Merge tag 'topic/drmp-cleanup-2019-01-02' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->cache_dirty)
55                 return false;
56
57         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58                 return true;
59
60         return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142         GEM_TRACE("\n");
143
144         lockdep_assert_held(&i915->drm.struct_mutex);
145         GEM_BUG_ON(i915->gt.active_requests);
146         GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148         if (!i915->gt.awake)
149                 return I915_EPOCH_INVALID;
150
151         GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153         /*
154          * Be paranoid and flush a concurrent interrupt to make sure
155          * we don't reactivate any irq tasklets after parking.
156          *
157          * FIXME: Note that even though we have waited for execlists to be idle,
158          * there may still be an in-flight interrupt even though the CSB
159          * is now empty. synchronize_irq() makes sure that a residual interrupt
160          * is completed before we continue, but it doesn't prevent the HW from
161          * raising a spurious interrupt later. To complete the shield we should
162          * coordinate disabling the CS irq with flushing the interrupts.
163          */
164         synchronize_irq(i915->drm.irq);
165
166         intel_engines_park(i915);
167         i915_timelines_park(i915);
168
169         i915_pmu_gt_parked(i915);
170         i915_vma_parked(i915);
171
172         i915->gt.awake = false;
173
174         if (INTEL_GEN(i915) >= 6)
175                 gen6_rps_idle(i915);
176
177         intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179         intel_runtime_pm_put(i915);
180
181         return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186         GEM_TRACE("\n");
187
188         lockdep_assert_held(&i915->drm.struct_mutex);
189         GEM_BUG_ON(i915->gt.active_requests);
190
191         if (!i915->gt.awake)
192                 return;
193
194         /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195         mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200         GEM_TRACE("\n");
201
202         lockdep_assert_held(&i915->drm.struct_mutex);
203         GEM_BUG_ON(!i915->gt.active_requests);
204
205         if (i915->gt.awake)
206                 return;
207
208         intel_runtime_pm_get_noresume(i915);
209
210         /*
211          * It seems that the DMC likes to transition between the DC states a lot
212          * when there are no connected displays (no active power domains) during
213          * command submission.
214          *
215          * This activity has negative impact on the performance of the chip with
216          * huge latencies observed in the interrupt handler and elsewhere.
217          *
218          * Work around it by grabbing a GT IRQ power domain whilst there is any
219          * GT activity, preventing any DC state transitions.
220          */
221         intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223         i915->gt.awake = true;
224         if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225                 i915->gt.epoch = 1;
226
227         intel_enable_gt_powersave(i915);
228         i915_update_gfx_val(i915);
229         if (INTEL_GEN(i915) >= 6)
230                 gen6_rps_busy(i915);
231         i915_pmu_gt_unparked(i915);
232
233         intel_engines_unpark(i915);
234
235         i915_queue_hangcheck(i915);
236
237         queue_delayed_work(i915->wq,
238                            &i915->gt.retire_work,
239                            round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244                             struct drm_file *file)
245 {
246         struct drm_i915_private *dev_priv = to_i915(dev);
247         struct i915_ggtt *ggtt = &dev_priv->ggtt;
248         struct drm_i915_gem_get_aperture *args = data;
249         struct i915_vma *vma;
250         u64 pinned;
251
252         pinned = ggtt->vm.reserved;
253         mutex_lock(&dev->struct_mutex);
254         list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255                 if (i915_vma_is_pinned(vma))
256                         pinned += vma->node.size;
257         list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258                 if (i915_vma_is_pinned(vma))
259                         pinned += vma->node.size;
260         mutex_unlock(&dev->struct_mutex);
261
262         args->aper_size = ggtt->vm.total;
263         args->aper_available_size = args->aper_size - pinned;
264
265         return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270         struct address_space *mapping = obj->base.filp->f_mapping;
271         drm_dma_handle_t *phys;
272         struct sg_table *st;
273         struct scatterlist *sg;
274         char *vaddr;
275         int i;
276         int err;
277
278         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279                 return -EINVAL;
280
281         /* Always aligning to the object size, allows a single allocation
282          * to handle all possible callers, and given typical object sizes,
283          * the alignment of the buddy allocation will naturally match.
284          */
285         phys = drm_pci_alloc(obj->base.dev,
286                              roundup_pow_of_two(obj->base.size),
287                              roundup_pow_of_two(obj->base.size));
288         if (!phys)
289                 return -ENOMEM;
290
291         vaddr = phys->vaddr;
292         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293                 struct page *page;
294                 char *src;
295
296                 page = shmem_read_mapping_page(mapping, i);
297                 if (IS_ERR(page)) {
298                         err = PTR_ERR(page);
299                         goto err_phys;
300                 }
301
302                 src = kmap_atomic(page);
303                 memcpy(vaddr, src, PAGE_SIZE);
304                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305                 kunmap_atomic(src);
306
307                 put_page(page);
308                 vaddr += PAGE_SIZE;
309         }
310
311         i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313         st = kmalloc(sizeof(*st), GFP_KERNEL);
314         if (!st) {
315                 err = -ENOMEM;
316                 goto err_phys;
317         }
318
319         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320                 kfree(st);
321                 err = -ENOMEM;
322                 goto err_phys;
323         }
324
325         sg = st->sgl;
326         sg->offset = 0;
327         sg->length = obj->base.size;
328
329         sg_dma_address(sg) = phys->busaddr;
330         sg_dma_len(sg) = obj->base.size;
331
332         obj->phys_handle = phys;
333
334         __i915_gem_object_set_pages(obj, st, sg->length);
335
336         return 0;
337
338 err_phys:
339         drm_pci_free(obj->base.dev, phys);
340
341         return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346         obj->read_domains = I915_GEM_DOMAIN_CPU;
347         obj->write_domain = I915_GEM_DOMAIN_CPU;
348         if (cpu_write_needs_clflush(obj))
349                 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354                                 struct sg_table *pages,
355                                 bool needs_clflush)
356 {
357         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359         if (obj->mm.madv == I915_MADV_DONTNEED)
360                 obj->mm.dirty = false;
361
362         if (needs_clflush &&
363             (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365                 drm_clflush_sg(pages);
366
367         __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372                                struct sg_table *pages)
373 {
374         __i915_gem_object_release_shmem(obj, pages, false);
375
376         if (obj->mm.dirty) {
377                 struct address_space *mapping = obj->base.filp->f_mapping;
378                 char *vaddr = obj->phys_handle->vaddr;
379                 int i;
380
381                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382                         struct page *page;
383                         char *dst;
384
385                         page = shmem_read_mapping_page(mapping, i);
386                         if (IS_ERR(page))
387                                 continue;
388
389                         dst = kmap_atomic(page);
390                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
391                         memcpy(dst, vaddr, PAGE_SIZE);
392                         kunmap_atomic(dst);
393
394                         set_page_dirty(page);
395                         if (obj->mm.madv == I915_MADV_WILLNEED)
396                                 mark_page_accessed(page);
397                         put_page(page);
398                         vaddr += PAGE_SIZE;
399                 }
400                 obj->mm.dirty = false;
401         }
402
403         sg_free_table(pages);
404         kfree(pages);
405
406         drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412         i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416         .get_pages = i915_gem_object_get_pages_phys,
417         .put_pages = i915_gem_object_put_pages_phys,
418         .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425         struct i915_vma *vma;
426         LIST_HEAD(still_in_list);
427         int ret;
428
429         lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431         /* Closed vma are removed from the obj->vma_list - but they may
432          * still have an active binding on the object. To remove those we
433          * must wait for all rendering to complete to the object (as unbinding
434          * must anyway), and retire the requests.
435          */
436         ret = i915_gem_object_set_to_cpu_domain(obj, false);
437         if (ret)
438                 return ret;
439
440         while ((vma = list_first_entry_or_null(&obj->vma_list,
441                                                struct i915_vma,
442                                                obj_link))) {
443                 list_move_tail(&vma->obj_link, &still_in_list);
444                 ret = i915_vma_unbind(vma);
445                 if (ret)
446                         break;
447         }
448         list_splice(&still_in_list, &obj->vma_list);
449
450         return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455                            unsigned int flags,
456                            long timeout,
457                            struct intel_rps_client *rps_client)
458 {
459         struct i915_request *rq;
460
461         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464                 return timeout;
465
466         if (!dma_fence_is_i915(fence))
467                 return dma_fence_wait_timeout(fence,
468                                               flags & I915_WAIT_INTERRUPTIBLE,
469                                               timeout);
470
471         rq = to_request(fence);
472         if (i915_request_completed(rq))
473                 goto out;
474
475         /*
476          * This client is about to stall waiting for the GPU. In many cases
477          * this is undesirable and limits the throughput of the system, as
478          * many clients cannot continue processing user input/output whilst
479          * blocked. RPS autotuning may take tens of milliseconds to respond
480          * to the GPU load and thus incurs additional latency for the client.
481          * We can circumvent that by promoting the GPU frequency to maximum
482          * before we wait. This makes the GPU throttle up much more quickly
483          * (good for benchmarks and user experience, e.g. window animations),
484          * but at a cost of spending more power processing the workload
485          * (bad for battery). Not all clients even want their results
486          * immediately and for them we should just let the GPU select its own
487          * frequency to maximise efficiency. To prevent a single client from
488          * forcing the clocks too high for the whole system, we only allow
489          * each client to waitboost once in a busy period.
490          */
491         if (rps_client && !i915_request_started(rq)) {
492                 if (INTEL_GEN(rq->i915) >= 6)
493                         gen6_rps_boost(rq, rps_client);
494         }
495
496         timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499         if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500                 i915_request_retire_upto(rq);
501
502         return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507                                  unsigned int flags,
508                                  long timeout,
509                                  struct intel_rps_client *rps_client)
510 {
511         unsigned int seq = __read_seqcount_begin(&resv->seq);
512         struct dma_fence *excl;
513         bool prune_fences = false;
514
515         if (flags & I915_WAIT_ALL) {
516                 struct dma_fence **shared;
517                 unsigned int count, i;
518                 int ret;
519
520                 ret = reservation_object_get_fences_rcu(resv,
521                                                         &excl, &count, &shared);
522                 if (ret)
523                         return ret;
524
525                 for (i = 0; i < count; i++) {
526                         timeout = i915_gem_object_wait_fence(shared[i],
527                                                              flags, timeout,
528                                                              rps_client);
529                         if (timeout < 0)
530                                 break;
531
532                         dma_fence_put(shared[i]);
533                 }
534
535                 for (; i < count; i++)
536                         dma_fence_put(shared[i]);
537                 kfree(shared);
538
539                 /*
540                  * If both shared fences and an exclusive fence exist,
541                  * then by construction the shared fences must be later
542                  * than the exclusive fence. If we successfully wait for
543                  * all the shared fences, we know that the exclusive fence
544                  * must all be signaled. If all the shared fences are
545                  * signaled, we can prune the array and recover the
546                  * floating references on the fences/requests.
547                  */
548                 prune_fences = count && timeout >= 0;
549         } else {
550                 excl = reservation_object_get_excl_rcu(resv);
551         }
552
553         if (excl && timeout >= 0)
554                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555                                                      rps_client);
556
557         dma_fence_put(excl);
558
559         /*
560          * Opportunistically prune the fences iff we know they have *all* been
561          * signaled and that the reservation object has not been changed (i.e.
562          * no new fences have been added).
563          */
564         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565                 if (reservation_object_trylock(resv)) {
566                         if (!__read_seqcount_retry(&resv->seq, seq))
567                                 reservation_object_add_excl_fence(resv, NULL);
568                         reservation_object_unlock(resv);
569                 }
570         }
571
572         return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576                                  const struct i915_sched_attr *attr)
577 {
578         struct i915_request *rq;
579         struct intel_engine_cs *engine;
580
581         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582                 return;
583
584         rq = to_request(fence);
585         engine = rq->engine;
586
587         local_bh_disable();
588         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589         if (engine->schedule)
590                 engine->schedule(rq, attr);
591         rcu_read_unlock();
592         local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596                                const struct i915_sched_attr *attr)
597 {
598         /* Recurse once into a fence-array */
599         if (dma_fence_is_array(fence)) {
600                 struct dma_fence_array *array = to_dma_fence_array(fence);
601                 int i;
602
603                 for (i = 0; i < array->num_fences; i++)
604                         __fence_set_priority(array->fences[i], attr);
605         } else {
606                 __fence_set_priority(fence, attr);
607         }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612                               unsigned int flags,
613                               const struct i915_sched_attr *attr)
614 {
615         struct dma_fence *excl;
616
617         if (flags & I915_WAIT_ALL) {
618                 struct dma_fence **shared;
619                 unsigned int count, i;
620                 int ret;
621
622                 ret = reservation_object_get_fences_rcu(obj->resv,
623                                                         &excl, &count, &shared);
624                 if (ret)
625                         return ret;
626
627                 for (i = 0; i < count; i++) {
628                         fence_set_priority(shared[i], attr);
629                         dma_fence_put(shared[i]);
630                 }
631
632                 kfree(shared);
633         } else {
634                 excl = reservation_object_get_excl_rcu(obj->resv);
635         }
636
637         if (excl) {
638                 fence_set_priority(excl, attr);
639                 dma_fence_put(excl);
640         }
641         return 0;
642 }
643
644 /**
645  * Waits for rendering to the object to be completed
646  * @obj: i915 gem object
647  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648  * @timeout: how long to wait
649  * @rps_client: client (user process) to charge for any waitboosting
650  */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653                      unsigned int flags,
654                      long timeout,
655                      struct intel_rps_client *rps_client)
656 {
657         might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659         GEM_BUG_ON(debug_locks &&
660                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661                    !!(flags & I915_WAIT_LOCKED));
662 #endif
663         GEM_BUG_ON(timeout < 0);
664
665         timeout = i915_gem_object_wait_reservation(obj->resv,
666                                                    flags, timeout,
667                                                    rps_client);
668         return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673         struct drm_i915_file_private *fpriv = file->driver_priv;
674
675         return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680                      struct drm_i915_gem_pwrite *args,
681                      struct drm_file *file)
682 {
683         void *vaddr = obj->phys_handle->vaddr + args->offset;
684         char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686         /* We manually control the domain here and pretend that it
687          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688          */
689         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690         if (copy_from_user(vaddr, user_data, args->size))
691                 return -EFAULT;
692
693         drm_clflush_virt_range(vaddr, args->size);
694         i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696         intel_fb_obj_flush(obj, ORIGIN_CPU);
697         return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708         kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713                 struct drm_i915_private *dev_priv,
714                 uint64_t size,
715                 uint32_t *handle_p)
716 {
717         struct drm_i915_gem_object *obj;
718         int ret;
719         u32 handle;
720
721         size = roundup(size, PAGE_SIZE);
722         if (size == 0)
723                 return -EINVAL;
724
725         /* Allocate the new object */
726         obj = i915_gem_object_create(dev_priv, size);
727         if (IS_ERR(obj))
728                 return PTR_ERR(obj);
729
730         ret = drm_gem_handle_create(file, &obj->base, &handle);
731         /* drop reference from allocate - handle holds it now */
732         i915_gem_object_put(obj);
733         if (ret)
734                 return ret;
735
736         *handle_p = handle;
737         return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742                      struct drm_device *dev,
743                      struct drm_mode_create_dumb *args)
744 {
745         /* have to work out size/pitch and return them */
746         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747         args->size = args->pitch * args->height;
748         return i915_gem_create(file, to_i915(dev),
749                                args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754         return !(obj->cache_level == I915_CACHE_NONE ||
755                  obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759  * Creates a new mm object and returns a handle to it.
760  * @dev: drm device pointer
761  * @data: ioctl data blob
762  * @file: drm file pointer
763  */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766                       struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = to_i915(dev);
769         struct drm_i915_gem_create *args = data;
770
771         i915_gem_flush_free_objects(dev_priv);
772
773         return i915_gem_create(file, dev_priv,
774                                args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780         return (domain == I915_GEM_DOMAIN_GTT ?
781                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786         /*
787          * No actual flushing is required for the GTT write domain for reads
788          * from the GTT domain. Writes to it "immediately" go to main memory
789          * as far as we know, so there's no chipset flush. It also doesn't
790          * land in the GPU render cache.
791          *
792          * However, we do have to enforce the order so that all writes through
793          * the GTT land before any writes to the device, such as updates to
794          * the GATT itself.
795          *
796          * We also have to wait a bit for the writes to land from the GTT.
797          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798          * timing. This issue has only been observed when switching quickly
799          * between GTT writes and CPU reads from inside the kernel on recent hw,
800          * and it appears to only affect discrete GTT blocks (i.e. on LLC
801          * system agents we cannot reproduce this behaviour, until Cannonlake
802          * that was!).
803          */
804
805         wmb();
806
807         if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808                 return;
809
810         i915_gem_chipset_flush(dev_priv);
811
812         intel_runtime_pm_get(dev_priv);
813         spin_lock_irq(&dev_priv->uncore.lock);
814
815         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817         spin_unlock_irq(&dev_priv->uncore.lock);
818         intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825         struct i915_vma *vma;
826
827         if (!(obj->write_domain & flush_domains))
828                 return;
829
830         switch (obj->write_domain) {
831         case I915_GEM_DOMAIN_GTT:
832                 i915_gem_flush_ggtt_writes(dev_priv);
833
834                 intel_fb_obj_flush(obj,
835                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837                 for_each_ggtt_vma(vma, obj) {
838                         if (vma->iomap)
839                                 continue;
840
841                         i915_vma_unset_ggtt_write(vma);
842                 }
843                 break;
844
845         case I915_GEM_DOMAIN_WC:
846                 wmb();
847                 break;
848
849         case I915_GEM_DOMAIN_CPU:
850                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851                 break;
852
853         case I915_GEM_DOMAIN_RENDER:
854                 if (gpu_write_needs_clflush(obj))
855                         obj->cache_dirty = true;
856                 break;
857         }
858
859         obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864                         const char *gpu_vaddr, int gpu_offset,
865                         int length)
866 {
867         int ret, cpu_offset = 0;
868
869         while (length > 0) {
870                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871                 int this_length = min(cacheline_end - gpu_offset, length);
872                 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875                                      gpu_vaddr + swizzled_gpu_offset,
876                                      this_length);
877                 if (ret)
878                         return ret + length;
879
880                 cpu_offset += this_length;
881                 gpu_offset += this_length;
882                 length -= this_length;
883         }
884
885         return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890                           const char __user *cpu_vaddr,
891                           int length)
892 {
893         int ret, cpu_offset = 0;
894
895         while (length > 0) {
896                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897                 int this_length = min(cacheline_end - gpu_offset, length);
898                 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901                                        cpu_vaddr + cpu_offset,
902                                        this_length);
903                 if (ret)
904                         return ret + length;
905
906                 cpu_offset += this_length;
907                 gpu_offset += this_length;
908                 length -= this_length;
909         }
910
911         return 0;
912 }
913
914 /*
915  * Pins the specified object's pages and synchronizes the object with
916  * GPU accesses. Sets needs_clflush to non-zero if the caller should
917  * flush the object from the CPU cache.
918  */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920                                     unsigned int *needs_clflush)
921 {
922         int ret;
923
924         lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926         *needs_clflush = 0;
927         if (!i915_gem_object_has_struct_page(obj))
928                 return -ENODEV;
929
930         ret = i915_gem_object_wait(obj,
931                                    I915_WAIT_INTERRUPTIBLE |
932                                    I915_WAIT_LOCKED,
933                                    MAX_SCHEDULE_TIMEOUT,
934                                    NULL);
935         if (ret)
936                 return ret;
937
938         ret = i915_gem_object_pin_pages(obj);
939         if (ret)
940                 return ret;
941
942         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945                 if (ret)
946                         goto err_unpin;
947                 else
948                         goto out;
949         }
950
951         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953         /* If we're not in the cpu read domain, set ourself into the gtt
954          * read domain and manually flush cachelines (if required). This
955          * optimizes for the case when the gpu will dirty the data
956          * anyway again before the next pread happens.
957          */
958         if (!obj->cache_dirty &&
959             !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960                 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963         /* return with the pages pinned */
964         return 0;
965
966 err_unpin:
967         i915_gem_object_unpin_pages(obj);
968         return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972                                      unsigned int *needs_clflush)
973 {
974         int ret;
975
976         lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978         *needs_clflush = 0;
979         if (!i915_gem_object_has_struct_page(obj))
980                 return -ENODEV;
981
982         ret = i915_gem_object_wait(obj,
983                                    I915_WAIT_INTERRUPTIBLE |
984                                    I915_WAIT_LOCKED |
985                                    I915_WAIT_ALL,
986                                    MAX_SCHEDULE_TIMEOUT,
987                                    NULL);
988         if (ret)
989                 return ret;
990
991         ret = i915_gem_object_pin_pages(obj);
992         if (ret)
993                 return ret;
994
995         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998                 if (ret)
999                         goto err_unpin;
1000                 else
1001                         goto out;
1002         }
1003
1004         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006         /* If we're not in the cpu write domain, set ourself into the
1007          * gtt write domain and manually flush cachelines (as required).
1008          * This optimizes for the case when the gpu will use the data
1009          * right away and we therefore have to clflush anyway.
1010          */
1011         if (!obj->cache_dirty) {
1012                 *needs_clflush |= CLFLUSH_AFTER;
1013
1014                 /*
1015                  * Same trick applies to invalidate partially written
1016                  * cachelines read before writing.
1017                  */
1018                 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019                         *needs_clflush |= CLFLUSH_BEFORE;
1020         }
1021
1022 out:
1023         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024         obj->mm.dirty = true;
1025         /* return with the pages pinned */
1026         return 0;
1027
1028 err_unpin:
1029         i915_gem_object_unpin_pages(obj);
1030         return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035                              bool swizzled)
1036 {
1037         if (unlikely(swizzled)) {
1038                 unsigned long start = (unsigned long) addr;
1039                 unsigned long end = (unsigned long) addr + length;
1040
1041                 /* For swizzling simply ensure that we always flush both
1042                  * channels. Lame, but simple and it works. Swizzled
1043                  * pwrite/pread is far from a hotpath - current userspace
1044                  * doesn't use it at all. */
1045                 start = round_down(start, 128);
1046                 end = round_up(end, 128);
1047
1048                 drm_clflush_virt_range((void *)start, end - start);
1049         } else {
1050                 drm_clflush_virt_range(addr, length);
1051         }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056  * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059                  char __user *user_data,
1060                  bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062         char *vaddr;
1063         int ret;
1064
1065         vaddr = kmap(page);
1066         if (needs_clflush)
1067                 shmem_clflush_swizzled_range(vaddr + offset, length,
1068                                              page_do_bit17_swizzling);
1069
1070         if (page_do_bit17_swizzling)
1071                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072         else
1073                 ret = __copy_to_user(user_data, vaddr + offset, length);
1074         kunmap(page);
1075
1076         return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081             bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083         int ret;
1084
1085         ret = -ENODEV;
1086         if (!page_do_bit17_swizzling) {
1087                 char *vaddr = kmap_atomic(page);
1088
1089                 if (needs_clflush)
1090                         drm_clflush_virt_range(vaddr + offset, length);
1091                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092                 kunmap_atomic(vaddr);
1093         }
1094         if (ret == 0)
1095                 return 0;
1096
1097         return shmem_pread_slow(page, offset, length, user_data,
1098                                 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103                      struct drm_i915_gem_pread *args)
1104 {
1105         char __user *user_data;
1106         u64 remain;
1107         unsigned int obj_do_bit17_swizzling;
1108         unsigned int needs_clflush;
1109         unsigned int idx, offset;
1110         int ret;
1111
1112         obj_do_bit17_swizzling = 0;
1113         if (i915_gem_object_needs_bit17_swizzle(obj))
1114                 obj_do_bit17_swizzling = BIT(17);
1115
1116         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117         if (ret)
1118                 return ret;
1119
1120         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121         mutex_unlock(&obj->base.dev->struct_mutex);
1122         if (ret)
1123                 return ret;
1124
1125         remain = args->size;
1126         user_data = u64_to_user_ptr(args->data_ptr);
1127         offset = offset_in_page(args->offset);
1128         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129                 struct page *page = i915_gem_object_get_page(obj, idx);
1130                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131
1132                 ret = shmem_pread(page, offset, length, user_data,
1133                                   page_to_phys(page) & obj_do_bit17_swizzling,
1134                                   needs_clflush);
1135                 if (ret)
1136                         break;
1137
1138                 remain -= length;
1139                 user_data += length;
1140                 offset = 0;
1141         }
1142
1143         i915_gem_obj_finish_shmem_access(obj);
1144         return ret;
1145 }
1146
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149               loff_t base, int offset,
1150               char __user *user_data, int length)
1151 {
1152         void __iomem *vaddr;
1153         unsigned long unwritten;
1154
1155         /* We can use the cpu mem copy function because this is X86. */
1156         vaddr = io_mapping_map_atomic_wc(mapping, base);
1157         unwritten = __copy_to_user_inatomic(user_data,
1158                                             (void __force *)vaddr + offset,
1159                                             length);
1160         io_mapping_unmap_atomic(vaddr);
1161         if (unwritten) {
1162                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163                 unwritten = copy_to_user(user_data,
1164                                          (void __force *)vaddr + offset,
1165                                          length);
1166                 io_mapping_unmap(vaddr);
1167         }
1168         return unwritten;
1169 }
1170
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173                    const struct drm_i915_gem_pread *args)
1174 {
1175         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176         struct i915_ggtt *ggtt = &i915->ggtt;
1177         struct drm_mm_node node;
1178         struct i915_vma *vma;
1179         void __user *user_data;
1180         u64 remain, offset;
1181         int ret;
1182
1183         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184         if (ret)
1185                 return ret;
1186
1187         intel_runtime_pm_get(i915);
1188         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189                                        PIN_MAPPABLE |
1190                                        PIN_NONFAULT |
1191                                        PIN_NONBLOCK);
1192         if (!IS_ERR(vma)) {
1193                 node.start = i915_ggtt_offset(vma);
1194                 node.allocated = false;
1195                 ret = i915_vma_put_fence(vma);
1196                 if (ret) {
1197                         i915_vma_unpin(vma);
1198                         vma = ERR_PTR(ret);
1199                 }
1200         }
1201         if (IS_ERR(vma)) {
1202                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203                 if (ret)
1204                         goto out_unlock;
1205                 GEM_BUG_ON(!node.allocated);
1206         }
1207
1208         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209         if (ret)
1210                 goto out_unpin;
1211
1212         mutex_unlock(&i915->drm.struct_mutex);
1213
1214         user_data = u64_to_user_ptr(args->data_ptr);
1215         remain = args->size;
1216         offset = args->offset;
1217
1218         while (remain > 0) {
1219                 /* Operation in this page
1220                  *
1221                  * page_base = page offset within aperture
1222                  * page_offset = offset within page
1223                  * page_length = bytes to copy for this page
1224                  */
1225                 u32 page_base = node.start;
1226                 unsigned page_offset = offset_in_page(offset);
1227                 unsigned page_length = PAGE_SIZE - page_offset;
1228                 page_length = remain < page_length ? remain : page_length;
1229                 if (node.allocated) {
1230                         wmb();
1231                         ggtt->vm.insert_page(&ggtt->vm,
1232                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233                                              node.start, I915_CACHE_NONE, 0);
1234                         wmb();
1235                 } else {
1236                         page_base += offset & PAGE_MASK;
1237                 }
1238
1239                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240                                   user_data, page_length)) {
1241                         ret = -EFAULT;
1242                         break;
1243                 }
1244
1245                 remain -= page_length;
1246                 user_data += page_length;
1247                 offset += page_length;
1248         }
1249
1250         mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252         if (node.allocated) {
1253                 wmb();
1254                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255                 remove_mappable_node(&node);
1256         } else {
1257                 i915_vma_unpin(vma);
1258         }
1259 out_unlock:
1260         intel_runtime_pm_put(i915);
1261         mutex_unlock(&i915->drm.struct_mutex);
1262
1263         return ret;
1264 }
1265
1266 /**
1267  * Reads data from the object referenced by handle.
1268  * @dev: drm device pointer
1269  * @data: ioctl data blob
1270  * @file: drm file pointer
1271  *
1272  * On error, the contents of *data are undefined.
1273  */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276                      struct drm_file *file)
1277 {
1278         struct drm_i915_gem_pread *args = data;
1279         struct drm_i915_gem_object *obj;
1280         int ret;
1281
1282         if (args->size == 0)
1283                 return 0;
1284
1285         if (!access_ok(VERIFY_WRITE,
1286                        u64_to_user_ptr(args->data_ptr),
1287                        args->size))
1288                 return -EFAULT;
1289
1290         obj = i915_gem_object_lookup(file, args->handle);
1291         if (!obj)
1292                 return -ENOENT;
1293
1294         /* Bounds check source.  */
1295         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296                 ret = -EINVAL;
1297                 goto out;
1298         }
1299
1300         trace_i915_gem_object_pread(obj, args->offset, args->size);
1301
1302         ret = i915_gem_object_wait(obj,
1303                                    I915_WAIT_INTERRUPTIBLE,
1304                                    MAX_SCHEDULE_TIMEOUT,
1305                                    to_rps_client(file));
1306         if (ret)
1307                 goto out;
1308
1309         ret = i915_gem_object_pin_pages(obj);
1310         if (ret)
1311                 goto out;
1312
1313         ret = i915_gem_shmem_pread(obj, args);
1314         if (ret == -EFAULT || ret == -ENODEV)
1315                 ret = i915_gem_gtt_pread(obj, args);
1316
1317         i915_gem_object_unpin_pages(obj);
1318 out:
1319         i915_gem_object_put(obj);
1320         return ret;
1321 }
1322
1323 /* This is the fast write path which cannot handle
1324  * page faults in the source data
1325  */
1326
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329            loff_t base, int offset,
1330            char __user *user_data, int length)
1331 {
1332         void __iomem *vaddr;
1333         unsigned long unwritten;
1334
1335         /* We can use the cpu mem copy function because this is X86. */
1336         vaddr = io_mapping_map_atomic_wc(mapping, base);
1337         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338                                                       user_data, length);
1339         io_mapping_unmap_atomic(vaddr);
1340         if (unwritten) {
1341                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342                 unwritten = copy_from_user((void __force *)vaddr + offset,
1343                                            user_data, length);
1344                 io_mapping_unmap(vaddr);
1345         }
1346
1347         return unwritten;
1348 }
1349
1350 /**
1351  * This is the fast pwrite path, where we copy the data directly from the
1352  * user into the GTT, uncached.
1353  * @obj: i915 GEM object
1354  * @args: pwrite arguments structure
1355  */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358                          const struct drm_i915_gem_pwrite *args)
1359 {
1360         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361         struct i915_ggtt *ggtt = &i915->ggtt;
1362         struct drm_mm_node node;
1363         struct i915_vma *vma;
1364         u64 remain, offset;
1365         void __user *user_data;
1366         int ret;
1367
1368         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369         if (ret)
1370                 return ret;
1371
1372         if (i915_gem_object_has_struct_page(obj)) {
1373                 /*
1374                  * Avoid waking the device up if we can fallback, as
1375                  * waking/resuming is very slow (worst-case 10-100 ms
1376                  * depending on PCI sleeps and our own resume time).
1377                  * This easily dwarfs any performance advantage from
1378                  * using the cache bypass of indirect GGTT access.
1379                  */
1380                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1381                         ret = -EFAULT;
1382                         goto out_unlock;
1383                 }
1384         } else {
1385                 /* No backing pages, no fallback, we must force GGTT access */
1386                 intel_runtime_pm_get(i915);
1387         }
1388
1389         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390                                        PIN_MAPPABLE |
1391                                        PIN_NONFAULT |
1392                                        PIN_NONBLOCK);
1393         if (!IS_ERR(vma)) {
1394                 node.start = i915_ggtt_offset(vma);
1395                 node.allocated = false;
1396                 ret = i915_vma_put_fence(vma);
1397                 if (ret) {
1398                         i915_vma_unpin(vma);
1399                         vma = ERR_PTR(ret);
1400                 }
1401         }
1402         if (IS_ERR(vma)) {
1403                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404                 if (ret)
1405                         goto out_rpm;
1406                 GEM_BUG_ON(!node.allocated);
1407         }
1408
1409         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410         if (ret)
1411                 goto out_unpin;
1412
1413         mutex_unlock(&i915->drm.struct_mutex);
1414
1415         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416
1417         user_data = u64_to_user_ptr(args->data_ptr);
1418         offset = args->offset;
1419         remain = args->size;
1420         while (remain) {
1421                 /* Operation in this page
1422                  *
1423                  * page_base = page offset within aperture
1424                  * page_offset = offset within page
1425                  * page_length = bytes to copy for this page
1426                  */
1427                 u32 page_base = node.start;
1428                 unsigned int page_offset = offset_in_page(offset);
1429                 unsigned int page_length = PAGE_SIZE - page_offset;
1430                 page_length = remain < page_length ? remain : page_length;
1431                 if (node.allocated) {
1432                         wmb(); /* flush the write before we modify the GGTT */
1433                         ggtt->vm.insert_page(&ggtt->vm,
1434                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435                                              node.start, I915_CACHE_NONE, 0);
1436                         wmb(); /* flush modifications to the GGTT (insert_page) */
1437                 } else {
1438                         page_base += offset & PAGE_MASK;
1439                 }
1440                 /* If we get a fault while copying data, then (presumably) our
1441                  * source page isn't available.  Return the error and we'll
1442                  * retry in the slow path.
1443                  * If the object is non-shmem backed, we retry again with the
1444                  * path that handles page fault.
1445                  */
1446                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447                                user_data, page_length)) {
1448                         ret = -EFAULT;
1449                         break;
1450                 }
1451
1452                 remain -= page_length;
1453                 user_data += page_length;
1454                 offset += page_length;
1455         }
1456         intel_fb_obj_flush(obj, ORIGIN_CPU);
1457
1458         mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460         if (node.allocated) {
1461                 wmb();
1462                 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463                 remove_mappable_node(&node);
1464         } else {
1465                 i915_vma_unpin(vma);
1466         }
1467 out_rpm:
1468         intel_runtime_pm_put(i915);
1469 out_unlock:
1470         mutex_unlock(&i915->drm.struct_mutex);
1471         return ret;
1472 }
1473
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476                   char __user *user_data,
1477                   bool page_do_bit17_swizzling,
1478                   bool needs_clflush_before,
1479                   bool needs_clflush_after)
1480 {
1481         char *vaddr;
1482         int ret;
1483
1484         vaddr = kmap(page);
1485         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486                 shmem_clflush_swizzled_range(vaddr + offset, length,
1487                                              page_do_bit17_swizzling);
1488         if (page_do_bit17_swizzling)
1489                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490                                                 length);
1491         else
1492                 ret = __copy_from_user(vaddr + offset, user_data, length);
1493         if (needs_clflush_after)
1494                 shmem_clflush_swizzled_range(vaddr + offset, length,
1495                                              page_do_bit17_swizzling);
1496         kunmap(page);
1497
1498         return ret ? -EFAULT : 0;
1499 }
1500
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502  * Flushes invalid cachelines before writing to the target if
1503  * needs_clflush_before is set and flushes out any written cachelines after
1504  * writing if needs_clflush is set.
1505  */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508              bool page_do_bit17_swizzling,
1509              bool needs_clflush_before,
1510              bool needs_clflush_after)
1511 {
1512         int ret;
1513
1514         ret = -ENODEV;
1515         if (!page_do_bit17_swizzling) {
1516                 char *vaddr = kmap_atomic(page);
1517
1518                 if (needs_clflush_before)
1519                         drm_clflush_virt_range(vaddr + offset, len);
1520                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521                 if (needs_clflush_after)
1522                         drm_clflush_virt_range(vaddr + offset, len);
1523
1524                 kunmap_atomic(vaddr);
1525         }
1526         if (ret == 0)
1527                 return ret;
1528
1529         return shmem_pwrite_slow(page, offset, len, user_data,
1530                                  page_do_bit17_swizzling,
1531                                  needs_clflush_before,
1532                                  needs_clflush_after);
1533 }
1534
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537                       const struct drm_i915_gem_pwrite *args)
1538 {
1539         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540         void __user *user_data;
1541         u64 remain;
1542         unsigned int obj_do_bit17_swizzling;
1543         unsigned int partial_cacheline_write;
1544         unsigned int needs_clflush;
1545         unsigned int offset, idx;
1546         int ret;
1547
1548         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549         if (ret)
1550                 return ret;
1551
1552         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553         mutex_unlock(&i915->drm.struct_mutex);
1554         if (ret)
1555                 return ret;
1556
1557         obj_do_bit17_swizzling = 0;
1558         if (i915_gem_object_needs_bit17_swizzle(obj))
1559                 obj_do_bit17_swizzling = BIT(17);
1560
1561         /* If we don't overwrite a cacheline completely we need to be
1562          * careful to have up-to-date data by first clflushing. Don't
1563          * overcomplicate things and flush the entire patch.
1564          */
1565         partial_cacheline_write = 0;
1566         if (needs_clflush & CLFLUSH_BEFORE)
1567                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568
1569         user_data = u64_to_user_ptr(args->data_ptr);
1570         remain = args->size;
1571         offset = offset_in_page(args->offset);
1572         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573                 struct page *page = i915_gem_object_get_page(obj, idx);
1574                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575
1576                 ret = shmem_pwrite(page, offset, length, user_data,
1577                                    page_to_phys(page) & obj_do_bit17_swizzling,
1578                                    (offset | length) & partial_cacheline_write,
1579                                    needs_clflush & CLFLUSH_AFTER);
1580                 if (ret)
1581                         break;
1582
1583                 remain -= length;
1584                 user_data += length;
1585                 offset = 0;
1586         }
1587
1588         intel_fb_obj_flush(obj, ORIGIN_CPU);
1589         i915_gem_obj_finish_shmem_access(obj);
1590         return ret;
1591 }
1592
1593 /**
1594  * Writes data to the object referenced by handle.
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  *
1599  * On error, the contents of the buffer that were to be modified are undefined.
1600  */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603                       struct drm_file *file)
1604 {
1605         struct drm_i915_gem_pwrite *args = data;
1606         struct drm_i915_gem_object *obj;
1607         int ret;
1608
1609         if (args->size == 0)
1610                 return 0;
1611
1612         if (!access_ok(VERIFY_READ,
1613                        u64_to_user_ptr(args->data_ptr),
1614                        args->size))
1615                 return -EFAULT;
1616
1617         obj = i915_gem_object_lookup(file, args->handle);
1618         if (!obj)
1619                 return -ENOENT;
1620
1621         /* Bounds check destination. */
1622         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623                 ret = -EINVAL;
1624                 goto err;
1625         }
1626
1627         /* Writes not allowed into this read-only object */
1628         if (i915_gem_object_is_readonly(obj)) {
1629                 ret = -EINVAL;
1630                 goto err;
1631         }
1632
1633         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634
1635         ret = -ENODEV;
1636         if (obj->ops->pwrite)
1637                 ret = obj->ops->pwrite(obj, args);
1638         if (ret != -ENODEV)
1639                 goto err;
1640
1641         ret = i915_gem_object_wait(obj,
1642                                    I915_WAIT_INTERRUPTIBLE |
1643                                    I915_WAIT_ALL,
1644                                    MAX_SCHEDULE_TIMEOUT,
1645                                    to_rps_client(file));
1646         if (ret)
1647                 goto err;
1648
1649         ret = i915_gem_object_pin_pages(obj);
1650         if (ret)
1651                 goto err;
1652
1653         ret = -EFAULT;
1654         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1655          * it would end up going through the fenced access, and we'll get
1656          * different detiling behavior between reading and writing.
1657          * pread/pwrite currently are reading and writing from the CPU
1658          * perspective, requiring manual detiling by the client.
1659          */
1660         if (!i915_gem_object_has_struct_page(obj) ||
1661             cpu_write_needs_clflush(obj))
1662                 /* Note that the gtt paths might fail with non-page-backed user
1663                  * pointers (e.g. gtt mappings when moving data between
1664                  * textures). Fallback to the shmem path in that case.
1665                  */
1666                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1667
1668         if (ret == -EFAULT || ret == -ENOSPC) {
1669                 if (obj->phys_handle)
1670                         ret = i915_gem_phys_pwrite(obj, args, file);
1671                 else
1672                         ret = i915_gem_shmem_pwrite(obj, args);
1673         }
1674
1675         i915_gem_object_unpin_pages(obj);
1676 err:
1677         i915_gem_object_put(obj);
1678         return ret;
1679 }
1680
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683         struct drm_i915_private *i915;
1684         struct list_head *list;
1685         struct i915_vma *vma;
1686
1687         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688
1689         for_each_ggtt_vma(vma, obj) {
1690                 if (i915_vma_is_active(vma))
1691                         continue;
1692
1693                 if (!drm_mm_node_allocated(&vma->node))
1694                         continue;
1695
1696                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697         }
1698
1699         i915 = to_i915(obj->base.dev);
1700         spin_lock(&i915->mm.obj_lock);
1701         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702         list_move_tail(&obj->mm.link, list);
1703         spin_unlock(&i915->mm.obj_lock);
1704 }
1705
1706 /**
1707  * Called when user space prepares to use an object with the CPU, either
1708  * through the mmap ioctl's mapping or a GTT mapping.
1709  * @dev: drm device
1710  * @data: ioctl data blob
1711  * @file: drm file
1712  */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715                           struct drm_file *file)
1716 {
1717         struct drm_i915_gem_set_domain *args = data;
1718         struct drm_i915_gem_object *obj;
1719         uint32_t read_domains = args->read_domains;
1720         uint32_t write_domain = args->write_domain;
1721         int err;
1722
1723         /* Only handle setting domains to types used by the CPU. */
1724         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725                 return -EINVAL;
1726
1727         /* Having something in the write domain implies it's in the read
1728          * domain, and only that read domain.  Enforce that in the request.
1729          */
1730         if (write_domain != 0 && read_domains != write_domain)
1731                 return -EINVAL;
1732
1733         obj = i915_gem_object_lookup(file, args->handle);
1734         if (!obj)
1735                 return -ENOENT;
1736
1737         /* Try to flush the object off the GPU without holding the lock.
1738          * We will repeat the flush holding the lock in the normal manner
1739          * to catch cases where we are gazumped.
1740          */
1741         err = i915_gem_object_wait(obj,
1742                                    I915_WAIT_INTERRUPTIBLE |
1743                                    I915_WAIT_PRIORITY |
1744                                    (write_domain ? I915_WAIT_ALL : 0),
1745                                    MAX_SCHEDULE_TIMEOUT,
1746                                    to_rps_client(file));
1747         if (err)
1748                 goto out;
1749
1750         /*
1751          * Proxy objects do not control access to the backing storage, ergo
1752          * they cannot be used as a means to manipulate the cache domain
1753          * tracking for that backing storage. The proxy object is always
1754          * considered to be outside of any cache domain.
1755          */
1756         if (i915_gem_object_is_proxy(obj)) {
1757                 err = -ENXIO;
1758                 goto out;
1759         }
1760
1761         /*
1762          * Flush and acquire obj->pages so that we are coherent through
1763          * direct access in memory with previous cached writes through
1764          * shmemfs and that our cache domain tracking remains valid.
1765          * For example, if the obj->filp was moved to swap without us
1766          * being notified and releasing the pages, we would mistakenly
1767          * continue to assume that the obj remained out of the CPU cached
1768          * domain.
1769          */
1770         err = i915_gem_object_pin_pages(obj);
1771         if (err)
1772                 goto out;
1773
1774         err = i915_mutex_lock_interruptible(dev);
1775         if (err)
1776                 goto out_unpin;
1777
1778         if (read_domains & I915_GEM_DOMAIN_WC)
1779                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1780         else if (read_domains & I915_GEM_DOMAIN_GTT)
1781                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782         else
1783                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784
1785         /* And bump the LRU for this access */
1786         i915_gem_object_bump_inactive_ggtt(obj);
1787
1788         mutex_unlock(&dev->struct_mutex);
1789
1790         if (write_domain != 0)
1791                 intel_fb_obj_invalidate(obj,
1792                                         fb_write_origin(obj, write_domain));
1793
1794 out_unpin:
1795         i915_gem_object_unpin_pages(obj);
1796 out:
1797         i915_gem_object_put(obj);
1798         return err;
1799 }
1800
1801 /**
1802  * Called when user space has done writes to this buffer
1803  * @dev: drm device
1804  * @data: ioctl data blob
1805  * @file: drm file
1806  */
1807 int
1808 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809                          struct drm_file *file)
1810 {
1811         struct drm_i915_gem_sw_finish *args = data;
1812         struct drm_i915_gem_object *obj;
1813
1814         obj = i915_gem_object_lookup(file, args->handle);
1815         if (!obj)
1816                 return -ENOENT;
1817
1818         /*
1819          * Proxy objects are barred from CPU access, so there is no
1820          * need to ban sw_finish as it is a nop.
1821          */
1822
1823         /* Pinned buffers may be scanout, so flush the cache */
1824         i915_gem_object_flush_if_display(obj);
1825         i915_gem_object_put(obj);
1826
1827         return 0;
1828 }
1829
1830 /**
1831  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1832  *                       it is mapped to.
1833  * @dev: drm device
1834  * @data: ioctl data blob
1835  * @file: drm file
1836  *
1837  * While the mapping holds a reference on the contents of the object, it doesn't
1838  * imply a ref on the object itself.
1839  *
1840  * IMPORTANT:
1841  *
1842  * DRM driver writers who look a this function as an example for how to do GEM
1843  * mmap support, please don't implement mmap support like here. The modern way
1844  * to implement DRM mmap support is with an mmap offset ioctl (like
1845  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1846  * That way debug tooling like valgrind will understand what's going on, hiding
1847  * the mmap call in a driver private ioctl will break that. The i915 driver only
1848  * does cpu mmaps this way because we didn't know better.
1849  */
1850 int
1851 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852                     struct drm_file *file)
1853 {
1854         struct drm_i915_gem_mmap *args = data;
1855         struct drm_i915_gem_object *obj;
1856         unsigned long addr;
1857
1858         if (args->flags & ~(I915_MMAP_WC))
1859                 return -EINVAL;
1860
1861         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862                 return -ENODEV;
1863
1864         obj = i915_gem_object_lookup(file, args->handle);
1865         if (!obj)
1866                 return -ENOENT;
1867
1868         /* prime objects have no backing filp to GEM mmap
1869          * pages from.
1870          */
1871         if (!obj->base.filp) {
1872                 i915_gem_object_put(obj);
1873                 return -ENXIO;
1874         }
1875
1876         addr = vm_mmap(obj->base.filp, 0, args->size,
1877                        PROT_READ | PROT_WRITE, MAP_SHARED,
1878                        args->offset);
1879         if (args->flags & I915_MMAP_WC) {
1880                 struct mm_struct *mm = current->mm;
1881                 struct vm_area_struct *vma;
1882
1883                 if (down_write_killable(&mm->mmap_sem)) {
1884                         i915_gem_object_put(obj);
1885                         return -EINTR;
1886                 }
1887                 vma = find_vma(mm, addr);
1888                 if (vma)
1889                         vma->vm_page_prot =
1890                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1891                 else
1892                         addr = -ENOMEM;
1893                 up_write(&mm->mmap_sem);
1894
1895                 /* This may race, but that's ok, it only gets set */
1896                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897         }
1898         i915_gem_object_put(obj);
1899         if (IS_ERR((void *)addr))
1900                 return addr;
1901
1902         args->addr_ptr = (uint64_t) addr;
1903
1904         return 0;
1905 }
1906
1907 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908 {
1909         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 }
1911
1912 /**
1913  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1914  *
1915  * A history of the GTT mmap interface:
1916  *
1917  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1918  *     aligned and suitable for fencing, and still fit into the available
1919  *     mappable space left by the pinned display objects. A classic problem
1920  *     we called the page-fault-of-doom where we would ping-pong between
1921  *     two objects that could not fit inside the GTT and so the memcpy
1922  *     would page one object in at the expense of the other between every
1923  *     single byte.
1924  *
1925  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1926  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1927  *     object is too large for the available space (or simply too large
1928  *     for the mappable aperture!), a view is created instead and faulted
1929  *     into userspace. (This view is aligned and sized appropriately for
1930  *     fenced access.)
1931  *
1932  * 2 - Recognise WC as a separate cache domain so that we can flush the
1933  *     delayed writes via GTT before performing direct access via WC.
1934  *
1935  * Restrictions:
1936  *
1937  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1938  *    hangs on some architectures, corruption on others. An attempt to service
1939  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1940  *
1941  *  * the object must be able to fit into RAM (physical memory, though no
1942  *    limited to the mappable aperture).
1943  *
1944  *
1945  * Caveats:
1946  *
1947  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1948  *    all data to system memory. Subsequent access will not be synchronized.
1949  *
1950  *  * all mappings are revoked on runtime device suspend.
1951  *
1952  *  * there are only 8, 16 or 32 fence registers to share between all users
1953  *    (older machines require fence register for display and blitter access
1954  *    as well). Contention of the fence registers will cause the previous users
1955  *    to be unmapped and any new access will generate new page faults.
1956  *
1957  *  * running out of memory while servicing a fault may generate a SIGBUS,
1958  *    rather than the expected SIGSEGV.
1959  */
1960 int i915_gem_mmap_gtt_version(void)
1961 {
1962         return 2;
1963 }
1964
1965 static inline struct i915_ggtt_view
1966 compute_partial_view(const struct drm_i915_gem_object *obj,
1967                      pgoff_t page_offset,
1968                      unsigned int chunk)
1969 {
1970         struct i915_ggtt_view view;
1971
1972         if (i915_gem_object_is_tiled(obj))
1973                 chunk = roundup(chunk, tile_row_pages(obj));
1974
1975         view.type = I915_GGTT_VIEW_PARTIAL;
1976         view.partial.offset = rounddown(page_offset, chunk);
1977         view.partial.size =
1978                 min_t(unsigned int, chunk,
1979                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980
1981         /* If the partial covers the entire object, just create a normal VMA. */
1982         if (chunk >= obj->base.size >> PAGE_SHIFT)
1983                 view.type = I915_GGTT_VIEW_NORMAL;
1984
1985         return view;
1986 }
1987
1988 /**
1989  * i915_gem_fault - fault a page into the GTT
1990  * @vmf: fault info
1991  *
1992  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993  * from userspace.  The fault handler takes care of binding the object to
1994  * the GTT (if needed), allocating and programming a fence register (again,
1995  * only if needed based on whether the old reg is still valid or the object
1996  * is tiled) and inserting a new PTE into the faulting process.
1997  *
1998  * Note that the faulting process may involve evicting existing objects
1999  * from the GTT and/or fence registers to make room.  So performance may
2000  * suffer if the GTT working set is large or there are few fence registers
2001  * left.
2002  *
2003  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2004  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005  */
2006 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007 {
2008 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009         struct vm_area_struct *area = vmf->vma;
2010         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011         struct drm_device *dev = obj->base.dev;
2012         struct drm_i915_private *dev_priv = to_i915(dev);
2013         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014         bool write = area->vm_flags & VM_WRITE;
2015         struct i915_vma *vma;
2016         pgoff_t page_offset;
2017         int ret;
2018
2019         /* Sanity check that we allow writing into this object */
2020         if (i915_gem_object_is_readonly(obj) && write)
2021                 return VM_FAULT_SIGBUS;
2022
2023         /* We don't use vmf->pgoff since that has the fake offset */
2024         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025
2026         trace_i915_gem_object_fault(obj, page_offset, true, write);
2027
2028         /* Try to flush the object off the GPU first without holding the lock.
2029          * Upon acquiring the lock, we will perform our sanity checks and then
2030          * repeat the flush holding the lock in the normal manner to catch cases
2031          * where we are gazumped.
2032          */
2033         ret = i915_gem_object_wait(obj,
2034                                    I915_WAIT_INTERRUPTIBLE,
2035                                    MAX_SCHEDULE_TIMEOUT,
2036                                    NULL);
2037         if (ret)
2038                 goto err;
2039
2040         ret = i915_gem_object_pin_pages(obj);
2041         if (ret)
2042                 goto err;
2043
2044         intel_runtime_pm_get(dev_priv);
2045
2046         ret = i915_mutex_lock_interruptible(dev);
2047         if (ret)
2048                 goto err_rpm;
2049
2050         /* Access to snoopable pages through the GTT is incoherent. */
2051         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052                 ret = -EFAULT;
2053                 goto err_unlock;
2054         }
2055
2056
2057         /* Now pin it into the GTT as needed */
2058         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2059                                        PIN_MAPPABLE |
2060                                        PIN_NONBLOCK |
2061                                        PIN_NONFAULT);
2062         if (IS_ERR(vma)) {
2063                 /* Use a partial view if it is bigger than available space */
2064                 struct i915_ggtt_view view =
2065                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066                 unsigned int flags;
2067
2068                 flags = PIN_MAPPABLE;
2069                 if (view.type == I915_GGTT_VIEW_NORMAL)
2070                         flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2071
2072                 /*
2073                  * Userspace is now writing through an untracked VMA, abandon
2074                  * all hope that the hardware is able to track future writes.
2075                  */
2076                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2077
2078                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2079                 if (IS_ERR(vma) && !view.type) {
2080                         flags = PIN_MAPPABLE;
2081                         view.type = I915_GGTT_VIEW_PARTIAL;
2082                         vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2083                 }
2084         }
2085         if (IS_ERR(vma)) {
2086                 ret = PTR_ERR(vma);
2087                 goto err_unlock;
2088         }
2089
2090         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2091         if (ret)
2092                 goto err_unpin;
2093
2094         ret = i915_vma_pin_fence(vma);
2095         if (ret)
2096                 goto err_unpin;
2097
2098         /* Finally, remap it using the new GTT offset */
2099         ret = remap_io_mapping(area,
2100                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102                                min_t(u64, vma->size, area->vm_end - area->vm_start),
2103                                &ggtt->iomap);
2104         if (ret)
2105                 goto err_fence;
2106
2107         /* Mark as being mmapped into userspace for later revocation */
2108         assert_rpm_wakelock_held(dev_priv);
2109         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2110                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2111         GEM_BUG_ON(!obj->userfault_count);
2112
2113         i915_vma_set_ggtt_write(vma);
2114
2115 err_fence:
2116         i915_vma_unpin_fence(vma);
2117 err_unpin:
2118         __i915_vma_unpin(vma);
2119 err_unlock:
2120         mutex_unlock(&dev->struct_mutex);
2121 err_rpm:
2122         intel_runtime_pm_put(dev_priv);
2123         i915_gem_object_unpin_pages(obj);
2124 err:
2125         switch (ret) {
2126         case -EIO:
2127                 /*
2128                  * We eat errors when the gpu is terminally wedged to avoid
2129                  * userspace unduly crashing (gl has no provisions for mmaps to
2130                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2131                  * and so needs to be reported.
2132                  */
2133                 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2134                         return VM_FAULT_SIGBUS;
2135                 /* else: fall through */
2136         case -EAGAIN:
2137                 /*
2138                  * EAGAIN means the gpu is hung and we'll wait for the error
2139                  * handler to reset everything when re-faulting in
2140                  * i915_mutex_lock_interruptible.
2141                  */
2142         case 0:
2143         case -ERESTARTSYS:
2144         case -EINTR:
2145         case -EBUSY:
2146                 /*
2147                  * EBUSY is ok: this just means that another thread
2148                  * already did the job.
2149                  */
2150                 return VM_FAULT_NOPAGE;
2151         case -ENOMEM:
2152                 return VM_FAULT_OOM;
2153         case -ENOSPC:
2154         case -EFAULT:
2155                 return VM_FAULT_SIGBUS;
2156         default:
2157                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158                 return VM_FAULT_SIGBUS;
2159         }
2160 }
2161
2162 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2163 {
2164         struct i915_vma *vma;
2165
2166         GEM_BUG_ON(!obj->userfault_count);
2167
2168         obj->userfault_count = 0;
2169         list_del(&obj->userfault_link);
2170         drm_vma_node_unmap(&obj->base.vma_node,
2171                            obj->base.dev->anon_inode->i_mapping);
2172
2173         for_each_ggtt_vma(vma, obj)
2174                 i915_vma_unset_userfault(vma);
2175 }
2176
2177 /**
2178  * i915_gem_release_mmap - remove physical page mappings
2179  * @obj: obj in question
2180  *
2181  * Preserve the reservation of the mmapping with the DRM core code, but
2182  * relinquish ownership of the pages back to the system.
2183  *
2184  * It is vital that we remove the page mapping if we have mapped a tiled
2185  * object through the GTT and then lose the fence register due to
2186  * resource pressure. Similarly if the object has been moved out of the
2187  * aperture, than pages mapped into userspace must be revoked. Removing the
2188  * mapping will then trigger a page fault on the next user access, allowing
2189  * fixup by i915_gem_fault().
2190  */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195
2196         /* Serialisation between user GTT access and our code depends upon
2197          * revoking the CPU's PTE whilst the mutex is held. The next user
2198          * pagefault then has to wait until we release the mutex.
2199          *
2200          * Note that RPM complicates somewhat by adding an additional
2201          * requirement that operations to the GGTT be made holding the RPM
2202          * wakeref.
2203          */
2204         lockdep_assert_held(&i915->drm.struct_mutex);
2205         intel_runtime_pm_get(i915);
2206
2207         if (!obj->userfault_count)
2208                 goto out;
2209
2210         __i915_gem_object_release_mmap(obj);
2211
2212         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2213          * memory transactions from userspace before we return. The TLB
2214          * flushing implied above by changing the PTE above *should* be
2215          * sufficient, an extra barrier here just provides us with a bit
2216          * of paranoid documentation about our requirement to serialise
2217          * memory writes before touching registers / GSM.
2218          */
2219         wmb();
2220
2221 out:
2222         intel_runtime_pm_put(i915);
2223 }
2224
2225 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226 {
2227         struct drm_i915_gem_object *obj, *on;
2228         int i;
2229
2230         /*
2231          * Only called during RPM suspend. All users of the userfault_list
2232          * must be holding an RPM wakeref to ensure that this can not
2233          * run concurrently with themselves (and use the struct_mutex for
2234          * protection between themselves).
2235          */
2236
2237         list_for_each_entry_safe(obj, on,
2238                                  &dev_priv->mm.userfault_list, userfault_link)
2239                 __i915_gem_object_release_mmap(obj);
2240
2241         /* The fence will be lost when the device powers down. If any were
2242          * in use by hardware (i.e. they are pinned), we should not be powering
2243          * down! All other fences will be reacquired by the user upon waking.
2244          */
2245         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2246                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2247
2248                 /* Ideally we want to assert that the fence register is not
2249                  * live at this point (i.e. that no piece of code will be
2250                  * trying to write through fence + GTT, as that both violates
2251                  * our tracking of activity and associated locking/barriers,
2252                  * but also is illegal given that the hw is powered down).
2253                  *
2254                  * Previously we used reg->pin_count as a "liveness" indicator.
2255                  * That is not sufficient, and we need a more fine-grained
2256                  * tool if we want to have a sanity check here.
2257                  */
2258
2259                 if (!reg->vma)
2260                         continue;
2261
2262                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263                 reg->dirty = true;
2264         }
2265 }
2266
2267 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270         int err;
2271
2272         err = drm_gem_create_mmap_offset(&obj->base);
2273         if (likely(!err))
2274                 return 0;
2275
2276         /* Attempt to reap some mmap space from dead objects */
2277         do {
2278                 err = i915_gem_wait_for_idle(dev_priv,
2279                                              I915_WAIT_INTERRUPTIBLE,
2280                                              MAX_SCHEDULE_TIMEOUT);
2281                 if (err)
2282                         break;
2283
2284                 i915_gem_drain_freed_objects(dev_priv);
2285                 err = drm_gem_create_mmap_offset(&obj->base);
2286                 if (!err)
2287                         break;
2288
2289         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2290
2291         return err;
2292 }
2293
2294 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2295 {
2296         drm_gem_free_mmap_offset(&obj->base);
2297 }
2298
2299 int
2300 i915_gem_mmap_gtt(struct drm_file *file,
2301                   struct drm_device *dev,
2302                   uint32_t handle,
2303                   uint64_t *offset)
2304 {
2305         struct drm_i915_gem_object *obj;
2306         int ret;
2307
2308         obj = i915_gem_object_lookup(file, handle);
2309         if (!obj)
2310                 return -ENOENT;
2311
2312         ret = i915_gem_object_create_mmap_offset(obj);
2313         if (ret == 0)
2314                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315
2316         i915_gem_object_put(obj);
2317         return ret;
2318 }
2319
2320 /**
2321  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2322  * @dev: DRM device
2323  * @data: GTT mapping ioctl data
2324  * @file: GEM object info
2325  *
2326  * Simply returns the fake offset to userspace so it can mmap it.
2327  * The mmap call will end up in drm_gem_mmap(), which will set things
2328  * up so we can get faults in the handler above.
2329  *
2330  * The fault handler will take care of binding the object into the GTT
2331  * (since it may have been evicted to make room for something), allocating
2332  * a fence register, and mapping the appropriate aperture address into
2333  * userspace.
2334  */
2335 int
2336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2337                         struct drm_file *file)
2338 {
2339         struct drm_i915_gem_mmap_gtt *args = data;
2340
2341         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 }
2343
2344 /* Immediately discard the backing storage */
2345 static void
2346 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347 {
2348         i915_gem_object_free_mmap_offset(obj);
2349
2350         if (obj->base.filp == NULL)
2351                 return;
2352
2353         /* Our goal here is to return as much of the memory as
2354          * is possible back to the system as we are called from OOM.
2355          * To do this we must instruct the shmfs to drop all of its
2356          * backing pages, *now*.
2357          */
2358         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2359         obj->mm.madv = __I915_MADV_PURGED;
2360         obj->mm.pages = ERR_PTR(-EFAULT);
2361 }
2362
2363 /* Try to discard unwanted pages */
2364 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2365 {
2366         struct address_space *mapping;
2367
2368         lockdep_assert_held(&obj->mm.lock);
2369         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370
2371         switch (obj->mm.madv) {
2372         case I915_MADV_DONTNEED:
2373                 i915_gem_object_truncate(obj);
2374         case __I915_MADV_PURGED:
2375                 return;
2376         }
2377
2378         if (obj->base.filp == NULL)
2379                 return;
2380
2381         mapping = obj->base.filp->f_mapping,
2382         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 }
2384
2385 /*
2386  * Move pages to appropriate lru and release the pagevec, decrementing the
2387  * ref count of those pages.
2388  */
2389 static void check_release_pagevec(struct pagevec *pvec)
2390 {
2391         check_move_unevictable_pages(pvec);
2392         __pagevec_release(pvec);
2393         cond_resched();
2394 }
2395
2396 static void
2397 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2398                               struct sg_table *pages)
2399 {
2400         struct sgt_iter sgt_iter;
2401         struct pagevec pvec;
2402         struct page *page;
2403
2404         __i915_gem_object_release_shmem(obj, pages, true);
2405
2406         i915_gem_gtt_finish_pages(obj, pages);
2407
2408         if (i915_gem_object_needs_bit17_swizzle(obj))
2409                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2410
2411         mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2412
2413         pagevec_init(&pvec);
2414         for_each_sgt_page(page, sgt_iter, pages) {
2415                 if (obj->mm.dirty)
2416                         set_page_dirty(page);
2417
2418                 if (obj->mm.madv == I915_MADV_WILLNEED)
2419                         mark_page_accessed(page);
2420
2421                 if (!pagevec_add(&pvec, page))
2422                         check_release_pagevec(&pvec);
2423         }
2424         if (pagevec_count(&pvec))
2425                 check_release_pagevec(&pvec);
2426         obj->mm.dirty = false;
2427
2428         sg_free_table(pages);
2429         kfree(pages);
2430 }
2431
2432 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2433 {
2434         struct radix_tree_iter iter;
2435         void __rcu **slot;
2436
2437         rcu_read_lock();
2438         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2439                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2440         rcu_read_unlock();
2441 }
2442
2443 static struct sg_table *
2444 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2445 {
2446         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2447         struct sg_table *pages;
2448
2449         pages = fetch_and_zero(&obj->mm.pages);
2450         if (!pages)
2451                 return NULL;
2452
2453         spin_lock(&i915->mm.obj_lock);
2454         list_del(&obj->mm.link);
2455         spin_unlock(&i915->mm.obj_lock);
2456
2457         if (obj->mm.mapping) {
2458                 void *ptr;
2459
2460                 ptr = page_mask_bits(obj->mm.mapping);
2461                 if (is_vmalloc_addr(ptr))
2462                         vunmap(ptr);
2463                 else
2464                         kunmap(kmap_to_page(ptr));
2465
2466                 obj->mm.mapping = NULL;
2467         }
2468
2469         __i915_gem_object_reset_page_iter(obj);
2470         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2471
2472         return pages;
2473 }
2474
2475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2476                                  enum i915_mm_subclass subclass)
2477 {
2478         struct sg_table *pages;
2479
2480         if (i915_gem_object_has_pinned_pages(obj))
2481                 return;
2482
2483         GEM_BUG_ON(obj->bind_count);
2484         if (!i915_gem_object_has_pages(obj))
2485                 return;
2486
2487         /* May be called by shrinker from within get_pages() (on another bo) */
2488         mutex_lock_nested(&obj->mm.lock, subclass);
2489         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2490                 goto unlock;
2491
2492         /*
2493          * ->put_pages might need to allocate memory for the bit17 swizzle
2494          * array, hence protect them from being reaped by removing them from gtt
2495          * lists early.
2496          */
2497         pages = __i915_gem_object_unset_pages(obj);
2498         if (!IS_ERR(pages))
2499                 obj->ops->put_pages(obj, pages);
2500
2501 unlock:
2502         mutex_unlock(&obj->mm.lock);
2503 }
2504
2505 bool i915_sg_trim(struct sg_table *orig_st)
2506 {
2507         struct sg_table new_st;
2508         struct scatterlist *sg, *new_sg;
2509         unsigned int i;
2510
2511         if (orig_st->nents == orig_st->orig_nents)
2512                 return false;
2513
2514         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2515                 return false;
2516
2517         new_sg = new_st.sgl;
2518         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2519                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2520                 sg_dma_address(new_sg) = sg_dma_address(sg);
2521                 sg_dma_len(new_sg) = sg_dma_len(sg);
2522
2523                 new_sg = sg_next(new_sg);
2524         }
2525         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2526
2527         sg_free_table(orig_st);
2528
2529         *orig_st = new_st;
2530         return true;
2531 }
2532
2533 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2534 {
2535         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2536         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2537         unsigned long i;
2538         struct address_space *mapping;
2539         struct sg_table *st;
2540         struct scatterlist *sg;
2541         struct sgt_iter sgt_iter;
2542         struct page *page;
2543         unsigned long last_pfn = 0;     /* suppress gcc warning */
2544         unsigned int max_segment = i915_sg_segment_size();
2545         unsigned int sg_page_sizes;
2546         struct pagevec pvec;
2547         gfp_t noreclaim;
2548         int ret;
2549
2550         /*
2551          * Assert that the object is not currently in any GPU domain. As it
2552          * wasn't in the GTT, there shouldn't be any way it could have been in
2553          * a GPU cache
2554          */
2555         GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2556         GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2557
2558         /*
2559          * If there's no chance of allocating enough pages for the whole
2560          * object, bail early.
2561          */
2562         if (page_count > totalram_pages)
2563                 return -ENOMEM;
2564
2565         st = kmalloc(sizeof(*st), GFP_KERNEL);
2566         if (st == NULL)
2567                 return -ENOMEM;
2568
2569 rebuild_st:
2570         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2571                 kfree(st);
2572                 return -ENOMEM;
2573         }
2574
2575         /*
2576          * Get the list of pages out of our struct file.  They'll be pinned
2577          * at this point until we release them.
2578          *
2579          * Fail silently without starting the shrinker
2580          */
2581         mapping = obj->base.filp->f_mapping;
2582         mapping_set_unevictable(mapping);
2583         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2584         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2585
2586         sg = st->sgl;
2587         st->nents = 0;
2588         sg_page_sizes = 0;
2589         for (i = 0; i < page_count; i++) {
2590                 const unsigned int shrink[] = {
2591                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2592                         0,
2593                 }, *s = shrink;
2594                 gfp_t gfp = noreclaim;
2595
2596                 do {
2597                         cond_resched();
2598                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2599                         if (likely(!IS_ERR(page)))
2600                                 break;
2601
2602                         if (!*s) {
2603                                 ret = PTR_ERR(page);
2604                                 goto err_sg;
2605                         }
2606
2607                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2608
2609                         /*
2610                          * We've tried hard to allocate the memory by reaping
2611                          * our own buffer, now let the real VM do its job and
2612                          * go down in flames if truly OOM.
2613                          *
2614                          * However, since graphics tend to be disposable,
2615                          * defer the oom here by reporting the ENOMEM back
2616                          * to userspace.
2617                          */
2618                         if (!*s) {
2619                                 /* reclaim and warn, but no oom */
2620                                 gfp = mapping_gfp_mask(mapping);
2621
2622                                 /*
2623                                  * Our bo are always dirty and so we require
2624                                  * kswapd to reclaim our pages (direct reclaim
2625                                  * does not effectively begin pageout of our
2626                                  * buffers on its own). However, direct reclaim
2627                                  * only waits for kswapd when under allocation
2628                                  * congestion. So as a result __GFP_RECLAIM is
2629                                  * unreliable and fails to actually reclaim our
2630                                  * dirty pages -- unless you try over and over
2631                                  * again with !__GFP_NORETRY. However, we still
2632                                  * want to fail this allocation rather than
2633                                  * trigger the out-of-memory killer and for
2634                                  * this we want __GFP_RETRY_MAYFAIL.
2635                                  */
2636                                 gfp |= __GFP_RETRY_MAYFAIL;
2637                         }
2638                 } while (1);
2639
2640                 if (!i ||
2641                     sg->length >= max_segment ||
2642                     page_to_pfn(page) != last_pfn + 1) {
2643                         if (i) {
2644                                 sg_page_sizes |= sg->length;
2645                                 sg = sg_next(sg);
2646                         }
2647                         st->nents++;
2648                         sg_set_page(sg, page, PAGE_SIZE, 0);
2649                 } else {
2650                         sg->length += PAGE_SIZE;
2651                 }
2652                 last_pfn = page_to_pfn(page);
2653
2654                 /* Check that the i965g/gm workaround works. */
2655                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2656         }
2657         if (sg) { /* loop terminated early; short sg table */
2658                 sg_page_sizes |= sg->length;
2659                 sg_mark_end(sg);
2660         }
2661
2662         /* Trim unused sg entries to avoid wasting memory. */
2663         i915_sg_trim(st);
2664
2665         ret = i915_gem_gtt_prepare_pages(obj, st);
2666         if (ret) {
2667                 /*
2668                  * DMA remapping failed? One possible cause is that
2669                  * it could not reserve enough large entries, asking
2670                  * for PAGE_SIZE chunks instead may be helpful.
2671                  */
2672                 if (max_segment > PAGE_SIZE) {
2673                         for_each_sgt_page(page, sgt_iter, st)
2674                                 put_page(page);
2675                         sg_free_table(st);
2676
2677                         max_segment = PAGE_SIZE;
2678                         goto rebuild_st;
2679                 } else {
2680                         dev_warn(&dev_priv->drm.pdev->dev,
2681                                  "Failed to DMA remap %lu pages\n",
2682                                  page_count);
2683                         goto err_pages;
2684                 }
2685         }
2686
2687         if (i915_gem_object_needs_bit17_swizzle(obj))
2688                 i915_gem_object_do_bit_17_swizzle(obj, st);
2689
2690         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2691
2692         return 0;
2693
2694 err_sg:
2695         sg_mark_end(sg);
2696 err_pages:
2697         mapping_clear_unevictable(mapping);
2698         pagevec_init(&pvec);
2699         for_each_sgt_page(page, sgt_iter, st) {
2700                 if (!pagevec_add(&pvec, page))
2701                         check_release_pagevec(&pvec);
2702         }
2703         if (pagevec_count(&pvec))
2704                 check_release_pagevec(&pvec);
2705         sg_free_table(st);
2706         kfree(st);
2707
2708         /*
2709          * shmemfs first checks if there is enough memory to allocate the page
2710          * and reports ENOSPC should there be insufficient, along with the usual
2711          * ENOMEM for a genuine allocation failure.
2712          *
2713          * We use ENOSPC in our driver to mean that we have run out of aperture
2714          * space and so want to translate the error from shmemfs back to our
2715          * usual understanding of ENOMEM.
2716          */
2717         if (ret == -ENOSPC)
2718                 ret = -ENOMEM;
2719
2720         return ret;
2721 }
2722
2723 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2724                                  struct sg_table *pages,
2725                                  unsigned int sg_page_sizes)
2726 {
2727         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2728         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2729         int i;
2730
2731         lockdep_assert_held(&obj->mm.lock);
2732
2733         obj->mm.get_page.sg_pos = pages->sgl;
2734         obj->mm.get_page.sg_idx = 0;
2735
2736         obj->mm.pages = pages;
2737
2738         if (i915_gem_object_is_tiled(obj) &&
2739             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2740                 GEM_BUG_ON(obj->mm.quirked);
2741                 __i915_gem_object_pin_pages(obj);
2742                 obj->mm.quirked = true;
2743         }
2744
2745         GEM_BUG_ON(!sg_page_sizes);
2746         obj->mm.page_sizes.phys = sg_page_sizes;
2747
2748         /*
2749          * Calculate the supported page-sizes which fit into the given
2750          * sg_page_sizes. This will give us the page-sizes which we may be able
2751          * to use opportunistically when later inserting into the GTT. For
2752          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2753          * 64K or 4K pages, although in practice this will depend on a number of
2754          * other factors.
2755          */
2756         obj->mm.page_sizes.sg = 0;
2757         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2758                 if (obj->mm.page_sizes.phys & ~0u << i)
2759                         obj->mm.page_sizes.sg |= BIT(i);
2760         }
2761         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2762
2763         spin_lock(&i915->mm.obj_lock);
2764         list_add(&obj->mm.link, &i915->mm.unbound_list);
2765         spin_unlock(&i915->mm.obj_lock);
2766 }
2767
2768 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2769 {
2770         int err;
2771
2772         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2773                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2774                 return -EFAULT;
2775         }
2776
2777         err = obj->ops->get_pages(obj);
2778         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2779
2780         return err;
2781 }
2782
2783 /* Ensure that the associated pages are gathered from the backing storage
2784  * and pinned into our object. i915_gem_object_pin_pages() may be called
2785  * multiple times before they are released by a single call to
2786  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2787  * either as a result of memory pressure (reaping pages under the shrinker)
2788  * or as the object is itself released.
2789  */
2790 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2791 {
2792         int err;
2793
2794         err = mutex_lock_interruptible(&obj->mm.lock);
2795         if (err)
2796                 return err;
2797
2798         if (unlikely(!i915_gem_object_has_pages(obj))) {
2799                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2800
2801                 err = ____i915_gem_object_get_pages(obj);
2802                 if (err)
2803                         goto unlock;
2804
2805                 smp_mb__before_atomic();
2806         }
2807         atomic_inc(&obj->mm.pages_pin_count);
2808
2809 unlock:
2810         mutex_unlock(&obj->mm.lock);
2811         return err;
2812 }
2813
2814 /* The 'mapping' part of i915_gem_object_pin_map() below */
2815 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2816                                  enum i915_map_type type)
2817 {
2818         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2819         struct sg_table *sgt = obj->mm.pages;
2820         struct sgt_iter sgt_iter;
2821         struct page *page;
2822         struct page *stack_pages[32];
2823         struct page **pages = stack_pages;
2824         unsigned long i = 0;
2825         pgprot_t pgprot;
2826         void *addr;
2827
2828         /* A single page can always be kmapped */
2829         if (n_pages == 1 && type == I915_MAP_WB)
2830                 return kmap(sg_page(sgt->sgl));
2831
2832         if (n_pages > ARRAY_SIZE(stack_pages)) {
2833                 /* Too big for stack -- allocate temporary array instead */
2834                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2835                 if (!pages)
2836                         return NULL;
2837         }
2838
2839         for_each_sgt_page(page, sgt_iter, sgt)
2840                 pages[i++] = page;
2841
2842         /* Check that we have the expected number of pages */
2843         GEM_BUG_ON(i != n_pages);
2844
2845         switch (type) {
2846         default:
2847                 MISSING_CASE(type);
2848                 /* fallthrough to use PAGE_KERNEL anyway */
2849         case I915_MAP_WB:
2850                 pgprot = PAGE_KERNEL;
2851                 break;
2852         case I915_MAP_WC:
2853                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2854                 break;
2855         }
2856         addr = vmap(pages, n_pages, 0, pgprot);
2857
2858         if (pages != stack_pages)
2859                 kvfree(pages);
2860
2861         return addr;
2862 }
2863
2864 /* get, pin, and map the pages of the object into kernel space */
2865 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2866                               enum i915_map_type type)
2867 {
2868         enum i915_map_type has_type;
2869         bool pinned;
2870         void *ptr;
2871         int ret;
2872
2873         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2874                 return ERR_PTR(-ENXIO);
2875
2876         ret = mutex_lock_interruptible(&obj->mm.lock);
2877         if (ret)
2878                 return ERR_PTR(ret);
2879
2880         pinned = !(type & I915_MAP_OVERRIDE);
2881         type &= ~I915_MAP_OVERRIDE;
2882
2883         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2884                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2885                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2886
2887                         ret = ____i915_gem_object_get_pages(obj);
2888                         if (ret)
2889                                 goto err_unlock;
2890
2891                         smp_mb__before_atomic();
2892                 }
2893                 atomic_inc(&obj->mm.pages_pin_count);
2894                 pinned = false;
2895         }
2896         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897
2898         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2899         if (ptr && has_type != type) {
2900                 if (pinned) {
2901                         ret = -EBUSY;
2902                         goto err_unpin;
2903                 }
2904
2905                 if (is_vmalloc_addr(ptr))
2906                         vunmap(ptr);
2907                 else
2908                         kunmap(kmap_to_page(ptr));
2909
2910                 ptr = obj->mm.mapping = NULL;
2911         }
2912
2913         if (!ptr) {
2914                 ptr = i915_gem_object_map(obj, type);
2915                 if (!ptr) {
2916                         ret = -ENOMEM;
2917                         goto err_unpin;
2918                 }
2919
2920                 obj->mm.mapping = page_pack_bits(ptr, type);
2921         }
2922
2923 out_unlock:
2924         mutex_unlock(&obj->mm.lock);
2925         return ptr;
2926
2927 err_unpin:
2928         atomic_dec(&obj->mm.pages_pin_count);
2929 err_unlock:
2930         ptr = ERR_PTR(ret);
2931         goto out_unlock;
2932 }
2933
2934 static int
2935 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2936                            const struct drm_i915_gem_pwrite *arg)
2937 {
2938         struct address_space *mapping = obj->base.filp->f_mapping;
2939         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2940         u64 remain, offset;
2941         unsigned int pg;
2942
2943         /* Before we instantiate/pin the backing store for our use, we
2944          * can prepopulate the shmemfs filp efficiently using a write into
2945          * the pagecache. We avoid the penalty of instantiating all the
2946          * pages, important if the user is just writing to a few and never
2947          * uses the object on the GPU, and using a direct write into shmemfs
2948          * allows it to avoid the cost of retrieving a page (either swapin
2949          * or clearing-before-use) before it is overwritten.
2950          */
2951         if (i915_gem_object_has_pages(obj))
2952                 return -ENODEV;
2953
2954         if (obj->mm.madv != I915_MADV_WILLNEED)
2955                 return -EFAULT;
2956
2957         /* Before the pages are instantiated the object is treated as being
2958          * in the CPU domain. The pages will be clflushed as required before
2959          * use, and we can freely write into the pages directly. If userspace
2960          * races pwrite with any other operation; corruption will ensue -
2961          * that is userspace's prerogative!
2962          */
2963
2964         remain = arg->size;
2965         offset = arg->offset;
2966         pg = offset_in_page(offset);
2967
2968         do {
2969                 unsigned int len, unwritten;
2970                 struct page *page;
2971                 void *data, *vaddr;
2972                 int err;
2973
2974                 len = PAGE_SIZE - pg;
2975                 if (len > remain)
2976                         len = remain;
2977
2978                 err = pagecache_write_begin(obj->base.filp, mapping,
2979                                             offset, len, 0,
2980                                             &page, &data);
2981                 if (err < 0)
2982                         return err;
2983
2984                 vaddr = kmap(page);
2985                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2986                 kunmap(page);
2987
2988                 err = pagecache_write_end(obj->base.filp, mapping,
2989                                           offset, len, len - unwritten,
2990                                           page, data);
2991                 if (err < 0)
2992                         return err;
2993
2994                 if (unwritten)
2995                         return -EFAULT;
2996
2997                 remain -= len;
2998                 user_data += len;
2999                 offset += len;
3000                 pg = 0;
3001         } while (remain);
3002
3003         return 0;
3004 }
3005
3006 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3007                                         const struct i915_gem_context *ctx)
3008 {
3009         unsigned int score;
3010         unsigned long prev_hang;
3011
3012         if (i915_gem_context_is_banned(ctx))
3013                 score = I915_CLIENT_SCORE_CONTEXT_BAN;
3014         else
3015                 score = 0;
3016
3017         prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3018         if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3019                 score += I915_CLIENT_SCORE_HANG_FAST;
3020
3021         if (score) {
3022                 atomic_add(score, &file_priv->ban_score);
3023
3024                 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3025                                  ctx->name, score,
3026                                  atomic_read(&file_priv->ban_score));
3027         }
3028 }
3029
3030 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3031 {
3032         unsigned int score;
3033         bool banned, bannable;
3034
3035         atomic_inc(&ctx->guilty_count);
3036
3037         bannable = i915_gem_context_is_bannable(ctx);
3038         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3039         banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3040
3041         /* Cool contexts don't accumulate client ban score */
3042         if (!bannable)
3043                 return;
3044
3045         if (banned) {
3046                 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3047                                  ctx->name, atomic_read(&ctx->guilty_count),
3048                                  score);
3049                 i915_gem_context_set_banned(ctx);
3050         }
3051
3052         if (!IS_ERR_OR_NULL(ctx->file_priv))
3053                 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3054 }
3055
3056 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3057 {
3058         atomic_inc(&ctx->active_count);
3059 }
3060
3061 struct i915_request *
3062 i915_gem_find_active_request(struct intel_engine_cs *engine)
3063 {
3064         struct i915_request *request, *active = NULL;
3065         unsigned long flags;
3066
3067         /*
3068          * We are called by the error capture, reset and to dump engine
3069          * state at random points in time. In particular, note that neither is
3070          * crucially ordered with an interrupt. After a hang, the GPU is dead
3071          * and we assume that no more writes can happen (we waited long enough
3072          * for all writes that were in transaction to be flushed) - adding an
3073          * extra delay for a recent interrupt is pointless. Hence, we do
3074          * not need an engine->irq_seqno_barrier() before the seqno reads.
3075          * At all other times, we must assume the GPU is still running, but
3076          * we only care about the snapshot of this moment.
3077          */
3078         spin_lock_irqsave(&engine->timeline.lock, flags);
3079         list_for_each_entry(request, &engine->timeline.requests, link) {
3080                 if (__i915_request_completed(request, request->global_seqno))
3081                         continue;
3082
3083                 active = request;
3084                 break;
3085         }
3086         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3087
3088         return active;
3089 }
3090
3091 /*
3092  * Ensure irq handler finishes, and not run again.
3093  * Also return the active request so that we only search for it once.
3094  */
3095 struct i915_request *
3096 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3097 {
3098         struct i915_request *request;
3099
3100         /*
3101          * During the reset sequence, we must prevent the engine from
3102          * entering RC6. As the context state is undefined until we restart
3103          * the engine, if it does enter RC6 during the reset, the state
3104          * written to the powercontext is undefined and so we may lose
3105          * GPU state upon resume, i.e. fail to restart after a reset.
3106          */
3107         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3108
3109         request = engine->reset.prepare(engine);
3110         if (request && request->fence.error == -EIO)
3111                 request = ERR_PTR(-EIO); /* Previous reset failed! */
3112
3113         return request;
3114 }
3115
3116 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3117 {
3118         struct intel_engine_cs *engine;
3119         struct i915_request *request;
3120         enum intel_engine_id id;
3121         int err = 0;
3122
3123         for_each_engine(engine, dev_priv, id) {
3124                 request = i915_gem_reset_prepare_engine(engine);
3125                 if (IS_ERR(request)) {
3126                         err = PTR_ERR(request);
3127                         continue;
3128                 }
3129
3130                 engine->hangcheck.active_request = request;
3131         }
3132
3133         i915_gem_revoke_fences(dev_priv);
3134         intel_uc_sanitize(dev_priv);
3135
3136         return err;
3137 }
3138
3139 static void engine_skip_context(struct i915_request *request)
3140 {
3141         struct intel_engine_cs *engine = request->engine;
3142         struct i915_gem_context *hung_ctx = request->gem_context;
3143         struct i915_timeline *timeline = request->timeline;
3144         unsigned long flags;
3145
3146         GEM_BUG_ON(timeline == &engine->timeline);
3147
3148         spin_lock_irqsave(&engine->timeline.lock, flags);
3149         spin_lock(&timeline->lock);
3150
3151         list_for_each_entry_continue(request, &engine->timeline.requests, link)
3152                 if (request->gem_context == hung_ctx)
3153                         i915_request_skip(request, -EIO);
3154
3155         list_for_each_entry(request, &timeline->requests, link)
3156                 i915_request_skip(request, -EIO);
3157
3158         spin_unlock(&timeline->lock);
3159         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3160 }
3161
3162 /* Returns the request if it was guilty of the hang */
3163 static struct i915_request *
3164 i915_gem_reset_request(struct intel_engine_cs *engine,
3165                        struct i915_request *request,
3166                        bool stalled)
3167 {
3168         /* The guilty request will get skipped on a hung engine.
3169          *
3170          * Users of client default contexts do not rely on logical
3171          * state preserved between batches so it is safe to execute
3172          * queued requests following the hang. Non default contexts
3173          * rely on preserved state, so skipping a batch loses the
3174          * evolution of the state and it needs to be considered corrupted.
3175          * Executing more queued batches on top of corrupted state is
3176          * risky. But we take the risk by trying to advance through
3177          * the queued requests in order to make the client behaviour
3178          * more predictable around resets, by not throwing away random
3179          * amount of batches it has prepared for execution. Sophisticated
3180          * clients can use gem_reset_stats_ioctl and dma fence status
3181          * (exported via sync_file info ioctl on explicit fences) to observe
3182          * when it loses the context state and should rebuild accordingly.
3183          *
3184          * The context ban, and ultimately the client ban, mechanism are safety
3185          * valves if client submission ends up resulting in nothing more than
3186          * subsequent hangs.
3187          */
3188
3189         if (i915_request_completed(request)) {
3190                 GEM_TRACE("%s pardoned global=%d (fence %llx:%lld), current %d\n",
3191                           engine->name, request->global_seqno,
3192                           request->fence.context, request->fence.seqno,
3193                           intel_engine_get_seqno(engine));
3194                 stalled = false;
3195         }
3196
3197         if (stalled) {
3198                 i915_gem_context_mark_guilty(request->gem_context);
3199                 i915_request_skip(request, -EIO);
3200
3201                 /* If this context is now banned, skip all pending requests. */
3202                 if (i915_gem_context_is_banned(request->gem_context))
3203                         engine_skip_context(request);
3204         } else {
3205                 /*
3206                  * Since this is not the hung engine, it may have advanced
3207                  * since the hang declaration. Double check by refinding
3208                  * the active request at the time of the reset.
3209                  */
3210                 request = i915_gem_find_active_request(engine);
3211                 if (request) {
3212                         unsigned long flags;
3213
3214                         i915_gem_context_mark_innocent(request->gem_context);
3215                         dma_fence_set_error(&request->fence, -EAGAIN);
3216
3217                         /* Rewind the engine to replay the incomplete rq */
3218                         spin_lock_irqsave(&engine->timeline.lock, flags);
3219                         request = list_prev_entry(request, link);
3220                         if (&request->link == &engine->timeline.requests)
3221                                 request = NULL;
3222                         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3223                 }
3224         }
3225
3226         return request;
3227 }
3228
3229 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3230                            struct i915_request *request,
3231                            bool stalled)
3232 {
3233         /*
3234          * Make sure this write is visible before we re-enable the interrupt
3235          * handlers on another CPU, as tasklet_enable() resolves to just
3236          * a compiler barrier which is insufficient for our purpose here.
3237          */
3238         smp_store_mb(engine->irq_posted, 0);
3239
3240         if (request)
3241                 request = i915_gem_reset_request(engine, request, stalled);
3242
3243         /* Setup the CS to resume from the breadcrumb of the hung request */
3244         engine->reset.reset(engine, request);
3245 }
3246
3247 void i915_gem_reset(struct drm_i915_private *dev_priv,
3248                     unsigned int stalled_mask)
3249 {
3250         struct intel_engine_cs *engine;
3251         enum intel_engine_id id;
3252
3253         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3254
3255         i915_retire_requests(dev_priv);
3256
3257         for_each_engine(engine, dev_priv, id) {
3258                 struct intel_context *ce;
3259
3260                 i915_gem_reset_engine(engine,
3261                                       engine->hangcheck.active_request,
3262                                       stalled_mask & ENGINE_MASK(id));
3263                 ce = fetch_and_zero(&engine->last_retired_context);
3264                 if (ce)
3265                         intel_context_unpin(ce);
3266
3267                 /*
3268                  * Ostensibily, we always want a context loaded for powersaving,
3269                  * so if the engine is idle after the reset, send a request
3270                  * to load our scratch kernel_context.
3271                  *
3272                  * More mysteriously, if we leave the engine idle after a reset,
3273                  * the next userspace batch may hang, with what appears to be
3274                  * an incoherent read by the CS (presumably stale TLB). An
3275                  * empty request appears sufficient to paper over the glitch.
3276                  */
3277                 if (intel_engine_is_idle(engine)) {
3278                         struct i915_request *rq;
3279
3280                         rq = i915_request_alloc(engine,
3281                                                 dev_priv->kernel_context);
3282                         if (!IS_ERR(rq))
3283                                 i915_request_add(rq);
3284                 }
3285         }
3286
3287         i915_gem_restore_fences(dev_priv);
3288 }
3289
3290 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3291 {
3292         engine->reset.finish(engine);
3293
3294         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3295 }
3296
3297 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3298 {
3299         struct intel_engine_cs *engine;
3300         enum intel_engine_id id;
3301
3302         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3303
3304         for_each_engine(engine, dev_priv, id) {
3305                 engine->hangcheck.active_request = NULL;
3306                 i915_gem_reset_finish_engine(engine);
3307         }
3308 }
3309
3310 static void nop_submit_request(struct i915_request *request)
3311 {
3312         GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3313                   request->engine->name,
3314                   request->fence.context, request->fence.seqno);
3315         dma_fence_set_error(&request->fence, -EIO);
3316
3317         i915_request_submit(request);
3318 }
3319
3320 static void nop_complete_submit_request(struct i915_request *request)
3321 {
3322         unsigned long flags;
3323
3324         GEM_TRACE("%s fence %llx:%lld -> -EIO\n",
3325                   request->engine->name,
3326                   request->fence.context, request->fence.seqno);
3327         dma_fence_set_error(&request->fence, -EIO);
3328
3329         spin_lock_irqsave(&request->engine->timeline.lock, flags);
3330         __i915_request_submit(request);
3331         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3332         spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3333 }
3334
3335 void i915_gem_set_wedged(struct drm_i915_private *i915)
3336 {
3337         struct intel_engine_cs *engine;
3338         enum intel_engine_id id;
3339
3340         GEM_TRACE("start\n");
3341
3342         if (GEM_SHOW_DEBUG()) {
3343                 struct drm_printer p = drm_debug_printer(__func__);
3344
3345                 for_each_engine(engine, i915, id)
3346                         intel_engine_dump(engine, &p, "%s\n", engine->name);
3347         }
3348
3349         if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3350                 goto out;
3351
3352         /*
3353          * First, stop submission to hw, but do not yet complete requests by
3354          * rolling the global seqno forward (since this would complete requests
3355          * for which we haven't set the fence error to EIO yet).
3356          */
3357         for_each_engine(engine, i915, id) {
3358                 i915_gem_reset_prepare_engine(engine);
3359
3360                 engine->submit_request = nop_submit_request;
3361                 engine->schedule = NULL;
3362         }
3363         i915->caps.scheduler = 0;
3364
3365         /* Even if the GPU reset fails, it should still stop the engines */
3366         if (INTEL_GEN(i915) >= 5)
3367                 intel_gpu_reset(i915, ALL_ENGINES);
3368
3369         /*
3370          * Make sure no one is running the old callback before we proceed with
3371          * cancelling requests and resetting the completion tracking. Otherwise
3372          * we might submit a request to the hardware which never completes.
3373          */
3374         synchronize_rcu();
3375
3376         for_each_engine(engine, i915, id) {
3377                 /* Mark all executing requests as skipped */
3378                 engine->cancel_requests(engine);
3379
3380                 /*
3381                  * Only once we've force-cancelled all in-flight requests can we
3382                  * start to complete all requests.
3383                  */
3384                 engine->submit_request = nop_complete_submit_request;
3385         }
3386
3387         /*
3388          * Make sure no request can slip through without getting completed by
3389          * either this call here to intel_engine_init_global_seqno, or the one
3390          * in nop_complete_submit_request.
3391          */
3392         synchronize_rcu();
3393
3394         for_each_engine(engine, i915, id) {
3395                 unsigned long flags;
3396
3397                 /*
3398                  * Mark all pending requests as complete so that any concurrent
3399                  * (lockless) lookup doesn't try and wait upon the request as we
3400                  * reset it.
3401                  */
3402                 spin_lock_irqsave(&engine->timeline.lock, flags);
3403                 intel_engine_init_global_seqno(engine,
3404                                                intel_engine_last_submit(engine));
3405                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3406
3407                 i915_gem_reset_finish_engine(engine);
3408         }
3409
3410 out:
3411         GEM_TRACE("end\n");
3412
3413         wake_up_all(&i915->gpu_error.reset_queue);
3414 }
3415
3416 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3417 {
3418         struct i915_timeline *tl;
3419
3420         lockdep_assert_held(&i915->drm.struct_mutex);
3421         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3422                 return true;
3423
3424         GEM_TRACE("start\n");
3425
3426         /*
3427          * Before unwedging, make sure that all pending operations
3428          * are flushed and errored out - we may have requests waiting upon
3429          * third party fences. We marked all inflight requests as EIO, and
3430          * every execbuf since returned EIO, for consistency we want all
3431          * the currently pending requests to also be marked as EIO, which
3432          * is done inside our nop_submit_request - and so we must wait.
3433          *
3434          * No more can be submitted until we reset the wedged bit.
3435          */
3436         list_for_each_entry(tl, &i915->gt.timelines, link) {
3437                 struct i915_request *rq;
3438
3439                 rq = i915_gem_active_peek(&tl->last_request,
3440                                           &i915->drm.struct_mutex);
3441                 if (!rq)
3442                         continue;
3443
3444                 /*
3445                  * We can't use our normal waiter as we want to
3446                  * avoid recursively trying to handle the current
3447                  * reset. The basic dma_fence_default_wait() installs
3448                  * a callback for dma_fence_signal(), which is
3449                  * triggered by our nop handler (indirectly, the
3450                  * callback enables the signaler thread which is
3451                  * woken by the nop_submit_request() advancing the seqno
3452                  * and when the seqno passes the fence, the signaler
3453                  * then signals the fence waking us up).
3454                  */
3455                 if (dma_fence_default_wait(&rq->fence, true,
3456                                            MAX_SCHEDULE_TIMEOUT) < 0)
3457                         return false;
3458         }
3459         i915_retire_requests(i915);
3460         GEM_BUG_ON(i915->gt.active_requests);
3461
3462         if (!intel_gpu_reset(i915, ALL_ENGINES))
3463                 intel_engines_sanitize(i915);
3464
3465         /*
3466          * Undo nop_submit_request. We prevent all new i915 requests from
3467          * being queued (by disallowing execbuf whilst wedged) so having
3468          * waited for all active requests above, we know the system is idle
3469          * and do not have to worry about a thread being inside
3470          * engine->submit_request() as we swap over. So unlike installing
3471          * the nop_submit_request on reset, we can do this from normal
3472          * context and do not require stop_machine().
3473          */
3474         intel_engines_reset_default_submission(i915);
3475         i915_gem_contexts_lost(i915);
3476
3477         GEM_TRACE("end\n");
3478
3479         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3480         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3481
3482         return true;
3483 }
3484
3485 static void
3486 i915_gem_retire_work_handler(struct work_struct *work)
3487 {
3488         struct drm_i915_private *dev_priv =
3489                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3490         struct drm_device *dev = &dev_priv->drm;
3491
3492         /* Come back later if the device is busy... */
3493         if (mutex_trylock(&dev->struct_mutex)) {
3494                 i915_retire_requests(dev_priv);
3495                 mutex_unlock(&dev->struct_mutex);
3496         }
3497
3498         /*
3499          * Keep the retire handler running until we are finally idle.
3500          * We do not need to do this test under locking as in the worst-case
3501          * we queue the retire worker once too often.
3502          */
3503         if (READ_ONCE(dev_priv->gt.awake))
3504                 queue_delayed_work(dev_priv->wq,
3505                                    &dev_priv->gt.retire_work,
3506                                    round_jiffies_up_relative(HZ));
3507 }
3508
3509 static void shrink_caches(struct drm_i915_private *i915)
3510 {
3511         /*
3512          * kmem_cache_shrink() discards empty slabs and reorders partially
3513          * filled slabs to prioritise allocating from the mostly full slabs,
3514          * with the aim of reducing fragmentation.
3515          */
3516         kmem_cache_shrink(i915->priorities);
3517         kmem_cache_shrink(i915->dependencies);
3518         kmem_cache_shrink(i915->requests);
3519         kmem_cache_shrink(i915->luts);
3520         kmem_cache_shrink(i915->vmas);
3521         kmem_cache_shrink(i915->objects);
3522 }
3523
3524 struct sleep_rcu_work {
3525         union {
3526                 struct rcu_head rcu;
3527                 struct work_struct work;
3528         };
3529         struct drm_i915_private *i915;
3530         unsigned int epoch;
3531 };
3532
3533 static inline bool
3534 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3535 {
3536         /*
3537          * There is a small chance that the epoch wrapped since we started
3538          * sleeping. If we assume that epoch is at least a u32, then it will
3539          * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3540          */
3541         return epoch == READ_ONCE(i915->gt.epoch);
3542 }
3543
3544 static void __sleep_work(struct work_struct *work)
3545 {
3546         struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3547         struct drm_i915_private *i915 = s->i915;
3548         unsigned int epoch = s->epoch;
3549
3550         kfree(s);
3551         if (same_epoch(i915, epoch))
3552                 shrink_caches(i915);
3553 }
3554
3555 static void __sleep_rcu(struct rcu_head *rcu)
3556 {
3557         struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3558         struct drm_i915_private *i915 = s->i915;
3559
3560         destroy_rcu_head(&s->rcu);
3561
3562         if (same_epoch(i915, s->epoch)) {
3563                 INIT_WORK(&s->work, __sleep_work);
3564                 queue_work(i915->wq, &s->work);
3565         } else {
3566                 kfree(s);
3567         }
3568 }
3569
3570 static inline bool
3571 new_requests_since_last_retire(const struct drm_i915_private *i915)
3572 {
3573         return (READ_ONCE(i915->gt.active_requests) ||
3574                 work_pending(&i915->gt.idle_work.work));
3575 }
3576
3577 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3578 {
3579         struct intel_engine_cs *engine;
3580         enum intel_engine_id id;
3581
3582         if (i915_terminally_wedged(&i915->gpu_error))
3583                 return;
3584
3585         GEM_BUG_ON(i915->gt.active_requests);
3586         for_each_engine(engine, i915, id) {
3587                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3588                 GEM_BUG_ON(engine->last_retired_context !=
3589                            to_intel_context(i915->kernel_context, engine));
3590         }
3591 }
3592
3593 static void
3594 i915_gem_idle_work_handler(struct work_struct *work)
3595 {
3596         struct drm_i915_private *dev_priv =
3597                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3598         unsigned int epoch = I915_EPOCH_INVALID;
3599         bool rearm_hangcheck;
3600
3601         if (!READ_ONCE(dev_priv->gt.awake))
3602                 return;
3603
3604         if (READ_ONCE(dev_priv->gt.active_requests))
3605                 return;
3606
3607         /*
3608          * Flush out the last user context, leaving only the pinned
3609          * kernel context resident. When we are idling on the kernel_context,
3610          * no more new requests (with a context switch) are emitted and we
3611          * can finally rest. A consequence is that the idle work handler is
3612          * always called at least twice before idling (and if the system is
3613          * idle that implies a round trip through the retire worker).
3614          */
3615         mutex_lock(&dev_priv->drm.struct_mutex);
3616         i915_gem_switch_to_kernel_context(dev_priv);
3617         mutex_unlock(&dev_priv->drm.struct_mutex);
3618
3619         GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3620                   READ_ONCE(dev_priv->gt.active_requests));
3621
3622         /*
3623          * Wait for last execlists context complete, but bail out in case a
3624          * new request is submitted. As we don't trust the hardware, we
3625          * continue on if the wait times out. This is necessary to allow
3626          * the machine to suspend even if the hardware dies, and we will
3627          * try to recover in resume (after depriving the hardware of power,
3628          * it may be in a better mmod).
3629          */
3630         __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3631                    intel_engines_are_idle(dev_priv),
3632                    I915_IDLE_ENGINES_TIMEOUT * 1000,
3633                    10, 500);
3634
3635         rearm_hangcheck =
3636                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3637
3638         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3639                 /* Currently busy, come back later */
3640                 mod_delayed_work(dev_priv->wq,
3641                                  &dev_priv->gt.idle_work,
3642                                  msecs_to_jiffies(50));
3643                 goto out_rearm;
3644         }
3645
3646         /*
3647          * New request retired after this work handler started, extend active
3648          * period until next instance of the work.
3649          */
3650         if (new_requests_since_last_retire(dev_priv))
3651                 goto out_unlock;
3652
3653         epoch = __i915_gem_park(dev_priv);
3654
3655         assert_kernel_context_is_current(dev_priv);
3656
3657         rearm_hangcheck = false;
3658 out_unlock:
3659         mutex_unlock(&dev_priv->drm.struct_mutex);
3660
3661 out_rearm:
3662         if (rearm_hangcheck) {
3663                 GEM_BUG_ON(!dev_priv->gt.awake);
3664                 i915_queue_hangcheck(dev_priv);
3665         }
3666
3667         /*
3668          * When we are idle, it is an opportune time to reap our caches.
3669          * However, we have many objects that utilise RCU and the ordered
3670          * i915->wq that this work is executing on. To try and flush any
3671          * pending frees now we are idle, we first wait for an RCU grace
3672          * period, and then queue a task (that will run last on the wq) to
3673          * shrink and re-optimize the caches.
3674          */
3675         if (same_epoch(dev_priv, epoch)) {
3676                 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3677                 if (s) {
3678                         init_rcu_head(&s->rcu);
3679                         s->i915 = dev_priv;
3680                         s->epoch = epoch;
3681                         call_rcu(&s->rcu, __sleep_rcu);
3682                 }
3683         }
3684 }
3685
3686 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3687 {
3688         struct drm_i915_private *i915 = to_i915(gem->dev);
3689         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3690         struct drm_i915_file_private *fpriv = file->driver_priv;
3691         struct i915_lut_handle *lut, *ln;
3692
3693         mutex_lock(&i915->drm.struct_mutex);
3694
3695         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3696                 struct i915_gem_context *ctx = lut->ctx;
3697                 struct i915_vma *vma;
3698
3699                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3700                 if (ctx->file_priv != fpriv)
3701                         continue;
3702
3703                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3704                 GEM_BUG_ON(vma->obj != obj);
3705
3706                 /* We allow the process to have multiple handles to the same
3707                  * vma, in the same fd namespace, by virtue of flink/open.
3708                  */
3709                 GEM_BUG_ON(!vma->open_count);
3710                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3711                         i915_vma_close(vma);
3712
3713                 list_del(&lut->obj_link);
3714                 list_del(&lut->ctx_link);
3715
3716                 kmem_cache_free(i915->luts, lut);
3717                 __i915_gem_object_release_unless_active(obj);
3718         }
3719
3720         mutex_unlock(&i915->drm.struct_mutex);
3721 }
3722
3723 static unsigned long to_wait_timeout(s64 timeout_ns)
3724 {
3725         if (timeout_ns < 0)
3726                 return MAX_SCHEDULE_TIMEOUT;
3727
3728         if (timeout_ns == 0)
3729                 return 0;
3730
3731         return nsecs_to_jiffies_timeout(timeout_ns);
3732 }
3733
3734 /**
3735  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3736  * @dev: drm device pointer
3737  * @data: ioctl data blob
3738  * @file: drm file pointer
3739  *
3740  * Returns 0 if successful, else an error is returned with the remaining time in
3741  * the timeout parameter.
3742  *  -ETIME: object is still busy after timeout
3743  *  -ERESTARTSYS: signal interrupted the wait
3744  *  -ENONENT: object doesn't exist
3745  * Also possible, but rare:
3746  *  -EAGAIN: incomplete, restart syscall
3747  *  -ENOMEM: damn
3748  *  -ENODEV: Internal IRQ fail
3749  *  -E?: The add request failed
3750  *
3751  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3752  * non-zero timeout parameter the wait ioctl will wait for the given number of
3753  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3754  * without holding struct_mutex the object may become re-busied before this
3755  * function completes. A similar but shorter * race condition exists in the busy
3756  * ioctl
3757  */
3758 int
3759 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3760 {
3761         struct drm_i915_gem_wait *args = data;
3762         struct drm_i915_gem_object *obj;
3763         ktime_t start;
3764         long ret;
3765
3766         if (args->flags != 0)
3767                 return -EINVAL;
3768
3769         obj = i915_gem_object_lookup(file, args->bo_handle);
3770         if (!obj)
3771                 return -ENOENT;
3772
3773         start = ktime_get();
3774
3775         ret = i915_gem_object_wait(obj,
3776                                    I915_WAIT_INTERRUPTIBLE |
3777                                    I915_WAIT_PRIORITY |
3778                                    I915_WAIT_ALL,
3779                                    to_wait_timeout(args->timeout_ns),
3780                                    to_rps_client(file));
3781
3782         if (args->timeout_ns > 0) {
3783                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3784                 if (args->timeout_ns < 0)
3785                         args->timeout_ns = 0;
3786
3787                 /*
3788                  * Apparently ktime isn't accurate enough and occasionally has a
3789                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3790                  * things up to make the test happy. We allow up to 1 jiffy.
3791                  *
3792                  * This is a regression from the timespec->ktime conversion.
3793                  */
3794                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3795                         args->timeout_ns = 0;
3796
3797                 /* Asked to wait beyond the jiffie/scheduler precision? */
3798                 if (ret == -ETIME && args->timeout_ns)
3799                         ret = -EAGAIN;
3800         }
3801
3802         i915_gem_object_put(obj);
3803         return ret;
3804 }
3805
3806 static long wait_for_timeline(struct i915_timeline *tl,
3807                               unsigned int flags, long timeout)
3808 {
3809         struct i915_request *rq;
3810
3811         rq = i915_gem_active_get_unlocked(&tl->last_request);
3812         if (!rq)
3813                 return timeout;
3814
3815         /*
3816          * "Race-to-idle".
3817          *
3818          * Switching to the kernel context is often used a synchronous
3819          * step prior to idling, e.g. in suspend for flushing all
3820          * current operations to memory before sleeping. These we
3821          * want to complete as quickly as possible to avoid prolonged
3822          * stalls, so allow the gpu to boost to maximum clocks.
3823          */
3824         if (flags & I915_WAIT_FOR_IDLE_BOOST)
3825                 gen6_rps_boost(rq, NULL);
3826
3827         timeout = i915_request_wait(rq, flags, timeout);
3828         i915_request_put(rq);
3829
3830         return timeout;
3831 }
3832
3833 static int wait_for_engines(struct drm_i915_private *i915)
3834 {
3835         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3836                 dev_err(i915->drm.dev,
3837                         "Failed to idle engines, declaring wedged!\n");
3838                 GEM_TRACE_DUMP();
3839                 i915_gem_set_wedged(i915);
3840                 return -EIO;
3841         }
3842
3843         return 0;
3844 }
3845
3846 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3847                            unsigned int flags, long timeout)
3848 {
3849         GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3850                   flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3851                   timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3852
3853         /* If the device is asleep, we have no requests outstanding */
3854         if (!READ_ONCE(i915->gt.awake))
3855                 return 0;
3856
3857         if (flags & I915_WAIT_LOCKED) {
3858                 struct i915_timeline *tl;
3859                 int err;
3860
3861                 lockdep_assert_held(&i915->drm.struct_mutex);
3862
3863                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3864                         timeout = wait_for_timeline(tl, flags, timeout);
3865                         if (timeout < 0)
3866                                 return timeout;
3867                 }
3868                 if (GEM_SHOW_DEBUG() && !timeout) {
3869                         /* Presume that timeout was non-zero to begin with! */
3870                         dev_warn(&i915->drm.pdev->dev,
3871                                  "Missed idle-completion interrupt!\n");
3872                         GEM_TRACE_DUMP();
3873                 }
3874
3875                 err = wait_for_engines(i915);
3876                 if (err)
3877                         return err;
3878
3879                 i915_retire_requests(i915);
3880                 GEM_BUG_ON(i915->gt.active_requests);
3881         } else {
3882                 struct intel_engine_cs *engine;
3883                 enum intel_engine_id id;
3884
3885                 for_each_engine(engine, i915, id) {
3886                         struct i915_timeline *tl = &engine->timeline;
3887
3888                         timeout = wait_for_timeline(tl, flags, timeout);
3889                         if (timeout < 0)
3890                                 return timeout;
3891                 }
3892         }
3893
3894         return 0;
3895 }
3896
3897 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3898 {
3899         /*
3900          * We manually flush the CPU domain so that we can override and
3901          * force the flush for the display, and perform it asyncrhonously.
3902          */
3903         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3904         if (obj->cache_dirty)
3905                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3906         obj->write_domain = 0;
3907 }
3908
3909 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3910 {
3911         if (!READ_ONCE(obj->pin_global))
3912                 return;
3913
3914         mutex_lock(&obj->base.dev->struct_mutex);
3915         __i915_gem_object_flush_for_display(obj);
3916         mutex_unlock(&obj->base.dev->struct_mutex);
3917 }
3918
3919 /**
3920  * Moves a single object to the WC read, and possibly write domain.
3921  * @obj: object to act on
3922  * @write: ask for write access or read only
3923  *
3924  * This function returns when the move is complete, including waiting on
3925  * flushes to occur.
3926  */
3927 int
3928 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3929 {
3930         int ret;
3931
3932         lockdep_assert_held(&obj->base.dev->struct_mutex);
3933
3934         ret = i915_gem_object_wait(obj,
3935                                    I915_WAIT_INTERRUPTIBLE |
3936                                    I915_WAIT_LOCKED |
3937                                    (write ? I915_WAIT_ALL : 0),
3938                                    MAX_SCHEDULE_TIMEOUT,
3939                                    NULL);
3940         if (ret)
3941                 return ret;
3942
3943         if (obj->write_domain == I915_GEM_DOMAIN_WC)
3944                 return 0;
3945
3946         /* Flush and acquire obj->pages so that we are coherent through
3947          * direct access in memory with previous cached writes through
3948          * shmemfs and that our cache domain tracking remains valid.
3949          * For example, if the obj->filp was moved to swap without us
3950          * being notified and releasing the pages, we would mistakenly
3951          * continue to assume that the obj remained out of the CPU cached
3952          * domain.
3953          */
3954         ret = i915_gem_object_pin_pages(obj);
3955         if (ret)
3956                 return ret;
3957
3958         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3959
3960         /* Serialise direct access to this object with the barriers for
3961          * coherent writes from the GPU, by effectively invalidating the
3962          * WC domain upon first access.
3963          */
3964         if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3965                 mb();
3966
3967         /* It should now be out of any other write domains, and we can update
3968          * the domain values for our changes.
3969          */
3970         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3971         obj->read_domains |= I915_GEM_DOMAIN_WC;
3972         if (write) {
3973                 obj->read_domains = I915_GEM_DOMAIN_WC;
3974                 obj->write_domain = I915_GEM_DOMAIN_WC;
3975                 obj->mm.dirty = true;
3976         }
3977
3978         i915_gem_object_unpin_pages(obj);
3979         return 0;
3980 }
3981
3982 /**
3983  * Moves a single object to the GTT read, and possibly write domain.
3984  * @obj: object to act on
3985  * @write: ask for write access or read only
3986  *
3987  * This function returns when the move is complete, including waiting on
3988  * flushes to occur.
3989  */
3990 int
3991 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3992 {
3993         int ret;
3994
3995         lockdep_assert_held(&obj->base.dev->struct_mutex);
3996
3997         ret = i915_gem_object_wait(obj,
3998                                    I915_WAIT_INTERRUPTIBLE |
3999                                    I915_WAIT_LOCKED |
4000                                    (write ? I915_WAIT_ALL : 0),
4001                                    MAX_SCHEDULE_TIMEOUT,
4002                                    NULL);
4003         if (ret)
4004                 return ret;
4005
4006         if (obj->write_domain == I915_GEM_DOMAIN_GTT)
4007                 return 0;
4008
4009         /* Flush and acquire obj->pages so that we are coherent through
4010          * direct access in memory with previous cached writes through
4011          * shmemfs and that our cache domain tracking remains valid.
4012          * For example, if the obj->filp was moved to swap without us
4013          * being notified and releasing the pages, we would mistakenly
4014          * continue to assume that the obj remained out of the CPU cached
4015          * domain.
4016          */
4017         ret = i915_gem_object_pin_pages(obj);
4018         if (ret)
4019                 return ret;
4020
4021         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
4022
4023         /* Serialise direct access to this object with the barriers for
4024          * coherent writes from the GPU, by effectively invalidating the
4025          * GTT domain upon first access.
4026          */
4027         if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
4028                 mb();
4029
4030         /* It should now be out of any other write domains, and we can update
4031          * the domain values for our changes.
4032          */
4033         GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4034         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4035         if (write) {
4036                 obj->read_domains = I915_GEM_DOMAIN_GTT;
4037                 obj->write_domain = I915_GEM_DOMAIN_GTT;
4038                 obj->mm.dirty = true;
4039         }
4040
4041         i915_gem_object_unpin_pages(obj);
4042         return 0;
4043 }
4044
4045 /**
4046  * Changes the cache-level of an object across all VMA.
4047  * @obj: object to act on
4048  * @cache_level: new cache level to set for the object
4049  *
4050  * After this function returns, the object will be in the new cache-level
4051  * across all GTT and the contents of the backing storage will be coherent,
4052  * with respect to the new cache-level. In order to keep the backing storage
4053  * coherent for all users, we only allow a single cache level to be set
4054  * globally on the object and prevent it from being changed whilst the
4055  * hardware is reading from the object. That is if the object is currently
4056  * on the scanout it will be set to uncached (or equivalent display
4057  * cache coherency) and all non-MOCS GPU access will also be uncached so
4058  * that all direct access to the scanout remains coherent.
4059  */
4060 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4061                                     enum i915_cache_level cache_level)
4062 {
4063         struct i915_vma *vma;
4064         int ret;
4065
4066         lockdep_assert_held(&obj->base.dev->struct_mutex);
4067
4068         if (obj->cache_level == cache_level)
4069                 return 0;
4070
4071         /* Inspect the list of currently bound VMA and unbind any that would
4072          * be invalid given the new cache-level. This is principally to
4073          * catch the issue of the CS prefetch crossing page boundaries and
4074          * reading an invalid PTE on older architectures.
4075          */
4076 restart:
4077         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4078                 if (!drm_mm_node_allocated(&vma->node))
4079                         continue;
4080
4081                 if (i915_vma_is_pinned(vma)) {
4082                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4083                         return -EBUSY;
4084                 }
4085
4086                 if (!i915_vma_is_closed(vma) &&
4087                     i915_gem_valid_gtt_space(vma, cache_level))
4088                         continue;
4089
4090                 ret = i915_vma_unbind(vma);
4091                 if (ret)
4092                         return ret;
4093
4094                 /* As unbinding may affect other elements in the
4095                  * obj->vma_list (due to side-effects from retiring
4096                  * an active vma), play safe and restart the iterator.
4097                  */
4098                 goto restart;
4099         }
4100
4101         /* We can reuse the existing drm_mm nodes but need to change the
4102          * cache-level on the PTE. We could simply unbind them all and
4103          * rebind with the correct cache-level on next use. However since
4104          * we already have a valid slot, dma mapping, pages etc, we may as
4105          * rewrite the PTE in the belief that doing so tramples upon less
4106          * state and so involves less work.
4107          */
4108         if (obj->bind_count) {
4109                 /* Before we change the PTE, the GPU must not be accessing it.
4110                  * If we wait upon the object, we know that all the bound
4111                  * VMA are no longer active.
4112                  */
4113                 ret = i915_gem_object_wait(obj,
4114                                            I915_WAIT_INTERRUPTIBLE |
4115                                            I915_WAIT_LOCKED |
4116                                            I915_WAIT_ALL,
4117                                            MAX_SCHEDULE_TIMEOUT,
4118                                            NULL);
4119                 if (ret)
4120                         return ret;
4121
4122                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4123                     cache_level != I915_CACHE_NONE) {
4124                         /* Access to snoopable pages through the GTT is
4125                          * incoherent and on some machines causes a hard
4126                          * lockup. Relinquish the CPU mmaping to force
4127                          * userspace to refault in the pages and we can
4128                          * then double check if the GTT mapping is still
4129                          * valid for that pointer access.
4130                          */
4131                         i915_gem_release_mmap(obj);
4132
4133                         /* As we no longer need a fence for GTT access,
4134                          * we can relinquish it now (and so prevent having
4135                          * to steal a fence from someone else on the next
4136                          * fence request). Note GPU activity would have
4137                          * dropped the fence as all snoopable access is
4138                          * supposed to be linear.
4139                          */
4140                         for_each_ggtt_vma(vma, obj) {
4141                                 ret = i915_vma_put_fence(vma);
4142                                 if (ret)
4143                                         return ret;
4144                         }
4145                 } else {
4146                         /* We either have incoherent backing store and
4147                          * so no GTT access or the architecture is fully
4148                          * coherent. In such cases, existing GTT mmaps
4149                          * ignore the cache bit in the PTE and we can
4150                          * rewrite it without confusing the GPU or having
4151                          * to force userspace to fault back in its mmaps.
4152                          */
4153                 }
4154
4155                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4156                         if (!drm_mm_node_allocated(&vma->node))
4157                                 continue;
4158
4159                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4160                         if (ret)
4161                                 return ret;
4162                 }
4163         }
4164
4165         list_for_each_entry(vma, &obj->vma_list, obj_link)
4166                 vma->node.color = cache_level;
4167         i915_gem_object_set_cache_coherency(obj, cache_level);
4168         obj->cache_dirty = true; /* Always invalidate stale cachelines */
4169
4170         return 0;
4171 }
4172
4173 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4174                                struct drm_file *file)
4175 {
4176         struct drm_i915_gem_caching *args = data;
4177         struct drm_i915_gem_object *obj;
4178         int err = 0;
4179
4180         rcu_read_lock();
4181         obj = i915_gem_object_lookup_rcu(file, args->handle);
4182         if (!obj) {
4183                 err = -ENOENT;
4184                 goto out;
4185         }
4186
4187         switch (obj->cache_level) {
4188         case I915_CACHE_LLC:
4189         case I915_CACHE_L3_LLC:
4190                 args->caching = I915_CACHING_CACHED;
4191                 break;
4192
4193         case I915_CACHE_WT:
4194                 args->caching = I915_CACHING_DISPLAY;
4195                 break;
4196
4197         default:
4198                 args->caching = I915_CACHING_NONE;
4199                 break;
4200         }
4201 out:
4202         rcu_read_unlock();
4203         return err;
4204 }
4205
4206 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4207                                struct drm_file *file)
4208 {
4209         struct drm_i915_private *i915 = to_i915(dev);
4210         struct drm_i915_gem_caching *args = data;
4211         struct drm_i915_gem_object *obj;
4212         enum i915_cache_level level;
4213         int ret = 0;
4214
4215         switch (args->caching) {
4216         case I915_CACHING_NONE:
4217                 level = I915_CACHE_NONE;
4218                 break;
4219         case I915_CACHING_CACHED:
4220                 /*
4221                  * Due to a HW issue on BXT A stepping, GPU stores via a
4222                  * snooped mapping may leave stale data in a corresponding CPU
4223                  * cacheline, whereas normally such cachelines would get
4224                  * invalidated.
4225                  */
4226                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4227                         return -ENODEV;
4228
4229                 level = I915_CACHE_LLC;
4230                 break;
4231         case I915_CACHING_DISPLAY:
4232                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4233                 break;
4234         default:
4235                 return -EINVAL;
4236         }
4237
4238         obj = i915_gem_object_lookup(file, args->handle);
4239         if (!obj)
4240                 return -ENOENT;
4241
4242         /*
4243          * The caching mode of proxy object is handled by its generator, and
4244          * not allowed to be changed by userspace.
4245          */
4246         if (i915_gem_object_is_proxy(obj)) {
4247                 ret = -ENXIO;
4248                 goto out;
4249         }
4250
4251         if (obj->cache_level == level)
4252                 goto out;
4253
4254         ret = i915_gem_object_wait(obj,
4255                                    I915_WAIT_INTERRUPTIBLE,
4256                                    MAX_SCHEDULE_TIMEOUT,
4257                                    to_rps_client(file));
4258         if (ret)
4259                 goto out;
4260
4261         ret = i915_mutex_lock_interruptible(dev);
4262         if (ret)
4263                 goto out;
4264
4265         ret = i915_gem_object_set_cache_level(obj, level);
4266         mutex_unlock(&dev->struct_mutex);
4267
4268 out:
4269         i915_gem_object_put(obj);
4270         return ret;
4271 }
4272
4273 /*
4274  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4275  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4276  * (for pageflips). We only flush the caches while preparing the buffer for
4277  * display, the callers are responsible for frontbuffer flush.
4278  */
4279 struct i915_vma *
4280 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4281                                      u32 alignment,
4282                                      const struct i915_ggtt_view *view,
4283                                      unsigned int flags)
4284 {
4285         struct i915_vma *vma;
4286         int ret;
4287
4288         lockdep_assert_held(&obj->base.dev->struct_mutex);
4289
4290         /* Mark the global pin early so that we account for the
4291          * display coherency whilst setting up the cache domains.
4292          */
4293         obj->pin_global++;
4294
4295         /* The display engine is not coherent with the LLC cache on gen6.  As
4296          * a result, we make sure that the pinning that is about to occur is
4297          * done with uncached PTEs. This is lowest common denominator for all
4298          * chipsets.
4299          *
4300          * However for gen6+, we could do better by using the GFDT bit instead
4301          * of uncaching, which would allow us to flush all the LLC-cached data
4302          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4303          */
4304         ret = i915_gem_object_set_cache_level(obj,
4305                                               HAS_WT(to_i915(obj->base.dev)) ?
4306                                               I915_CACHE_WT : I915_CACHE_NONE);
4307         if (ret) {
4308                 vma = ERR_PTR(ret);
4309                 goto err_unpin_global;
4310         }
4311
4312         /* As the user may map the buffer once pinned in the display plane
4313          * (e.g. libkms for the bootup splash), we have to ensure that we
4314          * always use map_and_fenceable for all scanout buffers. However,
4315          * it may simply be too big to fit into mappable, in which case
4316          * put it anyway and hope that userspace can cope (but always first
4317          * try to preserve the existing ABI).
4318          */
4319         vma = ERR_PTR(-ENOSPC);
4320         if ((flags & PIN_MAPPABLE) == 0 &&
4321             (!view || view->type == I915_GGTT_VIEW_NORMAL))
4322                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4323                                                flags |
4324                                                PIN_MAPPABLE |
4325                                                PIN_NONBLOCK);
4326         if (IS_ERR(vma))
4327                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4328         if (IS_ERR(vma))
4329                 goto err_unpin_global;
4330
4331         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4332
4333         __i915_gem_object_flush_for_display(obj);
4334
4335         /* It should now be out of any other write domains, and we can update
4336          * the domain values for our changes.
4337          */
4338         obj->read_domains |= I915_GEM_DOMAIN_GTT;
4339
4340         return vma;
4341
4342 err_unpin_global:
4343         obj->pin_global--;
4344         return vma;
4345 }
4346
4347 void
4348 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4349 {
4350         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4351
4352         if (WARN_ON(vma->obj->pin_global == 0))
4353                 return;
4354
4355         if (--vma->obj->pin_global == 0)
4356                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4357
4358         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4359         i915_gem_object_bump_inactive_ggtt(vma->obj);
4360
4361         i915_vma_unpin(vma);
4362 }
4363
4364 /**
4365  * Moves a single object to the CPU read, and possibly write domain.
4366  * @obj: object to act on
4367  * @write: requesting write or read-only access
4368  *
4369  * This function returns when the move is complete, including waiting on
4370  * flushes to occur.
4371  */
4372 int
4373 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4374 {
4375         int ret;
4376
4377         lockdep_assert_held(&obj->base.dev->struct_mutex);
4378
4379         ret = i915_gem_object_wait(obj,
4380                                    I915_WAIT_INTERRUPTIBLE |
4381                                    I915_WAIT_LOCKED |
4382                                    (write ? I915_WAIT_ALL : 0),
4383                                    MAX_SCHEDULE_TIMEOUT,
4384                                    NULL);
4385         if (ret)
4386                 return ret;
4387
4388         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4389
4390         /* Flush the CPU cache if it's still invalid. */
4391         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4392                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4393                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4394         }
4395
4396         /* It should now be out of any other write domains, and we can update
4397          * the domain values for our changes.
4398          */
4399         GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4400
4401         /* If we're writing through the CPU, then the GPU read domains will
4402          * need to be invalidated at next use.
4403          */
4404         if (write)
4405                 __start_cpu_write(obj);
4406
4407         return 0;
4408 }
4409
4410 /* Throttle our rendering by waiting until the ring has completed our requests
4411  * emitted over 20 msec ago.
4412  *
4413  * Note that if we were to use the current jiffies each time around the loop,
4414  * we wouldn't escape the function with any frames outstanding if the time to
4415  * render a frame was over 20ms.
4416  *
4417  * This should get us reasonable parallelism between CPU and GPU but also
4418  * relatively low latency when blocking on a particular request to finish.
4419  */
4420 static int
4421 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4422 {
4423         struct drm_i915_private *dev_priv = to_i915(dev);
4424         struct drm_i915_file_private *file_priv = file->driver_priv;
4425         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4426         struct i915_request *request, *target = NULL;
4427         long ret;
4428
4429         /* ABI: return -EIO if already wedged */
4430         if (i915_terminally_wedged(&dev_priv->gpu_error))
4431                 return -EIO;
4432
4433         spin_lock(&file_priv->mm.lock);
4434         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4435                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4436                         break;
4437
4438                 if (target) {
4439                         list_del(&target->client_link);
4440                         target->file_priv = NULL;
4441                 }
4442
4443                 target = request;
4444         }
4445         if (target)
4446                 i915_request_get(target);
4447         spin_unlock(&file_priv->mm.lock);
4448
4449         if (target == NULL)
4450                 return 0;
4451
4452         ret = i915_request_wait(target,
4453                                 I915_WAIT_INTERRUPTIBLE,
4454                                 MAX_SCHEDULE_TIMEOUT);
4455         i915_request_put(target);
4456
4457         return ret < 0 ? ret : 0;
4458 }
4459
4460 struct i915_vma *
4461 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4462                          const struct i915_ggtt_view *view,
4463                          u64 size,
4464                          u64 alignment,
4465                          u64 flags)
4466 {
4467         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4468         struct i915_address_space *vm = &dev_priv->ggtt.vm;
4469         struct i915_vma *vma;
4470         int ret;
4471
4472         lockdep_assert_held(&obj->base.dev->struct_mutex);
4473
4474         if (flags & PIN_MAPPABLE &&
4475             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4476                 /* If the required space is larger than the available
4477                  * aperture, we will not able to find a slot for the
4478                  * object and unbinding the object now will be in
4479                  * vain. Worse, doing so may cause us to ping-pong
4480                  * the object in and out of the Global GTT and
4481                  * waste a lot of cycles under the mutex.
4482                  */
4483                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4484                         return ERR_PTR(-E2BIG);
4485
4486                 /* If NONBLOCK is set the caller is optimistically
4487                  * trying to cache the full object within the mappable
4488                  * aperture, and *must* have a fallback in place for
4489                  * situations where we cannot bind the object. We
4490                  * can be a little more lax here and use the fallback
4491                  * more often to avoid costly migrations of ourselves
4492                  * and other objects within the aperture.
4493                  *
4494                  * Half-the-aperture is used as a simple heuristic.
4495                  * More interesting would to do search for a free
4496                  * block prior to making the commitment to unbind.
4497                  * That caters for the self-harm case, and with a
4498                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4499                  * we could try to minimise harm to others.
4500                  */
4501                 if (flags & PIN_NONBLOCK &&
4502                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4503                         return ERR_PTR(-ENOSPC);
4504         }
4505
4506         vma = i915_vma_instance(obj, vm, view);
4507         if (unlikely(IS_ERR(vma)))
4508                 return vma;
4509
4510         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4511                 if (flags & PIN_NONBLOCK) {
4512                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4513                                 return ERR_PTR(-ENOSPC);
4514
4515                         if (flags & PIN_MAPPABLE &&
4516                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4517                                 return ERR_PTR(-ENOSPC);
4518                 }
4519
4520                 WARN(i915_vma_is_pinned(vma),
4521                      "bo is already pinned in ggtt with incorrect alignment:"
4522                      " offset=%08x, req.alignment=%llx,"
4523                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4524                      i915_ggtt_offset(vma), alignment,
4525                      !!(flags & PIN_MAPPABLE),
4526                      i915_vma_is_map_and_fenceable(vma));
4527                 ret = i915_vma_unbind(vma);
4528                 if (ret)
4529                         return ERR_PTR(ret);
4530         }
4531
4532         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4533         if (ret)
4534                 return ERR_PTR(ret);
4535
4536         return vma;
4537 }
4538
4539 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4540 {
4541         /* Note that we could alias engines in the execbuf API, but
4542          * that would be very unwise as it prevents userspace from
4543          * fine control over engine selection. Ahem.
4544          *
4545          * This should be something like EXEC_MAX_ENGINE instead of
4546          * I915_NUM_ENGINES.
4547          */
4548         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4549         return 0x10000 << id;
4550 }
4551
4552 static __always_inline unsigned int __busy_write_id(unsigned int id)
4553 {
4554         /* The uABI guarantees an active writer is also amongst the read
4555          * engines. This would be true if we accessed the activity tracking
4556          * under the lock, but as we perform the lookup of the object and
4557          * its activity locklessly we can not guarantee that the last_write
4558          * being active implies that we have set the same engine flag from
4559          * last_read - hence we always set both read and write busy for
4560          * last_write.
4561          */
4562         return id | __busy_read_flag(id);
4563 }
4564
4565 static __always_inline unsigned int
4566 __busy_set_if_active(const struct dma_fence *fence,
4567                      unsigned int (*flag)(unsigned int id))
4568 {
4569         struct i915_request *rq;
4570
4571         /* We have to check the current hw status of the fence as the uABI
4572          * guarantees forward progress. We could rely on the idle worker
4573          * to eventually flush us, but to minimise latency just ask the
4574          * hardware.
4575          *
4576          * Note we only report on the status of native fences.
4577          */
4578         if (!dma_fence_is_i915(fence))
4579                 return 0;
4580
4581         /* opencode to_request() in order to avoid const warnings */
4582         rq = container_of(fence, struct i915_request, fence);
4583         if (i915_request_completed(rq))
4584                 return 0;
4585
4586         return flag(rq->engine->uabi_id);
4587 }
4588
4589 static __always_inline unsigned int
4590 busy_check_reader(const struct dma_fence *fence)
4591 {
4592         return __busy_set_if_active(fence, __busy_read_flag);
4593 }
4594
4595 static __always_inline unsigned int
4596 busy_check_writer(const struct dma_fence *fence)
4597 {
4598         if (!fence)
4599                 return 0;
4600
4601         return __busy_set_if_active(fence, __busy_write_id);
4602 }
4603
4604 int
4605 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4606                     struct drm_file *file)
4607 {
4608         struct drm_i915_gem_busy *args = data;
4609         struct drm_i915_gem_object *obj;
4610         struct reservation_object_list *list;
4611         unsigned int seq;
4612         int err;
4613
4614         err = -ENOENT;
4615         rcu_read_lock();
4616         obj = i915_gem_object_lookup_rcu(file, args->handle);
4617         if (!obj)
4618                 goto out;
4619
4620         /* A discrepancy here is that we do not report the status of
4621          * non-i915 fences, i.e. even though we may report the object as idle,
4622          * a call to set-domain may still stall waiting for foreign rendering.
4623          * This also means that wait-ioctl may report an object as busy,
4624          * where busy-ioctl considers it idle.
4625          *
4626          * We trade the ability to warn of foreign fences to report on which
4627          * i915 engines are active for the object.
4628          *
4629          * Alternatively, we can trade that extra information on read/write
4630          * activity with
4631          *      args->busy =
4632          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4633          * to report the overall busyness. This is what the wait-ioctl does.
4634          *
4635          */
4636 retry:
4637         seq = raw_read_seqcount(&obj->resv->seq);
4638
4639         /* Translate the exclusive fence to the READ *and* WRITE engine */
4640         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4641
4642         /* Translate shared fences to READ set of engines */
4643         list = rcu_dereference(obj->resv->fence);
4644         if (list) {
4645                 unsigned int shared_count = list->shared_count, i;
4646
4647                 for (i = 0; i < shared_count; ++i) {
4648                         struct dma_fence *fence =
4649                                 rcu_dereference(list->shared[i]);
4650
4651                         args->busy |= busy_check_reader(fence);
4652                 }
4653         }
4654
4655         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4656                 goto retry;
4657
4658         err = 0;
4659 out:
4660         rcu_read_unlock();
4661         return err;
4662 }
4663
4664 int
4665 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4666                         struct drm_file *file_priv)
4667 {
4668         return i915_gem_ring_throttle(dev, file_priv);
4669 }
4670
4671 int
4672 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4673                        struct drm_file *file_priv)
4674 {
4675         struct drm_i915_private *dev_priv = to_i915(dev);
4676         struct drm_i915_gem_madvise *args = data;
4677         struct drm_i915_gem_object *obj;
4678         int err;
4679
4680         switch (args->madv) {
4681         case I915_MADV_DONTNEED:
4682         case I915_MADV_WILLNEED:
4683             break;
4684         default:
4685             return -EINVAL;
4686         }
4687
4688         obj = i915_gem_object_lookup(file_priv, args->handle);
4689         if (!obj)
4690                 return -ENOENT;
4691
4692         err = mutex_lock_interruptible(&obj->mm.lock);
4693         if (err)
4694                 goto out;
4695
4696         if (i915_gem_object_has_pages(obj) &&
4697             i915_gem_object_is_tiled(obj) &&
4698             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4699                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4700                         GEM_BUG_ON(!obj->mm.quirked);
4701                         __i915_gem_object_unpin_pages(obj);
4702                         obj->mm.quirked = false;
4703                 }
4704                 if (args->madv == I915_MADV_WILLNEED) {
4705                         GEM_BUG_ON(obj->mm.quirked);
4706                         __i915_gem_object_pin_pages(obj);
4707                         obj->mm.quirked = true;
4708                 }
4709         }
4710
4711         if (obj->mm.madv != __I915_MADV_PURGED)
4712                 obj->mm.madv = args->madv;
4713
4714         /* if the object is no longer attached, discard its backing storage */
4715         if (obj->mm.madv == I915_MADV_DONTNEED &&
4716             !i915_gem_object_has_pages(obj))
4717                 i915_gem_object_truncate(obj);
4718
4719         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4720         mutex_unlock(&obj->mm.lock);
4721
4722 out:
4723         i915_gem_object_put(obj);
4724         return err;
4725 }
4726
4727 static void
4728 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4729 {
4730         struct drm_i915_gem_object *obj =
4731                 container_of(active, typeof(*obj), frontbuffer_write);
4732
4733         intel_fb_obj_flush(obj, ORIGIN_CS);
4734 }
4735
4736 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4737                           const struct drm_i915_gem_object_ops *ops)
4738 {
4739         mutex_init(&obj->mm.lock);
4740
4741         INIT_LIST_HEAD(&obj->vma_list);
4742         INIT_LIST_HEAD(&obj->lut_list);
4743         INIT_LIST_HEAD(&obj->batch_pool_link);
4744
4745         init_rcu_head(&obj->rcu);
4746
4747         obj->ops = ops;
4748
4749         reservation_object_init(&obj->__builtin_resv);
4750         obj->resv = &obj->__builtin_resv;
4751
4752         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4753         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4754
4755         obj->mm.madv = I915_MADV_WILLNEED;
4756         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4757         mutex_init(&obj->mm.get_page.lock);
4758
4759         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4760 }
4761
4762 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4763         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4764                  I915_GEM_OBJECT_IS_SHRINKABLE,
4765
4766         .get_pages = i915_gem_object_get_pages_gtt,
4767         .put_pages = i915_gem_object_put_pages_gtt,
4768
4769         .pwrite = i915_gem_object_pwrite_gtt,
4770 };
4771
4772 static int i915_gem_object_create_shmem(struct drm_device *dev,
4773                                         struct drm_gem_object *obj,
4774                                         size_t size)
4775 {
4776         struct drm_i915_private *i915 = to_i915(dev);
4777         unsigned long flags = VM_NORESERVE;
4778         struct file *filp;
4779
4780         drm_gem_private_object_init(dev, obj, size);
4781
4782         if (i915->mm.gemfs)
4783                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4784                                                  flags);
4785         else
4786                 filp = shmem_file_setup("i915", size, flags);
4787
4788         if (IS_ERR(filp))
4789                 return PTR_ERR(filp);
4790
4791         obj->filp = filp;
4792
4793         return 0;
4794 }
4795
4796 struct drm_i915_gem_object *
4797 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4798 {
4799         struct drm_i915_gem_object *obj;
4800         struct address_space *mapping;
4801         unsigned int cache_level;
4802         gfp_t mask;
4803         int ret;
4804
4805         /* There is a prevalence of the assumption that we fit the object's
4806          * page count inside a 32bit _signed_ variable. Let's document this and
4807          * catch if we ever need to fix it. In the meantime, if you do spot
4808          * such a local variable, please consider fixing!
4809          */
4810         if (size >> PAGE_SHIFT > INT_MAX)
4811                 return ERR_PTR(-E2BIG);
4812
4813         if (overflows_type(size, obj->base.size))
4814                 return ERR_PTR(-E2BIG);
4815
4816         obj = i915_gem_object_alloc(dev_priv);
4817         if (obj == NULL)
4818                 return ERR_PTR(-ENOMEM);
4819
4820         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4821         if (ret)
4822                 goto fail;
4823
4824         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4825         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4826                 /* 965gm cannot relocate objects above 4GiB. */
4827                 mask &= ~__GFP_HIGHMEM;
4828                 mask |= __GFP_DMA32;
4829         }
4830
4831         mapping = obj->base.filp->f_mapping;
4832         mapping_set_gfp_mask(mapping, mask);
4833         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4834
4835         i915_gem_object_init(obj, &i915_gem_object_ops);
4836
4837         obj->write_domain = I915_GEM_DOMAIN_CPU;
4838         obj->read_domains = I915_GEM_DOMAIN_CPU;
4839
4840         if (HAS_LLC(dev_priv))
4841                 /* On some devices, we can have the GPU use the LLC (the CPU
4842                  * cache) for about a 10% performance improvement
4843                  * compared to uncached.  Graphics requests other than
4844                  * display scanout are coherent with the CPU in
4845                  * accessing this cache.  This means in this mode we
4846                  * don't need to clflush on the CPU side, and on the
4847                  * GPU side we only need to flush internal caches to
4848                  * get data visible to the CPU.
4849                  *
4850                  * However, we maintain the display planes as UC, and so
4851                  * need to rebind when first used as such.
4852                  */
4853                 cache_level = I915_CACHE_LLC;
4854         else
4855                 cache_level = I915_CACHE_NONE;
4856
4857         i915_gem_object_set_cache_coherency(obj, cache_level);
4858
4859         trace_i915_gem_object_create(obj);
4860
4861         return obj;
4862
4863 fail:
4864         i915_gem_object_free(obj);
4865         return ERR_PTR(ret);
4866 }
4867
4868 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4869 {
4870         /* If we are the last user of the backing storage (be it shmemfs
4871          * pages or stolen etc), we know that the pages are going to be
4872          * immediately released. In this case, we can then skip copying
4873          * back the contents from the GPU.
4874          */
4875
4876         if (obj->mm.madv != I915_MADV_WILLNEED)
4877                 return false;
4878
4879         if (obj->base.filp == NULL)
4880                 return true;
4881
4882         /* At first glance, this looks racy, but then again so would be
4883          * userspace racing mmap against close. However, the first external
4884          * reference to the filp can only be obtained through the
4885          * i915_gem_mmap_ioctl() which safeguards us against the user
4886          * acquiring such a reference whilst we are in the middle of
4887          * freeing the object.
4888          */
4889         return atomic_long_read(&obj->base.filp->f_count) == 1;
4890 }
4891
4892 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4893                                     struct llist_node *freed)
4894 {
4895         struct drm_i915_gem_object *obj, *on;
4896
4897         intel_runtime_pm_get(i915);
4898         llist_for_each_entry_safe(obj, on, freed, freed) {
4899                 struct i915_vma *vma, *vn;
4900
4901                 trace_i915_gem_object_destroy(obj);
4902
4903                 mutex_lock(&i915->drm.struct_mutex);
4904
4905                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4906                 list_for_each_entry_safe(vma, vn,
4907                                          &obj->vma_list, obj_link) {
4908                         GEM_BUG_ON(i915_vma_is_active(vma));
4909                         vma->flags &= ~I915_VMA_PIN_MASK;
4910                         i915_vma_destroy(vma);
4911                 }
4912                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4913                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4914
4915                 /* This serializes freeing with the shrinker. Since the free
4916                  * is delayed, first by RCU then by the workqueue, we want the
4917                  * shrinker to be able to free pages of unreferenced objects,
4918                  * or else we may oom whilst there are plenty of deferred
4919                  * freed objects.
4920                  */
4921                 if (i915_gem_object_has_pages(obj)) {
4922                         spin_lock(&i915->mm.obj_lock);
4923                         list_del_init(&obj->mm.link);
4924                         spin_unlock(&i915->mm.obj_lock);
4925                 }
4926
4927                 mutex_unlock(&i915->drm.struct_mutex);
4928
4929                 GEM_BUG_ON(obj->bind_count);
4930                 GEM_BUG_ON(obj->userfault_count);
4931                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4932                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4933
4934                 if (obj->ops->release)
4935                         obj->ops->release(obj);
4936
4937                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4938                         atomic_set(&obj->mm.pages_pin_count, 0);
4939                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4940                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4941
4942                 if (obj->base.import_attach)
4943                         drm_prime_gem_destroy(&obj->base, NULL);
4944
4945                 reservation_object_fini(&obj->__builtin_resv);
4946                 drm_gem_object_release(&obj->base);
4947                 i915_gem_info_remove_obj(i915, obj->base.size);
4948
4949                 kfree(obj->bit_17);
4950                 i915_gem_object_free(obj);
4951
4952                 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4953                 atomic_dec(&i915->mm.free_count);
4954
4955                 if (on)
4956                         cond_resched();
4957         }
4958         intel_runtime_pm_put(i915);
4959 }
4960
4961 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4962 {
4963         struct llist_node *freed;
4964
4965         /* Free the oldest, most stale object to keep the free_list short */
4966         freed = NULL;
4967         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4968                 /* Only one consumer of llist_del_first() allowed */
4969                 spin_lock(&i915->mm.free_lock);
4970                 freed = llist_del_first(&i915->mm.free_list);
4971                 spin_unlock(&i915->mm.free_lock);
4972         }
4973         if (unlikely(freed)) {
4974                 freed->next = NULL;
4975                 __i915_gem_free_objects(i915, freed);
4976         }
4977 }
4978
4979 static void __i915_gem_free_work(struct work_struct *work)
4980 {
4981         struct drm_i915_private *i915 =
4982                 container_of(work, struct drm_i915_private, mm.free_work);
4983         struct llist_node *freed;
4984
4985         /*
4986          * All file-owned VMA should have been released by this point through
4987          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4988          * However, the object may also be bound into the global GTT (e.g.
4989          * older GPUs without per-process support, or for direct access through
4990          * the GTT either for the user or for scanout). Those VMA still need to
4991          * unbound now.
4992          */
4993
4994         spin_lock(&i915->mm.free_lock);
4995         while ((freed = llist_del_all(&i915->mm.free_list))) {
4996                 spin_unlock(&i915->mm.free_lock);
4997
4998                 __i915_gem_free_objects(i915, freed);
4999                 if (need_resched())
5000                         return;
5001
5002                 spin_lock(&i915->mm.free_lock);
5003         }
5004         spin_unlock(&i915->mm.free_lock);
5005 }
5006
5007 static void __i915_gem_free_object_rcu(struct rcu_head *head)
5008 {
5009         struct drm_i915_gem_object *obj =
5010                 container_of(head, typeof(*obj), rcu);
5011         struct drm_i915_private *i915 = to_i915(obj->base.dev);
5012
5013         /*
5014          * We reuse obj->rcu for the freed list, so we had better not treat
5015          * it like a rcu_head from this point forwards. And we expect all
5016          * objects to be freed via this path.
5017          */
5018         destroy_rcu_head(&obj->rcu);
5019
5020         /*
5021          * Since we require blocking on struct_mutex to unbind the freed
5022          * object from the GPU before releasing resources back to the
5023          * system, we can not do that directly from the RCU callback (which may
5024          * be a softirq context), but must instead then defer that work onto a
5025          * kthread. We use the RCU callback rather than move the freed object
5026          * directly onto the work queue so that we can mix between using the
5027          * worker and performing frees directly from subsequent allocations for
5028          * crude but effective memory throttling.
5029          */
5030         if (llist_add(&obj->freed, &i915->mm.free_list))
5031                 queue_work(i915->wq, &i915->mm.free_work);
5032 }
5033
5034 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5035 {
5036         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5037
5038         if (obj->mm.quirked)
5039                 __i915_gem_object_unpin_pages(obj);
5040
5041         if (discard_backing_storage(obj))
5042                 obj->mm.madv = I915_MADV_DONTNEED;
5043
5044         /*
5045          * Before we free the object, make sure any pure RCU-only
5046          * read-side critical sections are complete, e.g.
5047          * i915_gem_busy_ioctl(). For the corresponding synchronized
5048          * lookup see i915_gem_object_lookup_rcu().
5049          */
5050         atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5051         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5052 }
5053
5054 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5055 {
5056         lockdep_assert_held(&obj->base.dev->struct_mutex);
5057
5058         if (!i915_gem_object_has_active_reference(obj) &&
5059             i915_gem_object_is_active(obj))
5060                 i915_gem_object_set_active_reference(obj);
5061         else
5062                 i915_gem_object_put(obj);
5063 }
5064
5065 void i915_gem_sanitize(struct drm_i915_private *i915)
5066 {
5067         int err;
5068
5069         GEM_TRACE("\n");
5070
5071         mutex_lock(&i915->drm.struct_mutex);
5072
5073         intel_runtime_pm_get(i915);
5074         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5075
5076         /*
5077          * As we have just resumed the machine and woken the device up from
5078          * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5079          * back to defaults, recovering from whatever wedged state we left it
5080          * in and so worth trying to use the device once more.
5081          */
5082         if (i915_terminally_wedged(&i915->gpu_error))
5083                 i915_gem_unset_wedged(i915);
5084
5085         /*
5086          * If we inherit context state from the BIOS or earlier occupants
5087          * of the GPU, the GPU may be in an inconsistent state when we
5088          * try to take over. The only way to remove the earlier state
5089          * is by resetting. However, resetting on earlier gen is tricky as
5090          * it may impact the display and we are uncertain about the stability
5091          * of the reset, so this could be applied to even earlier gen.
5092          */
5093         err = -ENODEV;
5094         if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5095                 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5096         if (!err)
5097                 intel_engines_sanitize(i915);
5098
5099         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5100         intel_runtime_pm_put(i915);
5101
5102         i915_gem_contexts_lost(i915);
5103         mutex_unlock(&i915->drm.struct_mutex);
5104 }
5105
5106 int i915_gem_suspend(struct drm_i915_private *i915)
5107 {
5108         int ret;
5109
5110         GEM_TRACE("\n");
5111
5112         intel_runtime_pm_get(i915);
5113         intel_suspend_gt_powersave(i915);
5114
5115         mutex_lock(&i915->drm.struct_mutex);
5116
5117         /*
5118          * We have to flush all the executing contexts to main memory so
5119          * that they can saved in the hibernation image. To ensure the last
5120          * context image is coherent, we have to switch away from it. That
5121          * leaves the i915->kernel_context still active when
5122          * we actually suspend, and its image in memory may not match the GPU
5123          * state. Fortunately, the kernel_context is disposable and we do
5124          * not rely on its state.
5125          */
5126         if (!i915_terminally_wedged(&i915->gpu_error)) {
5127                 ret = i915_gem_switch_to_kernel_context(i915);
5128                 if (ret)
5129                         goto err_unlock;
5130
5131                 ret = i915_gem_wait_for_idle(i915,
5132                                              I915_WAIT_INTERRUPTIBLE |
5133                                              I915_WAIT_LOCKED |
5134                                              I915_WAIT_FOR_IDLE_BOOST,
5135                                              MAX_SCHEDULE_TIMEOUT);
5136                 if (ret && ret != -EIO)
5137                         goto err_unlock;
5138
5139                 assert_kernel_context_is_current(i915);
5140         }
5141         i915_retire_requests(i915); /* ensure we flush after wedging */
5142
5143         mutex_unlock(&i915->drm.struct_mutex);
5144
5145         intel_uc_suspend(i915);
5146
5147         cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5148         cancel_delayed_work_sync(&i915->gt.retire_work);
5149
5150         /*
5151          * As the idle_work is rearming if it detects a race, play safe and
5152          * repeat the flush until it is definitely idle.
5153          */
5154         drain_delayed_work(&i915->gt.idle_work);
5155
5156         /*
5157          * Assert that we successfully flushed all the work and
5158          * reset the GPU back to its idle, low power state.
5159          */
5160         WARN_ON(i915->gt.awake);
5161         if (WARN_ON(!intel_engines_are_idle(i915)))
5162                 i915_gem_set_wedged(i915); /* no hope, discard everything */
5163
5164         intel_runtime_pm_put(i915);
5165         return 0;
5166
5167 err_unlock:
5168         mutex_unlock(&i915->drm.struct_mutex);
5169         intel_runtime_pm_put(i915);
5170         return ret;
5171 }
5172
5173 void i915_gem_suspend_late(struct drm_i915_private *i915)
5174 {
5175         struct drm_i915_gem_object *obj;
5176         struct list_head *phases[] = {
5177                 &i915->mm.unbound_list,
5178                 &i915->mm.bound_list,
5179                 NULL
5180         }, **phase;
5181
5182         /*
5183          * Neither the BIOS, ourselves or any other kernel
5184          * expects the system to be in execlists mode on startup,
5185          * so we need to reset the GPU back to legacy mode. And the only
5186          * known way to disable logical contexts is through a GPU reset.
5187          *
5188          * So in order to leave the system in a known default configuration,
5189          * always reset the GPU upon unload and suspend. Afterwards we then
5190          * clean up the GEM state tracking, flushing off the requests and
5191          * leaving the system in a known idle state.
5192          *
5193          * Note that is of the upmost importance that the GPU is idle and
5194          * all stray writes are flushed *before* we dismantle the backing
5195          * storage for the pinned objects.
5196          *
5197          * However, since we are uncertain that resetting the GPU on older
5198          * machines is a good idea, we don't - just in case it leaves the
5199          * machine in an unusable condition.
5200          */
5201
5202         mutex_lock(&i915->drm.struct_mutex);
5203         for (phase = phases; *phase; phase++) {
5204                 list_for_each_entry(obj, *phase, mm.link)
5205                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5206         }
5207         mutex_unlock(&i915->drm.struct_mutex);
5208
5209         intel_uc_sanitize(i915);
5210         i915_gem_sanitize(i915);
5211 }
5212
5213 void i915_gem_resume(struct drm_i915_private *i915)
5214 {
5215         GEM_TRACE("\n");
5216
5217         WARN_ON(i915->gt.awake);
5218
5219         mutex_lock(&i915->drm.struct_mutex);
5220         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5221
5222         i915_gem_restore_gtt_mappings(i915);
5223         i915_gem_restore_fences(i915);
5224
5225         /*
5226          * As we didn't flush the kernel context before suspend, we cannot
5227          * guarantee that the context image is complete. So let's just reset
5228          * it and start again.
5229          */
5230         i915->gt.resume(i915);
5231
5232         if (i915_gem_init_hw(i915))
5233                 goto err_wedged;
5234
5235         intel_uc_resume(i915);
5236
5237         /* Always reload a context for powersaving. */
5238         if (i915_gem_switch_to_kernel_context(i915))
5239                 goto err_wedged;
5240
5241 out_unlock:
5242         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5243         mutex_unlock(&i915->drm.struct_mutex);
5244         return;
5245
5246 err_wedged:
5247         if (!i915_terminally_wedged(&i915->gpu_error)) {
5248                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5249                 i915_gem_set_wedged(i915);
5250         }
5251         goto out_unlock;
5252 }
5253
5254 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5255 {
5256         if (INTEL_GEN(dev_priv) < 5 ||
5257             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5258                 return;
5259
5260         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5261                                  DISP_TILE_SURFACE_SWIZZLING);
5262
5263         if (IS_GEN5(dev_priv))
5264                 return;
5265
5266         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5267         if (IS_GEN6(dev_priv))
5268                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5269         else if (IS_GEN7(dev_priv))
5270                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5271         else if (IS_GEN8(dev_priv))
5272                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5273         else
5274                 BUG();
5275 }
5276
5277 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5278 {
5279         I915_WRITE(RING_CTL(base), 0);
5280         I915_WRITE(RING_HEAD(base), 0);
5281         I915_WRITE(RING_TAIL(base), 0);
5282         I915_WRITE(RING_START(base), 0);
5283 }
5284
5285 static void init_unused_rings(struct drm_i915_private *dev_priv)
5286 {
5287         if (IS_I830(dev_priv)) {
5288                 init_unused_ring(dev_priv, PRB1_BASE);
5289                 init_unused_ring(dev_priv, SRB0_BASE);
5290                 init_unused_ring(dev_priv, SRB1_BASE);
5291                 init_unused_ring(dev_priv, SRB2_BASE);
5292                 init_unused_ring(dev_priv, SRB3_BASE);
5293         } else if (IS_GEN2(dev_priv)) {
5294                 init_unused_ring(dev_priv, SRB0_BASE);
5295                 init_unused_ring(dev_priv, SRB1_BASE);
5296         } else if (IS_GEN3(dev_priv)) {
5297                 init_unused_ring(dev_priv, PRB1_BASE);
5298                 init_unused_ring(dev_priv, PRB2_BASE);
5299         }
5300 }
5301
5302 static int __i915_gem_restart_engines(void *data)
5303 {
5304         struct drm_i915_private *i915 = data;
5305         struct intel_engine_cs *engine;
5306         enum intel_engine_id id;
5307         int err;
5308
5309         for_each_engine(engine, i915, id) {
5310                 err = engine->init_hw(engine);
5311                 if (err) {
5312                         DRM_ERROR("Failed to restart %s (%d)\n",
5313                                   engine->name, err);
5314                         return err;
5315                 }
5316         }
5317
5318         return 0;
5319 }
5320
5321 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5322 {
5323         int ret;
5324
5325         dev_priv->gt.last_init_time = ktime_get();
5326
5327         /* Double layer security blanket, see i915_gem_init() */
5328         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5329
5330         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5331                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5332
5333         if (IS_HASWELL(dev_priv))
5334                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5335                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5336
5337         intel_gt_workarounds_apply(dev_priv);
5338
5339         i915_gem_init_swizzling(dev_priv);
5340
5341         /*
5342          * At least 830 can leave some of the unused rings
5343          * "active" (ie. head != tail) after resume which
5344          * will prevent c3 entry. Makes sure all unused rings
5345          * are totally idle.
5346          */
5347         init_unused_rings(dev_priv);
5348
5349         BUG_ON(!dev_priv->kernel_context);
5350         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5351                 ret = -EIO;
5352                 goto out;
5353         }
5354
5355         ret = i915_ppgtt_init_hw(dev_priv);
5356         if (ret) {
5357                 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5358                 goto out;
5359         }
5360
5361         ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5362         if (ret) {
5363                 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5364                 goto out;
5365         }
5366
5367         /* We can't enable contexts until all firmware is loaded */
5368         ret = intel_uc_init_hw(dev_priv);
5369         if (ret) {
5370                 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5371                 goto out;
5372         }
5373
5374         intel_mocs_init_l3cc_table(dev_priv);
5375
5376         /* Only when the HW is re-initialised, can we replay the requests */
5377         ret = __i915_gem_restart_engines(dev_priv);
5378         if (ret)
5379                 goto cleanup_uc;
5380
5381         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5382
5383         return 0;
5384
5385 cleanup_uc:
5386         intel_uc_fini_hw(dev_priv);
5387 out:
5388         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5389
5390         return ret;
5391 }
5392
5393 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5394 {
5395         struct i915_gem_context *ctx;
5396         struct intel_engine_cs *engine;
5397         enum intel_engine_id id;
5398         int err;
5399
5400         /*
5401          * As we reset the gpu during very early sanitisation, the current
5402          * register state on the GPU should reflect its defaults values.
5403          * We load a context onto the hw (with restore-inhibit), then switch
5404          * over to a second context to save that default register state. We
5405          * can then prime every new context with that state so they all start
5406          * from the same default HW values.
5407          */
5408
5409         ctx = i915_gem_context_create_kernel(i915, 0);
5410         if (IS_ERR(ctx))
5411                 return PTR_ERR(ctx);
5412
5413         for_each_engine(engine, i915, id) {
5414                 struct i915_request *rq;
5415
5416                 rq = i915_request_alloc(engine, ctx);
5417                 if (IS_ERR(rq)) {
5418                         err = PTR_ERR(rq);
5419                         goto out_ctx;
5420                 }
5421
5422                 err = 0;
5423                 if (engine->init_context)
5424                         err = engine->init_context(rq);
5425
5426                 i915_request_add(rq);
5427                 if (err)
5428                         goto err_active;
5429         }
5430
5431         err = i915_gem_switch_to_kernel_context(i915);
5432         if (err)
5433                 goto err_active;
5434
5435         if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5436                 i915_gem_set_wedged(i915);
5437                 err = -EIO; /* Caller will declare us wedged */
5438                 goto err_active;
5439         }
5440
5441         assert_kernel_context_is_current(i915);
5442
5443         /*
5444          * Immediately park the GPU so that we enable powersaving and
5445          * treat it as idle. The next time we issue a request, we will
5446          * unpark and start using the engine->pinned_default_state, otherwise
5447          * it is in limbo and an early reset may fail.
5448          */
5449         __i915_gem_park(i915);
5450
5451         for_each_engine(engine, i915, id) {
5452                 struct i915_vma *state;
5453                 void *vaddr;
5454
5455                 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5456
5457                 state = to_intel_context(ctx, engine)->state;
5458                 if (!state)
5459                         continue;
5460
5461                 /*
5462                  * As we will hold a reference to the logical state, it will
5463                  * not be torn down with the context, and importantly the
5464                  * object will hold onto its vma (making it possible for a
5465                  * stray GTT write to corrupt our defaults). Unmap the vma
5466                  * from the GTT to prevent such accidents and reclaim the
5467                  * space.
5468                  */
5469                 err = i915_vma_unbind(state);
5470                 if (err)
5471                         goto err_active;
5472
5473                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5474                 if (err)
5475                         goto err_active;
5476
5477                 engine->default_state = i915_gem_object_get(state->obj);
5478
5479                 /* Check we can acquire the image of the context state */
5480                 vaddr = i915_gem_object_pin_map(engine->default_state,
5481                                                 I915_MAP_FORCE_WB);
5482                 if (IS_ERR(vaddr)) {
5483                         err = PTR_ERR(vaddr);
5484                         goto err_active;
5485                 }
5486
5487                 i915_gem_object_unpin_map(engine->default_state);
5488         }
5489
5490         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5491                 unsigned int found = intel_engines_has_context_isolation(i915);
5492
5493                 /*
5494                  * Make sure that classes with multiple engine instances all
5495                  * share the same basic configuration.
5496                  */
5497                 for_each_engine(engine, i915, id) {
5498                         unsigned int bit = BIT(engine->uabi_class);
5499                         unsigned int expected = engine->default_state ? bit : 0;
5500
5501                         if ((found & bit) != expected) {
5502                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5503                                           engine->uabi_class, engine->name);
5504                         }
5505                 }
5506         }
5507
5508 out_ctx:
5509         i915_gem_context_set_closed(ctx);
5510         i915_gem_context_put(ctx);
5511         return err;
5512
5513 err_active:
5514         /*
5515          * If we have to abandon now, we expect the engines to be idle
5516          * and ready to be torn-down. First try to flush any remaining
5517          * request, ensure we are pointing at the kernel context and
5518          * then remove it.
5519          */
5520         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5521                 goto out_ctx;
5522
5523         if (WARN_ON(i915_gem_wait_for_idle(i915,
5524                                            I915_WAIT_LOCKED,
5525                                            MAX_SCHEDULE_TIMEOUT)))
5526                 goto out_ctx;
5527
5528         i915_gem_contexts_lost(i915);
5529         goto out_ctx;
5530 }
5531
5532 int i915_gem_init(struct drm_i915_private *dev_priv)
5533 {
5534         int ret;
5535
5536         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5537         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5538                 mkwrite_device_info(dev_priv)->page_sizes =
5539                         I915_GTT_PAGE_SIZE_4K;
5540
5541         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5542
5543         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5544                 dev_priv->gt.resume = intel_lr_context_resume;
5545                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5546         } else {
5547                 dev_priv->gt.resume = intel_legacy_submission_resume;
5548                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5549         }
5550
5551         ret = i915_gem_init_userptr(dev_priv);
5552         if (ret)
5553                 return ret;
5554
5555         ret = intel_uc_init_misc(dev_priv);
5556         if (ret)
5557                 return ret;
5558
5559         ret = intel_wopcm_init(&dev_priv->wopcm);
5560         if (ret)
5561                 goto err_uc_misc;
5562
5563         /* This is just a security blanket to placate dragons.
5564          * On some systems, we very sporadically observe that the first TLBs
5565          * used by the CS may be stale, despite us poking the TLB reset. If
5566          * we hold the forcewake during initialisation these problems
5567          * just magically go away.
5568          */
5569         mutex_lock(&dev_priv->drm.struct_mutex);
5570         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5571
5572         ret = i915_gem_init_ggtt(dev_priv);
5573         if (ret) {
5574                 GEM_BUG_ON(ret == -EIO);
5575                 goto err_unlock;
5576         }
5577
5578         ret = i915_gem_contexts_init(dev_priv);
5579         if (ret) {
5580                 GEM_BUG_ON(ret == -EIO);
5581                 goto err_ggtt;
5582         }
5583
5584         ret = intel_engines_init(dev_priv);
5585         if (ret) {
5586                 GEM_BUG_ON(ret == -EIO);
5587                 goto err_context;
5588         }
5589
5590         intel_init_gt_powersave(dev_priv);
5591
5592         ret = intel_uc_init(dev_priv);
5593         if (ret)
5594                 goto err_pm;
5595
5596         ret = i915_gem_init_hw(dev_priv);
5597         if (ret)
5598                 goto err_uc_init;
5599
5600         /*
5601          * Despite its name intel_init_clock_gating applies both display
5602          * clock gating workarounds; GT mmio workarounds and the occasional
5603          * GT power context workaround. Worse, sometimes it includes a context
5604          * register workaround which we need to apply before we record the
5605          * default HW state for all contexts.
5606          *
5607          * FIXME: break up the workarounds and apply them at the right time!
5608          */
5609         intel_init_clock_gating(dev_priv);
5610
5611         ret = __intel_engines_record_defaults(dev_priv);
5612         if (ret)
5613                 goto err_init_hw;
5614
5615         if (i915_inject_load_failure()) {
5616                 ret = -ENODEV;
5617                 goto err_init_hw;
5618         }
5619
5620         if (i915_inject_load_failure()) {
5621                 ret = -EIO;
5622                 goto err_init_hw;
5623         }
5624
5625         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5626         mutex_unlock(&dev_priv->drm.struct_mutex);
5627
5628         return 0;
5629
5630         /*
5631          * Unwinding is complicated by that we want to handle -EIO to mean
5632          * disable GPU submission but keep KMS alive. We want to mark the
5633          * HW as irrevisibly wedged, but keep enough state around that the
5634          * driver doesn't explode during runtime.
5635          */
5636 err_init_hw:
5637         mutex_unlock(&dev_priv->drm.struct_mutex);
5638
5639         WARN_ON(i915_gem_suspend(dev_priv));
5640         i915_gem_suspend_late(dev_priv);
5641
5642         i915_gem_drain_workqueue(dev_priv);
5643
5644         mutex_lock(&dev_priv->drm.struct_mutex);
5645         intel_uc_fini_hw(dev_priv);
5646 err_uc_init:
5647         intel_uc_fini(dev_priv);
5648 err_pm:
5649         if (ret != -EIO) {
5650                 intel_cleanup_gt_powersave(dev_priv);
5651                 i915_gem_cleanup_engines(dev_priv);
5652         }
5653 err_context:
5654         if (ret != -EIO)
5655                 i915_gem_contexts_fini(dev_priv);
5656 err_ggtt:
5657 err_unlock:
5658         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5659         mutex_unlock(&dev_priv->drm.struct_mutex);
5660
5661 err_uc_misc:
5662         intel_uc_fini_misc(dev_priv);
5663
5664         if (ret != -EIO)
5665                 i915_gem_cleanup_userptr(dev_priv);
5666
5667         if (ret == -EIO) {
5668                 mutex_lock(&dev_priv->drm.struct_mutex);
5669
5670                 /*
5671                  * Allow engine initialisation to fail by marking the GPU as
5672                  * wedged. But we only want to do this where the GPU is angry,
5673                  * for all other failure, such as an allocation failure, bail.
5674                  */
5675                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5676                         i915_load_error(dev_priv,
5677                                         "Failed to initialize GPU, declaring it wedged!\n");
5678                         i915_gem_set_wedged(dev_priv);
5679                 }
5680
5681                 /* Minimal basic recovery for KMS */
5682                 ret = i915_ggtt_enable_hw(dev_priv);
5683                 i915_gem_restore_gtt_mappings(dev_priv);
5684                 i915_gem_restore_fences(dev_priv);
5685                 intel_init_clock_gating(dev_priv);
5686
5687                 mutex_unlock(&dev_priv->drm.struct_mutex);
5688         }
5689
5690         i915_gem_drain_freed_objects(dev_priv);
5691         return ret;
5692 }
5693
5694 void i915_gem_fini(struct drm_i915_private *dev_priv)
5695 {
5696         i915_gem_suspend_late(dev_priv);
5697         intel_disable_gt_powersave(dev_priv);
5698
5699         /* Flush any outstanding unpin_work. */
5700         i915_gem_drain_workqueue(dev_priv);
5701
5702         mutex_lock(&dev_priv->drm.struct_mutex);
5703         intel_uc_fini_hw(dev_priv);
5704         intel_uc_fini(dev_priv);
5705         i915_gem_cleanup_engines(dev_priv);
5706         i915_gem_contexts_fini(dev_priv);
5707         mutex_unlock(&dev_priv->drm.struct_mutex);
5708
5709         intel_cleanup_gt_powersave(dev_priv);
5710
5711         intel_uc_fini_misc(dev_priv);
5712         i915_gem_cleanup_userptr(dev_priv);
5713
5714         i915_gem_drain_freed_objects(dev_priv);
5715
5716         WARN_ON(!list_empty(&dev_priv->contexts.list));
5717 }
5718
5719 void i915_gem_init_mmio(struct drm_i915_private *i915)
5720 {
5721         i915_gem_sanitize(i915);
5722 }
5723
5724 void
5725 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5726 {
5727         struct intel_engine_cs *engine;
5728         enum intel_engine_id id;
5729
5730         for_each_engine(engine, dev_priv, id)
5731                 dev_priv->gt.cleanup_engine(engine);
5732 }
5733
5734 void
5735 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5736 {
5737         int i;
5738
5739         if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5740             !IS_CHERRYVIEW(dev_priv))
5741                 dev_priv->num_fence_regs = 32;
5742         else if (INTEL_GEN(dev_priv) >= 4 ||
5743                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5744                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5745                 dev_priv->num_fence_regs = 16;
5746         else
5747                 dev_priv->num_fence_regs = 8;
5748
5749         if (intel_vgpu_active(dev_priv))
5750                 dev_priv->num_fence_regs =
5751                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5752
5753         /* Initialize fence registers to zero */
5754         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5755                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5756
5757                 fence->i915 = dev_priv;
5758                 fence->id = i;
5759                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5760         }
5761         i915_gem_restore_fences(dev_priv);
5762
5763         i915_gem_detect_bit_6_swizzle(dev_priv);
5764 }
5765
5766 static void i915_gem_init__mm(struct drm_i915_private *i915)
5767 {
5768         spin_lock_init(&i915->mm.object_stat_lock);
5769         spin_lock_init(&i915->mm.obj_lock);
5770         spin_lock_init(&i915->mm.free_lock);
5771
5772         init_llist_head(&i915->mm.free_list);
5773
5774         INIT_LIST_HEAD(&i915->mm.unbound_list);
5775         INIT_LIST_HEAD(&i915->mm.bound_list);
5776         INIT_LIST_HEAD(&i915->mm.fence_list);
5777         INIT_LIST_HEAD(&i915->mm.userfault_list);
5778
5779         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5780 }
5781
5782 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5783 {
5784         int err = -ENOMEM;
5785
5786         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5787         if (!dev_priv->objects)
5788                 goto err_out;
5789
5790         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5791         if (!dev_priv->vmas)
5792                 goto err_objects;
5793
5794         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5795         if (!dev_priv->luts)
5796                 goto err_vmas;
5797
5798         dev_priv->requests = KMEM_CACHE(i915_request,
5799                                         SLAB_HWCACHE_ALIGN |
5800                                         SLAB_RECLAIM_ACCOUNT |
5801                                         SLAB_TYPESAFE_BY_RCU);
5802         if (!dev_priv->requests)
5803                 goto err_luts;
5804
5805         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5806                                             SLAB_HWCACHE_ALIGN |
5807                                             SLAB_RECLAIM_ACCOUNT);
5808         if (!dev_priv->dependencies)
5809                 goto err_requests;
5810
5811         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5812         if (!dev_priv->priorities)
5813                 goto err_dependencies;
5814
5815         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5816         INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5817         INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5818
5819         i915_gem_init__mm(dev_priv);
5820
5821         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5822                           i915_gem_retire_work_handler);
5823         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5824                           i915_gem_idle_work_handler);
5825         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5826         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5827
5828         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5829
5830         spin_lock_init(&dev_priv->fb_tracking.lock);
5831
5832         err = i915_gemfs_init(dev_priv);
5833         if (err)
5834                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5835
5836         return 0;
5837
5838 err_dependencies:
5839         kmem_cache_destroy(dev_priv->dependencies);
5840 err_requests:
5841         kmem_cache_destroy(dev_priv->requests);
5842 err_luts:
5843         kmem_cache_destroy(dev_priv->luts);
5844 err_vmas:
5845         kmem_cache_destroy(dev_priv->vmas);
5846 err_objects:
5847         kmem_cache_destroy(dev_priv->objects);
5848 err_out:
5849         return err;
5850 }
5851
5852 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5853 {
5854         i915_gem_drain_freed_objects(dev_priv);
5855         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5856         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5857         WARN_ON(dev_priv->mm.object_count);
5858         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5859
5860         kmem_cache_destroy(dev_priv->priorities);
5861         kmem_cache_destroy(dev_priv->dependencies);
5862         kmem_cache_destroy(dev_priv->requests);
5863         kmem_cache_destroy(dev_priv->luts);
5864         kmem_cache_destroy(dev_priv->vmas);
5865         kmem_cache_destroy(dev_priv->objects);
5866
5867         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5868         rcu_barrier();
5869
5870         i915_gemfs_fini(dev_priv);
5871 }
5872
5873 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5874 {
5875         /* Discard all purgeable objects, let userspace recover those as
5876          * required after resuming.
5877          */
5878         i915_gem_shrink_all(dev_priv);
5879
5880         return 0;
5881 }
5882
5883 int i915_gem_freeze_late(struct drm_i915_private *i915)
5884 {
5885         struct drm_i915_gem_object *obj;
5886         struct list_head *phases[] = {
5887                 &i915->mm.unbound_list,
5888                 &i915->mm.bound_list,
5889                 NULL
5890         }, **phase;
5891
5892         /*
5893          * Called just before we write the hibernation image.
5894          *
5895          * We need to update the domain tracking to reflect that the CPU
5896          * will be accessing all the pages to create and restore from the
5897          * hibernation, and so upon restoration those pages will be in the
5898          * CPU domain.
5899          *
5900          * To make sure the hibernation image contains the latest state,
5901          * we update that state just before writing out the image.
5902          *
5903          * To try and reduce the hibernation image, we manually shrink
5904          * the objects as well, see i915_gem_freeze()
5905          */
5906
5907         i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5908         i915_gem_drain_freed_objects(i915);
5909
5910         mutex_lock(&i915->drm.struct_mutex);
5911         for (phase = phases; *phase; phase++) {
5912                 list_for_each_entry(obj, *phase, mm.link)
5913                         WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5914         }
5915         mutex_unlock(&i915->drm.struct_mutex);
5916
5917         return 0;
5918 }
5919
5920 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5921 {
5922         struct drm_i915_file_private *file_priv = file->driver_priv;
5923         struct i915_request *request;
5924
5925         /* Clean up our request list when the client is going away, so that
5926          * later retire_requests won't dereference our soon-to-be-gone
5927          * file_priv.
5928          */
5929         spin_lock(&file_priv->mm.lock);
5930         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5931                 request->file_priv = NULL;
5932         spin_unlock(&file_priv->mm.lock);
5933 }
5934
5935 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5936 {
5937         struct drm_i915_file_private *file_priv;
5938         int ret;
5939
5940         DRM_DEBUG("\n");
5941
5942         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5943         if (!file_priv)
5944                 return -ENOMEM;
5945
5946         file->driver_priv = file_priv;
5947         file_priv->dev_priv = i915;
5948         file_priv->file = file;
5949
5950         spin_lock_init(&file_priv->mm.lock);
5951         INIT_LIST_HEAD(&file_priv->mm.request_list);
5952
5953         file_priv->bsd_engine = -1;
5954         file_priv->hang_timestamp = jiffies;
5955
5956         ret = i915_gem_context_open(i915, file);
5957         if (ret)
5958                 kfree(file_priv);
5959
5960         return ret;
5961 }
5962
5963 /**
5964  * i915_gem_track_fb - update frontbuffer tracking
5965  * @old: current GEM buffer for the frontbuffer slots
5966  * @new: new GEM buffer for the frontbuffer slots
5967  * @frontbuffer_bits: bitmask of frontbuffer slots
5968  *
5969  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5970  * from @old and setting them in @new. Both @old and @new can be NULL.
5971  */
5972 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5973                        struct drm_i915_gem_object *new,
5974                        unsigned frontbuffer_bits)
5975 {
5976         /* Control of individual bits within the mask are guarded by
5977          * the owning plane->mutex, i.e. we can never see concurrent
5978          * manipulation of individual bits. But since the bitfield as a whole
5979          * is updated using RMW, we need to use atomics in order to update
5980          * the bits.
5981          */
5982         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5983                      BITS_PER_TYPE(atomic_t));
5984
5985         if (old) {
5986                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5987                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5988         }
5989
5990         if (new) {
5991                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5992                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5993         }
5994 }
5995
5996 /* Allocate a new GEM object and fill it with the supplied data */
5997 struct drm_i915_gem_object *
5998 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5999                                  const void *data, size_t size)
6000 {
6001         struct drm_i915_gem_object *obj;
6002         struct file *file;
6003         size_t offset;
6004         int err;
6005
6006         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6007         if (IS_ERR(obj))
6008                 return obj;
6009
6010         GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6011
6012         file = obj->base.filp;
6013         offset = 0;
6014         do {
6015                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6016                 struct page *page;
6017                 void *pgdata, *vaddr;
6018
6019                 err = pagecache_write_begin(file, file->f_mapping,
6020                                             offset, len, 0,
6021                                             &page, &pgdata);
6022                 if (err < 0)
6023                         goto fail;
6024
6025                 vaddr = kmap(page);
6026                 memcpy(vaddr, data, len);
6027                 kunmap(page);
6028
6029                 err = pagecache_write_end(file, file->f_mapping,
6030                                           offset, len, len,
6031                                           page, pgdata);
6032                 if (err < 0)
6033                         goto fail;
6034
6035                 size -= len;
6036                 data += len;
6037                 offset += len;
6038         } while (size);
6039
6040         return obj;
6041
6042 fail:
6043         i915_gem_object_put(obj);
6044         return ERR_PTR(err);
6045 }
6046
6047 struct scatterlist *
6048 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6049                        unsigned int n,
6050                        unsigned int *offset)
6051 {
6052         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6053         struct scatterlist *sg;
6054         unsigned int idx, count;
6055
6056         might_sleep();
6057         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6058         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6059
6060         /* As we iterate forward through the sg, we record each entry in a
6061          * radixtree for quick repeated (backwards) lookups. If we have seen
6062          * this index previously, we will have an entry for it.
6063          *
6064          * Initial lookup is O(N), but this is amortized to O(1) for
6065          * sequential page access (where each new request is consecutive
6066          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6067          * i.e. O(1) with a large constant!
6068          */
6069         if (n < READ_ONCE(iter->sg_idx))
6070                 goto lookup;
6071
6072         mutex_lock(&iter->lock);
6073
6074         /* We prefer to reuse the last sg so that repeated lookup of this
6075          * (or the subsequent) sg are fast - comparing against the last
6076          * sg is faster than going through the radixtree.
6077          */
6078
6079         sg = iter->sg_pos;
6080         idx = iter->sg_idx;
6081         count = __sg_page_count(sg);
6082
6083         while (idx + count <= n) {
6084                 void *entry;
6085                 unsigned long i;
6086                 int ret;
6087
6088                 /* If we cannot allocate and insert this entry, or the
6089                  * individual pages from this range, cancel updating the
6090                  * sg_idx so that on this lookup we are forced to linearly
6091                  * scan onwards, but on future lookups we will try the
6092                  * insertion again (in which case we need to be careful of
6093                  * the error return reporting that we have already inserted
6094                  * this index).
6095                  */
6096                 ret = radix_tree_insert(&iter->radix, idx, sg);
6097                 if (ret && ret != -EEXIST)
6098                         goto scan;
6099
6100                 entry = xa_mk_value(idx);
6101                 for (i = 1; i < count; i++) {
6102                         ret = radix_tree_insert(&iter->radix, idx + i, entry);
6103                         if (ret && ret != -EEXIST)
6104                                 goto scan;
6105                 }
6106
6107                 idx += count;
6108                 sg = ____sg_next(sg);
6109                 count = __sg_page_count(sg);
6110         }
6111
6112 scan:
6113         iter->sg_pos = sg;
6114         iter->sg_idx = idx;
6115
6116         mutex_unlock(&iter->lock);
6117
6118         if (unlikely(n < idx)) /* insertion completed by another thread */
6119                 goto lookup;
6120
6121         /* In case we failed to insert the entry into the radixtree, we need
6122          * to look beyond the current sg.
6123          */
6124         while (idx + count <= n) {
6125                 idx += count;
6126                 sg = ____sg_next(sg);
6127                 count = __sg_page_count(sg);
6128         }
6129
6130         *offset = n - idx;
6131         return sg;
6132
6133 lookup:
6134         rcu_read_lock();
6135
6136         sg = radix_tree_lookup(&iter->radix, n);
6137         GEM_BUG_ON(!sg);
6138
6139         /* If this index is in the middle of multi-page sg entry,
6140          * the radix tree will contain a value entry that points
6141          * to the start of that range. We will return the pointer to
6142          * the base page and the offset of this page within the
6143          * sg entry's range.
6144          */
6145         *offset = 0;
6146         if (unlikely(xa_is_value(sg))) {
6147                 unsigned long base = xa_to_value(sg);
6148
6149                 sg = radix_tree_lookup(&iter->radix, base);
6150                 GEM_BUG_ON(!sg);
6151
6152                 *offset = n - base;
6153         }
6154
6155         rcu_read_unlock();
6156
6157         return sg;
6158 }
6159
6160 struct page *
6161 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6162 {
6163         struct scatterlist *sg;
6164         unsigned int offset;
6165
6166         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6167
6168         sg = i915_gem_object_get_sg(obj, n, &offset);
6169         return nth_page(sg_page(sg), offset);
6170 }
6171
6172 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6173 struct page *
6174 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6175                                unsigned int n)
6176 {
6177         struct page *page;
6178
6179         page = i915_gem_object_get_page(obj, n);
6180         if (!obj->mm.dirty)
6181                 set_page_dirty(page);
6182
6183         return page;
6184 }
6185
6186 dma_addr_t
6187 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6188                                 unsigned long n)
6189 {
6190         struct scatterlist *sg;
6191         unsigned int offset;
6192
6193         sg = i915_gem_object_get_sg(obj, n, &offset);
6194         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6195 }
6196
6197 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6198 {
6199         struct sg_table *pages;
6200         int err;
6201
6202         if (align > obj->base.size)
6203                 return -EINVAL;
6204
6205         if (obj->ops == &i915_gem_phys_ops)
6206                 return 0;
6207
6208         if (obj->ops != &i915_gem_object_ops)
6209                 return -EINVAL;
6210
6211         err = i915_gem_object_unbind(obj);
6212         if (err)
6213                 return err;
6214
6215         mutex_lock(&obj->mm.lock);
6216
6217         if (obj->mm.madv != I915_MADV_WILLNEED) {
6218                 err = -EFAULT;
6219                 goto err_unlock;
6220         }
6221
6222         if (obj->mm.quirked) {
6223                 err = -EFAULT;
6224                 goto err_unlock;
6225         }
6226
6227         if (obj->mm.mapping) {
6228                 err = -EBUSY;
6229                 goto err_unlock;
6230         }
6231
6232         pages = __i915_gem_object_unset_pages(obj);
6233
6234         obj->ops = &i915_gem_phys_ops;
6235
6236         err = ____i915_gem_object_get_pages(obj);
6237         if (err)
6238                 goto err_xfer;
6239
6240         /* Perma-pin (until release) the physical set of pages */
6241         __i915_gem_object_pin_pages(obj);
6242
6243         if (!IS_ERR_OR_NULL(pages))
6244                 i915_gem_object_ops.put_pages(obj, pages);
6245         mutex_unlock(&obj->mm.lock);
6246         return 0;
6247
6248 err_xfer:
6249         obj->ops = &i915_gem_object_ops;
6250         if (!IS_ERR_OR_NULL(pages)) {
6251                 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6252
6253                 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6254         }
6255 err_unlock:
6256         mutex_unlock(&obj->mm.lock);
6257         return err;
6258 }
6259
6260 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6261 #include "selftests/scatterlist.c"
6262 #include "selftests/mock_gem_device.c"
6263 #include "selftests/huge_gem_object.c"
6264 #include "selftests/huge_pages.c"
6265 #include "selftests/i915_gem_object.c"
6266 #include "selftests/i915_gem_coherency.c"
6267 #include "selftests/i915_gem.c"
6268 #endif