Merge branch 'for-linus/samsung' of git://git.fluff.org/bjdooks/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret)
1204                         goto unlock;
1205
1206                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209                 if (ret)
1210                         goto unlock;
1211         }
1212
1213         /* Need a new fence register? */
1214         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215                 ret = i915_gem_object_get_fence_reg(obj);
1216                 if (ret)
1217                         goto unlock;
1218         }
1219
1220         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221                 page_offset;
1222
1223         /* Finally, remap it using the new GTT offset */
1224         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226         mutex_unlock(&dev->struct_mutex);
1227
1228         switch (ret) {
1229         case 0:
1230         case -ERESTARTSYS:
1231                 return VM_FAULT_NOPAGE;
1232         case -ENOMEM:
1233         case -EAGAIN:
1234                 return VM_FAULT_OOM;
1235         default:
1236                 return VM_FAULT_SIGBUS;
1237         }
1238 }
1239
1240 /**
1241  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242  * @obj: obj in question
1243  *
1244  * GEM memory mapping works by handing back to userspace a fake mmap offset
1245  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246  * up the object based on the offset and sets up the various memory mapping
1247  * structures.
1248  *
1249  * This routine allocates and attaches a fake offset for @obj.
1250  */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254         struct drm_device *dev = obj->dev;
1255         struct drm_gem_mm *mm = dev->mm_private;
1256         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257         struct drm_map_list *list;
1258         struct drm_local_map *map;
1259         int ret = 0;
1260
1261         /* Set the object up for mmap'ing */
1262         list = &obj->map_list;
1263         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264         if (!list->map)
1265                 return -ENOMEM;
1266
1267         map = list->map;
1268         map->type = _DRM_GEM;
1269         map->size = obj->size;
1270         map->handle = obj;
1271
1272         /* Get a DRM GEM mmap offset allocated... */
1273         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274                                                     obj->size / PAGE_SIZE, 0, 0);
1275         if (!list->file_offset_node) {
1276                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277                 ret = -ENOMEM;
1278                 goto out_free_list;
1279         }
1280
1281         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282                                                   obj->size / PAGE_SIZE, 0);
1283         if (!list->file_offset_node) {
1284                 ret = -ENOMEM;
1285                 goto out_free_list;
1286         }
1287
1288         list->hash.key = list->file_offset_node->start;
1289         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290                 DRM_ERROR("failed to add to map hash\n");
1291                 ret = -ENOMEM;
1292                 goto out_free_mm;
1293         }
1294
1295         /* By now we should be all set, any drm_mmap request on the offset
1296          * below will get to our mmap & fault handler */
1297         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1298
1299         return 0;
1300
1301 out_free_mm:
1302         drm_mm_put_block(list->file_offset_node);
1303 out_free_list:
1304         kfree(list->map);
1305
1306         return ret;
1307 }
1308
1309 /**
1310  * i915_gem_release_mmap - remove physical page mappings
1311  * @obj: obj in question
1312  *
1313  * Preserve the reservation of the mmapping with the DRM core code, but
1314  * relinquish ownership of the pages back to the system.
1315  *
1316  * It is vital that we remove the page mapping if we have mapped a tiled
1317  * object through the GTT and then lose the fence register due to
1318  * resource pressure. Similarly if the object has been moved out of the
1319  * aperture, than pages mapped into userspace must be revoked. Removing the
1320  * mapping will then trigger a page fault on the next user access, allowing
1321  * fixup by i915_gem_fault().
1322  */
1323 void
1324 i915_gem_release_mmap(struct drm_gem_object *obj)
1325 {
1326         struct drm_device *dev = obj->dev;
1327         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1328
1329         if (dev->dev_mapping)
1330                 unmap_mapping_range(dev->dev_mapping,
1331                                     obj_priv->mmap_offset, obj->size, 1);
1332 }
1333
1334 static void
1335 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1336 {
1337         struct drm_device *dev = obj->dev;
1338         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1339         struct drm_gem_mm *mm = dev->mm_private;
1340         struct drm_map_list *list;
1341
1342         list = &obj->map_list;
1343         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1344
1345         if (list->file_offset_node) {
1346                 drm_mm_put_block(list->file_offset_node);
1347                 list->file_offset_node = NULL;
1348         }
1349
1350         if (list->map) {
1351                 kfree(list->map);
1352                 list->map = NULL;
1353         }
1354
1355         obj_priv->mmap_offset = 0;
1356 }
1357
1358 /**
1359  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1360  * @obj: object to check
1361  *
1362  * Return the required GTT alignment for an object, taking into account
1363  * potential fence register mapping if needed.
1364  */
1365 static uint32_t
1366 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1367 {
1368         struct drm_device *dev = obj->dev;
1369         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1370         int start, i;
1371
1372         /*
1373          * Minimum alignment is 4k (GTT page size), but might be greater
1374          * if a fence register is needed for the object.
1375          */
1376         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1377                 return 4096;
1378
1379         /*
1380          * Previous chips need to be aligned to the size of the smallest
1381          * fence register that can contain the object.
1382          */
1383         if (IS_I9XX(dev))
1384                 start = 1024*1024;
1385         else
1386                 start = 512*1024;
1387
1388         for (i = start; i < obj->size; i <<= 1)
1389                 ;
1390
1391         return i;
1392 }
1393
1394 /**
1395  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1396  * @dev: DRM device
1397  * @data: GTT mapping ioctl data
1398  * @file_priv: GEM object info
1399  *
1400  * Simply returns the fake offset to userspace so it can mmap it.
1401  * The mmap call will end up in drm_gem_mmap(), which will set things
1402  * up so we can get faults in the handler above.
1403  *
1404  * The fault handler will take care of binding the object into the GTT
1405  * (since it may have been evicted to make room for something), allocating
1406  * a fence register, and mapping the appropriate aperture address into
1407  * userspace.
1408  */
1409 int
1410 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1411                         struct drm_file *file_priv)
1412 {
1413         struct drm_i915_gem_mmap_gtt *args = data;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         struct drm_gem_object *obj;
1416         struct drm_i915_gem_object *obj_priv;
1417         int ret;
1418
1419         if (!(dev->driver->driver_features & DRIVER_GEM))
1420                 return -ENODEV;
1421
1422         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1423         if (obj == NULL)
1424                 return -EBADF;
1425
1426         mutex_lock(&dev->struct_mutex);
1427
1428         obj_priv = obj->driver_private;
1429
1430         if (obj_priv->madv != I915_MADV_WILLNEED) {
1431                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1432                 drm_gem_object_unreference(obj);
1433                 mutex_unlock(&dev->struct_mutex);
1434                 return -EINVAL;
1435         }
1436
1437
1438         if (!obj_priv->mmap_offset) {
1439                 ret = i915_gem_create_mmap_offset(obj);
1440                 if (ret) {
1441                         drm_gem_object_unreference(obj);
1442                         mutex_unlock(&dev->struct_mutex);
1443                         return ret;
1444                 }
1445         }
1446
1447         args->offset = obj_priv->mmap_offset;
1448
1449         /*
1450          * Pull it into the GTT so that we have a page list (makes the
1451          * initial fault faster and any subsequent flushing possible).
1452          */
1453         if (!obj_priv->agp_mem) {
1454                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1455                 if (ret) {
1456                         drm_gem_object_unreference(obj);
1457                         mutex_unlock(&dev->struct_mutex);
1458                         return ret;
1459                 }
1460                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1461         }
1462
1463         drm_gem_object_unreference(obj);
1464         mutex_unlock(&dev->struct_mutex);
1465
1466         return 0;
1467 }
1468
1469 void
1470 i915_gem_object_put_pages(struct drm_gem_object *obj)
1471 {
1472         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1473         int page_count = obj->size / PAGE_SIZE;
1474         int i;
1475
1476         BUG_ON(obj_priv->pages_refcount == 0);
1477         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1478
1479         if (--obj_priv->pages_refcount != 0)
1480                 return;
1481
1482         if (obj_priv->tiling_mode != I915_TILING_NONE)
1483                 i915_gem_object_save_bit_17_swizzle(obj);
1484
1485         if (obj_priv->madv == I915_MADV_DONTNEED)
1486                 obj_priv->dirty = 0;
1487
1488         for (i = 0; i < page_count; i++) {
1489                 if (obj_priv->pages[i] == NULL)
1490                         break;
1491
1492                 if (obj_priv->dirty)
1493                         set_page_dirty(obj_priv->pages[i]);
1494
1495                 if (obj_priv->madv == I915_MADV_WILLNEED)
1496                         mark_page_accessed(obj_priv->pages[i]);
1497
1498                 page_cache_release(obj_priv->pages[i]);
1499         }
1500         obj_priv->dirty = 0;
1501
1502         drm_free_large(obj_priv->pages);
1503         obj_priv->pages = NULL;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1508 {
1509         struct drm_device *dev = obj->dev;
1510         drm_i915_private_t *dev_priv = dev->dev_private;
1511         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513         /* Add a reference if we're newly entering the active list. */
1514         if (!obj_priv->active) {
1515                 drm_gem_object_reference(obj);
1516                 obj_priv->active = 1;
1517         }
1518         /* Move from whatever list we were on to the tail of execution. */
1519         spin_lock(&dev_priv->mm.active_list_lock);
1520         list_move_tail(&obj_priv->list,
1521                        &dev_priv->mm.active_list);
1522         spin_unlock(&dev_priv->mm.active_list_lock);
1523         obj_priv->last_rendering_seqno = seqno;
1524 }
1525
1526 static void
1527 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1528 {
1529         struct drm_device *dev = obj->dev;
1530         drm_i915_private_t *dev_priv = dev->dev_private;
1531         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1532
1533         BUG_ON(!obj_priv->active);
1534         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1535         obj_priv->last_rendering_seqno = 0;
1536 }
1537
1538 /* Immediately discard the backing storage */
1539 static void
1540 i915_gem_object_truncate(struct drm_gem_object *obj)
1541 {
1542         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1543         struct inode *inode;
1544
1545         inode = obj->filp->f_path.dentry->d_inode;
1546         if (inode->i_op->truncate)
1547                 inode->i_op->truncate (inode);
1548
1549         obj_priv->madv = __I915_MADV_PURGED;
1550 }
1551
1552 static inline int
1553 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1554 {
1555         return obj_priv->madv == I915_MADV_DONTNEED;
1556 }
1557
1558 static void
1559 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1560 {
1561         struct drm_device *dev = obj->dev;
1562         drm_i915_private_t *dev_priv = dev->dev_private;
1563         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1564
1565         i915_verify_inactive(dev, __FILE__, __LINE__);
1566         if (obj_priv->pin_count != 0)
1567                 list_del_init(&obj_priv->list);
1568         else
1569                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1570
1571         obj_priv->last_rendering_seqno = 0;
1572         if (obj_priv->active) {
1573                 obj_priv->active = 0;
1574                 drm_gem_object_unreference(obj);
1575         }
1576         i915_verify_inactive(dev, __FILE__, __LINE__);
1577 }
1578
1579 /**
1580  * Creates a new sequence number, emitting a write of it to the status page
1581  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1582  *
1583  * Must be called with struct_lock held.
1584  *
1585  * Returned sequence numbers are nonzero on success.
1586  */
1587 uint32_t
1588 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1589                  uint32_t flush_domains)
1590 {
1591         drm_i915_private_t *dev_priv = dev->dev_private;
1592         struct drm_i915_file_private *i915_file_priv = NULL;
1593         struct drm_i915_gem_request *request;
1594         uint32_t seqno;
1595         int was_empty;
1596         RING_LOCALS;
1597
1598         if (file_priv != NULL)
1599                 i915_file_priv = file_priv->driver_priv;
1600
1601         request = kzalloc(sizeof(*request), GFP_KERNEL);
1602         if (request == NULL)
1603                 return 0;
1604
1605         /* Grab the seqno we're going to make this request be, and bump the
1606          * next (skipping 0 so it can be the reserved no-seqno value).
1607          */
1608         seqno = dev_priv->mm.next_gem_seqno;
1609         dev_priv->mm.next_gem_seqno++;
1610         if (dev_priv->mm.next_gem_seqno == 0)
1611                 dev_priv->mm.next_gem_seqno++;
1612
1613         BEGIN_LP_RING(4);
1614         OUT_RING(MI_STORE_DWORD_INDEX);
1615         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1616         OUT_RING(seqno);
1617
1618         OUT_RING(MI_USER_INTERRUPT);
1619         ADVANCE_LP_RING();
1620
1621         DRM_DEBUG_DRIVER("%d\n", seqno);
1622
1623         request->seqno = seqno;
1624         request->emitted_jiffies = jiffies;
1625         was_empty = list_empty(&dev_priv->mm.request_list);
1626         list_add_tail(&request->list, &dev_priv->mm.request_list);
1627         if (i915_file_priv) {
1628                 list_add_tail(&request->client_list,
1629                               &i915_file_priv->mm.request_list);
1630         } else {
1631                 INIT_LIST_HEAD(&request->client_list);
1632         }
1633
1634         /* Associate any objects on the flushing list matching the write
1635          * domain we're flushing with our flush.
1636          */
1637         if (flush_domains != 0) {
1638                 struct drm_i915_gem_object *obj_priv, *next;
1639
1640                 list_for_each_entry_safe(obj_priv, next,
1641                                          &dev_priv->mm.flushing_list, list) {
1642                         struct drm_gem_object *obj = obj_priv->obj;
1643
1644                         if ((obj->write_domain & flush_domains) ==
1645                             obj->write_domain) {
1646                                 uint32_t old_write_domain = obj->write_domain;
1647
1648                                 obj->write_domain = 0;
1649                                 i915_gem_object_move_to_active(obj, seqno);
1650
1651                                 trace_i915_gem_object_change_domain(obj,
1652                                                                     obj->read_domains,
1653                                                                     old_write_domain);
1654                         }
1655                 }
1656
1657         }
1658
1659         if (!dev_priv->mm.suspended) {
1660                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1661                 if (was_empty)
1662                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1663         }
1664         return seqno;
1665 }
1666
1667 /**
1668  * Command execution barrier
1669  *
1670  * Ensures that all commands in the ring are finished
1671  * before signalling the CPU
1672  */
1673 static uint32_t
1674 i915_retire_commands(struct drm_device *dev)
1675 {
1676         drm_i915_private_t *dev_priv = dev->dev_private;
1677         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1678         uint32_t flush_domains = 0;
1679         RING_LOCALS;
1680
1681         /* The sampler always gets flushed on i965 (sigh) */
1682         if (IS_I965G(dev))
1683                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1684         BEGIN_LP_RING(2);
1685         OUT_RING(cmd);
1686         OUT_RING(0); /* noop */
1687         ADVANCE_LP_RING();
1688         return flush_domains;
1689 }
1690
1691 /**
1692  * Moves buffers associated only with the given active seqno from the active
1693  * to inactive list, potentially freeing them.
1694  */
1695 static void
1696 i915_gem_retire_request(struct drm_device *dev,
1697                         struct drm_i915_gem_request *request)
1698 {
1699         drm_i915_private_t *dev_priv = dev->dev_private;
1700
1701         trace_i915_gem_request_retire(dev, request->seqno);
1702
1703         /* Move any buffers on the active list that are no longer referenced
1704          * by the ringbuffer to the flushing/inactive lists as appropriate.
1705          */
1706         spin_lock(&dev_priv->mm.active_list_lock);
1707         while (!list_empty(&dev_priv->mm.active_list)) {
1708                 struct drm_gem_object *obj;
1709                 struct drm_i915_gem_object *obj_priv;
1710
1711                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1712                                             struct drm_i915_gem_object,
1713                                             list);
1714                 obj = obj_priv->obj;
1715
1716                 /* If the seqno being retired doesn't match the oldest in the
1717                  * list, then the oldest in the list must still be newer than
1718                  * this seqno.
1719                  */
1720                 if (obj_priv->last_rendering_seqno != request->seqno)
1721                         goto out;
1722
1723 #if WATCH_LRU
1724                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1725                          __func__, request->seqno, obj);
1726 #endif
1727
1728                 if (obj->write_domain != 0)
1729                         i915_gem_object_move_to_flushing(obj);
1730                 else {
1731                         /* Take a reference on the object so it won't be
1732                          * freed while the spinlock is held.  The list
1733                          * protection for this spinlock is safe when breaking
1734                          * the lock like this since the next thing we do
1735                          * is just get the head of the list again.
1736                          */
1737                         drm_gem_object_reference(obj);
1738                         i915_gem_object_move_to_inactive(obj);
1739                         spin_unlock(&dev_priv->mm.active_list_lock);
1740                         drm_gem_object_unreference(obj);
1741                         spin_lock(&dev_priv->mm.active_list_lock);
1742                 }
1743         }
1744 out:
1745         spin_unlock(&dev_priv->mm.active_list_lock);
1746 }
1747
1748 /**
1749  * Returns true if seq1 is later than seq2.
1750  */
1751 bool
1752 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1753 {
1754         return (int32_t)(seq1 - seq2) >= 0;
1755 }
1756
1757 uint32_t
1758 i915_get_gem_seqno(struct drm_device *dev)
1759 {
1760         drm_i915_private_t *dev_priv = dev->dev_private;
1761
1762         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1763 }
1764
1765 /**
1766  * This function clears the request list as sequence numbers are passed.
1767  */
1768 void
1769 i915_gem_retire_requests(struct drm_device *dev)
1770 {
1771         drm_i915_private_t *dev_priv = dev->dev_private;
1772         uint32_t seqno;
1773
1774         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1775                 return;
1776
1777         seqno = i915_get_gem_seqno(dev);
1778
1779         while (!list_empty(&dev_priv->mm.request_list)) {
1780                 struct drm_i915_gem_request *request;
1781                 uint32_t retiring_seqno;
1782
1783                 request = list_first_entry(&dev_priv->mm.request_list,
1784                                            struct drm_i915_gem_request,
1785                                            list);
1786                 retiring_seqno = request->seqno;
1787
1788                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1789                     atomic_read(&dev_priv->mm.wedged)) {
1790                         i915_gem_retire_request(dev, request);
1791
1792                         list_del(&request->list);
1793                         list_del(&request->client_list);
1794                         kfree(request);
1795                 } else
1796                         break;
1797         }
1798
1799         if (unlikely (dev_priv->trace_irq_seqno &&
1800                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1801                 i915_user_irq_put(dev);
1802                 dev_priv->trace_irq_seqno = 0;
1803         }
1804 }
1805
1806 void
1807 i915_gem_retire_work_handler(struct work_struct *work)
1808 {
1809         drm_i915_private_t *dev_priv;
1810         struct drm_device *dev;
1811
1812         dev_priv = container_of(work, drm_i915_private_t,
1813                                 mm.retire_work.work);
1814         dev = dev_priv->dev;
1815
1816         mutex_lock(&dev->struct_mutex);
1817         i915_gem_retire_requests(dev);
1818         if (!dev_priv->mm.suspended &&
1819             !list_empty(&dev_priv->mm.request_list))
1820                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1821         mutex_unlock(&dev->struct_mutex);
1822 }
1823
1824 int
1825 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1826 {
1827         drm_i915_private_t *dev_priv = dev->dev_private;
1828         u32 ier;
1829         int ret = 0;
1830
1831         BUG_ON(seqno == 0);
1832
1833         if (atomic_read(&dev_priv->mm.wedged))
1834                 return -EIO;
1835
1836         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1837                 if (IS_IRONLAKE(dev))
1838                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1839                 else
1840                         ier = I915_READ(IER);
1841                 if (!ier) {
1842                         DRM_ERROR("something (likely vbetool) disabled "
1843                                   "interrupts, re-enabling\n");
1844                         i915_driver_irq_preinstall(dev);
1845                         i915_driver_irq_postinstall(dev);
1846                 }
1847
1848                 trace_i915_gem_request_wait_begin(dev, seqno);
1849
1850                 dev_priv->mm.waiting_gem_seqno = seqno;
1851                 i915_user_irq_get(dev);
1852                 if (interruptible)
1853                         ret = wait_event_interruptible(dev_priv->irq_queue,
1854                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1855                                 atomic_read(&dev_priv->mm.wedged));
1856                 else
1857                         wait_event(dev_priv->irq_queue,
1858                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1859                                 atomic_read(&dev_priv->mm.wedged));
1860
1861                 i915_user_irq_put(dev);
1862                 dev_priv->mm.waiting_gem_seqno = 0;
1863
1864                 trace_i915_gem_request_wait_end(dev, seqno);
1865         }
1866         if (atomic_read(&dev_priv->mm.wedged))
1867                 ret = -EIO;
1868
1869         if (ret && ret != -ERESTARTSYS)
1870                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1871                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1872
1873         /* Directly dispatch request retiring.  While we have the work queue
1874          * to handle this, the waiter on a request often wants an associated
1875          * buffer to have made it to the inactive list, and we would need
1876          * a separate wait queue to handle that.
1877          */
1878         if (ret == 0)
1879                 i915_gem_retire_requests(dev);
1880
1881         return ret;
1882 }
1883
1884 /**
1885  * Waits for a sequence number to be signaled, and cleans up the
1886  * request and object lists appropriately for that event.
1887  */
1888 static int
1889 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1890 {
1891         return i915_do_wait_request(dev, seqno, 1);
1892 }
1893
1894 static void
1895 i915_gem_flush(struct drm_device *dev,
1896                uint32_t invalidate_domains,
1897                uint32_t flush_domains)
1898 {
1899         drm_i915_private_t *dev_priv = dev->dev_private;
1900         uint32_t cmd;
1901         RING_LOCALS;
1902
1903 #if WATCH_EXEC
1904         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1905                   invalidate_domains, flush_domains);
1906 #endif
1907         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1908                                      invalidate_domains, flush_domains);
1909
1910         if (flush_domains & I915_GEM_DOMAIN_CPU)
1911                 drm_agp_chipset_flush(dev);
1912
1913         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1914                 /*
1915                  * read/write caches:
1916                  *
1917                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1918                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1919                  * also flushed at 2d versus 3d pipeline switches.
1920                  *
1921                  * read-only caches:
1922                  *
1923                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1924                  * MI_READ_FLUSH is set, and is always flushed on 965.
1925                  *
1926                  * I915_GEM_DOMAIN_COMMAND may not exist?
1927                  *
1928                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1929                  * invalidated when MI_EXE_FLUSH is set.
1930                  *
1931                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1932                  * invalidated with every MI_FLUSH.
1933                  *
1934                  * TLBs:
1935                  *
1936                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1937                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1938                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1939                  * are flushed at any MI_FLUSH.
1940                  */
1941
1942                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1943                 if ((invalidate_domains|flush_domains) &
1944                     I915_GEM_DOMAIN_RENDER)
1945                         cmd &= ~MI_NO_WRITE_FLUSH;
1946                 if (!IS_I965G(dev)) {
1947                         /*
1948                          * On the 965, the sampler cache always gets flushed
1949                          * and this bit is reserved.
1950                          */
1951                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1952                                 cmd |= MI_READ_FLUSH;
1953                 }
1954                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1955                         cmd |= MI_EXE_FLUSH;
1956
1957 #if WATCH_EXEC
1958                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1959 #endif
1960                 BEGIN_LP_RING(2);
1961                 OUT_RING(cmd);
1962                 OUT_RING(MI_NOOP);
1963                 ADVANCE_LP_RING();
1964         }
1965 }
1966
1967 /**
1968  * Ensures that all rendering to the object has completed and the object is
1969  * safe to unbind from the GTT or access from the CPU.
1970  */
1971 static int
1972 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1973 {
1974         struct drm_device *dev = obj->dev;
1975         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1976         int ret;
1977
1978         /* This function only exists to support waiting for existing rendering,
1979          * not for emitting required flushes.
1980          */
1981         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1982
1983         /* If there is rendering queued on the buffer being evicted, wait for
1984          * it.
1985          */
1986         if (obj_priv->active) {
1987 #if WATCH_BUF
1988                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1989                           __func__, obj, obj_priv->last_rendering_seqno);
1990 #endif
1991                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1992                 if (ret != 0)
1993                         return ret;
1994         }
1995
1996         return 0;
1997 }
1998
1999 /**
2000  * Unbinds an object from the GTT aperture.
2001  */
2002 int
2003 i915_gem_object_unbind(struct drm_gem_object *obj)
2004 {
2005         struct drm_device *dev = obj->dev;
2006         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2007         int ret = 0;
2008
2009 #if WATCH_BUF
2010         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2011         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2012 #endif
2013         if (obj_priv->gtt_space == NULL)
2014                 return 0;
2015
2016         if (obj_priv->pin_count != 0) {
2017                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2018                 return -EINVAL;
2019         }
2020
2021         /* blow away mappings if mapped through GTT */
2022         i915_gem_release_mmap(obj);
2023
2024         /* Move the object to the CPU domain to ensure that
2025          * any possible CPU writes while it's not in the GTT
2026          * are flushed when we go to remap it. This will
2027          * also ensure that all pending GPU writes are finished
2028          * before we unbind.
2029          */
2030         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2031         if (ret) {
2032                 if (ret != -ERESTARTSYS)
2033                         DRM_ERROR("set_domain failed: %d\n", ret);
2034                 return ret;
2035         }
2036
2037         BUG_ON(obj_priv->active);
2038
2039         /* release the fence reg _after_ flushing */
2040         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2041                 i915_gem_clear_fence_reg(obj);
2042
2043         if (obj_priv->agp_mem != NULL) {
2044                 drm_unbind_agp(obj_priv->agp_mem);
2045                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2046                 obj_priv->agp_mem = NULL;
2047         }
2048
2049         i915_gem_object_put_pages(obj);
2050         BUG_ON(obj_priv->pages_refcount);
2051
2052         if (obj_priv->gtt_space) {
2053                 atomic_dec(&dev->gtt_count);
2054                 atomic_sub(obj->size, &dev->gtt_memory);
2055
2056                 drm_mm_put_block(obj_priv->gtt_space);
2057                 obj_priv->gtt_space = NULL;
2058         }
2059
2060         /* Remove ourselves from the LRU list if present. */
2061         if (!list_empty(&obj_priv->list))
2062                 list_del_init(&obj_priv->list);
2063
2064         if (i915_gem_object_is_purgeable(obj_priv))
2065                 i915_gem_object_truncate(obj);
2066
2067         trace_i915_gem_object_unbind(obj);
2068
2069         return 0;
2070 }
2071
2072 static struct drm_gem_object *
2073 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2074 {
2075         drm_i915_private_t *dev_priv = dev->dev_private;
2076         struct drm_i915_gem_object *obj_priv;
2077         struct drm_gem_object *best = NULL;
2078         struct drm_gem_object *first = NULL;
2079
2080         /* Try to find the smallest clean object */
2081         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2082                 struct drm_gem_object *obj = obj_priv->obj;
2083                 if (obj->size >= min_size) {
2084                         if ((!obj_priv->dirty ||
2085                              i915_gem_object_is_purgeable(obj_priv)) &&
2086                             (!best || obj->size < best->size)) {
2087                                 best = obj;
2088                                 if (best->size == min_size)
2089                                         return best;
2090                         }
2091                         if (!first)
2092                             first = obj;
2093                 }
2094         }
2095
2096         return best ? best : first;
2097 }
2098
2099 static int
2100 i915_gem_evict_everything(struct drm_device *dev)
2101 {
2102         drm_i915_private_t *dev_priv = dev->dev_private;
2103         uint32_t seqno;
2104         int ret;
2105         bool lists_empty;
2106
2107         spin_lock(&dev_priv->mm.active_list_lock);
2108         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2109                        list_empty(&dev_priv->mm.flushing_list) &&
2110                        list_empty(&dev_priv->mm.active_list));
2111         spin_unlock(&dev_priv->mm.active_list_lock);
2112
2113         if (lists_empty)
2114                 return -ENOSPC;
2115
2116         /* Flush everything (on to the inactive lists) and evict */
2117         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2118         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2119         if (seqno == 0)
2120                 return -ENOMEM;
2121
2122         ret = i915_wait_request(dev, seqno);
2123         if (ret)
2124                 return ret;
2125
2126         ret = i915_gem_evict_from_inactive_list(dev);
2127         if (ret)
2128                 return ret;
2129
2130         spin_lock(&dev_priv->mm.active_list_lock);
2131         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2132                        list_empty(&dev_priv->mm.flushing_list) &&
2133                        list_empty(&dev_priv->mm.active_list));
2134         spin_unlock(&dev_priv->mm.active_list_lock);
2135         BUG_ON(!lists_empty);
2136
2137         return 0;
2138 }
2139
2140 static int
2141 i915_gem_evict_something(struct drm_device *dev, int min_size)
2142 {
2143         drm_i915_private_t *dev_priv = dev->dev_private;
2144         struct drm_gem_object *obj;
2145         int ret;
2146
2147         for (;;) {
2148                 i915_gem_retire_requests(dev);
2149
2150                 /* If there's an inactive buffer available now, grab it
2151                  * and be done.
2152                  */
2153                 obj = i915_gem_find_inactive_object(dev, min_size);
2154                 if (obj) {
2155                         struct drm_i915_gem_object *obj_priv;
2156
2157 #if WATCH_LRU
2158                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2159 #endif
2160                         obj_priv = obj->driver_private;
2161                         BUG_ON(obj_priv->pin_count != 0);
2162                         BUG_ON(obj_priv->active);
2163
2164                         /* Wait on the rendering and unbind the buffer. */
2165                         return i915_gem_object_unbind(obj);
2166                 }
2167
2168                 /* If we didn't get anything, but the ring is still processing
2169                  * things, wait for the next to finish and hopefully leave us
2170                  * a buffer to evict.
2171                  */
2172                 if (!list_empty(&dev_priv->mm.request_list)) {
2173                         struct drm_i915_gem_request *request;
2174
2175                         request = list_first_entry(&dev_priv->mm.request_list,
2176                                                    struct drm_i915_gem_request,
2177                                                    list);
2178
2179                         ret = i915_wait_request(dev, request->seqno);
2180                         if (ret)
2181                                 return ret;
2182
2183                         continue;
2184                 }
2185
2186                 /* If we didn't have anything on the request list but there
2187                  * are buffers awaiting a flush, emit one and try again.
2188                  * When we wait on it, those buffers waiting for that flush
2189                  * will get moved to inactive.
2190                  */
2191                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2192                         struct drm_i915_gem_object *obj_priv;
2193
2194                         /* Find an object that we can immediately reuse */
2195                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2196                                 obj = obj_priv->obj;
2197                                 if (obj->size >= min_size)
2198                                         break;
2199
2200                                 obj = NULL;
2201                         }
2202
2203                         if (obj != NULL) {
2204                                 uint32_t seqno;
2205
2206                                 i915_gem_flush(dev,
2207                                                obj->write_domain,
2208                                                obj->write_domain);
2209                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2210                                 if (seqno == 0)
2211                                         return -ENOMEM;
2212
2213                                 ret = i915_wait_request(dev, seqno);
2214                                 if (ret)
2215                                         return ret;
2216
2217                                 continue;
2218                         }
2219                 }
2220
2221                 /* If we didn't do any of the above, there's no single buffer
2222                  * large enough to swap out for the new one, so just evict
2223                  * everything and start again. (This should be rare.)
2224                  */
2225                 if (!list_empty (&dev_priv->mm.inactive_list))
2226                         return i915_gem_evict_from_inactive_list(dev);
2227                 else
2228                         return i915_gem_evict_everything(dev);
2229         }
2230 }
2231
2232 int
2233 i915_gem_object_get_pages(struct drm_gem_object *obj)
2234 {
2235         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2236         int page_count, i;
2237         struct address_space *mapping;
2238         struct inode *inode;
2239         struct page *page;
2240         int ret;
2241
2242         if (obj_priv->pages_refcount++ != 0)
2243                 return 0;
2244
2245         /* Get the list of pages out of our struct file.  They'll be pinned
2246          * at this point until we release them.
2247          */
2248         page_count = obj->size / PAGE_SIZE;
2249         BUG_ON(obj_priv->pages != NULL);
2250         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2251         if (obj_priv->pages == NULL) {
2252                 obj_priv->pages_refcount--;
2253                 return -ENOMEM;
2254         }
2255
2256         inode = obj->filp->f_path.dentry->d_inode;
2257         mapping = inode->i_mapping;
2258         for (i = 0; i < page_count; i++) {
2259                 page = read_mapping_page(mapping, i, NULL);
2260                 if (IS_ERR(page)) {
2261                         ret = PTR_ERR(page);
2262                         i915_gem_object_put_pages(obj);
2263                         return ret;
2264                 }
2265                 obj_priv->pages[i] = page;
2266         }
2267
2268         if (obj_priv->tiling_mode != I915_TILING_NONE)
2269                 i915_gem_object_do_bit_17_swizzle(obj);
2270
2271         return 0;
2272 }
2273
2274 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2275 {
2276         struct drm_gem_object *obj = reg->obj;
2277         struct drm_device *dev = obj->dev;
2278         drm_i915_private_t *dev_priv = dev->dev_private;
2279         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2280         int regnum = obj_priv->fence_reg;
2281         uint64_t val;
2282
2283         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2284                     0xfffff000) << 32;
2285         val |= obj_priv->gtt_offset & 0xfffff000;
2286         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2287         if (obj_priv->tiling_mode == I915_TILING_Y)
2288                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2289         val |= I965_FENCE_REG_VALID;
2290
2291         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2292 }
2293
2294 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2295 {
2296         struct drm_gem_object *obj = reg->obj;
2297         struct drm_device *dev = obj->dev;
2298         drm_i915_private_t *dev_priv = dev->dev_private;
2299         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2300         int regnum = obj_priv->fence_reg;
2301         int tile_width;
2302         uint32_t fence_reg, val;
2303         uint32_t pitch_val;
2304
2305         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2306             (obj_priv->gtt_offset & (obj->size - 1))) {
2307                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2308                      __func__, obj_priv->gtt_offset, obj->size);
2309                 return;
2310         }
2311
2312         if (obj_priv->tiling_mode == I915_TILING_Y &&
2313             HAS_128_BYTE_Y_TILING(dev))
2314                 tile_width = 128;
2315         else
2316                 tile_width = 512;
2317
2318         /* Note: pitch better be a power of two tile widths */
2319         pitch_val = obj_priv->stride / tile_width;
2320         pitch_val = ffs(pitch_val) - 1;
2321
2322         val = obj_priv->gtt_offset;
2323         if (obj_priv->tiling_mode == I915_TILING_Y)
2324                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2325         val |= I915_FENCE_SIZE_BITS(obj->size);
2326         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2327         val |= I830_FENCE_REG_VALID;
2328
2329         if (regnum < 8)
2330                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2331         else
2332                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2333         I915_WRITE(fence_reg, val);
2334 }
2335
2336 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2337 {
2338         struct drm_gem_object *obj = reg->obj;
2339         struct drm_device *dev = obj->dev;
2340         drm_i915_private_t *dev_priv = dev->dev_private;
2341         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342         int regnum = obj_priv->fence_reg;
2343         uint32_t val;
2344         uint32_t pitch_val;
2345         uint32_t fence_size_bits;
2346
2347         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2348             (obj_priv->gtt_offset & (obj->size - 1))) {
2349                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2350                      __func__, obj_priv->gtt_offset);
2351                 return;
2352         }
2353
2354         pitch_val = obj_priv->stride / 128;
2355         pitch_val = ffs(pitch_val) - 1;
2356         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2357
2358         val = obj_priv->gtt_offset;
2359         if (obj_priv->tiling_mode == I915_TILING_Y)
2360                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2361         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2362         WARN_ON(fence_size_bits & ~0x00000f00);
2363         val |= fence_size_bits;
2364         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2365         val |= I830_FENCE_REG_VALID;
2366
2367         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2368 }
2369
2370 /**
2371  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2372  * @obj: object to map through a fence reg
2373  *
2374  * When mapping objects through the GTT, userspace wants to be able to write
2375  * to them without having to worry about swizzling if the object is tiled.
2376  *
2377  * This function walks the fence regs looking for a free one for @obj,
2378  * stealing one if it can't find any.
2379  *
2380  * It then sets up the reg based on the object's properties: address, pitch
2381  * and tiling format.
2382  */
2383 int
2384 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2385 {
2386         struct drm_device *dev = obj->dev;
2387         struct drm_i915_private *dev_priv = dev->dev_private;
2388         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2389         struct drm_i915_fence_reg *reg = NULL;
2390         struct drm_i915_gem_object *old_obj_priv = NULL;
2391         int i, ret, avail;
2392
2393         /* Just update our place in the LRU if our fence is getting used. */
2394         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2395                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2396                 return 0;
2397         }
2398
2399         switch (obj_priv->tiling_mode) {
2400         case I915_TILING_NONE:
2401                 WARN(1, "allocating a fence for non-tiled object?\n");
2402                 break;
2403         case I915_TILING_X:
2404                 if (!obj_priv->stride)
2405                         return -EINVAL;
2406                 WARN((obj_priv->stride & (512 - 1)),
2407                      "object 0x%08x is X tiled but has non-512B pitch\n",
2408                      obj_priv->gtt_offset);
2409                 break;
2410         case I915_TILING_Y:
2411                 if (!obj_priv->stride)
2412                         return -EINVAL;
2413                 WARN((obj_priv->stride & (128 - 1)),
2414                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2415                      obj_priv->gtt_offset);
2416                 break;
2417         }
2418
2419         /* First try to find a free reg */
2420         avail = 0;
2421         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2422                 reg = &dev_priv->fence_regs[i];
2423                 if (!reg->obj)
2424                         break;
2425
2426                 old_obj_priv = reg->obj->driver_private;
2427                 if (!old_obj_priv->pin_count)
2428                     avail++;
2429         }
2430
2431         /* None available, try to steal one or wait for a user to finish */
2432         if (i == dev_priv->num_fence_regs) {
2433                 struct drm_gem_object *old_obj = NULL;
2434
2435                 if (avail == 0)
2436                         return -ENOSPC;
2437
2438                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2439                                     fence_list) {
2440                         old_obj = old_obj_priv->obj;
2441
2442                         if (old_obj_priv->pin_count)
2443                                 continue;
2444
2445                         /* Take a reference, as otherwise the wait_rendering
2446                          * below may cause the object to get freed out from
2447                          * under us.
2448                          */
2449                         drm_gem_object_reference(old_obj);
2450
2451                         /* i915 uses fences for GPU access to tiled buffers */
2452                         if (IS_I965G(dev) || !old_obj_priv->active)
2453                                 break;
2454
2455                         /* This brings the object to the head of the LRU if it
2456                          * had been written to.  The only way this should
2457                          * result in us waiting longer than the expected
2458                          * optimal amount of time is if there was a
2459                          * fence-using buffer later that was read-only.
2460                          */
2461                         i915_gem_object_flush_gpu_write_domain(old_obj);
2462                         ret = i915_gem_object_wait_rendering(old_obj);
2463                         if (ret != 0) {
2464                                 drm_gem_object_unreference(old_obj);
2465                                 return ret;
2466                         }
2467
2468                         break;
2469                 }
2470
2471                 /*
2472                  * Zap this virtual mapping so we can set up a fence again
2473                  * for this object next time we need it.
2474                  */
2475                 i915_gem_release_mmap(old_obj);
2476
2477                 i = old_obj_priv->fence_reg;
2478                 reg = &dev_priv->fence_regs[i];
2479
2480                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2481                 list_del_init(&old_obj_priv->fence_list);
2482
2483                 drm_gem_object_unreference(old_obj);
2484         }
2485
2486         obj_priv->fence_reg = i;
2487         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2488
2489         reg->obj = obj;
2490
2491         if (IS_I965G(dev))
2492                 i965_write_fence_reg(reg);
2493         else if (IS_I9XX(dev))
2494                 i915_write_fence_reg(reg);
2495         else
2496                 i830_write_fence_reg(reg);
2497
2498         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2499
2500         return 0;
2501 }
2502
2503 /**
2504  * i915_gem_clear_fence_reg - clear out fence register info
2505  * @obj: object to clear
2506  *
2507  * Zeroes out the fence register itself and clears out the associated
2508  * data structures in dev_priv and obj_priv.
2509  */
2510 static void
2511 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2512 {
2513         struct drm_device *dev = obj->dev;
2514         drm_i915_private_t *dev_priv = dev->dev_private;
2515         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2516
2517         if (IS_I965G(dev))
2518                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2519         else {
2520                 uint32_t fence_reg;
2521
2522                 if (obj_priv->fence_reg < 8)
2523                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2524                 else
2525                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2526                                                        8) * 4;
2527
2528                 I915_WRITE(fence_reg, 0);
2529         }
2530
2531         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2532         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2533         list_del_init(&obj_priv->fence_list);
2534 }
2535
2536 /**
2537  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2538  * to the buffer to finish, and then resets the fence register.
2539  * @obj: tiled object holding a fence register.
2540  *
2541  * Zeroes out the fence register itself and clears out the associated
2542  * data structures in dev_priv and obj_priv.
2543  */
2544 int
2545 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2546 {
2547         struct drm_device *dev = obj->dev;
2548         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2549
2550         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2551                 return 0;
2552
2553         /* On the i915, GPU access to tiled buffers is via a fence,
2554          * therefore we must wait for any outstanding access to complete
2555          * before clearing the fence.
2556          */
2557         if (!IS_I965G(dev)) {
2558                 int ret;
2559
2560                 i915_gem_object_flush_gpu_write_domain(obj);
2561                 i915_gem_object_flush_gtt_write_domain(obj);
2562                 ret = i915_gem_object_wait_rendering(obj);
2563                 if (ret != 0)
2564                         return ret;
2565         }
2566
2567         i915_gem_clear_fence_reg (obj);
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * Finds free space in the GTT aperture and binds the object there.
2574  */
2575 static int
2576 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2577 {
2578         struct drm_device *dev = obj->dev;
2579         drm_i915_private_t *dev_priv = dev->dev_private;
2580         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2581         struct drm_mm_node *free_space;
2582         bool retry_alloc = false;
2583         int ret;
2584
2585         if (obj_priv->madv != I915_MADV_WILLNEED) {
2586                 DRM_ERROR("Attempting to bind a purgeable object\n");
2587                 return -EINVAL;
2588         }
2589
2590         if (alignment == 0)
2591                 alignment = i915_gem_get_gtt_alignment(obj);
2592         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2593                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2594                 return -EINVAL;
2595         }
2596
2597  search_free:
2598         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2599                                         obj->size, alignment, 0);
2600         if (free_space != NULL) {
2601                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2602                                                        alignment);
2603                 if (obj_priv->gtt_space != NULL) {
2604                         obj_priv->gtt_space->private = obj;
2605                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2606                 }
2607         }
2608         if (obj_priv->gtt_space == NULL) {
2609                 /* If the gtt is empty and we're still having trouble
2610                  * fitting our object in, we're out of memory.
2611                  */
2612 #if WATCH_LRU
2613                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2614 #endif
2615                 ret = i915_gem_evict_something(dev, obj->size);
2616                 if (ret)
2617                         return ret;
2618
2619                 goto search_free;
2620         }
2621
2622 #if WATCH_BUF
2623         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2624                  obj->size, obj_priv->gtt_offset);
2625 #endif
2626         if (retry_alloc) {
2627                 i915_gem_object_set_page_gfp_mask (obj,
2628                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2629         }
2630         ret = i915_gem_object_get_pages(obj);
2631         if (retry_alloc) {
2632                 i915_gem_object_set_page_gfp_mask (obj,
2633                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2634         }
2635         if (ret) {
2636                 drm_mm_put_block(obj_priv->gtt_space);
2637                 obj_priv->gtt_space = NULL;
2638
2639                 if (ret == -ENOMEM) {
2640                         /* first try to clear up some space from the GTT */
2641                         ret = i915_gem_evict_something(dev, obj->size);
2642                         if (ret) {
2643                                 /* now try to shrink everyone else */
2644                                 if (! retry_alloc) {
2645                                     retry_alloc = true;
2646                                     goto search_free;
2647                                 }
2648
2649                                 return ret;
2650                         }
2651
2652                         goto search_free;
2653                 }
2654
2655                 return ret;
2656         }
2657
2658         /* Create an AGP memory structure pointing at our pages, and bind it
2659          * into the GTT.
2660          */
2661         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2662                                                obj_priv->pages,
2663                                                obj->size >> PAGE_SHIFT,
2664                                                obj_priv->gtt_offset,
2665                                                obj_priv->agp_type);
2666         if (obj_priv->agp_mem == NULL) {
2667                 i915_gem_object_put_pages(obj);
2668                 drm_mm_put_block(obj_priv->gtt_space);
2669                 obj_priv->gtt_space = NULL;
2670
2671                 ret = i915_gem_evict_something(dev, obj->size);
2672                 if (ret)
2673                         return ret;
2674
2675                 goto search_free;
2676         }
2677         atomic_inc(&dev->gtt_count);
2678         atomic_add(obj->size, &dev->gtt_memory);
2679
2680         /* Assert that the object is not currently in any GPU domain. As it
2681          * wasn't in the GTT, there shouldn't be any way it could have been in
2682          * a GPU cache
2683          */
2684         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2685         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2686
2687         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2688
2689         return 0;
2690 }
2691
2692 void
2693 i915_gem_clflush_object(struct drm_gem_object *obj)
2694 {
2695         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2696
2697         /* If we don't have a page list set up, then we're not pinned
2698          * to GPU, and we can ignore the cache flush because it'll happen
2699          * again at bind time.
2700          */
2701         if (obj_priv->pages == NULL)
2702                 return;
2703
2704         trace_i915_gem_object_clflush(obj);
2705
2706         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2707 }
2708
2709 /** Flushes any GPU write domain for the object if it's dirty. */
2710 static void
2711 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2712 {
2713         struct drm_device *dev = obj->dev;
2714         uint32_t seqno;
2715         uint32_t old_write_domain;
2716
2717         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2718                 return;
2719
2720         /* Queue the GPU write cache flushing we need. */
2721         old_write_domain = obj->write_domain;
2722         i915_gem_flush(dev, 0, obj->write_domain);
2723         seqno = i915_add_request(dev, NULL, obj->write_domain);
2724         obj->write_domain = 0;
2725         i915_gem_object_move_to_active(obj, seqno);
2726
2727         trace_i915_gem_object_change_domain(obj,
2728                                             obj->read_domains,
2729                                             old_write_domain);
2730 }
2731
2732 /** Flushes the GTT write domain for the object if it's dirty. */
2733 static void
2734 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2735 {
2736         uint32_t old_write_domain;
2737
2738         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2739                 return;
2740
2741         /* No actual flushing is required for the GTT write domain.   Writes
2742          * to it immediately go to main memory as far as we know, so there's
2743          * no chipset flush.  It also doesn't land in render cache.
2744          */
2745         old_write_domain = obj->write_domain;
2746         obj->write_domain = 0;
2747
2748         trace_i915_gem_object_change_domain(obj,
2749                                             obj->read_domains,
2750                                             old_write_domain);
2751 }
2752
2753 /** Flushes the CPU write domain for the object if it's dirty. */
2754 static void
2755 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2756 {
2757         struct drm_device *dev = obj->dev;
2758         uint32_t old_write_domain;
2759
2760         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2761                 return;
2762
2763         i915_gem_clflush_object(obj);
2764         drm_agp_chipset_flush(dev);
2765         old_write_domain = obj->write_domain;
2766         obj->write_domain = 0;
2767
2768         trace_i915_gem_object_change_domain(obj,
2769                                             obj->read_domains,
2770                                             old_write_domain);
2771 }
2772
2773 void
2774 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2775 {
2776         switch (obj->write_domain) {
2777         case I915_GEM_DOMAIN_GTT:
2778                 i915_gem_object_flush_gtt_write_domain(obj);
2779                 break;
2780         case I915_GEM_DOMAIN_CPU:
2781                 i915_gem_object_flush_cpu_write_domain(obj);
2782                 break;
2783         default:
2784                 i915_gem_object_flush_gpu_write_domain(obj);
2785                 break;
2786         }
2787 }
2788
2789 /**
2790  * Moves a single object to the GTT read, and possibly write domain.
2791  *
2792  * This function returns when the move is complete, including waiting on
2793  * flushes to occur.
2794  */
2795 int
2796 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2797 {
2798         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2799         uint32_t old_write_domain, old_read_domains;
2800         int ret;
2801
2802         /* Not valid to be called on unbound objects. */
2803         if (obj_priv->gtt_space == NULL)
2804                 return -EINVAL;
2805
2806         i915_gem_object_flush_gpu_write_domain(obj);
2807         /* Wait on any GPU rendering and flushing to occur. */
2808         ret = i915_gem_object_wait_rendering(obj);
2809         if (ret != 0)
2810                 return ret;
2811
2812         old_write_domain = obj->write_domain;
2813         old_read_domains = obj->read_domains;
2814
2815         /* If we're writing through the GTT domain, then CPU and GPU caches
2816          * will need to be invalidated at next use.
2817          */
2818         if (write)
2819                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2820
2821         i915_gem_object_flush_cpu_write_domain(obj);
2822
2823         /* It should now be out of any other write domains, and we can update
2824          * the domain values for our changes.
2825          */
2826         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2827         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2828         if (write) {
2829                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2830                 obj_priv->dirty = 1;
2831         }
2832
2833         trace_i915_gem_object_change_domain(obj,
2834                                             old_read_domains,
2835                                             old_write_domain);
2836
2837         return 0;
2838 }
2839
2840 /**
2841  * Moves a single object to the CPU read, and possibly write domain.
2842  *
2843  * This function returns when the move is complete, including waiting on
2844  * flushes to occur.
2845  */
2846 static int
2847 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2848 {
2849         uint32_t old_write_domain, old_read_domains;
2850         int ret;
2851
2852         i915_gem_object_flush_gpu_write_domain(obj);
2853         /* Wait on any GPU rendering and flushing to occur. */
2854         ret = i915_gem_object_wait_rendering(obj);
2855         if (ret != 0)
2856                 return ret;
2857
2858         i915_gem_object_flush_gtt_write_domain(obj);
2859
2860         /* If we have a partially-valid cache of the object in the CPU,
2861          * finish invalidating it and free the per-page flags.
2862          */
2863         i915_gem_object_set_to_full_cpu_read_domain(obj);
2864
2865         old_write_domain = obj->write_domain;
2866         old_read_domains = obj->read_domains;
2867
2868         /* Flush the CPU cache if it's still invalid. */
2869         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2870                 i915_gem_clflush_object(obj);
2871
2872                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2873         }
2874
2875         /* It should now be out of any other write domains, and we can update
2876          * the domain values for our changes.
2877          */
2878         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2879
2880         /* If we're writing through the CPU, then the GPU read domains will
2881          * need to be invalidated at next use.
2882          */
2883         if (write) {
2884                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2885                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2886         }
2887
2888         trace_i915_gem_object_change_domain(obj,
2889                                             old_read_domains,
2890                                             old_write_domain);
2891
2892         return 0;
2893 }
2894
2895 /*
2896  * Set the next domain for the specified object. This
2897  * may not actually perform the necessary flushing/invaliding though,
2898  * as that may want to be batched with other set_domain operations
2899  *
2900  * This is (we hope) the only really tricky part of gem. The goal
2901  * is fairly simple -- track which caches hold bits of the object
2902  * and make sure they remain coherent. A few concrete examples may
2903  * help to explain how it works. For shorthand, we use the notation
2904  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2905  * a pair of read and write domain masks.
2906  *
2907  * Case 1: the batch buffer
2908  *
2909  *      1. Allocated
2910  *      2. Written by CPU
2911  *      3. Mapped to GTT
2912  *      4. Read by GPU
2913  *      5. Unmapped from GTT
2914  *      6. Freed
2915  *
2916  *      Let's take these a step at a time
2917  *
2918  *      1. Allocated
2919  *              Pages allocated from the kernel may still have
2920  *              cache contents, so we set them to (CPU, CPU) always.
2921  *      2. Written by CPU (using pwrite)
2922  *              The pwrite function calls set_domain (CPU, CPU) and
2923  *              this function does nothing (as nothing changes)
2924  *      3. Mapped by GTT
2925  *              This function asserts that the object is not
2926  *              currently in any GPU-based read or write domains
2927  *      4. Read by GPU
2928  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2929  *              As write_domain is zero, this function adds in the
2930  *              current read domains (CPU+COMMAND, 0).
2931  *              flush_domains is set to CPU.
2932  *              invalidate_domains is set to COMMAND
2933  *              clflush is run to get data out of the CPU caches
2934  *              then i915_dev_set_domain calls i915_gem_flush to
2935  *              emit an MI_FLUSH and drm_agp_chipset_flush
2936  *      5. Unmapped from GTT
2937  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2938  *              flush_domains and invalidate_domains end up both zero
2939  *              so no flushing/invalidating happens
2940  *      6. Freed
2941  *              yay, done
2942  *
2943  * Case 2: The shared render buffer
2944  *
2945  *      1. Allocated
2946  *      2. Mapped to GTT
2947  *      3. Read/written by GPU
2948  *      4. set_domain to (CPU,CPU)
2949  *      5. Read/written by CPU
2950  *      6. Read/written by GPU
2951  *
2952  *      1. Allocated
2953  *              Same as last example, (CPU, CPU)
2954  *      2. Mapped to GTT
2955  *              Nothing changes (assertions find that it is not in the GPU)
2956  *      3. Read/written by GPU
2957  *              execbuffer calls set_domain (RENDER, RENDER)
2958  *              flush_domains gets CPU
2959  *              invalidate_domains gets GPU
2960  *              clflush (obj)
2961  *              MI_FLUSH and drm_agp_chipset_flush
2962  *      4. set_domain (CPU, CPU)
2963  *              flush_domains gets GPU
2964  *              invalidate_domains gets CPU
2965  *              wait_rendering (obj) to make sure all drawing is complete.
2966  *              This will include an MI_FLUSH to get the data from GPU
2967  *              to memory
2968  *              clflush (obj) to invalidate the CPU cache
2969  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2970  *      5. Read/written by CPU
2971  *              cache lines are loaded and dirtied
2972  *      6. Read written by GPU
2973  *              Same as last GPU access
2974  *
2975  * Case 3: The constant buffer
2976  *
2977  *      1. Allocated
2978  *      2. Written by CPU
2979  *      3. Read by GPU
2980  *      4. Updated (written) by CPU again
2981  *      5. Read by GPU
2982  *
2983  *      1. Allocated
2984  *              (CPU, CPU)
2985  *      2. Written by CPU
2986  *              (CPU, CPU)
2987  *      3. Read by GPU
2988  *              (CPU+RENDER, 0)
2989  *              flush_domains = CPU
2990  *              invalidate_domains = RENDER
2991  *              clflush (obj)
2992  *              MI_FLUSH
2993  *              drm_agp_chipset_flush
2994  *      4. Updated (written) by CPU again
2995  *              (CPU, CPU)
2996  *              flush_domains = 0 (no previous write domain)
2997  *              invalidate_domains = 0 (no new read domains)
2998  *      5. Read by GPU
2999  *              (CPU+RENDER, 0)
3000  *              flush_domains = CPU
3001  *              invalidate_domains = RENDER
3002  *              clflush (obj)
3003  *              MI_FLUSH
3004  *              drm_agp_chipset_flush
3005  */
3006 static void
3007 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3008 {
3009         struct drm_device               *dev = obj->dev;
3010         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3011         uint32_t                        invalidate_domains = 0;
3012         uint32_t                        flush_domains = 0;
3013         uint32_t                        old_read_domains;
3014
3015         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3016         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3017
3018         intel_mark_busy(dev, obj);
3019
3020 #if WATCH_BUF
3021         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3022                  __func__, obj,
3023                  obj->read_domains, obj->pending_read_domains,
3024                  obj->write_domain, obj->pending_write_domain);
3025 #endif
3026         /*
3027          * If the object isn't moving to a new write domain,
3028          * let the object stay in multiple read domains
3029          */
3030         if (obj->pending_write_domain == 0)
3031                 obj->pending_read_domains |= obj->read_domains;
3032         else
3033                 obj_priv->dirty = 1;
3034
3035         /*
3036          * Flush the current write domain if
3037          * the new read domains don't match. Invalidate
3038          * any read domains which differ from the old
3039          * write domain
3040          */
3041         if (obj->write_domain &&
3042             obj->write_domain != obj->pending_read_domains) {
3043                 flush_domains |= obj->write_domain;
3044                 invalidate_domains |=
3045                         obj->pending_read_domains & ~obj->write_domain;
3046         }
3047         /*
3048          * Invalidate any read caches which may have
3049          * stale data. That is, any new read domains.
3050          */
3051         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3052         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3053 #if WATCH_BUF
3054                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3055                          __func__, flush_domains, invalidate_domains);
3056 #endif
3057                 i915_gem_clflush_object(obj);
3058         }
3059
3060         old_read_domains = obj->read_domains;
3061
3062         /* The actual obj->write_domain will be updated with
3063          * pending_write_domain after we emit the accumulated flush for all
3064          * of our domain changes in execbuffers (which clears objects'
3065          * write_domains).  So if we have a current write domain that we
3066          * aren't changing, set pending_write_domain to that.
3067          */
3068         if (flush_domains == 0 && obj->pending_write_domain == 0)
3069                 obj->pending_write_domain = obj->write_domain;
3070         obj->read_domains = obj->pending_read_domains;
3071
3072         dev->invalidate_domains |= invalidate_domains;
3073         dev->flush_domains |= flush_domains;
3074 #if WATCH_BUF
3075         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3076                  __func__,
3077                  obj->read_domains, obj->write_domain,
3078                  dev->invalidate_domains, dev->flush_domains);
3079 #endif
3080
3081         trace_i915_gem_object_change_domain(obj,
3082                                             old_read_domains,
3083                                             obj->write_domain);
3084 }
3085
3086 /**
3087  * Moves the object from a partially CPU read to a full one.
3088  *
3089  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3090  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3091  */
3092 static void
3093 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3094 {
3095         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3096
3097         if (!obj_priv->page_cpu_valid)
3098                 return;
3099
3100         /* If we're partially in the CPU read domain, finish moving it in.
3101          */
3102         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3103                 int i;
3104
3105                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3106                         if (obj_priv->page_cpu_valid[i])
3107                                 continue;
3108                         drm_clflush_pages(obj_priv->pages + i, 1);
3109                 }
3110         }
3111
3112         /* Free the page_cpu_valid mappings which are now stale, whether
3113          * or not we've got I915_GEM_DOMAIN_CPU.
3114          */
3115         kfree(obj_priv->page_cpu_valid);
3116         obj_priv->page_cpu_valid = NULL;
3117 }
3118
3119 /**
3120  * Set the CPU read domain on a range of the object.
3121  *
3122  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3123  * not entirely valid.  The page_cpu_valid member of the object flags which
3124  * pages have been flushed, and will be respected by
3125  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3126  * of the whole object.
3127  *
3128  * This function returns when the move is complete, including waiting on
3129  * flushes to occur.
3130  */
3131 static int
3132 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3133                                           uint64_t offset, uint64_t size)
3134 {
3135         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3136         uint32_t old_read_domains;
3137         int i, ret;
3138
3139         if (offset == 0 && size == obj->size)
3140                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3141
3142         i915_gem_object_flush_gpu_write_domain(obj);
3143         /* Wait on any GPU rendering and flushing to occur. */
3144         ret = i915_gem_object_wait_rendering(obj);
3145         if (ret != 0)
3146                 return ret;
3147         i915_gem_object_flush_gtt_write_domain(obj);
3148
3149         /* If we're already fully in the CPU read domain, we're done. */
3150         if (obj_priv->page_cpu_valid == NULL &&
3151             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3152                 return 0;
3153
3154         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3155          * newly adding I915_GEM_DOMAIN_CPU
3156          */
3157         if (obj_priv->page_cpu_valid == NULL) {
3158                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3159                                                    GFP_KERNEL);
3160                 if (obj_priv->page_cpu_valid == NULL)
3161                         return -ENOMEM;
3162         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3163                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3164
3165         /* Flush the cache on any pages that are still invalid from the CPU's
3166          * perspective.
3167          */
3168         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3169              i++) {
3170                 if (obj_priv->page_cpu_valid[i])
3171                         continue;
3172
3173                 drm_clflush_pages(obj_priv->pages + i, 1);
3174
3175                 obj_priv->page_cpu_valid[i] = 1;
3176         }
3177
3178         /* It should now be out of any other write domains, and we can update
3179          * the domain values for our changes.
3180          */
3181         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3182
3183         old_read_domains = obj->read_domains;
3184         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3185
3186         trace_i915_gem_object_change_domain(obj,
3187                                             old_read_domains,
3188                                             obj->write_domain);
3189
3190         return 0;
3191 }
3192
3193 /**
3194  * Pin an object to the GTT and evaluate the relocations landing in it.
3195  */
3196 static int
3197 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3198                                  struct drm_file *file_priv,
3199                                  struct drm_i915_gem_exec_object2 *entry,
3200                                  struct drm_i915_gem_relocation_entry *relocs)
3201 {
3202         struct drm_device *dev = obj->dev;
3203         drm_i915_private_t *dev_priv = dev->dev_private;
3204         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3205         int i, ret;
3206         void __iomem *reloc_page;
3207         bool need_fence;
3208
3209         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3210                      obj_priv->tiling_mode != I915_TILING_NONE;
3211
3212         /* Check fence reg constraints and rebind if necessary */
3213         if (need_fence && !i915_obj_fenceable(dev, obj))
3214                 i915_gem_object_unbind(obj);
3215
3216         /* Choose the GTT offset for our buffer and put it there. */
3217         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3218         if (ret)
3219                 return ret;
3220
3221         /*
3222          * Pre-965 chips need a fence register set up in order to
3223          * properly handle blits to/from tiled surfaces.
3224          */
3225         if (need_fence) {
3226                 ret = i915_gem_object_get_fence_reg(obj);
3227                 if (ret != 0) {
3228                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3229                                 DRM_ERROR("Failure to install fence: %d\n",
3230                                           ret);
3231                         i915_gem_object_unpin(obj);
3232                         return ret;
3233                 }
3234         }
3235
3236         entry->offset = obj_priv->gtt_offset;
3237
3238         /* Apply the relocations, using the GTT aperture to avoid cache
3239          * flushing requirements.
3240          */
3241         for (i = 0; i < entry->relocation_count; i++) {
3242                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3243                 struct drm_gem_object *target_obj;
3244                 struct drm_i915_gem_object *target_obj_priv;
3245                 uint32_t reloc_val, reloc_offset;
3246                 uint32_t __iomem *reloc_entry;
3247
3248                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3249                                                    reloc->target_handle);
3250                 if (target_obj == NULL) {
3251                         i915_gem_object_unpin(obj);
3252                         return -EBADF;
3253                 }
3254                 target_obj_priv = target_obj->driver_private;
3255
3256 #if WATCH_RELOC
3257                 DRM_INFO("%s: obj %p offset %08x target %d "
3258                          "read %08x write %08x gtt %08x "
3259                          "presumed %08x delta %08x\n",
3260                          __func__,
3261                          obj,
3262                          (int) reloc->offset,
3263                          (int) reloc->target_handle,
3264                          (int) reloc->read_domains,
3265                          (int) reloc->write_domain,
3266                          (int) target_obj_priv->gtt_offset,
3267                          (int) reloc->presumed_offset,
3268                          reloc->delta);
3269 #endif
3270
3271                 /* The target buffer should have appeared before us in the
3272                  * exec_object list, so it should have a GTT space bound by now.
3273                  */
3274                 if (target_obj_priv->gtt_space == NULL) {
3275                         DRM_ERROR("No GTT space found for object %d\n",
3276                                   reloc->target_handle);
3277                         drm_gem_object_unreference(target_obj);
3278                         i915_gem_object_unpin(obj);
3279                         return -EINVAL;
3280                 }
3281
3282                 /* Validate that the target is in a valid r/w GPU domain */
3283                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3284                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3285                         DRM_ERROR("reloc with read/write CPU domains: "
3286                                   "obj %p target %d offset %d "
3287                                   "read %08x write %08x",
3288                                   obj, reloc->target_handle,
3289                                   (int) reloc->offset,
3290                                   reloc->read_domains,
3291                                   reloc->write_domain);
3292                         drm_gem_object_unreference(target_obj);
3293                         i915_gem_object_unpin(obj);
3294                         return -EINVAL;
3295                 }
3296                 if (reloc->write_domain && target_obj->pending_write_domain &&
3297                     reloc->write_domain != target_obj->pending_write_domain) {
3298                         DRM_ERROR("Write domain conflict: "
3299                                   "obj %p target %d offset %d "
3300                                   "new %08x old %08x\n",
3301                                   obj, reloc->target_handle,
3302                                   (int) reloc->offset,
3303                                   reloc->write_domain,
3304                                   target_obj->pending_write_domain);
3305                         drm_gem_object_unreference(target_obj);
3306                         i915_gem_object_unpin(obj);
3307                         return -EINVAL;
3308                 }
3309
3310                 target_obj->pending_read_domains |= reloc->read_domains;
3311                 target_obj->pending_write_domain |= reloc->write_domain;
3312
3313                 /* If the relocation already has the right value in it, no
3314                  * more work needs to be done.
3315                  */
3316                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3317                         drm_gem_object_unreference(target_obj);
3318                         continue;
3319                 }
3320
3321                 /* Check that the relocation address is valid... */
3322                 if (reloc->offset > obj->size - 4) {
3323                         DRM_ERROR("Relocation beyond object bounds: "
3324                                   "obj %p target %d offset %d size %d.\n",
3325                                   obj, reloc->target_handle,
3326                                   (int) reloc->offset, (int) obj->size);
3327                         drm_gem_object_unreference(target_obj);
3328                         i915_gem_object_unpin(obj);
3329                         return -EINVAL;
3330                 }
3331                 if (reloc->offset & 3) {
3332                         DRM_ERROR("Relocation not 4-byte aligned: "
3333                                   "obj %p target %d offset %d.\n",
3334                                   obj, reloc->target_handle,
3335                                   (int) reloc->offset);
3336                         drm_gem_object_unreference(target_obj);
3337                         i915_gem_object_unpin(obj);
3338                         return -EINVAL;
3339                 }
3340
3341                 /* and points to somewhere within the target object. */
3342                 if (reloc->delta >= target_obj->size) {
3343                         DRM_ERROR("Relocation beyond target object bounds: "
3344                                   "obj %p target %d delta %d size %d.\n",
3345                                   obj, reloc->target_handle,
3346                                   (int) reloc->delta, (int) target_obj->size);
3347                         drm_gem_object_unreference(target_obj);
3348                         i915_gem_object_unpin(obj);
3349                         return -EINVAL;
3350                 }
3351
3352                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3353                 if (ret != 0) {
3354                         drm_gem_object_unreference(target_obj);
3355                         i915_gem_object_unpin(obj);
3356                         return -EINVAL;
3357                 }
3358
3359                 /* Map the page containing the relocation we're going to
3360                  * perform.
3361                  */
3362                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3363                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3364                                                       (reloc_offset &
3365                                                        ~(PAGE_SIZE - 1)));
3366                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3367                                                    (reloc_offset & (PAGE_SIZE - 1)));
3368                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3369
3370 #if WATCH_BUF
3371                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3372                           obj, (unsigned int) reloc->offset,
3373                           readl(reloc_entry), reloc_val);
3374 #endif
3375                 writel(reloc_val, reloc_entry);
3376                 io_mapping_unmap_atomic(reloc_page);
3377
3378                 /* The updated presumed offset for this entry will be
3379                  * copied back out to the user.
3380                  */
3381                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3382
3383                 drm_gem_object_unreference(target_obj);
3384         }
3385
3386 #if WATCH_BUF
3387         if (0)
3388                 i915_gem_dump_object(obj, 128, __func__, ~0);
3389 #endif
3390         return 0;
3391 }
3392
3393 /** Dispatch a batchbuffer to the ring
3394  */
3395 static int
3396 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3397                               struct drm_i915_gem_execbuffer2 *exec,
3398                               struct drm_clip_rect *cliprects,
3399                               uint64_t exec_offset)
3400 {
3401         drm_i915_private_t *dev_priv = dev->dev_private;
3402         int nbox = exec->num_cliprects;
3403         int i = 0, count;
3404         uint32_t exec_start, exec_len;
3405         RING_LOCALS;
3406
3407         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3408         exec_len = (uint32_t) exec->batch_len;
3409
3410         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3411
3412         count = nbox ? nbox : 1;
3413
3414         for (i = 0; i < count; i++) {
3415                 if (i < nbox) {
3416                         int ret = i915_emit_box(dev, cliprects, i,
3417                                                 exec->DR1, exec->DR4);
3418                         if (ret)
3419                                 return ret;
3420                 }
3421
3422                 if (IS_I830(dev) || IS_845G(dev)) {
3423                         BEGIN_LP_RING(4);
3424                         OUT_RING(MI_BATCH_BUFFER);
3425                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3426                         OUT_RING(exec_start + exec_len - 4);
3427                         OUT_RING(0);
3428                         ADVANCE_LP_RING();
3429                 } else {
3430                         BEGIN_LP_RING(2);
3431                         if (IS_I965G(dev)) {
3432                                 OUT_RING(MI_BATCH_BUFFER_START |
3433                                          (2 << 6) |
3434                                          MI_BATCH_NON_SECURE_I965);
3435                                 OUT_RING(exec_start);
3436                         } else {
3437                                 OUT_RING(MI_BATCH_BUFFER_START |
3438                                          (2 << 6));
3439                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3440                         }
3441                         ADVANCE_LP_RING();
3442                 }
3443         }
3444
3445         /* XXX breadcrumb */
3446         return 0;
3447 }
3448
3449 /* Throttle our rendering by waiting until the ring has completed our requests
3450  * emitted over 20 msec ago.
3451  *
3452  * Note that if we were to use the current jiffies each time around the loop,
3453  * we wouldn't escape the function with any frames outstanding if the time to
3454  * render a frame was over 20ms.
3455  *
3456  * This should get us reasonable parallelism between CPU and GPU but also
3457  * relatively low latency when blocking on a particular request to finish.
3458  */
3459 static int
3460 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3461 {
3462         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3463         int ret = 0;
3464         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3465
3466         mutex_lock(&dev->struct_mutex);
3467         while (!list_empty(&i915_file_priv->mm.request_list)) {
3468                 struct drm_i915_gem_request *request;
3469
3470                 request = list_first_entry(&i915_file_priv->mm.request_list,
3471                                            struct drm_i915_gem_request,
3472                                            client_list);
3473
3474                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3475                         break;
3476
3477                 ret = i915_wait_request(dev, request->seqno);
3478                 if (ret != 0)
3479                         break;
3480         }
3481         mutex_unlock(&dev->struct_mutex);
3482
3483         return ret;
3484 }
3485
3486 static int
3487 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3488                               uint32_t buffer_count,
3489                               struct drm_i915_gem_relocation_entry **relocs)
3490 {
3491         uint32_t reloc_count = 0, reloc_index = 0, i;
3492         int ret;
3493
3494         *relocs = NULL;
3495         for (i = 0; i < buffer_count; i++) {
3496                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3497                         return -EINVAL;
3498                 reloc_count += exec_list[i].relocation_count;
3499         }
3500
3501         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3502         if (*relocs == NULL) {
3503                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3504                 return -ENOMEM;
3505         }
3506
3507         for (i = 0; i < buffer_count; i++) {
3508                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3509
3510                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3511
3512                 ret = copy_from_user(&(*relocs)[reloc_index],
3513                                      user_relocs,
3514                                      exec_list[i].relocation_count *
3515                                      sizeof(**relocs));
3516                 if (ret != 0) {
3517                         drm_free_large(*relocs);
3518                         *relocs = NULL;
3519                         return -EFAULT;
3520                 }
3521
3522                 reloc_index += exec_list[i].relocation_count;
3523         }
3524
3525         return 0;
3526 }
3527
3528 static int
3529 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3530                             uint32_t buffer_count,
3531                             struct drm_i915_gem_relocation_entry *relocs)
3532 {
3533         uint32_t reloc_count = 0, i;
3534         int ret = 0;
3535
3536         for (i = 0; i < buffer_count; i++) {
3537                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3538                 int unwritten;
3539
3540                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3541
3542                 unwritten = copy_to_user(user_relocs,
3543                                          &relocs[reloc_count],
3544                                          exec_list[i].relocation_count *
3545                                          sizeof(*relocs));
3546
3547                 if (unwritten) {
3548                         ret = -EFAULT;
3549                         goto err;
3550                 }
3551
3552                 reloc_count += exec_list[i].relocation_count;
3553         }
3554
3555 err:
3556         drm_free_large(relocs);
3557
3558         return ret;
3559 }
3560
3561 static int
3562 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3563                            uint64_t exec_offset)
3564 {
3565         uint32_t exec_start, exec_len;
3566
3567         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3568         exec_len = (uint32_t) exec->batch_len;
3569
3570         if ((exec_start | exec_len) & 0x7)
3571                 return -EINVAL;
3572
3573         if (!exec_start)
3574                 return -EINVAL;
3575
3576         return 0;
3577 }
3578
3579 static int
3580 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3581                                struct drm_gem_object **object_list,
3582                                int count)
3583 {
3584         drm_i915_private_t *dev_priv = dev->dev_private;
3585         struct drm_i915_gem_object *obj_priv;
3586         DEFINE_WAIT(wait);
3587         int i, ret = 0;
3588
3589         for (;;) {
3590                 prepare_to_wait(&dev_priv->pending_flip_queue,
3591                                 &wait, TASK_INTERRUPTIBLE);
3592                 for (i = 0; i < count; i++) {
3593                         obj_priv = object_list[i]->driver_private;
3594                         if (atomic_read(&obj_priv->pending_flip) > 0)
3595                                 break;
3596                 }
3597                 if (i == count)
3598                         break;
3599
3600                 if (!signal_pending(current)) {
3601                         mutex_unlock(&dev->struct_mutex);
3602                         schedule();
3603                         mutex_lock(&dev->struct_mutex);
3604                         continue;
3605                 }
3606                 ret = -ERESTARTSYS;
3607                 break;
3608         }
3609         finish_wait(&dev_priv->pending_flip_queue, &wait);
3610
3611         return ret;
3612 }
3613
3614 int
3615 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3616                        struct drm_file *file_priv,
3617                        struct drm_i915_gem_execbuffer2 *args,
3618                        struct drm_i915_gem_exec_object2 *exec_list)
3619 {
3620         drm_i915_private_t *dev_priv = dev->dev_private;
3621         struct drm_gem_object **object_list = NULL;
3622         struct drm_gem_object *batch_obj;
3623         struct drm_i915_gem_object *obj_priv;
3624         struct drm_clip_rect *cliprects = NULL;
3625         struct drm_i915_gem_relocation_entry *relocs;
3626         int ret = 0, ret2, i, pinned = 0;
3627         uint64_t exec_offset;
3628         uint32_t seqno, flush_domains, reloc_index;
3629         int pin_tries, flips;
3630
3631 #if WATCH_EXEC
3632         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3633                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3634 #endif
3635
3636         if (args->buffer_count < 1) {
3637                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3638                 return -EINVAL;
3639         }
3640         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3641         if (object_list == NULL) {
3642                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3643                           args->buffer_count);
3644                 ret = -ENOMEM;
3645                 goto pre_mutex_err;
3646         }
3647
3648         if (args->num_cliprects != 0) {
3649                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3650                                     GFP_KERNEL);
3651                 if (cliprects == NULL)
3652                         goto pre_mutex_err;
3653
3654                 ret = copy_from_user(cliprects,
3655                                      (struct drm_clip_rect __user *)
3656                                      (uintptr_t) args->cliprects_ptr,
3657                                      sizeof(*cliprects) * args->num_cliprects);
3658                 if (ret != 0) {
3659                         DRM_ERROR("copy %d cliprects failed: %d\n",
3660                                   args->num_cliprects, ret);
3661                         goto pre_mutex_err;
3662                 }
3663         }
3664
3665         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3666                                             &relocs);
3667         if (ret != 0)
3668                 goto pre_mutex_err;
3669
3670         mutex_lock(&dev->struct_mutex);
3671
3672         i915_verify_inactive(dev, __FILE__, __LINE__);
3673
3674         if (atomic_read(&dev_priv->mm.wedged)) {
3675                 mutex_unlock(&dev->struct_mutex);
3676                 ret = -EIO;
3677                 goto pre_mutex_err;
3678         }
3679
3680         if (dev_priv->mm.suspended) {
3681                 mutex_unlock(&dev->struct_mutex);
3682                 ret = -EBUSY;
3683                 goto pre_mutex_err;
3684         }
3685
3686         /* Look up object handles */
3687         flips = 0;
3688         for (i = 0; i < args->buffer_count; i++) {
3689                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3690                                                        exec_list[i].handle);
3691                 if (object_list[i] == NULL) {
3692                         DRM_ERROR("Invalid object handle %d at index %d\n",
3693                                    exec_list[i].handle, i);
3694                         ret = -EBADF;
3695                         goto err;
3696                 }
3697
3698                 obj_priv = object_list[i]->driver_private;
3699                 if (obj_priv->in_execbuffer) {
3700                         DRM_ERROR("Object %p appears more than once in object list\n",
3701                                    object_list[i]);
3702                         ret = -EBADF;
3703                         goto err;
3704                 }
3705                 obj_priv->in_execbuffer = true;
3706                 flips += atomic_read(&obj_priv->pending_flip);
3707         }
3708
3709         if (flips > 0) {
3710                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3711                                                      args->buffer_count);
3712                 if (ret)
3713                         goto err;
3714         }
3715
3716         /* Pin and relocate */
3717         for (pin_tries = 0; ; pin_tries++) {
3718                 ret = 0;
3719                 reloc_index = 0;
3720
3721                 for (i = 0; i < args->buffer_count; i++) {
3722                         object_list[i]->pending_read_domains = 0;
3723                         object_list[i]->pending_write_domain = 0;
3724                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3725                                                                file_priv,
3726                                                                &exec_list[i],
3727                                                                &relocs[reloc_index]);
3728                         if (ret)
3729                                 break;
3730                         pinned = i + 1;
3731                         reloc_index += exec_list[i].relocation_count;
3732                 }
3733                 /* success */
3734                 if (ret == 0)
3735                         break;
3736
3737                 /* error other than GTT full, or we've already tried again */
3738                 if (ret != -ENOSPC || pin_tries >= 1) {
3739                         if (ret != -ERESTARTSYS) {
3740                                 unsigned long long total_size = 0;
3741                                 for (i = 0; i < args->buffer_count; i++)
3742                                         total_size += object_list[i]->size;
3743                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3744                                           pinned+1, args->buffer_count,
3745                                           total_size, ret);
3746                                 DRM_ERROR("%d objects [%d pinned], "
3747                                           "%d object bytes [%d pinned], "
3748                                           "%d/%d gtt bytes\n",
3749                                           atomic_read(&dev->object_count),
3750                                           atomic_read(&dev->pin_count),
3751                                           atomic_read(&dev->object_memory),
3752                                           atomic_read(&dev->pin_memory),
3753                                           atomic_read(&dev->gtt_memory),
3754                                           dev->gtt_total);
3755                         }
3756                         goto err;
3757                 }
3758
3759                 /* unpin all of our buffers */
3760                 for (i = 0; i < pinned; i++)
3761                         i915_gem_object_unpin(object_list[i]);
3762                 pinned = 0;
3763
3764                 /* evict everyone we can from the aperture */
3765                 ret = i915_gem_evict_everything(dev);
3766                 if (ret && ret != -ENOSPC)
3767                         goto err;
3768         }
3769
3770         /* Set the pending read domains for the batch buffer to COMMAND */
3771         batch_obj = object_list[args->buffer_count-1];
3772         if (batch_obj->pending_write_domain) {
3773                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3774                 ret = -EINVAL;
3775                 goto err;
3776         }
3777         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3778
3779         /* Sanity check the batch buffer, prior to moving objects */
3780         exec_offset = exec_list[args->buffer_count - 1].offset;
3781         ret = i915_gem_check_execbuffer (args, exec_offset);
3782         if (ret != 0) {
3783                 DRM_ERROR("execbuf with invalid offset/length\n");
3784                 goto err;
3785         }
3786
3787         i915_verify_inactive(dev, __FILE__, __LINE__);
3788
3789         /* Zero the global flush/invalidate flags. These
3790          * will be modified as new domains are computed
3791          * for each object
3792          */
3793         dev->invalidate_domains = 0;
3794         dev->flush_domains = 0;
3795
3796         for (i = 0; i < args->buffer_count; i++) {
3797                 struct drm_gem_object *obj = object_list[i];
3798
3799                 /* Compute new gpu domains and update invalidate/flush */
3800                 i915_gem_object_set_to_gpu_domain(obj);
3801         }
3802
3803         i915_verify_inactive(dev, __FILE__, __LINE__);
3804
3805         if (dev->invalidate_domains | dev->flush_domains) {
3806 #if WATCH_EXEC
3807                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3808                           __func__,
3809                          dev->invalidate_domains,
3810                          dev->flush_domains);
3811 #endif
3812                 i915_gem_flush(dev,
3813                                dev->invalidate_domains,
3814                                dev->flush_domains);
3815                 if (dev->flush_domains)
3816                         (void)i915_add_request(dev, file_priv,
3817                                                dev->flush_domains);
3818         }
3819
3820         for (i = 0; i < args->buffer_count; i++) {
3821                 struct drm_gem_object *obj = object_list[i];
3822                 uint32_t old_write_domain = obj->write_domain;
3823
3824                 obj->write_domain = obj->pending_write_domain;
3825                 trace_i915_gem_object_change_domain(obj,
3826                                                     obj->read_domains,
3827                                                     old_write_domain);
3828         }
3829
3830         i915_verify_inactive(dev, __FILE__, __LINE__);
3831
3832 #if WATCH_COHERENCY
3833         for (i = 0; i < args->buffer_count; i++) {
3834                 i915_gem_object_check_coherency(object_list[i],
3835                                                 exec_list[i].handle);
3836         }
3837 #endif
3838
3839 #if WATCH_EXEC
3840         i915_gem_dump_object(batch_obj,
3841                               args->batch_len,
3842                               __func__,
3843                               ~0);
3844 #endif
3845
3846         /* Exec the batchbuffer */
3847         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3848         if (ret) {
3849                 DRM_ERROR("dispatch failed %d\n", ret);
3850                 goto err;
3851         }
3852
3853         /*
3854          * Ensure that the commands in the batch buffer are
3855          * finished before the interrupt fires
3856          */
3857         flush_domains = i915_retire_commands(dev);
3858
3859         i915_verify_inactive(dev, __FILE__, __LINE__);
3860
3861         /*
3862          * Get a seqno representing the execution of the current buffer,
3863          * which we can wait on.  We would like to mitigate these interrupts,
3864          * likely by only creating seqnos occasionally (so that we have
3865          * *some* interrupts representing completion of buffers that we can
3866          * wait on when trying to clear up gtt space).
3867          */
3868         seqno = i915_add_request(dev, file_priv, flush_domains);
3869         BUG_ON(seqno == 0);
3870         for (i = 0; i < args->buffer_count; i++) {
3871                 struct drm_gem_object *obj = object_list[i];
3872
3873                 i915_gem_object_move_to_active(obj, seqno);
3874 #if WATCH_LRU
3875                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3876 #endif
3877         }
3878 #if WATCH_LRU
3879         i915_dump_lru(dev, __func__);
3880 #endif
3881
3882         i915_verify_inactive(dev, __FILE__, __LINE__);
3883
3884 err:
3885         for (i = 0; i < pinned; i++)
3886                 i915_gem_object_unpin(object_list[i]);
3887
3888         for (i = 0; i < args->buffer_count; i++) {
3889                 if (object_list[i]) {
3890                         obj_priv = object_list[i]->driver_private;
3891                         obj_priv->in_execbuffer = false;
3892                 }
3893                 drm_gem_object_unreference(object_list[i]);
3894         }
3895
3896         mutex_unlock(&dev->struct_mutex);
3897
3898         /* Copy the updated relocations out regardless of current error
3899          * state.  Failure to update the relocs would mean that the next
3900          * time userland calls execbuf, it would do so with presumed offset
3901          * state that didn't match the actual object state.
3902          */
3903         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3904                                            relocs);
3905         if (ret2 != 0) {
3906                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3907
3908                 if (ret == 0)
3909                         ret = ret2;
3910         }
3911
3912 pre_mutex_err:
3913         drm_free_large(object_list);
3914         kfree(cliprects);
3915
3916         return ret;
3917 }
3918
3919 /*
3920  * Legacy execbuffer just creates an exec2 list from the original exec object
3921  * list array and passes it to the real function.
3922  */
3923 int
3924 i915_gem_execbuffer(struct drm_device *dev, void *data,
3925                     struct drm_file *file_priv)
3926 {
3927         struct drm_i915_gem_execbuffer *args = data;
3928         struct drm_i915_gem_execbuffer2 exec2;
3929         struct drm_i915_gem_exec_object *exec_list = NULL;
3930         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3931         int ret, i;
3932
3933 #if WATCH_EXEC
3934         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3935                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3936 #endif
3937
3938         if (args->buffer_count < 1) {
3939                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3940                 return -EINVAL;
3941         }
3942
3943         /* Copy in the exec list from userland */
3944         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3945         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3946         if (exec_list == NULL || exec2_list == NULL) {
3947                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3948                           args->buffer_count);
3949                 drm_free_large(exec_list);
3950                 drm_free_large(exec2_list);
3951                 return -ENOMEM;
3952         }
3953         ret = copy_from_user(exec_list,
3954                              (struct drm_i915_relocation_entry __user *)
3955                              (uintptr_t) args->buffers_ptr,
3956                              sizeof(*exec_list) * args->buffer_count);
3957         if (ret != 0) {
3958                 DRM_ERROR("copy %d exec entries failed %d\n",
3959                           args->buffer_count, ret);
3960                 drm_free_large(exec_list);
3961                 drm_free_large(exec2_list);
3962                 return -EFAULT;
3963         }
3964
3965         for (i = 0; i < args->buffer_count; i++) {
3966                 exec2_list[i].handle = exec_list[i].handle;
3967                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3968                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3969                 exec2_list[i].alignment = exec_list[i].alignment;
3970                 exec2_list[i].offset = exec_list[i].offset;
3971                 if (!IS_I965G(dev))
3972                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3973                 else
3974                         exec2_list[i].flags = 0;
3975         }
3976
3977         exec2.buffers_ptr = args->buffers_ptr;
3978         exec2.buffer_count = args->buffer_count;
3979         exec2.batch_start_offset = args->batch_start_offset;
3980         exec2.batch_len = args->batch_len;
3981         exec2.DR1 = args->DR1;
3982         exec2.DR4 = args->DR4;
3983         exec2.num_cliprects = args->num_cliprects;
3984         exec2.cliprects_ptr = args->cliprects_ptr;
3985         exec2.flags = 0;
3986
3987         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3988         if (!ret) {
3989                 /* Copy the new buffer offsets back to the user's exec list. */
3990                 for (i = 0; i < args->buffer_count; i++)
3991                         exec_list[i].offset = exec2_list[i].offset;
3992                 /* ... and back out to userspace */
3993                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3994                                    (uintptr_t) args->buffers_ptr,
3995                                    exec_list,
3996                                    sizeof(*exec_list) * args->buffer_count);
3997                 if (ret) {
3998                         ret = -EFAULT;
3999                         DRM_ERROR("failed to copy %d exec entries "
4000                                   "back to user (%d)\n",
4001                                   args->buffer_count, ret);
4002                 }
4003         } else {
4004                 DRM_ERROR("i915_gem_do_execbuffer returns %d\n", ret);
4005         }
4006
4007         drm_free_large(exec_list);
4008         drm_free_large(exec2_list);
4009         return ret;
4010 }
4011
4012 int
4013 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4014                      struct drm_file *file_priv)
4015 {
4016         struct drm_i915_gem_execbuffer2 *args = data;
4017         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4018         int ret;
4019
4020 #if WATCH_EXEC
4021         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4022                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4023 #endif
4024
4025         if (args->buffer_count < 1) {
4026                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4027                 return -EINVAL;
4028         }
4029
4030         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4031         if (exec2_list == NULL) {
4032                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4033                           args->buffer_count);
4034                 return -ENOMEM;
4035         }
4036         ret = copy_from_user(exec2_list,
4037                              (struct drm_i915_relocation_entry __user *)
4038                              (uintptr_t) args->buffers_ptr,
4039                              sizeof(*exec2_list) * args->buffer_count);
4040         if (ret != 0) {
4041                 DRM_ERROR("copy %d exec entries failed %d\n",
4042                           args->buffer_count, ret);
4043                 drm_free_large(exec2_list);
4044                 return -EFAULT;
4045         }
4046
4047         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4048         if (!ret) {
4049                 /* Copy the new buffer offsets back to the user's exec list. */
4050                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4051                                    (uintptr_t) args->buffers_ptr,
4052                                    exec2_list,
4053                                    sizeof(*exec2_list) * args->buffer_count);
4054                 if (ret) {
4055                         ret = -EFAULT;
4056                         DRM_ERROR("failed to copy %d exec entries "
4057                                   "back to user (%d)\n",
4058                                   args->buffer_count, ret);
4059                 }
4060         }
4061
4062         drm_free_large(exec2_list);
4063         return ret;
4064 }
4065
4066 int
4067 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4068 {
4069         struct drm_device *dev = obj->dev;
4070         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4071         int ret;
4072
4073         i915_verify_inactive(dev, __FILE__, __LINE__);
4074         if (obj_priv->gtt_space == NULL) {
4075                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4076                 if (ret)
4077                         return ret;
4078         }
4079
4080         obj_priv->pin_count++;
4081
4082         /* If the object is not active and not pending a flush,
4083          * remove it from the inactive list
4084          */
4085         if (obj_priv->pin_count == 1) {
4086                 atomic_inc(&dev->pin_count);
4087                 atomic_add(obj->size, &dev->pin_memory);
4088                 if (!obj_priv->active &&
4089                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4090                     !list_empty(&obj_priv->list))
4091                         list_del_init(&obj_priv->list);
4092         }
4093         i915_verify_inactive(dev, __FILE__, __LINE__);
4094
4095         return 0;
4096 }
4097
4098 void
4099 i915_gem_object_unpin(struct drm_gem_object *obj)
4100 {
4101         struct drm_device *dev = obj->dev;
4102         drm_i915_private_t *dev_priv = dev->dev_private;
4103         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4104
4105         i915_verify_inactive(dev, __FILE__, __LINE__);
4106         obj_priv->pin_count--;
4107         BUG_ON(obj_priv->pin_count < 0);
4108         BUG_ON(obj_priv->gtt_space == NULL);
4109
4110         /* If the object is no longer pinned, and is
4111          * neither active nor being flushed, then stick it on
4112          * the inactive list
4113          */
4114         if (obj_priv->pin_count == 0) {
4115                 if (!obj_priv->active &&
4116                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4117                         list_move_tail(&obj_priv->list,
4118                                        &dev_priv->mm.inactive_list);
4119                 atomic_dec(&dev->pin_count);
4120                 atomic_sub(obj->size, &dev->pin_memory);
4121         }
4122         i915_verify_inactive(dev, __FILE__, __LINE__);
4123 }
4124
4125 int
4126 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4127                    struct drm_file *file_priv)
4128 {
4129         struct drm_i915_gem_pin *args = data;
4130         struct drm_gem_object *obj;
4131         struct drm_i915_gem_object *obj_priv;
4132         int ret;
4133
4134         mutex_lock(&dev->struct_mutex);
4135
4136         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4137         if (obj == NULL) {
4138                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4139                           args->handle);
4140                 mutex_unlock(&dev->struct_mutex);
4141                 return -EBADF;
4142         }
4143         obj_priv = obj->driver_private;
4144
4145         if (obj_priv->madv != I915_MADV_WILLNEED) {
4146                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4147                 drm_gem_object_unreference(obj);
4148                 mutex_unlock(&dev->struct_mutex);
4149                 return -EINVAL;
4150         }
4151
4152         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4153                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4154                           args->handle);
4155                 drm_gem_object_unreference(obj);
4156                 mutex_unlock(&dev->struct_mutex);
4157                 return -EINVAL;
4158         }
4159
4160         obj_priv->user_pin_count++;
4161         obj_priv->pin_filp = file_priv;
4162         if (obj_priv->user_pin_count == 1) {
4163                 ret = i915_gem_object_pin(obj, args->alignment);
4164                 if (ret != 0) {
4165                         drm_gem_object_unreference(obj);
4166                         mutex_unlock(&dev->struct_mutex);
4167                         return ret;
4168                 }
4169         }
4170
4171         /* XXX - flush the CPU caches for pinned objects
4172          * as the X server doesn't manage domains yet
4173          */
4174         i915_gem_object_flush_cpu_write_domain(obj);
4175         args->offset = obj_priv->gtt_offset;
4176         drm_gem_object_unreference(obj);
4177         mutex_unlock(&dev->struct_mutex);
4178
4179         return 0;
4180 }
4181
4182 int
4183 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4184                      struct drm_file *file_priv)
4185 {
4186         struct drm_i915_gem_pin *args = data;
4187         struct drm_gem_object *obj;
4188         struct drm_i915_gem_object *obj_priv;
4189
4190         mutex_lock(&dev->struct_mutex);
4191
4192         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4193         if (obj == NULL) {
4194                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4195                           args->handle);
4196                 mutex_unlock(&dev->struct_mutex);
4197                 return -EBADF;
4198         }
4199
4200         obj_priv = obj->driver_private;
4201         if (obj_priv->pin_filp != file_priv) {
4202                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4203                           args->handle);
4204                 drm_gem_object_unreference(obj);
4205                 mutex_unlock(&dev->struct_mutex);
4206                 return -EINVAL;
4207         }
4208         obj_priv->user_pin_count--;
4209         if (obj_priv->user_pin_count == 0) {
4210                 obj_priv->pin_filp = NULL;
4211                 i915_gem_object_unpin(obj);
4212         }
4213
4214         drm_gem_object_unreference(obj);
4215         mutex_unlock(&dev->struct_mutex);
4216         return 0;
4217 }
4218
4219 int
4220 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4221                     struct drm_file *file_priv)
4222 {
4223         struct drm_i915_gem_busy *args = data;
4224         struct drm_gem_object *obj;
4225         struct drm_i915_gem_object *obj_priv;
4226
4227         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4228         if (obj == NULL) {
4229                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4230                           args->handle);
4231                 return -EBADF;
4232         }
4233
4234         mutex_lock(&dev->struct_mutex);
4235         /* Update the active list for the hardware's current position.
4236          * Otherwise this only updates on a delayed timer or when irqs are
4237          * actually unmasked, and our working set ends up being larger than
4238          * required.
4239          */
4240         i915_gem_retire_requests(dev);
4241
4242         obj_priv = obj->driver_private;
4243         /* Don't count being on the flushing list against the object being
4244          * done.  Otherwise, a buffer left on the flushing list but not getting
4245          * flushed (because nobody's flushing that domain) won't ever return
4246          * unbusy and get reused by libdrm's bo cache.  The other expected
4247          * consumer of this interface, OpenGL's occlusion queries, also specs
4248          * that the objects get unbusy "eventually" without any interference.
4249          */
4250         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4251
4252         drm_gem_object_unreference(obj);
4253         mutex_unlock(&dev->struct_mutex);
4254         return 0;
4255 }
4256
4257 int
4258 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4259                         struct drm_file *file_priv)
4260 {
4261     return i915_gem_ring_throttle(dev, file_priv);
4262 }
4263
4264 int
4265 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4266                        struct drm_file *file_priv)
4267 {
4268         struct drm_i915_gem_madvise *args = data;
4269         struct drm_gem_object *obj;
4270         struct drm_i915_gem_object *obj_priv;
4271
4272         switch (args->madv) {
4273         case I915_MADV_DONTNEED:
4274         case I915_MADV_WILLNEED:
4275             break;
4276         default:
4277             return -EINVAL;
4278         }
4279
4280         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4281         if (obj == NULL) {
4282                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4283                           args->handle);
4284                 return -EBADF;
4285         }
4286
4287         mutex_lock(&dev->struct_mutex);
4288         obj_priv = obj->driver_private;
4289
4290         if (obj_priv->pin_count) {
4291                 drm_gem_object_unreference(obj);
4292                 mutex_unlock(&dev->struct_mutex);
4293
4294                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4295                 return -EINVAL;
4296         }
4297
4298         if (obj_priv->madv != __I915_MADV_PURGED)
4299                 obj_priv->madv = args->madv;
4300
4301         /* if the object is no longer bound, discard its backing storage */
4302         if (i915_gem_object_is_purgeable(obj_priv) &&
4303             obj_priv->gtt_space == NULL)
4304                 i915_gem_object_truncate(obj);
4305
4306         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4307
4308         drm_gem_object_unreference(obj);
4309         mutex_unlock(&dev->struct_mutex);
4310
4311         return 0;
4312 }
4313
4314 int i915_gem_init_object(struct drm_gem_object *obj)
4315 {
4316         struct drm_i915_gem_object *obj_priv;
4317
4318         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4319         if (obj_priv == NULL)
4320                 return -ENOMEM;
4321
4322         /*
4323          * We've just allocated pages from the kernel,
4324          * so they've just been written by the CPU with
4325          * zeros. They'll need to be clflushed before we
4326          * use them with the GPU.
4327          */
4328         obj->write_domain = I915_GEM_DOMAIN_CPU;
4329         obj->read_domains = I915_GEM_DOMAIN_CPU;
4330
4331         obj_priv->agp_type = AGP_USER_MEMORY;
4332
4333         obj->driver_private = obj_priv;
4334         obj_priv->obj = obj;
4335         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4336         INIT_LIST_HEAD(&obj_priv->list);
4337         INIT_LIST_HEAD(&obj_priv->fence_list);
4338         obj_priv->madv = I915_MADV_WILLNEED;
4339
4340         trace_i915_gem_object_create(obj);
4341
4342         return 0;
4343 }
4344
4345 void i915_gem_free_object(struct drm_gem_object *obj)
4346 {
4347         struct drm_device *dev = obj->dev;
4348         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4349
4350         trace_i915_gem_object_destroy(obj);
4351
4352         while (obj_priv->pin_count > 0)
4353                 i915_gem_object_unpin(obj);
4354
4355         if (obj_priv->phys_obj)
4356                 i915_gem_detach_phys_object(dev, obj);
4357
4358         i915_gem_object_unbind(obj);
4359
4360         if (obj_priv->mmap_offset)
4361                 i915_gem_free_mmap_offset(obj);
4362
4363         kfree(obj_priv->page_cpu_valid);
4364         kfree(obj_priv->bit_17);
4365         kfree(obj->driver_private);
4366 }
4367
4368 /** Unbinds all inactive objects. */
4369 static int
4370 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4371 {
4372         drm_i915_private_t *dev_priv = dev->dev_private;
4373
4374         while (!list_empty(&dev_priv->mm.inactive_list)) {
4375                 struct drm_gem_object *obj;
4376                 int ret;
4377
4378                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4379                                        struct drm_i915_gem_object,
4380                                        list)->obj;
4381
4382                 ret = i915_gem_object_unbind(obj);
4383                 if (ret != 0) {
4384                         DRM_ERROR("Error unbinding object: %d\n", ret);
4385                         return ret;
4386                 }
4387         }
4388
4389         return 0;
4390 }
4391
4392 int
4393 i915_gem_idle(struct drm_device *dev)
4394 {
4395         drm_i915_private_t *dev_priv = dev->dev_private;
4396         uint32_t seqno, cur_seqno, last_seqno;
4397         int stuck, ret;
4398
4399         mutex_lock(&dev->struct_mutex);
4400
4401         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4402                 mutex_unlock(&dev->struct_mutex);
4403                 return 0;
4404         }
4405
4406         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4407          * We need to replace this with a semaphore, or something.
4408          */
4409         dev_priv->mm.suspended = 1;
4410         del_timer(&dev_priv->hangcheck_timer);
4411
4412         /* Cancel the retire work handler, wait for it to finish if running
4413          */
4414         mutex_unlock(&dev->struct_mutex);
4415         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4416         mutex_lock(&dev->struct_mutex);
4417
4418         i915_kernel_lost_context(dev);
4419
4420         /* Flush the GPU along with all non-CPU write domains
4421          */
4422         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4423         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4424
4425         if (seqno == 0) {
4426                 mutex_unlock(&dev->struct_mutex);
4427                 return -ENOMEM;
4428         }
4429
4430         dev_priv->mm.waiting_gem_seqno = seqno;
4431         last_seqno = 0;
4432         stuck = 0;
4433         for (;;) {
4434                 cur_seqno = i915_get_gem_seqno(dev);
4435                 if (i915_seqno_passed(cur_seqno, seqno))
4436                         break;
4437                 if (last_seqno == cur_seqno) {
4438                         if (stuck++ > 100) {
4439                                 DRM_ERROR("hardware wedged\n");
4440                                 atomic_set(&dev_priv->mm.wedged, 1);
4441                                 DRM_WAKEUP(&dev_priv->irq_queue);
4442                                 break;
4443                         }
4444                 }
4445                 msleep(10);
4446                 last_seqno = cur_seqno;
4447         }
4448         dev_priv->mm.waiting_gem_seqno = 0;
4449
4450         i915_gem_retire_requests(dev);
4451
4452         spin_lock(&dev_priv->mm.active_list_lock);
4453         if (!atomic_read(&dev_priv->mm.wedged)) {
4454                 /* Active and flushing should now be empty as we've
4455                  * waited for a sequence higher than any pending execbuffer
4456                  */
4457                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4458                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4459                 /* Request should now be empty as we've also waited
4460                  * for the last request in the list
4461                  */
4462                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4463         }
4464
4465         /* Empty the active and flushing lists to inactive.  If there's
4466          * anything left at this point, it means that we're wedged and
4467          * nothing good's going to happen by leaving them there.  So strip
4468          * the GPU domains and just stuff them onto inactive.
4469          */
4470         while (!list_empty(&dev_priv->mm.active_list)) {
4471                 struct drm_gem_object *obj;
4472                 uint32_t old_write_domain;
4473
4474                 obj = list_first_entry(&dev_priv->mm.active_list,
4475                                        struct drm_i915_gem_object,
4476                                        list)->obj;
4477                 old_write_domain = obj->write_domain;
4478                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4479                 i915_gem_object_move_to_inactive(obj);
4480
4481                 trace_i915_gem_object_change_domain(obj,
4482                                                     obj->read_domains,
4483                                                     old_write_domain);
4484         }
4485         spin_unlock(&dev_priv->mm.active_list_lock);
4486
4487         while (!list_empty(&dev_priv->mm.flushing_list)) {
4488                 struct drm_gem_object *obj;
4489                 uint32_t old_write_domain;
4490
4491                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4492                                        struct drm_i915_gem_object,
4493                                        list)->obj;
4494                 old_write_domain = obj->write_domain;
4495                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4496                 i915_gem_object_move_to_inactive(obj);
4497
4498                 trace_i915_gem_object_change_domain(obj,
4499                                                     obj->read_domains,
4500                                                     old_write_domain);
4501         }
4502
4503
4504         /* Move all inactive buffers out of the GTT. */
4505         ret = i915_gem_evict_from_inactive_list(dev);
4506         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4507         if (ret) {
4508                 mutex_unlock(&dev->struct_mutex);
4509                 return ret;
4510         }
4511
4512         i915_gem_cleanup_ringbuffer(dev);
4513         mutex_unlock(&dev->struct_mutex);
4514
4515         return 0;
4516 }
4517
4518 static int
4519 i915_gem_init_hws(struct drm_device *dev)
4520 {
4521         drm_i915_private_t *dev_priv = dev->dev_private;
4522         struct drm_gem_object *obj;
4523         struct drm_i915_gem_object *obj_priv;
4524         int ret;
4525
4526         /* If we need a physical address for the status page, it's already
4527          * initialized at driver load time.
4528          */
4529         if (!I915_NEED_GFX_HWS(dev))
4530                 return 0;
4531
4532         obj = drm_gem_object_alloc(dev, 4096);
4533         if (obj == NULL) {
4534                 DRM_ERROR("Failed to allocate status page\n");
4535                 return -ENOMEM;
4536         }
4537         obj_priv = obj->driver_private;
4538         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4539
4540         ret = i915_gem_object_pin(obj, 4096);
4541         if (ret != 0) {
4542                 drm_gem_object_unreference(obj);
4543                 return ret;
4544         }
4545
4546         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4547
4548         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4549         if (dev_priv->hw_status_page == NULL) {
4550                 DRM_ERROR("Failed to map status page.\n");
4551                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4552                 i915_gem_object_unpin(obj);
4553                 drm_gem_object_unreference(obj);
4554                 return -EINVAL;
4555         }
4556         dev_priv->hws_obj = obj;
4557         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4558         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4559         I915_READ(HWS_PGA); /* posting read */
4560         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4561
4562         return 0;
4563 }
4564
4565 static void
4566 i915_gem_cleanup_hws(struct drm_device *dev)
4567 {
4568         drm_i915_private_t *dev_priv = dev->dev_private;
4569         struct drm_gem_object *obj;
4570         struct drm_i915_gem_object *obj_priv;
4571
4572         if (dev_priv->hws_obj == NULL)
4573                 return;
4574
4575         obj = dev_priv->hws_obj;
4576         obj_priv = obj->driver_private;
4577
4578         kunmap(obj_priv->pages[0]);
4579         i915_gem_object_unpin(obj);
4580         drm_gem_object_unreference(obj);
4581         dev_priv->hws_obj = NULL;
4582
4583         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4584         dev_priv->hw_status_page = NULL;
4585
4586         /* Write high address into HWS_PGA when disabling. */
4587         I915_WRITE(HWS_PGA, 0x1ffff000);
4588 }
4589
4590 int
4591 i915_gem_init_ringbuffer(struct drm_device *dev)
4592 {
4593         drm_i915_private_t *dev_priv = dev->dev_private;
4594         struct drm_gem_object *obj;
4595         struct drm_i915_gem_object *obj_priv;
4596         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4597         int ret;
4598         u32 head;
4599
4600         ret = i915_gem_init_hws(dev);
4601         if (ret != 0)
4602                 return ret;
4603
4604         obj = drm_gem_object_alloc(dev, 128 * 1024);
4605         if (obj == NULL) {
4606                 DRM_ERROR("Failed to allocate ringbuffer\n");
4607                 i915_gem_cleanup_hws(dev);
4608                 return -ENOMEM;
4609         }
4610         obj_priv = obj->driver_private;
4611
4612         ret = i915_gem_object_pin(obj, 4096);
4613         if (ret != 0) {
4614                 drm_gem_object_unreference(obj);
4615                 i915_gem_cleanup_hws(dev);
4616                 return ret;
4617         }
4618
4619         /* Set up the kernel mapping for the ring. */
4620         ring->Size = obj->size;
4621
4622         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4623         ring->map.size = obj->size;
4624         ring->map.type = 0;
4625         ring->map.flags = 0;
4626         ring->map.mtrr = 0;
4627
4628         drm_core_ioremap_wc(&ring->map, dev);
4629         if (ring->map.handle == NULL) {
4630                 DRM_ERROR("Failed to map ringbuffer.\n");
4631                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4632                 i915_gem_object_unpin(obj);
4633                 drm_gem_object_unreference(obj);
4634                 i915_gem_cleanup_hws(dev);
4635                 return -EINVAL;
4636         }
4637         ring->ring_obj = obj;
4638         ring->virtual_start = ring->map.handle;
4639
4640         /* Stop the ring if it's running. */
4641         I915_WRITE(PRB0_CTL, 0);
4642         I915_WRITE(PRB0_TAIL, 0);
4643         I915_WRITE(PRB0_HEAD, 0);
4644
4645         /* Initialize the ring. */
4646         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4647         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4648
4649         /* G45 ring initialization fails to reset head to zero */
4650         if (head != 0) {
4651                 DRM_ERROR("Ring head not reset to zero "
4652                           "ctl %08x head %08x tail %08x start %08x\n",
4653                           I915_READ(PRB0_CTL),
4654                           I915_READ(PRB0_HEAD),
4655                           I915_READ(PRB0_TAIL),
4656                           I915_READ(PRB0_START));
4657                 I915_WRITE(PRB0_HEAD, 0);
4658
4659                 DRM_ERROR("Ring head forced to zero "
4660                           "ctl %08x head %08x tail %08x start %08x\n",
4661                           I915_READ(PRB0_CTL),
4662                           I915_READ(PRB0_HEAD),
4663                           I915_READ(PRB0_TAIL),
4664                           I915_READ(PRB0_START));
4665         }
4666
4667         I915_WRITE(PRB0_CTL,
4668                    ((obj->size - 4096) & RING_NR_PAGES) |
4669                    RING_NO_REPORT |
4670                    RING_VALID);
4671
4672         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4673
4674         /* If the head is still not zero, the ring is dead */
4675         if (head != 0) {
4676                 DRM_ERROR("Ring initialization failed "
4677                           "ctl %08x head %08x tail %08x start %08x\n",
4678                           I915_READ(PRB0_CTL),
4679                           I915_READ(PRB0_HEAD),
4680                           I915_READ(PRB0_TAIL),
4681                           I915_READ(PRB0_START));
4682                 return -EIO;
4683         }
4684
4685         /* Update our cache of the ring state */
4686         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4687                 i915_kernel_lost_context(dev);
4688         else {
4689                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4690                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4691                 ring->space = ring->head - (ring->tail + 8);
4692                 if (ring->space < 0)
4693                         ring->space += ring->Size;
4694         }
4695
4696         return 0;
4697 }
4698
4699 void
4700 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4701 {
4702         drm_i915_private_t *dev_priv = dev->dev_private;
4703
4704         if (dev_priv->ring.ring_obj == NULL)
4705                 return;
4706
4707         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4708
4709         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4710         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4711         dev_priv->ring.ring_obj = NULL;
4712         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4713
4714         i915_gem_cleanup_hws(dev);
4715 }
4716
4717 int
4718 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4719                        struct drm_file *file_priv)
4720 {
4721         drm_i915_private_t *dev_priv = dev->dev_private;
4722         int ret;
4723
4724         if (drm_core_check_feature(dev, DRIVER_MODESET))
4725                 return 0;
4726
4727         if (atomic_read(&dev_priv->mm.wedged)) {
4728                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4729                 atomic_set(&dev_priv->mm.wedged, 0);
4730         }
4731
4732         mutex_lock(&dev->struct_mutex);
4733         dev_priv->mm.suspended = 0;
4734
4735         ret = i915_gem_init_ringbuffer(dev);
4736         if (ret != 0) {
4737                 mutex_unlock(&dev->struct_mutex);
4738                 return ret;
4739         }
4740
4741         spin_lock(&dev_priv->mm.active_list_lock);
4742         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4743         spin_unlock(&dev_priv->mm.active_list_lock);
4744
4745         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4746         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4747         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4748         mutex_unlock(&dev->struct_mutex);
4749
4750         drm_irq_install(dev);
4751
4752         return 0;
4753 }
4754
4755 int
4756 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4757                        struct drm_file *file_priv)
4758 {
4759         if (drm_core_check_feature(dev, DRIVER_MODESET))
4760                 return 0;
4761
4762         drm_irq_uninstall(dev);
4763         return i915_gem_idle(dev);
4764 }
4765
4766 void
4767 i915_gem_lastclose(struct drm_device *dev)
4768 {
4769         int ret;
4770
4771         if (drm_core_check_feature(dev, DRIVER_MODESET))
4772                 return;
4773
4774         ret = i915_gem_idle(dev);
4775         if (ret)
4776                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4777 }
4778
4779 void
4780 i915_gem_load(struct drm_device *dev)
4781 {
4782         int i;
4783         drm_i915_private_t *dev_priv = dev->dev_private;
4784
4785         spin_lock_init(&dev_priv->mm.active_list_lock);
4786         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4787         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4788         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4789         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4790         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4791         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4792                           i915_gem_retire_work_handler);
4793         dev_priv->mm.next_gem_seqno = 1;
4794
4795         spin_lock(&shrink_list_lock);
4796         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4797         spin_unlock(&shrink_list_lock);
4798
4799         /* Old X drivers will take 0-2 for front, back, depth buffers */
4800         dev_priv->fence_reg_start = 3;
4801
4802         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4803                 dev_priv->num_fence_regs = 16;
4804         else
4805                 dev_priv->num_fence_regs = 8;
4806
4807         /* Initialize fence registers to zero */
4808         if (IS_I965G(dev)) {
4809                 for (i = 0; i < 16; i++)
4810                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4811         } else {
4812                 for (i = 0; i < 8; i++)
4813                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4814                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4815                         for (i = 0; i < 8; i++)
4816                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4817         }
4818         i915_gem_detect_bit_6_swizzle(dev);
4819         init_waitqueue_head(&dev_priv->pending_flip_queue);
4820 }
4821
4822 /*
4823  * Create a physically contiguous memory object for this object
4824  * e.g. for cursor + overlay regs
4825  */
4826 int i915_gem_init_phys_object(struct drm_device *dev,
4827                               int id, int size)
4828 {
4829         drm_i915_private_t *dev_priv = dev->dev_private;
4830         struct drm_i915_gem_phys_object *phys_obj;
4831         int ret;
4832
4833         if (dev_priv->mm.phys_objs[id - 1] || !size)
4834                 return 0;
4835
4836         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4837         if (!phys_obj)
4838                 return -ENOMEM;
4839
4840         phys_obj->id = id;
4841
4842         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4843         if (!phys_obj->handle) {
4844                 ret = -ENOMEM;
4845                 goto kfree_obj;
4846         }
4847 #ifdef CONFIG_X86
4848         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4849 #endif
4850
4851         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4852
4853         return 0;
4854 kfree_obj:
4855         kfree(phys_obj);
4856         return ret;
4857 }
4858
4859 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4860 {
4861         drm_i915_private_t *dev_priv = dev->dev_private;
4862         struct drm_i915_gem_phys_object *phys_obj;
4863
4864         if (!dev_priv->mm.phys_objs[id - 1])
4865                 return;
4866
4867         phys_obj = dev_priv->mm.phys_objs[id - 1];
4868         if (phys_obj->cur_obj) {
4869                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4870         }
4871
4872 #ifdef CONFIG_X86
4873         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4874 #endif
4875         drm_pci_free(dev, phys_obj->handle);
4876         kfree(phys_obj);
4877         dev_priv->mm.phys_objs[id - 1] = NULL;
4878 }
4879
4880 void i915_gem_free_all_phys_object(struct drm_device *dev)
4881 {
4882         int i;
4883
4884         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4885                 i915_gem_free_phys_object(dev, i);
4886 }
4887
4888 void i915_gem_detach_phys_object(struct drm_device *dev,
4889                                  struct drm_gem_object *obj)
4890 {
4891         struct drm_i915_gem_object *obj_priv;
4892         int i;
4893         int ret;
4894         int page_count;
4895
4896         obj_priv = obj->driver_private;
4897         if (!obj_priv->phys_obj)
4898                 return;
4899
4900         ret = i915_gem_object_get_pages(obj);
4901         if (ret)
4902                 goto out;
4903
4904         page_count = obj->size / PAGE_SIZE;
4905
4906         for (i = 0; i < page_count; i++) {
4907                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4908                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4909
4910                 memcpy(dst, src, PAGE_SIZE);
4911                 kunmap_atomic(dst, KM_USER0);
4912         }
4913         drm_clflush_pages(obj_priv->pages, page_count);
4914         drm_agp_chipset_flush(dev);
4915
4916         i915_gem_object_put_pages(obj);
4917 out:
4918         obj_priv->phys_obj->cur_obj = NULL;
4919         obj_priv->phys_obj = NULL;
4920 }
4921
4922 int
4923 i915_gem_attach_phys_object(struct drm_device *dev,
4924                             struct drm_gem_object *obj, int id)
4925 {
4926         drm_i915_private_t *dev_priv = dev->dev_private;
4927         struct drm_i915_gem_object *obj_priv;
4928         int ret = 0;
4929         int page_count;
4930         int i;
4931
4932         if (id > I915_MAX_PHYS_OBJECT)
4933                 return -EINVAL;
4934
4935         obj_priv = obj->driver_private;
4936
4937         if (obj_priv->phys_obj) {
4938                 if (obj_priv->phys_obj->id == id)
4939                         return 0;
4940                 i915_gem_detach_phys_object(dev, obj);
4941         }
4942
4943
4944         /* create a new object */
4945         if (!dev_priv->mm.phys_objs[id - 1]) {
4946                 ret = i915_gem_init_phys_object(dev, id,
4947                                                 obj->size);
4948                 if (ret) {
4949                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4950                         goto out;
4951                 }
4952         }
4953
4954         /* bind to the object */
4955         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4956         obj_priv->phys_obj->cur_obj = obj;
4957
4958         ret = i915_gem_object_get_pages(obj);
4959         if (ret) {
4960                 DRM_ERROR("failed to get page list\n");
4961                 goto out;
4962         }
4963
4964         page_count = obj->size / PAGE_SIZE;
4965
4966         for (i = 0; i < page_count; i++) {
4967                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4968                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4969
4970                 memcpy(dst, src, PAGE_SIZE);
4971                 kunmap_atomic(src, KM_USER0);
4972         }
4973
4974         i915_gem_object_put_pages(obj);
4975
4976         return 0;
4977 out:
4978         return ret;
4979 }
4980
4981 static int
4982 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4983                      struct drm_i915_gem_pwrite *args,
4984                      struct drm_file *file_priv)
4985 {
4986         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4987         void *obj_addr;
4988         int ret;
4989         char __user *user_data;
4990
4991         user_data = (char __user *) (uintptr_t) args->data_ptr;
4992         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4993
4994         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4995         ret = copy_from_user(obj_addr, user_data, args->size);
4996         if (ret)
4997                 return -EFAULT;
4998
4999         drm_agp_chipset_flush(dev);
5000         return 0;
5001 }
5002
5003 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5004 {
5005         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5006
5007         /* Clean up our request list when the client is going away, so that
5008          * later retire_requests won't dereference our soon-to-be-gone
5009          * file_priv.
5010          */
5011         mutex_lock(&dev->struct_mutex);
5012         while (!list_empty(&i915_file_priv->mm.request_list))
5013                 list_del_init(i915_file_priv->mm.request_list.next);
5014         mutex_unlock(&dev->struct_mutex);
5015 }
5016
5017 static int
5018 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5019 {
5020         drm_i915_private_t *dev_priv, *next_dev;
5021         struct drm_i915_gem_object *obj_priv, *next_obj;
5022         int cnt = 0;
5023         int would_deadlock = 1;
5024
5025         /* "fast-path" to count number of available objects */
5026         if (nr_to_scan == 0) {
5027                 spin_lock(&shrink_list_lock);
5028                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5029                         struct drm_device *dev = dev_priv->dev;
5030
5031                         if (mutex_trylock(&dev->struct_mutex)) {
5032                                 list_for_each_entry(obj_priv,
5033                                                     &dev_priv->mm.inactive_list,
5034                                                     list)
5035                                         cnt++;
5036                                 mutex_unlock(&dev->struct_mutex);
5037                         }
5038                 }
5039                 spin_unlock(&shrink_list_lock);
5040
5041                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5042         }
5043
5044         spin_lock(&shrink_list_lock);
5045
5046         /* first scan for clean buffers */
5047         list_for_each_entry_safe(dev_priv, next_dev,
5048                                  &shrink_list, mm.shrink_list) {
5049                 struct drm_device *dev = dev_priv->dev;
5050
5051                 if (! mutex_trylock(&dev->struct_mutex))
5052                         continue;
5053
5054                 spin_unlock(&shrink_list_lock);
5055
5056                 i915_gem_retire_requests(dev);
5057
5058                 list_for_each_entry_safe(obj_priv, next_obj,
5059                                          &dev_priv->mm.inactive_list,
5060                                          list) {
5061                         if (i915_gem_object_is_purgeable(obj_priv)) {
5062                                 i915_gem_object_unbind(obj_priv->obj);
5063                                 if (--nr_to_scan <= 0)
5064                                         break;
5065                         }
5066                 }
5067
5068                 spin_lock(&shrink_list_lock);
5069                 mutex_unlock(&dev->struct_mutex);
5070
5071                 would_deadlock = 0;
5072
5073                 if (nr_to_scan <= 0)
5074                         break;
5075         }
5076
5077         /* second pass, evict/count anything still on the inactive list */
5078         list_for_each_entry_safe(dev_priv, next_dev,
5079                                  &shrink_list, mm.shrink_list) {
5080                 struct drm_device *dev = dev_priv->dev;
5081
5082                 if (! mutex_trylock(&dev->struct_mutex))
5083                         continue;
5084
5085                 spin_unlock(&shrink_list_lock);
5086
5087                 list_for_each_entry_safe(obj_priv, next_obj,
5088                                          &dev_priv->mm.inactive_list,
5089                                          list) {
5090                         if (nr_to_scan > 0) {
5091                                 i915_gem_object_unbind(obj_priv->obj);
5092                                 nr_to_scan--;
5093                         } else
5094                                 cnt++;
5095                 }
5096
5097                 spin_lock(&shrink_list_lock);
5098                 mutex_unlock(&dev->struct_mutex);
5099
5100                 would_deadlock = 0;
5101         }
5102
5103         spin_unlock(&shrink_list_lock);
5104
5105         if (would_deadlock)
5106                 return -1;
5107         else if (cnt > 0)
5108                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5109         else
5110                 return 0;
5111 }
5112
5113 static struct shrinker shrinker = {
5114         .shrink = i915_gem_shrink,
5115         .seeks = DEFAULT_SEEKS,
5116 };
5117
5118 __init void
5119 i915_gem_shrinker_init(void)
5120 {
5121     register_shrinker(&shrinker);
5122 }
5123
5124 __exit void
5125 i915_gem_shrinker_exit(void)
5126 {
5127     unregister_shrinker(&shrinker);
5128 }