
3331  *
3332  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3333  * non-zero timeout parameter the wait ioctl will wait for the given number of
3334  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3335  * without holding struct_mutex the object may become re-busied before this
3336  * function completes. A similar but shorter * race condition exists in the busy
3337  * ioctl
3338  */
3339 int
3340 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3341 {
3342         struct drm_i915_gem_wait *args = data;
3343         struct drm_i915_gem_object *obj;
3344         ktime_t start;
3345         long ret;
3346
3347         if (args->flags != 0)
3348                 return -EINVAL;
3349
3350         obj = i915_gem_object_lookup(file, args->bo_handle);
3351         if (!obj)
3352                 return -ENOENT;
3353
3354         start = ktime_get();
3355
3356         ret = i915_gem_object_wait(obj,
3357                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3358                                    to_wait_timeout(args->timeout_ns),
3359                                    to_rps_client(file));
3360
3361         if (args->timeout_ns > 0) {
3362                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3363                 if (args->timeout_ns < 0)
3364                         args->timeout_ns = 0;
3365
3366                 /*
3367                  * Apparently ktime isn't accurate enough and occasionally has a
3368                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3369                  * things up to make the test happy. We allow up to 1 jiffy.
3370                  *
3371                  * This is a regression from the timespec->ktime conversion.
3372                  */
3373                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3374                         args->timeout_ns = 0;
3375         }
3376
3377         i915_gem_object_put(obj);
3378         return ret;
3379 }
3380
3381 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3382 {
3383         int ret, i;
3384
3385         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3386                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3387                 if (ret)
3388                         return ret;
3389         }
3390
3391         return 0;
3392 }
3393
3394 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3395 {
3396         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3397 }
3398
3399 static int wait_for_engines(struct drm_i915_private *i915)
3400 {
3401         struct intel_engine_cs *engine;
3402         enum intel_engine_id id;
3403
3404         for_each_engine(engine, i915, id) {
3405                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3406                         i915_gem_set_wedged(i915);
3407                         return -EIO;
3408                 }
3409
3410                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3411                            intel_engine_last_submit(engine));
3412         }
3413
3414         return 0;
3415 }
3416
3417 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3418 {
3419         int ret;
3420
3421         /* If the device is asleep, we have no requests outstanding */
3422         if (!READ_ONCE(i915->gt.awake))
3423                 return 0;
3424
3425         if (flags & I915_WAIT_LOCKED) {
3426                 struct i915_gem_timeline *tl;
3427
3428                 lockdep_assert_held(&i915->drm.struct_mutex);
3429
3430                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3431                         ret = wait_for_timeline(tl, flags);
3432                         if (ret)
3433                                 return ret;
3434                 }
3435
3436                 i915_gem_retire_requests(i915);
3437                 GEM_BUG_ON(i915->gt.active_requests);
3438
3439                 ret = wait_for_engines(i915);
3440         } else {
3441                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3442         }
3443
3444         return ret;
3445 }
3446
3447 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3448 {
3449         /*
3450          * We manually flush the CPU domain so that we can override and
3451          * force the flush for the display, and perform it asyncrhonously.
3452          */
3453         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3454         if (obj->cache_dirty)
3455                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3456         obj->base.write_domain = 0;
3457 }
3458
3459 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3460 {
3461         if (!READ_ONCE(obj->pin_display))
3462                 return;
3463
3464         mutex_lock(&obj->base.dev->struct_mutex);
3465         __i915_gem_object_flush_for_display(obj);
3466         mutex_unlock(&obj->base.dev->struct_mutex);
3467 }
3468
3469 /**
3470  * Moves a single object to the WC read, and possibly write domain.
3471  * @obj: object to act on
3472  * @write: ask for write access or read only
3473  *
3474  * This function returns when the move is complete, including waiting on
3475  * flushes to occur.
3476  */
3477 int
3478 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3479 {
3480         int ret;
3481
3482         lockdep_assert_held(&obj->base.dev->struct_mutex);
3483
3484         ret = i915_gem_object_wait(obj,
3485                                    I915_WAIT_INTERRUPTIBLE |
3486                                    I915_WAIT_LOCKED |
3487                                    (write ? I915_WAIT_ALL : 0),
3488                                    MAX_SCHEDULE_TIMEOUT,
3489                                    NULL);
3490         if (ret)
3491                 return ret;
3492
3493         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3494                 return 0;
3495
3496         /* Flush and acquire obj->pages so that we are coherent through
3497          * direct access in memory with previous cached writes through
3498          * shmemfs and that our cache domain tracking remains valid.
3499          * For example, if the obj->filp was moved to swap without us
3500          * being notified and releasing the pages, we would mistakenly
3501          * continue to assume that the obj remained out of the CPU cached
3502          * domain.
3503          */
3504         ret = i915_gem_object_pin_pages(obj);
3505         if (ret)
3506                 return ret;
3507
3508         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3509
3510         /* Serialise direct access to this object with the barriers for
3511          * coherent writes from the GPU, by effectively invalidating the
3512          * WC domain upon first access.
3513          */
3514         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3515                 mb();
3516
3517         /* It should now be out of any other write domains, and we can update
3518          * the domain values for our changes.
3519          */
3520         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3521         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3522         if (write) {
3523                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3524                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3525                 obj->mm.dirty = true;
3526         }
3527
3528         i915_gem_object_unpin_pages(obj);
3529         return 0;
3530 }
3531
3532 /**
3533  * Moves a single object to the GTT read, and possibly write domain.
3534  * @obj: object to act on
3535  * @write: ask for write access or read only
3536  *
3537  * This function returns when the move is complete, including waiting on
3538  * flushes to occur.
3539  */
3540 int
3541 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3542 {
3543         int ret;
3544
3545         lockdep_assert_held(&obj->base.dev->struct_mutex);
3546
3547         ret = i915_gem_object_wait(obj,
3548                                    I915_WAIT_INTERRUPTIBLE |
3549                                    I915_WAIT_LOCKED |
3550                                    (write ? I915_WAIT_ALL : 0),
3551                                    MAX_SCHEDULE_TIMEOUT,
3552                                    NULL);
3553         if (ret)
3554                 return ret;
3555
3556         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3557                 return 0;
3558
3559         /* Flush and acquire obj->pages so that we are coherent through
3560          * direct access in memory with previous cached writes through
3561          * shmemfs and that our cache domain tracking remains valid.
3562          * For example, if the obj->filp was moved to swap without us
3563          * being notified and releasing the pages, we would mistakenly
3564          * continue to assume that the obj remained out of the CPU cached
3565          * domain.
3566          */
3567         ret = i915_gem_object_pin_pages(obj);
3568         if (ret)
3569                 return ret;
3570
3571         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3572
3573         /* Serialise direct access to this object with the barriers for
3574          * coherent writes from the GPU, by effectively invalidating the
3575          * GTT domain upon first access.
3576          */
3577         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3578                 mb();
3579
3580         /* It should now be out of any other write domains, and we can update
3581          * the domain values for our changes.
3582          */
3583         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3584         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3585         if (write) {
3586                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3587                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3588                 obj->mm.dirty = true;
3589         }
3590
3591         i915_gem_object_unpin_pages(obj);
3592         return 0;
3593 }
3594
3595 /**
3596  * Changes the cache-level of an object across all VMA.
3597  * @obj: object to act on
3598  * @cache_level: new cache level to set for the object
3599  *
3600  * After this function returns, the object will be in the new cache-level
3601  * across all GTT and the contents of the backing storage will be coherent,
3602  * with respect to the new cache-level. In order to keep the backing storage
3603  * coherent for all users, we only allow a single cache level to be set
3604  * globally on the object and prevent it from being changed whilst the
3605  * hardware is reading from the object. That is if the object is currently
3606  * on the scanout it will be set to uncached (or equivalent display
3607  * cache coherency) and all non-MOCS GPU access will also be uncached so
3608  * that all direct access to the scanout remains coherent.
3609  */
3610 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3611                                     enum i915_cache_level cache_level)
3612 {
3613         struct i915_vma *vma;
3614         int ret;
3615
3616         lockdep_assert_held(&obj->base.dev->struct_mutex);
3617
3618         if (obj->cache_level == cache_level)
3619                 return 0;
3620
3621         /* Inspect the list of currently bound VMA and unbind any that would
3622          * be invalid given the new cache-level. This is principally to
3623          * catch the issue of the CS prefetch crossing page boundaries and
3624          * reading an invalid PTE on older architectures.
3625          */
3626 restart:
3627         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3628                 if (!drm_mm_node_allocated(&vma->node))
3629                         continue;
3630
3631                 if (i915_vma_is_pinned(vma)) {
3632                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3633                         return -EBUSY;
3634                 }
3635
3636                 if (i915_gem_valid_gtt_space(vma, cache_level))
3637                         continue;
3638
3639                 ret = i915_vma_unbind(vma);
3640                 if (ret)
3641                         return ret;
3642
3643                 /* As unbinding may affect other elements in the
3644                  * obj->vma_list (due to side-effects from retiring
3645                  * an active vma), play safe and restart the iterator.
3646                  */
3647                 goto restart;
3648         }
3649
3650         /* We can reuse the existing drm_mm nodes but need to change the
3651          * cache-level on the PTE. We could simply unbind them all and
3652          * rebind with the correct cache-level on next use. However since
3653          * we already have a valid slot, dma mapping, pages etc, we may as
3654          * rewrite the PTE in the belief that doing so tramples upon less
3655          * state and so involves less work.
3656          */
3657         if (obj->bind_count) {
3658                 /* Before we change the PTE, the GPU must not be accessing it.
3659                  * If we wait upon the object, we know that all the bound
3660                  * VMA are no longer active.
3661                  */
3662                 ret = i915_gem_object_wait(obj,
3663                                            I915_WAIT_INTERRUPTIBLE |
3664                                            I915_WAIT_LOCKED |
3665                                            I915_WAIT_ALL,
3666                                            MAX_SCHEDULE_TIMEOUT,
3667                                            NULL);
3668                 if (ret)
3669                         return ret;
3670
3671                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3672                     cache_level != I915_CACHE_NONE) {
3673                         /* Access to snoopable pages through the GTT is
3674                          * incoherent and on some machines causes a hard
3675                          * lockup. Relinquish the CPU mmaping to force
3676                          * userspace to refault in the pages and we can
3677                          * then double check if the GTT mapping is still
3678                          * valid for that pointer access.
3679                          */
3680                         i915_gem_release_mmap(obj);
3681
3682                         /* As we no longer need a fence for GTT access,
3683                          * we can relinquish it now (and so prevent having
3684                          * to steal a fence from someone else on the next
3685                          * fence request). Note GPU activity would have
3686                          * dropped the fence as all snoopable access is
3687                          * supposed to be linear.
3688                          */
3689                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3690                                 ret = i915_vma_put_fence(vma);
3691                                 if (ret)
3692                                         return ret;
3693                         }
3694                 } else {
3695                         /* We either have incoherent backing store and
3696                          * so no GTT access or the architecture is fully
3697                          * coherent. In such cases, existing GTT mmaps
3698                          * ignore the cache bit in the PTE and we can
3699                          * rewrite it without confusing the GPU or having
3700                          * to force userspace to fault back in its mmaps.
3701                          */
3702                 }
3703
3704                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3705                         if (!drm_mm_node_allocated(&vma->node))
3706                                 continue;
3707
3708                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3709                         if (ret)
3710                                 return ret;
3711                 }
3712         }
3713
3714         list_for_each_entry(vma, &obj->vma_list, obj_link)
3715                 vma->node.color = cache_level;
3716         obj->cache_level = cache_level;
3717         obj->cache_coherent = i915_gem_object_is_coherent(obj);
3718         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3719
3720         return 0;
3721 }
3722
3723 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3724                                struct drm_file *file)
3725 {
3726         struct drm_i915_gem_caching *args = data;
3727         struct drm_i915_gem_object *obj;
3728         int err = 0;
3729
3730         rcu_read_lock();
3731         obj = i915_gem_object_lookup_rcu(file, args->handle);
3732         if (!obj) {
3733                 err = -ENOENT;
3734                 goto out;
3735         }
3736
3737         switch (obj->cache_level) {
3738         case I915_CACHE_LLC:
3739         case I915_CACHE_L3_LLC:
3740                 args->caching = I915_CACHING_CACHED;
3741                 break;
3742
3743         case I915_CACHE_WT:
3744                 args->caching = I915_CACHING_DISPLAY;
3745                 break;
3746
3747         default:
3748                 args->caching = I915_CACHING_NONE;
3749                 break;
3750         }
3751 out:
3752         rcu_read_unlock();
3753         return err;
3754 }
3755
3756 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3757                                struct drm_file *file)
3758 {
3759         struct drm_i915_private *i915 = to_i915(dev);
3760         struct drm_i915_gem_caching *args = data;
3761         struct drm_i915_gem_object *obj;
3762         enum i915_cache_level level;
3763         int ret = 0;
3764
3765         switch (args->caching) {
3766         case I915_CACHING_NONE:
3767                 level = I915_CACHE_NONE;
3768                 break;
3769         case I915_CACHING_CACHED:
3770                 /*
3771                  * Due to a HW issue on BXT A stepping, GPU stores via a
3772                  * snooped mapping may leave stale data in a corresponding CPU
3773                  * cacheline, whereas normally such cachelines would get
3774                  * invalidated.
3775                  */
3776                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3777                         return -ENODEV;
3778
3779                 level = I915_CACHE_LLC;
3780                 break;
3781         case I915_CACHING_DISPLAY:
3782                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3783                 break;
3784         default:
3785                 return -EINVAL;
3786         }
3787
3788         obj = i915_gem_object_lookup(file, args->handle);
3789         if (!obj)
3790                 return -ENOENT;
3791
3792         if (obj->cache_level == level)
3793                 goto out;
3794
3795         ret = i915_gem_object_wait(obj,
3796                                    I915_WAIT_INTERRUPTIBLE,
3797                                    MAX_SCHEDULE_TIMEOUT,
3798                                    to_rps_client(file));
3799         if (ret)
3800                 goto out;
3801
3802         ret = i915_mutex_lock_interruptible(dev);
3803         if (ret)
3804                 goto out;
3805
3806         ret = i915_gem_object_set_cache_level(obj, level);
3807         mutex_unlock(&dev->struct_mutex);
3808
3809 out:
3810         i915_gem_object_put(obj);
3811         return ret;
3812 }
3813
3814 /*
3815  * Prepare buffer for display plane (scanout, cursors, etc).
3816  * Can be called from an uninterruptible phase (modesetting) and allows
3817  * any flushes to be pipelined (for pageflips).
3818  */
3819 struct i915_vma *
3820 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3821                                      u32 alignment,
3822                                      const struct i915_ggtt_view *view)
3823 {
3824         struct i915_vma *vma;
3825         int ret;
3826
3827         lockdep_assert_held(&obj->base.dev->struct_mutex);
3828
3829         /* Mark the pin_display early so that we account for the
3830          * display coherency whilst setting up the cache domains.
3831          */
3832         obj->pin_display++;
3833
3834         /* The display engine is not coherent with the LLC cache on gen6.  As
3835          * a result, we make sure that the pinning that is about to occur is
3836          * done with uncached PTEs. This is lowest common denominator for all
3837          * chipsets.
3838          *
3839          * However for gen6+, we could do better by using the GFDT bit instead
3840          * of uncaching, which would allow us to flush all the LLC-cached data
3841          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3842          */
3843         ret = i915_gem_object_set_cache_level(obj,
3844                                               HAS_WT(to_i915(obj->base.dev)) ?
3845                                               I915_CACHE_WT : I915_CACHE_NONE);
3846         if (ret) {
3847                 vma = ERR_PTR(ret);
3848                 goto err_unpin_display;
3849         }
3850
3851         /* As the user may map the buffer once pinned in the display plane
3852          * (e.g. libkms for the bootup splash), we have to ensure that we
3853          * always use map_and_fenceable for all scanout buffers. However,
3854          * it may simply be too big to fit into mappable, in which case
3855          * put it anyway and hope that userspace can cope (but always first
3856          * try to preserve the existing ABI).
3857          */
3858         vma = ERR_PTR(-ENOSPC);
3859         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3860                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3861                                                PIN_MAPPABLE | PIN_NONBLOCK);
3862         if (IS_ERR(vma)) {
3863                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3864                 unsigned int flags;
3865
3866                 /* Valleyview is definitely limited to scanning out the first
3867                  * 512MiB. Lets presume this behaviour was inherited from the
3868                  * g4x display engine and that all earlier gen are similarly
3869                  * limited. Testing suggests that it is a little more
3870                  * complicated than this. For example, Cherryview appears quite
3871                  * happy to scanout from anywhere within its global aperture.
3872                  */
3873                 flags = 0;
3874                 if (HAS_GMCH_DISPLAY(i915))
3875                         flags = PIN_MAPPABLE;
3876                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3877         }
3878         if (IS_ERR(vma))
3879                 goto err_unpin_display;
3880
3881         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3882
3883         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3884         __i915_gem_object_flush_for_display(obj);
3885         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3886
3887         /* It should now be out of any other write domains, and we can update
3888          * the domain values for our changes.
3889          */
3890         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3891
3892         return vma;
3893
3894 err_unpin_display:
3895         obj->pin_display--;
3896         return vma;
3897 }
3898
3899 void
3900 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3901 {
3902         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3903
3904         if (WARN_ON(vma->obj->pin_display == 0))
3905                 return;
3906
3907         if (--vma->obj->pin_display == 0)
3908                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3909
3910         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3911         i915_gem_object_bump_inactive_ggtt(vma->obj);
3912
3913         i915_vma_unpin(vma);
3914 }
3915
3916 /**
3917  * Moves a single object to the CPU read, and possibly write domain.
3918  * @obj: object to act on
3919  * @write: requesting write or read-only access
3920  *
3921  * This function returns when the move is complete, including waiting on
3922  * flushes to occur.
3923  */
3924 int
3925 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3926 {
3927         int ret;
3928
3929         lockdep_assert_held(&obj->base.dev->struct_mutex);
3930
3931         ret = i915_gem_object_wait(obj,
3932                                    I915_WAIT_INTERRUPTIBLE |
3933                                    I915_WAIT_LOCKED |
3934                                    (write ? I915_WAIT_ALL : 0),
3935                                    MAX_SCHEDULE_TIMEOUT,
3936                                    NULL);
3937         if (ret)
3938                 return ret;
3939
3940         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3941
3942         /* Flush the CPU cache if it's still invalid. */
3943         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3944                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3945                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3946         }
3947
3948         /* It should now be out of any other write domains, and we can update
3949          * the domain values for our changes.
3950          */
3951         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3952
3953         /* If we're writing through the CPU, then the GPU read domains will
3954          * need to be invalidated at next use.
3955          */
3956         if (write)
3957                 __start_cpu_write(obj);
3958
3959         return 0;
3960 }
3961
3962 /* Throttle our rendering by waiting until the ring has completed our requests
3963  * emitted over 20 msec ago.
3964  *
3965  * Note that if we were to use the current jiffies each time around the loop,
3966  * we wouldn't escape the function with any frames outstanding if the time to
3967  * render a frame was over 20ms.
3968  *
3969  * This should get us reasonable parallelism between CPU and GPU but also
3970  * relatively low latency when blocking on a particular request to finish.
3971  */
3972 static int
3973 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3974 {
3975         struct drm_i915_private *dev_priv = to_i915(dev);
3976         struct drm_i915_file_private *file_priv = file->driver_priv;
3977         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3978         struct drm_i915_gem_request *request, *target = NULL;
3979         long ret;
3980
3981         /* ABI: return -EIO if already wedged */
3982         if (i915_terminally_wedged(&dev_priv->gpu_error))
3983                 return -EIO;
3984
3985         spin_lock(&file_priv->mm.lock);
3986         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3987                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3988                         break;
3989
3990                 if (target) {
3991                         list_del(&target->client_link);
3992                         target->file_priv = NULL;
3993                 }
3994
3995                 target = request;
3996         }
3997         if (target)
3998                 i915_gem_request_get(target);
3999         spin_unlock(&file_priv->mm.lock);
4000
4001         if (target == NULL)
4002                 return 0;
4003
4004         ret = i915_wait_request(target,
4005                                 I915_WAIT_INTERRUPTIBLE,
4006                                 MAX_SCHEDULE_TIMEOUT);
4007         i915_gem_request_put(target);
4008
4009         return ret < 0 ? ret : 0;
4010 }
4011
4012 struct i915_vma *
4013 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4014                          const struct i915_ggtt_view *view,
4015                          u64 size,
4016                          u64 alignment,
4017                          u64 flags)
4018 {
4019         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4020         struct i915_address_space *vm = &dev_priv->ggtt.base;
4021         struct i915_vma *vma;
4022         int ret;
4023
4024         lockdep_assert_held(&obj->base.dev->struct_mutex);
4025
4026         vma = i915_vma_instance(obj, vm, view);
4027         if (unlikely(IS_ERR(vma)))
4028                 return vma;
4029
4030         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4031                 if (flags & PIN_NONBLOCK &&
4032                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4033                         return ERR_PTR(-ENOSPC);
4034
4035                 if (flags & PIN_MAPPABLE) {
4036                         /* If the required space is larger than the available
4037                          * aperture, we will not able to find a slot for the
4038                          * object and unbinding the object now will be in
4039                          * vain. Worse, doing so may cause us to ping-pong
4040                          * the object in and out of the Global GTT and
4041                          * waste a lot of cycles under the mutex.
4042                          */
4043                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4044                                 return ERR_PTR(-E2BIG);
4045
4046                         /* If NONBLOCK is set the caller is optimistically
4047                          * trying to cache the full object within the mappable
4048                          * aperture, and *must* have a fallback in place for
4049                          * situations where we cannot bind the object. We
4050                          * can be a little more lax here and use the fallback
4051                          * more often to avoid costly migrations of ourselves
4052                          * and other objects within the aperture.
4053                          *
4054                          * Half-the-aperture is used as a simple heuristic.
4055                          * More interesting would to do search for a free
4056                          * block prior to making the commitment to unbind.
4057                          * That caters for the self-harm case, and with a
4058                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4059                          * we could try to minimise harm to others.
4060                          */
4061                         if (flags & PIN_NONBLOCK &&
4062                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4063                                 return ERR_PTR(-ENOSPC);
4064                 }
4065
4066                 WARN(i915_vma_is_pinned(vma),
4067                      "bo is already pinned in ggtt with incorrect alignment:"
4068                      " offset=%08x, req.alignment=%llx,"
4069                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4070                      i915_ggtt_offset(vma), alignment,
4071                      !!(flags & PIN_MAPPABLE),
4072                      i915_vma_is_map_and_fenceable(vma));
4073                 ret = i915_vma_unbind(vma);
4074                 if (ret)
4075                         return ERR_PTR(ret);
4076         }
4077
4078         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4079         if (ret)
4080                 return ERR_PTR(ret);
4081
4082         return vma;
4083 }
4084
4085 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4086 {
4087         /* Note that we could alias engines in the execbuf API, but
4088          * that would be very unwise as it prevents userspace from
4089          * fine control over engine selection. Ahem.
4090          *
4091          * This should be something like EXEC_MAX_ENGINE instead of
4092          * I915_NUM_ENGINES.
4093          */
4094         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4095         return 0x10000 << id;
4096 }
4097
4098 static __always_inline unsigned int __busy_write_id(unsigned int id)
4099 {
4100         /* The uABI guarantees an active writer is also amongst the read
4101          * engines. This would be true if we accessed the activity tracking
4102          * under the lock, but as we perform the lookup of the object and
4103          * its activity locklessly we can not guarantee that the last_write
4104          * being active implies that we have set the same engine flag from
4105          * last_read - hence we always set both read and write busy for
4106          * last_write.
4107          */
4108         return id | __busy_read_flag(id);
4109 }
4110
4111 static __always_inline unsigned int
4112 __busy_set_if_active(const struct dma_fence *fence,
4113                      unsigned int (*flag)(unsigned int id))
4114 {
4115         struct drm_i915_gem_request *rq;
4116
4117         /* We have to check the current hw status of the fence as the uABI
4118          * guarantees forward progress. We could rely on the idle worker
4119          * to eventually flush us, but to minimise latency just ask the
4120          * hardware.
4121          *
4122          * Note we only report on the status of native fences.
4123          */
4124         if (!dma_fence_is_i915(fence))
4125                 return 0;
4126
4127         /* opencode to_request() in order to avoid const warnings */
4128         rq = container_of(fence, struct drm_i915_gem_request, fence);
4129         if (i915_gem_request_completed(rq))
4130                 return 0;
4131
4132         return flag(rq->engine->uabi_id);
4133 }
4134
4135 static __always_inline unsigned int
4136 busy_check_reader(const struct dma_fence *fence)
4137 {
4138         return __busy_set_if_active(fence, __busy_read_flag);
4139 }
4140
4141 static __always_inline unsigned int
4142 busy_check_writer(const struct dma_fence *fence)
4143 {
4144         if (!fence)
4145                 return 0;
4146
4147         return __busy_set_if_active(fence, __busy_write_id);
4148 }
4149
4150 int
4151 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4152                     struct drm_file *file)
4153 {
4154         struct drm_i915_gem_busy *args = data;
4155         struct drm_i915_gem_object *obj;
4156         struct reservation_object_list *list;
4157         unsigned int seq;
4158         int err;
4159
4160         err = -ENOENT;
4161         rcu_read_lock();
4162         obj = i915_gem_object_lookup_rcu(file, args->handle);
4163         if (!obj)
4164                 goto out;
4165
4166         /* A discrepancy here is that we do not report the status of
4167          * non-i915 fences, i.e. even though we may report the object as idle,
4168          * a call to set-domain may still stall waiting for foreign rendering.
4169          * This also means that wait-ioctl may report an object as busy,
4170          * where busy-ioctl considers it idle.
4171          *
4172          * We trade the ability to warn of foreign fences to report on which
4173          * i915 engines are active for the object.
4174          *
4175          * Alternatively, we can trade that extra information on read/write
4176          * activity with
4177          *      args->busy =
4178          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4179          * to report the overall busyness. This is what the wait-ioctl does.
4180          *
4181          */
4182 retry:
4183         seq = raw_read_seqcount(&obj->resv->seq);
4184
4185         /* Translate the exclusive fence to the READ *and* WRITE engine */
4186         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4187
4188         /* Translate shared fences to READ set of engines */
4189         list = rcu_dereference(obj->resv->fence);
4190         if (list) {
4191                 unsigned int shared_count = list->shared_count, i;
4192
4193                 for (i = 0; i < shared_count; ++i) {
4194                         struct dma_fence *fence =
4195                                 rcu_dereference(list->shared[i]);
4196
4197                         args->busy |= busy_check_reader(fence);
4198                 }
4199         }
4200
4201         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4202                 goto retry;
4203
4204         err = 0;
4205 out:
4206         rcu_read_unlock();
4207         return err;
4208 }
4209
4210 int
4211 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4212                         struct drm_file *file_priv)
4213 {
4214         return i915_gem_ring_throttle(dev, file_priv);
4215 }
4216
4217 int
4218 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4219                        struct drm_file *file_priv)
4220 {
4221         struct drm_i915_private *dev_priv = to_i915(dev);
4222         struct drm_i915_gem_madvise *args = data;
4223         struct drm_i915_gem_object *obj;
4224         int err;
4225
4226         switch (args->madv) {
4227         case I915_MADV_DONTNEED:
4228         case I915_MADV_WILLNEED:
4229             break;
4230         default:
4231             return -EINVAL;
4232         }
4233
4234         obj = i915_gem_object_lookup(file_priv, args->handle);
4235         if (!obj)
4236                 return -ENOENT;
4237
4238         err = mutex_lock_interruptible(&obj->mm.lock);
4239         if (err)
4240                 goto out;
4241
4242         if (obj->mm.pages &&
4243             i915_gem_object_is_tiled(obj) &&
4244             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4245                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4246                         GEM_BUG_ON(!obj->mm.quirked);
4247                         __i915_gem_object_unpin_pages(obj);
4248                         obj->mm.quirked = false;
4249                 }
4250                 if (args->madv == I915_MADV_WILLNEED) {
4251                         GEM_BUG_ON(obj->mm.quirked);
4252                         __i915_gem_object_pin_pages(obj);
4253                         obj->mm.quirked = true;
4254                 }
4255         }
4256
4257         if (obj->mm.madv != __I915_MADV_PURGED)
4258                 obj->mm.madv = args->madv;
4259
4260         /* if the object is no longer attached, discard its backing storage */
4261         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4262                 i915_gem_object_truncate(obj);
4263
4264         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4265         mutex_unlock(&obj->mm.lock);
4266
4267 out:
4268         i915_gem_object_put(obj);
4269         return err;
4270 }
4271
4272 static void
4273 frontbuffer_retire(struct i915_gem_active *active,
4274                    struct drm_i915_gem_request *request)
4275 {
4276         struct drm_i915_gem_object *obj =
4277                 container_of(active, typeof(*obj), frontbuffer_write);
4278
4279         intel_fb_obj_flush(obj, ORIGIN_CS);
4280 }
4281
4282 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4283                           const struct drm_i915_gem_object_ops *ops)
4284 {
4285         mutex_init(&obj->mm.lock);
4286
4287         INIT_LIST_HEAD(&obj->global_link);
4288         INIT_LIST_HEAD(&obj->userfault_link);
4289         INIT_LIST_HEAD(&obj->vma_list);
4290         INIT_LIST_HEAD(&obj->batch_pool_link);
4291
4292         obj->ops = ops;
4293
4294         reservation_object_init(&obj->__builtin_resv);
4295         obj->resv = &obj->__builtin_resv;
4296
4297         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4298         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4299
4300         obj->mm.madv = I915_MADV_WILLNEED;
4301         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4302         mutex_init(&obj->mm.get_page.lock);
4303
4304         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4305 }
4306
4307 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4308         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4309                  I915_GEM_OBJECT_IS_SHRINKABLE,
4310
4311         .get_pages = i915_gem_object_get_pages_gtt,
4312         .put_pages = i915_gem_object_put_pages_gtt,
4313
4314         .pwrite = i915_gem_object_pwrite_gtt,
4315 };
4316
4317 struct drm_i915_gem_object *
4318 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4319 {
4320         struct drm_i915_gem_object *obj;
4321         struct address_space *mapping;
4322         gfp_t mask;
4323         int ret;
4324
4325         /* There is a prevalence of the assumption that we fit the object's
4326          * page count inside a 32bit _signed_ variable. Let's document this and
4327          * catch if we ever need to fix it. In the meantime, if you do spot
4328          * such a local variable, please consider fixing!
4329          */
4330         if (size >> PAGE_SHIFT > INT_MAX)
4331                 return ERR_PTR(-E2BIG);
4332
4333         if (overflows_type(size, obj->base.size))
4334                 return ERR_PTR(-E2BIG);
4335
4336         obj = i915_gem_object_alloc(dev_priv);
4337         if (obj == NULL)
4338                 return ERR_PTR(-ENOMEM);
4339
4340         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4341         if (ret)
4342                 goto fail;
4343
4344         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4346                 /* 965gm cannot relocate objects above 4GiB. */
4347                 mask &= ~__GFP_HIGHMEM;
4348                 mask |= __GFP_DMA32;
4349         }
4350
4351         mapping = obj->base.filp->f_mapping;
4352         mapping_set_gfp_mask(mapping, mask);
4353         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4354
4355         i915_gem_object_init(obj, &i915_gem_object_ops);
4356
4357         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4358         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4359
4360         if (HAS_LLC(dev_priv)) {
4361                 /* On some devices, we can have the GPU use the LLC (the CPU
4362                  * cache) for about a 10% performance improvement
4363                  * compared to uncached.  Graphics requests other than
4364                  * display scanout are coherent with the CPU in
4365                  * accessing this cache.  This means in this mode we
4366                  * don't need to clflush on the CPU side, and on the
4367                  * GPU side we only need to flush internal caches to
4368                  * get data visible to the CPU.
4369                  *
4370                  * However, we maintain the display planes as UC, and so
4371                  * need to rebind when first used as such.
4372                  */
4373                 obj->cache_level = I915_CACHE_LLC;
4374         } else
4375                 obj->cache_level = I915_CACHE_NONE;
4376
4377         obj->cache_coherent = i915_gem_object_is_coherent(obj);
4378         obj->cache_dirty = !obj->cache_coherent;
4379
4380         trace_i915_gem_object_create(obj);
4381
4382         return obj;
4383
4384 fail:
4385         i915_gem_object_free(obj);
4386         return ERR_PTR(ret);
4387 }
4388
4389 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4390 {
4391         /* If we are the last user of the backing storage (be it shmemfs
4392          * pages or stolen etc), we know that the pages are going to be
4393          * immediately released. In this case, we can then skip copying
4394          * back the contents from the GPU.
4395          */
4396
4397         if (obj->mm.madv != I915_MADV_WILLNEED)
4398                 return false;
4399
4400         if (obj->base.filp == NULL)
4401                 return true;
4402
4403         /* At first glance, this looks racy, but then again so would be
4404          * userspace racing mmap against close. However, the first external
4405          * reference to the filp can only be obtained through the
4406          * i915_gem_mmap_ioctl() which safeguards us against the user
4407          * acquiring such a reference whilst we are in the middle of
4408          * freeing the object.
4409          */
4410         return atomic_long_read(&obj->base.filp->f_count) == 1;
4411 }
4412
4413 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4414                                     struct llist_node *freed)
4415 {
4416         struct drm_i915_gem_object *obj, *on;
4417
4418         mutex_lock(&i915->drm.struct_mutex);
4419         intel_runtime_pm_get(i915);
4420         llist_for_each_entry(obj, freed, freed) {
4421                 struct i915_vma *vma, *vn;
4422
4423                 trace_i915_gem_object_destroy(obj);
4424
4425                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4426                 list_for_each_entry_safe(vma, vn,
4427                                          &obj->vma_list, obj_link) {
4428                         GEM_BUG_ON(i915_vma_is_active(vma));
4429                         vma->flags &= ~I915_VMA_PIN_MASK;
4430                         i915_vma_close(vma);
4431                 }
4432                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4433                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4434
4435                 list_del(&obj->global_link);
4436         }
4437         intel_runtime_pm_put(i915);
4438         mutex_unlock(&i915->drm.struct_mutex);
4439
4440         cond_resched();
4441
4442         llist_for_each_entry_safe(obj, on, freed, freed) {
4443                 GEM_BUG_ON(obj->bind_count);
4444                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4445
4446                 if (obj->ops->release)
4447                         obj->ops->release(obj);
4448
4449                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4450                         atomic_set(&obj->mm.pages_pin_count, 0);
4451                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4452                 GEM_BUG_ON(obj->mm.pages);
4453
4454                 if (obj->base.import_attach)
4455                         drm_prime_gem_destroy(&obj->base, NULL);
4456
4457                 reservation_object_fini(&obj->__builtin_resv);
4458                 drm_gem_object_release(&obj->base);
4459                 i915_gem_info_remove_obj(i915, obj->base.size);
4460
4461                 kfree(obj->bit_17);
4462                 i915_gem_object_free(obj);
4463         }
4464 }
4465
4466 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4467 {
4468         struct llist_node *freed;
4469
4470         freed = llist_del_all(&i915->mm.free_list);
4471         if (unlikely(freed))
4472                 __i915_gem_free_objects(i915, freed);
4473 }
4474
4475 static void __i915_gem_free_work(struct work_struct *work)
4476 {
4477         struct drm_i915_private *i915 =
4478                 container_of(work, struct drm_i915_private, mm.free_work);
4479         struct llist_node *freed;
4480
4481         /* All file-owned VMA should have been released by this point through
4482          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4483          * However, the object may also be bound into the global GTT (e.g.
4484          * older GPUs without per-process support, or for direct access through
4485          * the GTT either for the user or for scanout). Those VMA still need to
4486          * unbound now.
4487          */
4488
4489         while ((freed = llist_del_all(&i915->mm.free_list))) {
4490                 __i915_gem_free_objects(i915, freed);
4491                 if (need_resched())
4492                         break;
4493         }
4494 }
4495
4496 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4497 {
4498         struct drm_i915_gem_object *obj =
4499                 container_of(head, typeof(*obj), rcu);
4500         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4501
4502         /* We can't simply use call_rcu() from i915_gem_free_object()
4503          * as we need to block whilst unbinding, and the call_rcu
4504          * task may be called from softirq context. So we take a
4505          * detour through a worker.
4506          */
4507         if (llist_add(&obj->freed, &i915->mm.free_list))
4508                 schedule_work(&i915->mm.free_work);
4509 }
4510
4511 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4512 {
4513         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4514
4515         if (obj->mm.quirked)
4516                 __i915_gem_object_unpin_pages(obj);
4517
4518         if (discard_backing_storage(obj))
4519                 obj->mm.madv = I915_MADV_DONTNEED;
4520
4521         /* Before we free the object, make sure any pure RCU-only
4522          * read-side critical sections are complete, e.g.
4523          * i915_gem_busy_ioctl(). For the corresponding synchronized
4524          * lookup see i915_gem_object_lookup_rcu().
4525          */
4526         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4527 }
4528
4529 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4530 {
4531         lockdep_assert_held(&obj->base.dev->struct_mutex);
4532
4533         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4534         if (i915_gem_object_is_active(obj))
4535                 i915_gem_object_set_active_reference(obj);
4536         else
4537                 i915_gem_object_put(obj);
4538 }
4539
4540 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4541 {
4542         struct intel_engine_cs *engine;
4543         enum intel_engine_id id;
4544
4545         for_each_engine(engine, dev_priv, id)
4546                 GEM_BUG_ON(engine->last_retired_context &&
4547                            !i915_gem_context_is_kernel(engine->last_retired_context));
4548 }
4549
4550 void i915_gem_sanitize(struct drm_i915_private *i915)
4551 {
4552         /*
4553          * If we inherit context state from the BIOS or earlier occupants
4554          * of the GPU, the GPU may be in an inconsistent state when we
4555          * try to take over. The only way to remove the earlier state
4556          * is by resetting. However, resetting on earlier gen is tricky as
4557          * it may impact the display and we are uncertain about the stability
4558          * of the reset, so this could be applied to even earlier gen.
4559          */
4560         if (INTEL_GEN(i915) >= 5) {
4561                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4562                 WARN_ON(reset && reset != -ENODEV);
4563         }
4564 }
4565
4566 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4567 {
4568         struct drm_device *dev = &dev_priv->drm;
4569         int ret;
4570
4571         intel_runtime_pm_get(dev_priv);
4572         intel_suspend_gt_powersave(dev_priv);
4573
4574         mutex_lock(&dev->struct_mutex);
4575
4576         /* We have to flush all the executing contexts to main memory so
4577          * that they can saved in the hibernation image. To ensure the last
4578          * context image is coherent, we have to switch away from it. That
4579          * leaves the dev_priv->kernel_context still active when
4580          * we actually suspend, and its image in memory may not match the GPU
4581          * state. Fortunately, the kernel_context is disposable and we do
4582          * not rely on its state.
4583          */
4584         ret = i915_gem_switch_to_kernel_context(dev_priv);
4585         if (ret)
4586                 goto err_unlock;
4587
4588         ret = i915_gem_wait_for_idle(dev_priv,
4589                                      I915_WAIT_INTERRUPTIBLE |
4590                                      I915_WAIT_LOCKED);
4591         if (ret)
4592                 goto err_unlock;
4593
4594         assert_kernel_context_is_current(dev_priv);
4595         i915_gem_contexts_lost(dev_priv);
4596         mutex_unlock(&dev->struct_mutex);
4597
4598         intel_guc_suspend(dev_priv);
4599
4600         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4601         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4602
4603         /* As the idle_work is rearming if it detects a race, play safe and
4604          * repeat the flush until it is definitely idle.
4605          */
4606         while (flush_delayed_work(&dev_priv->gt.idle_work))
4607                 ;
4608
4609         /* Assert that we sucessfully flushed all the work and
4610          * reset the GPU back to its idle, low power state.
4611          */
4612         WARN_ON(dev_priv->gt.awake);
4613         WARN_ON(!intel_engines_are_idle(dev_priv));
4614
4615         /*
4616          * Neither the BIOS, ourselves or any other kernel
4617          * expects the system to be in execlists mode on startup,
4618          * so we need to reset the GPU back to legacy mode. And the only
4619          * known way to disable logical contexts is through a GPU reset.
4620          *
4621          * So in order to leave the system in a known default configuration,
4622          * always reset the GPU upon unload and suspend. Afterwards we then
4623          * clean up the GEM state tracking, flushing off the requests and
4624          * leaving the system in a known idle state.
4625          *
4626          * Note that is of the upmost importance that the GPU is idle and
4627          * all stray writes are flushed *before* we dismantle the backing
4628          * storage for the pinned objects.
4629          *
4630          * However, since we are uncertain that resetting the GPU on older
4631          * machines is a good idea, we don't - just in case it leaves the
4632          * machine in an unusable condition.
4633          */
4634         i915_gem_sanitize(dev_priv);
4635         goto out_rpm_put;
4636
4637 err_unlock:
4638         mutex_unlock(&dev->struct_mutex);
4639 out_rpm_put:
4640         intel_runtime_pm_put(dev_priv);
4641         return ret;
4642 }
4643
4644 void i915_gem_resume(struct drm_i915_private *dev_priv)
4645 {
4646         struct drm_device *dev = &dev_priv->drm;
4647
4648         WARN_ON(dev_priv->gt.awake);
4649
4650         mutex_lock(&dev->struct_mutex);
4651         i915_gem_restore_gtt_mappings(dev_priv);
4652
4653         /* As we didn't flush the kernel context before suspend, we cannot
4654          * guarantee that the context image is complete. So let's just reset
4655          * it and start again.
4656          */
4657         dev_priv->gt.resume(dev_priv);
4658
4659         mutex_unlock(&dev->struct_mutex);
4660 }
4661
4662 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4663 {
4664         if (INTEL_GEN(dev_priv) < 5 ||
4665             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4666                 return;
4667
4668         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4669                                  DISP_TILE_SURFACE_SWIZZLING);
4670
4671         if (IS_GEN5(dev_priv))
4672                 return;
4673
4674         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4675         if (IS_GEN6(dev_priv))
4676                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4677         else if (IS_GEN7(dev_priv))
4678                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4679         else if (IS_GEN8(dev_priv))
4680                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4681         else
4682                 BUG();
4683 }
4684
4685 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4686 {
4687         I915_WRITE(RING_CTL(base), 0);
4688         I915_WRITE(RING_HEAD(base), 0);
4689         I915_WRITE(RING_TAIL(base), 0);
4690         I915_WRITE(RING_START(base), 0);
4691 }
4692
4693 static void init_unused_rings(struct drm_i915_private *dev_priv)
4694 {
4695         if (IS_I830(dev_priv)) {
4696                 init_unused_ring(dev_priv, PRB1_BASE);
4697                 init_unused_ring(dev_priv, SRB0_BASE);
4698                 init_unused_ring(dev_priv, SRB1_BASE);
4699                 init_unused_ring(dev_priv, SRB2_BASE);
4700                 init_unused_ring(dev_priv, SRB3_BASE);
4701         } else if (IS_GEN2(dev_priv)) {
4702                 init_unused_ring(dev_priv, SRB0_BASE);
4703                 init_unused_ring(dev_priv, SRB1_BASE);
4704         } else if (IS_GEN3(dev_priv)) {
4705                 init_unused_ring(dev_priv, PRB1_BASE);
4706                 init_unused_ring(dev_priv, PRB2_BASE);
4707         }
4708 }
4709
4710 static int __i915_gem_restart_engines(void *data)
4711 {
4712         struct drm_i915_private *i915 = data;
4713         struct intel_engine_cs *engine;
4714         enum intel_engine_id id;
4715         int err;
4716
4717         for_each_engine(engine, i915, id) {
4718                 err = engine->init_hw(engine);
4719                 if (err)
4720                         return err;
4721         }
4722
4723         return 0;
4724 }
4725
4726 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4727 {
4728         int ret;
4729
4730         dev_priv->gt.last_init_time = ktime_get();
4731
4732         /* Double layer security blanket, see i915_gem_init() */
4733         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4734
4735         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4736                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4737
4738         if (IS_HASWELL(dev_priv))
4739                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4740                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4741
4742         if (HAS_PCH_NOP(dev_priv)) {
4743                 if (IS_IVYBRIDGE(dev_priv)) {
4744                         u32 temp = I915_READ(GEN7_MSG_CTL);
4745                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4746                         I915_WRITE(GEN7_MSG_CTL, temp);
4747                 } else if (INTEL_GEN(dev_priv) >= 7) {
4748                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4749                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4750                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4751                 }
4752         }
4753
4754         i915_gem_init_swizzling(dev_priv);
4755
4756         /*
4757          * At least 830 can leave some of the unused rings
4758          * "active" (ie. head != tail) after resume which
4759          * will prevent c3 entry. Makes sure all unused rings
4760          * are totally idle.
4761          */
4762         init_unused_rings(dev_priv);
4763
4764         BUG_ON(!dev_priv->kernel_context);
4765
4766         ret = i915_ppgtt_init_hw(dev_priv);
4767         if (ret) {
4768                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4769                 goto out;
4770         }
4771
4772         /* Need to do basic initialisation of all rings first: */
4773         ret = __i915_gem_restart_engines(dev_priv);
4774         if (ret)
4775                 goto out;
4776
4777         intel_mocs_init_l3cc_table(dev_priv);
4778
4779         /* We can't enable contexts until all firmware is loaded */
4780         ret = intel_uc_init_hw(dev_priv);
4781         if (ret)
4782                 goto out;
4783
4784 out:
4785         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4786         return ret;
4787 }
4788
4789 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4790 {
4791         if (INTEL_INFO(dev_priv)->gen < 6)
4792                 return false;
4793
4794         /* TODO: make semaphores and Execlists play nicely together */
4795         if (i915.enable_execlists)
4796                 return false;
4797
4798         if (value >= 0)
4799                 return value;
4800
4801         /* Enable semaphores on SNB when IO remapping is off */
4802         if (IS_GEN6(dev_priv) && intel_vtd_active())
4803                 return false;
4804
4805         return true;
4806 }
4807
4808 int i915_gem_init(struct drm_i915_private *dev_priv)
4809 {
4810         int ret;
4811
4812         mutex_lock(&dev_priv->drm.struct_mutex);
4813
4814         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4815
4816         if (!i915.enable_execlists) {
4817                 dev_priv->gt.resume = intel_legacy_submission_resume;
4818                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4819         } else {
4820                 dev_priv->gt.resume = intel_lr_context_resume;
4821                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4822         }
4823
4824         /* This is just a security blanket to placate dragons.
4825          * On some systems, we very sporadically observe that the first TLBs
4826          * used by the CS may be stale, despite us poking the TLB reset. If
4827          * we hold the forcewake during initialisation these problems
4828          * just magically go away.
4829          */
4830         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4831
4832         ret = i915_gem_init_userptr(dev_priv);
4833         if (ret)
4834                 goto out_unlock;
4835
4836         ret = i915_gem_init_ggtt(dev_priv);
4837         if (ret)
4838                 goto out_unlock;
4839
4840         ret = i915_gem_contexts_init(dev_priv);
4841         if (ret)
4842                 goto out_unlock;
4843
4844         ret = intel_engines_init(dev_priv);
4845         if (ret)
4846                 goto out_unlock;
4847
4848         ret = i915_gem_init_hw(dev_priv);
4849         if (ret == -EIO) {
4850                 /* Allow engine initialisation to fail by marking the GPU as
4851                  * wedged. But we only want to do this where the GPU is angry,
4852                  * for all other failure, such as an allocation failure, bail.
4853                  */
4854                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4855                 i915_gem_set_wedged(dev_priv);
4856                 ret = 0;
4857         }
4858
4859 out_unlock:
4860         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4861         mutex_unlock(&dev_priv->drm.struct_mutex);
4862
4863         return ret;
4864 }
4865
4866 void i915_gem_init_mmio(struct drm_i915_private *i915)
4867 {
4868         i915_gem_sanitize(i915);
4869 }
4870
4871 void
4872 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4873 {
4874         struct intel_engine_cs *engine;
4875         enum intel_engine_id id;
4876
4877         for_each_engine(engine, dev_priv, id)
4878                 dev_priv->gt.cleanup_engine(engine);
4879 }
4880
4881 void
4882 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4883 {
4884         int i;
4885
4886         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4887             !IS_CHERRYVIEW(dev_priv))
4888                 dev_priv->num_fence_regs = 32;
4889         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4890                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4891                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4892                 dev_priv->num_fence_regs = 16;
4893         else
4894                 dev_priv->num_fence_regs = 8;
4895
4896         if (intel_vgpu_active(dev_priv))
4897                 dev_priv->num_fence_regs =
4898                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4899
4900         /* Initialize fence registers to zero */
4901         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4902                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4903
4904                 fence->i915 = dev_priv;
4905                 fence->id = i;
4906                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4907         }
4908         i915_gem_restore_fences(dev_priv);
4909
4910         i915_gem_detect_bit_6_swizzle(dev_priv);
4911 }
4912
4913 int
4914 i915_gem_load_init(struct drm_i915_private *dev_priv)
4915 {
4916         int err = -ENOMEM;
4917
4918         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4919         if (!dev_priv->objects)
4920                 goto err_out;
4921
4922         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4923         if (!dev_priv->vmas)
4924                 goto err_objects;
4925
4926         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4927                                         SLAB_HWCACHE_ALIGN |
4928                                         SLAB_RECLAIM_ACCOUNT |
4929                                         SLAB_TYPESAFE_BY_RCU);
4930         if (!dev_priv->requests)
4931                 goto err_vmas;
4932
4933         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4934                                             SLAB_HWCACHE_ALIGN |
4935                                             SLAB_RECLAIM_ACCOUNT);
4936         if (!dev_priv->dependencies)
4937                 goto err_requests;
4938
4939         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4940         if (!dev_priv->priorities)
4941                 goto err_dependencies;
4942
4943         mutex_lock(&dev_priv->drm.struct_mutex);
4944         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4945         err = i915_gem_timeline_init__global(dev_priv);
4946         mutex_unlock(&dev_priv->drm.struct_mutex);
4947         if (err)
4948                 goto err_priorities;
4949
4950         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4951         init_llist_head(&dev_priv->mm.free_list);
4952         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4953         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4954         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4955         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4956         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4957                           i915_gem_retire_work_handler);
4958         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4959                           i915_gem_idle_work_handler);
4960         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4961         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4962
4963         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4964
4965         spin_lock_init(&dev_priv->fb_tracking.lock);
4966
4967         return 0;
4968
4969 err_priorities:
4970         kmem_cache_destroy(dev_priv->priorities);
4971 err_dependencies:
4972         kmem_cache_destroy(dev_priv->dependencies);
4973 err_requests:
4974         kmem_cache_destroy(dev_priv->requests);
4975 err_vmas:
4976         kmem_cache_destroy(dev_priv->vmas);
4977 err_objects:
4978         kmem_cache_destroy(dev_priv->objects);
4979 err_out:
4980         return err;
4981 }
4982
4983 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4984 {
4985         i915_gem_drain_freed_objects(dev_priv);
4986         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4987         WARN_ON(dev_priv->mm.object_count);
4988
4989         mutex_lock(&dev_priv->drm.struct_mutex);
4990         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4991         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4992         mutex_unlock(&dev_priv->drm.struct_mutex);
4993
4994         kmem_cache_destroy(dev_priv->priorities);
4995         kmem_cache_destroy(dev_priv->dependencies);
4996         kmem_cache_destroy(dev_priv->requests);
4997         kmem_cache_destroy(dev_priv->vmas);
4998         kmem_cache_destroy(dev_priv->objects);
4999
5000         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5001         rcu_barrier();
5002 }
5003
5004 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5005 {
5006         /* Discard all purgeable objects, let userspace recover those as
5007          * required after resuming.
5008          */
5009         i915_gem_shrink_all(dev_priv);
5010
5011         return 0;
5012 }
5013
5014 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5015 {
5016         struct drm_i915_gem_object *obj;
5017         struct list_head *phases[] = {
5018                 &dev_priv->mm.unbound_list,
5019                 &dev_priv->mm.bound_list,
5020                 NULL
5021         }, **p;
5022
5023         /* Called just before we write the hibernation image.
5024          *
5025          * We need to update the domain tracking to reflect that the CPU
5026          * will be accessing all the pages to create and restore from the
5027          * hibernation, and so upon restoration those pages will be in the
5028          * CPU domain.
5029          *
5030          * To make sure the hibernation image contains the latest state,
5031          * we update that state just before writing out the image.
5032          *
5033          * To try and reduce the hibernation image, we manually shrink
5034          * the objects as well, see i915_gem_freeze()
5035          */
5036
5037         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5038         i915_gem_drain_freed_objects(dev_priv);
5039
5040         mutex_lock(&dev_priv->drm.struct_mutex);
5041         for (p = phases; *p; p++) {
5042                 list_for_each_entry(obj, *p, global_link)
5043                         __start_cpu_write(obj);
5044         }
5045         mutex_unlock(&dev_priv->drm.struct_mutex);
5046
5047         return 0;
5048 }
5049
5050 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5051 {
5052         struct drm_i915_file_private *file_priv = file->driver_priv;
5053         struct drm_i915_gem_request *request;
5054
5055         /* Clean up our request list when the client is going away, so that
5056          * later retire_requests won't dereference our soon-to-be-gone
5057          * file_priv.
5058          */
5059         spin_lock(&file_priv->mm.lock);
5060         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5061                 request->file_priv = NULL;
5062         spin_unlock(&file_priv->mm.lock);
5063 }
5064
5065 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5066 {
5067         struct drm_i915_file_private *file_priv;
5068         int ret;
5069
5070         DRM_DEBUG("\n");
5071
5072         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5073         if (!file_priv)
5074                 return -ENOMEM;
5075
5076         file->driver_priv = file_priv;
5077         file_priv->dev_priv = i915;
5078         file_priv->file = file;
5079
5080         spin_lock_init(&file_priv->mm.lock);
5081         INIT_LIST_HEAD(&file_priv->mm.request_list);
5082
5083         file_priv->bsd_engine = -1;
5084
5085         ret = i915_gem_context_open(i915, file);
5086         if (ret)
5087                 kfree(file_priv);
5088
5089         return ret;
5090 }
5091
5092 /**
5093  * i915_gem_track_fb - update frontbuffer tracking
5094  * @old: current GEM buffer for the frontbuffer slots
5095  * @new: new GEM buffer for the frontbuffer slots
5096  * @frontbuffer_bits: bitmask of frontbuffer slots
5097  *
5098  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5099  * from @old and setting them in @new. Both @old and @new can be NULL.
5100  */
5101 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5102                        struct drm_i915_gem_object *new,
5103                        unsigned frontbuffer_bits)
5104 {
5105         /* Control of individual bits within the mask are guarded by
5106          * the owning plane->mutex, i.e. we can never see concurrent
5107          * manipulation of individual bits. But since the bitfield as a whole
5108          * is updated using RMW, we need to use atomics in order to update
5109          * the bits.
5110          */
5111         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5112                      sizeof(atomic_t) * BITS_PER_BYTE);
5113
5114         if (old) {
5115                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5116                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5117         }
5118
5119         if (new) {
5120                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5121                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5122         }
5123 }
5124
5125 /* Allocate a new GEM object and fill it with the supplied data */
5126 struct drm_i915_gem_object *
5127 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5128                                  const void *data, size_t size)
5129 {
5130         struct drm_i915_gem_object *obj;
5131         struct file *file;
5132         size_t offset;
5133         int err;
5134
5135         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5136         if (IS_ERR(obj))
5137                 return obj;
5138
5139         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5140
5141         file = obj->base.filp;
5142         offset = 0;
5143         do {
5144                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5145                 struct page *page;
5146                 void *pgdata, *vaddr;
5147
5148                 err = pagecache_write_begin(file, file->f_mapping,
5149                                             offset, len, 0,
5150                                             &page, &pgdata);
5151                 if (err < 0)
5152                         goto fail;
5153
5154                 vaddr = kmap(page);
5155                 memcpy(vaddr, data, len);
5156                 kunmap(page);
5157
5158                 err = pagecache_write_end(file, file->f_mapping,
5159                                           offset, len, len,
5160                                           page, pgdata);
5161                 if (err < 0)
5162                         goto fail;
5163
5164                 size -= len;
5165                 data += len;
5166                 offset += len;
5167         } while (size);
5168
5169         return obj;
5170
5171 fail:
5172         i915_gem_object_put(obj);
5173         return ERR_PTR(err);
5174 }
5175
5176 struct scatterlist *
5177 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5178                        unsigned int n,
5179                        unsigned int *offset)
5180 {
5181         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5182         struct scatterlist *sg;
5183         unsigned int idx, count;
5184
5185         might_sleep();
5186         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5187         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5188
5189         /* As we iterate forward through the sg, we record each entry in a
5190          * radixtree for quick repeated (backwards) lookups. If we have seen
5191          * this index previously, we will have an entry for it.
5192          *
5193          * Initial lookup is O(N), but this is amortized to O(1) for
5194          * sequential page access (where each new request is consecutive
5195          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5196          * i.e. O(1) with a large constant!
5197          */
5198         if (n < READ_ONCE(iter->sg_idx))
5199                 goto lookup;
5200
5201         mutex_lock(&iter->lock);
5202
5203         /* We prefer to reuse the last sg so that repeated lookup of this
5204          * (or the subsequent) sg are fast - comparing against the last
5205          * sg is faster than going through the radixtree.
5206          */
5207
5208         sg = iter->sg_pos;
5209         idx = iter->sg_idx;
5210         count = __sg_page_count(sg);
5211
5212         while (idx + count <= n) {
5213                 unsigned long exception, i;
5214                 int ret;
5215
5216                 /* If we cannot allocate and insert this entry, or the
5217                  * individual pages from this range, cancel updating the
5218                  * sg_idx so that on this lookup we are forced to linearly
5219                  * scan onwards, but on future lookups we will try the
5220                  * insertion again (in which case we need to be careful of
5221                  * the error return reporting that we have already inserted
5222                  * this index).
5223                  */
5224                 ret = radix_tree_insert(&iter->radix, idx, sg);
5225                 if (ret && ret != -EEXIST)
5226                         goto scan;
5227
5228                 exception =
5229                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5230                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5231                 for (i = 1; i < count; i++) {
5232                         ret = radix_tree_insert(&iter->radix, idx + i,
5233                                                 (void *)exception);
5234                         if (ret && ret != -EEXIST)
5235                                 goto scan;
5236                 }
5237
5238                 idx += count;
5239                 sg = ____sg_next(sg);
5240                 count = __sg_page_count(sg);
5241         }
5242
5243 scan:
5244         iter->sg_pos = sg;
5245         iter->sg_idx = idx;
5246
5247         mutex_unlock(&iter->lock);
5248
5249         if (unlikely(n < idx)) /* insertion completed by another thread */
5250                 goto lookup;
5251
5252         /* In case we failed to insert the entry into the radixtree, we need
5253          * to look beyond the current sg.
5254          */
5255         while (idx + count <= n) {
5256                 idx += count;
5257                 sg = ____sg_next(sg);
5258                 count = __sg_page_count(sg);
5259         }
5260
5261         *offset = n - idx;
5262         return sg;
5263
5264 lookup:
5265         rcu_read_lock();
5266
5267         sg = radix_tree_lookup(&iter->radix, n);
5268         GEM_BUG_ON(!sg);
5269
5270         /* If this index is in the middle of multi-page sg entry,
5271          * the radixtree will contain an exceptional entry that points
5272          * to the start of that range. We will return the pointer to
5273          * the base page and the offset of this page within the
5274          * sg entry's range.
5275          */
5276         *offset = 0;
5277         if (unlikely(radix_tree_exception(sg))) {
5278                 unsigned long base =
5279                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5280
5281                 sg = radix_tree_lookup(&iter->radix, base);
5282                 GEM_BUG_ON(!sg);
5283
5284                 *offset = n - base;
5285         }
5286
5287         rcu_read_unlock();
5288
5289         return sg;
5290 }
5291
5292 struct page *
5293 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5294 {
5295         struct scatterlist *sg;
5296         unsigned int offset;
5297
5298         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5299
5300         sg = i915_gem_object_get_sg(obj, n, &offset);
5301         return nth_page(sg_page(sg), offset);
5302 }
5303
5304 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5305 struct page *
5306 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5307                                unsigned int n)
5308 {
5309         struct page *page;
5310
5311         page = i915_gem_object_get_page(obj, n);
5312         if (!obj->mm.dirty)
5313                 set_page_dirty(page);
5314
5315         return page;
5316 }
5317
5318 dma_addr_t
5319 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5320                                 unsigned long n)
5321 {
5322         struct scatterlist *sg;
5323         unsigned int offset;
5324
5325         sg = i915_gem_object_get_sg(obj, n, &offset);
5326         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5327 }
5328
5329 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5330 #include "selftests/scatterlist.c"
5331 #include "selftests/mock_gem_device.c"
5332 #include "selftests/huge_gem_object.c"
5333 #include "selftests/i915_gem_object.c"
5334 #include "selftests/i915_gem_coherency.c"
5335 #endif