Merge tag 'for-f2fs-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!obj->cache_coherent)
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !obj->cache_coherent)
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
403                 /* The GPU is now idle and this client has stalled.
404                  * Since no other client has submitted a request in the
405                  * meantime, assume that this client is the only one
406                  * supplying work to the GPU but is unable to keep that
407                  * work supplied because it is waiting. Since the GPU is
408                  * then never kept fully busy, RPS autoclocking will
409                  * keep the clocks relatively low, causing further delays.
410                  * Compensate by giving the synchronous client credit for
411                  * a waitboost next time.
412                  */
413                 spin_lock(&rq->i915->rps.client_lock);
414                 list_del_init(&rps->link);
415                 spin_unlock(&rq->i915->rps.client_lock);
416         }
417
418         return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423                                  unsigned int flags,
424                                  long timeout,
425                                  struct intel_rps_client *rps)
426 {
427         unsigned int seq = __read_seqcount_begin(&resv->seq);
428         struct dma_fence *excl;
429         bool prune_fences = false;
430
431         if (flags & I915_WAIT_ALL) {
432                 struct dma_fence **shared;
433                 unsigned int count, i;
434                 int ret;
435
436                 ret = reservation_object_get_fences_rcu(resv,
437                                                         &excl, &count, &shared);
438                 if (ret)
439                         return ret;
440
441                 for (i = 0; i < count; i++) {
442                         timeout = i915_gem_object_wait_fence(shared[i],
443                                                              flags, timeout,
444                                                              rps);
445                         if (timeout < 0)
446                                 break;
447
448                         dma_fence_put(shared[i]);
449                 }
450
451                 for (; i < count; i++)
452                         dma_fence_put(shared[i]);
453                 kfree(shared);
454
455                 prune_fences = count && timeout >= 0;
456         } else {
457                 excl = reservation_object_get_excl_rcu(resv);
458         }
459
460         if (excl && timeout >= 0) {
461                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
462                 prune_fences = timeout >= 0;
463         }
464
465         dma_fence_put(excl);
466
467         /* Oportunistically prune the fences iff we know they have *all* been
468          * signaled and that the reservation object has not been changed (i.e.
469          * no new fences have been added).
470          */
471         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
472                 if (reservation_object_trylock(resv)) {
473                         if (!__read_seqcount_retry(&resv->seq, seq))
474                                 reservation_object_add_excl_fence(resv, NULL);
475                         reservation_object_unlock(resv);
476                 }
477         }
478
479         return timeout;
480 }
481
482 static void __fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         struct drm_i915_gem_request *rq;
485         struct intel_engine_cs *engine;
486
487         if (!dma_fence_is_i915(fence))
488                 return;
489
490         rq = to_request(fence);
491         engine = rq->engine;
492         if (!engine->schedule)
493                 return;
494
495         engine->schedule(rq, prio);
496 }
497
498 static void fence_set_priority(struct dma_fence *fence, int prio)
499 {
500         /* Recurse once into a fence-array */
501         if (dma_fence_is_array(fence)) {
502                 struct dma_fence_array *array = to_dma_fence_array(fence);
503                 int i;
504
505                 for (i = 0; i < array->num_fences; i++)
506                         __fence_set_priority(array->fences[i], prio);
507         } else {
508                 __fence_set_priority(fence, prio);
509         }
510 }
511
512 int
513 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
514                               unsigned int flags,
515                               int prio)
516 {
517         struct dma_fence *excl;
518
519         if (flags & I915_WAIT_ALL) {
520                 struct dma_fence **shared;
521                 unsigned int count, i;
522                 int ret;
523
524                 ret = reservation_object_get_fences_rcu(obj->resv,
525                                                         &excl, &count, &shared);
526                 if (ret)
527                         return ret;
528
529                 for (i = 0; i < count; i++) {
530                         fence_set_priority(shared[i], prio);
531                         dma_fence_put(shared[i]);
532                 }
533
534                 kfree(shared);
535         } else {
536                 excl = reservation_object_get_excl_rcu(obj->resv);
537         }
538
539         if (excl) {
540                 fence_set_priority(excl, prio);
541                 dma_fence_put(excl);
542         }
543         return 0;
544 }
545
546 /**
547  * Waits for rendering to the object to be completed
548  * @obj: i915 gem object
549  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
550  * @timeout: how long to wait
551  * @rps: client (user process) to charge for any waitboosting
552  */
553 int
554 i915_gem_object_wait(struct drm_i915_gem_object *obj,
555                      unsigned int flags,
556                      long timeout,
557                      struct intel_rps_client *rps)
558 {
559         might_sleep();
560 #if IS_ENABLED(CONFIG_LOCKDEP)
561         GEM_BUG_ON(debug_locks &&
562                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
563                    !!(flags & I915_WAIT_LOCKED));
564 #endif
565         GEM_BUG_ON(timeout < 0);
566
567         timeout = i915_gem_object_wait_reservation(obj->resv,
568                                                    flags, timeout,
569                                                    rps);
570         return timeout < 0 ? timeout : 0;
571 }
572
573 static struct intel_rps_client *to_rps_client(struct drm_file *file)
574 {
575         struct drm_i915_file_private *fpriv = file->driver_priv;
576
577         return &fpriv->rps;
578 }
579
580 int
581 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
582                             int align)
583 {
584         int ret;
585
586         if (align > obj->base.size)
587                 return -EINVAL;
588
589         if (obj->ops == &i915_gem_phys_ops)
590                 return 0;
591
592         if (obj->mm.madv != I915_MADV_WILLNEED)
593                 return -EFAULT;
594
595         if (obj->base.filp == NULL)
596                 return -EINVAL;
597
598         ret = i915_gem_object_unbind(obj);
599         if (ret)
600                 return ret;
601
602         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
603         if (obj->mm.pages)
604                 return -EBUSY;
605
606         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
607         obj->ops = &i915_gem_phys_ops;
608
609         ret = i915_gem_object_pin_pages(obj);
610         if (ret)
611                 goto err_xfer;
612
613         return 0;
614
615 err_xfer:
616         obj->ops = &i915_gem_object_ops;
617         return ret;
618 }
619
620 static int
621 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
622                      struct drm_i915_gem_pwrite *args,
623                      struct drm_file *file)
624 {
625         void *vaddr = obj->phys_handle->vaddr + args->offset;
626         char __user *user_data = u64_to_user_ptr(args->data_ptr);
627
628         /* We manually control the domain here and pretend that it
629          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
630          */
631         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
632         if (copy_from_user(vaddr, user_data, args->size))
633                 return -EFAULT;
634
635         drm_clflush_virt_range(vaddr, args->size);
636         i915_gem_chipset_flush(to_i915(obj->base.dev));
637
638         intel_fb_obj_flush(obj, ORIGIN_CPU);
639         return 0;
640 }
641
642 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
643 {
644         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 }
646
647 void i915_gem_object_free(struct drm_i915_gem_object *obj)
648 {
649         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650         kmem_cache_free(dev_priv->objects, obj);
651 }
652
653 static int
654 i915_gem_create(struct drm_file *file,
655                 struct drm_i915_private *dev_priv,
656                 uint64_t size,
657                 uint32_t *handle_p)
658 {
659         struct drm_i915_gem_object *obj;
660         int ret;
661         u32 handle;
662
663         size = roundup(size, PAGE_SIZE);
664         if (size == 0)
665                 return -EINVAL;
666
667         /* Allocate the new object */
668         obj = i915_gem_object_create(dev_priv, size);
669         if (IS_ERR(obj))
670                 return PTR_ERR(obj);
671
672         ret = drm_gem_handle_create(file, &obj->base, &handle);
673         /* drop reference from allocate - handle holds it now */
674         i915_gem_object_put(obj);
675         if (ret)
676                 return ret;
677
678         *handle_p = handle;
679         return 0;
680 }
681
682 int
683 i915_gem_dumb_create(struct drm_file *file,
684                      struct drm_device *dev,
685                      struct drm_mode_create_dumb *args)
686 {
687         /* have to work out size/pitch and return them */
688         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689         args->size = args->pitch * args->height;
690         return i915_gem_create(file, to_i915(dev),
691                                args->size, &args->handle);
692 }
693
694 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
695 {
696         return !(obj->cache_level == I915_CACHE_NONE ||
697                  obj->cache_level == I915_CACHE_WT);
698 }
699
700 /**
701  * Creates a new mm object and returns a handle to it.
702  * @dev: drm device pointer
703  * @data: ioctl data blob
704  * @file: drm file pointer
705  */
706 int
707 i915_gem_create_ioctl(struct drm_device *dev, void *data,
708                       struct drm_file *file)
709 {
710         struct drm_i915_private *dev_priv = to_i915(dev);
711         struct drm_i915_gem_create *args = data;
712
713         i915_gem_flush_free_objects(dev_priv);
714
715         return i915_gem_create(file, dev_priv,
716                                args->size, &args->handle);
717 }
718
719 static inline enum fb_op_origin
720 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
721 {
722         return (domain == I915_GEM_DOMAIN_GTT ?
723                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
724 }
725
726 static void
727 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
728 {
729         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
730
731         if (!(obj->base.write_domain & flush_domains))
732                 return;
733
734         /* No actual flushing is required for the GTT write domain.  Writes
735          * to it "immediately" go to main memory as far as we know, so there's
736          * no chipset flush.  It also doesn't land in render cache.
737          *
738          * However, we do have to enforce the order so that all writes through
739          * the GTT land before any writes to the device, such as updates to
740          * the GATT itself.
741          *
742          * We also have to wait a bit for the writes to land from the GTT.
743          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
744          * timing. This issue has only been observed when switching quickly
745          * between GTT writes and CPU reads from inside the kernel on recent hw,
746          * and it appears to only affect discrete GTT blocks (i.e. on LLC
747          * system agents we cannot reproduce this behaviour).
748          */
749         wmb();
750
751         switch (obj->base.write_domain) {
752         case I915_GEM_DOMAIN_GTT:
753                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
754                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
755                                 spin_lock_irq(&dev_priv->uncore.lock);
756                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
757                                 spin_unlock_irq(&dev_priv->uncore.lock);
758                                 intel_runtime_pm_put(dev_priv);
759                         }
760                 }
761
762                 intel_fb_obj_flush(obj,
763                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
764                 break;
765
766         case I915_GEM_DOMAIN_CPU:
767                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
768                 break;
769
770         case I915_GEM_DOMAIN_RENDER:
771                 if (gpu_write_needs_clflush(obj))
772                         obj->cache_dirty = true;
773                 break;
774         }
775
776         obj->base.write_domain = 0;
777 }
778
779 static inline int
780 __copy_to_user_swizzled(char __user *cpu_vaddr,
781                         const char *gpu_vaddr, int gpu_offset,
782                         int length)
783 {
784         int ret, cpu_offset = 0;
785
786         while (length > 0) {
787                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
788                 int this_length = min(cacheline_end - gpu_offset, length);
789                 int swizzled_gpu_offset = gpu_offset ^ 64;
790
791                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
792                                      gpu_vaddr + swizzled_gpu_offset,
793                                      this_length);
794                 if (ret)
795                         return ret + length;
796
797                 cpu_offset += this_length;
798                 gpu_offset += this_length;
799                 length -= this_length;
800         }
801
802         return 0;
803 }
804
805 static inline int
806 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
807                           const char __user *cpu_vaddr,
808                           int length)
809 {
810         int ret, cpu_offset = 0;
811
812         while (length > 0) {
813                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
814                 int this_length = min(cacheline_end - gpu_offset, length);
815                 int swizzled_gpu_offset = gpu_offset ^ 64;
816
817                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
818                                        cpu_vaddr + cpu_offset,
819                                        this_length);
820                 if (ret)
821                         return ret + length;
822
823                 cpu_offset += this_length;
824                 gpu_offset += this_length;
825                 length -= this_length;
826         }
827
828         return 0;
829 }
830
831 /*
832  * Pins the specified object's pages and synchronizes the object with
833  * GPU accesses. Sets needs_clflush to non-zero if the caller should
834  * flush the object from the CPU cache.
835  */
836 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
837                                     unsigned int *needs_clflush)
838 {
839         int ret;
840
841         lockdep_assert_held(&obj->base.dev->struct_mutex);
842
843         *needs_clflush = 0;
844         if (!i915_gem_object_has_struct_page(obj))
845                 return -ENODEV;
846
847         ret = i915_gem_object_wait(obj,
848                                    I915_WAIT_INTERRUPTIBLE |
849                                    I915_WAIT_LOCKED,
850                                    MAX_SCHEDULE_TIMEOUT,
851                                    NULL);
852         if (ret)
853                 return ret;
854
855         ret = i915_gem_object_pin_pages(obj);
856         if (ret)
857                 return ret;
858
859         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
860                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
861                 if (ret)
862                         goto err_unpin;
863                 else
864                         goto out;
865         }
866
867         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
868
869         /* If we're not in the cpu read domain, set ourself into the gtt
870          * read domain and manually flush cachelines (if required). This
871          * optimizes for the case when the gpu will dirty the data
872          * anyway again before the next pread happens.
873          */
874         if (!obj->cache_dirty &&
875             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
876                 *needs_clflush = CLFLUSH_BEFORE;
877
878 out:
879         /* return with the pages pinned */
880         return 0;
881
882 err_unpin:
883         i915_gem_object_unpin_pages(obj);
884         return ret;
885 }
886
887 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
888                                      unsigned int *needs_clflush)
889 {
890         int ret;
891
892         lockdep_assert_held(&obj->base.dev->struct_mutex);
893
894         *needs_clflush = 0;
895         if (!i915_gem_object_has_struct_page(obj))
896                 return -ENODEV;
897
898         ret = i915_gem_object_wait(obj,
899                                    I915_WAIT_INTERRUPTIBLE |
900                                    I915_WAIT_LOCKED |
901                                    I915_WAIT_ALL,
902                                    MAX_SCHEDULE_TIMEOUT,
903                                    NULL);
904         if (ret)
905                 return ret;
906
907         ret = i915_gem_object_pin_pages(obj);
908         if (ret)
909                 return ret;
910
911         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
912                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
913                 if (ret)
914                         goto err_unpin;
915                 else
916                         goto out;
917         }
918
919         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
920
921         /* If we're not in the cpu write domain, set ourself into the
922          * gtt write domain and manually flush cachelines (as required).
923          * This optimizes for the case when the gpu will use the data
924          * right away and we therefore have to clflush anyway.
925          */
926         if (!obj->cache_dirty) {
927                 *needs_clflush |= CLFLUSH_AFTER;
928
929                 /*
930                  * Same trick applies to invalidate partially written
931                  * cachelines read before writing.
932                  */
933                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
934                         *needs_clflush |= CLFLUSH_BEFORE;
935         }
936
937 out:
938         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
939         obj->mm.dirty = true;
940         /* return with the pages pinned */
941         return 0;
942
943 err_unpin:
944         i915_gem_object_unpin_pages(obj);
945         return ret;
946 }
947
948 static void
949 shmem_clflush_swizzled_range(char *addr, unsigned long length,
950                              bool swizzled)
951 {
952         if (unlikely(swizzled)) {
953                 unsigned long start = (unsigned long) addr;
954                 unsigned long end = (unsigned long) addr + length;
955
956                 /* For swizzling simply ensure that we always flush both
957                  * channels. Lame, but simple and it works. Swizzled
958                  * pwrite/pread is far from a hotpath - current userspace
959                  * doesn't use it at all. */
960                 start = round_down(start, 128);
961                 end = round_up(end, 128);
962
963                 drm_clflush_virt_range((void *)start, end - start);
964         } else {
965                 drm_clflush_virt_range(addr, length);
966         }
967
968 }
969
970 /* Only difference to the fast-path function is that this can handle bit17
971  * and uses non-atomic copy and kmap functions. */
972 static int
973 shmem_pread_slow(struct page *page, int offset, int length,
974                  char __user *user_data,
975                  bool page_do_bit17_swizzling, bool needs_clflush)
976 {
977         char *vaddr;
978         int ret;
979
980         vaddr = kmap(page);
981         if (needs_clflush)
982                 shmem_clflush_swizzled_range(vaddr + offset, length,
983                                              page_do_bit17_swizzling);
984
985         if (page_do_bit17_swizzling)
986                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
987         else
988                 ret = __copy_to_user(user_data, vaddr + offset, length);
989         kunmap(page);
990
991         return ret ? - EFAULT : 0;
992 }
993
994 static int
995 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
996             bool page_do_bit17_swizzling, bool needs_clflush)
997 {
998         int ret;
999
1000         ret = -ENODEV;
1001         if (!page_do_bit17_swizzling) {
1002                 char *vaddr = kmap_atomic(page);
1003
1004                 if (needs_clflush)
1005                         drm_clflush_virt_range(vaddr + offset, length);
1006                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1007                 kunmap_atomic(vaddr);
1008         }
1009         if (ret == 0)
1010                 return 0;
1011
1012         return shmem_pread_slow(page, offset, length, user_data,
1013                                 page_do_bit17_swizzling, needs_clflush);
1014 }
1015
1016 static int
1017 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1018                      struct drm_i915_gem_pread *args)
1019 {
1020         char __user *user_data;
1021         u64 remain;
1022         unsigned int obj_do_bit17_swizzling;
1023         unsigned int needs_clflush;
1024         unsigned int idx, offset;
1025         int ret;
1026
1027         obj_do_bit17_swizzling = 0;
1028         if (i915_gem_object_needs_bit17_swizzle(obj))
1029                 obj_do_bit17_swizzling = BIT(17);
1030
1031         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1032         if (ret)
1033                 return ret;
1034
1035         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1036         mutex_unlock(&obj->base.dev->struct_mutex);
1037         if (ret)
1038                 return ret;
1039
1040         remain = args->size;
1041         user_data = u64_to_user_ptr(args->data_ptr);
1042         offset = offset_in_page(args->offset);
1043         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1044                 struct page *page = i915_gem_object_get_page(obj, idx);
1045                 int length;
1046
1047                 length = remain;
1048                 if (offset + length > PAGE_SIZE)
1049                         length = PAGE_SIZE - offset;
1050
1051                 ret = shmem_pread(page, offset, length, user_data,
1052                                   page_to_phys(page) & obj_do_bit17_swizzling,
1053                                   needs_clflush);
1054                 if (ret)
1055                         break;
1056
1057                 remain -= length;
1058                 user_data += length;
1059                 offset = 0;
1060         }
1061
1062         i915_gem_obj_finish_shmem_access(obj);
1063         return ret;
1064 }
1065
1066 static inline bool
1067 gtt_user_read(struct io_mapping *mapping,
1068               loff_t base, int offset,
1069               char __user *user_data, int length)
1070 {
1071         void *vaddr;
1072         unsigned long unwritten;
1073
1074         /* We can use the cpu mem copy function because this is X86. */
1075         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1076         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077         io_mapping_unmap_atomic(vaddr);
1078         if (unwritten) {
1079                 vaddr = (void __force *)
1080                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1081                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1082                 io_mapping_unmap(vaddr);
1083         }
1084         return unwritten;
1085 }
1086
1087 static int
1088 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1089                    const struct drm_i915_gem_pread *args)
1090 {
1091         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1092         struct i915_ggtt *ggtt = &i915->ggtt;
1093         struct drm_mm_node node;
1094         struct i915_vma *vma;
1095         void __user *user_data;
1096         u64 remain, offset;
1097         int ret;
1098
1099         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1100         if (ret)
1101                 return ret;
1102
1103         intel_runtime_pm_get(i915);
1104         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1105                                        PIN_MAPPABLE | PIN_NONBLOCK);
1106         if (!IS_ERR(vma)) {
1107                 node.start = i915_ggtt_offset(vma);
1108                 node.allocated = false;
1109                 ret = i915_vma_put_fence(vma);
1110                 if (ret) {
1111                         i915_vma_unpin(vma);
1112                         vma = ERR_PTR(ret);
1113                 }
1114         }
1115         if (IS_ERR(vma)) {
1116                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1117                 if (ret)
1118                         goto out_unlock;
1119                 GEM_BUG_ON(!node.allocated);
1120         }
1121
1122         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1123         if (ret)
1124                 goto out_unpin;
1125
1126         mutex_unlock(&i915->drm.struct_mutex);
1127
1128         user_data = u64_to_user_ptr(args->data_ptr);
1129         remain = args->size;
1130         offset = args->offset;
1131
1132         while (remain > 0) {
1133                 /* Operation in this page
1134                  *
1135                  * page_base = page offset within aperture
1136                  * page_offset = offset within page
1137                  * page_length = bytes to copy for this page
1138                  */
1139                 u32 page_base = node.start;
1140                 unsigned page_offset = offset_in_page(offset);
1141                 unsigned page_length = PAGE_SIZE - page_offset;
1142                 page_length = remain < page_length ? remain : page_length;
1143                 if (node.allocated) {
1144                         wmb();
1145                         ggtt->base.insert_page(&ggtt->base,
1146                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1147                                                node.start, I915_CACHE_NONE, 0);
1148                         wmb();
1149                 } else {
1150                         page_base += offset & PAGE_MASK;
1151                 }
1152
1153                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1154                                   user_data, page_length)) {
1155                         ret = -EFAULT;
1156                         break;
1157                 }
1158
1159                 remain -= page_length;
1160                 user_data += page_length;
1161                 offset += page_length;
1162         }
1163
1164         mutex_lock(&i915->drm.struct_mutex);
1165 out_unpin:
1166         if (node.allocated) {
1167                 wmb();
1168                 ggtt->base.clear_range(&ggtt->base,
1169                                        node.start, node.size);
1170                 remove_mappable_node(&node);
1171         } else {
1172                 i915_vma_unpin(vma);
1173         }
1174 out_unlock:
1175         intel_runtime_pm_put(i915);
1176         mutex_unlock(&i915->drm.struct_mutex);
1177
1178         return ret;
1179 }
1180
1181 /**
1182  * Reads data from the object referenced by handle.
1183  * @dev: drm device pointer
1184  * @data: ioctl data blob
1185  * @file: drm file pointer
1186  *
1187  * On error, the contents of *data are undefined.
1188  */
1189 int
1190 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1191                      struct drm_file *file)
1192 {
1193         struct drm_i915_gem_pread *args = data;
1194         struct drm_i915_gem_object *obj;
1195         int ret;
1196
1197         if (args->size == 0)
1198                 return 0;
1199
1200         if (!access_ok(VERIFY_WRITE,
1201                        u64_to_user_ptr(args->data_ptr),
1202                        args->size))
1203                 return -EFAULT;
1204
1205         obj = i915_gem_object_lookup(file, args->handle);
1206         if (!obj)
1207                 return -ENOENT;
1208
1209         /* Bounds check source.  */
1210         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1211                 ret = -EINVAL;
1212                 goto out;
1213         }
1214
1215         trace_i915_gem_object_pread(obj, args->offset, args->size);
1216
1217         ret = i915_gem_object_wait(obj,
1218                                    I915_WAIT_INTERRUPTIBLE,
1219                                    MAX_SCHEDULE_TIMEOUT,
1220                                    to_rps_client(file));
1221         if (ret)
1222                 goto out;
1223
1224         ret = i915_gem_object_pin_pages(obj);
1225         if (ret)
1226                 goto out;
1227
1228         ret = i915_gem_shmem_pread(obj, args);
1229         if (ret == -EFAULT || ret == -ENODEV)
1230                 ret = i915_gem_gtt_pread(obj, args);
1231
1232         i915_gem_object_unpin_pages(obj);
1233 out:
1234         i915_gem_object_put(obj);
1235         return ret;
1236 }
1237
1238 /* This is the fast write path which cannot handle
1239  * page faults in the source data
1240  */
1241
1242 static inline bool
1243 ggtt_write(struct io_mapping *mapping,
1244            loff_t base, int offset,
1245            char __user *user_data, int length)
1246 {
1247         void *vaddr;
1248         unsigned long unwritten;
1249
1250         /* We can use the cpu mem copy function because this is X86. */
1251         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1252         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1253                                                       user_data, length);
1254         io_mapping_unmap_atomic(vaddr);
1255         if (unwritten) {
1256                 vaddr = (void __force *)
1257                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1258                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1259                 io_mapping_unmap(vaddr);
1260         }
1261
1262         return unwritten;
1263 }
1264
1265 /**
1266  * This is the fast pwrite path, where we copy the data directly from the
1267  * user into the GTT, uncached.
1268  * @obj: i915 GEM object
1269  * @args: pwrite arguments structure
1270  */
1271 static int
1272 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1273                          const struct drm_i915_gem_pwrite *args)
1274 {
1275         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1276         struct i915_ggtt *ggtt = &i915->ggtt;
1277         struct drm_mm_node node;
1278         struct i915_vma *vma;
1279         u64 remain, offset;
1280         void __user *user_data;
1281         int ret;
1282
1283         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1284         if (ret)
1285                 return ret;
1286
1287         intel_runtime_pm_get(i915);
1288         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289                                        PIN_MAPPABLE | PIN_NONBLOCK);
1290         if (!IS_ERR(vma)) {
1291                 node.start = i915_ggtt_offset(vma);
1292                 node.allocated = false;
1293                 ret = i915_vma_put_fence(vma);
1294                 if (ret) {
1295                         i915_vma_unpin(vma);
1296                         vma = ERR_PTR(ret);
1297                 }
1298         }
1299         if (IS_ERR(vma)) {
1300                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1301                 if (ret)
1302                         goto out_unlock;
1303                 GEM_BUG_ON(!node.allocated);
1304         }
1305
1306         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1307         if (ret)
1308                 goto out_unpin;
1309
1310         mutex_unlock(&i915->drm.struct_mutex);
1311
1312         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1313
1314         user_data = u64_to_user_ptr(args->data_ptr);
1315         offset = args->offset;
1316         remain = args->size;
1317         while (remain) {
1318                 /* Operation in this page
1319                  *
1320                  * page_base = page offset within aperture
1321                  * page_offset = offset within page
1322                  * page_length = bytes to copy for this page
1323                  */
1324                 u32 page_base = node.start;
1325                 unsigned int page_offset = offset_in_page(offset);
1326                 unsigned int page_length = PAGE_SIZE - page_offset;
1327                 page_length = remain < page_length ? remain : page_length;
1328                 if (node.allocated) {
1329                         wmb(); /* flush the write before we modify the GGTT */
1330                         ggtt->base.insert_page(&ggtt->base,
1331                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1332                                                node.start, I915_CACHE_NONE, 0);
1333                         wmb(); /* flush modifications to the GGTT (insert_page) */
1334                 } else {
1335                         page_base += offset & PAGE_MASK;
1336                 }
1337                 /* If we get a fault while copying data, then (presumably) our
1338                  * source page isn't available.  Return the error and we'll
1339                  * retry in the slow path.
1340                  * If the object is non-shmem backed, we retry again with the
1341                  * path that handles page fault.
1342                  */
1343                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1344                                user_data, page_length)) {
1345                         ret = -EFAULT;
1346                         break;
1347                 }
1348
1349                 remain -= page_length;
1350                 user_data += page_length;
1351                 offset += page_length;
1352         }
1353         intel_fb_obj_flush(obj, ORIGIN_CPU);
1354
1355         mutex_lock(&i915->drm.struct_mutex);
1356 out_unpin:
1357         if (node.allocated) {
1358                 wmb();
1359                 ggtt->base.clear_range(&ggtt->base,
1360                                        node.start, node.size);
1361                 remove_mappable_node(&node);
1362         } else {
1363                 i915_vma_unpin(vma);
1364         }
1365 out_unlock:
1366         intel_runtime_pm_put(i915);
1367         mutex_unlock(&i915->drm.struct_mutex);
1368         return ret;
1369 }
1370
1371 static int
1372 shmem_pwrite_slow(struct page *page, int offset, int length,
1373                   char __user *user_data,
1374                   bool page_do_bit17_swizzling,
1375                   bool needs_clflush_before,
1376                   bool needs_clflush_after)
1377 {
1378         char *vaddr;
1379         int ret;
1380
1381         vaddr = kmap(page);
1382         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1383                 shmem_clflush_swizzled_range(vaddr + offset, length,
1384                                              page_do_bit17_swizzling);
1385         if (page_do_bit17_swizzling)
1386                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1387                                                 length);
1388         else
1389                 ret = __copy_from_user(vaddr + offset, user_data, length);
1390         if (needs_clflush_after)
1391                 shmem_clflush_swizzled_range(vaddr + offset, length,
1392                                              page_do_bit17_swizzling);
1393         kunmap(page);
1394
1395         return ret ? -EFAULT : 0;
1396 }
1397
1398 /* Per-page copy function for the shmem pwrite fastpath.
1399  * Flushes invalid cachelines before writing to the target if
1400  * needs_clflush_before is set and flushes out any written cachelines after
1401  * writing if needs_clflush is set.
1402  */
1403 static int
1404 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1405              bool page_do_bit17_swizzling,
1406              bool needs_clflush_before,
1407              bool needs_clflush_after)
1408 {
1409         int ret;
1410
1411         ret = -ENODEV;
1412         if (!page_do_bit17_swizzling) {
1413                 char *vaddr = kmap_atomic(page);
1414
1415                 if (needs_clflush_before)
1416                         drm_clflush_virt_range(vaddr + offset, len);
1417                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1418                 if (needs_clflush_after)
1419                         drm_clflush_virt_range(vaddr + offset, len);
1420
1421                 kunmap_atomic(vaddr);
1422         }
1423         if (ret == 0)
1424                 return ret;
1425
1426         return shmem_pwrite_slow(page, offset, len, user_data,
1427                                  page_do_bit17_swizzling,
1428                                  needs_clflush_before,
1429                                  needs_clflush_after);
1430 }
1431
1432 static int
1433 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1434                       const struct drm_i915_gem_pwrite *args)
1435 {
1436         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1437         void __user *user_data;
1438         u64 remain;
1439         unsigned int obj_do_bit17_swizzling;
1440         unsigned int partial_cacheline_write;
1441         unsigned int needs_clflush;
1442         unsigned int offset, idx;
1443         int ret;
1444
1445         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1446         if (ret)
1447                 return ret;
1448
1449         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1450         mutex_unlock(&i915->drm.struct_mutex);
1451         if (ret)
1452                 return ret;
1453
1454         obj_do_bit17_swizzling = 0;
1455         if (i915_gem_object_needs_bit17_swizzle(obj))
1456                 obj_do_bit17_swizzling = BIT(17);
1457
1458         /* If we don't overwrite a cacheline completely we need to be
1459          * careful to have up-to-date data by first clflushing. Don't
1460          * overcomplicate things and flush the entire patch.
1461          */
1462         partial_cacheline_write = 0;
1463         if (needs_clflush & CLFLUSH_BEFORE)
1464                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1465
1466         user_data = u64_to_user_ptr(args->data_ptr);
1467         remain = args->size;
1468         offset = offset_in_page(args->offset);
1469         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1470                 struct page *page = i915_gem_object_get_page(obj, idx);
1471                 int length;
1472
1473                 length = remain;
1474                 if (offset + length > PAGE_SIZE)
1475                         length = PAGE_SIZE - offset;
1476
1477                 ret = shmem_pwrite(page, offset, length, user_data,
1478                                    page_to_phys(page) & obj_do_bit17_swizzling,
1479                                    (offset | length) & partial_cacheline_write,
1480                                    needs_clflush & CLFLUSH_AFTER);
1481                 if (ret)
1482                         break;
1483
1484                 remain -= length;
1485                 user_data += length;
1486                 offset = 0;
1487         }
1488
1489         intel_fb_obj_flush(obj, ORIGIN_CPU);
1490         i915_gem_obj_finish_shmem_access(obj);
1491         return ret;
1492 }
1493
1494 /**
1495  * Writes data to the object referenced by handle.
1496  * @dev: drm device
1497  * @data: ioctl data blob
1498  * @file: drm file
1499  *
1500  * On error, the contents of the buffer that were to be modified are undefined.
1501  */
1502 int
1503 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1504                       struct drm_file *file)
1505 {
1506         struct drm_i915_gem_pwrite *args = data;
1507         struct drm_i915_gem_object *obj;
1508         int ret;
1509
1510         if (args->size == 0)
1511                 return 0;
1512
1513         if (!access_ok(VERIFY_READ,
1514                        u64_to_user_ptr(args->data_ptr),
1515                        args->size))
1516                 return -EFAULT;
1517
1518         obj = i915_gem_object_lookup(file, args->handle);
1519         if (!obj)
1520                 return -ENOENT;
1521
1522         /* Bounds check destination. */
1523         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1524                 ret = -EINVAL;
1525                 goto err;
1526         }
1527
1528         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1529
1530         ret = -ENODEV;
1531         if (obj->ops->pwrite)
1532                 ret = obj->ops->pwrite(obj, args);
1533         if (ret != -ENODEV)
1534                 goto err;
1535
1536         ret = i915_gem_object_wait(obj,
1537                                    I915_WAIT_INTERRUPTIBLE |
1538                                    I915_WAIT_ALL,
1539                                    MAX_SCHEDULE_TIMEOUT,
1540                                    to_rps_client(file));
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_gem_object_pin_pages(obj);
1545         if (ret)
1546                 goto err;
1547
1548         ret = -EFAULT;
1549         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1550          * it would end up going through the fenced access, and we'll get
1551          * different detiling behavior between reading and writing.
1552          * pread/pwrite currently are reading and writing from the CPU
1553          * perspective, requiring manual detiling by the client.
1554          */
1555         if (!i915_gem_object_has_struct_page(obj) ||
1556             cpu_write_needs_clflush(obj))
1557                 /* Note that the gtt paths might fail with non-page-backed user
1558                  * pointers (e.g. gtt mappings when moving data between
1559                  * textures). Fallback to the shmem path in that case.
1560                  */
1561                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1562
1563         if (ret == -EFAULT || ret == -ENOSPC) {
1564                 if (obj->phys_handle)
1565                         ret = i915_gem_phys_pwrite(obj, args, file);
1566                 else
1567                         ret = i915_gem_shmem_pwrite(obj, args);
1568         }
1569
1570         i915_gem_object_unpin_pages(obj);
1571 err:
1572         i915_gem_object_put(obj);
1573         return ret;
1574 }
1575
1576 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1577 {
1578         struct drm_i915_private *i915;
1579         struct list_head *list;
1580         struct i915_vma *vma;
1581
1582         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1583                 if (!i915_vma_is_ggtt(vma))
1584                         break;
1585
1586                 if (i915_vma_is_active(vma))
1587                         continue;
1588
1589                 if (!drm_mm_node_allocated(&vma->node))
1590                         continue;
1591
1592                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1593         }
1594
1595         i915 = to_i915(obj->base.dev);
1596         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1597         list_move_tail(&obj->global_link, list);
1598 }
1599
1600 /**
1601  * Called when user space prepares to use an object with the CPU, either
1602  * through the mmap ioctl's mapping or a GTT mapping.
1603  * @dev: drm device
1604  * @data: ioctl data blob
1605  * @file: drm file
1606  */
1607 int
1608 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1609                           struct drm_file *file)
1610 {
1611         struct drm_i915_gem_set_domain *args = data;
1612         struct drm_i915_gem_object *obj;
1613         uint32_t read_domains = args->read_domains;
1614         uint32_t write_domain = args->write_domain;
1615         int err;
1616
1617         /* Only handle setting domains to types used by the CPU. */
1618         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1619                 return -EINVAL;
1620
1621         /* Having something in the write domain implies it's in the read
1622          * domain, and only that read domain.  Enforce that in the request.
1623          */
1624         if (write_domain != 0 && read_domains != write_domain)
1625                 return -EINVAL;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Try to flush the object off the GPU without holding the lock.
1632          * We will repeat the flush holding the lock in the normal manner
1633          * to catch cases where we are gazumped.
1634          */
1635         err = i915_gem_object_wait(obj,
1636                                    I915_WAIT_INTERRUPTIBLE |
1637                                    (write_domain ? I915_WAIT_ALL : 0),
1638                                    MAX_SCHEDULE_TIMEOUT,
1639                                    to_rps_client(file));
1640         if (err)
1641                 goto out;
1642
1643         /* Flush and acquire obj->pages so that we are coherent through
1644          * direct access in memory with previous cached writes through
1645          * shmemfs and that our cache domain tracking remains valid.
1646          * For example, if the obj->filp was moved to swap without us
1647          * being notified and releasing the pages, we would mistakenly
1648          * continue to assume that the obj remained out of the CPU cached
1649          * domain.
1650          */
1651         err = i915_gem_object_pin_pages(obj);
1652         if (err)
1653                 goto out;
1654
1655         err = i915_mutex_lock_interruptible(dev);
1656         if (err)
1657                 goto out_unpin;
1658
1659         if (read_domains & I915_GEM_DOMAIN_WC)
1660                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1661         else if (read_domains & I915_GEM_DOMAIN_GTT)
1662                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1663         else
1664                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1665
1666         /* And bump the LRU for this access */
1667         i915_gem_object_bump_inactive_ggtt(obj);
1668
1669         mutex_unlock(&dev->struct_mutex);
1670
1671         if (write_domain != 0)
1672                 intel_fb_obj_invalidate(obj,
1673                                         fb_write_origin(obj, write_domain));
1674
1675 out_unpin:
1676         i915_gem_object_unpin_pages(obj);
1677 out:
1678         i915_gem_object_put(obj);
1679         return err;
1680 }
1681
1682 /**
1683  * Called when user space has done writes to this buffer
1684  * @dev: drm device
1685  * @data: ioctl data blob
1686  * @file: drm file
1687  */
1688 int
1689 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690                          struct drm_file *file)
1691 {
1692         struct drm_i915_gem_sw_finish *args = data;
1693         struct drm_i915_gem_object *obj;
1694
1695         obj = i915_gem_object_lookup(file, args->handle);
1696         if (!obj)
1697                 return -ENOENT;
1698
1699         /* Pinned buffers may be scanout, so flush the cache */
1700         i915_gem_object_flush_if_display(obj);
1701         i915_gem_object_put(obj);
1702
1703         return 0;
1704 }
1705
1706 /**
1707  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1708  *                       it is mapped to.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  *
1713  * While the mapping holds a reference on the contents of the object, it doesn't
1714  * imply a ref on the object itself.
1715  *
1716  * IMPORTANT:
1717  *
1718  * DRM driver writers who look a this function as an example for how to do GEM
1719  * mmap support, please don't implement mmap support like here. The modern way
1720  * to implement DRM mmap support is with an mmap offset ioctl (like
1721  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1722  * That way debug tooling like valgrind will understand what's going on, hiding
1723  * the mmap call in a driver private ioctl will break that. The i915 driver only
1724  * does cpu mmaps this way because we didn't know better.
1725  */
1726 int
1727 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1728                     struct drm_file *file)
1729 {
1730         struct drm_i915_gem_mmap *args = data;
1731         struct drm_i915_gem_object *obj;
1732         unsigned long addr;
1733
1734         if (args->flags & ~(I915_MMAP_WC))
1735                 return -EINVAL;
1736
1737         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1738                 return -ENODEV;
1739
1740         obj = i915_gem_object_lookup(file, args->handle);
1741         if (!obj)
1742                 return -ENOENT;
1743
1744         /* prime objects have no backing filp to GEM mmap
1745          * pages from.
1746          */
1747         if (!obj->base.filp) {
1748                 i915_gem_object_put(obj);
1749                 return -EINVAL;
1750         }
1751
1752         addr = vm_mmap(obj->base.filp, 0, args->size,
1753                        PROT_READ | PROT_WRITE, MAP_SHARED,
1754                        args->offset);
1755         if (args->flags & I915_MMAP_WC) {
1756                 struct mm_struct *mm = current->mm;
1757                 struct vm_area_struct *vma;
1758
1759                 if (down_write_killable(&mm->mmap_sem)) {
1760                         i915_gem_object_put(obj);
1761                         return -EINTR;
1762                 }
1763                 vma = find_vma(mm, addr);
1764                 if (vma)
1765                         vma->vm_page_prot =
1766                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1767                 else
1768                         addr = -ENOMEM;
1769                 up_write(&mm->mmap_sem);
1770
1771                 /* This may race, but that's ok, it only gets set */
1772                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1773         }
1774         i915_gem_object_put(obj);
1775         if (IS_ERR((void *)addr))
1776                 return addr;
1777
1778         args->addr_ptr = (uint64_t) addr;
1779
1780         return 0;
1781 }
1782
1783 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1784 {
1785         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 }
1787
1788 /**
1789  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1790  *
1791  * A history of the GTT mmap interface:
1792  *
1793  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1794  *     aligned and suitable for fencing, and still fit into the available
1795  *     mappable space left by the pinned display objects. A classic problem
1796  *     we called the page-fault-of-doom where we would ping-pong between
1797  *     two objects that could not fit inside the GTT and so the memcpy
1798  *     would page one object in at the expense of the other between every
1799  *     single byte.
1800  *
1801  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1802  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1803  *     object is too large for the available space (or simply too large
1804  *     for the mappable aperture!), a view is created instead and faulted
1805  *     into userspace. (This view is aligned and sized appropriately for
1806  *     fenced access.)
1807  *
1808  * 2 - Recognise WC as a separate cache domain so that we can flush the
1809  *     delayed writes via GTT before performing direct access via WC.
1810  *
1811  * Restrictions:
1812  *
1813  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1814  *    hangs on some architectures, corruption on others. An attempt to service
1815  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1816  *
1817  *  * the object must be able to fit into RAM (physical memory, though no
1818  *    limited to the mappable aperture).
1819  *
1820  *
1821  * Caveats:
1822  *
1823  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1824  *    all data to system memory. Subsequent access will not be synchronized.
1825  *
1826  *  * all mappings are revoked on runtime device suspend.
1827  *
1828  *  * there are only 8, 16 or 32 fence registers to share between all users
1829  *    (older machines require fence register for display and blitter access
1830  *    as well). Contention of the fence registers will cause the previous users
1831  *    to be unmapped and any new access will generate new page faults.
1832  *
1833  *  * running out of memory while servicing a fault may generate a SIGBUS,
1834  *    rather than the expected SIGSEGV.
1835  */
1836 int i915_gem_mmap_gtt_version(void)
1837 {
1838         return 2;
1839 }
1840
1841 static inline struct i915_ggtt_view
1842 compute_partial_view(struct drm_i915_gem_object *obj,
1843                      pgoff_t page_offset,
1844                      unsigned int chunk)
1845 {
1846         struct i915_ggtt_view view;
1847
1848         if (i915_gem_object_is_tiled(obj))
1849                 chunk = roundup(chunk, tile_row_pages(obj));
1850
1851         view.type = I915_GGTT_VIEW_PARTIAL;
1852         view.partial.offset = rounddown(page_offset, chunk);
1853         view.partial.size =
1854                 min_t(unsigned int, chunk,
1855                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856
1857         /* If the partial covers the entire object, just create a normal VMA. */
1858         if (chunk >= obj->base.size >> PAGE_SHIFT)
1859                 view.type = I915_GGTT_VIEW_NORMAL;
1860
1861         return view;
1862 }
1863
1864 /**
1865  * i915_gem_fault - fault a page into the GTT
1866  * @vmf: fault info
1867  *
1868  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1869  * from userspace.  The fault handler takes care of binding the object to
1870  * the GTT (if needed), allocating and programming a fence register (again,
1871  * only if needed based on whether the old reg is still valid or the object
1872  * is tiled) and inserting a new PTE into the faulting process.
1873  *
1874  * Note that the faulting process may involve evicting existing objects
1875  * from the GTT and/or fence registers to make room.  So performance may
1876  * suffer if the GTT working set is large or there are few fence registers
1877  * left.
1878  *
1879  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1880  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881  */
1882 int i915_gem_fault(struct vm_fault *vmf)
1883 {
1884 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1885         struct vm_area_struct *area = vmf->vma;
1886         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887         struct drm_device *dev = obj->base.dev;
1888         struct drm_i915_private *dev_priv = to_i915(dev);
1889         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1891         struct i915_vma *vma;
1892         pgoff_t page_offset;
1893         unsigned int flags;
1894         int ret;
1895
1896         /* We don't use vmf->pgoff since that has the fake offset */
1897         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1898
1899         trace_i915_gem_object_fault(obj, page_offset, true, write);
1900
1901         /* Try to flush the object off the GPU first without holding the lock.
1902          * Upon acquiring the lock, we will perform our sanity checks and then
1903          * repeat the flush holding the lock in the normal manner to catch cases
1904          * where we are gazumped.
1905          */
1906         ret = i915_gem_object_wait(obj,
1907                                    I915_WAIT_INTERRUPTIBLE,
1908                                    MAX_SCHEDULE_TIMEOUT,
1909                                    NULL);
1910         if (ret)
1911                 goto err;
1912
1913         ret = i915_gem_object_pin_pages(obj);
1914         if (ret)
1915                 goto err;
1916
1917         intel_runtime_pm_get(dev_priv);
1918
1919         ret = i915_mutex_lock_interruptible(dev);
1920         if (ret)
1921                 goto err_rpm;
1922
1923         /* Access to snoopable pages through the GTT is incoherent. */
1924         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1925                 ret = -EFAULT;
1926                 goto err_unlock;
1927         }
1928
1929         /* If the object is smaller than a couple of partial vma, it is
1930          * not worth only creating a single partial vma - we may as well
1931          * clear enough space for the full object.
1932          */
1933         flags = PIN_MAPPABLE;
1934         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1935                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1936
1937         /* Now pin it into the GTT as needed */
1938         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1939         if (IS_ERR(vma)) {
1940                 /* Use a partial view if it is bigger than available space */
1941                 struct i915_ggtt_view view =
1942                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943
1944                 /* Userspace is now writing through an untracked VMA, abandon
1945                  * all hope that the hardware is able to track future writes.
1946                  */
1947                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1948
1949                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1950         }
1951         if (IS_ERR(vma)) {
1952                 ret = PTR_ERR(vma);
1953                 goto err_unlock;
1954         }
1955
1956         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1957         if (ret)
1958                 goto err_unpin;
1959
1960         ret = i915_vma_get_fence(vma);
1961         if (ret)
1962                 goto err_unpin;
1963
1964         /* Mark as being mmapped into userspace for later revocation */
1965         assert_rpm_wakelock_held(dev_priv);
1966         if (list_empty(&obj->userfault_link))
1967                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1968
1969         /* Finally, remap it using the new GTT offset */
1970         ret = remap_io_mapping(area,
1971                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1972                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1973                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1974                                &ggtt->mappable);
1975
1976 err_unpin:
1977         __i915_vma_unpin(vma);
1978 err_unlock:
1979         mutex_unlock(&dev->struct_mutex);
1980 err_rpm:
1981         intel_runtime_pm_put(dev_priv);
1982         i915_gem_object_unpin_pages(obj);
1983 err:
1984         switch (ret) {
1985         case -EIO:
1986                 /*
1987                  * We eat errors when the gpu is terminally wedged to avoid
1988                  * userspace unduly crashing (gl has no provisions for mmaps to
1989                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1990                  * and so needs to be reported.
1991                  */
1992                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1993                         ret = VM_FAULT_SIGBUS;
1994                         break;
1995                 }
1996         case -EAGAIN:
1997                 /*
1998                  * EAGAIN means the gpu is hung and we'll wait for the error
1999                  * handler to reset everything when re-faulting in
2000                  * i915_mutex_lock_interruptible.
2001                  */
2002         case 0:
2003         case -ERESTARTSYS:
2004         case -EINTR:
2005         case -EBUSY:
2006                 /*
2007                  * EBUSY is ok: this just means that another thread
2008                  * already did the job.
2009                  */
2010                 ret = VM_FAULT_NOPAGE;
2011                 break;
2012         case -ENOMEM:
2013                 ret = VM_FAULT_OOM;
2014                 break;
2015         case -ENOSPC:
2016         case -EFAULT:
2017                 ret = VM_FAULT_SIGBUS;
2018                 break;
2019         default:
2020                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2021                 ret = VM_FAULT_SIGBUS;
2022                 break;
2023         }
2024         return ret;
2025 }
2026
2027 /**
2028  * i915_gem_release_mmap - remove physical page mappings
2029  * @obj: obj in question
2030  *
2031  * Preserve the reservation of the mmapping with the DRM core code, but
2032  * relinquish ownership of the pages back to the system.
2033  *
2034  * It is vital that we remove the page mapping if we have mapped a tiled
2035  * object through the GTT and then lose the fence register due to
2036  * resource pressure. Similarly if the object has been moved out of the
2037  * aperture, than pages mapped into userspace must be revoked. Removing the
2038  * mapping will then trigger a page fault on the next user access, allowing
2039  * fixup by i915_gem_fault().
2040  */
2041 void
2042 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2043 {
2044         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2045
2046         /* Serialisation between user GTT access and our code depends upon
2047          * revoking the CPU's PTE whilst the mutex is held. The next user
2048          * pagefault then has to wait until we release the mutex.
2049          *
2050          * Note that RPM complicates somewhat by adding an additional
2051          * requirement that operations to the GGTT be made holding the RPM
2052          * wakeref.
2053          */
2054         lockdep_assert_held(&i915->drm.struct_mutex);
2055         intel_runtime_pm_get(i915);
2056
2057         if (list_empty(&obj->userfault_link))
2058                 goto out;
2059
2060         list_del_init(&obj->userfault_link);
2061         drm_vma_node_unmap(&obj->base.vma_node,
2062                            obj->base.dev->anon_inode->i_mapping);
2063
2064         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2065          * memory transactions from userspace before we return. The TLB
2066          * flushing implied above by changing the PTE above *should* be
2067          * sufficient, an extra barrier here just provides us with a bit
2068          * of paranoid documentation about our requirement to serialise
2069          * memory writes before touching registers / GSM.
2070          */
2071         wmb();
2072
2073 out:
2074         intel_runtime_pm_put(i915);
2075 }
2076
2077 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2078 {
2079         struct drm_i915_gem_object *obj, *on;
2080         int i;
2081
2082         /*
2083          * Only called during RPM suspend. All users of the userfault_list
2084          * must be holding an RPM wakeref to ensure that this can not
2085          * run concurrently with themselves (and use the struct_mutex for
2086          * protection between themselves).
2087          */
2088
2089         list_for_each_entry_safe(obj, on,
2090                                  &dev_priv->mm.userfault_list, userfault_link) {
2091                 list_del_init(&obj->userfault_link);
2092                 drm_vma_node_unmap(&obj->base.vma_node,
2093                                    obj->base.dev->anon_inode->i_mapping);
2094         }
2095
2096         /* The fence will be lost when the device powers down. If any were
2097          * in use by hardware (i.e. they are pinned), we should not be powering
2098          * down! All other fences will be reacquired by the user upon waking.
2099          */
2100         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2101                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2102
2103                 /* Ideally we want to assert that the fence register is not
2104                  * live at this point (i.e. that no piece of code will be
2105                  * trying to write through fence + GTT, as that both violates
2106                  * our tracking of activity and associated locking/barriers,
2107                  * but also is illegal given that the hw is powered down).
2108                  *
2109                  * Previously we used reg->pin_count as a "liveness" indicator.
2110                  * That is not sufficient, and we need a more fine-grained
2111                  * tool if we want to have a sanity check here.
2112                  */
2113
2114                 if (!reg->vma)
2115                         continue;
2116
2117                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2118                 reg->dirty = true;
2119         }
2120 }
2121
2122 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2123 {
2124         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125         int err;
2126
2127         err = drm_gem_create_mmap_offset(&obj->base);
2128         if (likely(!err))
2129                 return 0;
2130
2131         /* Attempt to reap some mmap space from dead objects */
2132         do {
2133                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2134                 if (err)
2135                         break;
2136
2137                 i915_gem_drain_freed_objects(dev_priv);
2138                 err = drm_gem_create_mmap_offset(&obj->base);
2139                 if (!err)
2140                         break;
2141
2142         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2143
2144         return err;
2145 }
2146
2147 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2148 {
2149         drm_gem_free_mmap_offset(&obj->base);
2150 }
2151
2152 int
2153 i915_gem_mmap_gtt(struct drm_file *file,
2154                   struct drm_device *dev,
2155                   uint32_t handle,
2156                   uint64_t *offset)
2157 {
2158         struct drm_i915_gem_object *obj;
2159         int ret;
2160
2161         obj = i915_gem_object_lookup(file, handle);
2162         if (!obj)
2163                 return -ENOENT;
2164
2165         ret = i915_gem_object_create_mmap_offset(obj);
2166         if (ret == 0)
2167                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2168
2169         i915_gem_object_put(obj);
2170         return ret;
2171 }
2172
2173 /**
2174  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2175  * @dev: DRM device
2176  * @data: GTT mapping ioctl data
2177  * @file: GEM object info
2178  *
2179  * Simply returns the fake offset to userspace so it can mmap it.
2180  * The mmap call will end up in drm_gem_mmap(), which will set things
2181  * up so we can get faults in the handler above.
2182  *
2183  * The fault handler will take care of binding the object into the GTT
2184  * (since it may have been evicted to make room for something), allocating
2185  * a fence register, and mapping the appropriate aperture address into
2186  * userspace.
2187  */
2188 int
2189 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2190                         struct drm_file *file)
2191 {
2192         struct drm_i915_gem_mmap_gtt *args = data;
2193
2194         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2195 }
2196
2197 /* Immediately discard the backing storage */
2198 static void
2199 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2200 {
2201         i915_gem_object_free_mmap_offset(obj);
2202
2203         if (obj->base.filp == NULL)
2204                 return;
2205
2206         /* Our goal here is to return as much of the memory as
2207          * is possible back to the system as we are called from OOM.
2208          * To do this we must instruct the shmfs to drop all of its
2209          * backing pages, *now*.
2210          */
2211         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2212         obj->mm.madv = __I915_MADV_PURGED;
2213         obj->mm.pages = ERR_PTR(-EFAULT);
2214 }
2215
2216 /* Try to discard unwanted pages */
2217 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2218 {
2219         struct address_space *mapping;
2220
2221         lockdep_assert_held(&obj->mm.lock);
2222         GEM_BUG_ON(obj->mm.pages);
2223
2224         switch (obj->mm.madv) {
2225         case I915_MADV_DONTNEED:
2226                 i915_gem_object_truncate(obj);
2227         case __I915_MADV_PURGED:
2228                 return;
2229         }
2230
2231         if (obj->base.filp == NULL)
2232                 return;
2233
2234         mapping = obj->base.filp->f_mapping,
2235         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2236 }
2237
2238 static void
2239 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2240                               struct sg_table *pages)
2241 {
2242         struct sgt_iter sgt_iter;
2243         struct page *page;
2244
2245         __i915_gem_object_release_shmem(obj, pages, true);
2246
2247         i915_gem_gtt_finish_pages(obj, pages);
2248
2249         if (i915_gem_object_needs_bit17_swizzle(obj))
2250                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2251
2252         for_each_sgt_page(page, sgt_iter, pages) {
2253                 if (obj->mm.dirty)
2254                         set_page_dirty(page);
2255
2256                 if (obj->mm.madv == I915_MADV_WILLNEED)
2257                         mark_page_accessed(page);
2258
2259                 put_page(page);
2260         }
2261         obj->mm.dirty = false;
2262
2263         sg_free_table(pages);
2264         kfree(pages);
2265 }
2266
2267 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2268 {
2269         struct radix_tree_iter iter;
2270         void **slot;
2271
2272         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2273                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2274 }
2275
2276 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2277                                  enum i915_mm_subclass subclass)
2278 {
2279         struct sg_table *pages;
2280
2281         if (i915_gem_object_has_pinned_pages(obj))
2282                 return;
2283
2284         GEM_BUG_ON(obj->bind_count);
2285         if (!READ_ONCE(obj->mm.pages))
2286                 return;
2287
2288         /* May be called by shrinker from within get_pages() (on another bo) */
2289         mutex_lock_nested(&obj->mm.lock, subclass);
2290         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2291                 goto unlock;
2292
2293         /* ->put_pages might need to allocate memory for the bit17 swizzle
2294          * array, hence protect them from being reaped by removing them from gtt
2295          * lists early. */
2296         pages = fetch_and_zero(&obj->mm.pages);
2297         GEM_BUG_ON(!pages);
2298
2299         if (obj->mm.mapping) {
2300                 void *ptr;
2301
2302                 ptr = page_mask_bits(obj->mm.mapping);
2303                 if (is_vmalloc_addr(ptr))
2304                         vunmap(ptr);
2305                 else
2306                         kunmap(kmap_to_page(ptr));
2307
2308                 obj->mm.mapping = NULL;
2309         }
2310
2311         __i915_gem_object_reset_page_iter(obj);
2312
2313         if (!IS_ERR(pages))
2314                 obj->ops->put_pages(obj, pages);
2315
2316 unlock:
2317         mutex_unlock(&obj->mm.lock);
2318 }
2319
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2321 {
2322         struct sg_table new_st;
2323         struct scatterlist *sg, *new_sg;
2324         unsigned int i;
2325
2326         if (orig_st->nents == orig_st->orig_nents)
2327                 return false;
2328
2329         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330                 return false;
2331
2332         new_sg = new_st.sgl;
2333         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335                 /* called before being DMA mapped, no need to copy sg->dma_* */
2336                 new_sg = sg_next(new_sg);
2337         }
2338         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339
2340         sg_free_table(orig_st);
2341
2342         *orig_st = new_st;
2343         return true;
2344 }
2345
2346 static struct sg_table *
2347 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348 {
2349         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2351         unsigned long i;
2352         struct address_space *mapping;
2353         struct sg_table *st;
2354         struct scatterlist *sg;
2355         struct sgt_iter sgt_iter;
2356         struct page *page;
2357         unsigned long last_pfn = 0;     /* suppress gcc warning */
2358         unsigned int max_segment;
2359         gfp_t noreclaim;
2360         int ret;
2361
2362         /* Assert that the object is not currently in any GPU domain. As it
2363          * wasn't in the GTT, there shouldn't be any way it could have been in
2364          * a GPU cache
2365          */
2366         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2368
2369         max_segment = swiotlb_max_segment();
2370         if (!max_segment)
2371                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2372
2373         st = kmalloc(sizeof(*st), GFP_KERNEL);
2374         if (st == NULL)
2375                 return ERR_PTR(-ENOMEM);
2376
2377 rebuild_st:
2378         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2379                 kfree(st);
2380                 return ERR_PTR(-ENOMEM);
2381         }
2382
2383         /* Get the list of pages out of our struct file.  They'll be pinned
2384          * at this point until we release them.
2385          *
2386          * Fail silently without starting the shrinker
2387          */
2388         mapping = obj->base.filp->f_mapping;
2389         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2390         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2391
2392         sg = st->sgl;
2393         st->nents = 0;
2394         for (i = 0; i < page_count; i++) {
2395                 const unsigned int shrink[] = {
2396                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2397                         0,
2398                 }, *s = shrink;
2399                 gfp_t gfp = noreclaim;
2400
2401                 do {
2402                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403                         if (likely(!IS_ERR(page)))
2404                                 break;
2405
2406                         if (!*s) {
2407                                 ret = PTR_ERR(page);
2408                                 goto err_sg;
2409                         }
2410
2411                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2412                         cond_resched();
2413
2414                         /* We've tried hard to allocate the memory by reaping
2415                          * our own buffer, now let the real VM do its job and
2416                          * go down in flames if truly OOM.
2417                          *
2418                          * However, since graphics tend to be disposable,
2419                          * defer the oom here by reporting the ENOMEM back
2420                          * to userspace.
2421                          */
2422                         if (!*s) {
2423                                 /* reclaim and warn, but no oom */
2424                                 gfp = mapping_gfp_mask(mapping);
2425
2426                                 /* Our bo are always dirty and so we require
2427                                  * kswapd to reclaim our pages (direct reclaim
2428                                  * does not effectively begin pageout of our
2429                                  * buffers on its own). However, direct reclaim
2430                                  * only waits for kswapd when under allocation
2431                                  * congestion. So as a result __GFP_RECLAIM is
2432                                  * unreliable and fails to actually reclaim our
2433                                  * dirty pages -- unless you try over and over
2434                                  * again with !__GFP_NORETRY. However, we still
2435                                  * want to fail this allocation rather than
2436                                  * trigger the out-of-memory killer and for
2437                                  * this we want the future __GFP_MAYFAIL.
2438                                  */
2439                         }
2440                 } while (1);
2441
2442                 if (!i ||
2443                     sg->length >= max_segment ||
2444                     page_to_pfn(page) != last_pfn + 1) {
2445                         if (i)
2446                                 sg = sg_next(sg);
2447                         st->nents++;
2448                         sg_set_page(sg, page, PAGE_SIZE, 0);
2449                 } else {
2450                         sg->length += PAGE_SIZE;
2451                 }
2452                 last_pfn = page_to_pfn(page);
2453
2454                 /* Check that the i965g/gm workaround works. */
2455                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2456         }
2457         if (sg) /* loop terminated early; short sg table */
2458                 sg_mark_end(sg);
2459
2460         /* Trim unused sg entries to avoid wasting memory. */
2461         i915_sg_trim(st);
2462
2463         ret = i915_gem_gtt_prepare_pages(obj, st);
2464         if (ret) {
2465                 /* DMA remapping failed? One possible cause is that
2466                  * it could not reserve enough large entries, asking
2467                  * for PAGE_SIZE chunks instead may be helpful.
2468                  */
2469                 if (max_segment > PAGE_SIZE) {
2470                         for_each_sgt_page(page, sgt_iter, st)
2471                                 put_page(page);
2472                         sg_free_table(st);
2473
2474                         max_segment = PAGE_SIZE;
2475                         goto rebuild_st;
2476                 } else {
2477                         dev_warn(&dev_priv->drm.pdev->dev,
2478                                  "Failed to DMA remap %lu pages\n",
2479                                  page_count);
2480                         goto err_pages;
2481                 }
2482         }
2483
2484         if (i915_gem_object_needs_bit17_swizzle(obj))
2485                 i915_gem_object_do_bit_17_swizzle(obj, st);
2486
2487         return st;
2488
2489 err_sg:
2490         sg_mark_end(sg);
2491 err_pages:
2492         for_each_sgt_page(page, sgt_iter, st)
2493                 put_page(page);
2494         sg_free_table(st);
2495         kfree(st);
2496
2497         /* shmemfs first checks if there is enough memory to allocate the page
2498          * and reports ENOSPC should there be insufficient, along with the usual
2499          * ENOMEM for a genuine allocation failure.
2500          *
2501          * We use ENOSPC in our driver to mean that we have run out of aperture
2502          * space and so want to translate the error from shmemfs back to our
2503          * usual understanding of ENOMEM.
2504          */
2505         if (ret == -ENOSPC)
2506                 ret = -ENOMEM;
2507
2508         return ERR_PTR(ret);
2509 }
2510
2511 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2512                                  struct sg_table *pages)
2513 {
2514         lockdep_assert_held(&obj->mm.lock);
2515
2516         obj->mm.get_page.sg_pos = pages->sgl;
2517         obj->mm.get_page.sg_idx = 0;
2518
2519         obj->mm.pages = pages;
2520
2521         if (i915_gem_object_is_tiled(obj) &&
2522             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2523                 GEM_BUG_ON(obj->mm.quirked);
2524                 __i915_gem_object_pin_pages(obj);
2525                 obj->mm.quirked = true;
2526         }
2527 }
2528
2529 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2530 {
2531         struct sg_table *pages;
2532
2533         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2534
2535         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2536                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2537                 return -EFAULT;
2538         }
2539
2540         pages = obj->ops->get_pages(obj);
2541         if (unlikely(IS_ERR(pages)))
2542                 return PTR_ERR(pages);
2543
2544         __i915_gem_object_set_pages(obj, pages);
2545         return 0;
2546 }
2547
2548 /* Ensure that the associated pages are gathered from the backing storage
2549  * and pinned into our object. i915_gem_object_pin_pages() may be called
2550  * multiple times before they are released by a single call to
2551  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2552  * either as a result of memory pressure (reaping pages under the shrinker)
2553  * or as the object is itself released.
2554  */
2555 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2556 {
2557         int err;
2558
2559         err = mutex_lock_interruptible(&obj->mm.lock);
2560         if (err)
2561                 return err;
2562
2563         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2564                 err = ____i915_gem_object_get_pages(obj);
2565                 if (err)
2566                         goto unlock;
2567
2568                 smp_mb__before_atomic();
2569         }
2570         atomic_inc(&obj->mm.pages_pin_count);
2571
2572 unlock:
2573         mutex_unlock(&obj->mm.lock);
2574         return err;
2575 }
2576
2577 /* The 'mapping' part of i915_gem_object_pin_map() below */
2578 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2579                                  enum i915_map_type type)
2580 {
2581         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2582         struct sg_table *sgt = obj->mm.pages;
2583         struct sgt_iter sgt_iter;
2584         struct page *page;
2585         struct page *stack_pages[32];
2586         struct page **pages = stack_pages;
2587         unsigned long i = 0;
2588         pgprot_t pgprot;
2589         void *addr;
2590
2591         /* A single page can always be kmapped */
2592         if (n_pages == 1 && type == I915_MAP_WB)
2593                 return kmap(sg_page(sgt->sgl));
2594
2595         if (n_pages > ARRAY_SIZE(stack_pages)) {
2596                 /* Too big for stack -- allocate temporary array instead */
2597                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2598                 if (!pages)
2599                         return NULL;
2600         }
2601
2602         for_each_sgt_page(page, sgt_iter, sgt)
2603                 pages[i++] = page;
2604
2605         /* Check that we have the expected number of pages */
2606         GEM_BUG_ON(i != n_pages);
2607
2608         switch (type) {
2609         case I915_MAP_WB:
2610                 pgprot = PAGE_KERNEL;
2611                 break;
2612         case I915_MAP_WC:
2613                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2614                 break;
2615         }
2616         addr = vmap(pages, n_pages, 0, pgprot);
2617
2618         if (pages != stack_pages)
2619                 kvfree(pages);
2620
2621         return addr;
2622 }
2623
2624 /* get, pin, and map the pages of the object into kernel space */
2625 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2626                               enum i915_map_type type)
2627 {
2628         enum i915_map_type has_type;
2629         bool pinned;
2630         void *ptr;
2631         int ret;
2632
2633         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2634
2635         ret = mutex_lock_interruptible(&obj->mm.lock);
2636         if (ret)
2637                 return ERR_PTR(ret);
2638
2639         pinned = true;
2640         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2641                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2642                         ret = ____i915_gem_object_get_pages(obj);
2643                         if (ret)
2644                                 goto err_unlock;
2645
2646                         smp_mb__before_atomic();
2647                 }
2648                 atomic_inc(&obj->mm.pages_pin_count);
2649                 pinned = false;
2650         }
2651         GEM_BUG_ON(!obj->mm.pages);
2652
2653         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2654         if (ptr && has_type != type) {
2655                 if (pinned) {
2656                         ret = -EBUSY;
2657                         goto err_unpin;
2658                 }
2659
2660                 if (is_vmalloc_addr(ptr))
2661                         vunmap(ptr);
2662                 else
2663                         kunmap(kmap_to_page(ptr));
2664
2665                 ptr = obj->mm.mapping = NULL;
2666         }
2667
2668         if (!ptr) {
2669                 ptr = i915_gem_object_map(obj, type);
2670                 if (!ptr) {
2671                         ret = -ENOMEM;
2672                         goto err_unpin;
2673                 }
2674
2675                 obj->mm.mapping = page_pack_bits(ptr, type);
2676         }
2677
2678 out_unlock:
2679         mutex_unlock(&obj->mm.lock);
2680         return ptr;
2681
2682 err_unpin:
2683         atomic_dec(&obj->mm.pages_pin_count);
2684 err_unlock:
2685         ptr = ERR_PTR(ret);
2686         goto out_unlock;
2687 }
2688
2689 static int
2690 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2691                            const struct drm_i915_gem_pwrite *arg)
2692 {
2693         struct address_space *mapping = obj->base.filp->f_mapping;
2694         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2695         u64 remain, offset;
2696         unsigned int pg;
2697
2698         /* Before we instantiate/pin the backing store for our use, we
2699          * can prepopulate the shmemfs filp efficiently using a write into
2700          * the pagecache. We avoid the penalty of instantiating all the
2701          * pages, important if the user is just writing to a few and never
2702          * uses the object on the GPU, and using a direct write into shmemfs
2703          * allows it to avoid the cost of retrieving a page (either swapin
2704          * or clearing-before-use) before it is overwritten.
2705          */
2706         if (READ_ONCE(obj->mm.pages))
2707                 return -ENODEV;
2708
2709         /* Before the pages are instantiated the object is treated as being
2710          * in the CPU domain. The pages will be clflushed as required before
2711          * use, and we can freely write into the pages directly. If userspace
2712          * races pwrite with any other operation; corruption will ensue -
2713          * that is userspace's prerogative!
2714          */
2715
2716         remain = arg->size;
2717         offset = arg->offset;
2718         pg = offset_in_page(offset);
2719
2720         do {
2721                 unsigned int len, unwritten;
2722                 struct page *page;
2723                 void *data, *vaddr;
2724                 int err;
2725
2726                 len = PAGE_SIZE - pg;
2727                 if (len > remain)
2728                         len = remain;
2729
2730                 err = pagecache_write_begin(obj->base.filp, mapping,
2731                                             offset, len, 0,
2732                                             &page, &data);
2733                 if (err < 0)
2734                         return err;
2735
2736                 vaddr = kmap(page);
2737                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2738                 kunmap(page);
2739
2740                 err = pagecache_write_end(obj->base.filp, mapping,
2741                                           offset, len, len - unwritten,
2742                                           page, data);
2743                 if (err < 0)
2744                         return err;
2745
2746                 if (unwritten)
2747                         return -EFAULT;
2748
2749                 remain -= len;
2750                 user_data += len;
2751                 offset += len;
2752                 pg = 0;
2753         } while (remain);
2754
2755         return 0;
2756 }
2757
2758 static bool ban_context(const struct i915_gem_context *ctx)
2759 {
2760         return (i915_gem_context_is_bannable(ctx) &&
2761                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2762 }
2763
2764 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2765 {
2766         ctx->guilty_count++;
2767         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2768         if (ban_context(ctx))
2769                 i915_gem_context_set_banned(ctx);
2770
2771         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2772                          ctx->name, ctx->ban_score,
2773                          yesno(i915_gem_context_is_banned(ctx)));
2774
2775         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2776                 return;
2777
2778         ctx->file_priv->context_bans++;
2779         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2780                          ctx->name, ctx->file_priv->context_bans);
2781 }
2782
2783 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2784 {
2785         ctx->active_count++;
2786 }
2787
2788 struct drm_i915_gem_request *
2789 i915_gem_find_active_request(struct intel_engine_cs *engine)
2790 {
2791         struct drm_i915_gem_request *request, *active = NULL;
2792         unsigned long flags;
2793
2794         /* We are called by the error capture and reset at a random
2795          * point in time. In particular, note that neither is crucially
2796          * ordered with an interrupt. After a hang, the GPU is dead and we
2797          * assume that no more writes can happen (we waited long enough for
2798          * all writes that were in transaction to be flushed) - adding an
2799          * extra delay for a recent interrupt is pointless. Hence, we do
2800          * not need an engine->irq_seqno_barrier() before the seqno reads.
2801          */
2802         spin_lock_irqsave(&engine->timeline->lock, flags);
2803         list_for_each_entry(request, &engine->timeline->requests, link) {
2804                 if (__i915_gem_request_completed(request,
2805                                                  request->global_seqno))
2806                         continue;
2807
2808                 GEM_BUG_ON(request->engine != engine);
2809                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2810                                     &request->fence.flags));
2811
2812                 active = request;
2813                 break;
2814         }
2815         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2816
2817         return active;
2818 }
2819
2820 static bool engine_stalled(struct intel_engine_cs *engine)
2821 {
2822         if (!engine->hangcheck.stalled)
2823                 return false;
2824
2825         /* Check for possible seqno movement after hang declaration */
2826         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2827                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2828                 return false;
2829         }
2830
2831         return true;
2832 }
2833
2834 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2835 {
2836         struct intel_engine_cs *engine;
2837         enum intel_engine_id id;
2838         int err = 0;
2839
2840         /* Ensure irq handler finishes, and not run again. */
2841         for_each_engine(engine, dev_priv, id) {
2842                 struct drm_i915_gem_request *request;
2843
2844                 /* Prevent the signaler thread from updating the request
2845                  * state (by calling dma_fence_signal) as we are processing
2846                  * the reset. The write from the GPU of the seqno is
2847                  * asynchronous and the signaler thread may see a different
2848                  * value to us and declare the request complete, even though
2849                  * the reset routine have picked that request as the active
2850                  * (incomplete) request. This conflict is not handled
2851                  * gracefully!
2852                  */
2853                 kthread_park(engine->breadcrumbs.signaler);
2854
2855                 /* Prevent request submission to the hardware until we have
2856                  * completed the reset in i915_gem_reset_finish(). If a request
2857                  * is completed by one engine, it may then queue a request
2858                  * to a second via its engine->irq_tasklet *just* as we are
2859                  * calling engine->init_hw() and also writing the ELSP.
2860                  * Turning off the engine->irq_tasklet until the reset is over
2861                  * prevents the race.
2862                  */
2863                 tasklet_kill(&engine->irq_tasklet);
2864                 tasklet_disable(&engine->irq_tasklet);
2865
2866                 if (engine->irq_seqno_barrier)
2867                         engine->irq_seqno_barrier(engine);
2868
2869                 if (engine_stalled(engine)) {
2870                         request = i915_gem_find_active_request(engine);
2871                         if (request && request->fence.error == -EIO)
2872                                 err = -EIO; /* Previous reset failed! */
2873                 }
2874         }
2875
2876         i915_gem_revoke_fences(dev_priv);
2877
2878         return err;
2879 }
2880
2881 static void skip_request(struct drm_i915_gem_request *request)
2882 {
2883         void *vaddr = request->ring->vaddr;
2884         u32 head;
2885
2886         /* As this request likely depends on state from the lost
2887          * context, clear out all the user operations leaving the
2888          * breadcrumb at the end (so we get the fence notifications).
2889          */
2890         head = request->head;
2891         if (request->postfix < head) {
2892                 memset(vaddr + head, 0, request->ring->size - head);
2893                 head = 0;
2894         }
2895         memset(vaddr + head, 0, request->postfix - head);
2896
2897         dma_fence_set_error(&request->fence, -EIO);
2898 }
2899
2900 static void engine_skip_context(struct drm_i915_gem_request *request)
2901 {
2902         struct intel_engine_cs *engine = request->engine;
2903         struct i915_gem_context *hung_ctx = request->ctx;
2904         struct intel_timeline *timeline;
2905         unsigned long flags;
2906
2907         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2908
2909         spin_lock_irqsave(&engine->timeline->lock, flags);
2910         spin_lock(&timeline->lock);
2911
2912         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2913                 if (request->ctx == hung_ctx)
2914                         skip_request(request);
2915
2916         list_for_each_entry(request, &timeline->requests, link)
2917                 skip_request(request);
2918
2919         spin_unlock(&timeline->lock);
2920         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2921 }
2922
2923 /* Returns true if the request was guilty of hang */
2924 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2925 {
2926         /* Read once and return the resolution */
2927         const bool guilty = engine_stalled(request->engine);
2928
2929         /* The guilty request will get skipped on a hung engine.
2930          *
2931          * Users of client default contexts do not rely on logical
2932          * state preserved between batches so it is safe to execute
2933          * queued requests following the hang. Non default contexts
2934          * rely on preserved state, so skipping a batch loses the
2935          * evolution of the state and it needs to be considered corrupted.
2936          * Executing more queued batches on top of corrupted state is
2937          * risky. But we take the risk by trying to advance through
2938          * the queued requests in order to make the client behaviour
2939          * more predictable around resets, by not throwing away random
2940          * amount of batches it has prepared for execution. Sophisticated
2941          * clients can use gem_reset_stats_ioctl and dma fence status
2942          * (exported via sync_file info ioctl on explicit fences) to observe
2943          * when it loses the context state and should rebuild accordingly.
2944          *
2945          * The context ban, and ultimately the client ban, mechanism are safety
2946          * valves if client submission ends up resulting in nothing more than
2947          * subsequent hangs.
2948          */
2949
2950         if (guilty) {
2951                 i915_gem_context_mark_guilty(request->ctx);
2952                 skip_request(request);
2953         } else {
2954                 i915_gem_context_mark_innocent(request->ctx);
2955                 dma_fence_set_error(&request->fence, -EAGAIN);
2956         }
2957
2958         return guilty;
2959 }
2960
2961 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2962 {
2963         struct drm_i915_gem_request *request;
2964
2965         request = i915_gem_find_active_request(engine);
2966         if (request && i915_gem_reset_request(request)) {
2967                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2968                                  engine->name, request->global_seqno);
2969
2970                 /* If this context is now banned, skip all pending requests. */
2971                 if (i915_gem_context_is_banned(request->ctx))
2972                         engine_skip_context(request);
2973         }
2974
2975         /* Setup the CS to resume from the breadcrumb of the hung request */
2976         engine->reset_hw(engine, request);
2977 }
2978
2979 void i915_gem_reset(struct drm_i915_private *dev_priv)
2980 {
2981         struct intel_engine_cs *engine;
2982         enum intel_engine_id id;
2983
2984         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2985
2986         i915_gem_retire_requests(dev_priv);
2987
2988         for_each_engine(engine, dev_priv, id) {
2989                 struct i915_gem_context *ctx;
2990
2991                 i915_gem_reset_engine(engine);
2992                 ctx = fetch_and_zero(&engine->last_retired_context);
2993                 if (ctx)
2994                         engine->context_unpin(engine, ctx);
2995         }
2996
2997         i915_gem_restore_fences(dev_priv);
2998
2999         if (dev_priv->gt.awake) {
3000                 intel_sanitize_gt_powersave(dev_priv);
3001                 intel_enable_gt_powersave(dev_priv);
3002                 if (INTEL_GEN(dev_priv) >= 6)
3003                         gen6_rps_busy(dev_priv);
3004         }
3005 }
3006
3007 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3008 {
3009         struct intel_engine_cs *engine;
3010         enum intel_engine_id id;
3011
3012         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3013
3014         for_each_engine(engine, dev_priv, id) {
3015                 tasklet_enable(&engine->irq_tasklet);
3016                 kthread_unpark(engine->breadcrumbs.signaler);
3017         }
3018 }
3019
3020 static void nop_submit_request(struct drm_i915_gem_request *request)
3021 {
3022         dma_fence_set_error(&request->fence, -EIO);
3023         i915_gem_request_submit(request);
3024         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3025 }
3026
3027 static void engine_set_wedged(struct intel_engine_cs *engine)
3028 {
3029         struct drm_i915_gem_request *request;
3030         unsigned long flags;
3031
3032         /* We need to be sure that no thread is running the old callback as
3033          * we install the nop handler (otherwise we would submit a request
3034          * to hardware that will never complete). In order to prevent this
3035          * race, we wait until the machine is idle before making the swap
3036          * (using stop_machine()).
3037          */
3038         engine->submit_request = nop_submit_request;
3039
3040         /* Mark all executing requests as skipped */
3041         spin_lock_irqsave(&engine->timeline->lock, flags);
3042         list_for_each_entry(request, &engine->timeline->requests, link)
3043                 dma_fence_set_error(&request->fence, -EIO);
3044         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3045
3046         /* Mark all pending requests as complete so that any concurrent
3047          * (lockless) lookup doesn't try and wait upon the request as we
3048          * reset it.
3049          */
3050         intel_engine_init_global_seqno(engine,
3051                                        intel_engine_last_submit(engine));
3052
3053         /*
3054          * Clear the execlists queue up before freeing the requests, as those
3055          * are the ones that keep the context and ringbuffer backing objects
3056          * pinned in place.
3057          */
3058
3059         if (i915.enable_execlists) {
3060                 struct execlist_port *port = engine->execlist_port;
3061                 unsigned long flags;
3062                 unsigned int n;
3063
3064                 spin_lock_irqsave(&engine->timeline->lock, flags);
3065
3066                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3067                         i915_gem_request_put(port_request(&port[n]));
3068                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3069                 engine->execlist_queue = RB_ROOT;
3070                 engine->execlist_first = NULL;
3071
3072                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3073         }
3074 }
3075
3076 static int __i915_gem_set_wedged_BKL(void *data)
3077 {
3078         struct drm_i915_private *i915 = data;
3079         struct intel_engine_cs *engine;
3080         enum intel_engine_id id;
3081
3082         for_each_engine(engine, i915, id)
3083                 engine_set_wedged(engine);
3084
3085         return 0;
3086 }
3087
3088 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3089 {
3090         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3091         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3092
3093         /* Retire completed requests first so the list of inflight/incomplete
3094          * requests is accurate and we don't try and mark successful requests
3095          * as in error during __i915_gem_set_wedged_BKL().
3096          */
3097         i915_gem_retire_requests(dev_priv);
3098
3099         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3100
3101         i915_gem_context_lost(dev_priv);
3102
3103         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3104 }
3105
3106 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3107 {
3108         struct i915_gem_timeline *tl;
3109         int i;
3110
3111         lockdep_assert_held(&i915->drm.struct_mutex);
3112         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3113                 return true;
3114
3115         /* Before unwedging, make sure that all pending operations
3116          * are flushed and errored out - we may have requests waiting upon
3117          * third party fences. We marked all inflight requests as EIO, and
3118          * every execbuf since returned EIO, for consistency we want all
3119          * the currently pending requests to also be marked as EIO, which
3120          * is done inside our nop_submit_request - and so we must wait.
3121          *
3122          * No more can be submitted until we reset the wedged bit.
3123          */
3124         list_for_each_entry(tl, &i915->gt.timelines, link) {
3125                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3126                         struct drm_i915_gem_request *rq;
3127
3128                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3129                                                   &i915->drm.struct_mutex);
3130                         if (!rq)
3131                                 continue;
3132
3133                         /* We can't use our normal waiter as we want to
3134                          * avoid recursively trying to handle the current
3135                          * reset. The basic dma_fence_default_wait() installs
3136                          * a callback for dma_fence_signal(), which is
3137                          * triggered by our nop handler (indirectly, the
3138                          * callback enables the signaler thread which is
3139                          * woken by the nop_submit_request() advancing the seqno
3140                          * and when the seqno passes the fence, the signaler
3141                          * then signals the fence waking us up).
3142                          */
3143                         if (dma_fence_default_wait(&rq->fence, true,
3144                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3145                                 return false;
3146                 }
3147         }
3148
3149         /* Undo nop_submit_request. We prevent all new i915 requests from
3150          * being queued (by disallowing execbuf whilst wedged) so having
3151          * waited for all active requests above, we know the system is idle
3152          * and do not have to worry about a thread being inside
3153          * engine->submit_request() as we swap over. So unlike installing
3154          * the nop_submit_request on reset, we can do this from normal
3155          * context and do not require stop_machine().
3156          */
3157         intel_engines_reset_default_submission(i915);
3158
3159         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3160         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3161
3162         return true;
3163 }
3164
3165 static void
3166 i915_gem_retire_work_handler(struct work_struct *work)
3167 {
3168         struct drm_i915_private *dev_priv =
3169                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3170         struct drm_device *dev = &dev_priv->drm;
3171
3172         /* Come back later if the device is busy... */
3173         if (mutex_trylock(&dev->struct_mutex)) {
3174                 i915_gem_retire_requests(dev_priv);
3175                 mutex_unlock(&dev->struct_mutex);
3176         }
3177
3178         /* Keep the retire handler running until we are finally idle.
3179          * We do not need to do this test under locking as in the worst-case
3180          * we queue the retire worker once too often.
3181          */
3182         if (READ_ONCE(dev_priv->gt.awake)) {
3183                 i915_queue_hangcheck(dev_priv);
3184                 queue_delayed_work(dev_priv->wq,
3185                                    &dev_priv->gt.retire_work,
3186                                    round_jiffies_up_relative(HZ));
3187         }
3188 }
3189
3190 static void
3191 i915_gem_idle_work_handler(struct work_struct *work)
3192 {
3193         struct drm_i915_private *dev_priv =
3194                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3195         struct drm_device *dev = &dev_priv->drm;
3196         bool rearm_hangcheck;
3197
3198         if (!READ_ONCE(dev_priv->gt.awake))
3199                 return;
3200
3201         /*
3202          * Wait for last execlists context complete, but bail out in case a
3203          * new request is submitted.
3204          */
3205         wait_for(intel_engines_are_idle(dev_priv), 10);
3206         if (READ_ONCE(dev_priv->gt.active_requests))
3207                 return;
3208
3209         rearm_hangcheck =
3210                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3211
3212         if (!mutex_trylock(&dev->struct_mutex)) {
3213                 /* Currently busy, come back later */
3214                 mod_delayed_work(dev_priv->wq,
3215                                  &dev_priv->gt.idle_work,
3216                                  msecs_to_jiffies(50));
3217                 goto out_rearm;
3218         }
3219
3220         /*
3221          * New request retired after this work handler started, extend active
3222          * period until next instance of the work.
3223          */
3224         if (work_pending(work))
3225                 goto out_unlock;
3226
3227         if (dev_priv->gt.active_requests)
3228                 goto out_unlock;
3229
3230         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3231                 DRM_ERROR("Timeout waiting for engines to idle\n");
3232
3233         intel_engines_mark_idle(dev_priv);
3234         i915_gem_timelines_mark_idle(dev_priv);
3235
3236         GEM_BUG_ON(!dev_priv->gt.awake);
3237         dev_priv->gt.awake = false;
3238         rearm_hangcheck = false;
3239
3240         if (INTEL_GEN(dev_priv) >= 6)
3241                 gen6_rps_idle(dev_priv);
3242         intel_runtime_pm_put(dev_priv);
3243 out_unlock:
3244         mutex_unlock(&dev->struct_mutex);
3245
3246 out_rearm:
3247         if (rearm_hangcheck) {
3248                 GEM_BUG_ON(!dev_priv->gt.awake);
3249                 i915_queue_hangcheck(dev_priv);
3250         }
3251 }
3252
3253 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3254 {
3255         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3256         struct drm_i915_file_private *fpriv = file->driver_priv;
3257         struct i915_vma *vma, *vn;
3258
3259         mutex_lock(&obj->base.dev->struct_mutex);
3260         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3261                 if (vma->vm->file == fpriv)
3262                         i915_vma_close(vma);
3263
3264         vma = obj->vma_hashed;
3265         if (vma && vma->ctx->file_priv == fpriv)
3266                 i915_vma_unlink_ctx(vma);
3267
3268         if (i915_gem_object_is_active(obj) &&
3269             !i915_gem_object_has_active_reference(obj)) {
3270                 i915_gem_object_set_active_reference(obj);
3271                 i915_gem_object_get(obj);
3272         }
3273         mutex_unlock(&obj->base.dev->struct_mutex);
3274 }
3275
3276 static unsigned long to_wait_timeout(s64 timeout_ns)
3277 {
3278         if (timeout_ns < 0)
3279                 return MAX_SCHEDULE_TIMEOUT;
3280
3281         if (timeout_ns == 0)
3282                 return 0;
3283
3284         return nsecs_to_jiffies_timeout(timeout_ns);
3285 }
3286
3287 /**
3288  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3289  * @dev: drm device pointer
3290  * @data: ioctl data blob
3291  * @file: drm file pointer
3292  *
3293  * Returns 0 if successful, else an error is returned with the remaining time in
3294  * the timeout parameter.
3295  *  -ETIME: object is still busy after timeout
3296  *  -ERESTARTSYS: signal interrupted the wait
3297  *  -ENONENT: object doesn't exist
3298  * Also possible, but rare:
3299  *  -EAGAIN: GPU wedged
3300  *  -ENOMEM: damn
3301  *  -ENODEV: Internal IRQ fail
3302  *  -E?: The add request failed
3303  *
3304  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3305  * non-zero timeout parameter the wait ioctl will wait for the given number of
3306  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3307  * without holding struct_mutex the object may become re-busied before this
3308  * function completes. A similar but shorter * race condition exists in the busy
3309  * ioctl
3310  */
3311 int
3312 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3313 {
3314         struct drm_i915_gem_wait *args = data;
3315         struct drm_i915_gem_object *obj;
3316         ktime_t start;
3317         long ret;
3318
3319         if (args->flags != 0)
3320                 return -EINVAL;
3321
3322         obj = i915_gem_object_lookup(file, args->bo_handle);
3323         if (!obj)
3324                 return -ENOENT;
3325
3326         start = ktime_get();
3327
3328         ret = i915_gem_object_wait(obj,
3329                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3330                                    to_wait_timeout(args->timeout_ns),
3331                                    to_rps_client(file));
3332
3333         if (args->timeout_ns > 0) {
3334                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3335                 if (args->timeout_ns < 0)
3336                         args->timeout_ns = 0;
3337
3338                 /*
3339                  * Apparently ktime isn't accurate enough and occasionally has a
3340                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3341                  * things up to make the test happy. We allow up to 1 jiffy.
3342                  *
3343                  * This is a regression from the timespec->ktime conversion.
3344                  */
3345                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3346                         args->timeout_ns = 0;
3347         }
3348
3349         i915_gem_object_put(obj);
3350         return ret;
3351 }
3352
3353 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3354 {
3355         int ret, i;
3356
3357         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3358                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3359                 if (ret)
3360                         return ret;
3361         }
3362
3363         return 0;
3364 }
3365
3366 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3367 {
3368         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3369 }
3370
3371 static int wait_for_engines(struct drm_i915_private *i915)
3372 {
3373         struct intel_engine_cs *engine;
3374         enum intel_engine_id id;
3375
3376         for_each_engine(engine, i915, id) {
3377                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3378                         i915_gem_set_wedged(i915);
3379                         return -EIO;
3380                 }
3381
3382                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3383                            intel_engine_last_submit(engine));
3384         }
3385
3386         return 0;
3387 }
3388
3389 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3390 {
3391         int ret;
3392
3393         /* If the device is asleep, we have no requests outstanding */
3394         if (!READ_ONCE(i915->gt.awake))
3395                 return 0;
3396
3397         if (flags & I915_WAIT_LOCKED) {
3398                 struct i915_gem_timeline *tl;
3399
3400                 lockdep_assert_held(&i915->drm.struct_mutex);
3401
3402                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3403                         ret = wait_for_timeline(tl, flags);
3404                         if (ret)
3405                                 return ret;
3406                 }
3407
3408                 i915_gem_retire_requests(i915);
3409                 GEM_BUG_ON(i915->gt.active_requests);
3410
3411                 ret = wait_for_engines(i915);
3412         } else {
3413                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3414         }
3415
3416         return ret;
3417 }
3418
3419 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3420 {
3421         /*
3422          * We manually flush the CPU domain so that we can override and
3423          * force the flush for the display, and perform it asyncrhonously.
3424          */
3425         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3426         if (obj->cache_dirty)
3427                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3428         obj->base.write_domain = 0;
3429 }
3430
3431 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3432 {
3433         if (!READ_ONCE(obj->pin_display))
3434                 return;
3435
3436         mutex_lock(&obj->base.dev->struct_mutex);
3437         __i915_gem_object_flush_for_display(obj);
3438         mutex_unlock(&obj->base.dev->struct_mutex);
3439 }
3440
3441 /**
3442  * Moves a single object to the WC read, and possibly write domain.
3443  * @obj: object to act on
3444  * @write: ask for write access or read only
3445  *
3446  * This function returns when the move is complete, including waiting on
3447  * flushes to occur.
3448  */
3449 int
3450 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3451 {
3452         int ret;
3453
3454         lockdep_assert_held(&obj->base.dev->struct_mutex);
3455
3456         ret = i915_gem_object_wait(obj,
3457                                    I915_WAIT_INTERRUPTIBLE |
3458                                    I915_WAIT_LOCKED |
3459                                    (write ? I915_WAIT_ALL : 0),
3460                                    MAX_SCHEDULE_TIMEOUT,
3461                                    NULL);
3462         if (ret)
3463                 return ret;
3464
3465         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3466                 return 0;
3467
3468         /* Flush and acquire obj->pages so that we are coherent through
3469          * direct access in memory with previous cached writes through
3470          * shmemfs and that our cache domain tracking remains valid.
3471          * For example, if the obj->filp was moved to swap without us
3472          * being notified and releasing the pages, we would mistakenly
3473          * continue to assume that the obj remained out of the CPU cached
3474          * domain.
3475          */
3476         ret = i915_gem_object_pin_pages(obj);
3477         if (ret)
3478                 return ret;
3479
3480         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3481
3482         /* Serialise direct access to this object with the barriers for
3483          * coherent writes from the GPU, by effectively invalidating the
3484          * WC domain upon first access.
3485          */
3486         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3487                 mb();
3488
3489         /* It should now be out of any other write domains, and we can update
3490          * the domain values for our changes.
3491          */
3492         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3493         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3494         if (write) {
3495                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3496                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3497                 obj->mm.dirty = true;
3498         }
3499
3500         i915_gem_object_unpin_pages(obj);
3501         return 0;
3502 }
3503
3504 /**
3505  * Moves a single object to the GTT read, and possibly write domain.
3506  * @obj: object to act on
3507  * @write: ask for write access or read only
3508  *
3509  * This function returns when the move is complete, including waiting on
3510  * flushes to occur.
3511  */
3512 int
3513 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3514 {
3515         int ret;
3516
3517         lockdep_assert_held(&obj->base.dev->struct_mutex);
3518
3519         ret = i915_gem_object_wait(obj,
3520                                    I915_WAIT_INTERRUPTIBLE |
3521                                    I915_WAIT_LOCKED |
3522                                    (write ? I915_WAIT_ALL : 0),
3523                                    MAX_SCHEDULE_TIMEOUT,
3524                                    NULL);
3525         if (ret)
3526                 return ret;
3527
3528         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3529                 return 0;
3530
3531         /* Flush and acquire obj->pages so that we are coherent through
3532          * direct access in memory with previous cached writes through
3533          * shmemfs and that our cache domain tracking remains valid.
3534          * For example, if the obj->filp was moved to swap without us
3535          * being notified and releasing the pages, we would mistakenly
3536          * continue to assume that the obj remained out of the CPU cached
3537          * domain.
3538          */
3539         ret = i915_gem_object_pin_pages(obj);
3540         if (ret)
3541                 return ret;
3542
3543         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3544
3545         /* Serialise direct access to this object with the barriers for
3546          * coherent writes from the GPU, by effectively invalidating the
3547          * GTT domain upon first access.
3548          */
3549         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3550                 mb();
3551
3552         /* It should now be out of any other write domains, and we can update
3553          * the domain values for our changes.
3554          */
3555         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3556         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3557         if (write) {
3558                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3559                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3560                 obj->mm.dirty = true;
3561         }
3562
3563         i915_gem_object_unpin_pages(obj);
3564         return 0;
3565 }
3566
3567 /**
3568  * Changes the cache-level of an object across all VMA.
3569  * @obj: object to act on
3570  * @cache_level: new cache level to set for the object
3571  *
3572  * After this function returns, the object will be in the new cache-level
3573  * across all GTT and the contents of the backing storage will be coherent,
3574  * with respect to the new cache-level. In order to keep the backing storage
3575  * coherent for all users, we only allow a single cache level to be set
3576  * globally on the object and prevent it from being changed whilst the
3577  * hardware is reading from the object. That is if the object is currently
3578  * on the scanout it will be set to uncached (or equivalent display
3579  * cache coherency) and all non-MOCS GPU access will also be uncached so
3580  * that all direct access to the scanout remains coherent.
3581  */
3582 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3583                                     enum i915_cache_level cache_level)
3584 {
3585         struct i915_vma *vma;
3586         int ret;
3587
3588         lockdep_assert_held(&obj->base.dev->struct_mutex);
3589
3590         if (obj->cache_level == cache_level)
3591                 return 0;
3592
3593         /* Inspect the list of currently bound VMA and unbind any that would
3594          * be invalid given the new cache-level. This is principally to
3595          * catch the issue of the CS prefetch crossing page boundaries and
3596          * reading an invalid PTE on older architectures.
3597          */
3598 restart:
3599         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3600                 if (!drm_mm_node_allocated(&vma->node))
3601                         continue;
3602
3603                 if (i915_vma_is_pinned(vma)) {
3604                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3605                         return -EBUSY;
3606                 }
3607
3608                 if (i915_gem_valid_gtt_space(vma, cache_level))
3609                         continue;
3610
3611                 ret = i915_vma_unbind(vma);
3612                 if (ret)
3613                         return ret;
3614
3615                 /* As unbinding may affect other elements in the
3616                  * obj->vma_list (due to side-effects from retiring
3617                  * an active vma), play safe and restart the iterator.
3618                  */
3619                 goto restart;
3620         }
3621
3622         /* We can reuse the existing drm_mm nodes but need to change the
3623          * cache-level on the PTE. We could simply unbind them all and
3624          * rebind with the correct cache-level on next use. However since
3625          * we already have a valid slot, dma mapping, pages etc, we may as
3626          * rewrite the PTE in the belief that doing so tramples upon less
3627          * state and so involves less work.
3628          */
3629         if (obj->bind_count) {
3630                 /* Before we change the PTE, the GPU must not be accessing it.
3631                  * If we wait upon the object, we know that all the bound
3632                  * VMA are no longer active.
3633                  */
3634                 ret = i915_gem_object_wait(obj,
3635                                            I915_WAIT_INTERRUPTIBLE |
3636                                            I915_WAIT_LOCKED |
3637                                            I915_WAIT_ALL,
3638                                            MAX_SCHEDULE_TIMEOUT,
3639                                            NULL);
3640                 if (ret)
3641                         return ret;
3642
3643                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3644                     cache_level != I915_CACHE_NONE) {
3645                         /* Access to snoopable pages through the GTT is
3646                          * incoherent and on some machines causes a hard
3647                          * lockup. Relinquish the CPU mmaping to force
3648                          * userspace to refault in the pages and we can
3649                          * then double check if the GTT mapping is still
3650                          * valid for that pointer access.
3651                          */
3652                         i915_gem_release_mmap(obj);
3653
3654                         /* As we no longer need a fence for GTT access,
3655                          * we can relinquish it now (and so prevent having
3656                          * to steal a fence from someone else on the next
3657                          * fence request). Note GPU activity would have
3658                          * dropped the fence as all snoopable access is
3659                          * supposed to be linear.
3660                          */
3661                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3662                                 ret = i915_vma_put_fence(vma);
3663                                 if (ret)
3664                                         return ret;
3665                         }
3666                 } else {
3667                         /* We either have incoherent backing store and
3668                          * so no GTT access or the architecture is fully
3669                          * coherent. In such cases, existing GTT mmaps
3670                          * ignore the cache bit in the PTE and we can
3671                          * rewrite it without confusing the GPU or having
3672                          * to force userspace to fault back in its mmaps.
3673                          */
3674                 }
3675
3676                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3677                         if (!drm_mm_node_allocated(&vma->node))
3678                                 continue;
3679
3680                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3681                         if (ret)
3682                                 return ret;
3683                 }
3684         }
3685
3686         list_for_each_entry(vma, &obj->vma_list, obj_link)
3687                 vma->node.color = cache_level;
3688         obj->cache_level = cache_level;
3689         obj->cache_coherent = i915_gem_object_is_coherent(obj);
3690         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3691
3692         return 0;
3693 }
3694
3695 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3696                                struct drm_file *file)
3697 {
3698         struct drm_i915_gem_caching *args = data;
3699         struct drm_i915_gem_object *obj;
3700         int err = 0;
3701
3702         rcu_read_lock();
3703         obj = i915_gem_object_lookup_rcu(file, args->handle);
3704         if (!obj) {
3705                 err = -ENOENT;
3706                 goto out;
3707         }
3708
3709         switch (obj->cache_level) {
3710         case I915_CACHE_LLC:
3711         case I915_CACHE_L3_LLC:
3712                 args->caching = I915_CACHING_CACHED;
3713                 break;
3714
3715         case I915_CACHE_WT:
3716                 args->caching = I915_CACHING_DISPLAY;
3717                 break;
3718
3719         default:
3720                 args->caching = I915_CACHING_NONE;
3721                 break;
3722         }
3723 out:
3724         rcu_read_unlock();
3725         return err;
3726 }
3727
3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3729                                struct drm_file *file)
3730 {
3731         struct drm_i915_private *i915 = to_i915(dev);
3732         struct drm_i915_gem_caching *args = data;
3733         struct drm_i915_gem_object *obj;
3734         enum i915_cache_level level;
3735         int ret = 0;
3736
3737         switch (args->caching) {
3738         case I915_CACHING_NONE:
3739                 level = I915_CACHE_NONE;
3740                 break;
3741         case I915_CACHING_CACHED:
3742                 /*
3743                  * Due to a HW issue on BXT A stepping, GPU stores via a
3744                  * snooped mapping may leave stale data in a corresponding CPU
3745                  * cacheline, whereas normally such cachelines would get
3746                  * invalidated.
3747                  */
3748                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3749                         return -ENODEV;
3750
3751                 level = I915_CACHE_LLC;
3752                 break;
3753         case I915_CACHING_DISPLAY:
3754                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3755                 break;
3756         default:
3757                 return -EINVAL;
3758         }
3759
3760         obj = i915_gem_object_lookup(file, args->handle);
3761         if (!obj)
3762                 return -ENOENT;
3763
3764         if (obj->cache_level == level)
3765                 goto out;
3766
3767         ret = i915_gem_object_wait(obj,
3768                                    I915_WAIT_INTERRUPTIBLE,
3769                                    MAX_SCHEDULE_TIMEOUT,
3770                                    to_rps_client(file));
3771         if (ret)
3772                 goto out;
3773
3774         ret = i915_mutex_lock_interruptible(dev);
3775         if (ret)
3776                 goto out;
3777
3778         ret = i915_gem_object_set_cache_level(obj, level);
3779         mutex_unlock(&dev->struct_mutex);
3780
3781 out:
3782         i915_gem_object_put(obj);
3783         return ret;
3784 }
3785
3786 /*
3787  * Prepare buffer for display plane (scanout, cursors, etc).
3788  * Can be called from an uninterruptible phase (modesetting) and allows
3789  * any flushes to be pipelined (for pageflips).
3790  */
3791 struct i915_vma *
3792 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3793                                      u32 alignment,
3794                                      const struct i915_ggtt_view *view)
3795 {
3796         struct i915_vma *vma;
3797         int ret;
3798
3799         lockdep_assert_held(&obj->base.dev->struct_mutex);
3800
3801         /* Mark the pin_display early so that we account for the
3802          * display coherency whilst setting up the cache domains.
3803          */
3804         obj->pin_display++;
3805
3806         /* The display engine is not coherent with the LLC cache on gen6.  As
3807          * a result, we make sure that the pinning that is about to occur is
3808          * done with uncached PTEs. This is lowest common denominator for all
3809          * chipsets.
3810          *
3811          * However for gen6+, we could do better by using the GFDT bit instead
3812          * of uncaching, which would allow us to flush all the LLC-cached data
3813          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3814          */
3815         ret = i915_gem_object_set_cache_level(obj,
3816                                               HAS_WT(to_i915(obj->base.dev)) ?
3817                                               I915_CACHE_WT : I915_CACHE_NONE);
3818         if (ret) {
3819                 vma = ERR_PTR(ret);
3820                 goto err_unpin_display;
3821         }
3822
3823         /* As the user may map the buffer once pinned in the display plane
3824          * (e.g. libkms for the bootup splash), we have to ensure that we
3825          * always use map_and_fenceable for all scanout buffers. However,
3826          * it may simply be too big to fit into mappable, in which case
3827          * put it anyway and hope that userspace can cope (but always first
3828          * try to preserve the existing ABI).
3829          */
3830         vma = ERR_PTR(-ENOSPC);
3831         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3832                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3833                                                PIN_MAPPABLE | PIN_NONBLOCK);
3834         if (IS_ERR(vma)) {
3835                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3836                 unsigned int flags;
3837
3838                 /* Valleyview is definitely limited to scanning out the first
3839                  * 512MiB. Lets presume this behaviour was inherited from the
3840                  * g4x display engine and that all earlier gen are similarly
3841                  * limited. Testing suggests that it is a little more
3842                  * complicated than this. For example, Cherryview appears quite
3843                  * happy to scanout from anywhere within its global aperture.
3844                  */
3845                 flags = 0;
3846                 if (HAS_GMCH_DISPLAY(i915))
3847                         flags = PIN_MAPPABLE;
3848                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3849         }
3850         if (IS_ERR(vma))
3851                 goto err_unpin_display;
3852
3853         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3854
3855         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3856         __i915_gem_object_flush_for_display(obj);
3857         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3858
3859         /* It should now be out of any other write domains, and we can update
3860          * the domain values for our changes.
3861          */
3862         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3863
3864         return vma;
3865
3866 err_unpin_display:
3867         obj->pin_display--;
3868         return vma;
3869 }
3870
3871 void
3872 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3873 {
3874         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3875
3876         if (WARN_ON(vma->obj->pin_display == 0))
3877                 return;
3878
3879         if (--vma->obj->pin_display == 0)
3880                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3881
3882         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3883         i915_gem_object_bump_inactive_ggtt(vma->obj);
3884
3885         i915_vma_unpin(vma);
3886 }
3887
3888 /**
3889  * Moves a single object to the CPU read, and possibly write domain.
3890  * @obj: object to act on
3891  * @write: requesting write or read-only access
3892  *
3893  * This function returns when the move is complete, including waiting on
3894  * flushes to occur.
3895  */
3896 int
3897 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3898 {
3899         int ret;
3900
3901         lockdep_assert_held(&obj->base.dev->struct_mutex);
3902
3903         ret = i915_gem_object_wait(obj,
3904                                    I915_WAIT_INTERRUPTIBLE |
3905                                    I915_WAIT_LOCKED |
3906                                    (write ? I915_WAIT_ALL : 0),
3907                                    MAX_SCHEDULE_TIMEOUT,
3908                                    NULL);
3909         if (ret)
3910                 return ret;
3911
3912         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3913
3914         /* Flush the CPU cache if it's still invalid. */
3915         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3916                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3917                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3918         }
3919
3920         /* It should now be out of any other write domains, and we can update
3921          * the domain values for our changes.
3922          */
3923         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3924
3925         /* If we're writing through the CPU, then the GPU read domains will
3926          * need to be invalidated at next use.
3927          */
3928         if (write)
3929                 __start_cpu_write(obj);
3930
3931         return 0;
3932 }
3933
3934 /* Throttle our rendering by waiting until the ring has completed our requests
3935  * emitted over 20 msec ago.
3936  *
3937  * Note that if we were to use the current jiffies each time around the loop,
3938  * we wouldn't escape the function with any frames outstanding if the time to
3939  * render a frame was over 20ms.
3940  *
3941  * This should get us reasonable parallelism between CPU and GPU but also
3942  * relatively low latency when blocking on a particular request to finish.
3943  */
3944 static int
3945 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3946 {
3947         struct drm_i915_private *dev_priv = to_i915(dev);
3948         struct drm_i915_file_private *file_priv = file->driver_priv;
3949         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3950         struct drm_i915_gem_request *request, *target = NULL;
3951         long ret;
3952
3953         /* ABI: return -EIO if already wedged */
3954         if (i915_terminally_wedged(&dev_priv->gpu_error))
3955                 return -EIO;
3956
3957         spin_lock(&file_priv->mm.lock);
3958         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3959                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3960                         break;
3961
3962                 if (target) {
3963                         list_del(&target->client_link);
3964                         target->file_priv = NULL;
3965                 }
3966
3967                 target = request;
3968         }
3969         if (target)
3970                 i915_gem_request_get(target);
3971         spin_unlock(&file_priv->mm.lock);
3972
3973         if (target == NULL)
3974                 return 0;
3975
3976         ret = i915_wait_request(target,
3977                                 I915_WAIT_INTERRUPTIBLE,
3978                                 MAX_SCHEDULE_TIMEOUT);
3979         i915_gem_request_put(target);
3980
3981         return ret < 0 ? ret : 0;
3982 }
3983
3984 struct i915_vma *
3985 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3986                          const struct i915_ggtt_view *view,
3987                          u64 size,
3988                          u64 alignment,
3989                          u64 flags)
3990 {
3991         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3992         struct i915_address_space *vm = &dev_priv->ggtt.base;
3993         struct i915_vma *vma;
3994         int ret;
3995
3996         lockdep_assert_held(&obj->base.dev->struct_mutex);
3997
3998         vma = i915_vma_instance(obj, vm, view);
3999         if (unlikely(IS_ERR(vma)))
4000                 return vma;
4001
4002         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4003                 if (flags & PIN_NONBLOCK &&
4004                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4005                         return ERR_PTR(-ENOSPC);
4006
4007                 if (flags & PIN_MAPPABLE) {
4008                         /* If the required space is larger than the available
4009                          * aperture, we will not able to find a slot for the
4010                          * object and unbinding the object now will be in
4011                          * vain. Worse, doing so may cause us to ping-pong
4012                          * the object in and out of the Global GTT and
4013                          * waste a lot of cycles under the mutex.
4014                          */
4015                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4016                                 return ERR_PTR(-E2BIG);
4017
4018                         /* If NONBLOCK is set the caller is optimistically
4019                          * trying to cache the full object within the mappable
4020                          * aperture, and *must* have a fallback in place for
4021                          * situations where we cannot bind the object. We
4022                          * can be a little more lax here and use the fallback
4023                          * more often to avoid costly migrations of ourselves
4024                          * and other objects within the aperture.
4025                          *
4026                          * Half-the-aperture is used as a simple heuristic.
4027                          * More interesting would to do search for a free
4028                          * block prior to making the commitment to unbind.
4029                          * That caters for the self-harm case, and with a
4030                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4031                          * we could try to minimise harm to others.
4032                          */
4033                         if (flags & PIN_NONBLOCK &&
4034                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4035                                 return ERR_PTR(-ENOSPC);
4036                 }
4037
4038                 WARN(i915_vma_is_pinned(vma),
4039                      "bo is already pinned in ggtt with incorrect alignment:"
4040                      " offset=%08x, req.alignment=%llx,"
4041                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4042                      i915_ggtt_offset(vma), alignment,
4043                      !!(flags & PIN_MAPPABLE),
4044                      i915_vma_is_map_and_fenceable(vma));
4045                 ret = i915_vma_unbind(vma);
4046                 if (ret)
4047                         return ERR_PTR(ret);
4048         }
4049
4050         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4051         if (ret)
4052                 return ERR_PTR(ret);
4053
4054         return vma;
4055 }
4056
4057 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4058 {
4059         /* Note that we could alias engines in the execbuf API, but
4060          * that would be very unwise as it prevents userspace from
4061          * fine control over engine selection. Ahem.
4062          *
4063          * This should be something like EXEC_MAX_ENGINE instead of
4064          * I915_NUM_ENGINES.
4065          */
4066         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4067         return 0x10000 << id;
4068 }
4069
4070 static __always_inline unsigned int __busy_write_id(unsigned int id)
4071 {
4072         /* The uABI guarantees an active writer is also amongst the read
4073          * engines. This would be true if we accessed the activity tracking
4074          * under the lock, but as we perform the lookup of the object and
4075          * its activity locklessly we can not guarantee that the last_write
4076          * being active implies that we have set the same engine flag from
4077          * last_read - hence we always set both read and write busy for
4078          * last_write.
4079          */
4080         return id | __busy_read_flag(id);
4081 }
4082
4083 static __always_inline unsigned int
4084 __busy_set_if_active(const struct dma_fence *fence,
4085                      unsigned int (*flag)(unsigned int id))
4086 {
4087         struct drm_i915_gem_request *rq;
4088
4089         /* We have to check the current hw status of the fence as the uABI
4090          * guarantees forward progress. We could rely on the idle worker
4091          * to eventually flush us, but to minimise latency just ask the
4092          * hardware.
4093          *
4094          * Note we only report on the status of native fences.
4095          */
4096         if (!dma_fence_is_i915(fence))
4097                 return 0;
4098
4099         /* opencode to_request() in order to avoid const warnings */
4100         rq = container_of(fence, struct drm_i915_gem_request, fence);
4101         if (i915_gem_request_completed(rq))
4102                 return 0;
4103
4104         return flag(rq->engine->uabi_id);
4105 }
4106
4107 static __always_inline unsigned int
4108 busy_check_reader(const struct dma_fence *fence)
4109 {
4110         return __busy_set_if_active(fence, __busy_read_flag);
4111 }
4112
4113 static __always_inline unsigned int
4114 busy_check_writer(const struct dma_fence *fence)
4115 {
4116         if (!fence)
4117                 return 0;
4118
4119         return __busy_set_if_active(fence, __busy_write_id);
4120 }
4121
4122 int
4123 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4124                     struct drm_file *file)
4125 {
4126         struct drm_i915_gem_busy *args = data;
4127         struct drm_i915_gem_object *obj;
4128         struct reservation_object_list *list;
4129         unsigned int seq;
4130         int err;
4131
4132         err = -ENOENT;
4133         rcu_read_lock();
4134         obj = i915_gem_object_lookup_rcu(file, args->handle);
4135         if (!obj)
4136                 goto out;
4137
4138         /* A discrepancy here is that we do not report the status of
4139          * non-i915 fences, i.e. even though we may report the object as idle,
4140          * a call to set-domain may still stall waiting for foreign rendering.
4141          * This also means that wait-ioctl may report an object as busy,
4142          * where busy-ioctl considers it idle.
4143          *
4144          * We trade the ability to warn of foreign fences to report on which
4145          * i915 engines are active for the object.
4146          *
4147          * Alternatively, we can trade that extra information on read/write
4148          * activity with
4149          *      args->busy =
4150          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4151          * to report the overall busyness. This is what the wait-ioctl does.
4152          *
4153          */
4154 retry:
4155         seq = raw_read_seqcount(&obj->resv->seq);
4156
4157         /* Translate the exclusive fence to the READ *and* WRITE engine */
4158         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4159
4160         /* Translate shared fences to READ set of engines */
4161         list = rcu_dereference(obj->resv->fence);
4162         if (list) {
4163                 unsigned int shared_count = list->shared_count, i;
4164
4165                 for (i = 0; i < shared_count; ++i) {
4166                         struct dma_fence *fence =
4167                                 rcu_dereference(list->shared[i]);
4168
4169                         args->busy |= busy_check_reader(fence);
4170                 }
4171         }
4172
4173         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4174                 goto retry;
4175
4176         err = 0;
4177 out:
4178         rcu_read_unlock();
4179         return err;
4180 }
4181
4182 int
4183 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4184                         struct drm_file *file_priv)
4185 {
4186         return i915_gem_ring_throttle(dev, file_priv);
4187 }
4188
4189 int
4190 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4191                        struct drm_file *file_priv)
4192 {
4193         struct drm_i915_private *dev_priv = to_i915(dev);
4194         struct drm_i915_gem_madvise *args = data;
4195         struct drm_i915_gem_object *obj;
4196         int err;
4197
4198         switch (args->madv) {
4199         case I915_MADV_DONTNEED:
4200         case I915_MADV_WILLNEED:
4201             break;
4202         default:
4203             return -EINVAL;
4204         }
4205
4206         obj = i915_gem_object_lookup(file_priv, args->handle);
4207         if (!obj)
4208                 return -ENOENT;
4209
4210         err = mutex_lock_interruptible(&obj->mm.lock);
4211         if (err)
4212                 goto out;
4213
4214         if (obj->mm.pages &&
4215             i915_gem_object_is_tiled(obj) &&
4216             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4217                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4218                         GEM_BUG_ON(!obj->mm.quirked);
4219                         __i915_gem_object_unpin_pages(obj);
4220                         obj->mm.quirked = false;
4221                 }
4222                 if (args->madv == I915_MADV_WILLNEED) {
4223                         GEM_BUG_ON(obj->mm.quirked);
4224                         __i915_gem_object_pin_pages(obj);
4225                         obj->mm.quirked = true;
4226                 }
4227         }
4228
4229         if (obj->mm.madv != __I915_MADV_PURGED)
4230                 obj->mm.madv = args->madv;
4231
4232         /* if the object is no longer attached, discard its backing storage */
4233         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4234                 i915_gem_object_truncate(obj);
4235
4236         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4237         mutex_unlock(&obj->mm.lock);
4238
4239 out:
4240         i915_gem_object_put(obj);
4241         return err;
4242 }
4243
4244 static void
4245 frontbuffer_retire(struct i915_gem_active *active,
4246                    struct drm_i915_gem_request *request)
4247 {
4248         struct drm_i915_gem_object *obj =
4249                 container_of(active, typeof(*obj), frontbuffer_write);
4250
4251         intel_fb_obj_flush(obj, ORIGIN_CS);
4252 }
4253
4254 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4255                           const struct drm_i915_gem_object_ops *ops)
4256 {
4257         mutex_init(&obj->mm.lock);
4258
4259         INIT_LIST_HEAD(&obj->global_link);
4260         INIT_LIST_HEAD(&obj->userfault_link);
4261         INIT_LIST_HEAD(&obj->vma_list);
4262         INIT_LIST_HEAD(&obj->batch_pool_link);
4263
4264         obj->ops = ops;
4265
4266         reservation_object_init(&obj->__builtin_resv);
4267         obj->resv = &obj->__builtin_resv;
4268
4269         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4270         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4271
4272         obj->mm.madv = I915_MADV_WILLNEED;
4273         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4274         mutex_init(&obj->mm.get_page.lock);
4275
4276         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4277 }
4278
4279 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4280         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4281                  I915_GEM_OBJECT_IS_SHRINKABLE,
4282
4283         .get_pages = i915_gem_object_get_pages_gtt,
4284         .put_pages = i915_gem_object_put_pages_gtt,
4285
4286         .pwrite = i915_gem_object_pwrite_gtt,
4287 };
4288
4289 struct drm_i915_gem_object *
4290 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4291 {
4292         struct drm_i915_gem_object *obj;
4293         struct address_space *mapping;
4294         gfp_t mask;
4295         int ret;
4296
4297         /* There is a prevalence of the assumption that we fit the object's
4298          * page count inside a 32bit _signed_ variable. Let's document this and
4299          * catch if we ever need to fix it. In the meantime, if you do spot
4300          * such a local variable, please consider fixing!
4301          */
4302         if (size >> PAGE_SHIFT > INT_MAX)
4303                 return ERR_PTR(-E2BIG);
4304
4305         if (overflows_type(size, obj->base.size))
4306                 return ERR_PTR(-E2BIG);
4307
4308         obj = i915_gem_object_alloc(dev_priv);
4309         if (obj == NULL)
4310                 return ERR_PTR(-ENOMEM);
4311
4312         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4313         if (ret)
4314                 goto fail;
4315
4316         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4317         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4318                 /* 965gm cannot relocate objects above 4GiB. */
4319                 mask &= ~__GFP_HIGHMEM;
4320                 mask |= __GFP_DMA32;
4321         }
4322
4323         mapping = obj->base.filp->f_mapping;
4324         mapping_set_gfp_mask(mapping, mask);
4325         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4326
4327         i915_gem_object_init(obj, &i915_gem_object_ops);
4328
4329         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4330         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4331
4332         if (HAS_LLC(dev_priv)) {
4333                 /* On some devices, we can have the GPU use the LLC (the CPU
4334                  * cache) for about a 10% performance improvement
4335                  * compared to uncached.  Graphics requests other than
4336                  * display scanout are coherent with the CPU in
4337                  * accessing this cache.  This means in this mode we
4338                  * don't need to clflush on the CPU side, and on the
4339                  * GPU side we only need to flush internal caches to
4340                  * get data visible to the CPU.
4341                  *
4342                  * However, we maintain the display planes as UC, and so
4343                  * need to rebind when first used as such.
4344                  */
4345                 obj->cache_level = I915_CACHE_LLC;
4346         } else
4347                 obj->cache_level = I915_CACHE_NONE;
4348
4349         obj->cache_coherent = i915_gem_object_is_coherent(obj);
4350         obj->cache_dirty = !obj->cache_coherent;
4351
4352         trace_i915_gem_object_create(obj);
4353
4354         return obj;
4355
4356 fail:
4357         i915_gem_object_free(obj);
4358         return ERR_PTR(ret);
4359 }
4360
4361 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4362 {
4363         /* If we are the last user of the backing storage (be it shmemfs
4364          * pages or stolen etc), we know that the pages are going to be
4365          * immediately released. In this case, we can then skip copying
4366          * back the contents from the GPU.
4367          */
4368
4369         if (obj->mm.madv != I915_MADV_WILLNEED)
4370                 return false;
4371
4372         if (obj->base.filp == NULL)
4373                 return true;
4374
4375         /* At first glance, this looks racy, but then again so would be
4376          * userspace racing mmap against close. However, the first external
4377          * reference to the filp can only be obtained through the
4378          * i915_gem_mmap_ioctl() which safeguards us against the user
4379          * acquiring such a reference whilst we are in the middle of
4380          * freeing the object.
4381          */
4382         return atomic_long_read(&obj->base.filp->f_count) == 1;
4383 }
4384
4385 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4386                                     struct llist_node *freed)
4387 {
4388         struct drm_i915_gem_object *obj, *on;
4389
4390         mutex_lock(&i915->drm.struct_mutex);
4391         intel_runtime_pm_get(i915);
4392         llist_for_each_entry(obj, freed, freed) {
4393                 struct i915_vma *vma, *vn;
4394
4395                 trace_i915_gem_object_destroy(obj);
4396
4397                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4398                 list_for_each_entry_safe(vma, vn,
4399                                          &obj->vma_list, obj_link) {
4400                         GEM_BUG_ON(i915_vma_is_active(vma));
4401                         vma->flags &= ~I915_VMA_PIN_MASK;
4402                         i915_vma_close(vma);
4403                 }
4404                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4405                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4406
4407                 list_del(&obj->global_link);
4408         }
4409         intel_runtime_pm_put(i915);
4410         mutex_unlock(&i915->drm.struct_mutex);
4411
4412         cond_resched();
4413
4414         llist_for_each_entry_safe(obj, on, freed, freed) {
4415                 GEM_BUG_ON(obj->bind_count);
4416                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4417
4418                 if (obj->ops->release)
4419                         obj->ops->release(obj);
4420
4421                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4422                         atomic_set(&obj->mm.pages_pin_count, 0);
4423                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4424                 GEM_BUG_ON(obj->mm.pages);
4425
4426                 if (obj->base.import_attach)
4427                         drm_prime_gem_destroy(&obj->base, NULL);
4428
4429                 reservation_object_fini(&obj->__builtin_resv);
4430                 drm_gem_object_release(&obj->base);
4431                 i915_gem_info_remove_obj(i915, obj->base.size);
4432
4433                 kfree(obj->bit_17);
4434                 i915_gem_object_free(obj);
4435         }
4436 }
4437
4438 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4439 {
4440         struct llist_node *freed;
4441
4442         freed = llist_del_all(&i915->mm.free_list);
4443         if (unlikely(freed))
4444                 __i915_gem_free_objects(i915, freed);
4445 }
4446
4447 static void __i915_gem_free_work(struct work_struct *work)
4448 {
4449         struct drm_i915_private *i915 =
4450                 container_of(work, struct drm_i915_private, mm.free_work);
4451         struct llist_node *freed;
4452
4453         /* All file-owned VMA should have been released by this point through
4454          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4455          * However, the object may also be bound into the global GTT (e.g.
4456          * older GPUs without per-process support, or for direct access through
4457          * the GTT either for the user or for scanout). Those VMA still need to
4458          * unbound now.
4459          */
4460
4461         while ((freed = llist_del_all(&i915->mm.free_list))) {
4462                 __i915_gem_free_objects(i915, freed);
4463                 if (need_resched())
4464                         break;
4465         }
4466 }
4467
4468 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4469 {
4470         struct drm_i915_gem_object *obj =
4471                 container_of(head, typeof(*obj), rcu);
4472         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4473
4474         /* We can't simply use call_rcu() from i915_gem_free_object()
4475          * as we need to block whilst unbinding, and the call_rcu
4476          * task may be called from softirq context. So we take a
4477          * detour through a worker.
4478          */
4479         if (llist_add(&obj->freed, &i915->mm.free_list))
4480                 schedule_work(&i915->mm.free_work);
4481 }
4482
4483 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4484 {
4485         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4486
4487         if (obj->mm.quirked)
4488                 __i915_gem_object_unpin_pages(obj);
4489
4490         if (discard_backing_storage(obj))
4491                 obj->mm.madv = I915_MADV_DONTNEED;
4492
4493         /* Before we free the object, make sure any pure RCU-only
4494          * read-side critical sections are complete, e.g.
4495          * i915_gem_busy_ioctl(). For the corresponding synchronized
4496          * lookup see i915_gem_object_lookup_rcu().
4497          */
4498         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4499 }
4500
4501 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4502 {
4503         lockdep_assert_held(&obj->base.dev->struct_mutex);
4504
4505         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4506         if (i915_gem_object_is_active(obj))
4507                 i915_gem_object_set_active_reference(obj);
4508         else
4509                 i915_gem_object_put(obj);
4510 }
4511
4512 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4513 {
4514         struct intel_engine_cs *engine;
4515         enum intel_engine_id id;
4516
4517         for_each_engine(engine, dev_priv, id)
4518                 GEM_BUG_ON(engine->last_retired_context &&
4519                            !i915_gem_context_is_kernel(engine->last_retired_context));
4520 }
4521
4522 void i915_gem_sanitize(struct drm_i915_private *i915)
4523 {
4524         /*
4525          * If we inherit context state from the BIOS or earlier occupants
4526          * of the GPU, the GPU may be in an inconsistent state when we
4527          * try to take over. The only way to remove the earlier state
4528          * is by resetting. However, resetting on earlier gen is tricky as
4529          * it may impact the display and we are uncertain about the stability
4530          * of the reset, so this could be applied to even earlier gen.
4531          */
4532         if (INTEL_GEN(i915) >= 5) {
4533                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4534                 WARN_ON(reset && reset != -ENODEV);
4535         }
4536 }
4537
4538 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4539 {
4540         struct drm_device *dev = &dev_priv->drm;
4541         int ret;
4542
4543         intel_runtime_pm_get(dev_priv);
4544         intel_suspend_gt_powersave(dev_priv);
4545
4546         mutex_lock(&dev->struct_mutex);
4547
4548         /* We have to flush all the executing contexts to main memory so
4549          * that they can saved in the hibernation image. To ensure the last
4550          * context image is coherent, we have to switch away from it. That
4551          * leaves the dev_priv->kernel_context still active when
4552          * we actually suspend, and its image in memory may not match the GPU
4553          * state. Fortunately, the kernel_context is disposable and we do
4554          * not rely on its state.
4555          */
4556         ret = i915_gem_switch_to_kernel_context(dev_priv);
4557         if (ret)
4558                 goto err_unlock;
4559
4560         ret = i915_gem_wait_for_idle(dev_priv,
4561                                      I915_WAIT_INTERRUPTIBLE |
4562                                      I915_WAIT_LOCKED);
4563         if (ret)
4564                 goto err_unlock;
4565
4566         assert_kernel_context_is_current(dev_priv);
4567         i915_gem_context_lost(dev_priv);
4568         mutex_unlock(&dev->struct_mutex);
4569
4570         intel_guc_suspend(dev_priv);
4571
4572         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4573         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4574
4575         /* As the idle_work is rearming if it detects a race, play safe and
4576          * repeat the flush until it is definitely idle.
4577          */
4578         while (flush_delayed_work(&dev_priv->gt.idle_work))
4579                 ;
4580
4581         i915_gem_drain_freed_objects(dev_priv);
4582
4583         /* Assert that we sucessfully flushed all the work and
4584          * reset the GPU back to its idle, low power state.
4585          */
4586         WARN_ON(dev_priv->gt.awake);
4587         WARN_ON(!intel_engines_are_idle(dev_priv));
4588
4589         /*
4590          * Neither the BIOS, ourselves or any other kernel
4591          * expects the system to be in execlists mode on startup,
4592          * so we need to reset the GPU back to legacy mode. And the only
4593          * known way to disable logical contexts is through a GPU reset.
4594          *
4595          * So in order to leave the system in a known default configuration,
4596          * always reset the GPU upon unload and suspend. Afterwards we then
4597          * clean up the GEM state tracking, flushing off the requests and
4598          * leaving the system in a known idle state.
4599          *
4600          * Note that is of the upmost importance that the GPU is idle and
4601          * all stray writes are flushed *before* we dismantle the backing
4602          * storage for the pinned objects.
4603          *
4604          * However, since we are uncertain that resetting the GPU on older
4605          * machines is a good idea, we don't - just in case it leaves the
4606          * machine in an unusable condition.
4607          */
4608         i915_gem_sanitize(dev_priv);
4609         goto out_rpm_put;
4610
4611 err_unlock:
4612         mutex_unlock(&dev->struct_mutex);
4613 out_rpm_put:
4614         intel_runtime_pm_put(dev_priv);
4615         return ret;
4616 }
4617
4618 void i915_gem_resume(struct drm_i915_private *dev_priv)
4619 {
4620         struct drm_device *dev = &dev_priv->drm;
4621
4622         WARN_ON(dev_priv->gt.awake);
4623
4624         mutex_lock(&dev->struct_mutex);
4625         i915_gem_restore_gtt_mappings(dev_priv);
4626
4627         /* As we didn't flush the kernel context before suspend, we cannot
4628          * guarantee that the context image is complete. So let's just reset
4629          * it and start again.
4630          */
4631         dev_priv->gt.resume(dev_priv);
4632
4633         mutex_unlock(&dev->struct_mutex);
4634 }
4635
4636 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4637 {
4638         if (INTEL_GEN(dev_priv) < 5 ||
4639             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4640                 return;
4641
4642         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4643                                  DISP_TILE_SURFACE_SWIZZLING);
4644
4645         if (IS_GEN5(dev_priv))
4646                 return;
4647
4648         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4649         if (IS_GEN6(dev_priv))
4650                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4651         else if (IS_GEN7(dev_priv))
4652                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4653         else if (IS_GEN8(dev_priv))
4654                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4655         else
4656                 BUG();
4657 }
4658
4659 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4660 {
4661         I915_WRITE(RING_CTL(base), 0);
4662         I915_WRITE(RING_HEAD(base), 0);
4663         I915_WRITE(RING_TAIL(base), 0);
4664         I915_WRITE(RING_START(base), 0);
4665 }
4666
4667 static void init_unused_rings(struct drm_i915_private *dev_priv)
4668 {
4669         if (IS_I830(dev_priv)) {
4670                 init_unused_ring(dev_priv, PRB1_BASE);
4671                 init_unused_ring(dev_priv, SRB0_BASE);
4672                 init_unused_ring(dev_priv, SRB1_BASE);
4673                 init_unused_ring(dev_priv, SRB2_BASE);
4674                 init_unused_ring(dev_priv, SRB3_BASE);
4675         } else if (IS_GEN2(dev_priv)) {
4676                 init_unused_ring(dev_priv, SRB0_BASE);
4677                 init_unused_ring(dev_priv, SRB1_BASE);
4678         } else if (IS_GEN3(dev_priv)) {
4679                 init_unused_ring(dev_priv, PRB1_BASE);
4680                 init_unused_ring(dev_priv, PRB2_BASE);
4681         }
4682 }
4683
4684 static int __i915_gem_restart_engines(void *data)
4685 {
4686         struct drm_i915_private *i915 = data;
4687         struct intel_engine_cs *engine;
4688         enum intel_engine_id id;
4689         int err;
4690
4691         for_each_engine(engine, i915, id) {
4692                 err = engine->init_hw(engine);
4693                 if (err)
4694                         return err;
4695         }
4696
4697         return 0;
4698 }
4699
4700 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4701 {
4702         int ret;
4703
4704         dev_priv->gt.last_init_time = ktime_get();
4705
4706         /* Double layer security blanket, see i915_gem_init() */
4707         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4708
4709         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4710                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4711
4712         if (IS_HASWELL(dev_priv))
4713                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4714                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4715
4716         if (HAS_PCH_NOP(dev_priv)) {
4717                 if (IS_IVYBRIDGE(dev_priv)) {
4718                         u32 temp = I915_READ(GEN7_MSG_CTL);
4719                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4720                         I915_WRITE(GEN7_MSG_CTL, temp);
4721                 } else if (INTEL_GEN(dev_priv) >= 7) {
4722                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4723                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4724                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4725                 }
4726         }
4727
4728         i915_gem_init_swizzling(dev_priv);
4729
4730         /*
4731          * At least 830 can leave some of the unused rings
4732          * "active" (ie. head != tail) after resume which
4733          * will prevent c3 entry. Makes sure all unused rings
4734          * are totally idle.
4735          */
4736         init_unused_rings(dev_priv);
4737
4738         BUG_ON(!dev_priv->kernel_context);
4739
4740         ret = i915_ppgtt_init_hw(dev_priv);
4741         if (ret) {
4742                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4743                 goto out;
4744         }
4745
4746         /* Need to do basic initialisation of all rings first: */
4747         ret = __i915_gem_restart_engines(dev_priv);
4748         if (ret)
4749                 goto out;
4750
4751         intel_mocs_init_l3cc_table(dev_priv);
4752
4753         /* We can't enable contexts until all firmware is loaded */
4754         ret = intel_uc_init_hw(dev_priv);
4755         if (ret)
4756                 goto out;
4757
4758 out:
4759         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4760         return ret;
4761 }
4762
4763 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4764 {
4765         if (INTEL_INFO(dev_priv)->gen < 6)
4766                 return false;
4767
4768         /* TODO: make semaphores and Execlists play nicely together */
4769         if (i915.enable_execlists)
4770                 return false;
4771
4772         if (value >= 0)
4773                 return value;
4774
4775         /* Enable semaphores on SNB when IO remapping is off */
4776         if (IS_GEN6(dev_priv) && intel_vtd_active())
4777                 return false;
4778
4779         return true;
4780 }
4781
4782 int i915_gem_init(struct drm_i915_private *dev_priv)
4783 {
4784         int ret;
4785
4786         mutex_lock(&dev_priv->drm.struct_mutex);
4787
4788         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4789
4790         if (!i915.enable_execlists) {
4791                 dev_priv->gt.resume = intel_legacy_submission_resume;
4792                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4793         } else {
4794                 dev_priv->gt.resume = intel_lr_context_resume;
4795                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4796         }
4797
4798         /* This is just a security blanket to placate dragons.
4799          * On some systems, we very sporadically observe that the first TLBs
4800          * used by the CS may be stale, despite us poking the TLB reset. If
4801          * we hold the forcewake during initialisation these problems
4802          * just magically go away.
4803          */
4804         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4805
4806         ret = i915_gem_init_userptr(dev_priv);
4807         if (ret)
4808                 goto out_unlock;
4809
4810         ret = i915_gem_init_ggtt(dev_priv);
4811         if (ret)
4812                 goto out_unlock;
4813
4814         ret = i915_gem_context_init(dev_priv);
4815         if (ret)
4816                 goto out_unlock;
4817
4818         ret = intel_engines_init(dev_priv);
4819         if (ret)
4820                 goto out_unlock;
4821
4822         ret = i915_gem_init_hw(dev_priv);
4823         if (ret == -EIO) {
4824                 /* Allow engine initialisation to fail by marking the GPU as
4825                  * wedged. But we only want to do this where the GPU is angry,
4826                  * for all other failure, such as an allocation failure, bail.
4827                  */
4828                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4829                 i915_gem_set_wedged(dev_priv);
4830                 ret = 0;
4831         }
4832
4833 out_unlock:
4834         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4835         mutex_unlock(&dev_priv->drm.struct_mutex);
4836
4837         return ret;
4838 }
4839
4840 void i915_gem_init_mmio(struct drm_i915_private *i915)
4841 {
4842         i915_gem_sanitize(i915);
4843 }
4844
4845 void
4846 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4847 {
4848         struct intel_engine_cs *engine;
4849         enum intel_engine_id id;
4850
4851         for_each_engine(engine, dev_priv, id)
4852                 dev_priv->gt.cleanup_engine(engine);
4853 }
4854
4855 void
4856 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4857 {
4858         int i;
4859
4860         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4861             !IS_CHERRYVIEW(dev_priv))
4862                 dev_priv->num_fence_regs = 32;
4863         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4864                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4865                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4866                 dev_priv->num_fence_regs = 16;
4867         else
4868                 dev_priv->num_fence_regs = 8;
4869
4870         if (intel_vgpu_active(dev_priv))
4871                 dev_priv->num_fence_regs =
4872                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4873
4874         /* Initialize fence registers to zero */
4875         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4876                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4877
4878                 fence->i915 = dev_priv;
4879                 fence->id = i;
4880                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4881         }
4882         i915_gem_restore_fences(dev_priv);
4883
4884         i915_gem_detect_bit_6_swizzle(dev_priv);
4885 }
4886
4887 int
4888 i915_gem_load_init(struct drm_i915_private *dev_priv)
4889 {
4890         int err = -ENOMEM;
4891
4892         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4893         if (!dev_priv->objects)
4894                 goto err_out;
4895
4896         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4897         if (!dev_priv->vmas)
4898                 goto err_objects;
4899
4900         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4901                                         SLAB_HWCACHE_ALIGN |
4902                                         SLAB_RECLAIM_ACCOUNT |
4903                                         SLAB_TYPESAFE_BY_RCU);
4904         if (!dev_priv->requests)
4905                 goto err_vmas;
4906
4907         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4908                                             SLAB_HWCACHE_ALIGN |
4909                                             SLAB_RECLAIM_ACCOUNT);
4910         if (!dev_priv->dependencies)
4911                 goto err_requests;
4912
4913         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4914         if (!dev_priv->priorities)
4915                 goto err_dependencies;
4916
4917         mutex_lock(&dev_priv->drm.struct_mutex);
4918         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4919         err = i915_gem_timeline_init__global(dev_priv);
4920         mutex_unlock(&dev_priv->drm.struct_mutex);
4921         if (err)
4922                 goto err_priorities;
4923
4924         INIT_LIST_HEAD(&dev_priv->context_list);
4925         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4926         init_llist_head(&dev_priv->mm.free_list);
4927         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4928         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4929         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4930         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4931         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4932                           i915_gem_retire_work_handler);
4933         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4934                           i915_gem_idle_work_handler);
4935         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4936         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4937
4938         init_waitqueue_head(&dev_priv->pending_flip_queue);
4939
4940         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4941
4942         spin_lock_init(&dev_priv->fb_tracking.lock);
4943
4944         return 0;
4945
4946 err_priorities:
4947         kmem_cache_destroy(dev_priv->priorities);
4948 err_dependencies:
4949         kmem_cache_destroy(dev_priv->dependencies);
4950 err_requests:
4951         kmem_cache_destroy(dev_priv->requests);
4952 err_vmas:
4953         kmem_cache_destroy(dev_priv->vmas);
4954 err_objects:
4955         kmem_cache_destroy(dev_priv->objects);
4956 err_out:
4957         return err;
4958 }
4959
4960 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4961 {
4962         i915_gem_drain_freed_objects(dev_priv);
4963         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4964         WARN_ON(dev_priv->mm.object_count);
4965
4966         mutex_lock(&dev_priv->drm.struct_mutex);
4967         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4968         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4969         mutex_unlock(&dev_priv->drm.struct_mutex);
4970
4971         kmem_cache_destroy(dev_priv->priorities);
4972         kmem_cache_destroy(dev_priv->dependencies);
4973         kmem_cache_destroy(dev_priv->requests);
4974         kmem_cache_destroy(dev_priv->vmas);
4975         kmem_cache_destroy(dev_priv->objects);
4976
4977         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4978         rcu_barrier();
4979 }
4980
4981 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4982 {
4983         /* Discard all purgeable objects, let userspace recover those as
4984          * required after resuming.
4985          */
4986         i915_gem_shrink_all(dev_priv);
4987
4988         return 0;
4989 }
4990
4991 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4992 {
4993         struct drm_i915_gem_object *obj;
4994         struct list_head *phases[] = {
4995                 &dev_priv->mm.unbound_list,
4996                 &dev_priv->mm.bound_list,
4997                 NULL
4998         }, **p;
4999
5000         /* Called just before we write the hibernation image.
5001          *
5002          * We need to update the domain tracking to reflect that the CPU
5003          * will be accessing all the pages to create and restore from the
5004          * hibernation, and so upon restoration those pages will be in the
5005          * CPU domain.
5006          *
5007          * To make sure the hibernation image contains the latest state,
5008          * we update that state just before writing out the image.
5009          *
5010          * To try and reduce the hibernation image, we manually shrink
5011          * the objects as well, see i915_gem_freeze()
5012          */
5013
5014         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5015         i915_gem_drain_freed_objects(dev_priv);
5016
5017         mutex_lock(&dev_priv->drm.struct_mutex);
5018         for (p = phases; *p; p++) {
5019                 list_for_each_entry(obj, *p, global_link)
5020                         __start_cpu_write(obj);
5021         }
5022         mutex_unlock(&dev_priv->drm.struct_mutex);
5023
5024         return 0;
5025 }
5026
5027 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5028 {
5029         struct drm_i915_file_private *file_priv = file->driver_priv;
5030         struct drm_i915_gem_request *request;
5031
5032         /* Clean up our request list when the client is going away, so that
5033          * later retire_requests won't dereference our soon-to-be-gone
5034          * file_priv.
5035          */
5036         spin_lock(&file_priv->mm.lock);
5037         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5038                 request->file_priv = NULL;
5039         spin_unlock(&file_priv->mm.lock);
5040
5041         if (!list_empty(&file_priv->rps.link)) {
5042                 spin_lock(&to_i915(dev)->rps.client_lock);
5043                 list_del(&file_priv->rps.link);
5044                 spin_unlock(&to_i915(dev)->rps.client_lock);
5045         }
5046 }
5047
5048 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5049 {
5050         struct drm_i915_file_private *file_priv;
5051         int ret;
5052
5053         DRM_DEBUG("\n");
5054
5055         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5056         if (!file_priv)
5057                 return -ENOMEM;
5058
5059         file->driver_priv = file_priv;
5060         file_priv->dev_priv = to_i915(dev);
5061         file_priv->file = file;
5062         INIT_LIST_HEAD(&file_priv->rps.link);
5063
5064         spin_lock_init(&file_priv->mm.lock);
5065         INIT_LIST_HEAD(&file_priv->mm.request_list);
5066
5067         file_priv->bsd_engine = -1;
5068
5069         ret = i915_gem_context_open(dev, file);
5070         if (ret)
5071                 kfree(file_priv);
5072
5073         return ret;
5074 }
5075
5076 /**
5077  * i915_gem_track_fb - update frontbuffer tracking
5078  * @old: current GEM buffer for the frontbuffer slots
5079  * @new: new GEM buffer for the frontbuffer slots
5080  * @frontbuffer_bits: bitmask of frontbuffer slots
5081  *
5082  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5083  * from @old and setting them in @new. Both @old and @new can be NULL.
5084  */
5085 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5086                        struct drm_i915_gem_object *new,
5087                        unsigned frontbuffer_bits)
5088 {
5089         /* Control of individual bits within the mask are guarded by
5090          * the owning plane->mutex, i.e. we can never see concurrent
5091          * manipulation of individual bits. But since the bitfield as a whole
5092          * is updated using RMW, we need to use atomics in order to update
5093          * the bits.
5094          */
5095         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5096                      sizeof(atomic_t) * BITS_PER_BYTE);
5097
5098         if (old) {
5099                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5100                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5101         }
5102
5103         if (new) {
5104                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5105                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5106         }
5107 }
5108
5109 /* Allocate a new GEM object and fill it with the supplied data */
5110 struct drm_i915_gem_object *
5111 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5112                                  const void *data, size_t size)
5113 {
5114         struct drm_i915_gem_object *obj;
5115         struct file *file;
5116         size_t offset;
5117         int err;
5118
5119         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5120         if (IS_ERR(obj))
5121                 return obj;
5122
5123         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5124
5125         file = obj->base.filp;
5126         offset = 0;
5127         do {
5128                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5129                 struct page *page;
5130                 void *pgdata, *vaddr;
5131
5132                 err = pagecache_write_begin(file, file->f_mapping,
5133                                             offset, len, 0,
5134                                             &page, &pgdata);
5135                 if (err < 0)
5136                         goto fail;
5137
5138                 vaddr = kmap(page);
5139                 memcpy(vaddr, data, len);
5140                 kunmap(page);
5141
5142                 err = pagecache_write_end(file, file->f_mapping,
5143                                           offset, len, len,
5144                                           page, pgdata);
5145                 if (err < 0)
5146                         goto fail;
5147
5148                 size -= len;
5149                 data += len;
5150                 offset += len;
5151         } while (size);
5152
5153         return obj;
5154
5155 fail:
5156         i915_gem_object_put(obj);
5157         return ERR_PTR(err);
5158 }
5159
5160 struct scatterlist *
5161 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5162                        unsigned int n,
5163                        unsigned int *offset)
5164 {
5165         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5166         struct scatterlist *sg;
5167         unsigned int idx, count;
5168
5169         might_sleep();
5170         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5171         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5172
5173         /* As we iterate forward through the sg, we record each entry in a
5174          * radixtree for quick repeated (backwards) lookups. If we have seen
5175          * this index previously, we will have an entry for it.
5176          *
5177          * Initial lookup is O(N), but this is amortized to O(1) for
5178          * sequential page access (where each new request is consecutive
5179          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5180          * i.e. O(1) with a large constant!
5181          */
5182         if (n < READ_ONCE(iter->sg_idx))
5183                 goto lookup;
5184
5185         mutex_lock(&iter->lock);
5186
5187         /* We prefer to reuse the last sg so that repeated lookup of this
5188          * (or the subsequent) sg are fast - comparing against the last
5189          * sg is faster than going through the radixtree.
5190          */
5191
5192         sg = iter->sg_pos;
5193         idx = iter->sg_idx;
5194         count = __sg_page_count(sg);
5195
5196         while (idx + count <= n) {
5197                 unsigned long exception, i;
5198                 int ret;
5199
5200                 /* If we cannot allocate and insert this entry, or the
5201                  * individual pages from this range, cancel updating the
5202                  * sg_idx so that on this lookup we are forced to linearly
5203                  * scan onwards, but on future lookups we will try the
5204                  * insertion again (in which case we need to be careful of
5205                  * the error return reporting that we have already inserted
5206                  * this index).
5207                  */
5208                 ret = radix_tree_insert(&iter->radix, idx, sg);
5209                 if (ret && ret != -EEXIST)
5210                         goto scan;
5211
5212                 exception =
5213                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5214                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5215                 for (i = 1; i < count; i++) {
5216                         ret = radix_tree_insert(&iter->radix, idx + i,
5217                                                 (void *)exception);
5218                         if (ret && ret != -EEXIST)
5219                                 goto scan;
5220                 }
5221
5222                 idx += count;
5223                 sg = ____sg_next(sg);
5224                 count = __sg_page_count(sg);
5225         }
5226
5227 scan:
5228         iter->sg_pos = sg;
5229         iter->sg_idx = idx;
5230
5231         mutex_unlock(&iter->lock);
5232
5233         if (unlikely(n < idx)) /* insertion completed by another thread */
5234                 goto lookup;
5235
5236         /* In case we failed to insert the entry into the radixtree, we need
5237          * to look beyond the current sg.
5238          */
5239         while (idx + count <= n) {
5240                 idx += count;
5241                 sg = ____sg_next(sg);
5242                 count = __sg_page_count(sg);
5243         }
5244
5245         *offset = n - idx;
5246         return sg;
5247
5248 lookup:
5249         rcu_read_lock();
5250
5251         sg = radix_tree_lookup(&iter->radix, n);
5252         GEM_BUG_ON(!sg);
5253
5254         /* If this index is in the middle of multi-page sg entry,
5255          * the radixtree will contain an exceptional entry that points
5256          * to the start of that range. We will return the pointer to
5257          * the base page and the offset of this page within the
5258          * sg entry's range.
5259          */
5260         *offset = 0;
5261         if (unlikely(radix_tree_exception(sg))) {
5262                 unsigned long base =
5263                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5264
5265                 sg = radix_tree_lookup(&iter->radix, base);
5266                 GEM_BUG_ON(!sg);
5267
5268                 *offset = n - base;
5269         }
5270
5271         rcu_read_unlock();
5272
5273         return sg;
5274 }
5275
5276 struct page *
5277 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5278 {
5279         struct scatterlist *sg;
5280         unsigned int offset;
5281
5282         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5283
5284         sg = i915_gem_object_get_sg(obj, n, &offset);
5285         return nth_page(sg_page(sg), offset);
5286 }
5287
5288 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5289 struct page *
5290 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5291                                unsigned int n)
5292 {
5293         struct page *page;
5294
5295         page = i915_gem_object_get_page(obj, n);
5296         if (!obj->mm.dirty)
5297                 set_page_dirty(page);
5298
5299         return page;
5300 }
5301
5302 dma_addr_t
5303 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5304                                 unsigned long n)
5305 {
5306         struct scatterlist *sg;
5307         unsigned int offset;
5308
5309         sg = i915_gem_object_get_sg(obj, n, &offset);
5310         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5311 }
5312
5313 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5314 #include "selftests/scatterlist.c"
5315 #include "selftests/mock_gem_device.c"
5316 #include "selftests/huge_gem_object.c"
5317 #include "selftests/i915_gem_object.c"
5318 #include "selftests/i915_gem_coherency.c"
5319 #endif