Merge tag 'nfs-for-4.13-5' of git://git.linux-nfs.org/projects/anna/linux-nfs
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!obj->cache_coherent)
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !obj->cache_coherent)
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
403                 /* The GPU is now idle and this client has stalled.
404                  * Since no other client has submitted a request in the
405                  * meantime, assume that this client is the only one
406                  * supplying work to the GPU but is unable to keep that
407                  * work supplied because it is waiting. Since the GPU is
408                  * then never kept fully busy, RPS autoclocking will
409                  * keep the clocks relatively low, causing further delays.
410                  * Compensate by giving the synchronous client credit for
411                  * a waitboost next time.
412                  */
413                 spin_lock(&rq->i915->rps.client_lock);
414                 list_del_init(&rps->link);
415                 spin_unlock(&rq->i915->rps.client_lock);
416         }
417
418         return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423                                  unsigned int flags,
424                                  long timeout,
425                                  struct intel_rps_client *rps)
426 {
427         unsigned int seq = __read_seqcount_begin(&resv->seq);
428         struct dma_fence *excl;
429         bool prune_fences = false;
430
431         if (flags & I915_WAIT_ALL) {
432                 struct dma_fence **shared;
433                 unsigned int count, i;
434                 int ret;
435
436                 ret = reservation_object_get_fences_rcu(resv,
437                                                         &excl, &count, &shared);
438                 if (ret)
439                         return ret;
440
441                 for (i = 0; i < count; i++) {
442                         timeout = i915_gem_object_wait_fence(shared[i],
443                                                              flags, timeout,
444                                                              rps);
445                         if (timeout < 0)
446                                 break;
447
448                         dma_fence_put(shared[i]);
449                 }
450
451                 for (; i < count; i++)
452                         dma_fence_put(shared[i]);
453                 kfree(shared);
454
455                 prune_fences = count && timeout >= 0;
456         } else {
457                 excl = reservation_object_get_excl_rcu(resv);
458         }
459
460         if (excl && timeout >= 0) {
461                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
462                 prune_fences = timeout >= 0;
463         }
464
465         dma_fence_put(excl);
466
467         /* Oportunistically prune the fences iff we know they have *all* been
468          * signaled and that the reservation object has not been changed (i.e.
469          * no new fences have been added).
470          */
471         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
472                 if (reservation_object_trylock(resv)) {
473                         if (!__read_seqcount_retry(&resv->seq, seq))
474                                 reservation_object_add_excl_fence(resv, NULL);
475                         reservation_object_unlock(resv);
476                 }
477         }
478
479         return timeout;
480 }
481
482 static void __fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         struct drm_i915_gem_request *rq;
485         struct intel_engine_cs *engine;
486
487         if (!dma_fence_is_i915(fence))
488                 return;
489
490         rq = to_request(fence);
491         engine = rq->engine;
492         if (!engine->schedule)
493                 return;
494
495         engine->schedule(rq, prio);
496 }
497
498 static void fence_set_priority(struct dma_fence *fence, int prio)
499 {
500         /* Recurse once into a fence-array */
501         if (dma_fence_is_array(fence)) {
502                 struct dma_fence_array *array = to_dma_fence_array(fence);
503                 int i;
504
505                 for (i = 0; i < array->num_fences; i++)
506                         __fence_set_priority(array->fences[i], prio);
507         } else {
508                 __fence_set_priority(fence, prio);
509         }
510 }
511
512 int
513 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
514                               unsigned int flags,
515                               int prio)
516 {
517         struct dma_fence *excl;
518
519         if (flags & I915_WAIT_ALL) {
520                 struct dma_fence **shared;
521                 unsigned int count, i;
522                 int ret;
523
524                 ret = reservation_object_get_fences_rcu(obj->resv,
525                                                         &excl, &count, &shared);
526                 if (ret)
527                         return ret;
528
529                 for (i = 0; i < count; i++) {
530                         fence_set_priority(shared[i], prio);
531                         dma_fence_put(shared[i]);
532                 }
533
534                 kfree(shared);
535         } else {
536                 excl = reservation_object_get_excl_rcu(obj->resv);
537         }
538
539         if (excl) {
540                 fence_set_priority(excl, prio);
541                 dma_fence_put(excl);
542         }
543         return 0;
544 }
545
546 /**
547  * Waits for rendering to the object to be completed
548  * @obj: i915 gem object
549  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
550  * @timeout: how long to wait
551  * @rps: client (user process) to charge for any waitboosting
552  */
553 int
554 i915_gem_object_wait(struct drm_i915_gem_object *obj,
555                      unsigned int flags,
556                      long timeout,
557                      struct intel_rps_client *rps)
558 {
559         might_sleep();
560 #if IS_ENABLED(CONFIG_LOCKDEP)
561         GEM_BUG_ON(debug_locks &&
562                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
563                    !!(flags & I915_WAIT_LOCKED));
564 #endif
565         GEM_BUG_ON(timeout < 0);
566
567         timeout = i915_gem_object_wait_reservation(obj->resv,
568                                                    flags, timeout,
569                                                    rps);
570         return timeout < 0 ? timeout : 0;
571 }
572
573 static struct intel_rps_client *to_rps_client(struct drm_file *file)
574 {
575         struct drm_i915_file_private *fpriv = file->driver_priv;
576
577         return &fpriv->rps;
578 }
579
580 int
581 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
582                             int align)
583 {
584         int ret;
585
586         if (align > obj->base.size)
587                 return -EINVAL;
588
589         if (obj->ops == &i915_gem_phys_ops)
590                 return 0;
591
592         if (obj->mm.madv != I915_MADV_WILLNEED)
593                 return -EFAULT;
594
595         if (obj->base.filp == NULL)
596                 return -EINVAL;
597
598         ret = i915_gem_object_unbind(obj);
599         if (ret)
600                 return ret;
601
602         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
603         if (obj->mm.pages)
604                 return -EBUSY;
605
606         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
607         obj->ops = &i915_gem_phys_ops;
608
609         ret = i915_gem_object_pin_pages(obj);
610         if (ret)
611                 goto err_xfer;
612
613         return 0;
614
615 err_xfer:
616         obj->ops = &i915_gem_object_ops;
617         return ret;
618 }
619
620 static int
621 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
622                      struct drm_i915_gem_pwrite *args,
623                      struct drm_file *file)
624 {
625         void *vaddr = obj->phys_handle->vaddr + args->offset;
626         char __user *user_data = u64_to_user_ptr(args->data_ptr);
627
628         /* We manually control the domain here and pretend that it
629          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
630          */
631         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
632         if (copy_from_user(vaddr, user_data, args->size))
633                 return -EFAULT;
634
635         drm_clflush_virt_range(vaddr, args->size);
636         i915_gem_chipset_flush(to_i915(obj->base.dev));
637
638         intel_fb_obj_flush(obj, ORIGIN_CPU);
639         return 0;
640 }
641
642 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
643 {
644         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 }
646
647 void i915_gem_object_free(struct drm_i915_gem_object *obj)
648 {
649         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650         kmem_cache_free(dev_priv->objects, obj);
651 }
652
653 static int
654 i915_gem_create(struct drm_file *file,
655                 struct drm_i915_private *dev_priv,
656                 uint64_t size,
657                 uint32_t *handle_p)
658 {
659         struct drm_i915_gem_object *obj;
660         int ret;
661         u32 handle;
662
663         size = roundup(size, PAGE_SIZE);
664         if (size == 0)
665                 return -EINVAL;
666
667         /* Allocate the new object */
668         obj = i915_gem_object_create(dev_priv, size);
669         if (IS_ERR(obj))
670                 return PTR_ERR(obj);
671
672         ret = drm_gem_handle_create(file, &obj->base, &handle);
673         /* drop reference from allocate - handle holds it now */
674         i915_gem_object_put(obj);
675         if (ret)
676                 return ret;
677
678         *handle_p = handle;
679         return 0;
680 }
681
682 int
683 i915_gem_dumb_create(struct drm_file *file,
684                      struct drm_device *dev,
685                      struct drm_mode_create_dumb *args)
686 {
687         /* have to work out size/pitch and return them */
688         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689         args->size = args->pitch * args->height;
690         return i915_gem_create(file, to_i915(dev),
691                                args->size, &args->handle);
692 }
693
694 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
695 {
696         return !(obj->cache_level == I915_CACHE_NONE ||
697                  obj->cache_level == I915_CACHE_WT);
698 }
699
700 /**
701  * Creates a new mm object and returns a handle to it.
702  * @dev: drm device pointer
703  * @data: ioctl data blob
704  * @file: drm file pointer
705  */
706 int
707 i915_gem_create_ioctl(struct drm_device *dev, void *data,
708                       struct drm_file *file)
709 {
710         struct drm_i915_private *dev_priv = to_i915(dev);
711         struct drm_i915_gem_create *args = data;
712
713         i915_gem_flush_free_objects(dev_priv);
714
715         return i915_gem_create(file, dev_priv,
716                                args->size, &args->handle);
717 }
718
719 static inline enum fb_op_origin
720 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
721 {
722         return (domain == I915_GEM_DOMAIN_GTT ?
723                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
724 }
725
726 static void
727 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
728 {
729         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
730
731         if (!(obj->base.write_domain & flush_domains))
732                 return;
733
734         /* No actual flushing is required for the GTT write domain.  Writes
735          * to it "immediately" go to main memory as far as we know, so there's
736          * no chipset flush.  It also doesn't land in render cache.
737          *
738          * However, we do have to enforce the order so that all writes through
739          * the GTT land before any writes to the device, such as updates to
740          * the GATT itself.
741          *
742          * We also have to wait a bit for the writes to land from the GTT.
743          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
744          * timing. This issue has only been observed when switching quickly
745          * between GTT writes and CPU reads from inside the kernel on recent hw,
746          * and it appears to only affect discrete GTT blocks (i.e. on LLC
747          * system agents we cannot reproduce this behaviour).
748          */
749         wmb();
750
751         switch (obj->base.write_domain) {
752         case I915_GEM_DOMAIN_GTT:
753                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
754                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
755                                 spin_lock_irq(&dev_priv->uncore.lock);
756                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
757                                 spin_unlock_irq(&dev_priv->uncore.lock);
758                                 intel_runtime_pm_put(dev_priv);
759                         }
760                 }
761
762                 intel_fb_obj_flush(obj,
763                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
764                 break;
765
766         case I915_GEM_DOMAIN_CPU:
767                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
768                 break;
769
770         case I915_GEM_DOMAIN_RENDER:
771                 if (gpu_write_needs_clflush(obj))
772                         obj->cache_dirty = true;
773                 break;
774         }
775
776         obj->base.write_domain = 0;
777 }
778
779 static inline int
780 __copy_to_user_swizzled(char __user *cpu_vaddr,
781                         const char *gpu_vaddr, int gpu_offset,
782                         int length)
783 {
784         int ret, cpu_offset = 0;
785
786         while (length > 0) {
787                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
788                 int this_length = min(cacheline_end - gpu_offset, length);
789                 int swizzled_gpu_offset = gpu_offset ^ 64;
790
791                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
792                                      gpu_vaddr + swizzled_gpu_offset,
793                                      this_length);
794                 if (ret)
795                         return ret + length;
796
797                 cpu_offset += this_length;
798                 gpu_offset += this_length;
799                 length -= this_length;
800         }
801
802         return 0;
803 }
804
805 static inline int
806 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
807                           const char __user *cpu_vaddr,
808                           int length)
809 {
810         int ret, cpu_offset = 0;
811
812         while (length > 0) {
813                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
814                 int this_length = min(cacheline_end - gpu_offset, length);
815                 int swizzled_gpu_offset = gpu_offset ^ 64;
816
817                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
818                                        cpu_vaddr + cpu_offset,
819                                        this_length);
820                 if (ret)
821                         return ret + length;
822
823                 cpu_offset += this_length;
824                 gpu_offset += this_length;
825                 length -= this_length;
826         }
827
828         return 0;
829 }
830
831 /*
832  * Pins the specified object's pages and synchronizes the object with
833  * GPU accesses. Sets needs_clflush to non-zero if the caller should
834  * flush the object from the CPU cache.
835  */
836 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
837                                     unsigned int *needs_clflush)
838 {
839         int ret;
840
841         lockdep_assert_held(&obj->base.dev->struct_mutex);
842
843         *needs_clflush = 0;
844         if (!i915_gem_object_has_struct_page(obj))
845                 return -ENODEV;
846
847         ret = i915_gem_object_wait(obj,
848                                    I915_WAIT_INTERRUPTIBLE |
849                                    I915_WAIT_LOCKED,
850                                    MAX_SCHEDULE_TIMEOUT,
851                                    NULL);
852         if (ret)
853                 return ret;
854
855         ret = i915_gem_object_pin_pages(obj);
856         if (ret)
857                 return ret;
858
859         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
860                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
861                 if (ret)
862                         goto err_unpin;
863                 else
864                         goto out;
865         }
866
867         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
868
869         /* If we're not in the cpu read domain, set ourself into the gtt
870          * read domain and manually flush cachelines (if required). This
871          * optimizes for the case when the gpu will dirty the data
872          * anyway again before the next pread happens.
873          */
874         if (!obj->cache_dirty &&
875             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
876                 *needs_clflush = CLFLUSH_BEFORE;
877
878 out:
879         /* return with the pages pinned */
880         return 0;
881
882 err_unpin:
883         i915_gem_object_unpin_pages(obj);
884         return ret;
885 }
886
887 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
888                                      unsigned int *needs_clflush)
889 {
890         int ret;
891
892         lockdep_assert_held(&obj->base.dev->struct_mutex);
893
894         *needs_clflush = 0;
895         if (!i915_gem_object_has_struct_page(obj))
896                 return -ENODEV;
897
898         ret = i915_gem_object_wait(obj,
899                                    I915_WAIT_INTERRUPTIBLE |
900                                    I915_WAIT_LOCKED |
901                                    I915_WAIT_ALL,
902                                    MAX_SCHEDULE_TIMEOUT,
903                                    NULL);
904         if (ret)
905                 return ret;
906
907         ret = i915_gem_object_pin_pages(obj);
908         if (ret)
909                 return ret;
910
911         if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
912                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
913                 if (ret)
914                         goto err_unpin;
915                 else
916                         goto out;
917         }
918
919         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
920
921         /* If we're not in the cpu write domain, set ourself into the
922          * gtt write domain and manually flush cachelines (as required).
923          * This optimizes for the case when the gpu will use the data
924          * right away and we therefore have to clflush anyway.
925          */
926         if (!obj->cache_dirty) {
927                 *needs_clflush |= CLFLUSH_AFTER;
928
929                 /*
930                  * Same trick applies to invalidate partially written
931                  * cachelines read before writing.
932                  */
933                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
934                         *needs_clflush |= CLFLUSH_BEFORE;
935         }
936
937 out:
938         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
939         obj->mm.dirty = true;
940         /* return with the pages pinned */
941         return 0;
942
943 err_unpin:
944         i915_gem_object_unpin_pages(obj);
945         return ret;
946 }
947
948 static void
949 shmem_clflush_swizzled_range(char *addr, unsigned long length,
950                              bool swizzled)
951 {
952         if (unlikely(swizzled)) {
953                 unsigned long start = (unsigned long) addr;
954                 unsigned long end = (unsigned long) addr + length;
955
956                 /* For swizzling simply ensure that we always flush both
957                  * channels. Lame, but simple and it works. Swizzled
958                  * pwrite/pread is far from a hotpath - current userspace
959                  * doesn't use it at all. */
960                 start = round_down(start, 128);
961                 end = round_up(end, 128);
962
963                 drm_clflush_virt_range((void *)start, end - start);
964         } else {
965                 drm_clflush_virt_range(addr, length);
966         }
967
968 }
969
970 /* Only difference to the fast-path function is that this can handle bit17
971  * and uses non-atomic copy and kmap functions. */
972 static int
973 shmem_pread_slow(struct page *page, int offset, int length,
974                  char __user *user_data,
975                  bool page_do_bit17_swizzling, bool needs_clflush)
976 {
977         char *vaddr;
978         int ret;
979
980         vaddr = kmap(page);
981         if (needs_clflush)
982                 shmem_clflush_swizzled_range(vaddr + offset, length,
983                                              page_do_bit17_swizzling);
984
985         if (page_do_bit17_swizzling)
986                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
987         else
988                 ret = __copy_to_user(user_data, vaddr + offset, length);
989         kunmap(page);
990
991         return ret ? - EFAULT : 0;
992 }
993
994 static int
995 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
996             bool page_do_bit17_swizzling, bool needs_clflush)
997 {
998         int ret;
999
1000         ret = -ENODEV;
1001         if (!page_do_bit17_swizzling) {
1002                 char *vaddr = kmap_atomic(page);
1003
1004                 if (needs_clflush)
1005                         drm_clflush_virt_range(vaddr + offset, length);
1006                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1007                 kunmap_atomic(vaddr);
1008         }
1009         if (ret == 0)
1010                 return 0;
1011
1012         return shmem_pread_slow(page, offset, length, user_data,
1013                                 page_do_bit17_swizzling, needs_clflush);
1014 }
1015
1016 static int
1017 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1018                      struct drm_i915_gem_pread *args)
1019 {
1020         char __user *user_data;
1021         u64 remain;
1022         unsigned int obj_do_bit17_swizzling;
1023         unsigned int needs_clflush;
1024         unsigned int idx, offset;
1025         int ret;
1026
1027         obj_do_bit17_swizzling = 0;
1028         if (i915_gem_object_needs_bit17_swizzle(obj))
1029                 obj_do_bit17_swizzling = BIT(17);
1030
1031         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1032         if (ret)
1033                 return ret;
1034
1035         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1036         mutex_unlock(&obj->base.dev->struct_mutex);
1037         if (ret)
1038                 return ret;
1039
1040         remain = args->size;
1041         user_data = u64_to_user_ptr(args->data_ptr);
1042         offset = offset_in_page(args->offset);
1043         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1044                 struct page *page = i915_gem_object_get_page(obj, idx);
1045                 int length;
1046
1047                 length = remain;
1048                 if (offset + length > PAGE_SIZE)
1049                         length = PAGE_SIZE - offset;
1050
1051                 ret = shmem_pread(page, offset, length, user_data,
1052                                   page_to_phys(page) & obj_do_bit17_swizzling,
1053                                   needs_clflush);
1054                 if (ret)
1055                         break;
1056
1057                 remain -= length;
1058                 user_data += length;
1059                 offset = 0;
1060         }
1061
1062         i915_gem_obj_finish_shmem_access(obj);
1063         return ret;
1064 }
1065
1066 static inline bool
1067 gtt_user_read(struct io_mapping *mapping,
1068               loff_t base, int offset,
1069               char __user *user_data, int length)
1070 {
1071         void *vaddr;
1072         unsigned long unwritten;
1073
1074         /* We can use the cpu mem copy function because this is X86. */
1075         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1076         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1077         io_mapping_unmap_atomic(vaddr);
1078         if (unwritten) {
1079                 vaddr = (void __force *)
1080                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1081                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1082                 io_mapping_unmap(vaddr);
1083         }
1084         return unwritten;
1085 }
1086
1087 static int
1088 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1089                    const struct drm_i915_gem_pread *args)
1090 {
1091         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1092         struct i915_ggtt *ggtt = &i915->ggtt;
1093         struct drm_mm_node node;
1094         struct i915_vma *vma;
1095         void __user *user_data;
1096         u64 remain, offset;
1097         int ret;
1098
1099         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1100         if (ret)
1101                 return ret;
1102
1103         intel_runtime_pm_get(i915);
1104         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1105                                        PIN_MAPPABLE | PIN_NONBLOCK);
1106         if (!IS_ERR(vma)) {
1107                 node.start = i915_ggtt_offset(vma);
1108                 node.allocated = false;
1109                 ret = i915_vma_put_fence(vma);
1110                 if (ret) {
1111                         i915_vma_unpin(vma);
1112                         vma = ERR_PTR(ret);
1113                 }
1114         }
1115         if (IS_ERR(vma)) {
1116                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1117                 if (ret)
1118                         goto out_unlock;
1119                 GEM_BUG_ON(!node.allocated);
1120         }
1121
1122         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1123         if (ret)
1124                 goto out_unpin;
1125
1126         mutex_unlock(&i915->drm.struct_mutex);
1127
1128         user_data = u64_to_user_ptr(args->data_ptr);
1129         remain = args->size;
1130         offset = args->offset;
1131
1132         while (remain > 0) {
1133                 /* Operation in this page
1134                  *
1135                  * page_base = page offset within aperture
1136                  * page_offset = offset within page
1137                  * page_length = bytes to copy for this page
1138                  */
1139                 u32 page_base = node.start;
1140                 unsigned page_offset = offset_in_page(offset);
1141                 unsigned page_length = PAGE_SIZE - page_offset;
1142                 page_length = remain < page_length ? remain : page_length;
1143                 if (node.allocated) {
1144                         wmb();
1145                         ggtt->base.insert_page(&ggtt->base,
1146                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1147                                                node.start, I915_CACHE_NONE, 0);
1148                         wmb();
1149                 } else {
1150                         page_base += offset & PAGE_MASK;
1151                 }
1152
1153                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1154                                   user_data, page_length)) {
1155                         ret = -EFAULT;
1156                         break;
1157                 }
1158
1159                 remain -= page_length;
1160                 user_data += page_length;
1161                 offset += page_length;
1162         }
1163
1164         mutex_lock(&i915->drm.struct_mutex);
1165 out_unpin:
1166         if (node.allocated) {
1167                 wmb();
1168                 ggtt->base.clear_range(&ggtt->base,
1169                                        node.start, node.size);
1170                 remove_mappable_node(&node);
1171         } else {
1172                 i915_vma_unpin(vma);
1173         }
1174 out_unlock:
1175         intel_runtime_pm_put(i915);
1176         mutex_unlock(&i915->drm.struct_mutex);
1177
1178         return ret;
1179 }
1180
1181 /**
1182  * Reads data from the object referenced by handle.
1183  * @dev: drm device pointer
1184  * @data: ioctl data blob
1185  * @file: drm file pointer
1186  *
1187  * On error, the contents of *data are undefined.
1188  */
1189 int
1190 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1191                      struct drm_file *file)
1192 {
1193         struct drm_i915_gem_pread *args = data;
1194         struct drm_i915_gem_object *obj;
1195         int ret;
1196
1197         if (args->size == 0)
1198                 return 0;
1199
1200         if (!access_ok(VERIFY_WRITE,
1201                        u64_to_user_ptr(args->data_ptr),
1202                        args->size))
1203                 return -EFAULT;
1204
1205         obj = i915_gem_object_lookup(file, args->handle);
1206         if (!obj)
1207                 return -ENOENT;
1208
1209         /* Bounds check source.  */
1210         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1211                 ret = -EINVAL;
1212                 goto out;
1213         }
1214
1215         trace_i915_gem_object_pread(obj, args->offset, args->size);
1216
1217         ret = i915_gem_object_wait(obj,
1218                                    I915_WAIT_INTERRUPTIBLE,
1219                                    MAX_SCHEDULE_TIMEOUT,
1220                                    to_rps_client(file));
1221         if (ret)
1222                 goto out;
1223
1224         ret = i915_gem_object_pin_pages(obj);
1225         if (ret)
1226                 goto out;
1227
1228         ret = i915_gem_shmem_pread(obj, args);
1229         if (ret == -EFAULT || ret == -ENODEV)
1230                 ret = i915_gem_gtt_pread(obj, args);
1231
1232         i915_gem_object_unpin_pages(obj);
1233 out:
1234         i915_gem_object_put(obj);
1235         return ret;
1236 }
1237
1238 /* This is the fast write path which cannot handle
1239  * page faults in the source data
1240  */
1241
1242 static inline bool
1243 ggtt_write(struct io_mapping *mapping,
1244            loff_t base, int offset,
1245            char __user *user_data, int length)
1246 {
1247         void *vaddr;
1248         unsigned long unwritten;
1249
1250         /* We can use the cpu mem copy function because this is X86. */
1251         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1252         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1253                                                       user_data, length);
1254         io_mapping_unmap_atomic(vaddr);
1255         if (unwritten) {
1256                 vaddr = (void __force *)
1257                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1258                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1259                 io_mapping_unmap(vaddr);
1260         }
1261
1262         return unwritten;
1263 }
1264
1265 /**
1266  * This is the fast pwrite path, where we copy the data directly from the
1267  * user into the GTT, uncached.
1268  * @obj: i915 GEM object
1269  * @args: pwrite arguments structure
1270  */
1271 static int
1272 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1273                          const struct drm_i915_gem_pwrite *args)
1274 {
1275         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1276         struct i915_ggtt *ggtt = &i915->ggtt;
1277         struct drm_mm_node node;
1278         struct i915_vma *vma;
1279         u64 remain, offset;
1280         void __user *user_data;
1281         int ret;
1282
1283         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1284         if (ret)
1285                 return ret;
1286
1287         intel_runtime_pm_get(i915);
1288         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289                                        PIN_MAPPABLE | PIN_NONBLOCK);
1290         if (!IS_ERR(vma)) {
1291                 node.start = i915_ggtt_offset(vma);
1292                 node.allocated = false;
1293                 ret = i915_vma_put_fence(vma);
1294                 if (ret) {
1295                         i915_vma_unpin(vma);
1296                         vma = ERR_PTR(ret);
1297                 }
1298         }
1299         if (IS_ERR(vma)) {
1300                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1301                 if (ret)
1302                         goto out_unlock;
1303                 GEM_BUG_ON(!node.allocated);
1304         }
1305
1306         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1307         if (ret)
1308                 goto out_unpin;
1309
1310         mutex_unlock(&i915->drm.struct_mutex);
1311
1312         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1313
1314         user_data = u64_to_user_ptr(args->data_ptr);
1315         offset = args->offset;
1316         remain = args->size;
1317         while (remain) {
1318                 /* Operation in this page
1319                  *
1320                  * page_base = page offset within aperture
1321                  * page_offset = offset within page
1322                  * page_length = bytes to copy for this page
1323                  */
1324                 u32 page_base = node.start;
1325                 unsigned int page_offset = offset_in_page(offset);
1326                 unsigned int page_length = PAGE_SIZE - page_offset;
1327                 page_length = remain < page_length ? remain : page_length;
1328                 if (node.allocated) {
1329                         wmb(); /* flush the write before we modify the GGTT */
1330                         ggtt->base.insert_page(&ggtt->base,
1331                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1332                                                node.start, I915_CACHE_NONE, 0);
1333                         wmb(); /* flush modifications to the GGTT (insert_page) */
1334                 } else {
1335                         page_base += offset & PAGE_MASK;
1336                 }
1337                 /* If we get a fault while copying data, then (presumably) our
1338                  * source page isn't available.  Return the error and we'll
1339                  * retry in the slow path.
1340                  * If the object is non-shmem backed, we retry again with the
1341                  * path that handles page fault.
1342                  */
1343                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1344                                user_data, page_length)) {
1345                         ret = -EFAULT;
1346                         break;
1347                 }
1348
1349                 remain -= page_length;
1350                 user_data += page_length;
1351                 offset += page_length;
1352         }
1353         intel_fb_obj_flush(obj, ORIGIN_CPU);
1354
1355         mutex_lock(&i915->drm.struct_mutex);
1356 out_unpin:
1357         if (node.allocated) {
1358                 wmb();
1359                 ggtt->base.clear_range(&ggtt->base,
1360                                        node.start, node.size);
1361                 remove_mappable_node(&node);
1362         } else {
1363                 i915_vma_unpin(vma);
1364         }
1365 out_unlock:
1366         intel_runtime_pm_put(i915);
1367         mutex_unlock(&i915->drm.struct_mutex);
1368         return ret;
1369 }
1370
1371 static int
1372 shmem_pwrite_slow(struct page *page, int offset, int length,
1373                   char __user *user_data,
1374                   bool page_do_bit17_swizzling,
1375                   bool needs_clflush_before,
1376                   bool needs_clflush_after)
1377 {
1378         char *vaddr;
1379         int ret;
1380
1381         vaddr = kmap(page);
1382         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1383                 shmem_clflush_swizzled_range(vaddr + offset, length,
1384                                              page_do_bit17_swizzling);
1385         if (page_do_bit17_swizzling)
1386                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1387                                                 length);
1388         else
1389                 ret = __copy_from_user(vaddr + offset, user_data, length);
1390         if (needs_clflush_after)
1391                 shmem_clflush_swizzled_range(vaddr + offset, length,
1392                                              page_do_bit17_swizzling);
1393         kunmap(page);
1394
1395         return ret ? -EFAULT : 0;
1396 }
1397
1398 /* Per-page copy function for the shmem pwrite fastpath.
1399  * Flushes invalid cachelines before writing to the target if
1400  * needs_clflush_before is set and flushes out any written cachelines after
1401  * writing if needs_clflush is set.
1402  */
1403 static int
1404 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1405              bool page_do_bit17_swizzling,
1406              bool needs_clflush_before,
1407              bool needs_clflush_after)
1408 {
1409         int ret;
1410
1411         ret = -ENODEV;
1412         if (!page_do_bit17_swizzling) {
1413                 char *vaddr = kmap_atomic(page);
1414
1415                 if (needs_clflush_before)
1416                         drm_clflush_virt_range(vaddr + offset, len);
1417                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1418                 if (needs_clflush_after)
1419                         drm_clflush_virt_range(vaddr + offset, len);
1420
1421                 kunmap_atomic(vaddr);
1422         }
1423         if (ret == 0)
1424                 return ret;
1425
1426         return shmem_pwrite_slow(page, offset, len, user_data,
1427                                  page_do_bit17_swizzling,
1428                                  needs_clflush_before,
1429                                  needs_clflush_after);
1430 }
1431
1432 static int
1433 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1434                       const struct drm_i915_gem_pwrite *args)
1435 {
1436         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1437         void __user *user_data;
1438         u64 remain;
1439         unsigned int obj_do_bit17_swizzling;
1440         unsigned int partial_cacheline_write;
1441         unsigned int needs_clflush;
1442         unsigned int offset, idx;
1443         int ret;
1444
1445         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1446         if (ret)
1447                 return ret;
1448
1449         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1450         mutex_unlock(&i915->drm.struct_mutex);
1451         if (ret)
1452                 return ret;
1453
1454         obj_do_bit17_swizzling = 0;
1455         if (i915_gem_object_needs_bit17_swizzle(obj))
1456                 obj_do_bit17_swizzling = BIT(17);
1457
1458         /* If we don't overwrite a cacheline completely we need to be
1459          * careful to have up-to-date data by first clflushing. Don't
1460          * overcomplicate things and flush the entire patch.
1461          */
1462         partial_cacheline_write = 0;
1463         if (needs_clflush & CLFLUSH_BEFORE)
1464                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1465
1466         user_data = u64_to_user_ptr(args->data_ptr);
1467         remain = args->size;
1468         offset = offset_in_page(args->offset);
1469         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1470                 struct page *page = i915_gem_object_get_page(obj, idx);
1471                 int length;
1472
1473                 length = remain;
1474                 if (offset + length > PAGE_SIZE)
1475                         length = PAGE_SIZE - offset;
1476
1477                 ret = shmem_pwrite(page, offset, length, user_data,
1478                                    page_to_phys(page) & obj_do_bit17_swizzling,
1479                                    (offset | length) & partial_cacheline_write,
1480                                    needs_clflush & CLFLUSH_AFTER);
1481                 if (ret)
1482                         break;
1483
1484                 remain -= length;
1485                 user_data += length;
1486                 offset = 0;
1487         }
1488
1489         intel_fb_obj_flush(obj, ORIGIN_CPU);
1490         i915_gem_obj_finish_shmem_access(obj);
1491         return ret;
1492 }
1493
1494 /**
1495  * Writes data to the object referenced by handle.
1496  * @dev: drm device
1497  * @data: ioctl data blob
1498  * @file: drm file
1499  *
1500  * On error, the contents of the buffer that were to be modified are undefined.
1501  */
1502 int
1503 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1504                       struct drm_file *file)
1505 {
1506         struct drm_i915_gem_pwrite *args = data;
1507         struct drm_i915_gem_object *obj;
1508         int ret;
1509
1510         if (args->size == 0)
1511                 return 0;
1512
1513         if (!access_ok(VERIFY_READ,
1514                        u64_to_user_ptr(args->data_ptr),
1515                        args->size))
1516                 return -EFAULT;
1517
1518         obj = i915_gem_object_lookup(file, args->handle);
1519         if (!obj)
1520                 return -ENOENT;
1521
1522         /* Bounds check destination. */
1523         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1524                 ret = -EINVAL;
1525                 goto err;
1526         }
1527
1528         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1529
1530         ret = -ENODEV;
1531         if (obj->ops->pwrite)
1532                 ret = obj->ops->pwrite(obj, args);
1533         if (ret != -ENODEV)
1534                 goto err;
1535
1536         ret = i915_gem_object_wait(obj,
1537                                    I915_WAIT_INTERRUPTIBLE |
1538                                    I915_WAIT_ALL,
1539                                    MAX_SCHEDULE_TIMEOUT,
1540                                    to_rps_client(file));
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_gem_object_pin_pages(obj);
1545         if (ret)
1546                 goto err;
1547
1548         ret = -EFAULT;
1549         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1550          * it would end up going through the fenced access, and we'll get
1551          * different detiling behavior between reading and writing.
1552          * pread/pwrite currently are reading and writing from the CPU
1553          * perspective, requiring manual detiling by the client.
1554          */
1555         if (!i915_gem_object_has_struct_page(obj) ||
1556             cpu_write_needs_clflush(obj))
1557                 /* Note that the gtt paths might fail with non-page-backed user
1558                  * pointers (e.g. gtt mappings when moving data between
1559                  * textures). Fallback to the shmem path in that case.
1560                  */
1561                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1562
1563         if (ret == -EFAULT || ret == -ENOSPC) {
1564                 if (obj->phys_handle)
1565                         ret = i915_gem_phys_pwrite(obj, args, file);
1566                 else
1567                         ret = i915_gem_shmem_pwrite(obj, args);
1568         }
1569
1570         i915_gem_object_unpin_pages(obj);
1571 err:
1572         i915_gem_object_put(obj);
1573         return ret;
1574 }
1575
1576 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1577 {
1578         struct drm_i915_private *i915;
1579         struct list_head *list;
1580         struct i915_vma *vma;
1581
1582         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1583                 if (!i915_vma_is_ggtt(vma))
1584                         break;
1585
1586                 if (i915_vma_is_active(vma))
1587                         continue;
1588
1589                 if (!drm_mm_node_allocated(&vma->node))
1590                         continue;
1591
1592                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1593         }
1594
1595         i915 = to_i915(obj->base.dev);
1596         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1597         list_move_tail(&obj->global_link, list);
1598 }
1599
1600 /**
1601  * Called when user space prepares to use an object with the CPU, either
1602  * through the mmap ioctl's mapping or a GTT mapping.
1603  * @dev: drm device
1604  * @data: ioctl data blob
1605  * @file: drm file
1606  */
1607 int
1608 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1609                           struct drm_file *file)
1610 {
1611         struct drm_i915_gem_set_domain *args = data;
1612         struct drm_i915_gem_object *obj;
1613         uint32_t read_domains = args->read_domains;
1614         uint32_t write_domain = args->write_domain;
1615         int err;
1616
1617         /* Only handle setting domains to types used by the CPU. */
1618         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1619                 return -EINVAL;
1620
1621         /* Having something in the write domain implies it's in the read
1622          * domain, and only that read domain.  Enforce that in the request.
1623          */
1624         if (write_domain != 0 && read_domains != write_domain)
1625                 return -EINVAL;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Try to flush the object off the GPU without holding the lock.
1632          * We will repeat the flush holding the lock in the normal manner
1633          * to catch cases where we are gazumped.
1634          */
1635         err = i915_gem_object_wait(obj,
1636                                    I915_WAIT_INTERRUPTIBLE |
1637                                    (write_domain ? I915_WAIT_ALL : 0),
1638                                    MAX_SCHEDULE_TIMEOUT,
1639                                    to_rps_client(file));
1640         if (err)
1641                 goto out;
1642
1643         /* Flush and acquire obj->pages so that we are coherent through
1644          * direct access in memory with previous cached writes through
1645          * shmemfs and that our cache domain tracking remains valid.
1646          * For example, if the obj->filp was moved to swap without us
1647          * being notified and releasing the pages, we would mistakenly
1648          * continue to assume that the obj remained out of the CPU cached
1649          * domain.
1650          */
1651         err = i915_gem_object_pin_pages(obj);
1652         if (err)
1653                 goto out;
1654
1655         err = i915_mutex_lock_interruptible(dev);
1656         if (err)
1657                 goto out_unpin;
1658
1659         if (read_domains & I915_GEM_DOMAIN_WC)
1660                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1661         else if (read_domains & I915_GEM_DOMAIN_GTT)
1662                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1663         else
1664                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1665
1666         /* And bump the LRU for this access */
1667         i915_gem_object_bump_inactive_ggtt(obj);
1668
1669         mutex_unlock(&dev->struct_mutex);
1670
1671         if (write_domain != 0)
1672                 intel_fb_obj_invalidate(obj,
1673                                         fb_write_origin(obj, write_domain));
1674
1675 out_unpin:
1676         i915_gem_object_unpin_pages(obj);
1677 out:
1678         i915_gem_object_put(obj);
1679         return err;
1680 }
1681
1682 /**
1683  * Called when user space has done writes to this buffer
1684  * @dev: drm device
1685  * @data: ioctl data blob
1686  * @file: drm file
1687  */
1688 int
1689 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690                          struct drm_file *file)
1691 {
1692         struct drm_i915_gem_sw_finish *args = data;
1693         struct drm_i915_gem_object *obj;
1694
1695         obj = i915_gem_object_lookup(file, args->handle);
1696         if (!obj)
1697                 return -ENOENT;
1698
1699         /* Pinned buffers may be scanout, so flush the cache */
1700         i915_gem_object_flush_if_display(obj);
1701         i915_gem_object_put(obj);
1702
1703         return 0;
1704 }
1705
1706 /**
1707  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1708  *                       it is mapped to.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  *
1713  * While the mapping holds a reference on the contents of the object, it doesn't
1714  * imply a ref on the object itself.
1715  *
1716  * IMPORTANT:
1717  *
1718  * DRM driver writers who look a this function as an example for how to do GEM
1719  * mmap support, please don't implement mmap support like here. The modern way
1720  * to implement DRM mmap support is with an mmap offset ioctl (like
1721  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1722  * That way debug tooling like valgrind will understand what's going on, hiding
1723  * the mmap call in a driver private ioctl will break that. The i915 driver only
1724  * does cpu mmaps this way because we didn't know better.
1725  */
1726 int
1727 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1728                     struct drm_file *file)
1729 {
1730         struct drm_i915_gem_mmap *args = data;
1731         struct drm_i915_gem_object *obj;
1732         unsigned long addr;
1733
1734         if (args->flags & ~(I915_MMAP_WC))
1735                 return -EINVAL;
1736
1737         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1738                 return -ENODEV;
1739
1740         obj = i915_gem_object_lookup(file, args->handle);
1741         if (!obj)
1742                 return -ENOENT;
1743
1744         /* prime objects have no backing filp to GEM mmap
1745          * pages from.
1746          */
1747         if (!obj->base.filp) {
1748                 i915_gem_object_put(obj);
1749                 return -EINVAL;
1750         }
1751
1752         addr = vm_mmap(obj->base.filp, 0, args->size,
1753                        PROT_READ | PROT_WRITE, MAP_SHARED,
1754                        args->offset);
1755         if (args->flags & I915_MMAP_WC) {
1756                 struct mm_struct *mm = current->mm;
1757                 struct vm_area_struct *vma;
1758
1759                 if (down_write_killable(&mm->mmap_sem)) {
1760                         i915_gem_object_put(obj);
1761                         return -EINTR;
1762                 }
1763                 vma = find_vma(mm, addr);
1764                 if (vma)
1765                         vma->vm_page_prot =
1766                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1767                 else
1768                         addr = -ENOMEM;
1769                 up_write(&mm->mmap_sem);
1770
1771                 /* This may race, but that's ok, it only gets set */
1772                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1773         }
1774         i915_gem_object_put(obj);
1775         if (IS_ERR((void *)addr))
1776                 return addr;
1777
1778         args->addr_ptr = (uint64_t) addr;
1779
1780         return 0;
1781 }
1782
1783 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1784 {
1785         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 }
1787
1788 /**
1789  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1790  *
1791  * A history of the GTT mmap interface:
1792  *
1793  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1794  *     aligned and suitable for fencing, and still fit into the available
1795  *     mappable space left by the pinned display objects. A classic problem
1796  *     we called the page-fault-of-doom where we would ping-pong between
1797  *     two objects that could not fit inside the GTT and so the memcpy
1798  *     would page one object in at the expense of the other between every
1799  *     single byte.
1800  *
1801  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1802  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1803  *     object is too large for the available space (or simply too large
1804  *     for the mappable aperture!), a view is created instead and faulted
1805  *     into userspace. (This view is aligned and sized appropriately for
1806  *     fenced access.)
1807  *
1808  * 2 - Recognise WC as a separate cache domain so that we can flush the
1809  *     delayed writes via GTT before performing direct access via WC.
1810  *
1811  * Restrictions:
1812  *
1813  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1814  *    hangs on some architectures, corruption on others. An attempt to service
1815  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1816  *
1817  *  * the object must be able to fit into RAM (physical memory, though no
1818  *    limited to the mappable aperture).
1819  *
1820  *
1821  * Caveats:
1822  *
1823  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1824  *    all data to system memory. Subsequent access will not be synchronized.
1825  *
1826  *  * all mappings are revoked on runtime device suspend.
1827  *
1828  *  * there are only 8, 16 or 32 fence registers to share between all users
1829  *    (older machines require fence register for display and blitter access
1830  *    as well). Contention of the fence registers will cause the previous users
1831  *    to be unmapped and any new access will generate new page faults.
1832  *
1833  *  * running out of memory while servicing a fault may generate a SIGBUS,
1834  *    rather than the expected SIGSEGV.
1835  */
1836 int i915_gem_mmap_gtt_version(void)
1837 {
1838         return 2;
1839 }
1840
1841 static inline struct i915_ggtt_view
1842 compute_partial_view(struct drm_i915_gem_object *obj,
1843                      pgoff_t page_offset,
1844                      unsigned int chunk)
1845 {
1846         struct i915_ggtt_view view;
1847
1848         if (i915_gem_object_is_tiled(obj))
1849                 chunk = roundup(chunk, tile_row_pages(obj));
1850
1851         view.type = I915_GGTT_VIEW_PARTIAL;
1852         view.partial.offset = rounddown(page_offset, chunk);
1853         view.partial.size =
1854                 min_t(unsigned int, chunk,
1855                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856
1857         /* If the partial covers the entire object, just create a normal VMA. */
1858         if (chunk >= obj->base.size >> PAGE_SHIFT)
1859                 view.type = I915_GGTT_VIEW_NORMAL;
1860
1861         return view;
1862 }
1863
1864 /**
1865  * i915_gem_fault - fault a page into the GTT
1866  * @vmf: fault info
1867  *
1868  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1869  * from userspace.  The fault handler takes care of binding the object to
1870  * the GTT (if needed), allocating and programming a fence register (again,
1871  * only if needed based on whether the old reg is still valid or the object
1872  * is tiled) and inserting a new PTE into the faulting process.
1873  *
1874  * Note that the faulting process may involve evicting existing objects
1875  * from the GTT and/or fence registers to make room.  So performance may
1876  * suffer if the GTT working set is large or there are few fence registers
1877  * left.
1878  *
1879  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1880  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881  */
1882 int i915_gem_fault(struct vm_fault *vmf)
1883 {
1884 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1885         struct vm_area_struct *area = vmf->vma;
1886         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887         struct drm_device *dev = obj->base.dev;
1888         struct drm_i915_private *dev_priv = to_i915(dev);
1889         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1891         struct i915_vma *vma;
1892         pgoff_t page_offset;
1893         unsigned int flags;
1894         int ret;
1895
1896         /* We don't use vmf->pgoff since that has the fake offset */
1897         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1898
1899         trace_i915_gem_object_fault(obj, page_offset, true, write);
1900
1901         /* Try to flush the object off the GPU first without holding the lock.
1902          * Upon acquiring the lock, we will perform our sanity checks and then
1903          * repeat the flush holding the lock in the normal manner to catch cases
1904          * where we are gazumped.
1905          */
1906         ret = i915_gem_object_wait(obj,
1907                                    I915_WAIT_INTERRUPTIBLE,
1908                                    MAX_SCHEDULE_TIMEOUT,
1909                                    NULL);
1910         if (ret)
1911                 goto err;
1912
1913         ret = i915_gem_object_pin_pages(obj);
1914         if (ret)
1915                 goto err;
1916
1917         intel_runtime_pm_get(dev_priv);
1918
1919         ret = i915_mutex_lock_interruptible(dev);
1920         if (ret)
1921                 goto err_rpm;
1922
1923         /* Access to snoopable pages through the GTT is incoherent. */
1924         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1925                 ret = -EFAULT;
1926                 goto err_unlock;
1927         }
1928
1929         /* If the object is smaller than a couple of partial vma, it is
1930          * not worth only creating a single partial vma - we may as well
1931          * clear enough space for the full object.
1932          */
1933         flags = PIN_MAPPABLE;
1934         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1935                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1936
1937         /* Now pin it into the GTT as needed */
1938         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1939         if (IS_ERR(vma)) {
1940                 /* Use a partial view if it is bigger than available space */
1941                 struct i915_ggtt_view view =
1942                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943
1944                 /* Userspace is now writing through an untracked VMA, abandon
1945                  * all hope that the hardware is able to track future writes.
1946                  */
1947                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1948
1949                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1950         }
1951         if (IS_ERR(vma)) {
1952                 ret = PTR_ERR(vma);
1953                 goto err_unlock;
1954         }
1955
1956         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1957         if (ret)
1958                 goto err_unpin;
1959
1960         ret = i915_vma_get_fence(vma);
1961         if (ret)
1962                 goto err_unpin;
1963
1964         /* Mark as being mmapped into userspace for later revocation */
1965         assert_rpm_wakelock_held(dev_priv);
1966         if (list_empty(&obj->userfault_link))
1967                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1968
1969         /* Finally, remap it using the new GTT offset */
1970         ret = remap_io_mapping(area,
1971                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1972                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1973                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1974                                &ggtt->mappable);
1975
1976 err_unpin:
1977         __i915_vma_unpin(vma);
1978 err_unlock:
1979         mutex_unlock(&dev->struct_mutex);
1980 err_rpm:
1981         intel_runtime_pm_put(dev_priv);
1982         i915_gem_object_unpin_pages(obj);
1983 err:
1984         switch (ret) {
1985         case -EIO:
1986                 /*
1987                  * We eat errors when the gpu is terminally wedged to avoid
1988                  * userspace unduly crashing (gl has no provisions for mmaps to
1989                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1990                  * and so needs to be reported.
1991                  */
1992                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1993                         ret = VM_FAULT_SIGBUS;
1994                         break;
1995                 }
1996         case -EAGAIN:
1997                 /*
1998                  * EAGAIN means the gpu is hung and we'll wait for the error
1999                  * handler to reset everything when re-faulting in
2000                  * i915_mutex_lock_interruptible.
2001                  */
2002         case 0:
2003         case -ERESTARTSYS:
2004         case -EINTR:
2005         case -EBUSY:
2006                 /*
2007                  * EBUSY is ok: this just means that another thread
2008                  * already did the job.
2009                  */
2010                 ret = VM_FAULT_NOPAGE;
2011                 break;
2012         case -ENOMEM:
2013                 ret = VM_FAULT_OOM;
2014                 break;
2015         case -ENOSPC:
2016         case -EFAULT:
2017                 ret = VM_FAULT_SIGBUS;
2018                 break;
2019         default:
2020                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2021                 ret = VM_FAULT_SIGBUS;
2022                 break;
2023         }
2024         return ret;
2025 }
2026
2027 /**
2028  * i915_gem_release_mmap - remove physical page mappings
2029  * @obj: obj in question
2030  *
2031  * Preserve the reservation of the mmapping with the DRM core code, but
2032  * relinquish ownership of the pages back to the system.
2033  *
2034  * It is vital that we remove the page mapping if we have mapped a tiled
2035  * object through the GTT and then lose the fence register due to
2036  * resource pressure. Similarly if the object has been moved out of the
2037  * aperture, than pages mapped into userspace must be revoked. Removing the
2038  * mapping will then trigger a page fault on the next user access, allowing
2039  * fixup by i915_gem_fault().
2040  */
2041 void
2042 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2043 {
2044         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2045
2046         /* Serialisation between user GTT access and our code depends upon
2047          * revoking the CPU's PTE whilst the mutex is held. The next user
2048          * pagefault then has to wait until we release the mutex.
2049          *
2050          * Note that RPM complicates somewhat by adding an additional
2051          * requirement that operations to the GGTT be made holding the RPM
2052          * wakeref.
2053          */
2054         lockdep_assert_held(&i915->drm.struct_mutex);
2055         intel_runtime_pm_get(i915);
2056
2057         if (list_empty(&obj->userfault_link))
2058                 goto out;
2059
2060         list_del_init(&obj->userfault_link);
2061         drm_vma_node_unmap(&obj->base.vma_node,
2062                            obj->base.dev->anon_inode->i_mapping);
2063
2064         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2065          * memory transactions from userspace before we return. The TLB
2066          * flushing implied above by changing the PTE above *should* be
2067          * sufficient, an extra barrier here just provides us with a bit
2068          * of paranoid documentation about our requirement to serialise
2069          * memory writes before touching registers / GSM.
2070          */
2071         wmb();
2072
2073 out:
2074         intel_runtime_pm_put(i915);
2075 }
2076
2077 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2078 {
2079         struct drm_i915_gem_object *obj, *on;
2080         int i;
2081
2082         /*
2083          * Only called during RPM suspend. All users of the userfault_list
2084          * must be holding an RPM wakeref to ensure that this can not
2085          * run concurrently with themselves (and use the struct_mutex for
2086          * protection between themselves).
2087          */
2088
2089         list_for_each_entry_safe(obj, on,
2090                                  &dev_priv->mm.userfault_list, userfault_link) {
2091                 list_del_init(&obj->userfault_link);
2092                 drm_vma_node_unmap(&obj->base.vma_node,
2093                                    obj->base.dev->anon_inode->i_mapping);
2094         }
2095
2096         /* The fence will be lost when the device powers down. If any were
2097          * in use by hardware (i.e. they are pinned), we should not be powering
2098          * down! All other fences will be reacquired by the user upon waking.
2099          */
2100         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2101                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2102
2103                 /* Ideally we want to assert that the fence register is not
2104                  * live at this point (i.e. that no piece of code will be
2105                  * trying to write through fence + GTT, as that both violates
2106                  * our tracking of activity and associated locking/barriers,
2107                  * but also is illegal given that the hw is powered down).
2108                  *
2109                  * Previously we used reg->pin_count as a "liveness" indicator.
2110                  * That is not sufficient, and we need a more fine-grained
2111                  * tool if we want to have a sanity check here.
2112                  */
2113
2114                 if (!reg->vma)
2115                         continue;
2116
2117                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2118                 reg->dirty = true;
2119         }
2120 }
2121
2122 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2123 {
2124         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125         int err;
2126
2127         err = drm_gem_create_mmap_offset(&obj->base);
2128         if (likely(!err))
2129                 return 0;
2130
2131         /* Attempt to reap some mmap space from dead objects */
2132         do {
2133                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2134                 if (err)
2135                         break;
2136
2137                 i915_gem_drain_freed_objects(dev_priv);
2138                 err = drm_gem_create_mmap_offset(&obj->base);
2139                 if (!err)
2140                         break;
2141
2142         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2143
2144         return err;
2145 }
2146
2147 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2148 {
2149         drm_gem_free_mmap_offset(&obj->base);
2150 }
2151
2152 int
2153 i915_gem_mmap_gtt(struct drm_file *file,
2154                   struct drm_device *dev,
2155                   uint32_t handle,
2156                   uint64_t *offset)
2157 {
2158         struct drm_i915_gem_object *obj;
2159         int ret;
2160
2161         obj = i915_gem_object_lookup(file, handle);
2162         if (!obj)
2163                 return -ENOENT;
2164
2165         ret = i915_gem_object_create_mmap_offset(obj);
2166         if (ret == 0)
2167                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2168
2169         i915_gem_object_put(obj);
2170         return ret;
2171 }
2172
2173 /**
2174  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2175  * @dev: DRM device
2176  * @data: GTT mapping ioctl data
2177  * @file: GEM object info
2178  *
2179  * Simply returns the fake offset to userspace so it can mmap it.
2180  * The mmap call will end up in drm_gem_mmap(), which will set things
2181  * up so we can get faults in the handler above.
2182  *
2183  * The fault handler will take care of binding the object into the GTT
2184  * (since it may have been evicted to make room for something), allocating
2185  * a fence register, and mapping the appropriate aperture address into
2186  * userspace.
2187  */
2188 int
2189 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2190                         struct drm_file *file)
2191 {
2192         struct drm_i915_gem_mmap_gtt *args = data;
2193
2194         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2195 }
2196
2197 /* Immediately discard the backing storage */
2198 static void
2199 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2200 {
2201         i915_gem_object_free_mmap_offset(obj);
2202
2203         if (obj->base.filp == NULL)
2204                 return;
2205
2206         /* Our goal here is to return as much of the memory as
2207          * is possible back to the system as we are called from OOM.
2208          * To do this we must instruct the shmfs to drop all of its
2209          * backing pages, *now*.
2210          */
2211         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2212         obj->mm.madv = __I915_MADV_PURGED;
2213         obj->mm.pages = ERR_PTR(-EFAULT);
2214 }
2215
2216 /* Try to discard unwanted pages */
2217 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2218 {
2219         struct address_space *mapping;
2220
2221         lockdep_assert_held(&obj->mm.lock);
2222         GEM_BUG_ON(obj->mm.pages);
2223
2224         switch (obj->mm.madv) {
2225         case I915_MADV_DONTNEED:
2226                 i915_gem_object_truncate(obj);
2227         case __I915_MADV_PURGED:
2228                 return;
2229         }
2230
2231         if (obj->base.filp == NULL)
2232                 return;
2233
2234         mapping = obj->base.filp->f_mapping,
2235         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2236 }
2237
2238 static void
2239 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2240                               struct sg_table *pages)
2241 {
2242         struct sgt_iter sgt_iter;
2243         struct page *page;
2244
2245         __i915_gem_object_release_shmem(obj, pages, true);
2246
2247         i915_gem_gtt_finish_pages(obj, pages);
2248
2249         if (i915_gem_object_needs_bit17_swizzle(obj))
2250                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2251
2252         for_each_sgt_page(page, sgt_iter, pages) {
2253                 if (obj->mm.dirty)
2254                         set_page_dirty(page);
2255
2256                 if (obj->mm.madv == I915_MADV_WILLNEED)
2257                         mark_page_accessed(page);
2258
2259                 put_page(page);
2260         }
2261         obj->mm.dirty = false;
2262
2263         sg_free_table(pages);
2264         kfree(pages);
2265 }
2266
2267 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2268 {
2269         struct radix_tree_iter iter;
2270         void **slot;
2271
2272         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2273                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2274 }
2275
2276 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2277                                  enum i915_mm_subclass subclass)
2278 {
2279         struct sg_table *pages;
2280
2281         if (i915_gem_object_has_pinned_pages(obj))
2282                 return;
2283
2284         GEM_BUG_ON(obj->bind_count);
2285         if (!READ_ONCE(obj->mm.pages))
2286                 return;
2287
2288         /* May be called by shrinker from within get_pages() (on another bo) */
2289         mutex_lock_nested(&obj->mm.lock, subclass);
2290         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2291                 goto unlock;
2292
2293         /* ->put_pages might need to allocate memory for the bit17 swizzle
2294          * array, hence protect them from being reaped by removing them from gtt
2295          * lists early. */
2296         pages = fetch_and_zero(&obj->mm.pages);
2297         GEM_BUG_ON(!pages);
2298
2299         if (obj->mm.mapping) {
2300                 void *ptr;
2301
2302                 ptr = page_mask_bits(obj->mm.mapping);
2303                 if (is_vmalloc_addr(ptr))
2304                         vunmap(ptr);
2305                 else
2306                         kunmap(kmap_to_page(ptr));
2307
2308                 obj->mm.mapping = NULL;
2309         }
2310
2311         __i915_gem_object_reset_page_iter(obj);
2312
2313         if (!IS_ERR(pages))
2314                 obj->ops->put_pages(obj, pages);
2315
2316 unlock:
2317         mutex_unlock(&obj->mm.lock);
2318 }
2319
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2321 {
2322         struct sg_table new_st;
2323         struct scatterlist *sg, *new_sg;
2324         unsigned int i;
2325
2326         if (orig_st->nents == orig_st->orig_nents)
2327                 return false;
2328
2329         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330                 return false;
2331
2332         new_sg = new_st.sgl;
2333         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335                 /* called before being DMA mapped, no need to copy sg->dma_* */
2336                 new_sg = sg_next(new_sg);
2337         }
2338         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339
2340         sg_free_table(orig_st);
2341
2342         *orig_st = new_st;
2343         return true;
2344 }
2345
2346 static struct sg_table *
2347 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348 {
2349         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2351         unsigned long i;
2352         struct address_space *mapping;
2353         struct sg_table *st;
2354         struct scatterlist *sg;
2355         struct sgt_iter sgt_iter;
2356         struct page *page;
2357         unsigned long last_pfn = 0;     /* suppress gcc warning */
2358         unsigned int max_segment;
2359         gfp_t noreclaim;
2360         int ret;
2361
2362         /* Assert that the object is not currently in any GPU domain. As it
2363          * wasn't in the GTT, there shouldn't be any way it could have been in
2364          * a GPU cache
2365          */
2366         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2368
2369         max_segment = swiotlb_max_segment();
2370         if (!max_segment)
2371                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2372
2373         st = kmalloc(sizeof(*st), GFP_KERNEL);
2374         if (st == NULL)
2375                 return ERR_PTR(-ENOMEM);
2376
2377 rebuild_st:
2378         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2379                 kfree(st);
2380                 return ERR_PTR(-ENOMEM);
2381         }
2382
2383         /* Get the list of pages out of our struct file.  They'll be pinned
2384          * at this point until we release them.
2385          *
2386          * Fail silently without starting the shrinker
2387          */
2388         mapping = obj->base.filp->f_mapping;
2389         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2390         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2391
2392         sg = st->sgl;
2393         st->nents = 0;
2394         for (i = 0; i < page_count; i++) {
2395                 const unsigned int shrink[] = {
2396                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2397                         0,
2398                 }, *s = shrink;
2399                 gfp_t gfp = noreclaim;
2400
2401                 do {
2402                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403                         if (likely(!IS_ERR(page)))
2404                                 break;
2405
2406                         if (!*s) {
2407                                 ret = PTR_ERR(page);
2408                                 goto err_sg;
2409                         }
2410
2411                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2412                         cond_resched();
2413
2414                         /* We've tried hard to allocate the memory by reaping
2415                          * our own buffer, now let the real VM do its job and
2416                          * go down in flames if truly OOM.
2417                          *
2418                          * However, since graphics tend to be disposable,
2419                          * defer the oom here by reporting the ENOMEM back
2420                          * to userspace.
2421                          */
2422                         if (!*s) {
2423                                 /* reclaim and warn, but no oom */
2424                                 gfp = mapping_gfp_mask(mapping);
2425
2426                                 /* Our bo are always dirty and so we require
2427                                  * kswapd to reclaim our pages (direct reclaim
2428                                  * does not effectively begin pageout of our
2429                                  * buffers on its own). However, direct reclaim
2430                                  * only waits for kswapd when under allocation
2431                                  * congestion. So as a result __GFP_RECLAIM is
2432                                  * unreliable and fails to actually reclaim our
2433                                  * dirty pages -- unless you try over and over
2434                                  * again with !__GFP_NORETRY. However, we still
2435                                  * want to fail this allocation rather than
2436                                  * trigger the out-of-memory killer and for
2437                                  * this we want __GFP_RETRY_MAYFAIL.
2438                                  */
2439                                 gfp |= __GFP_RETRY_MAYFAIL;
2440                         }
2441                 } while (1);
2442
2443                 if (!i ||
2444                     sg->length >= max_segment ||
2445                     page_to_pfn(page) != last_pfn + 1) {
2446                         if (i)
2447                                 sg = sg_next(sg);
2448                         st->nents++;
2449                         sg_set_page(sg, page, PAGE_SIZE, 0);
2450                 } else {
2451                         sg->length += PAGE_SIZE;
2452                 }
2453                 last_pfn = page_to_pfn(page);
2454
2455                 /* Check that the i965g/gm workaround works. */
2456                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2457         }
2458         if (sg) /* loop terminated early; short sg table */
2459                 sg_mark_end(sg);
2460
2461         /* Trim unused sg entries to avoid wasting memory. */
2462         i915_sg_trim(st);
2463
2464         ret = i915_gem_gtt_prepare_pages(obj, st);
2465         if (ret) {
2466                 /* DMA remapping failed? One possible cause is that
2467                  * it could not reserve enough large entries, asking
2468                  * for PAGE_SIZE chunks instead may be helpful.
2469                  */
2470                 if (max_segment > PAGE_SIZE) {
2471                         for_each_sgt_page(page, sgt_iter, st)
2472                                 put_page(page);
2473                         sg_free_table(st);
2474
2475                         max_segment = PAGE_SIZE;
2476                         goto rebuild_st;
2477                 } else {
2478                         dev_warn(&dev_priv->drm.pdev->dev,
2479                                  "Failed to DMA remap %lu pages\n",
2480                                  page_count);
2481                         goto err_pages;
2482                 }
2483         }
2484
2485         if (i915_gem_object_needs_bit17_swizzle(obj))
2486                 i915_gem_object_do_bit_17_swizzle(obj, st);
2487
2488         return st;
2489
2490 err_sg:
2491         sg_mark_end(sg);
2492 err_pages:
2493         for_each_sgt_page(page, sgt_iter, st)
2494                 put_page(page);
2495         sg_free_table(st);
2496         kfree(st);
2497
2498         /* shmemfs first checks if there is enough memory to allocate the page
2499          * and reports ENOSPC should there be insufficient, along with the usual
2500          * ENOMEM for a genuine allocation failure.
2501          *
2502          * We use ENOSPC in our driver to mean that we have run out of aperture
2503          * space and so want to translate the error from shmemfs back to our
2504          * usual understanding of ENOMEM.
2505          */
2506         if (ret == -ENOSPC)
2507                 ret = -ENOMEM;
2508
2509         return ERR_PTR(ret);
2510 }
2511
2512 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2513                                  struct sg_table *pages)
2514 {
2515         lockdep_assert_held(&obj->mm.lock);
2516
2517         obj->mm.get_page.sg_pos = pages->sgl;
2518         obj->mm.get_page.sg_idx = 0;
2519
2520         obj->mm.pages = pages;
2521
2522         if (i915_gem_object_is_tiled(obj) &&
2523             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2524                 GEM_BUG_ON(obj->mm.quirked);
2525                 __i915_gem_object_pin_pages(obj);
2526                 obj->mm.quirked = true;
2527         }
2528 }
2529
2530 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2531 {
2532         struct sg_table *pages;
2533
2534         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2535
2536         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2537                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2538                 return -EFAULT;
2539         }
2540
2541         pages = obj->ops->get_pages(obj);
2542         if (unlikely(IS_ERR(pages)))
2543                 return PTR_ERR(pages);
2544
2545         __i915_gem_object_set_pages(obj, pages);
2546         return 0;
2547 }
2548
2549 /* Ensure that the associated pages are gathered from the backing storage
2550  * and pinned into our object. i915_gem_object_pin_pages() may be called
2551  * multiple times before they are released by a single call to
2552  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2553  * either as a result of memory pressure (reaping pages under the shrinker)
2554  * or as the object is itself released.
2555  */
2556 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2557 {
2558         int err;
2559
2560         err = mutex_lock_interruptible(&obj->mm.lock);
2561         if (err)
2562                 return err;
2563
2564         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2565                 err = ____i915_gem_object_get_pages(obj);
2566                 if (err)
2567                         goto unlock;
2568
2569                 smp_mb__before_atomic();
2570         }
2571         atomic_inc(&obj->mm.pages_pin_count);
2572
2573 unlock:
2574         mutex_unlock(&obj->mm.lock);
2575         return err;
2576 }
2577
2578 /* The 'mapping' part of i915_gem_object_pin_map() below */
2579 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2580                                  enum i915_map_type type)
2581 {
2582         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2583         struct sg_table *sgt = obj->mm.pages;
2584         struct sgt_iter sgt_iter;
2585         struct page *page;
2586         struct page *stack_pages[32];
2587         struct page **pages = stack_pages;
2588         unsigned long i = 0;
2589         pgprot_t pgprot;
2590         void *addr;
2591
2592         /* A single page can always be kmapped */
2593         if (n_pages == 1 && type == I915_MAP_WB)
2594                 return kmap(sg_page(sgt->sgl));
2595
2596         if (n_pages > ARRAY_SIZE(stack_pages)) {
2597                 /* Too big for stack -- allocate temporary array instead */
2598                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2599                 if (!pages)
2600                         return NULL;
2601         }
2602
2603         for_each_sgt_page(page, sgt_iter, sgt)
2604                 pages[i++] = page;
2605
2606         /* Check that we have the expected number of pages */
2607         GEM_BUG_ON(i != n_pages);
2608
2609         switch (type) {
2610         case I915_MAP_WB:
2611                 pgprot = PAGE_KERNEL;
2612                 break;
2613         case I915_MAP_WC:
2614                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2615                 break;
2616         }
2617         addr = vmap(pages, n_pages, 0, pgprot);
2618
2619         if (pages != stack_pages)
2620                 kvfree(pages);
2621
2622         return addr;
2623 }
2624
2625 /* get, pin, and map the pages of the object into kernel space */
2626 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2627                               enum i915_map_type type)
2628 {
2629         enum i915_map_type has_type;
2630         bool pinned;
2631         void *ptr;
2632         int ret;
2633
2634         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2635
2636         ret = mutex_lock_interruptible(&obj->mm.lock);
2637         if (ret)
2638                 return ERR_PTR(ret);
2639
2640         pinned = true;
2641         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2642                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2643                         ret = ____i915_gem_object_get_pages(obj);
2644                         if (ret)
2645                                 goto err_unlock;
2646
2647                         smp_mb__before_atomic();
2648                 }
2649                 atomic_inc(&obj->mm.pages_pin_count);
2650                 pinned = false;
2651         }
2652         GEM_BUG_ON(!obj->mm.pages);
2653
2654         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2655         if (ptr && has_type != type) {
2656                 if (pinned) {
2657                         ret = -EBUSY;
2658                         goto err_unpin;
2659                 }
2660
2661                 if (is_vmalloc_addr(ptr))
2662                         vunmap(ptr);
2663                 else
2664                         kunmap(kmap_to_page(ptr));
2665
2666                 ptr = obj->mm.mapping = NULL;
2667         }
2668
2669         if (!ptr) {
2670                 ptr = i915_gem_object_map(obj, type);
2671                 if (!ptr) {
2672                         ret = -ENOMEM;
2673                         goto err_unpin;
2674                 }
2675
2676                 obj->mm.mapping = page_pack_bits(ptr, type);
2677         }
2678
2679 out_unlock:
2680         mutex_unlock(&obj->mm.lock);
2681         return ptr;
2682
2683 err_unpin:
2684         atomic_dec(&obj->mm.pages_pin_count);
2685 err_unlock:
2686         ptr = ERR_PTR(ret);
2687         goto out_unlock;
2688 }
2689
2690 static int
2691 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2692                            const struct drm_i915_gem_pwrite *arg)
2693 {
2694         struct address_space *mapping = obj->base.filp->f_mapping;
2695         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2696         u64 remain, offset;
2697         unsigned int pg;
2698
2699         /* Before we instantiate/pin the backing store for our use, we
2700          * can prepopulate the shmemfs filp efficiently using a write into
2701          * the pagecache. We avoid the penalty of instantiating all the
2702          * pages, important if the user is just writing to a few and never
2703          * uses the object on the GPU, and using a direct write into shmemfs
2704          * allows it to avoid the cost of retrieving a page (either swapin
2705          * or clearing-before-use) before it is overwritten.
2706          */
2707         if (READ_ONCE(obj->mm.pages))
2708                 return -ENODEV;
2709
2710         /* Before the pages are instantiated the object is treated as being
2711          * in the CPU domain. The pages will be clflushed as required before
2712          * use, and we can freely write into the pages directly. If userspace
2713          * races pwrite with any other operation; corruption will ensue -
2714          * that is userspace's prerogative!
2715          */
2716
2717         remain = arg->size;
2718         offset = arg->offset;
2719         pg = offset_in_page(offset);
2720
2721         do {
2722                 unsigned int len, unwritten;
2723                 struct page *page;
2724                 void *data, *vaddr;
2725                 int err;
2726
2727                 len = PAGE_SIZE - pg;
2728                 if (len > remain)
2729                         len = remain;
2730
2731                 err = pagecache_write_begin(obj->base.filp, mapping,
2732                                             offset, len, 0,
2733                                             &page, &data);
2734                 if (err < 0)
2735                         return err;
2736
2737                 vaddr = kmap(page);
2738                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2739                 kunmap(page);
2740
2741                 err = pagecache_write_end(obj->base.filp, mapping,
2742                                           offset, len, len - unwritten,
2743                                           page, data);
2744                 if (err < 0)
2745                         return err;
2746
2747                 if (unwritten)
2748                         return -EFAULT;
2749
2750                 remain -= len;
2751                 user_data += len;
2752                 offset += len;
2753                 pg = 0;
2754         } while (remain);
2755
2756         return 0;
2757 }
2758
2759 static bool ban_context(const struct i915_gem_context *ctx)
2760 {
2761         return (i915_gem_context_is_bannable(ctx) &&
2762                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2763 }
2764
2765 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2766 {
2767         ctx->guilty_count++;
2768         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2769         if (ban_context(ctx))
2770                 i915_gem_context_set_banned(ctx);
2771
2772         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2773                          ctx->name, ctx->ban_score,
2774                          yesno(i915_gem_context_is_banned(ctx)));
2775
2776         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2777                 return;
2778
2779         ctx->file_priv->context_bans++;
2780         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2781                          ctx->name, ctx->file_priv->context_bans);
2782 }
2783
2784 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2785 {
2786         ctx->active_count++;
2787 }
2788
2789 struct drm_i915_gem_request *
2790 i915_gem_find_active_request(struct intel_engine_cs *engine)
2791 {
2792         struct drm_i915_gem_request *request, *active = NULL;
2793         unsigned long flags;
2794
2795         /* We are called by the error capture and reset at a random
2796          * point in time. In particular, note that neither is crucially
2797          * ordered with an interrupt. After a hang, the GPU is dead and we
2798          * assume that no more writes can happen (we waited long enough for
2799          * all writes that were in transaction to be flushed) - adding an
2800          * extra delay for a recent interrupt is pointless. Hence, we do
2801          * not need an engine->irq_seqno_barrier() before the seqno reads.
2802          */
2803         spin_lock_irqsave(&engine->timeline->lock, flags);
2804         list_for_each_entry(request, &engine->timeline->requests, link) {
2805                 if (__i915_gem_request_completed(request,
2806                                                  request->global_seqno))
2807                         continue;
2808
2809                 GEM_BUG_ON(request->engine != engine);
2810                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2811                                     &request->fence.flags));
2812
2813                 active = request;
2814                 break;
2815         }
2816         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2817
2818         return active;
2819 }
2820
2821 static bool engine_stalled(struct intel_engine_cs *engine)
2822 {
2823         if (!engine->hangcheck.stalled)
2824                 return false;
2825
2826         /* Check for possible seqno movement after hang declaration */
2827         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2828                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2829                 return false;
2830         }
2831
2832         return true;
2833 }
2834
2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837         struct intel_engine_cs *engine;
2838         enum intel_engine_id id;
2839         int err = 0;
2840
2841         /* Ensure irq handler finishes, and not run again. */
2842         for_each_engine(engine, dev_priv, id) {
2843                 struct drm_i915_gem_request *request;
2844
2845                 /* Prevent the signaler thread from updating the request
2846                  * state (by calling dma_fence_signal) as we are processing
2847                  * the reset. The write from the GPU of the seqno is
2848                  * asynchronous and the signaler thread may see a different
2849                  * value to us and declare the request complete, even though
2850                  * the reset routine have picked that request as the active
2851                  * (incomplete) request. This conflict is not handled
2852                  * gracefully!
2853                  */
2854                 kthread_park(engine->breadcrumbs.signaler);
2855
2856                 /* Prevent request submission to the hardware until we have
2857                  * completed the reset in i915_gem_reset_finish(). If a request
2858                  * is completed by one engine, it may then queue a request
2859                  * to a second via its engine->irq_tasklet *just* as we are
2860                  * calling engine->init_hw() and also writing the ELSP.
2861                  * Turning off the engine->irq_tasklet until the reset is over
2862                  * prevents the race.
2863                  */
2864                 tasklet_kill(&engine->irq_tasklet);
2865                 tasklet_disable(&engine->irq_tasklet);
2866
2867                 if (engine->irq_seqno_barrier)
2868                         engine->irq_seqno_barrier(engine);
2869
2870                 if (engine_stalled(engine)) {
2871                         request = i915_gem_find_active_request(engine);
2872                         if (request && request->fence.error == -EIO)
2873                                 err = -EIO; /* Previous reset failed! */
2874                 }
2875         }
2876
2877         i915_gem_revoke_fences(dev_priv);
2878
2879         return err;
2880 }
2881
2882 static void skip_request(struct drm_i915_gem_request *request)
2883 {
2884         void *vaddr = request->ring->vaddr;
2885         u32 head;
2886
2887         /* As this request likely depends on state from the lost
2888          * context, clear out all the user operations leaving the
2889          * breadcrumb at the end (so we get the fence notifications).
2890          */
2891         head = request->head;
2892         if (request->postfix < head) {
2893                 memset(vaddr + head, 0, request->ring->size - head);
2894                 head = 0;
2895         }
2896         memset(vaddr + head, 0, request->postfix - head);
2897
2898         dma_fence_set_error(&request->fence, -EIO);
2899 }
2900
2901 static void engine_skip_context(struct drm_i915_gem_request *request)
2902 {
2903         struct intel_engine_cs *engine = request->engine;
2904         struct i915_gem_context *hung_ctx = request->ctx;
2905         struct intel_timeline *timeline;
2906         unsigned long flags;
2907
2908         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2909
2910         spin_lock_irqsave(&engine->timeline->lock, flags);
2911         spin_lock(&timeline->lock);
2912
2913         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2914                 if (request->ctx == hung_ctx)
2915                         skip_request(request);
2916
2917         list_for_each_entry(request, &timeline->requests, link)
2918                 skip_request(request);
2919
2920         spin_unlock(&timeline->lock);
2921         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2922 }
2923
2924 /* Returns true if the request was guilty of hang */
2925 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2926 {
2927         /* Read once and return the resolution */
2928         const bool guilty = engine_stalled(request->engine);
2929
2930         /* The guilty request will get skipped on a hung engine.
2931          *
2932          * Users of client default contexts do not rely on logical
2933          * state preserved between batches so it is safe to execute
2934          * queued requests following the hang. Non default contexts
2935          * rely on preserved state, so skipping a batch loses the
2936          * evolution of the state and it needs to be considered corrupted.
2937          * Executing more queued batches on top of corrupted state is
2938          * risky. But we take the risk by trying to advance through
2939          * the queued requests in order to make the client behaviour
2940          * more predictable around resets, by not throwing away random
2941          * amount of batches it has prepared for execution. Sophisticated
2942          * clients can use gem_reset_stats_ioctl and dma fence status
2943          * (exported via sync_file info ioctl on explicit fences) to observe
2944          * when it loses the context state and should rebuild accordingly.
2945          *
2946          * The context ban, and ultimately the client ban, mechanism are safety
2947          * valves if client submission ends up resulting in nothing more than
2948          * subsequent hangs.
2949          */
2950
2951         if (guilty) {
2952                 i915_gem_context_mark_guilty(request->ctx);
2953                 skip_request(request);
2954         } else {
2955                 i915_gem_context_mark_innocent(request->ctx);
2956                 dma_fence_set_error(&request->fence, -EAGAIN);
2957         }
2958
2959         return guilty;
2960 }
2961
2962 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2963 {
2964         struct drm_i915_gem_request *request;
2965
2966         request = i915_gem_find_active_request(engine);
2967         if (request && i915_gem_reset_request(request)) {
2968                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2969                                  engine->name, request->global_seqno);
2970
2971                 /* If this context is now banned, skip all pending requests. */
2972                 if (i915_gem_context_is_banned(request->ctx))
2973                         engine_skip_context(request);
2974         }
2975
2976         /* Setup the CS to resume from the breadcrumb of the hung request */
2977         engine->reset_hw(engine, request);
2978 }
2979
2980 void i915_gem_reset(struct drm_i915_private *dev_priv)
2981 {
2982         struct intel_engine_cs *engine;
2983         enum intel_engine_id id;
2984
2985         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2986
2987         i915_gem_retire_requests(dev_priv);
2988
2989         for_each_engine(engine, dev_priv, id) {
2990                 struct i915_gem_context *ctx;
2991
2992                 i915_gem_reset_engine(engine);
2993                 ctx = fetch_and_zero(&engine->last_retired_context);
2994                 if (ctx)
2995                         engine->context_unpin(engine, ctx);
2996         }
2997
2998         i915_gem_restore_fences(dev_priv);
2999
3000         if (dev_priv->gt.awake) {
3001                 intel_sanitize_gt_powersave(dev_priv);
3002                 intel_enable_gt_powersave(dev_priv);
3003                 if (INTEL_GEN(dev_priv) >= 6)
3004                         gen6_rps_busy(dev_priv);
3005         }
3006 }
3007
3008 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3009 {
3010         struct intel_engine_cs *engine;
3011         enum intel_engine_id id;
3012
3013         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3014
3015         for_each_engine(engine, dev_priv, id) {
3016                 tasklet_enable(&engine->irq_tasklet);
3017                 kthread_unpark(engine->breadcrumbs.signaler);
3018         }
3019 }
3020
3021 static void nop_submit_request(struct drm_i915_gem_request *request)
3022 {
3023         dma_fence_set_error(&request->fence, -EIO);
3024         i915_gem_request_submit(request);
3025         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3026 }
3027
3028 static void engine_set_wedged(struct intel_engine_cs *engine)
3029 {
3030         struct drm_i915_gem_request *request;
3031         unsigned long flags;
3032
3033         /* We need to be sure that no thread is running the old callback as
3034          * we install the nop handler (otherwise we would submit a request
3035          * to hardware that will never complete). In order to prevent this
3036          * race, we wait until the machine is idle before making the swap
3037          * (using stop_machine()).
3038          */
3039         engine->submit_request = nop_submit_request;
3040
3041         /* Mark all executing requests as skipped */
3042         spin_lock_irqsave(&engine->timeline->lock, flags);
3043         list_for_each_entry(request, &engine->timeline->requests, link)
3044                 dma_fence_set_error(&request->fence, -EIO);
3045         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3046
3047         /* Mark all pending requests as complete so that any concurrent
3048          * (lockless) lookup doesn't try and wait upon the request as we
3049          * reset it.
3050          */
3051         intel_engine_init_global_seqno(engine,
3052                                        intel_engine_last_submit(engine));
3053
3054         /*
3055          * Clear the execlists queue up before freeing the requests, as those
3056          * are the ones that keep the context and ringbuffer backing objects
3057          * pinned in place.
3058          */
3059
3060         if (i915.enable_execlists) {
3061                 struct execlist_port *port = engine->execlist_port;
3062                 unsigned long flags;
3063                 unsigned int n;
3064
3065                 spin_lock_irqsave(&engine->timeline->lock, flags);
3066
3067                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3068                         i915_gem_request_put(port_request(&port[n]));
3069                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3070                 engine->execlist_queue = RB_ROOT;
3071                 engine->execlist_first = NULL;
3072
3073                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3074         }
3075 }
3076
3077 static int __i915_gem_set_wedged_BKL(void *data)
3078 {
3079         struct drm_i915_private *i915 = data;
3080         struct intel_engine_cs *engine;
3081         enum intel_engine_id id;
3082
3083         for_each_engine(engine, i915, id)
3084                 engine_set_wedged(engine);
3085
3086         return 0;
3087 }
3088
3089 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3090 {
3091         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3092         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3093
3094         /* Retire completed requests first so the list of inflight/incomplete
3095          * requests is accurate and we don't try and mark successful requests
3096          * as in error during __i915_gem_set_wedged_BKL().
3097          */
3098         i915_gem_retire_requests(dev_priv);
3099
3100         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3101
3102         i915_gem_context_lost(dev_priv);
3103
3104         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3105 }
3106
3107 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3108 {
3109         struct i915_gem_timeline *tl;
3110         int i;
3111
3112         lockdep_assert_held(&i915->drm.struct_mutex);
3113         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3114                 return true;
3115
3116         /* Before unwedging, make sure that all pending operations
3117          * are flushed and errored out - we may have requests waiting upon
3118          * third party fences. We marked all inflight requests as EIO, and
3119          * every execbuf since returned EIO, for consistency we want all
3120          * the currently pending requests to also be marked as EIO, which
3121          * is done inside our nop_submit_request - and so we must wait.
3122          *
3123          * No more can be submitted until we reset the wedged bit.
3124          */
3125         list_for_each_entry(tl, &i915->gt.timelines, link) {
3126                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3127                         struct drm_i915_gem_request *rq;
3128
3129                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3130                                                   &i915->drm.struct_mutex);
3131                         if (!rq)
3132                                 continue;
3133
3134                         /* We can't use our normal waiter as we want to
3135                          * avoid recursively trying to handle the current
3136                          * reset. The basic dma_fence_default_wait() installs
3137                          * a callback for dma_fence_signal(), which is
3138                          * triggered by our nop handler (indirectly, the
3139                          * callback enables the signaler thread which is
3140                          * woken by the nop_submit_request() advancing the seqno
3141                          * and when the seqno passes the fence, the signaler
3142                          * then signals the fence waking us up).
3143                          */
3144                         if (dma_fence_default_wait(&rq->fence, true,
3145                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3146                                 return false;
3147                 }
3148         }
3149
3150         /* Undo nop_submit_request. We prevent all new i915 requests from
3151          * being queued (by disallowing execbuf whilst wedged) so having
3152          * waited for all active requests above, we know the system is idle
3153          * and do not have to worry about a thread being inside
3154          * engine->submit_request() as we swap over. So unlike installing
3155          * the nop_submit_request on reset, we can do this from normal
3156          * context and do not require stop_machine().
3157          */
3158         intel_engines_reset_default_submission(i915);
3159
3160         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3161         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3162
3163         return true;
3164 }
3165
3166 static void
3167 i915_gem_retire_work_handler(struct work_struct *work)
3168 {
3169         struct drm_i915_private *dev_priv =
3170                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3171         struct drm_device *dev = &dev_priv->drm;
3172
3173         /* Come back later if the device is busy... */
3174         if (mutex_trylock(&dev->struct_mutex)) {
3175                 i915_gem_retire_requests(dev_priv);
3176                 mutex_unlock(&dev->struct_mutex);
3177         }
3178
3179         /* Keep the retire handler running until we are finally idle.
3180          * We do not need to do this test under locking as in the worst-case
3181          * we queue the retire worker once too often.
3182          */
3183         if (READ_ONCE(dev_priv->gt.awake)) {
3184                 i915_queue_hangcheck(dev_priv);
3185                 queue_delayed_work(dev_priv->wq,
3186                                    &dev_priv->gt.retire_work,
3187                                    round_jiffies_up_relative(HZ));
3188         }
3189 }
3190
3191 static void
3192 i915_gem_idle_work_handler(struct work_struct *work)
3193 {
3194         struct drm_i915_private *dev_priv =
3195                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3196         struct drm_device *dev = &dev_priv->drm;
3197         bool rearm_hangcheck;
3198
3199         if (!READ_ONCE(dev_priv->gt.awake))
3200                 return;
3201
3202         /*
3203          * Wait for last execlists context complete, but bail out in case a
3204          * new request is submitted.
3205          */
3206         wait_for(intel_engines_are_idle(dev_priv), 10);
3207         if (READ_ONCE(dev_priv->gt.active_requests))
3208                 return;
3209
3210         rearm_hangcheck =
3211                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3212
3213         if (!mutex_trylock(&dev->struct_mutex)) {
3214                 /* Currently busy, come back later */
3215                 mod_delayed_work(dev_priv->wq,
3216                                  &dev_priv->gt.idle_work,
3217                                  msecs_to_jiffies(50));
3218                 goto out_rearm;
3219         }
3220
3221         /*
3222          * New request retired after this work handler started, extend active
3223          * period until next instance of the work.
3224          */
3225         if (work_pending(work))
3226                 goto out_unlock;
3227
3228         if (dev_priv->gt.active_requests)
3229                 goto out_unlock;
3230
3231         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3232                 DRM_ERROR("Timeout waiting for engines to idle\n");
3233
3234         intel_engines_mark_idle(dev_priv);
3235         i915_gem_timelines_mark_idle(dev_priv);
3236
3237         GEM_BUG_ON(!dev_priv->gt.awake);
3238         dev_priv->gt.awake = false;
3239         rearm_hangcheck = false;
3240
3241         if (INTEL_GEN(dev_priv) >= 6)
3242                 gen6_rps_idle(dev_priv);
3243         intel_runtime_pm_put(dev_priv);
3244 out_unlock:
3245         mutex_unlock(&dev->struct_mutex);
3246
3247 out_rearm:
3248         if (rearm_hangcheck) {
3249                 GEM_BUG_ON(!dev_priv->gt.awake);
3250                 i915_queue_hangcheck(dev_priv);
3251         }
3252 }
3253
3254 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3255 {
3256         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3257         struct drm_i915_file_private *fpriv = file->driver_priv;
3258         struct i915_vma *vma, *vn;
3259
3260         mutex_lock(&obj->base.dev->struct_mutex);
3261         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3262                 if (vma->vm->file == fpriv)
3263                         i915_vma_close(vma);
3264
3265         vma = obj->vma_hashed;
3266         if (vma && vma->ctx->file_priv == fpriv)
3267                 i915_vma_unlink_ctx(vma);
3268
3269         if (i915_gem_object_is_active(obj) &&
3270             !i915_gem_object_has_active_reference(obj)) {
3271                 i915_gem_object_set_active_reference(obj);
3272                 i915_gem_object_get(obj);
3273         }
3274         mutex_unlock(&obj->base.dev->struct_mutex);
3275 }
3276
3277 static unsigned long to_wait_timeout(s64 timeout_ns)
3278 {
3279         if (timeout_ns < 0)
3280                 return MAX_SCHEDULE_TIMEOUT;
3281
3282         if (timeout_ns == 0)
3283                 return 0;
3284
3285         return nsecs_to_jiffies_timeout(timeout_ns);
3286 }
3287
3288 /**
3289  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3290  * @dev: drm device pointer
3291  * @data: ioctl data blob
3292  * @file: drm file pointer
3293  *
3294  * Returns 0 if successful, else an error is returned with the remaining time in
3295  * the timeout parameter.
3296  *  -ETIME: object is still busy after timeout
3297  *  -ERESTARTSYS: signal interrupted the wait
3298  *  -ENONENT: object doesn't exist
3299  * Also possible, but rare:
3300  *  -EAGAIN: GPU wedged
3301  *  -ENOMEM: damn
3302  *  -ENODEV: Internal IRQ fail
3303  *  -E?: The add request failed
3304  *
3305  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3306  * non-zero timeout parameter the wait ioctl will wait for the given number of
3307  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3308  * without holding struct_mutex the object may become re-busied before this
3309  * function completes. A similar but shorter * race condition exists in the busy
3310  * ioctl
3311  */
3312 int
3313 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3314 {
3315         struct drm_i915_gem_wait *args = data;
3316         struct drm_i915_gem_object *obj;
3317         ktime_t start;
3318         long ret;
3319
3320         if (args->flags != 0)
3321                 return -EINVAL;
3322
3323         obj = i915_gem_object_lookup(file, args->bo_handle);
3324         if (!obj)
3325                 return -ENOENT;
3326
3327         start = ktime_get();
3328
3329         ret = i915_gem_object_wait(obj,
3330                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3331                                    to_wait_timeout(args->timeout_ns),
3332                                    to_rps_client(file));
3333
3334         if (args->timeout_ns > 0) {
3335                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3336                 if (args->timeout_ns < 0)
3337                         args->timeout_ns = 0;
3338
3339                 /*
3340                  * Apparently ktime isn't accurate enough and occasionally has a
3341                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3342                  * things up to make the test happy. We allow up to 1 jiffy.
3343                  *
3344                  * This is a regression from the timespec->ktime conversion.
3345                  */
3346                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3347                         args->timeout_ns = 0;
3348         }
3349
3350         i915_gem_object_put(obj);
3351         return ret;
3352 }
3353
3354 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3355 {
3356         int ret, i;
3357
3358         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3359                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3360                 if (ret)
3361                         return ret;
3362         }
3363
3364         return 0;
3365 }
3366
3367 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3368 {
3369         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3370 }
3371
3372 static int wait_for_engines(struct drm_i915_private *i915)
3373 {
3374         struct intel_engine_cs *engine;
3375         enum intel_engine_id id;
3376
3377         for_each_engine(engine, i915, id) {
3378                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3379                         i915_gem_set_wedged(i915);
3380                         return -EIO;
3381                 }
3382
3383                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3384                            intel_engine_last_submit(engine));
3385         }
3386
3387         return 0;
3388 }
3389
3390 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3391 {
3392         int ret;
3393
3394         /* If the device is asleep, we have no requests outstanding */
3395         if (!READ_ONCE(i915->gt.awake))
3396                 return 0;
3397
3398         if (flags & I915_WAIT_LOCKED) {
3399                 struct i915_gem_timeline *tl;
3400
3401                 lockdep_assert_held(&i915->drm.struct_mutex);
3402
3403                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3404                         ret = wait_for_timeline(tl, flags);
3405                         if (ret)
3406                                 return ret;
3407                 }
3408
3409                 i915_gem_retire_requests(i915);
3410                 GEM_BUG_ON(i915->gt.active_requests);
3411
3412                 ret = wait_for_engines(i915);
3413         } else {
3414                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3415         }
3416
3417         return ret;
3418 }
3419
3420 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3421 {
3422         /*
3423          * We manually flush the CPU domain so that we can override and
3424          * force the flush for the display, and perform it asyncrhonously.
3425          */
3426         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3427         if (obj->cache_dirty)
3428                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3429         obj->base.write_domain = 0;
3430 }
3431
3432 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3433 {
3434         if (!READ_ONCE(obj->pin_display))
3435                 return;
3436
3437         mutex_lock(&obj->base.dev->struct_mutex);
3438         __i915_gem_object_flush_for_display(obj);
3439         mutex_unlock(&obj->base.dev->struct_mutex);
3440 }
3441
3442 /**
3443  * Moves a single object to the WC read, and possibly write domain.
3444  * @obj: object to act on
3445  * @write: ask for write access or read only
3446  *
3447  * This function returns when the move is complete, including waiting on
3448  * flushes to occur.
3449  */
3450 int
3451 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3452 {
3453         int ret;
3454
3455         lockdep_assert_held(&obj->base.dev->struct_mutex);
3456
3457         ret = i915_gem_object_wait(obj,
3458                                    I915_WAIT_INTERRUPTIBLE |
3459                                    I915_WAIT_LOCKED |
3460                                    (write ? I915_WAIT_ALL : 0),
3461                                    MAX_SCHEDULE_TIMEOUT,
3462                                    NULL);
3463         if (ret)
3464                 return ret;
3465
3466         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3467                 return 0;
3468
3469         /* Flush and acquire obj->pages so that we are coherent through
3470          * direct access in memory with previous cached writes through
3471          * shmemfs and that our cache domain tracking remains valid.
3472          * For example, if the obj->filp was moved to swap without us
3473          * being notified and releasing the pages, we would mistakenly
3474          * continue to assume that the obj remained out of the CPU cached
3475          * domain.
3476          */
3477         ret = i915_gem_object_pin_pages(obj);
3478         if (ret)
3479                 return ret;
3480
3481         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3482
3483         /* Serialise direct access to this object with the barriers for
3484          * coherent writes from the GPU, by effectively invalidating the
3485          * WC domain upon first access.
3486          */
3487         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3488                 mb();
3489
3490         /* It should now be out of any other write domains, and we can update
3491          * the domain values for our changes.
3492          */
3493         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3494         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3495         if (write) {
3496                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3497                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3498                 obj->mm.dirty = true;
3499         }
3500
3501         i915_gem_object_unpin_pages(obj);
3502         return 0;
3503 }
3504
3505 /**
3506  * Moves a single object to the GTT read, and possibly write domain.
3507  * @obj: object to act on
3508  * @write: ask for write access or read only
3509  *
3510  * This function returns when the move is complete, including waiting on
3511  * flushes to occur.
3512  */
3513 int
3514 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3515 {
3516         int ret;
3517
3518         lockdep_assert_held(&obj->base.dev->struct_mutex);
3519
3520         ret = i915_gem_object_wait(obj,
3521                                    I915_WAIT_INTERRUPTIBLE |
3522                                    I915_WAIT_LOCKED |
3523                                    (write ? I915_WAIT_ALL : 0),
3524                                    MAX_SCHEDULE_TIMEOUT,
3525                                    NULL);
3526         if (ret)
3527                 return ret;
3528
3529         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3530                 return 0;
3531
3532         /* Flush and acquire obj->pages so that we are coherent through
3533          * direct access in memory with previous cached writes through
3534          * shmemfs and that our cache domain tracking remains valid.
3535          * For example, if the obj->filp was moved to swap without us
3536          * being notified and releasing the pages, we would mistakenly
3537          * continue to assume that the obj remained out of the CPU cached
3538          * domain.
3539          */
3540         ret = i915_gem_object_pin_pages(obj);
3541         if (ret)
3542                 return ret;
3543
3544         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3545
3546         /* Serialise direct access to this object with the barriers for
3547          * coherent writes from the GPU, by effectively invalidating the
3548          * GTT domain upon first access.
3549          */
3550         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3551                 mb();
3552
3553         /* It should now be out of any other write domains, and we can update
3554          * the domain values for our changes.
3555          */
3556         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3557         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3558         if (write) {
3559                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3560                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3561                 obj->mm.dirty = true;
3562         }
3563
3564         i915_gem_object_unpin_pages(obj);
3565         return 0;
3566 }
3567
3568 /**
3569  * Changes the cache-level of an object across all VMA.
3570  * @obj: object to act on
3571  * @cache_level: new cache level to set for the object
3572  *
3573  * After this function returns, the object will be in the new cache-level
3574  * across all GTT and the contents of the backing storage will be coherent,
3575  * with respect to the new cache-level. In order to keep the backing storage
3576  * coherent for all users, we only allow a single cache level to be set
3577  * globally on the object and prevent it from being changed whilst the
3578  * hardware is reading from the object. That is if the object is currently
3579  * on the scanout it will be set to uncached (or equivalent display
3580  * cache coherency) and all non-MOCS GPU access will also be uncached so
3581  * that all direct access to the scanout remains coherent.
3582  */
3583 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3584                                     enum i915_cache_level cache_level)
3585 {
3586         struct i915_vma *vma;
3587         int ret;
3588
3589         lockdep_assert_held(&obj->base.dev->struct_mutex);
3590
3591         if (obj->cache_level == cache_level)
3592                 return 0;
3593
3594         /* Inspect the list of currently bound VMA and unbind any that would
3595          * be invalid given the new cache-level. This is principally to
3596          * catch the issue of the CS prefetch crossing page boundaries and
3597          * reading an invalid PTE on older architectures.
3598          */
3599 restart:
3600         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3601                 if (!drm_mm_node_allocated(&vma->node))
3602                         continue;
3603
3604                 if (i915_vma_is_pinned(vma)) {
3605                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3606                         return -EBUSY;
3607                 }
3608
3609                 if (i915_gem_valid_gtt_space(vma, cache_level))
3610                         continue;
3611
3612                 ret = i915_vma_unbind(vma);
3613                 if (ret)
3614                         return ret;
3615
3616                 /* As unbinding may affect other elements in the
3617                  * obj->vma_list (due to side-effects from retiring
3618                  * an active vma), play safe and restart the iterator.
3619                  */
3620                 goto restart;
3621         }
3622
3623         /* We can reuse the existing drm_mm nodes but need to change the
3624          * cache-level on the PTE. We could simply unbind them all and
3625          * rebind with the correct cache-level on next use. However since
3626          * we already have a valid slot, dma mapping, pages etc, we may as
3627          * rewrite the PTE in the belief that doing so tramples upon less
3628          * state and so involves less work.
3629          */
3630         if (obj->bind_count) {
3631                 /* Before we change the PTE, the GPU must not be accessing it.
3632                  * If we wait upon the object, we know that all the bound
3633                  * VMA are no longer active.
3634                  */
3635                 ret = i915_gem_object_wait(obj,
3636                                            I915_WAIT_INTERRUPTIBLE |
3637                                            I915_WAIT_LOCKED |
3638                                            I915_WAIT_ALL,
3639                                            MAX_SCHEDULE_TIMEOUT,
3640                                            NULL);
3641                 if (ret)
3642                         return ret;
3643
3644                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3645                     cache_level != I915_CACHE_NONE) {
3646                         /* Access to snoopable pages through the GTT is
3647                          * incoherent and on some machines causes a hard
3648                          * lockup. Relinquish the CPU mmaping to force
3649                          * userspace to refault in the pages and we can
3650                          * then double check if the GTT mapping is still
3651                          * valid for that pointer access.
3652                          */
3653                         i915_gem_release_mmap(obj);
3654
3655                         /* As we no longer need a fence for GTT access,
3656                          * we can relinquish it now (and so prevent having
3657                          * to steal a fence from someone else on the next
3658                          * fence request). Note GPU activity would have
3659                          * dropped the fence as all snoopable access is
3660                          * supposed to be linear.
3661                          */
3662                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3663                                 ret = i915_vma_put_fence(vma);
3664                                 if (ret)
3665                                         return ret;
3666                         }
3667                 } else {
3668                         /* We either have incoherent backing store and
3669                          * so no GTT access or the architecture is fully
3670                          * coherent. In such cases, existing GTT mmaps
3671                          * ignore the cache bit in the PTE and we can
3672                          * rewrite it without confusing the GPU or having
3673                          * to force userspace to fault back in its mmaps.
3674                          */
3675                 }
3676
3677                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3678                         if (!drm_mm_node_allocated(&vma->node))
3679                                 continue;
3680
3681                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3682                         if (ret)
3683                                 return ret;
3684                 }
3685         }
3686
3687         list_for_each_entry(vma, &obj->vma_list, obj_link)
3688                 vma->node.color = cache_level;
3689         obj->cache_level = cache_level;
3690         obj->cache_coherent = i915_gem_object_is_coherent(obj);
3691         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3692
3693         return 0;
3694 }
3695
3696 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3697                                struct drm_file *file)
3698 {
3699         struct drm_i915_gem_caching *args = data;
3700         struct drm_i915_gem_object *obj;
3701         int err = 0;
3702
3703         rcu_read_lock();
3704         obj = i915_gem_object_lookup_rcu(file, args->handle);
3705         if (!obj) {
3706                 err = -ENOENT;
3707                 goto out;
3708         }
3709
3710         switch (obj->cache_level) {
3711         case I915_CACHE_LLC:
3712         case I915_CACHE_L3_LLC:
3713                 args->caching = I915_CACHING_CACHED;
3714                 break;
3715
3716         case I915_CACHE_WT:
3717                 args->caching = I915_CACHING_DISPLAY;
3718                 break;
3719
3720         default:
3721                 args->caching = I915_CACHING_NONE;
3722                 break;
3723         }
3724 out:
3725         rcu_read_unlock();
3726         return err;
3727 }
3728
3729 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3730                                struct drm_file *file)
3731 {
3732         struct drm_i915_private *i915 = to_i915(dev);
3733         struct drm_i915_gem_caching *args = data;
3734         struct drm_i915_gem_object *obj;
3735         enum i915_cache_level level;
3736         int ret = 0;
3737
3738         switch (args->caching) {
3739         case I915_CACHING_NONE:
3740                 level = I915_CACHE_NONE;
3741                 break;
3742         case I915_CACHING_CACHED:
3743                 /*
3744                  * Due to a HW issue on BXT A stepping, GPU stores via a
3745                  * snooped mapping may leave stale data in a corresponding CPU
3746                  * cacheline, whereas normally such cachelines would get
3747                  * invalidated.
3748                  */
3749                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3750                         return -ENODEV;
3751
3752                 level = I915_CACHE_LLC;
3753                 break;
3754         case I915_CACHING_DISPLAY:
3755                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3756                 break;
3757         default:
3758                 return -EINVAL;
3759         }
3760
3761         obj = i915_gem_object_lookup(file, args->handle);
3762         if (!obj)
3763                 return -ENOENT;
3764
3765         if (obj->cache_level == level)
3766                 goto out;
3767
3768         ret = i915_gem_object_wait(obj,
3769                                    I915_WAIT_INTERRUPTIBLE,
3770                                    MAX_SCHEDULE_TIMEOUT,
3771                                    to_rps_client(file));
3772         if (ret)
3773                 goto out;
3774
3775         ret = i915_mutex_lock_interruptible(dev);
3776         if (ret)
3777                 goto out;
3778
3779         ret = i915_gem_object_set_cache_level(obj, level);
3780         mutex_unlock(&dev->struct_mutex);
3781
3782 out:
3783         i915_gem_object_put(obj);
3784         return ret;
3785 }
3786
3787 /*
3788  * Prepare buffer for display plane (scanout, cursors, etc).
3789  * Can be called from an uninterruptible phase (modesetting) and allows
3790  * any flushes to be pipelined (for pageflips).
3791  */
3792 struct i915_vma *
3793 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3794                                      u32 alignment,
3795                                      const struct i915_ggtt_view *view)
3796 {
3797         struct i915_vma *vma;
3798         int ret;
3799
3800         lockdep_assert_held(&obj->base.dev->struct_mutex);
3801
3802         /* Mark the pin_display early so that we account for the
3803          * display coherency whilst setting up the cache domains.
3804          */
3805         obj->pin_display++;
3806
3807         /* The display engine is not coherent with the LLC cache on gen6.  As
3808          * a result, we make sure that the pinning that is about to occur is
3809          * done with uncached PTEs. This is lowest common denominator for all
3810          * chipsets.
3811          *
3812          * However for gen6+, we could do better by using the GFDT bit instead
3813          * of uncaching, which would allow us to flush all the LLC-cached data
3814          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3815          */
3816         ret = i915_gem_object_set_cache_level(obj,
3817                                               HAS_WT(to_i915(obj->base.dev)) ?
3818                                               I915_CACHE_WT : I915_CACHE_NONE);
3819         if (ret) {
3820                 vma = ERR_PTR(ret);
3821                 goto err_unpin_display;
3822         }
3823
3824         /* As the user may map the buffer once pinned in the display plane
3825          * (e.g. libkms for the bootup splash), we have to ensure that we
3826          * always use map_and_fenceable for all scanout buffers. However,
3827          * it may simply be too big to fit into mappable, in which case
3828          * put it anyway and hope that userspace can cope (but always first
3829          * try to preserve the existing ABI).
3830          */
3831         vma = ERR_PTR(-ENOSPC);
3832         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3833                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3834                                                PIN_MAPPABLE | PIN_NONBLOCK);
3835         if (IS_ERR(vma)) {
3836                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3837                 unsigned int flags;
3838
3839                 /* Valleyview is definitely limited to scanning out the first
3840                  * 512MiB. Lets presume this behaviour was inherited from the
3841                  * g4x display engine and that all earlier gen are similarly
3842                  * limited. Testing suggests that it is a little more
3843                  * complicated than this. For example, Cherryview appears quite
3844                  * happy to scanout from anywhere within its global aperture.
3845                  */
3846                 flags = 0;
3847                 if (HAS_GMCH_DISPLAY(i915))
3848                         flags = PIN_MAPPABLE;
3849                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3850         }
3851         if (IS_ERR(vma))
3852                 goto err_unpin_display;
3853
3854         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3855
3856         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3857         __i915_gem_object_flush_for_display(obj);
3858         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3859
3860         /* It should now be out of any other write domains, and we can update
3861          * the domain values for our changes.
3862          */
3863         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3864
3865         return vma;
3866
3867 err_unpin_display:
3868         obj->pin_display--;
3869         return vma;
3870 }
3871
3872 void
3873 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3874 {
3875         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3876
3877         if (WARN_ON(vma->obj->pin_display == 0))
3878                 return;
3879
3880         if (--vma->obj->pin_display == 0)
3881                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3882
3883         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3884         i915_gem_object_bump_inactive_ggtt(vma->obj);
3885
3886         i915_vma_unpin(vma);
3887 }
3888
3889 /**
3890  * Moves a single object to the CPU read, and possibly write domain.
3891  * @obj: object to act on
3892  * @write: requesting write or read-only access
3893  *
3894  * This function returns when the move is complete, including waiting on
3895  * flushes to occur.
3896  */
3897 int
3898 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3899 {
3900         int ret;
3901
3902         lockdep_assert_held(&obj->base.dev->struct_mutex);
3903
3904         ret = i915_gem_object_wait(obj,
3905                                    I915_WAIT_INTERRUPTIBLE |
3906                                    I915_WAIT_LOCKED |
3907                                    (write ? I915_WAIT_ALL : 0),
3908                                    MAX_SCHEDULE_TIMEOUT,
3909                                    NULL);
3910         if (ret)
3911                 return ret;
3912
3913         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3914
3915         /* Flush the CPU cache if it's still invalid. */
3916         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3917                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3918                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3919         }
3920
3921         /* It should now be out of any other write domains, and we can update
3922          * the domain values for our changes.
3923          */
3924         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3925
3926         /* If we're writing through the CPU, then the GPU read domains will
3927          * need to be invalidated at next use.
3928          */
3929         if (write)
3930                 __start_cpu_write(obj);
3931
3932         return 0;
3933 }
3934
3935 /* Throttle our rendering by waiting until the ring has completed our requests
3936  * emitted over 20 msec ago.
3937  *
3938  * Note that if we were to use the current jiffies each time around the loop,
3939  * we wouldn't escape the function with any frames outstanding if the time to
3940  * render a frame was over 20ms.
3941  *
3942  * This should get us reasonable parallelism between CPU and GPU but also
3943  * relatively low latency when blocking on a particular request to finish.
3944  */
3945 static int
3946 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3947 {
3948         struct drm_i915_private *dev_priv = to_i915(dev);
3949         struct drm_i915_file_private *file_priv = file->driver_priv;
3950         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3951         struct drm_i915_gem_request *request, *target = NULL;
3952         long ret;
3953
3954         /* ABI: return -EIO if already wedged */
3955         if (i915_terminally_wedged(&dev_priv->gpu_error))
3956                 return -EIO;
3957
3958         spin_lock(&file_priv->mm.lock);
3959         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3960                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3961                         break;
3962
3963                 if (target) {
3964                         list_del(&target->client_link);
3965                         target->file_priv = NULL;
3966                 }
3967
3968                 target = request;
3969         }
3970         if (target)
3971                 i915_gem_request_get(target);
3972         spin_unlock(&file_priv->mm.lock);
3973
3974         if (target == NULL)
3975                 return 0;
3976
3977         ret = i915_wait_request(target,
3978                                 I915_WAIT_INTERRUPTIBLE,
3979                                 MAX_SCHEDULE_TIMEOUT);
3980         i915_gem_request_put(target);
3981
3982         return ret < 0 ? ret : 0;
3983 }
3984
3985 struct i915_vma *
3986 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3987                          const struct i915_ggtt_view *view,
3988                          u64 size,
3989                          u64 alignment,
3990                          u64 flags)
3991 {
3992         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3993         struct i915_address_space *vm = &dev_priv->ggtt.base;
3994         struct i915_vma *vma;
3995         int ret;
3996
3997         lockdep_assert_held(&obj->base.dev->struct_mutex);
3998
3999         vma = i915_vma_instance(obj, vm, view);
4000         if (unlikely(IS_ERR(vma)))
4001                 return vma;
4002
4003         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4004                 if (flags & PIN_NONBLOCK &&
4005                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4006                         return ERR_PTR(-ENOSPC);
4007
4008                 if (flags & PIN_MAPPABLE) {
4009                         /* If the required space is larger than the available
4010                          * aperture, we will not able to find a slot for the
4011                          * object and unbinding the object now will be in
4012                          * vain. Worse, doing so may cause us to ping-pong
4013                          * the object in and out of the Global GTT and
4014                          * waste a lot of cycles under the mutex.
4015                          */
4016                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4017                                 return ERR_PTR(-E2BIG);
4018
4019                         /* If NONBLOCK is set the caller is optimistically
4020                          * trying to cache the full object within the mappable
4021                          * aperture, and *must* have a fallback in place for
4022                          * situations where we cannot bind the object. We
4023                          * can be a little more lax here and use the fallback
4024                          * more often to avoid costly migrations of ourselves
4025                          * and other objects within the aperture.
4026                          *
4027                          * Half-the-aperture is used as a simple heuristic.
4028                          * More interesting would to do search for a free
4029                          * block prior to making the commitment to unbind.
4030                          * That caters for the self-harm case, and with a
4031                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4032                          * we could try to minimise harm to others.
4033                          */
4034                         if (flags & PIN_NONBLOCK &&
4035                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4036                                 return ERR_PTR(-ENOSPC);
4037                 }
4038
4039                 WARN(i915_vma_is_pinned(vma),
4040                      "bo is already pinned in ggtt with incorrect alignment:"
4041                      " offset=%08x, req.alignment=%llx,"
4042                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4043                      i915_ggtt_offset(vma), alignment,
4044                      !!(flags & PIN_MAPPABLE),
4045                      i915_vma_is_map_and_fenceable(vma));
4046                 ret = i915_vma_unbind(vma);
4047                 if (ret)
4048                         return ERR_PTR(ret);
4049         }
4050
4051         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4052         if (ret)
4053                 return ERR_PTR(ret);
4054
4055         return vma;
4056 }
4057
4058 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4059 {
4060         /* Note that we could alias engines in the execbuf API, but
4061          * that would be very unwise as it prevents userspace from
4062          * fine control over engine selection. Ahem.
4063          *
4064          * This should be something like EXEC_MAX_ENGINE instead of
4065          * I915_NUM_ENGINES.
4066          */
4067         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4068         return 0x10000 << id;
4069 }
4070
4071 static __always_inline unsigned int __busy_write_id(unsigned int id)
4072 {
4073         /* The uABI guarantees an active writer is also amongst the read
4074          * engines. This would be true if we accessed the activity tracking
4075          * under the lock, but as we perform the lookup of the object and
4076          * its activity locklessly we can not guarantee that the last_write
4077          * being active implies that we have set the same engine flag from
4078          * last_read - hence we always set both read and write busy for
4079          * last_write.
4080          */
4081         return id | __busy_read_flag(id);
4082 }
4083
4084 static __always_inline unsigned int
4085 __busy_set_if_active(const struct dma_fence *fence,
4086                      unsigned int (*flag)(unsigned int id))
4087 {
4088         struct drm_i915_gem_request *rq;
4089
4090         /* We have to check the current hw status of the fence as the uABI
4091          * guarantees forward progress. We could rely on the idle worker
4092          * to eventually flush us, but to minimise latency just ask the
4093          * hardware.
4094          *
4095          * Note we only report on the status of native fences.
4096          */
4097         if (!dma_fence_is_i915(fence))
4098                 return 0;
4099
4100         /* opencode to_request() in order to avoid const warnings */
4101         rq = container_of(fence, struct drm_i915_gem_request, fence);
4102         if (i915_gem_request_completed(rq))
4103                 return 0;
4104
4105         return flag(rq->engine->uabi_id);
4106 }
4107
4108 static __always_inline unsigned int
4109 busy_check_reader(const struct dma_fence *fence)
4110 {
4111         return __busy_set_if_active(fence, __busy_read_flag);
4112 }
4113
4114 static __always_inline unsigned int
4115 busy_check_writer(const struct dma_fence *fence)
4116 {
4117         if (!fence)
4118                 return 0;
4119
4120         return __busy_set_if_active(fence, __busy_write_id);
4121 }
4122
4123 int
4124 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4125                     struct drm_file *file)
4126 {
4127         struct drm_i915_gem_busy *args = data;
4128         struct drm_i915_gem_object *obj;
4129         struct reservation_object_list *list;
4130         unsigned int seq;
4131         int err;
4132
4133         err = -ENOENT;
4134         rcu_read_lock();
4135         obj = i915_gem_object_lookup_rcu(file, args->handle);
4136         if (!obj)
4137                 goto out;
4138
4139         /* A discrepancy here is that we do not report the status of
4140          * non-i915 fences, i.e. even though we may report the object as idle,
4141          * a call to set-domain may still stall waiting for foreign rendering.
4142          * This also means that wait-ioctl may report an object as busy,
4143          * where busy-ioctl considers it idle.
4144          *
4145          * We trade the ability to warn of foreign fences to report on which
4146          * i915 engines are active for the object.
4147          *
4148          * Alternatively, we can trade that extra information on read/write
4149          * activity with
4150          *      args->busy =
4151          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4152          * to report the overall busyness. This is what the wait-ioctl does.
4153          *
4154          */
4155 retry:
4156         seq = raw_read_seqcount(&obj->resv->seq);
4157
4158         /* Translate the exclusive fence to the READ *and* WRITE engine */
4159         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4160
4161         /* Translate shared fences to READ set of engines */
4162         list = rcu_dereference(obj->resv->fence);
4163         if (list) {
4164                 unsigned int shared_count = list->shared_count, i;
4165
4166                 for (i = 0; i < shared_count; ++i) {
4167                         struct dma_fence *fence =
4168                                 rcu_dereference(list->shared[i]);
4169
4170                         args->busy |= busy_check_reader(fence);
4171                 }
4172         }
4173
4174         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4175                 goto retry;
4176
4177         err = 0;
4178 out:
4179         rcu_read_unlock();
4180         return err;
4181 }
4182
4183 int
4184 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4185                         struct drm_file *file_priv)
4186 {
4187         return i915_gem_ring_throttle(dev, file_priv);
4188 }
4189
4190 int
4191 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4192                        struct drm_file *file_priv)
4193 {
4194         struct drm_i915_private *dev_priv = to_i915(dev);
4195         struct drm_i915_gem_madvise *args = data;
4196         struct drm_i915_gem_object *obj;
4197         int err;
4198
4199         switch (args->madv) {
4200         case I915_MADV_DONTNEED:
4201         case I915_MADV_WILLNEED:
4202             break;
4203         default:
4204             return -EINVAL;
4205         }
4206
4207         obj = i915_gem_object_lookup(file_priv, args->handle);
4208         if (!obj)
4209                 return -ENOENT;
4210
4211         err = mutex_lock_interruptible(&obj->mm.lock);
4212         if (err)
4213                 goto out;
4214
4215         if (obj->mm.pages &&
4216             i915_gem_object_is_tiled(obj) &&
4217             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4218                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4219                         GEM_BUG_ON(!obj->mm.quirked);
4220                         __i915_gem_object_unpin_pages(obj);
4221                         obj->mm.quirked = false;
4222                 }
4223                 if (args->madv == I915_MADV_WILLNEED) {
4224                         GEM_BUG_ON(obj->mm.quirked);
4225                         __i915_gem_object_pin_pages(obj);
4226                         obj->mm.quirked = true;
4227                 }
4228         }
4229
4230         if (obj->mm.madv != __I915_MADV_PURGED)
4231                 obj->mm.madv = args->madv;
4232
4233         /* if the object is no longer attached, discard its backing storage */
4234         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4235                 i915_gem_object_truncate(obj);
4236
4237         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4238         mutex_unlock(&obj->mm.lock);
4239
4240 out:
4241         i915_gem_object_put(obj);
4242         return err;
4243 }
4244
4245 static void
4246 frontbuffer_retire(struct i915_gem_active *active,
4247                    struct drm_i915_gem_request *request)
4248 {
4249         struct drm_i915_gem_object *obj =
4250                 container_of(active, typeof(*obj), frontbuffer_write);
4251
4252         intel_fb_obj_flush(obj, ORIGIN_CS);
4253 }
4254
4255 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4256                           const struct drm_i915_gem_object_ops *ops)
4257 {
4258         mutex_init(&obj->mm.lock);
4259
4260         INIT_LIST_HEAD(&obj->global_link);
4261         INIT_LIST_HEAD(&obj->userfault_link);
4262         INIT_LIST_HEAD(&obj->vma_list);
4263         INIT_LIST_HEAD(&obj->batch_pool_link);
4264
4265         obj->ops = ops;
4266
4267         reservation_object_init(&obj->__builtin_resv);
4268         obj->resv = &obj->__builtin_resv;
4269
4270         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4271         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4272
4273         obj->mm.madv = I915_MADV_WILLNEED;
4274         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4275         mutex_init(&obj->mm.get_page.lock);
4276
4277         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4278 }
4279
4280 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4281         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4282                  I915_GEM_OBJECT_IS_SHRINKABLE,
4283
4284         .get_pages = i915_gem_object_get_pages_gtt,
4285         .put_pages = i915_gem_object_put_pages_gtt,
4286
4287         .pwrite = i915_gem_object_pwrite_gtt,
4288 };
4289
4290 struct drm_i915_gem_object *
4291 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4292 {
4293         struct drm_i915_gem_object *obj;
4294         struct address_space *mapping;
4295         gfp_t mask;
4296         int ret;
4297
4298         /* There is a prevalence of the assumption that we fit the object's
4299          * page count inside a 32bit _signed_ variable. Let's document this and
4300          * catch if we ever need to fix it. In the meantime, if you do spot
4301          * such a local variable, please consider fixing!
4302          */
4303         if (size >> PAGE_SHIFT > INT_MAX)
4304                 return ERR_PTR(-E2BIG);
4305
4306         if (overflows_type(size, obj->base.size))
4307                 return ERR_PTR(-E2BIG);
4308
4309         obj = i915_gem_object_alloc(dev_priv);
4310         if (obj == NULL)
4311                 return ERR_PTR(-ENOMEM);
4312
4313         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4314         if (ret)
4315                 goto fail;
4316
4317         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4318         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4319                 /* 965gm cannot relocate objects above 4GiB. */
4320                 mask &= ~__GFP_HIGHMEM;
4321                 mask |= __GFP_DMA32;
4322         }
4323
4324         mapping = obj->base.filp->f_mapping;
4325         mapping_set_gfp_mask(mapping, mask);
4326         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4327
4328         i915_gem_object_init(obj, &i915_gem_object_ops);
4329
4330         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4331         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4332
4333         if (HAS_LLC(dev_priv)) {
4334                 /* On some devices, we can have the GPU use the LLC (the CPU
4335                  * cache) for about a 10% performance improvement
4336                  * compared to uncached.  Graphics requests other than
4337                  * display scanout are coherent with the CPU in
4338                  * accessing this cache.  This means in this mode we
4339                  * don't need to clflush on the CPU side, and on the
4340                  * GPU side we only need to flush internal caches to
4341                  * get data visible to the CPU.
4342                  *
4343                  * However, we maintain the display planes as UC, and so
4344                  * need to rebind when first used as such.
4345                  */
4346                 obj->cache_level = I915_CACHE_LLC;
4347         } else
4348                 obj->cache_level = I915_CACHE_NONE;
4349
4350         obj->cache_coherent = i915_gem_object_is_coherent(obj);
4351         obj->cache_dirty = !obj->cache_coherent;
4352
4353         trace_i915_gem_object_create(obj);
4354
4355         return obj;
4356
4357 fail:
4358         i915_gem_object_free(obj);
4359         return ERR_PTR(ret);
4360 }
4361
4362 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4363 {
4364         /* If we are the last user of the backing storage (be it shmemfs
4365          * pages or stolen etc), we know that the pages are going to be
4366          * immediately released. In this case, we can then skip copying
4367          * back the contents from the GPU.
4368          */
4369
4370         if (obj->mm.madv != I915_MADV_WILLNEED)
4371                 return false;
4372
4373         if (obj->base.filp == NULL)
4374                 return true;
4375
4376         /* At first glance, this looks racy, but then again so would be
4377          * userspace racing mmap against close. However, the first external
4378          * reference to the filp can only be obtained through the
4379          * i915_gem_mmap_ioctl() which safeguards us against the user
4380          * acquiring such a reference whilst we are in the middle of
4381          * freeing the object.
4382          */
4383         return atomic_long_read(&obj->base.filp->f_count) == 1;
4384 }
4385
4386 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4387                                     struct llist_node *freed)
4388 {
4389         struct drm_i915_gem_object *obj, *on;
4390
4391         mutex_lock(&i915->drm.struct_mutex);
4392         intel_runtime_pm_get(i915);
4393         llist_for_each_entry(obj, freed, freed) {
4394                 struct i915_vma *vma, *vn;
4395
4396                 trace_i915_gem_object_destroy(obj);
4397
4398                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4399                 list_for_each_entry_safe(vma, vn,
4400                                          &obj->vma_list, obj_link) {
4401                         GEM_BUG_ON(i915_vma_is_active(vma));
4402                         vma->flags &= ~I915_VMA_PIN_MASK;
4403                         i915_vma_close(vma);
4404                 }
4405                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4406                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4407
4408                 list_del(&obj->global_link);
4409         }
4410         intel_runtime_pm_put(i915);
4411         mutex_unlock(&i915->drm.struct_mutex);
4412
4413         cond_resched();
4414
4415         llist_for_each_entry_safe(obj, on, freed, freed) {
4416                 GEM_BUG_ON(obj->bind_count);
4417                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4418
4419                 if (obj->ops->release)
4420                         obj->ops->release(obj);
4421
4422                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4423                         atomic_set(&obj->mm.pages_pin_count, 0);
4424                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4425                 GEM_BUG_ON(obj->mm.pages);
4426
4427                 if (obj->base.import_attach)
4428                         drm_prime_gem_destroy(&obj->base, NULL);
4429
4430                 reservation_object_fini(&obj->__builtin_resv);
4431                 drm_gem_object_release(&obj->base);
4432                 i915_gem_info_remove_obj(i915, obj->base.size);
4433
4434                 kfree(obj->bit_17);
4435                 i915_gem_object_free(obj);
4436         }
4437 }
4438
4439 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4440 {
4441         struct llist_node *freed;
4442
4443         freed = llist_del_all(&i915->mm.free_list);
4444         if (unlikely(freed))
4445                 __i915_gem_free_objects(i915, freed);
4446 }
4447
4448 static void __i915_gem_free_work(struct work_struct *work)
4449 {
4450         struct drm_i915_private *i915 =
4451                 container_of(work, struct drm_i915_private, mm.free_work);
4452         struct llist_node *freed;
4453
4454         /* All file-owned VMA should have been released by this point through
4455          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4456          * However, the object may also be bound into the global GTT (e.g.
4457          * older GPUs without per-process support, or for direct access through
4458          * the GTT either for the user or for scanout). Those VMA still need to
4459          * unbound now.
4460          */
4461
4462         while ((freed = llist_del_all(&i915->mm.free_list))) {
4463                 __i915_gem_free_objects(i915, freed);
4464                 if (need_resched())
4465                         break;
4466         }
4467 }
4468
4469 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4470 {
4471         struct drm_i915_gem_object *obj =
4472                 container_of(head, typeof(*obj), rcu);
4473         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4474
4475         /* We can't simply use call_rcu() from i915_gem_free_object()
4476          * as we need to block whilst unbinding, and the call_rcu
4477          * task may be called from softirq context. So we take a
4478          * detour through a worker.
4479          */
4480         if (llist_add(&obj->freed, &i915->mm.free_list))
4481                 schedule_work(&i915->mm.free_work);
4482 }
4483
4484 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4485 {
4486         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4487
4488         if (obj->mm.quirked)
4489                 __i915_gem_object_unpin_pages(obj);
4490
4491         if (discard_backing_storage(obj))
4492                 obj->mm.madv = I915_MADV_DONTNEED;
4493
4494         /* Before we free the object, make sure any pure RCU-only
4495          * read-side critical sections are complete, e.g.
4496          * i915_gem_busy_ioctl(). For the corresponding synchronized
4497          * lookup see i915_gem_object_lookup_rcu().
4498          */
4499         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4500 }
4501
4502 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4503 {
4504         lockdep_assert_held(&obj->base.dev->struct_mutex);
4505
4506         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4507         if (i915_gem_object_is_active(obj))
4508                 i915_gem_object_set_active_reference(obj);
4509         else
4510                 i915_gem_object_put(obj);
4511 }
4512
4513 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4514 {
4515         struct intel_engine_cs *engine;
4516         enum intel_engine_id id;
4517
4518         for_each_engine(engine, dev_priv, id)
4519                 GEM_BUG_ON(engine->last_retired_context &&
4520                            !i915_gem_context_is_kernel(engine->last_retired_context));
4521 }
4522
4523 void i915_gem_sanitize(struct drm_i915_private *i915)
4524 {
4525         /*
4526          * If we inherit context state from the BIOS or earlier occupants
4527          * of the GPU, the GPU may be in an inconsistent state when we
4528          * try to take over. The only way to remove the earlier state
4529          * is by resetting. However, resetting on earlier gen is tricky as
4530          * it may impact the display and we are uncertain about the stability
4531          * of the reset, so this could be applied to even earlier gen.
4532          */
4533         if (INTEL_GEN(i915) >= 5) {
4534                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4535                 WARN_ON(reset && reset != -ENODEV);
4536         }
4537 }
4538
4539 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4540 {
4541         struct drm_device *dev = &dev_priv->drm;
4542         int ret;
4543
4544         intel_runtime_pm_get(dev_priv);
4545         intel_suspend_gt_powersave(dev_priv);
4546
4547         mutex_lock(&dev->struct_mutex);
4548
4549         /* We have to flush all the executing contexts to main memory so
4550          * that they can saved in the hibernation image. To ensure the last
4551          * context image is coherent, we have to switch away from it. That
4552          * leaves the dev_priv->kernel_context still active when
4553          * we actually suspend, and its image in memory may not match the GPU
4554          * state. Fortunately, the kernel_context is disposable and we do
4555          * not rely on its state.
4556          */
4557         ret = i915_gem_switch_to_kernel_context(dev_priv);
4558         if (ret)
4559                 goto err_unlock;
4560
4561         ret = i915_gem_wait_for_idle(dev_priv,
4562                                      I915_WAIT_INTERRUPTIBLE |
4563                                      I915_WAIT_LOCKED);
4564         if (ret)
4565                 goto err_unlock;
4566
4567         assert_kernel_context_is_current(dev_priv);
4568         i915_gem_context_lost(dev_priv);
4569         mutex_unlock(&dev->struct_mutex);
4570
4571         intel_guc_suspend(dev_priv);
4572
4573         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4574         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4575
4576         /* As the idle_work is rearming if it detects a race, play safe and
4577          * repeat the flush until it is definitely idle.
4578          */
4579         while (flush_delayed_work(&dev_priv->gt.idle_work))
4580                 ;
4581
4582         i915_gem_drain_freed_objects(dev_priv);
4583
4584         /* Assert that we sucessfully flushed all the work and
4585          * reset the GPU back to its idle, low power state.
4586          */
4587         WARN_ON(dev_priv->gt.awake);
4588         WARN_ON(!intel_engines_are_idle(dev_priv));
4589
4590         /*
4591          * Neither the BIOS, ourselves or any other kernel
4592          * expects the system to be in execlists mode on startup,
4593          * so we need to reset the GPU back to legacy mode. And the only
4594          * known way to disable logical contexts is through a GPU reset.
4595          *
4596          * So in order to leave the system in a known default configuration,
4597          * always reset the GPU upon unload and suspend. Afterwards we then
4598          * clean up the GEM state tracking, flushing off the requests and
4599          * leaving the system in a known idle state.
4600          *
4601          * Note that is of the upmost importance that the GPU is idle and
4602          * all stray writes are flushed *before* we dismantle the backing
4603          * storage for the pinned objects.
4604          *
4605          * However, since we are uncertain that resetting the GPU on older
4606          * machines is a good idea, we don't - just in case it leaves the
4607          * machine in an unusable condition.
4608          */
4609         i915_gem_sanitize(dev_priv);
4610         goto out_rpm_put;
4611
4612 err_unlock:
4613         mutex_unlock(&dev->struct_mutex);
4614 out_rpm_put:
4615         intel_runtime_pm_put(dev_priv);
4616         return ret;
4617 }
4618
4619 void i915_gem_resume(struct drm_i915_private *dev_priv)
4620 {
4621         struct drm_device *dev = &dev_priv->drm;
4622
4623         WARN_ON(dev_priv->gt.awake);
4624
4625         mutex_lock(&dev->struct_mutex);
4626         i915_gem_restore_gtt_mappings(dev_priv);
4627
4628         /* As we didn't flush the kernel context before suspend, we cannot
4629          * guarantee that the context image is complete. So let's just reset
4630          * it and start again.
4631          */
4632         dev_priv->gt.resume(dev_priv);
4633
4634         mutex_unlock(&dev->struct_mutex);
4635 }
4636
4637 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4638 {
4639         if (INTEL_GEN(dev_priv) < 5 ||
4640             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4641                 return;
4642
4643         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4644                                  DISP_TILE_SURFACE_SWIZZLING);
4645
4646         if (IS_GEN5(dev_priv))
4647                 return;
4648
4649         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4650         if (IS_GEN6(dev_priv))
4651                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4652         else if (IS_GEN7(dev_priv))
4653                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4654         else if (IS_GEN8(dev_priv))
4655                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4656         else
4657                 BUG();
4658 }
4659
4660 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4661 {
4662         I915_WRITE(RING_CTL(base), 0);
4663         I915_WRITE(RING_HEAD(base), 0);
4664         I915_WRITE(RING_TAIL(base), 0);
4665         I915_WRITE(RING_START(base), 0);
4666 }
4667
4668 static void init_unused_rings(struct drm_i915_private *dev_priv)
4669 {
4670         if (IS_I830(dev_priv)) {
4671                 init_unused_ring(dev_priv, PRB1_BASE);
4672                 init_unused_ring(dev_priv, SRB0_BASE);
4673                 init_unused_ring(dev_priv, SRB1_BASE);
4674                 init_unused_ring(dev_priv, SRB2_BASE);
4675                 init_unused_ring(dev_priv, SRB3_BASE);
4676         } else if (IS_GEN2(dev_priv)) {
4677                 init_unused_ring(dev_priv, SRB0_BASE);
4678                 init_unused_ring(dev_priv, SRB1_BASE);
4679         } else if (IS_GEN3(dev_priv)) {
4680                 init_unused_ring(dev_priv, PRB1_BASE);
4681                 init_unused_ring(dev_priv, PRB2_BASE);
4682         }
4683 }
4684
4685 static int __i915_gem_restart_engines(void *data)
4686 {
4687         struct drm_i915_private *i915 = data;
4688         struct intel_engine_cs *engine;
4689         enum intel_engine_id id;
4690         int err;
4691
4692         for_each_engine(engine, i915, id) {
4693                 err = engine->init_hw(engine);
4694                 if (err)
4695                         return err;
4696         }
4697
4698         return 0;
4699 }
4700
4701 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4702 {
4703         int ret;
4704
4705         dev_priv->gt.last_init_time = ktime_get();
4706
4707         /* Double layer security blanket, see i915_gem_init() */
4708         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709
4710         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4711                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4712
4713         if (IS_HASWELL(dev_priv))
4714                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4715                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4716
4717         if (HAS_PCH_NOP(dev_priv)) {
4718                 if (IS_IVYBRIDGE(dev_priv)) {
4719                         u32 temp = I915_READ(GEN7_MSG_CTL);
4720                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4721                         I915_WRITE(GEN7_MSG_CTL, temp);
4722                 } else if (INTEL_GEN(dev_priv) >= 7) {
4723                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4724                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4725                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4726                 }
4727         }
4728
4729         i915_gem_init_swizzling(dev_priv);
4730
4731         /*
4732          * At least 830 can leave some of the unused rings
4733          * "active" (ie. head != tail) after resume which
4734          * will prevent c3 entry. Makes sure all unused rings
4735          * are totally idle.
4736          */
4737         init_unused_rings(dev_priv);
4738
4739         BUG_ON(!dev_priv->kernel_context);
4740
4741         ret = i915_ppgtt_init_hw(dev_priv);
4742         if (ret) {
4743                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4744                 goto out;
4745         }
4746
4747         /* Need to do basic initialisation of all rings first: */
4748         ret = __i915_gem_restart_engines(dev_priv);
4749         if (ret)
4750                 goto out;
4751
4752         intel_mocs_init_l3cc_table(dev_priv);
4753
4754         /* We can't enable contexts until all firmware is loaded */
4755         ret = intel_uc_init_hw(dev_priv);
4756         if (ret)
4757                 goto out;
4758
4759 out:
4760         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4761         return ret;
4762 }
4763
4764 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4765 {
4766         if (INTEL_INFO(dev_priv)->gen < 6)
4767                 return false;
4768
4769         /* TODO: make semaphores and Execlists play nicely together */
4770         if (i915.enable_execlists)
4771                 return false;
4772
4773         if (value >= 0)
4774                 return value;
4775
4776         /* Enable semaphores on SNB when IO remapping is off */
4777         if (IS_GEN6(dev_priv) && intel_vtd_active())
4778                 return false;
4779
4780         return true;
4781 }
4782
4783 int i915_gem_init(struct drm_i915_private *dev_priv)
4784 {
4785         int ret;
4786
4787         mutex_lock(&dev_priv->drm.struct_mutex);
4788
4789         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4790
4791         if (!i915.enable_execlists) {
4792                 dev_priv->gt.resume = intel_legacy_submission_resume;
4793                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4794         } else {
4795                 dev_priv->gt.resume = intel_lr_context_resume;
4796                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4797         }
4798
4799         /* This is just a security blanket to placate dragons.
4800          * On some systems, we very sporadically observe that the first TLBs
4801          * used by the CS may be stale, despite us poking the TLB reset. If
4802          * we hold the forcewake during initialisation these problems
4803          * just magically go away.
4804          */
4805         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806
4807         ret = i915_gem_init_userptr(dev_priv);
4808         if (ret)
4809                 goto out_unlock;
4810
4811         ret = i915_gem_init_ggtt(dev_priv);
4812         if (ret)
4813                 goto out_unlock;
4814
4815         ret = i915_gem_context_init(dev_priv);
4816         if (ret)
4817                 goto out_unlock;
4818
4819         ret = intel_engines_init(dev_priv);
4820         if (ret)
4821                 goto out_unlock;
4822
4823         ret = i915_gem_init_hw(dev_priv);
4824         if (ret == -EIO) {
4825                 /* Allow engine initialisation to fail by marking the GPU as
4826                  * wedged. But we only want to do this where the GPU is angry,
4827                  * for all other failure, such as an allocation failure, bail.
4828                  */
4829                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4830                 i915_gem_set_wedged(dev_priv);
4831                 ret = 0;
4832         }
4833
4834 out_unlock:
4835         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4836         mutex_unlock(&dev_priv->drm.struct_mutex);
4837
4838         return ret;
4839 }
4840
4841 void i915_gem_init_mmio(struct drm_i915_private *i915)
4842 {
4843         i915_gem_sanitize(i915);
4844 }
4845
4846 void
4847 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4848 {
4849         struct intel_engine_cs *engine;
4850         enum intel_engine_id id;
4851
4852         for_each_engine(engine, dev_priv, id)
4853                 dev_priv->gt.cleanup_engine(engine);
4854 }
4855
4856 void
4857 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4858 {
4859         int i;
4860
4861         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4862             !IS_CHERRYVIEW(dev_priv))
4863                 dev_priv->num_fence_regs = 32;
4864         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4865                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4866                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4867                 dev_priv->num_fence_regs = 16;
4868         else
4869                 dev_priv->num_fence_regs = 8;
4870
4871         if (intel_vgpu_active(dev_priv))
4872                 dev_priv->num_fence_regs =
4873                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4874
4875         /* Initialize fence registers to zero */
4876         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4877                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4878
4879                 fence->i915 = dev_priv;
4880                 fence->id = i;
4881                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4882         }
4883         i915_gem_restore_fences(dev_priv);
4884
4885         i915_gem_detect_bit_6_swizzle(dev_priv);
4886 }
4887
4888 int
4889 i915_gem_load_init(struct drm_i915_private *dev_priv)
4890 {
4891         int err = -ENOMEM;
4892
4893         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4894         if (!dev_priv->objects)
4895                 goto err_out;
4896
4897         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4898         if (!dev_priv->vmas)
4899                 goto err_objects;
4900
4901         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4902                                         SLAB_HWCACHE_ALIGN |
4903                                         SLAB_RECLAIM_ACCOUNT |
4904                                         SLAB_TYPESAFE_BY_RCU);
4905         if (!dev_priv->requests)
4906                 goto err_vmas;
4907
4908         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4909                                             SLAB_HWCACHE_ALIGN |
4910                                             SLAB_RECLAIM_ACCOUNT);
4911         if (!dev_priv->dependencies)
4912                 goto err_requests;
4913
4914         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4915         if (!dev_priv->priorities)
4916                 goto err_dependencies;
4917
4918         mutex_lock(&dev_priv->drm.struct_mutex);
4919         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4920         err = i915_gem_timeline_init__global(dev_priv);
4921         mutex_unlock(&dev_priv->drm.struct_mutex);
4922         if (err)
4923                 goto err_priorities;
4924
4925         INIT_LIST_HEAD(&dev_priv->context_list);
4926         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4927         init_llist_head(&dev_priv->mm.free_list);
4928         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4929         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4930         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4931         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4932         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4933                           i915_gem_retire_work_handler);
4934         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4935                           i915_gem_idle_work_handler);
4936         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4937         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4938
4939         init_waitqueue_head(&dev_priv->pending_flip_queue);
4940
4941         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4942
4943         spin_lock_init(&dev_priv->fb_tracking.lock);
4944
4945         return 0;
4946
4947 err_priorities:
4948         kmem_cache_destroy(dev_priv->priorities);
4949 err_dependencies:
4950         kmem_cache_destroy(dev_priv->dependencies);
4951 err_requests:
4952         kmem_cache_destroy(dev_priv->requests);
4953 err_vmas:
4954         kmem_cache_destroy(dev_priv->vmas);
4955 err_objects:
4956         kmem_cache_destroy(dev_priv->objects);
4957 err_out:
4958         return err;
4959 }
4960
4961 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4962 {
4963         i915_gem_drain_freed_objects(dev_priv);
4964         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4965         WARN_ON(dev_priv->mm.object_count);
4966
4967         mutex_lock(&dev_priv->drm.struct_mutex);
4968         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4969         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4970         mutex_unlock(&dev_priv->drm.struct_mutex);
4971
4972         kmem_cache_destroy(dev_priv->priorities);
4973         kmem_cache_destroy(dev_priv->dependencies);
4974         kmem_cache_destroy(dev_priv->requests);
4975         kmem_cache_destroy(dev_priv->vmas);
4976         kmem_cache_destroy(dev_priv->objects);
4977
4978         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4979         rcu_barrier();
4980 }
4981
4982 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4983 {
4984         /* Discard all purgeable objects, let userspace recover those as
4985          * required after resuming.
4986          */
4987         i915_gem_shrink_all(dev_priv);
4988
4989         return 0;
4990 }
4991
4992 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4993 {
4994         struct drm_i915_gem_object *obj;
4995         struct list_head *phases[] = {
4996                 &dev_priv->mm.unbound_list,
4997                 &dev_priv->mm.bound_list,
4998                 NULL
4999         }, **p;
5000
5001         /* Called just before we write the hibernation image.
5002          *
5003          * We need to update the domain tracking to reflect that the CPU
5004          * will be accessing all the pages to create and restore from the
5005          * hibernation, and so upon restoration those pages will be in the
5006          * CPU domain.
5007          *
5008          * To make sure the hibernation image contains the latest state,
5009          * we update that state just before writing out the image.
5010          *
5011          * To try and reduce the hibernation image, we manually shrink
5012          * the objects as well, see i915_gem_freeze()
5013          */
5014
5015         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5016         i915_gem_drain_freed_objects(dev_priv);
5017
5018         mutex_lock(&dev_priv->drm.struct_mutex);
5019         for (p = phases; *p; p++) {
5020                 list_for_each_entry(obj, *p, global_link)
5021                         __start_cpu_write(obj);
5022         }
5023         mutex_unlock(&dev_priv->drm.struct_mutex);
5024
5025         return 0;
5026 }
5027
5028 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5029 {
5030         struct drm_i915_file_private *file_priv = file->driver_priv;
5031         struct drm_i915_gem_request *request;
5032
5033         /* Clean up our request list when the client is going away, so that
5034          * later retire_requests won't dereference our soon-to-be-gone
5035          * file_priv.
5036          */
5037         spin_lock(&file_priv->mm.lock);
5038         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5039                 request->file_priv = NULL;
5040         spin_unlock(&file_priv->mm.lock);
5041
5042         if (!list_empty(&file_priv->rps.link)) {
5043                 spin_lock(&to_i915(dev)->rps.client_lock);
5044                 list_del(&file_priv->rps.link);
5045                 spin_unlock(&to_i915(dev)->rps.client_lock);
5046         }
5047 }
5048
5049 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5050 {
5051         struct drm_i915_file_private *file_priv;
5052         int ret;
5053
5054         DRM_DEBUG("\n");
5055
5056         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5057         if (!file_priv)
5058                 return -ENOMEM;
5059
5060         file->driver_priv = file_priv;
5061         file_priv->dev_priv = to_i915(dev);
5062         file_priv->file = file;
5063         INIT_LIST_HEAD(&file_priv->rps.link);
5064
5065         spin_lock_init(&file_priv->mm.lock);
5066         INIT_LIST_HEAD(&file_priv->mm.request_list);
5067
5068         file_priv->bsd_engine = -1;
5069
5070         ret = i915_gem_context_open(dev, file);
5071         if (ret)
5072                 kfree(file_priv);
5073
5074         return ret;
5075 }
5076
5077 /**
5078  * i915_gem_track_fb - update frontbuffer tracking
5079  * @old: current GEM buffer for the frontbuffer slots
5080  * @new: new GEM buffer for the frontbuffer slots
5081  * @frontbuffer_bits: bitmask of frontbuffer slots
5082  *
5083  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5084  * from @old and setting them in @new. Both @old and @new can be NULL.
5085  */
5086 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5087                        struct drm_i915_gem_object *new,
5088                        unsigned frontbuffer_bits)
5089 {
5090         /* Control of individual bits within the mask are guarded by
5091          * the owning plane->mutex, i.e. we can never see concurrent
5092          * manipulation of individual bits. But since the bitfield as a whole
5093          * is updated using RMW, we need to use atomics in order to update
5094          * the bits.
5095          */
5096         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5097                      sizeof(atomic_t) * BITS_PER_BYTE);
5098
5099         if (old) {
5100                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5101                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5102         }
5103
5104         if (new) {
5105                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5106                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5107         }
5108 }
5109
5110 /* Allocate a new GEM object and fill it with the supplied data */
5111 struct drm_i915_gem_object *
5112 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5113                                  const void *data, size_t size)
5114 {
5115         struct drm_i915_gem_object *obj;
5116         struct file *file;
5117         size_t offset;
5118         int err;
5119
5120         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5121         if (IS_ERR(obj))
5122                 return obj;
5123
5124         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5125
5126         file = obj->base.filp;
5127         offset = 0;
5128         do {
5129                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5130                 struct page *page;
5131                 void *pgdata, *vaddr;
5132
5133                 err = pagecache_write_begin(file, file->f_mapping,
5134                                             offset, len, 0,
5135                                             &page, &pgdata);
5136                 if (err < 0)
5137                         goto fail;
5138
5139                 vaddr = kmap(page);
5140                 memcpy(vaddr, data, len);
5141                 kunmap(page);
5142
5143                 err = pagecache_write_end(file, file->f_mapping,
5144                                           offset, len, len,
5145                                           page, pgdata);
5146                 if (err < 0)
5147                         goto fail;
5148
5149                 size -= len;
5150                 data += len;
5151                 offset += len;
5152         } while (size);
5153
5154         return obj;
5155
5156 fail:
5157         i915_gem_object_put(obj);
5158         return ERR_PTR(err);
5159 }
5160
5161 struct scatterlist *
5162 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5163                        unsigned int n,
5164                        unsigned int *offset)
5165 {
5166         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5167         struct scatterlist *sg;
5168         unsigned int idx, count;
5169
5170         might_sleep();
5171         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5172         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5173
5174         /* As we iterate forward through the sg, we record each entry in a
5175          * radixtree for quick repeated (backwards) lookups. If we have seen
5176          * this index previously, we will have an entry for it.
5177          *
5178          * Initial lookup is O(N), but this is amortized to O(1) for
5179          * sequential page access (where each new request is consecutive
5180          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5181          * i.e. O(1) with a large constant!
5182          */
5183         if (n < READ_ONCE(iter->sg_idx))
5184                 goto lookup;
5185
5186         mutex_lock(&iter->lock);
5187
5188         /* We prefer to reuse the last sg so that repeated lookup of this
5189          * (or the subsequent) sg are fast - comparing against the last
5190          * sg is faster than going through the radixtree.
5191          */
5192
5193         sg = iter->sg_pos;
5194         idx = iter->sg_idx;
5195         count = __sg_page_count(sg);
5196
5197         while (idx + count <= n) {
5198                 unsigned long exception, i;
5199                 int ret;
5200
5201                 /* If we cannot allocate and insert this entry, or the
5202                  * individual pages from this range, cancel updating the
5203                  * sg_idx so that on this lookup we are forced to linearly
5204                  * scan onwards, but on future lookups we will try the
5205                  * insertion again (in which case we need to be careful of
5206                  * the error return reporting that we have already inserted
5207                  * this index).
5208                  */
5209                 ret = radix_tree_insert(&iter->radix, idx, sg);
5210                 if (ret && ret != -EEXIST)
5211                         goto scan;
5212
5213                 exception =
5214                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5215                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5216                 for (i = 1; i < count; i++) {
5217                         ret = radix_tree_insert(&iter->radix, idx + i,
5218                                                 (void *)exception);
5219                         if (ret && ret != -EEXIST)
5220                                 goto scan;
5221                 }
5222
5223                 idx += count;
5224                 sg = ____sg_next(sg);
5225                 count = __sg_page_count(sg);
5226         }
5227
5228 scan:
5229         iter->sg_pos = sg;
5230         iter->sg_idx = idx;
5231
5232         mutex_unlock(&iter->lock);
5233
5234         if (unlikely(n < idx)) /* insertion completed by another thread */
5235                 goto lookup;
5236
5237         /* In case we failed to insert the entry into the radixtree, we need
5238          * to look beyond the current sg.
5239          */
5240         while (idx + count <= n) {
5241                 idx += count;
5242                 sg = ____sg_next(sg);
5243                 count = __sg_page_count(sg);
5244         }
5245
5246         *offset = n - idx;
5247         return sg;
5248
5249 lookup:
5250         rcu_read_lock();
5251
5252         sg = radix_tree_lookup(&iter->radix, n);
5253         GEM_BUG_ON(!sg);
5254
5255         /* If this index is in the middle of multi-page sg entry,
5256          * the radixtree will contain an exceptional entry that points
5257          * to the start of that range. We will return the pointer to
5258          * the base page and the offset of this page within the
5259          * sg entry's range.
5260          */
5261         *offset = 0;
5262         if (unlikely(radix_tree_exception(sg))) {
5263                 unsigned long base =
5264                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5265
5266                 sg = radix_tree_lookup(&iter->radix, base);
5267                 GEM_BUG_ON(!sg);
5268
5269                 *offset = n - base;
5270         }
5271
5272         rcu_read_unlock();
5273
5274         return sg;
5275 }
5276
5277 struct page *
5278 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5279 {
5280         struct scatterlist *sg;
5281         unsigned int offset;
5282
5283         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5284
5285         sg = i915_gem_object_get_sg(obj, n, &offset);
5286         return nth_page(sg_page(sg), offset);
5287 }
5288
5289 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5290 struct page *
5291 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5292                                unsigned int n)
5293 {
5294         struct page *page;
5295
5296         page = i915_gem_object_get_page(obj, n);
5297         if (!obj->mm.dirty)
5298                 set_page_dirty(page);
5299
5300         return page;
5301 }
5302
5303 dma_addr_t
5304 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5305                                 unsigned long n)
5306 {
5307         struct scatterlist *sg;
5308         unsigned int offset;
5309
5310         sg = i915_gem_object_get_sg(obj, n, &offset);
5311         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5312 }
5313
5314 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5315 #include "selftests/scatterlist.c"
5316 #include "selftests/mock_gem_device.c"
5317 #include "selftests/huge_gem_object.c"
5318 #include "selftests/i915_gem_object.c"
5319 #include "selftests/i915_gem_coherency.c"
5320 #endif