ACPI / DPTF: constify attribute_group structures
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35         return to_i915(node->minor->dev);
36 }
37
38 static __always_inline void seq_print_param(struct seq_file *m,
39                                             const char *name,
40                                             const char *type,
41                                             const void *x)
42 {
43         if (!__builtin_strcmp(type, "bool"))
44                 seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45         else if (!__builtin_strcmp(type, "int"))
46                 seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47         else if (!__builtin_strcmp(type, "unsigned int"))
48                 seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49         else if (!__builtin_strcmp(type, "char *"))
50                 seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51         else
52                 BUILD_BUG();
53 }
54
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57         struct drm_i915_private *dev_priv = node_to_i915(m->private);
58         const struct intel_device_info *info = INTEL_INFO(dev_priv);
59
60         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61         seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63
64 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
65         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67
68         kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70         I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72         kernel_param_unlock(THIS_MODULE);
73
74         return 0;
75 }
76
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79         return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84         return obj->pin_display ? 'p' : ' ';
85 }
86
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89         switch (i915_gem_object_get_tiling(obj)) {
90         default:
91         case I915_TILING_NONE: return ' ';
92         case I915_TILING_X: return 'X';
93         case I915_TILING_Y: return 'Y';
94         }
95 }
96
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99         return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104         return obj->mm.mapping ? 'M' : ' ';
105 }
106
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109         u64 size = 0;
110         struct i915_vma *vma;
111
112         list_for_each_entry(vma, &obj->vma_list, obj_link) {
113                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114                         size += vma->node.size;
115         }
116
117         return size;
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124         struct intel_engine_cs *engine;
125         struct i915_vma *vma;
126         unsigned int frontbuffer_bits;
127         int pin_count = 0;
128
129         lockdep_assert_held(&obj->base.dev->struct_mutex);
130
131         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132                    &obj->base,
133                    get_active_flag(obj),
134                    get_pin_flag(obj),
135                    get_tiling_flag(obj),
136                    get_global_flag(obj),
137                    get_pin_mapped_flag(obj),
138                    obj->base.size / 1024,
139                    obj->base.read_domains,
140                    obj->base.write_domain,
141                    i915_cache_level_str(dev_priv, obj->cache_level),
142                    obj->mm.dirty ? " dirty" : "",
143                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144         if (obj->base.name)
145                 seq_printf(m, " (name: %d)", obj->base.name);
146         list_for_each_entry(vma, &obj->vma_list, obj_link) {
147                 if (i915_vma_is_pinned(vma))
148                         pin_count++;
149         }
150         seq_printf(m, " (pinned x %d)", pin_count);
151         if (obj->pin_display)
152                 seq_printf(m, " (display)");
153         list_for_each_entry(vma, &obj->vma_list, obj_link) {
154                 if (!drm_mm_node_allocated(&vma->node))
155                         continue;
156
157                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158                            i915_vma_is_ggtt(vma) ? "g" : "pp",
159                            vma->node.start, vma->node.size);
160                 if (i915_vma_is_ggtt(vma)) {
161                         switch (vma->ggtt_view.type) {
162                         case I915_GGTT_VIEW_NORMAL:
163                                 seq_puts(m, ", normal");
164                                 break;
165
166                         case I915_GGTT_VIEW_PARTIAL:
167                                 seq_printf(m, ", partial [%08llx+%x]",
168                                            vma->ggtt_view.partial.offset << PAGE_SHIFT,
169                                            vma->ggtt_view.partial.size << PAGE_SHIFT);
170                                 break;
171
172                         case I915_GGTT_VIEW_ROTATED:
173                                 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174                                            vma->ggtt_view.rotated.plane[0].width,
175                                            vma->ggtt_view.rotated.plane[0].height,
176                                            vma->ggtt_view.rotated.plane[0].stride,
177                                            vma->ggtt_view.rotated.plane[0].offset,
178                                            vma->ggtt_view.rotated.plane[1].width,
179                                            vma->ggtt_view.rotated.plane[1].height,
180                                            vma->ggtt_view.rotated.plane[1].stride,
181                                            vma->ggtt_view.rotated.plane[1].offset);
182                                 break;
183
184                         default:
185                                 MISSING_CASE(vma->ggtt_view.type);
186                                 break;
187                         }
188                 }
189                 if (vma->fence)
190                         seq_printf(m, " , fence: %d%s",
191                                    vma->fence->id,
192                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193                 seq_puts(m, ")");
194         }
195         if (obj->stolen)
196                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197
198         engine = i915_gem_object_last_write_engine(obj);
199         if (engine)
200                 seq_printf(m, " (%s)", engine->name);
201
202         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203         if (frontbuffer_bits)
204                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209         const struct drm_i915_gem_object *a =
210                 *(const struct drm_i915_gem_object **)A;
211         const struct drm_i915_gem_object *b =
212                 *(const struct drm_i915_gem_object **)B;
213
214         if (a->stolen->start < b->stolen->start)
215                 return -1;
216         if (a->stolen->start > b->stolen->start)
217                 return 1;
218         return 0;
219 }
220
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223         struct drm_i915_private *dev_priv = node_to_i915(m->private);
224         struct drm_device *dev = &dev_priv->drm;
225         struct drm_i915_gem_object **objects;
226         struct drm_i915_gem_object *obj;
227         u64 total_obj_size, total_gtt_size;
228         unsigned long total, count, n;
229         int ret;
230
231         total = READ_ONCE(dev_priv->mm.object_count);
232         objects = drm_malloc_ab(total, sizeof(*objects));
233         if (!objects)
234                 return -ENOMEM;
235
236         ret = mutex_lock_interruptible(&dev->struct_mutex);
237         if (ret)
238                 goto out;
239
240         total_obj_size = total_gtt_size = count = 0;
241         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242                 if (count == total)
243                         break;
244
245                 if (obj->stolen == NULL)
246                         continue;
247
248                 objects[count++] = obj;
249                 total_obj_size += obj->base.size;
250                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251
252         }
253         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254                 if (count == total)
255                         break;
256
257                 if (obj->stolen == NULL)
258                         continue;
259
260                 objects[count++] = obj;
261                 total_obj_size += obj->base.size;
262         }
263
264         sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265
266         seq_puts(m, "Stolen:\n");
267         for (n = 0; n < count; n++) {
268                 seq_puts(m, "   ");
269                 describe_obj(m, objects[n]);
270                 seq_putc(m, '\n');
271         }
272         seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273                    count, total_obj_size, total_gtt_size);
274
275         mutex_unlock(&dev->struct_mutex);
276 out:
277         drm_free_large(objects);
278         return ret;
279 }
280
281 struct file_stats {
282         struct drm_i915_file_private *file_priv;
283         unsigned long count;
284         u64 total, unbound;
285         u64 global, shared;
286         u64 active, inactive;
287 };
288
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291         struct drm_i915_gem_object *obj = ptr;
292         struct file_stats *stats = data;
293         struct i915_vma *vma;
294
295         stats->count++;
296         stats->total += obj->base.size;
297         if (!obj->bind_count)
298                 stats->unbound += obj->base.size;
299         if (obj->base.name || obj->base.dma_buf)
300                 stats->shared += obj->base.size;
301
302         list_for_each_entry(vma, &obj->vma_list, obj_link) {
303                 if (!drm_mm_node_allocated(&vma->node))
304                         continue;
305
306                 if (i915_vma_is_ggtt(vma)) {
307                         stats->global += vma->node.size;
308                 } else {
309                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
310
311                         if (ppgtt->base.file != stats->file_priv)
312                                 continue;
313                 }
314
315                 if (i915_vma_is_active(vma))
316                         stats->active += vma->node.size;
317                 else
318                         stats->inactive += vma->node.size;
319         }
320
321         return 0;
322 }
323
324 #define print_file_stats(m, name, stats) do { \
325         if (stats.count) \
326                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
327                            name, \
328                            stats.count, \
329                            stats.total, \
330                            stats.active, \
331                            stats.inactive, \
332                            stats.global, \
333                            stats.shared, \
334                            stats.unbound); \
335 } while (0)
336
337 static void print_batch_pool_stats(struct seq_file *m,
338                                    struct drm_i915_private *dev_priv)
339 {
340         struct drm_i915_gem_object *obj;
341         struct file_stats stats;
342         struct intel_engine_cs *engine;
343         enum intel_engine_id id;
344         int j;
345
346         memset(&stats, 0, sizeof(stats));
347
348         for_each_engine(engine, dev_priv, id) {
349                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
350                         list_for_each_entry(obj,
351                                             &engine->batch_pool.cache_list[j],
352                                             batch_pool_link)
353                                 per_file_stats(0, obj, &stats);
354                 }
355         }
356
357         print_file_stats(m, "[k]batch pool", stats);
358 }
359
360 static int per_file_ctx_stats(int id, void *ptr, void *data)
361 {
362         struct i915_gem_context *ctx = ptr;
363         int n;
364
365         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
366                 if (ctx->engine[n].state)
367                         per_file_stats(0, ctx->engine[n].state->obj, data);
368                 if (ctx->engine[n].ring)
369                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
370         }
371
372         return 0;
373 }
374
375 static void print_context_stats(struct seq_file *m,
376                                 struct drm_i915_private *dev_priv)
377 {
378         struct drm_device *dev = &dev_priv->drm;
379         struct file_stats stats;
380         struct drm_file *file;
381
382         memset(&stats, 0, sizeof(stats));
383
384         mutex_lock(&dev->struct_mutex);
385         if (dev_priv->kernel_context)
386                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
387
388         list_for_each_entry(file, &dev->filelist, lhead) {
389                 struct drm_i915_file_private *fpriv = file->driver_priv;
390                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
391         }
392         mutex_unlock(&dev->struct_mutex);
393
394         print_file_stats(m, "[k]contexts", stats);
395 }
396
397 static int i915_gem_object_info(struct seq_file *m, void *data)
398 {
399         struct drm_i915_private *dev_priv = node_to_i915(m->private);
400         struct drm_device *dev = &dev_priv->drm;
401         struct i915_ggtt *ggtt = &dev_priv->ggtt;
402         u32 count, mapped_count, purgeable_count, dpy_count;
403         u64 size, mapped_size, purgeable_size, dpy_size;
404         struct drm_i915_gem_object *obj;
405         struct drm_file *file;
406         int ret;
407
408         ret = mutex_lock_interruptible(&dev->struct_mutex);
409         if (ret)
410                 return ret;
411
412         seq_printf(m, "%u objects, %llu bytes\n",
413                    dev_priv->mm.object_count,
414                    dev_priv->mm.object_memory);
415
416         size = count = 0;
417         mapped_size = mapped_count = 0;
418         purgeable_size = purgeable_count = 0;
419         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
420                 size += obj->base.size;
421                 ++count;
422
423                 if (obj->mm.madv == I915_MADV_DONTNEED) {
424                         purgeable_size += obj->base.size;
425                         ++purgeable_count;
426                 }
427
428                 if (obj->mm.mapping) {
429                         mapped_count++;
430                         mapped_size += obj->base.size;
431                 }
432         }
433         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
434
435         size = count = dpy_size = dpy_count = 0;
436         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
437                 size += obj->base.size;
438                 ++count;
439
440                 if (obj->pin_display) {
441                         dpy_size += obj->base.size;
442                         ++dpy_count;
443                 }
444
445                 if (obj->mm.madv == I915_MADV_DONTNEED) {
446                         purgeable_size += obj->base.size;
447                         ++purgeable_count;
448                 }
449
450                 if (obj->mm.mapping) {
451                         mapped_count++;
452                         mapped_size += obj->base.size;
453                 }
454         }
455         seq_printf(m, "%u bound objects, %llu bytes\n",
456                    count, size);
457         seq_printf(m, "%u purgeable objects, %llu bytes\n",
458                    purgeable_count, purgeable_size);
459         seq_printf(m, "%u mapped objects, %llu bytes\n",
460                    mapped_count, mapped_size);
461         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
462                    dpy_count, dpy_size);
463
464         seq_printf(m, "%llu [%llu] gtt total\n",
465                    ggtt->base.total, ggtt->mappable_end);
466
467         seq_putc(m, '\n');
468         print_batch_pool_stats(m, dev_priv);
469         mutex_unlock(&dev->struct_mutex);
470
471         mutex_lock(&dev->filelist_mutex);
472         print_context_stats(m, dev_priv);
473         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
474                 struct file_stats stats;
475                 struct drm_i915_file_private *file_priv = file->driver_priv;
476                 struct drm_i915_gem_request *request;
477                 struct task_struct *task;
478
479                 memset(&stats, 0, sizeof(stats));
480                 stats.file_priv = file->driver_priv;
481                 spin_lock(&file->table_lock);
482                 idr_for_each(&file->object_idr, per_file_stats, &stats);
483                 spin_unlock(&file->table_lock);
484                 /*
485                  * Although we have a valid reference on file->pid, that does
486                  * not guarantee that the task_struct who called get_pid() is
487                  * still alive (e.g. get_pid(current) => fork() => exit()).
488                  * Therefore, we need to protect this ->comm access using RCU.
489                  */
490                 mutex_lock(&dev->struct_mutex);
491                 request = list_first_entry_or_null(&file_priv->mm.request_list,
492                                                    struct drm_i915_gem_request,
493                                                    client_link);
494                 rcu_read_lock();
495                 task = pid_task(request && request->ctx->pid ?
496                                 request->ctx->pid : file->pid,
497                                 PIDTYPE_PID);
498                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
499                 rcu_read_unlock();
500                 mutex_unlock(&dev->struct_mutex);
501         }
502         mutex_unlock(&dev->filelist_mutex);
503
504         return 0;
505 }
506
507 static int i915_gem_gtt_info(struct seq_file *m, void *data)
508 {
509         struct drm_info_node *node = m->private;
510         struct drm_i915_private *dev_priv = node_to_i915(node);
511         struct drm_device *dev = &dev_priv->drm;
512         bool show_pin_display_only = !!node->info_ent->data;
513         struct drm_i915_gem_object *obj;
514         u64 total_obj_size, total_gtt_size;
515         int count, ret;
516
517         ret = mutex_lock_interruptible(&dev->struct_mutex);
518         if (ret)
519                 return ret;
520
521         total_obj_size = total_gtt_size = count = 0;
522         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
523                 if (show_pin_display_only && !obj->pin_display)
524                         continue;
525
526                 seq_puts(m, "   ");
527                 describe_obj(m, obj);
528                 seq_putc(m, '\n');
529                 total_obj_size += obj->base.size;
530                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
531                 count++;
532         }
533
534         mutex_unlock(&dev->struct_mutex);
535
536         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
537                    count, total_obj_size, total_gtt_size);
538
539         return 0;
540 }
541
542 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
543 {
544         struct drm_i915_private *dev_priv = node_to_i915(m->private);
545         struct drm_device *dev = &dev_priv->drm;
546         struct intel_crtc *crtc;
547         int ret;
548
549         ret = mutex_lock_interruptible(&dev->struct_mutex);
550         if (ret)
551                 return ret;
552
553         for_each_intel_crtc(dev, crtc) {
554                 const char pipe = pipe_name(crtc->pipe);
555                 const char plane = plane_name(crtc->plane);
556                 struct intel_flip_work *work;
557
558                 spin_lock_irq(&dev->event_lock);
559                 work = crtc->flip_work;
560                 if (work == NULL) {
561                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
562                                    pipe, plane);
563                 } else {
564                         u32 pending;
565                         u32 addr;
566
567                         pending = atomic_read(&work->pending);
568                         if (pending) {
569                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
570                                            pipe, plane);
571                         } else {
572                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
573                                            pipe, plane);
574                         }
575                         if (work->flip_queued_req) {
576                                 struct intel_engine_cs *engine = work->flip_queued_req->engine;
577
578                                 seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
579                                            engine->name,
580                                            work->flip_queued_req->global_seqno,
581                                            intel_engine_last_submit(engine),
582                                            intel_engine_get_seqno(engine),
583                                            i915_gem_request_completed(work->flip_queued_req));
584                         } else
585                                 seq_printf(m, "Flip not associated with any ring\n");
586                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
587                                    work->flip_queued_vblank,
588                                    work->flip_ready_vblank,
589                                    intel_crtc_get_vblank_counter(crtc));
590                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
591
592                         if (INTEL_GEN(dev_priv) >= 4)
593                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
594                         else
595                                 addr = I915_READ(DSPADDR(crtc->plane));
596                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
597
598                         if (work->pending_flip_obj) {
599                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
600                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
601                         }
602                 }
603                 spin_unlock_irq(&dev->event_lock);
604         }
605
606         mutex_unlock(&dev->struct_mutex);
607
608         return 0;
609 }
610
611 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
612 {
613         struct drm_i915_private *dev_priv = node_to_i915(m->private);
614         struct drm_device *dev = &dev_priv->drm;
615         struct drm_i915_gem_object *obj;
616         struct intel_engine_cs *engine;
617         enum intel_engine_id id;
618         int total = 0;
619         int ret, j;
620
621         ret = mutex_lock_interruptible(&dev->struct_mutex);
622         if (ret)
623                 return ret;
624
625         for_each_engine(engine, dev_priv, id) {
626                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
627                         int count;
628
629                         count = 0;
630                         list_for_each_entry(obj,
631                                             &engine->batch_pool.cache_list[j],
632                                             batch_pool_link)
633                                 count++;
634                         seq_printf(m, "%s cache[%d]: %d objects\n",
635                                    engine->name, j, count);
636
637                         list_for_each_entry(obj,
638                                             &engine->batch_pool.cache_list[j],
639                                             batch_pool_link) {
640                                 seq_puts(m, "   ");
641                                 describe_obj(m, obj);
642                                 seq_putc(m, '\n');
643                         }
644
645                         total += count;
646                 }
647         }
648
649         seq_printf(m, "total: %d\n", total);
650
651         mutex_unlock(&dev->struct_mutex);
652
653         return 0;
654 }
655
656 static void print_request(struct seq_file *m,
657                           struct drm_i915_gem_request *rq,
658                           const char *prefix)
659 {
660         seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
661                    rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
662                    rq->priotree.priority,
663                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
664                    rq->timeline->common->name);
665 }
666
667 static int i915_gem_request_info(struct seq_file *m, void *data)
668 {
669         struct drm_i915_private *dev_priv = node_to_i915(m->private);
670         struct drm_device *dev = &dev_priv->drm;
671         struct drm_i915_gem_request *req;
672         struct intel_engine_cs *engine;
673         enum intel_engine_id id;
674         int ret, any;
675
676         ret = mutex_lock_interruptible(&dev->struct_mutex);
677         if (ret)
678                 return ret;
679
680         any = 0;
681         for_each_engine(engine, dev_priv, id) {
682                 int count;
683
684                 count = 0;
685                 list_for_each_entry(req, &engine->timeline->requests, link)
686                         count++;
687                 if (count == 0)
688                         continue;
689
690                 seq_printf(m, "%s requests: %d\n", engine->name, count);
691                 list_for_each_entry(req, &engine->timeline->requests, link)
692                         print_request(m, req, "    ");
693
694                 any++;
695         }
696         mutex_unlock(&dev->struct_mutex);
697
698         if (any == 0)
699                 seq_puts(m, "No requests\n");
700
701         return 0;
702 }
703
704 static void i915_ring_seqno_info(struct seq_file *m,
705                                  struct intel_engine_cs *engine)
706 {
707         struct intel_breadcrumbs *b = &engine->breadcrumbs;
708         struct rb_node *rb;
709
710         seq_printf(m, "Current sequence (%s): %x\n",
711                    engine->name, intel_engine_get_seqno(engine));
712
713         spin_lock_irq(&b->rb_lock);
714         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
715                 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
716
717                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
718                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
719         }
720         spin_unlock_irq(&b->rb_lock);
721 }
722
723 static int i915_gem_seqno_info(struct seq_file *m, void *data)
724 {
725         struct drm_i915_private *dev_priv = node_to_i915(m->private);
726         struct intel_engine_cs *engine;
727         enum intel_engine_id id;
728
729         for_each_engine(engine, dev_priv, id)
730                 i915_ring_seqno_info(m, engine);
731
732         return 0;
733 }
734
735
736 static int i915_interrupt_info(struct seq_file *m, void *data)
737 {
738         struct drm_i915_private *dev_priv = node_to_i915(m->private);
739         struct intel_engine_cs *engine;
740         enum intel_engine_id id;
741         int i, pipe;
742
743         intel_runtime_pm_get(dev_priv);
744
745         if (IS_CHERRYVIEW(dev_priv)) {
746                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
747                            I915_READ(GEN8_MASTER_IRQ));
748
749                 seq_printf(m, "Display IER:\t%08x\n",
750                            I915_READ(VLV_IER));
751                 seq_printf(m, "Display IIR:\t%08x\n",
752                            I915_READ(VLV_IIR));
753                 seq_printf(m, "Display IIR_RW:\t%08x\n",
754                            I915_READ(VLV_IIR_RW));
755                 seq_printf(m, "Display IMR:\t%08x\n",
756                            I915_READ(VLV_IMR));
757                 for_each_pipe(dev_priv, pipe) {
758                         enum intel_display_power_domain power_domain;
759
760                         power_domain = POWER_DOMAIN_PIPE(pipe);
761                         if (!intel_display_power_get_if_enabled(dev_priv,
762                                                                 power_domain)) {
763                                 seq_printf(m, "Pipe %c power disabled\n",
764                                            pipe_name(pipe));
765                                 continue;
766                         }
767
768                         seq_printf(m, "Pipe %c stat:\t%08x\n",
769                                    pipe_name(pipe),
770                                    I915_READ(PIPESTAT(pipe)));
771
772                         intel_display_power_put(dev_priv, power_domain);
773                 }
774
775                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
776                 seq_printf(m, "Port hotplug:\t%08x\n",
777                            I915_READ(PORT_HOTPLUG_EN));
778                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
779                            I915_READ(VLV_DPFLIPSTAT));
780                 seq_printf(m, "DPINVGTT:\t%08x\n",
781                            I915_READ(DPINVGTT));
782                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
783
784                 for (i = 0; i < 4; i++) {
785                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
786                                    i, I915_READ(GEN8_GT_IMR(i)));
787                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
788                                    i, I915_READ(GEN8_GT_IIR(i)));
789                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
790                                    i, I915_READ(GEN8_GT_IER(i)));
791                 }
792
793                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
794                            I915_READ(GEN8_PCU_IMR));
795                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
796                            I915_READ(GEN8_PCU_IIR));
797                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
798                            I915_READ(GEN8_PCU_IER));
799         } else if (INTEL_GEN(dev_priv) >= 8) {
800                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
801                            I915_READ(GEN8_MASTER_IRQ));
802
803                 for (i = 0; i < 4; i++) {
804                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IMR(i)));
806                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
807                                    i, I915_READ(GEN8_GT_IIR(i)));
808                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
809                                    i, I915_READ(GEN8_GT_IER(i)));
810                 }
811
812                 for_each_pipe(dev_priv, pipe) {
813                         enum intel_display_power_domain power_domain;
814
815                         power_domain = POWER_DOMAIN_PIPE(pipe);
816                         if (!intel_display_power_get_if_enabled(dev_priv,
817                                                                 power_domain)) {
818                                 seq_printf(m, "Pipe %c power disabled\n",
819                                            pipe_name(pipe));
820                                 continue;
821                         }
822                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
823                                    pipe_name(pipe),
824                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
825                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
826                                    pipe_name(pipe),
827                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
828                         seq_printf(m, "Pipe %c IER:\t%08x\n",
829                                    pipe_name(pipe),
830                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
831
832                         intel_display_power_put(dev_priv, power_domain);
833                 }
834
835                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
836                            I915_READ(GEN8_DE_PORT_IMR));
837                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
838                            I915_READ(GEN8_DE_PORT_IIR));
839                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
840                            I915_READ(GEN8_DE_PORT_IER));
841
842                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
843                            I915_READ(GEN8_DE_MISC_IMR));
844                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
845                            I915_READ(GEN8_DE_MISC_IIR));
846                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
847                            I915_READ(GEN8_DE_MISC_IER));
848
849                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
850                            I915_READ(GEN8_PCU_IMR));
851                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
852                            I915_READ(GEN8_PCU_IIR));
853                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
854                            I915_READ(GEN8_PCU_IER));
855         } else if (IS_VALLEYVIEW(dev_priv)) {
856                 seq_printf(m, "Display IER:\t%08x\n",
857                            I915_READ(VLV_IER));
858                 seq_printf(m, "Display IIR:\t%08x\n",
859                            I915_READ(VLV_IIR));
860                 seq_printf(m, "Display IIR_RW:\t%08x\n",
861                            I915_READ(VLV_IIR_RW));
862                 seq_printf(m, "Display IMR:\t%08x\n",
863                            I915_READ(VLV_IMR));
864                 for_each_pipe(dev_priv, pipe) {
865                         enum intel_display_power_domain power_domain;
866
867                         power_domain = POWER_DOMAIN_PIPE(pipe);
868                         if (!intel_display_power_get_if_enabled(dev_priv,
869                                                                 power_domain)) {
870                                 seq_printf(m, "Pipe %c power disabled\n",
871                                            pipe_name(pipe));
872                                 continue;
873                         }
874
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878                         intel_display_power_put(dev_priv, power_domain);
879                 }
880
881                 seq_printf(m, "Master IER:\t%08x\n",
882                            I915_READ(VLV_MASTER_IER));
883
884                 seq_printf(m, "Render IER:\t%08x\n",
885                            I915_READ(GTIER));
886                 seq_printf(m, "Render IIR:\t%08x\n",
887                            I915_READ(GTIIR));
888                 seq_printf(m, "Render IMR:\t%08x\n",
889                            I915_READ(GTIMR));
890
891                 seq_printf(m, "PM IER:\t\t%08x\n",
892                            I915_READ(GEN6_PMIER));
893                 seq_printf(m, "PM IIR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIIR));
895                 seq_printf(m, "PM IMR:\t\t%08x\n",
896                            I915_READ(GEN6_PMIMR));
897
898                 seq_printf(m, "Port hotplug:\t%08x\n",
899                            I915_READ(PORT_HOTPLUG_EN));
900                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
901                            I915_READ(VLV_DPFLIPSTAT));
902                 seq_printf(m, "DPINVGTT:\t%08x\n",
903                            I915_READ(DPINVGTT));
904
905         } else if (!HAS_PCH_SPLIT(dev_priv)) {
906                 seq_printf(m, "Interrupt enable:    %08x\n",
907                            I915_READ(IER));
908                 seq_printf(m, "Interrupt identity:  %08x\n",
909                            I915_READ(IIR));
910                 seq_printf(m, "Interrupt mask:      %08x\n",
911                            I915_READ(IMR));
912                 for_each_pipe(dev_priv, pipe)
913                         seq_printf(m, "Pipe %c stat:         %08x\n",
914                                    pipe_name(pipe),
915                                    I915_READ(PIPESTAT(pipe)));
916         } else {
917                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
918                            I915_READ(DEIER));
919                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
920                            I915_READ(DEIIR));
921                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
922                            I915_READ(DEIMR));
923                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
924                            I915_READ(SDEIER));
925                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
926                            I915_READ(SDEIIR));
927                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
928                            I915_READ(SDEIMR));
929                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
930                            I915_READ(GTIER));
931                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
932                            I915_READ(GTIIR));
933                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
934                            I915_READ(GTIMR));
935         }
936         for_each_engine(engine, dev_priv, id) {
937                 if (INTEL_GEN(dev_priv) >= 6) {
938                         seq_printf(m,
939                                    "Graphics Interrupt mask (%s):       %08x\n",
940                                    engine->name, I915_READ_IMR(engine));
941                 }
942                 i915_ring_seqno_info(m, engine);
943         }
944         intel_runtime_pm_put(dev_priv);
945
946         return 0;
947 }
948
949 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
950 {
951         struct drm_i915_private *dev_priv = node_to_i915(m->private);
952         struct drm_device *dev = &dev_priv->drm;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (!vma)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, vma->obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
977 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
978                               size_t count, loff_t *pos)
979 {
980         struct i915_gpu_state *error = file->private_data;
981         struct drm_i915_error_state_buf str;
982         ssize_t ret;
983         loff_t tmp;
984
985         if (!error)
986                 return 0;
987
988         ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
989         if (ret)
990                 return ret;
991
992         ret = i915_error_state_to_str(&str, error);
993         if (ret)
994                 goto out;
995
996         tmp = 0;
997         ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
998         if (ret < 0)
999                 goto out;
1000
1001         *pos = str.start + ret;
1002 out:
1003         i915_error_state_buf_release(&str);
1004         return ret;
1005 }
1006
1007 static int gpu_state_release(struct inode *inode, struct file *file)
1008 {
1009         i915_gpu_state_put(file->private_data);
1010         return 0;
1011 }
1012
1013 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1014 {
1015         struct drm_i915_private *i915 = inode->i_private;
1016         struct i915_gpu_state *gpu;
1017
1018         intel_runtime_pm_get(i915);
1019         gpu = i915_capture_gpu_state(i915);
1020         intel_runtime_pm_put(i915);
1021         if (!gpu)
1022                 return -ENOMEM;
1023
1024         file->private_data = gpu;
1025         return 0;
1026 }
1027
1028 static const struct file_operations i915_gpu_info_fops = {
1029         .owner = THIS_MODULE,
1030         .open = i915_gpu_info_open,
1031         .read = gpu_state_read,
1032         .llseek = default_llseek,
1033         .release = gpu_state_release,
1034 };
1035
1036 static ssize_t
1037 i915_error_state_write(struct file *filp,
1038                        const char __user *ubuf,
1039                        size_t cnt,
1040                        loff_t *ppos)
1041 {
1042         struct i915_gpu_state *error = filp->private_data;
1043
1044         if (!error)
1045                 return 0;
1046
1047         DRM_DEBUG_DRIVER("Resetting error state\n");
1048         i915_reset_error_state(error->i915);
1049
1050         return cnt;
1051 }
1052
1053 static int i915_error_state_open(struct inode *inode, struct file *file)
1054 {
1055         file->private_data = i915_first_error_state(inode->i_private);
1056         return 0;
1057 }
1058
1059 static const struct file_operations i915_error_state_fops = {
1060         .owner = THIS_MODULE,
1061         .open = i915_error_state_open,
1062         .read = gpu_state_read,
1063         .write = i915_error_state_write,
1064         .llseek = default_llseek,
1065         .release = gpu_state_release,
1066 };
1067 #endif
1068
1069 static int
1070 i915_next_seqno_set(void *data, u64 val)
1071 {
1072         struct drm_i915_private *dev_priv = data;
1073         struct drm_device *dev = &dev_priv->drm;
1074         int ret;
1075
1076         ret = mutex_lock_interruptible(&dev->struct_mutex);
1077         if (ret)
1078                 return ret;
1079
1080         ret = i915_gem_set_global_seqno(dev, val);
1081         mutex_unlock(&dev->struct_mutex);
1082
1083         return ret;
1084 }
1085
1086 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1087                         NULL, i915_next_seqno_set,
1088                         "0x%llx\n");
1089
1090 static int i915_frequency_info(struct seq_file *m, void *unused)
1091 {
1092         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1093         int ret = 0;
1094
1095         intel_runtime_pm_get(dev_priv);
1096
1097         if (IS_GEN5(dev_priv)) {
1098                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1099                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1100
1101                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1102                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1103                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1104                            MEMSTAT_VID_SHIFT);
1105                 seq_printf(m, "Current P-state: %d\n",
1106                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1107         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1108                 u32 freq_sts;
1109
1110                 mutex_lock(&dev_priv->rps.hw_lock);
1111                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1112                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1113                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1114
1115                 seq_printf(m, "actual GPU freq: %d MHz\n",
1116                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1117
1118                 seq_printf(m, "current GPU freq: %d MHz\n",
1119                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1120
1121                 seq_printf(m, "max GPU freq: %d MHz\n",
1122                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1123
1124                 seq_printf(m, "min GPU freq: %d MHz\n",
1125                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1126
1127                 seq_printf(m, "idle GPU freq: %d MHz\n",
1128                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1129
1130                 seq_printf(m,
1131                            "efficient (RPe) frequency: %d MHz\n",
1132                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1133                 mutex_unlock(&dev_priv->rps.hw_lock);
1134         } else if (INTEL_GEN(dev_priv) >= 6) {
1135                 u32 rp_state_limits;
1136                 u32 gt_perf_status;
1137                 u32 rp_state_cap;
1138                 u32 rpmodectl, rpinclimit, rpdeclimit;
1139                 u32 rpstat, cagf, reqf;
1140                 u32 rpupei, rpcurup, rpprevup;
1141                 u32 rpdownei, rpcurdown, rpprevdown;
1142                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1143                 int max_freq;
1144
1145                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1146                 if (IS_GEN9_LP(dev_priv)) {
1147                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1148                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1149                 } else {
1150                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1151                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1152                 }
1153
1154                 /* RPSTAT1 is in the GT power well */
1155                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1156
1157                 reqf = I915_READ(GEN6_RPNSWREQ);
1158                 if (IS_GEN9(dev_priv))
1159                         reqf >>= 23;
1160                 else {
1161                         reqf &= ~GEN6_TURBO_DISABLE;
1162                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1163                                 reqf >>= 24;
1164                         else
1165                                 reqf >>= 25;
1166                 }
1167                 reqf = intel_gpu_freq(dev_priv, reqf);
1168
1169                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1170                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1171                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1172
1173                 rpstat = I915_READ(GEN6_RPSTAT1);
1174                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1175                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1176                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1177                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1178                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1179                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1180                 if (IS_GEN9(dev_priv))
1181                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1182                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1183                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1184                 else
1185                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1186                 cagf = intel_gpu_freq(dev_priv, cagf);
1187
1188                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1189
1190                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1191                         pm_ier = I915_READ(GEN6_PMIER);
1192                         pm_imr = I915_READ(GEN6_PMIMR);
1193                         pm_isr = I915_READ(GEN6_PMISR);
1194                         pm_iir = I915_READ(GEN6_PMIIR);
1195                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1196                 } else {
1197                         pm_ier = I915_READ(GEN8_GT_IER(2));
1198                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1199                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1200                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1201                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1202                 }
1203                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1204                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1205                 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1206                            dev_priv->rps.pm_intrmsk_mbz);
1207                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1208                 seq_printf(m, "Render p-state ratio: %d\n",
1209                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1210                 seq_printf(m, "Render p-state VID: %d\n",
1211                            gt_perf_status & 0xff);
1212                 seq_printf(m, "Render p-state limit: %d\n",
1213                            rp_state_limits & 0xff);
1214                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1215                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1216                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1217                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1218                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1219                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1220                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1221                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1222                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1223                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1224                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1225                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1226                 seq_printf(m, "Up threshold: %d%%\n",
1227                            dev_priv->rps.up_threshold);
1228
1229                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1230                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1231                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1232                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1233                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1234                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1235                 seq_printf(m, "Down threshold: %d%%\n",
1236                            dev_priv->rps.down_threshold);
1237
1238                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1239                             rp_state_cap >> 16) & 0xff;
1240                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1241                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1242                            intel_gpu_freq(dev_priv, max_freq));
1243
1244                 max_freq = (rp_state_cap & 0xff00) >> 8;
1245                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1246                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1247                            intel_gpu_freq(dev_priv, max_freq));
1248
1249                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1250                             rp_state_cap >> 0) & 0xff;
1251                 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1252                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253                            intel_gpu_freq(dev_priv, max_freq));
1254                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256
1257                 seq_printf(m, "Current freq: %d MHz\n",
1258                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260                 seq_printf(m, "Idle freq: %d MHz\n",
1261                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262                 seq_printf(m, "Min freq: %d MHz\n",
1263                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264                 seq_printf(m, "Boost freq: %d MHz\n",
1265                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266                 seq_printf(m, "Max freq: %d MHz\n",
1267                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268                 seq_printf(m,
1269                            "efficient (RPe) frequency: %d MHz\n",
1270                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271         } else {
1272                 seq_puts(m, "no P-state info available\n");
1273         }
1274
1275         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1276         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278
1279         intel_runtime_pm_put(dev_priv);
1280         return ret;
1281 }
1282
1283 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1284                                struct seq_file *m,
1285                                struct intel_instdone *instdone)
1286 {
1287         int slice;
1288         int subslice;
1289
1290         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1291                    instdone->instdone);
1292
1293         if (INTEL_GEN(dev_priv) <= 3)
1294                 return;
1295
1296         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1297                    instdone->slice_common);
1298
1299         if (INTEL_GEN(dev_priv) <= 6)
1300                 return;
1301
1302         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1303                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1304                            slice, subslice, instdone->sampler[slice][subslice]);
1305
1306         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1308                            slice, subslice, instdone->row[slice][subslice]);
1309 }
1310
1311 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1312 {
1313         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1314         struct intel_engine_cs *engine;
1315         u64 acthd[I915_NUM_ENGINES];
1316         u32 seqno[I915_NUM_ENGINES];
1317         struct intel_instdone instdone;
1318         enum intel_engine_id id;
1319
1320         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1321                 seq_puts(m, "Wedged\n");
1322         if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1323                 seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1324         if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1325                 seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1326         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1327                 seq_puts(m, "Waiter holding struct mutex\n");
1328         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1329                 seq_puts(m, "struct_mutex blocked for reset\n");
1330
1331         if (!i915.enable_hangcheck) {
1332                 seq_puts(m, "Hangcheck disabled\n");
1333                 return 0;
1334         }
1335
1336         intel_runtime_pm_get(dev_priv);
1337
1338         for_each_engine(engine, dev_priv, id) {
1339                 acthd[id] = intel_engine_get_active_head(engine);
1340                 seqno[id] = intel_engine_get_seqno(engine);
1341         }
1342
1343         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1344
1345         intel_runtime_pm_put(dev_priv);
1346
1347         if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1348                 seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1349                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1350                                             jiffies));
1351         else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1352                 seq_puts(m, "Hangcheck active, work pending\n");
1353         else
1354                 seq_puts(m, "Hangcheck inactive\n");
1355
1356         seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1357
1358         for_each_engine(engine, dev_priv, id) {
1359                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1360                 struct rb_node *rb;
1361
1362                 seq_printf(m, "%s:\n", engine->name);
1363                 seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1364                            engine->hangcheck.seqno, seqno[id],
1365                            intel_engine_last_submit(engine),
1366                            engine->timeline->inflight_seqnos);
1367                 seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1368                            yesno(intel_engine_has_waiter(engine)),
1369                            yesno(test_bit(engine->id,
1370                                           &dev_priv->gpu_error.missed_irq_rings)),
1371                            yesno(engine->hangcheck.stalled));
1372
1373                 spin_lock_irq(&b->rb_lock);
1374                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1375                         struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1376
1377                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1378                                    w->tsk->comm, w->tsk->pid, w->seqno);
1379                 }
1380                 spin_unlock_irq(&b->rb_lock);
1381
1382                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1383                            (long long)engine->hangcheck.acthd,
1384                            (long long)acthd[id]);
1385                 seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1386                            hangcheck_action_to_str(engine->hangcheck.action),
1387                            engine->hangcheck.action,
1388                            jiffies_to_msecs(jiffies -
1389                                             engine->hangcheck.action_timestamp));
1390
1391                 if (engine->id == RCS) {
1392                         seq_puts(m, "\tinstdone read =\n");
1393
1394                         i915_instdone_info(dev_priv, m, &instdone);
1395
1396                         seq_puts(m, "\tinstdone accu =\n");
1397
1398                         i915_instdone_info(dev_priv, m,
1399                                            &engine->hangcheck.instdone);
1400                 }
1401         }
1402
1403         return 0;
1404 }
1405
1406 static int ironlake_drpc_info(struct seq_file *m)
1407 {
1408         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1409         u32 rgvmodectl, rstdbyctl;
1410         u16 crstandvid;
1411
1412         rgvmodectl = I915_READ(MEMMODECTL);
1413         rstdbyctl = I915_READ(RSTDBYCTL);
1414         crstandvid = I915_READ16(CRSTANDVID);
1415
1416         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417         seq_printf(m, "Boost freq: %d\n",
1418                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419                    MEMMODE_BOOST_FREQ_SHIFT);
1420         seq_printf(m, "HW control enabled: %s\n",
1421                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422         seq_printf(m, "SW control enabled: %s\n",
1423                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424         seq_printf(m, "Gated voltage change: %s\n",
1425                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426         seq_printf(m, "Starting frequency: P%d\n",
1427                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428         seq_printf(m, "Max P-state: P%d\n",
1429                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433         seq_printf(m, "Render standby enabled: %s\n",
1434                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435         seq_puts(m, "Current RS state: ");
1436         switch (rstdbyctl & RSX_STATUS_MASK) {
1437         case RSX_STATUS_ON:
1438                 seq_puts(m, "on\n");
1439                 break;
1440         case RSX_STATUS_RC1:
1441                 seq_puts(m, "RC1\n");
1442                 break;
1443         case RSX_STATUS_RC1E:
1444                 seq_puts(m, "RC1E\n");
1445                 break;
1446         case RSX_STATUS_RS1:
1447                 seq_puts(m, "RS1\n");
1448                 break;
1449         case RSX_STATUS_RS2:
1450                 seq_puts(m, "RS2 (RC6)\n");
1451                 break;
1452         case RSX_STATUS_RS3:
1453                 seq_puts(m, "RC3 (RC6+)\n");
1454                 break;
1455         default:
1456                 seq_puts(m, "unknown\n");
1457                 break;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465         struct drm_i915_private *i915 = node_to_i915(m->private);
1466         struct intel_uncore_forcewake_domain *fw_domain;
1467         unsigned int tmp;
1468
1469         for_each_fw_domain(fw_domain, i915, tmp)
1470                 seq_printf(m, "%s.wake_count = %u\n",
1471                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472                            READ_ONCE(fw_domain->wake_count));
1473
1474         return 0;
1475 }
1476
1477 static void print_rc6_res(struct seq_file *m,
1478                           const char *title,
1479                           const i915_reg_t reg)
1480 {
1481         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482
1483         seq_printf(m, "%s %u (%llu us)\n",
1484                    title, I915_READ(reg),
1485                    intel_rc6_residency_us(dev_priv, reg));
1486 }
1487
1488 static int vlv_drpc_info(struct seq_file *m)
1489 {
1490         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1491         u32 rpmodectl1, rcctl1, pw_status;
1492
1493         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1494         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1495         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1496
1497         seq_printf(m, "Video Turbo Mode: %s\n",
1498                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1499         seq_printf(m, "Turbo enabled: %s\n",
1500                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1501         seq_printf(m, "HW control enabled: %s\n",
1502                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1503         seq_printf(m, "SW control enabled: %s\n",
1504                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1505                           GEN6_RP_MEDIA_SW_MODE));
1506         seq_printf(m, "RC6 Enabled: %s\n",
1507                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1508                                         GEN6_RC_CTL_EI_MODE(1))));
1509         seq_printf(m, "Render Power Well: %s\n",
1510                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1511         seq_printf(m, "Media Power Well: %s\n",
1512                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1513
1514         print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1515         print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1516
1517         return i915_forcewake_domains(m, NULL);
1518 }
1519
1520 static int gen6_drpc_info(struct seq_file *m)
1521 {
1522         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1523         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1525         unsigned forcewake_count;
1526         int count = 0;
1527
1528         forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1529         if (forcewake_count) {
1530                 seq_puts(m, "RC information inaccurate because somebody "
1531                             "holds a forcewake reference \n");
1532         } else {
1533                 /* NB: we cannot use forcewake, else we read the wrong values */
1534                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1535                         udelay(10);
1536                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1537         }
1538
1539         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1540         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1541
1542         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1543         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1544         if (INTEL_GEN(dev_priv) >= 9) {
1545                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1546                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1547         }
1548
1549         mutex_lock(&dev_priv->rps.hw_lock);
1550         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1551         mutex_unlock(&dev_priv->rps.hw_lock);
1552
1553         seq_printf(m, "Video Turbo Mode: %s\n",
1554                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1555         seq_printf(m, "HW control enabled: %s\n",
1556                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1557         seq_printf(m, "SW control enabled: %s\n",
1558                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1559                           GEN6_RP_MEDIA_SW_MODE));
1560         seq_printf(m, "RC1e Enabled: %s\n",
1561                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1562         seq_printf(m, "RC6 Enabled: %s\n",
1563                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1564         if (INTEL_GEN(dev_priv) >= 9) {
1565                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1566                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1567                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1568                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1569         }
1570         seq_printf(m, "Deep RC6 Enabled: %s\n",
1571                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1572         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1573                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1574         seq_puts(m, "Current RC state: ");
1575         switch (gt_core_status & GEN6_RCn_MASK) {
1576         case GEN6_RC0:
1577                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1578                         seq_puts(m, "Core Power Down\n");
1579                 else
1580                         seq_puts(m, "on\n");
1581                 break;
1582         case GEN6_RC3:
1583                 seq_puts(m, "RC3\n");
1584                 break;
1585         case GEN6_RC6:
1586                 seq_puts(m, "RC6\n");
1587                 break;
1588         case GEN6_RC7:
1589                 seq_puts(m, "RC7\n");
1590                 break;
1591         default:
1592                 seq_puts(m, "Unknown\n");
1593                 break;
1594         }
1595
1596         seq_printf(m, "Core Power Down: %s\n",
1597                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1598         if (INTEL_GEN(dev_priv) >= 9) {
1599                 seq_printf(m, "Render Power Well: %s\n",
1600                         (gen9_powergate_status &
1601                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1602                 seq_printf(m, "Media Power Well: %s\n",
1603                         (gen9_powergate_status &
1604                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1605         }
1606
1607         /* Not exactly sure what this is */
1608         print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1609                       GEN6_GT_GFX_RC6_LOCKED);
1610         print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1611         print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1612         print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1613
1614         seq_printf(m, "RC6   voltage: %dmV\n",
1615                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1616         seq_printf(m, "RC6+  voltage: %dmV\n",
1617                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1618         seq_printf(m, "RC6++ voltage: %dmV\n",
1619                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1620         return i915_forcewake_domains(m, NULL);
1621 }
1622
1623 static int i915_drpc_info(struct seq_file *m, void *unused)
1624 {
1625         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1626         int err;
1627
1628         intel_runtime_pm_get(dev_priv);
1629
1630         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1631                 err = vlv_drpc_info(m);
1632         else if (INTEL_GEN(dev_priv) >= 6)
1633                 err = gen6_drpc_info(m);
1634         else
1635                 err = ironlake_drpc_info(m);
1636
1637         intel_runtime_pm_put(dev_priv);
1638
1639         return err;
1640 }
1641
1642 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1643 {
1644         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1645
1646         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1647                    dev_priv->fb_tracking.busy_bits);
1648
1649         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1650                    dev_priv->fb_tracking.flip_bits);
1651
1652         return 0;
1653 }
1654
1655 static int i915_fbc_status(struct seq_file *m, void *unused)
1656 {
1657         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1658
1659         if (!HAS_FBC(dev_priv)) {
1660                 seq_puts(m, "FBC unsupported on this chipset\n");
1661                 return 0;
1662         }
1663
1664         intel_runtime_pm_get(dev_priv);
1665         mutex_lock(&dev_priv->fbc.lock);
1666
1667         if (intel_fbc_is_active(dev_priv))
1668                 seq_puts(m, "FBC enabled\n");
1669         else
1670                 seq_printf(m, "FBC disabled: %s\n",
1671                            dev_priv->fbc.no_fbc_reason);
1672
1673         if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1674                 uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1675                                 BDW_FBC_COMPRESSION_MASK :
1676                                 IVB_FBC_COMPRESSION_MASK;
1677                 seq_printf(m, "Compressing: %s\n",
1678                            yesno(I915_READ(FBC_STATUS2) & mask));
1679         }
1680
1681         mutex_unlock(&dev_priv->fbc.lock);
1682         intel_runtime_pm_put(dev_priv);
1683
1684         return 0;
1685 }
1686
1687 static int i915_fbc_fc_get(void *data, u64 *val)
1688 {
1689         struct drm_i915_private *dev_priv = data;
1690
1691         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1692                 return -ENODEV;
1693
1694         *val = dev_priv->fbc.false_color;
1695
1696         return 0;
1697 }
1698
1699 static int i915_fbc_fc_set(void *data, u64 val)
1700 {
1701         struct drm_i915_private *dev_priv = data;
1702         u32 reg;
1703
1704         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1705                 return -ENODEV;
1706
1707         mutex_lock(&dev_priv->fbc.lock);
1708
1709         reg = I915_READ(ILK_DPFC_CONTROL);
1710         dev_priv->fbc.false_color = val;
1711
1712         I915_WRITE(ILK_DPFC_CONTROL, val ?
1713                    (reg | FBC_CTL_FALSE_COLOR) :
1714                    (reg & ~FBC_CTL_FALSE_COLOR));
1715
1716         mutex_unlock(&dev_priv->fbc.lock);
1717         return 0;
1718 }
1719
1720 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1721                         i915_fbc_fc_get, i915_fbc_fc_set,
1722                         "%llu\n");
1723
1724 static int i915_ips_status(struct seq_file *m, void *unused)
1725 {
1726         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1727
1728         if (!HAS_IPS(dev_priv)) {
1729                 seq_puts(m, "not supported\n");
1730                 return 0;
1731         }
1732
1733         intel_runtime_pm_get(dev_priv);
1734
1735         seq_printf(m, "Enabled by kernel parameter: %s\n",
1736                    yesno(i915.enable_ips));
1737
1738         if (INTEL_GEN(dev_priv) >= 8) {
1739                 seq_puts(m, "Currently: unknown\n");
1740         } else {
1741                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1742                         seq_puts(m, "Currently: enabled\n");
1743                 else
1744                         seq_puts(m, "Currently: disabled\n");
1745         }
1746
1747         intel_runtime_pm_put(dev_priv);
1748
1749         return 0;
1750 }
1751
1752 static int i915_sr_status(struct seq_file *m, void *unused)
1753 {
1754         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1755         bool sr_enabled = false;
1756
1757         intel_runtime_pm_get(dev_priv);
1758         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1759
1760         if (INTEL_GEN(dev_priv) >= 9)
1761                 /* no global SR status; inspect per-plane WM */;
1762         else if (HAS_PCH_SPLIT(dev_priv))
1763                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1764         else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1765                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1766                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1767         else if (IS_I915GM(dev_priv))
1768                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1769         else if (IS_PINEVIEW(dev_priv))
1770                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1771         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1772                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1773
1774         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1775         intel_runtime_pm_put(dev_priv);
1776
1777         seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1778
1779         return 0;
1780 }
1781
1782 static int i915_emon_status(struct seq_file *m, void *unused)
1783 {
1784         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1785         struct drm_device *dev = &dev_priv->drm;
1786         unsigned long temp, chipset, gfx;
1787         int ret;
1788
1789         if (!IS_GEN5(dev_priv))
1790                 return -ENODEV;
1791
1792         ret = mutex_lock_interruptible(&dev->struct_mutex);
1793         if (ret)
1794                 return ret;
1795
1796         temp = i915_mch_val(dev_priv);
1797         chipset = i915_chipset_val(dev_priv);
1798         gfx = i915_gfx_val(dev_priv);
1799         mutex_unlock(&dev->struct_mutex);
1800
1801         seq_printf(m, "GMCH temp: %ld\n", temp);
1802         seq_printf(m, "Chipset power: %ld\n", chipset);
1803         seq_printf(m, "GFX power: %ld\n", gfx);
1804         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1805
1806         return 0;
1807 }
1808
1809 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1810 {
1811         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1812         int ret = 0;
1813         int gpu_freq, ia_freq;
1814         unsigned int max_gpu_freq, min_gpu_freq;
1815
1816         if (!HAS_LLC(dev_priv)) {
1817                 seq_puts(m, "unsupported on this chipset\n");
1818                 return 0;
1819         }
1820
1821         intel_runtime_pm_get(dev_priv);
1822
1823         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1824         if (ret)
1825                 goto out;
1826
1827         if (IS_GEN9_BC(dev_priv)) {
1828                 /* Convert GT frequency to 50 HZ units */
1829                 min_gpu_freq =
1830                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1831                 max_gpu_freq =
1832                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1833         } else {
1834                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1835                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1836         }
1837
1838         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1839
1840         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1841                 ia_freq = gpu_freq;
1842                 sandybridge_pcode_read(dev_priv,
1843                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1844                                        &ia_freq);
1845                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1846                            intel_gpu_freq(dev_priv, (gpu_freq *
1847                                                      (IS_GEN9_BC(dev_priv) ?
1848                                                       GEN9_FREQ_SCALER : 1))),
1849                            ((ia_freq >> 0) & 0xff) * 100,
1850                            ((ia_freq >> 8) & 0xff) * 100);
1851         }
1852
1853         mutex_unlock(&dev_priv->rps.hw_lock);
1854
1855 out:
1856         intel_runtime_pm_put(dev_priv);
1857         return ret;
1858 }
1859
1860 static int i915_opregion(struct seq_file *m, void *unused)
1861 {
1862         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1863         struct drm_device *dev = &dev_priv->drm;
1864         struct intel_opregion *opregion = &dev_priv->opregion;
1865         int ret;
1866
1867         ret = mutex_lock_interruptible(&dev->struct_mutex);
1868         if (ret)
1869                 goto out;
1870
1871         if (opregion->header)
1872                 seq_write(m, opregion->header, OPREGION_SIZE);
1873
1874         mutex_unlock(&dev->struct_mutex);
1875
1876 out:
1877         return 0;
1878 }
1879
1880 static int i915_vbt(struct seq_file *m, void *unused)
1881 {
1882         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1883
1884         if (opregion->vbt)
1885                 seq_write(m, opregion->vbt, opregion->vbt_size);
1886
1887         return 0;
1888 }
1889
1890 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1891 {
1892         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1893         struct drm_device *dev = &dev_priv->drm;
1894         struct intel_framebuffer *fbdev_fb = NULL;
1895         struct drm_framebuffer *drm_fb;
1896         int ret;
1897
1898         ret = mutex_lock_interruptible(&dev->struct_mutex);
1899         if (ret)
1900                 return ret;
1901
1902 #ifdef CONFIG_DRM_FBDEV_EMULATION
1903         if (dev_priv->fbdev) {
1904                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1905
1906                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1907                            fbdev_fb->base.width,
1908                            fbdev_fb->base.height,
1909                            fbdev_fb->base.format->depth,
1910                            fbdev_fb->base.format->cpp[0] * 8,
1911                            fbdev_fb->base.modifier,
1912                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1913                 describe_obj(m, fbdev_fb->obj);
1914                 seq_putc(m, '\n');
1915         }
1916 #endif
1917
1918         mutex_lock(&dev->mode_config.fb_lock);
1919         drm_for_each_fb(drm_fb, dev) {
1920                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1921                 if (fb == fbdev_fb)
1922                         continue;
1923
1924                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1925                            fb->base.width,
1926                            fb->base.height,
1927                            fb->base.format->depth,
1928                            fb->base.format->cpp[0] * 8,
1929                            fb->base.modifier,
1930                            drm_framebuffer_read_refcount(&fb->base));
1931                 describe_obj(m, fb->obj);
1932                 seq_putc(m, '\n');
1933         }
1934         mutex_unlock(&dev->mode_config.fb_lock);
1935         mutex_unlock(&dev->struct_mutex);
1936
1937         return 0;
1938 }
1939
1940 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1941 {
1942         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1943                    ring->space, ring->head, ring->tail);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949         struct drm_device *dev = &dev_priv->drm;
1950         struct intel_engine_cs *engine;
1951         struct i915_gem_context *ctx;
1952         enum intel_engine_id id;
1953         int ret;
1954
1955         ret = mutex_lock_interruptible(&dev->struct_mutex);
1956         if (ret)
1957                 return ret;
1958
1959         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960                 seq_printf(m, "HW context %u ", ctx->hw_id);
1961                 if (ctx->pid) {
1962                         struct task_struct *task;
1963
1964                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965                         if (task) {
1966                                 seq_printf(m, "(%s [%d]) ",
1967                                            task->comm, task->pid);
1968                                 put_task_struct(task);
1969                         }
1970                 } else if (IS_ERR(ctx->file_priv)) {
1971                         seq_puts(m, "(deleted) ");
1972                 } else {
1973                         seq_puts(m, "(kernel) ");
1974                 }
1975
1976                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977                 seq_putc(m, '\n');
1978
1979                 for_each_engine(engine, dev_priv, id) {
1980                         struct intel_context *ce = &ctx->engine[engine->id];
1981
1982                         seq_printf(m, "%s: ", engine->name);
1983                         seq_putc(m, ce->initialised ? 'I' : 'i');
1984                         if (ce->state)
1985                                 describe_obj(m, ce->state->obj);
1986                         if (ce->ring)
1987                                 describe_ctx_ring(m, ce->ring);
1988                         seq_putc(m, '\n');
1989                 }
1990
1991                 seq_putc(m, '\n');
1992         }
1993
1994         mutex_unlock(&dev->struct_mutex);
1995
1996         return 0;
1997 }
1998
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000                               struct i915_gem_context *ctx,
2001                               struct intel_engine_cs *engine)
2002 {
2003         struct i915_vma *vma = ctx->engine[engine->id].state;
2004         struct page *page;
2005         int j;
2006
2007         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008
2009         if (!vma) {
2010                 seq_puts(m, "\tFake context\n");
2011                 return;
2012         }
2013
2014         if (vma->flags & I915_VMA_GLOBAL_BIND)
2015                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016                            i915_ggtt_offset(vma));
2017
2018         if (i915_gem_object_pin_pages(vma->obj)) {
2019                 seq_puts(m, "\tFailed to get pages for context object\n\n");
2020                 return;
2021         }
2022
2023         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024         if (page) {
2025                 u32 *reg_state = kmap_atomic(page);
2026
2027                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028                         seq_printf(m,
2029                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030                                    j * 4,
2031                                    reg_state[j], reg_state[j + 1],
2032                                    reg_state[j + 2], reg_state[j + 3]);
2033                 }
2034                 kunmap_atomic(reg_state);
2035         }
2036
2037         i915_gem_object_unpin_pages(vma->obj);
2038         seq_putc(m, '\n');
2039 }
2040
2041 static int i915_dump_lrc(struct seq_file *m, void *unused)
2042 {
2043         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2044         struct drm_device *dev = &dev_priv->drm;
2045         struct intel_engine_cs *engine;
2046         struct i915_gem_context *ctx;
2047         enum intel_engine_id id;
2048         int ret;
2049
2050         if (!i915.enable_execlists) {
2051                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2052                 return 0;
2053         }
2054
2055         ret = mutex_lock_interruptible(&dev->struct_mutex);
2056         if (ret)
2057                 return ret;
2058
2059         list_for_each_entry(ctx, &dev_priv->context_list, link)
2060                 for_each_engine(engine, dev_priv, id)
2061                         i915_dump_lrc_obj(m, ctx, engine);
2062
2063         mutex_unlock(&dev->struct_mutex);
2064
2065         return 0;
2066 }
2067
2068 static const char *swizzle_string(unsigned swizzle)
2069 {
2070         switch (swizzle) {
2071         case I915_BIT_6_SWIZZLE_NONE:
2072                 return "none";
2073         case I915_BIT_6_SWIZZLE_9:
2074                 return "bit9";
2075         case I915_BIT_6_SWIZZLE_9_10:
2076                 return "bit9/bit10";
2077         case I915_BIT_6_SWIZZLE_9_11:
2078                 return "bit9/bit11";
2079         case I915_BIT_6_SWIZZLE_9_10_11:
2080                 return "bit9/bit10/bit11";
2081         case I915_BIT_6_SWIZZLE_9_17:
2082                 return "bit9/bit17";
2083         case I915_BIT_6_SWIZZLE_9_10_17:
2084                 return "bit9/bit10/bit17";
2085         case I915_BIT_6_SWIZZLE_UNKNOWN:
2086                 return "unknown";
2087         }
2088
2089         return "bug";
2090 }
2091
2092 static int i915_swizzle_info(struct seq_file *m, void *data)
2093 {
2094         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2095
2096         intel_runtime_pm_get(dev_priv);
2097
2098         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2099                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2100         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2101                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2102
2103         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2104                 seq_printf(m, "DDC = 0x%08x\n",
2105                            I915_READ(DCC));
2106                 seq_printf(m, "DDC2 = 0x%08x\n",
2107                            I915_READ(DCC2));
2108                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2109                            I915_READ16(C0DRB3));
2110                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2111                            I915_READ16(C1DRB3));
2112         } else if (INTEL_GEN(dev_priv) >= 6) {
2113                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2114                            I915_READ(MAD_DIMM_C0));
2115                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2116                            I915_READ(MAD_DIMM_C1));
2117                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2118                            I915_READ(MAD_DIMM_C2));
2119                 seq_printf(m, "TILECTL = 0x%08x\n",
2120                            I915_READ(TILECTL));
2121                 if (INTEL_GEN(dev_priv) >= 8)
2122                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2123                                    I915_READ(GAMTARBMODE));
2124                 else
2125                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2126                                    I915_READ(ARB_MODE));
2127                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2128                            I915_READ(DISP_ARB_CTL));
2129         }
2130
2131         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2132                 seq_puts(m, "L-shaped memory detected\n");
2133
2134         intel_runtime_pm_put(dev_priv);
2135
2136         return 0;
2137 }
2138
2139 static int per_file_ctx(int id, void *ptr, void *data)
2140 {
2141         struct i915_gem_context *ctx = ptr;
2142         struct seq_file *m = data;
2143         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2144
2145         if (!ppgtt) {
2146                 seq_printf(m, "  no ppgtt for context %d\n",
2147                            ctx->user_handle);
2148                 return 0;
2149         }
2150
2151         if (i915_gem_context_is_default(ctx))
2152                 seq_puts(m, "  default context:\n");
2153         else
2154                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2155         ppgtt->debug_dump(ppgtt, m);
2156
2157         return 0;
2158 }
2159
2160 static void gen8_ppgtt_info(struct seq_file *m,
2161                             struct drm_i915_private *dev_priv)
2162 {
2163         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2164         struct intel_engine_cs *engine;
2165         enum intel_engine_id id;
2166         int i;
2167
2168         if (!ppgtt)
2169                 return;
2170
2171         for_each_engine(engine, dev_priv, id) {
2172                 seq_printf(m, "%s\n", engine->name);
2173                 for (i = 0; i < 4; i++) {
2174                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2175                         pdp <<= 32;
2176                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2177                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2178                 }
2179         }
2180 }
2181
2182 static void gen6_ppgtt_info(struct seq_file *m,
2183                             struct drm_i915_private *dev_priv)
2184 {
2185         struct intel_engine_cs *engine;
2186         enum intel_engine_id id;
2187
2188         if (IS_GEN6(dev_priv))
2189                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2190
2191         for_each_engine(engine, dev_priv, id) {
2192                 seq_printf(m, "%s\n", engine->name);
2193                 if (IS_GEN7(dev_priv))
2194                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2195                                    I915_READ(RING_MODE_GEN7(engine)));
2196                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2197                            I915_READ(RING_PP_DIR_BASE(engine)));
2198                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2199                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2200                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2201                            I915_READ(RING_PP_DIR_DCLV(engine)));
2202         }
2203         if (dev_priv->mm.aliasing_ppgtt) {
2204                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2205
2206                 seq_puts(m, "aliasing PPGTT:\n");
2207                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2208
2209                 ppgtt->debug_dump(ppgtt, m);
2210         }
2211
2212         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2213 }
2214
2215 static int i915_ppgtt_info(struct seq_file *m, void *data)
2216 {
2217         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2218         struct drm_device *dev = &dev_priv->drm;
2219         struct drm_file *file;
2220         int ret;
2221
2222         mutex_lock(&dev->filelist_mutex);
2223         ret = mutex_lock_interruptible(&dev->struct_mutex);
2224         if (ret)
2225                 goto out_unlock;
2226
2227         intel_runtime_pm_get(dev_priv);
2228
2229         if (INTEL_GEN(dev_priv) >= 8)
2230                 gen8_ppgtt_info(m, dev_priv);
2231         else if (INTEL_GEN(dev_priv) >= 6)
2232                 gen6_ppgtt_info(m, dev_priv);
2233
2234         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2235                 struct drm_i915_file_private *file_priv = file->driver_priv;
2236                 struct task_struct *task;
2237
2238                 task = get_pid_task(file->pid, PIDTYPE_PID);
2239                 if (!task) {
2240                         ret = -ESRCH;
2241                         goto out_rpm;
2242                 }
2243                 seq_printf(m, "\nproc: %s\n", task->comm);
2244                 put_task_struct(task);
2245                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2246                              (void *)(unsigned long)m);
2247         }
2248
2249 out_rpm:
2250         intel_runtime_pm_put(dev_priv);
2251         mutex_unlock(&dev->struct_mutex);
2252 out_unlock:
2253         mutex_unlock(&dev->filelist_mutex);
2254         return ret;
2255 }
2256
2257 static int count_irq_waiters(struct drm_i915_private *i915)
2258 {
2259         struct intel_engine_cs *engine;
2260         enum intel_engine_id id;
2261         int count = 0;
2262
2263         for_each_engine(engine, i915, id)
2264                 count += intel_engine_has_waiter(engine);
2265
2266         return count;
2267 }
2268
2269 static const char *rps_power_to_str(unsigned int power)
2270 {
2271         static const char * const strings[] = {
2272                 [LOW_POWER] = "low power",
2273                 [BETWEEN] = "mixed",
2274                 [HIGH_POWER] = "high power",
2275         };
2276
2277         if (power >= ARRAY_SIZE(strings) || !strings[power])
2278                 return "unknown";
2279
2280         return strings[power];
2281 }
2282
2283 static int i915_rps_boost_info(struct seq_file *m, void *data)
2284 {
2285         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2286         struct drm_device *dev = &dev_priv->drm;
2287         struct drm_file *file;
2288
2289         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2290         seq_printf(m, "GPU busy? %s [%d requests]\n",
2291                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2292         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2293         seq_printf(m, "Frequency requested %d\n",
2294                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2295         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2296                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2297                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2298                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2299                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2300         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2301                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2302                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2303                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2304
2305         mutex_lock(&dev->filelist_mutex);
2306         spin_lock(&dev_priv->rps.client_lock);
2307         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2308                 struct drm_i915_file_private *file_priv = file->driver_priv;
2309                 struct task_struct *task;
2310
2311                 rcu_read_lock();
2312                 task = pid_task(file->pid, PIDTYPE_PID);
2313                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2314                            task ? task->comm : "<unknown>",
2315                            task ? task->pid : -1,
2316                            file_priv->rps.boosts,
2317                            list_empty(&file_priv->rps.link) ? "" : ", active");
2318                 rcu_read_unlock();
2319         }
2320         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2321         spin_unlock(&dev_priv->rps.client_lock);
2322         mutex_unlock(&dev->filelist_mutex);
2323
2324         if (INTEL_GEN(dev_priv) >= 6 &&
2325             dev_priv->rps.enabled &&
2326             dev_priv->gt.active_requests) {
2327                 u32 rpup, rpupei;
2328                 u32 rpdown, rpdownei;
2329
2330                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2331                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2332                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2333                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2334                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2335                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2336
2337                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2338                            rps_power_to_str(dev_priv->rps.power));
2339                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2340                            rpup && rpupei ? 100 * rpup / rpupei : 0,
2341                            dev_priv->rps.up_threshold);
2342                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2343                            rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2344                            dev_priv->rps.down_threshold);
2345         } else {
2346                 seq_puts(m, "\nRPS Autotuning inactive\n");
2347         }
2348
2349         return 0;
2350 }
2351
2352 static int i915_llc(struct seq_file *m, void *data)
2353 {
2354         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2355         const bool edram = INTEL_GEN(dev_priv) > 8;
2356
2357         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2358         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2359                    intel_uncore_edram_size(dev_priv)/1024/1024);
2360
2361         return 0;
2362 }
2363
2364 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2365 {
2366         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2367         struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2368
2369         if (!HAS_HUC_UCODE(dev_priv))
2370                 return 0;
2371
2372         seq_puts(m, "HuC firmware status:\n");
2373         seq_printf(m, "\tpath: %s\n", huc_fw->path);
2374         seq_printf(m, "\tfetch: %s\n",
2375                 intel_uc_fw_status_repr(huc_fw->fetch_status));
2376         seq_printf(m, "\tload: %s\n",
2377                 intel_uc_fw_status_repr(huc_fw->load_status));
2378         seq_printf(m, "\tversion wanted: %d.%d\n",
2379                 huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2380         seq_printf(m, "\tversion found: %d.%d\n",
2381                 huc_fw->major_ver_found, huc_fw->minor_ver_found);
2382         seq_printf(m, "\theader: offset is %d; size = %d\n",
2383                 huc_fw->header_offset, huc_fw->header_size);
2384         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2385                 huc_fw->ucode_offset, huc_fw->ucode_size);
2386         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2387                 huc_fw->rsa_offset, huc_fw->rsa_size);
2388
2389         intel_runtime_pm_get(dev_priv);
2390         seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2391         intel_runtime_pm_put(dev_priv);
2392
2393         return 0;
2394 }
2395
2396 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2397 {
2398         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2399         struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2400         u32 tmp, i;
2401
2402         if (!HAS_GUC_UCODE(dev_priv))
2403                 return 0;
2404
2405         seq_printf(m, "GuC firmware status:\n");
2406         seq_printf(m, "\tpath: %s\n",
2407                 guc_fw->path);
2408         seq_printf(m, "\tfetch: %s\n",
2409                 intel_uc_fw_status_repr(guc_fw->fetch_status));
2410         seq_printf(m, "\tload: %s\n",
2411                 intel_uc_fw_status_repr(guc_fw->load_status));
2412         seq_printf(m, "\tversion wanted: %d.%d\n",
2413                 guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2414         seq_printf(m, "\tversion found: %d.%d\n",
2415                 guc_fw->major_ver_found, guc_fw->minor_ver_found);
2416         seq_printf(m, "\theader: offset is %d; size = %d\n",
2417                 guc_fw->header_offset, guc_fw->header_size);
2418         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2419                 guc_fw->ucode_offset, guc_fw->ucode_size);
2420         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2421                 guc_fw->rsa_offset, guc_fw->rsa_size);
2422
2423         intel_runtime_pm_get(dev_priv);
2424
2425         tmp = I915_READ(GUC_STATUS);
2426
2427         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2428         seq_printf(m, "\tBootrom status = 0x%x\n",
2429                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2430         seq_printf(m, "\tuKernel status = 0x%x\n",
2431                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2432         seq_printf(m, "\tMIA Core status = 0x%x\n",
2433                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2434         seq_puts(m, "\nScratch registers:\n");
2435         for (i = 0; i < 16; i++)
2436                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2437
2438         intel_runtime_pm_put(dev_priv);
2439
2440         return 0;
2441 }
2442
2443 static void i915_guc_log_info(struct seq_file *m,
2444                               struct drm_i915_private *dev_priv)
2445 {
2446         struct intel_guc *guc = &dev_priv->guc;
2447
2448         seq_puts(m, "\nGuC logging stats:\n");
2449
2450         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2451                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2452                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2453
2454         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2455                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2456                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2457
2458         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2459                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2460                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2461
2462         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2463                    guc->log.flush_interrupt_count);
2464
2465         seq_printf(m, "\tCapture miss count: %u\n",
2466                    guc->log.capture_miss_count);
2467 }
2468
2469 static void i915_guc_client_info(struct seq_file *m,
2470                                  struct drm_i915_private *dev_priv,
2471                                  struct i915_guc_client *client)
2472 {
2473         struct intel_engine_cs *engine;
2474         enum intel_engine_id id;
2475         uint64_t tot = 0;
2476
2477         seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2478                 client->priority, client->stage_id, client->proc_desc_offset);
2479         seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2480                 client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2481         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2482                 client->wq_size, client->wq_offset, client->wq_tail);
2483
2484         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2485         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2486         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2487
2488         for_each_engine(engine, dev_priv, id) {
2489                 u64 submissions = client->submissions[id];
2490                 tot += submissions;
2491                 seq_printf(m, "\tSubmissions: %llu %s\n",
2492                                 submissions, engine->name);
2493         }
2494         seq_printf(m, "\tTotal: %llu\n", tot);
2495 }
2496
2497 static int i915_guc_info(struct seq_file *m, void *data)
2498 {
2499         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2500         const struct intel_guc *guc = &dev_priv->guc;
2501         struct intel_engine_cs *engine;
2502         enum intel_engine_id id;
2503         u64 total;
2504
2505         if (!guc->execbuf_client) {
2506                 seq_printf(m, "GuC submission %s\n",
2507                            HAS_GUC_SCHED(dev_priv) ?
2508                            "disabled" :
2509                            "not supported");
2510                 return 0;
2511         }
2512
2513         seq_printf(m, "Doorbell map:\n");
2514         seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2515         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2516
2517         seq_printf(m, "GuC total action count: %llu\n", guc->action_count);
2518         seq_printf(m, "GuC action failure count: %u\n", guc->action_fail);
2519         seq_printf(m, "GuC last action command: 0x%x\n", guc->action_cmd);
2520         seq_printf(m, "GuC last action status: 0x%x\n", guc->action_status);
2521         seq_printf(m, "GuC last action error code: %d\n", guc->action_err);
2522
2523         total = 0;
2524         seq_printf(m, "\nGuC submissions:\n");
2525         for_each_engine(engine, dev_priv, id) {
2526                 u64 submissions = guc->submissions[id];
2527                 total += submissions;
2528                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2529                         engine->name, submissions, guc->last_seqno[id]);
2530         }
2531         seq_printf(m, "\t%s: %llu\n", "Total", total);
2532
2533         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2534         i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2535
2536         i915_guc_log_info(m, dev_priv);
2537
2538         /* Add more as required ... */
2539
2540         return 0;
2541 }
2542
2543 static int i915_guc_log_dump(struct seq_file *m, void *data)
2544 {
2545         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2546         struct drm_i915_gem_object *obj;
2547         int i = 0, pg;
2548
2549         if (!dev_priv->guc.log.vma)
2550                 return 0;
2551
2552         obj = dev_priv->guc.log.vma->obj;
2553         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2554                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2555
2556                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2557                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2558                                    *(log + i), *(log + i + 1),
2559                                    *(log + i + 2), *(log + i + 3));
2560
2561                 kunmap_atomic(log);
2562         }
2563
2564         seq_putc(m, '\n');
2565
2566         return 0;
2567 }
2568
2569 static int i915_guc_log_control_get(void *data, u64 *val)
2570 {
2571         struct drm_device *dev = data;
2572         struct drm_i915_private *dev_priv = to_i915(dev);
2573
2574         if (!dev_priv->guc.log.vma)
2575                 return -EINVAL;
2576
2577         *val = i915.guc_log_level;
2578
2579         return 0;
2580 }
2581
2582 static int i915_guc_log_control_set(void *data, u64 val)
2583 {
2584         struct drm_device *dev = data;
2585         struct drm_i915_private *dev_priv = to_i915(dev);
2586         int ret;
2587
2588         if (!dev_priv->guc.log.vma)
2589                 return -EINVAL;
2590
2591         ret = mutex_lock_interruptible(&dev->struct_mutex);
2592         if (ret)
2593                 return ret;
2594
2595         intel_runtime_pm_get(dev_priv);
2596         ret = i915_guc_log_control(dev_priv, val);
2597         intel_runtime_pm_put(dev_priv);
2598
2599         mutex_unlock(&dev->struct_mutex);
2600         return ret;
2601 }
2602
2603 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2604                         i915_guc_log_control_get, i915_guc_log_control_set,
2605                         "%lld\n");
2606
2607 static const char *psr2_live_status(u32 val)
2608 {
2609         static const char * const live_status[] = {
2610                 "IDLE",
2611                 "CAPTURE",
2612                 "CAPTURE_FS",
2613                 "SLEEP",
2614                 "BUFON_FW",
2615                 "ML_UP",
2616                 "SU_STANDBY",
2617                 "FAST_SLEEP",
2618                 "DEEP_SLEEP",
2619                 "BUF_ON",
2620                 "TG_ON"
2621         };
2622
2623         val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2624         if (val < ARRAY_SIZE(live_status))
2625                 return live_status[val];
2626
2627         return "unknown";
2628 }
2629
2630 static int i915_edp_psr_status(struct seq_file *m, void *data)
2631 {
2632         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2633         u32 psrperf = 0;
2634         u32 stat[3];
2635         enum pipe pipe;
2636         bool enabled = false;
2637
2638         if (!HAS_PSR(dev_priv)) {
2639                 seq_puts(m, "PSR not supported\n");
2640                 return 0;
2641         }
2642
2643         intel_runtime_pm_get(dev_priv);
2644
2645         mutex_lock(&dev_priv->psr.lock);
2646         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2647         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2648         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2649         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2650         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2651                    dev_priv->psr.busy_frontbuffer_bits);
2652         seq_printf(m, "Re-enable work scheduled: %s\n",
2653                    yesno(work_busy(&dev_priv->psr.work.work)));
2654
2655         if (HAS_DDI(dev_priv)) {
2656                 if (dev_priv->psr.psr2_support)
2657                         enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2658                 else
2659                         enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2660         } else {
2661                 for_each_pipe(dev_priv, pipe) {
2662                         enum transcoder cpu_transcoder =
2663                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2664                         enum intel_display_power_domain power_domain;
2665
2666                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2667                         if (!intel_display_power_get_if_enabled(dev_priv,
2668                                                                 power_domain))
2669                                 continue;
2670
2671                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2672                                 VLV_EDP_PSR_CURR_STATE_MASK;
2673                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2674                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2675                                 enabled = true;
2676
2677                         intel_display_power_put(dev_priv, power_domain);
2678                 }
2679         }
2680
2681         seq_printf(m, "Main link in standby mode: %s\n",
2682                    yesno(dev_priv->psr.link_standby));
2683
2684         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2685
2686         if (!HAS_DDI(dev_priv))
2687                 for_each_pipe(dev_priv, pipe) {
2688                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2689                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2690                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2691                 }
2692         seq_puts(m, "\n");
2693
2694         /*
2695          * VLV/CHV PSR has no kind of performance counter
2696          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2697          */
2698         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2699                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2700                         EDP_PSR_PERF_CNT_MASK;
2701
2702                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2703         }
2704         if (dev_priv->psr.psr2_support) {
2705                 u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2706
2707                 seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2708                            psr2, psr2_live_status(psr2));
2709         }
2710         mutex_unlock(&dev_priv->psr.lock);
2711
2712         intel_runtime_pm_put(dev_priv);
2713         return 0;
2714 }
2715
2716 static int i915_sink_crc(struct seq_file *m, void *data)
2717 {
2718         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2719         struct drm_device *dev = &dev_priv->drm;
2720         struct intel_connector *connector;
2721         struct drm_connector_list_iter conn_iter;
2722         struct intel_dp *intel_dp = NULL;
2723         int ret;
2724         u8 crc[6];
2725
2726         drm_modeset_lock_all(dev);
2727         drm_connector_list_iter_begin(dev, &conn_iter);
2728         for_each_intel_connector_iter(connector, &conn_iter) {
2729                 struct drm_crtc *crtc;
2730
2731                 if (!connector->base.state->best_encoder)
2732                         continue;
2733
2734                 crtc = connector->base.state->crtc;
2735                 if (!crtc->state->active)
2736                         continue;
2737
2738                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2739                         continue;
2740
2741                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2742
2743                 ret = intel_dp_sink_crc(intel_dp, crc);
2744                 if (ret)
2745                         goto out;
2746
2747                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2748                            crc[0], crc[1], crc[2],
2749                            crc[3], crc[4], crc[5]);
2750                 goto out;
2751         }
2752         ret = -ENODEV;
2753 out:
2754         drm_connector_list_iter_end(&conn_iter);
2755         drm_modeset_unlock_all(dev);
2756         return ret;
2757 }
2758
2759 static int i915_energy_uJ(struct seq_file *m, void *data)
2760 {
2761         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2762         u64 power;
2763         u32 units;
2764
2765         if (INTEL_GEN(dev_priv) < 6)
2766                 return -ENODEV;
2767
2768         intel_runtime_pm_get(dev_priv);
2769
2770         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2771         power = (power & 0x1f00) >> 8;
2772         units = 1000000 / (1 << power); /* convert to uJ */
2773         power = I915_READ(MCH_SECP_NRG_STTS);
2774         power *= units;
2775
2776         intel_runtime_pm_put(dev_priv);
2777
2778         seq_printf(m, "%llu", (long long unsigned)power);
2779
2780         return 0;
2781 }
2782
2783 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2784 {
2785         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2786         struct pci_dev *pdev = dev_priv->drm.pdev;
2787
2788         if (!HAS_RUNTIME_PM(dev_priv))
2789                 seq_puts(m, "Runtime power management not supported\n");
2790
2791         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2792         seq_printf(m, "IRQs disabled: %s\n",
2793                    yesno(!intel_irqs_enabled(dev_priv)));
2794 #ifdef CONFIG_PM
2795         seq_printf(m, "Usage count: %d\n",
2796                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2797 #else
2798         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2799 #endif
2800         seq_printf(m, "PCI device power state: %s [%d]\n",
2801                    pci_power_name(pdev->current_state),
2802                    pdev->current_state);
2803
2804         return 0;
2805 }
2806
2807 static int i915_power_domain_info(struct seq_file *m, void *unused)
2808 {
2809         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2810         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2811         int i;
2812
2813         mutex_lock(&power_domains->lock);
2814
2815         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2816         for (i = 0; i < power_domains->power_well_count; i++) {
2817                 struct i915_power_well *power_well;
2818                 enum intel_display_power_domain power_domain;
2819
2820                 power_well = &power_domains->power_wells[i];
2821                 seq_printf(m, "%-25s %d\n", power_well->name,
2822                            power_well->count);
2823
2824                 for_each_power_domain(power_domain, power_well->domains)
2825                         seq_printf(m, "  %-23s %d\n",
2826                                  intel_display_power_domain_str(power_domain),
2827                                  power_domains->domain_use_count[power_domain]);
2828         }
2829
2830         mutex_unlock(&power_domains->lock);
2831
2832         return 0;
2833 }
2834
2835 static int i915_dmc_info(struct seq_file *m, void *unused)
2836 {
2837         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2838         struct intel_csr *csr;
2839
2840         if (!HAS_CSR(dev_priv)) {
2841                 seq_puts(m, "not supported\n");
2842                 return 0;
2843         }
2844
2845         csr = &dev_priv->csr;
2846
2847         intel_runtime_pm_get(dev_priv);
2848
2849         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2850         seq_printf(m, "path: %s\n", csr->fw_path);
2851
2852         if (!csr->dmc_payload)
2853                 goto out;
2854
2855         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2856                    CSR_VERSION_MINOR(csr->version));
2857
2858         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2859                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2860                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2861                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2862                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2863         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2864                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2865                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2866         }
2867
2868 out:
2869         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2870         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2871         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2872
2873         intel_runtime_pm_put(dev_priv);
2874
2875         return 0;
2876 }
2877
2878 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2879                                  struct drm_display_mode *mode)
2880 {
2881         int i;
2882
2883         for (i = 0; i < tabs; i++)
2884                 seq_putc(m, '\t');
2885
2886         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2887                    mode->base.id, mode->name,
2888                    mode->vrefresh, mode->clock,
2889                    mode->hdisplay, mode->hsync_start,
2890                    mode->hsync_end, mode->htotal,
2891                    mode->vdisplay, mode->vsync_start,
2892                    mode->vsync_end, mode->vtotal,
2893                    mode->type, mode->flags);
2894 }
2895
2896 static void intel_encoder_info(struct seq_file *m,
2897                                struct intel_crtc *intel_crtc,
2898                                struct intel_encoder *intel_encoder)
2899 {
2900         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2901         struct drm_device *dev = &dev_priv->drm;
2902         struct drm_crtc *crtc = &intel_crtc->base;
2903         struct intel_connector *intel_connector;
2904         struct drm_encoder *encoder;
2905
2906         encoder = &intel_encoder->base;
2907         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2908                    encoder->base.id, encoder->name);
2909         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2910                 struct drm_connector *connector = &intel_connector->base;
2911                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2912                            connector->base.id,
2913                            connector->name,
2914                            drm_get_connector_status_name(connector->status));
2915                 if (connector->status == connector_status_connected) {
2916                         struct drm_display_mode *mode = &crtc->mode;
2917                         seq_printf(m, ", mode:\n");
2918                         intel_seq_print_mode(m, 2, mode);
2919                 } else {
2920                         seq_putc(m, '\n');
2921                 }
2922         }
2923 }
2924
2925 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2926 {
2927         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2928         struct drm_device *dev = &dev_priv->drm;
2929         struct drm_crtc *crtc = &intel_crtc->base;
2930         struct intel_encoder *intel_encoder;
2931         struct drm_plane_state *plane_state = crtc->primary->state;
2932         struct drm_framebuffer *fb = plane_state->fb;
2933
2934         if (fb)
2935                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2936                            fb->base.id, plane_state->src_x >> 16,
2937                            plane_state->src_y >> 16, fb->width, fb->height);
2938         else
2939                 seq_puts(m, "\tprimary plane disabled\n");
2940         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2941                 intel_encoder_info(m, intel_crtc, intel_encoder);
2942 }
2943
2944 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2945 {
2946         struct drm_display_mode *mode = panel->fixed_mode;
2947
2948         seq_printf(m, "\tfixed mode:\n");
2949         intel_seq_print_mode(m, 2, mode);
2950 }
2951
2952 static void intel_dp_info(struct seq_file *m,
2953                           struct intel_connector *intel_connector)
2954 {
2955         struct intel_encoder *intel_encoder = intel_connector->encoder;
2956         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2957
2958         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2959         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2960         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2961                 intel_panel_info(m, &intel_connector->panel);
2962
2963         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2964                                 &intel_dp->aux);
2965 }
2966
2967 static void intel_dp_mst_info(struct seq_file *m,
2968                           struct intel_connector *intel_connector)
2969 {
2970         struct intel_encoder *intel_encoder = intel_connector->encoder;
2971         struct intel_dp_mst_encoder *intel_mst =
2972                 enc_to_mst(&intel_encoder->base);
2973         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2974         struct intel_dp *intel_dp = &intel_dig_port->dp;
2975         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2976                                         intel_connector->port);
2977
2978         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2979 }
2980
2981 static void intel_hdmi_info(struct seq_file *m,
2982                             struct intel_connector *intel_connector)
2983 {
2984         struct intel_encoder *intel_encoder = intel_connector->encoder;
2985         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2986
2987         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2988 }
2989
2990 static void intel_lvds_info(struct seq_file *m,
2991                             struct intel_connector *intel_connector)
2992 {
2993         intel_panel_info(m, &intel_connector->panel);
2994 }
2995
2996 static void intel_connector_info(struct seq_file *m,
2997                                  struct drm_connector *connector)
2998 {
2999         struct intel_connector *intel_connector = to_intel_connector(connector);
3000         struct intel_encoder *intel_encoder = intel_connector->encoder;
3001         struct drm_display_mode *mode;
3002
3003         seq_printf(m, "connector %d: type %s, status: %s\n",
3004                    connector->base.id, connector->name,
3005                    drm_get_connector_status_name(connector->status));
3006         if (connector->status == connector_status_connected) {
3007                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3008                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3009                            connector->display_info.width_mm,
3010                            connector->display_info.height_mm);
3011                 seq_printf(m, "\tsubpixel order: %s\n",
3012                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3013                 seq_printf(m, "\tCEA rev: %d\n",
3014                            connector->display_info.cea_rev);
3015         }
3016
3017         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3018                 return;
3019
3020         switch (connector->connector_type) {
3021         case DRM_MODE_CONNECTOR_DisplayPort:
3022         case DRM_MODE_CONNECTOR_eDP:
3023                 if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3024                         intel_dp_mst_info(m, intel_connector);
3025                 else
3026                         intel_dp_info(m, intel_connector);
3027                 break;
3028         case DRM_MODE_CONNECTOR_LVDS:
3029                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3030                         intel_lvds_info(m, intel_connector);
3031                 break;
3032         case DRM_MODE_CONNECTOR_HDMIA:
3033                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3034                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3035                         intel_hdmi_info(m, intel_connector);
3036                 break;
3037         default:
3038                 break;
3039         }
3040
3041         seq_printf(m, "\tmodes:\n");
3042         list_for_each_entry(mode, &connector->modes, head)
3043                 intel_seq_print_mode(m, 2, mode);
3044 }
3045
3046 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
3047 {
3048         u32 state;
3049
3050         if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
3051                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3052         else
3053                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3054
3055         return state;
3056 }
3057
3058 static bool cursor_position(struct drm_i915_private *dev_priv,
3059                             int pipe, int *x, int *y)
3060 {
3061         u32 pos;
3062
3063         pos = I915_READ(CURPOS(pipe));
3064
3065         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3066         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3067                 *x = -*x;
3068
3069         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3070         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3071                 *y = -*y;
3072
3073         return cursor_active(dev_priv, pipe);
3074 }
3075
3076 static const char *plane_type(enum drm_plane_type type)
3077 {
3078         switch (type) {
3079         case DRM_PLANE_TYPE_OVERLAY:
3080                 return "OVL";
3081         case DRM_PLANE_TYPE_PRIMARY:
3082                 return "PRI";
3083         case DRM_PLANE_TYPE_CURSOR:
3084                 return "CUR";
3085         /*
3086          * Deliberately omitting default: to generate compiler warnings
3087          * when a new drm_plane_type gets added.
3088          */
3089         }
3090
3091         return "unknown";
3092 }
3093
3094 static const char *plane_rotation(unsigned int rotation)
3095 {
3096         static char buf[48];
3097         /*
3098          * According to doc only one DRM_ROTATE_ is allowed but this
3099          * will print them all to visualize if the values are misused
3100          */
3101         snprintf(buf, sizeof(buf),
3102                  "%s%s%s%s%s%s(0x%08x)",
3103                  (rotation & DRM_ROTATE_0) ? "0 " : "",
3104                  (rotation & DRM_ROTATE_90) ? "90 " : "",
3105                  (rotation & DRM_ROTATE_180) ? "180 " : "",
3106                  (rotation & DRM_ROTATE_270) ? "270 " : "",
3107                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
3108                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3109                  rotation);
3110
3111         return buf;
3112 }
3113
3114 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3115 {
3116         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3117         struct drm_device *dev = &dev_priv->drm;
3118         struct intel_plane *intel_plane;
3119
3120         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3121                 struct drm_plane_state *state;
3122                 struct drm_plane *plane = &intel_plane->base;
3123                 struct drm_format_name_buf format_name;
3124
3125                 if (!plane->state) {
3126                         seq_puts(m, "plane->state is NULL!\n");
3127                         continue;
3128                 }
3129
3130                 state = plane->state;
3131
3132                 if (state->fb) {
3133                         drm_get_format_name(state->fb->format->format,
3134                                             &format_name);
3135                 } else {
3136                         sprintf(format_name.str, "N/A");
3137                 }
3138
3139                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3140                            plane->base.id,
3141                            plane_type(intel_plane->base.type),
3142                            state->crtc_x, state->crtc_y,
3143                            state->crtc_w, state->crtc_h,
3144                            (state->src_x >> 16),
3145                            ((state->src_x & 0xffff) * 15625) >> 10,
3146                            (state->src_y >> 16),
3147                            ((state->src_y & 0xffff) * 15625) >> 10,
3148                            (state->src_w >> 16),
3149                            ((state->src_w & 0xffff) * 15625) >> 10,
3150                            (state->src_h >> 16),
3151                            ((state->src_h & 0xffff) * 15625) >> 10,
3152                            format_name.str,
3153                            plane_rotation(state->rotation));
3154         }
3155 }
3156
3157 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3158 {
3159         struct intel_crtc_state *pipe_config;
3160         int num_scalers = intel_crtc->num_scalers;
3161         int i;
3162
3163         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3164
3165         /* Not all platformas have a scaler */
3166         if (num_scalers) {
3167                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3168                            num_scalers,
3169                            pipe_config->scaler_state.scaler_users,
3170                            pipe_config->scaler_state.scaler_id);
3171
3172                 for (i = 0; i < num_scalers; i++) {
3173                         struct intel_scaler *sc =
3174                                         &pipe_config->scaler_state.scalers[i];
3175
3176                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3177                                    i, yesno(sc->in_use), sc->mode);
3178                 }
3179                 seq_puts(m, "\n");
3180         } else {
3181                 seq_puts(m, "\tNo scalers available on this platform\n");
3182         }
3183 }
3184
3185 static int i915_display_info(struct seq_file *m, void *unused)
3186 {
3187         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3188         struct drm_device *dev = &dev_priv->drm;
3189         struct intel_crtc *crtc;
3190         struct drm_connector *connector;
3191         struct drm_connector_list_iter conn_iter;
3192
3193         intel_runtime_pm_get(dev_priv);
3194         seq_printf(m, "CRTC info\n");
3195         seq_printf(m, "---------\n");
3196         for_each_intel_crtc(dev, crtc) {
3197                 bool active;
3198                 struct intel_crtc_state *pipe_config;
3199                 int x, y;
3200
3201                 drm_modeset_lock(&crtc->base.mutex, NULL);
3202                 pipe_config = to_intel_crtc_state(crtc->base.state);
3203
3204                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3205                            crtc->base.base.id, pipe_name(crtc->pipe),
3206                            yesno(pipe_config->base.active),
3207                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3208                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3209
3210                 if (pipe_config->base.active) {
3211                         intel_crtc_info(m, crtc);
3212
3213                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3214                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3215                                    yesno(crtc->cursor_base),
3216                                    x, y, crtc->base.cursor->state->crtc_w,
3217                                    crtc->base.cursor->state->crtc_h,
3218                                    crtc->cursor_addr, yesno(active));
3219                         intel_scaler_info(m, crtc);
3220                         intel_plane_info(m, crtc);
3221                 }
3222
3223                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3224                            yesno(!crtc->cpu_fifo_underrun_disabled),
3225                            yesno(!crtc->pch_fifo_underrun_disabled));
3226                 drm_modeset_unlock(&crtc->base.mutex);
3227         }
3228
3229         seq_printf(m, "\n");
3230         seq_printf(m, "Connector info\n");
3231         seq_printf(m, "--------------\n");
3232         mutex_lock(&dev->mode_config.mutex);
3233         drm_connector_list_iter_begin(dev, &conn_iter);
3234         drm_for_each_connector_iter(connector, &conn_iter)
3235                 intel_connector_info(m, connector);
3236         drm_connector_list_iter_end(&conn_iter);
3237         mutex_unlock(&dev->mode_config.mutex);
3238
3239         intel_runtime_pm_put(dev_priv);
3240
3241         return 0;
3242 }
3243
3244 static int i915_engine_info(struct seq_file *m, void *unused)
3245 {
3246         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3247         struct intel_engine_cs *engine;
3248         enum intel_engine_id id;
3249
3250         intel_runtime_pm_get(dev_priv);
3251
3252         seq_printf(m, "GT awake? %s\n",
3253                    yesno(dev_priv->gt.awake));
3254         seq_printf(m, "Global active requests: %d\n",
3255                    dev_priv->gt.active_requests);
3256
3257         for_each_engine(engine, dev_priv, id) {
3258                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3259                 struct drm_i915_gem_request *rq;
3260                 struct rb_node *rb;
3261                 u64 addr;
3262
3263                 seq_printf(m, "%s\n", engine->name);
3264                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3265                            intel_engine_get_seqno(engine),
3266                            intel_engine_last_submit(engine),
3267                            engine->hangcheck.seqno,
3268                            jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3269                            engine->timeline->inflight_seqnos);
3270
3271                 rcu_read_lock();
3272
3273                 seq_printf(m, "\tRequests:\n");
3274
3275                 rq = list_first_entry(&engine->timeline->requests,
3276                                       struct drm_i915_gem_request, link);
3277                 if (&rq->link != &engine->timeline->requests)
3278                         print_request(m, rq, "\t\tfirst  ");
3279
3280                 rq = list_last_entry(&engine->timeline->requests,
3281                                      struct drm_i915_gem_request, link);
3282                 if (&rq->link != &engine->timeline->requests)
3283                         print_request(m, rq, "\t\tlast   ");
3284
3285                 rq = i915_gem_find_active_request(engine);
3286                 if (rq) {
3287                         print_request(m, rq, "\t\tactive ");
3288                         seq_printf(m,
3289                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3290                                    rq->head, rq->postfix, rq->tail,
3291                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3292                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3293                 }
3294
3295                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3296                            I915_READ(RING_START(engine->mmio_base)),
3297                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3298                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3299                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3300                            rq ? rq->ring->head : 0);
3301                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3302                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3303                            rq ? rq->ring->tail : 0);
3304                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3305                            I915_READ(RING_CTL(engine->mmio_base)),
3306                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3307
3308                 rcu_read_unlock();
3309
3310                 addr = intel_engine_get_active_head(engine);
3311                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3312                            upper_32_bits(addr), lower_32_bits(addr));
3313                 addr = intel_engine_get_last_batch_head(engine);
3314                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3315                            upper_32_bits(addr), lower_32_bits(addr));
3316
3317                 if (i915.enable_execlists) {
3318                         u32 ptr, read, write;
3319                         struct rb_node *rb;
3320
3321                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3322                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3323                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3324
3325                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3326                         read = GEN8_CSB_READ_PTR(ptr);
3327                         write = GEN8_CSB_WRITE_PTR(ptr);
3328                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3329                                    read, write);
3330                         if (read >= GEN8_CSB_ENTRIES)
3331                                 read = 0;
3332                         if (write >= GEN8_CSB_ENTRIES)
3333                                 write = 0;
3334                         if (read > write)
3335                                 write += GEN8_CSB_ENTRIES;
3336                         while (read < write) {
3337                                 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3338
3339                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3340                                            idx,
3341                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3342                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3343                         }
3344
3345                         rcu_read_lock();
3346                         rq = READ_ONCE(engine->execlist_port[0].request);
3347                         if (rq) {
3348                                 seq_printf(m, "\t\tELSP[0] count=%d, ",
3349                                            engine->execlist_port[0].count);
3350                                 print_request(m, rq, "rq: ");
3351                         } else {
3352                                 seq_printf(m, "\t\tELSP[0] idle\n");
3353                         }
3354                         rq = READ_ONCE(engine->execlist_port[1].request);
3355                         if (rq) {
3356                                 seq_printf(m, "\t\tELSP[1] count=%d, ",
3357                                            engine->execlist_port[1].count);
3358                                 print_request(m, rq, "rq: ");
3359                         } else {
3360                                 seq_printf(m, "\t\tELSP[1] idle\n");
3361                         }
3362                         rcu_read_unlock();
3363
3364                         spin_lock_irq(&engine->timeline->lock);
3365                         for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
3366                                 rq = rb_entry(rb, typeof(*rq), priotree.node);
3367                                 print_request(m, rq, "\t\tQ ");
3368                         }
3369                         spin_unlock_irq(&engine->timeline->lock);
3370                 } else if (INTEL_GEN(dev_priv) > 6) {
3371                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3372                                    I915_READ(RING_PP_DIR_BASE(engine)));
3373                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3374                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3375                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3376                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3377                 }
3378
3379                 spin_lock_irq(&b->rb_lock);
3380                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3381                         struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3382
3383                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3384                                    w->tsk->comm, w->tsk->pid, w->seqno);
3385                 }
3386                 spin_unlock_irq(&b->rb_lock);
3387
3388                 seq_puts(m, "\n");
3389         }
3390
3391         intel_runtime_pm_put(dev_priv);
3392
3393         return 0;
3394 }
3395
3396 static int i915_semaphore_status(struct seq_file *m, void *unused)
3397 {
3398         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3399         struct drm_device *dev = &dev_priv->drm;
3400         struct intel_engine_cs *engine;
3401         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3402         enum intel_engine_id id;
3403         int j, ret;
3404
3405         if (!i915.semaphores) {
3406                 seq_puts(m, "Semaphores are disabled\n");
3407                 return 0;
3408         }
3409
3410         ret = mutex_lock_interruptible(&dev->struct_mutex);
3411         if (ret)
3412                 return ret;
3413         intel_runtime_pm_get(dev_priv);
3414
3415         if (IS_BROADWELL(dev_priv)) {
3416                 struct page *page;
3417                 uint64_t *seqno;
3418
3419                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3420
3421                 seqno = (uint64_t *)kmap_atomic(page);
3422                 for_each_engine(engine, dev_priv, id) {
3423                         uint64_t offset;
3424
3425                         seq_printf(m, "%s\n", engine->name);
3426
3427                         seq_puts(m, "  Last signal:");
3428                         for (j = 0; j < num_rings; j++) {
3429                                 offset = id * I915_NUM_ENGINES + j;
3430                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3431                                            seqno[offset], offset * 8);
3432                         }
3433                         seq_putc(m, '\n');
3434
3435                         seq_puts(m, "  Last wait:  ");
3436                         for (j = 0; j < num_rings; j++) {
3437                                 offset = id + (j * I915_NUM_ENGINES);
3438                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3439                                            seqno[offset], offset * 8);
3440                         }
3441                         seq_putc(m, '\n');
3442
3443                 }
3444                 kunmap_atomic(seqno);
3445         } else {
3446                 seq_puts(m, "  Last signal:");
3447                 for_each_engine(engine, dev_priv, id)
3448                         for (j = 0; j < num_rings; j++)
3449                                 seq_printf(m, "0x%08x\n",
3450                                            I915_READ(engine->semaphore.mbox.signal[j]));
3451                 seq_putc(m, '\n');
3452         }
3453
3454         intel_runtime_pm_put(dev_priv);
3455         mutex_unlock(&dev->struct_mutex);
3456         return 0;
3457 }
3458
3459 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3460 {
3461         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3462         struct drm_device *dev = &dev_priv->drm;
3463         int i;
3464
3465         drm_modeset_lock_all(dev);
3466         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3467                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3468
3469                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3470                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3471                            pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3472                 seq_printf(m, " tracked hardware state:\n");
3473                 seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3474                 seq_printf(m, " dpll_md: 0x%08x\n",
3475                            pll->state.hw_state.dpll_md);
3476                 seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3477                 seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3478                 seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3479         }
3480         drm_modeset_unlock_all(dev);
3481
3482         return 0;
3483 }
3484
3485 static int i915_wa_registers(struct seq_file *m, void *unused)
3486 {
3487         int i;
3488         int ret;
3489         struct intel_engine_cs *engine;
3490         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3491         struct drm_device *dev = &dev_priv->drm;
3492         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3493         enum intel_engine_id id;
3494
3495         ret = mutex_lock_interruptible(&dev->struct_mutex);
3496         if (ret)
3497                 return ret;
3498
3499         intel_runtime_pm_get(dev_priv);
3500
3501         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3502         for_each_engine(engine, dev_priv, id)
3503                 seq_printf(m, "HW whitelist count for %s: %d\n",
3504                            engine->name, workarounds->hw_whitelist_count[id]);
3505         for (i = 0; i < workarounds->count; ++i) {
3506                 i915_reg_t addr;
3507                 u32 mask, value, read;
3508                 bool ok;
3509
3510                 addr = workarounds->reg[i].addr;
3511                 mask = workarounds->reg[i].mask;
3512                 value = workarounds->reg[i].value;
3513                 read = I915_READ(addr);
3514                 ok = (value & mask) == (read & mask);
3515                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3516                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3517         }
3518
3519         intel_runtime_pm_put(dev_priv);
3520         mutex_unlock(&dev->struct_mutex);
3521
3522         return 0;
3523 }
3524
3525 static int i915_ddb_info(struct seq_file *m, void *unused)
3526 {
3527         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3528         struct drm_device *dev = &dev_priv->drm;
3529         struct skl_ddb_allocation *ddb;
3530         struct skl_ddb_entry *entry;
3531         enum pipe pipe;
3532         int plane;
3533
3534         if (INTEL_GEN(dev_priv) < 9)
3535                 return 0;
3536
3537         drm_modeset_lock_all(dev);
3538
3539         ddb = &dev_priv->wm.skl_hw.ddb;
3540
3541         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3542
3543         for_each_pipe(dev_priv, pipe) {
3544                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3545
3546                 for_each_universal_plane(dev_priv, pipe, plane) {
3547                         entry = &ddb->plane[pipe][plane];
3548                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3549                                    entry->start, entry->end,
3550                                    skl_ddb_entry_size(entry));
3551                 }
3552
3553                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3554                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3555                            entry->end, skl_ddb_entry_size(entry));
3556         }
3557
3558         drm_modeset_unlock_all(dev);
3559
3560         return 0;
3561 }
3562
3563 static void drrs_status_per_crtc(struct seq_file *m,
3564                                  struct drm_device *dev,
3565                                  struct intel_crtc *intel_crtc)
3566 {
3567         struct drm_i915_private *dev_priv = to_i915(dev);
3568         struct i915_drrs *drrs = &dev_priv->drrs;
3569         int vrefresh = 0;
3570         struct drm_connector *connector;
3571         struct drm_connector_list_iter conn_iter;
3572
3573         drm_connector_list_iter_begin(dev, &conn_iter);
3574         drm_for_each_connector_iter(connector, &conn_iter) {
3575                 if (connector->state->crtc != &intel_crtc->base)
3576                         continue;
3577
3578                 seq_printf(m, "%s:\n", connector->name);
3579         }
3580         drm_connector_list_iter_end(&conn_iter);
3581
3582         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3583                 seq_puts(m, "\tVBT: DRRS_type: Static");
3584         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3585                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3586         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3587                 seq_puts(m, "\tVBT: DRRS_type: None");
3588         else
3589                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3590
3591         seq_puts(m, "\n\n");
3592
3593         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3594                 struct intel_panel *panel;
3595
3596                 mutex_lock(&drrs->mutex);
3597                 /* DRRS Supported */
3598                 seq_puts(m, "\tDRRS Supported: Yes\n");
3599
3600                 /* disable_drrs() will make drrs->dp NULL */
3601                 if (!drrs->dp) {
3602                         seq_puts(m, "Idleness DRRS: Disabled");
3603                         mutex_unlock(&drrs->mutex);
3604                         return;
3605                 }
3606
3607                 panel = &drrs->dp->attached_connector->panel;
3608                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3609                                         drrs->busy_frontbuffer_bits);
3610
3611                 seq_puts(m, "\n\t\t");
3612                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3613                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3614                         vrefresh = panel->fixed_mode->vrefresh;
3615                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3616                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3617                         vrefresh = panel->downclock_mode->vrefresh;
3618                 } else {
3619                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3620                                                 drrs->refresh_rate_type);
3621                         mutex_unlock(&drrs->mutex);
3622                         return;
3623                 }
3624                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3625
3626                 seq_puts(m, "\n\t\t");
3627                 mutex_unlock(&drrs->mutex);
3628         } else {
3629                 /* DRRS not supported. Print the VBT parameter*/
3630                 seq_puts(m, "\tDRRS Supported : No");
3631         }
3632         seq_puts(m, "\n");
3633 }
3634
3635 static int i915_drrs_status(struct seq_file *m, void *unused)
3636 {
3637         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3638         struct drm_device *dev = &dev_priv->drm;
3639         struct intel_crtc *intel_crtc;
3640         int active_crtc_cnt = 0;
3641
3642         drm_modeset_lock_all(dev);
3643         for_each_intel_crtc(dev, intel_crtc) {
3644                 if (intel_crtc->base.state->active) {
3645                         active_crtc_cnt++;
3646                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3647
3648                         drrs_status_per_crtc(m, dev, intel_crtc);
3649                 }
3650         }
3651         drm_modeset_unlock_all(dev);
3652
3653         if (!active_crtc_cnt)
3654                 seq_puts(m, "No active crtc found\n");
3655
3656         return 0;
3657 }
3658
3659 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3660 {
3661         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3662         struct drm_device *dev = &dev_priv->drm;
3663         struct intel_encoder *intel_encoder;
3664         struct intel_digital_port *intel_dig_port;
3665         struct drm_connector *connector;
3666         struct drm_connector_list_iter conn_iter;
3667
3668         drm_connector_list_iter_begin(dev, &conn_iter);
3669         drm_for_each_connector_iter(connector, &conn_iter) {
3670                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3671                         continue;
3672
3673                 intel_encoder = intel_attached_encoder(connector);
3674                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3675                         continue;
3676
3677                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3678                 if (!intel_dig_port->dp.can_mst)
3679                         continue;
3680
3681                 seq_printf(m, "MST Source Port %c\n",
3682                            port_name(intel_dig_port->port));
3683                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3684         }
3685         drm_connector_list_iter_end(&conn_iter);
3686
3687         return 0;
3688 }
3689
3690 static ssize_t i915_displayport_test_active_write(struct file *file,
3691                                                   const char __user *ubuf,
3692                                                   size_t len, loff_t *offp)
3693 {
3694         char *input_buffer;
3695         int status = 0;
3696         struct drm_device *dev;
3697         struct drm_connector *connector;
3698         struct drm_connector_list_iter conn_iter;
3699         struct intel_dp *intel_dp;
3700         int val = 0;
3701
3702         dev = ((struct seq_file *)file->private_data)->private;
3703
3704         if (len == 0)
3705                 return 0;
3706
3707         input_buffer = kmalloc(len + 1, GFP_KERNEL);
3708         if (!input_buffer)
3709                 return -ENOMEM;
3710
3711         if (copy_from_user(input_buffer, ubuf, len)) {
3712                 status = -EFAULT;
3713                 goto out;
3714         }
3715
3716         input_buffer[len] = '\0';
3717         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3718
3719         drm_connector_list_iter_begin(dev, &conn_iter);
3720         drm_for_each_connector_iter(connector, &conn_iter) {
3721                 if (connector->connector_type !=
3722                     DRM_MODE_CONNECTOR_DisplayPort)
3723                         continue;
3724
3725                 if (connector->status == connector_status_connected &&
3726                     connector->encoder != NULL) {
3727                         intel_dp = enc_to_intel_dp(connector->encoder);
3728                         status = kstrtoint(input_buffer, 10, &val);
3729                         if (status < 0)
3730                                 break;
3731                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3732                         /* To prevent erroneous activation of the compliance
3733                          * testing code, only accept an actual value of 1 here
3734                          */
3735                         if (val == 1)
3736                                 intel_dp->compliance.test_active = 1;
3737                         else
3738                                 intel_dp->compliance.test_active = 0;
3739                 }
3740         }
3741         drm_connector_list_iter_end(&conn_iter);
3742 out:
3743         kfree(input_buffer);
3744         if (status < 0)
3745                 return status;
3746
3747         *offp += len;
3748         return len;
3749 }
3750
3751 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3752 {
3753         struct drm_device *dev = m->private;
3754         struct drm_connector *connector;
3755         struct drm_connector_list_iter conn_iter;
3756         struct intel_dp *intel_dp;
3757
3758         drm_connector_list_iter_begin(dev, &conn_iter);
3759         drm_for_each_connector_iter(connector, &conn_iter) {
3760                 if (connector->connector_type !=
3761                     DRM_MODE_CONNECTOR_DisplayPort)
3762                         continue;
3763
3764                 if (connector->status == connector_status_connected &&
3765                     connector->encoder != NULL) {
3766                         intel_dp = enc_to_intel_dp(connector->encoder);
3767                         if (intel_dp->compliance.test_active)
3768                                 seq_puts(m, "1");
3769                         else
3770                                 seq_puts(m, "0");
3771                 } else
3772                         seq_puts(m, "0");
3773         }
3774         drm_connector_list_iter_end(&conn_iter);
3775
3776         return 0;
3777 }
3778
3779 static int i915_displayport_test_active_open(struct inode *inode,
3780                                              struct file *file)
3781 {
3782         struct drm_i915_private *dev_priv = inode->i_private;
3783
3784         return single_open(file, i915_displayport_test_active_show,
3785                            &dev_priv->drm);
3786 }
3787
3788 static const struct file_operations i915_displayport_test_active_fops = {
3789         .owner = THIS_MODULE,
3790         .open = i915_displayport_test_active_open,
3791         .read = seq_read,
3792         .llseek = seq_lseek,
3793         .release = single_release,
3794         .write = i915_displayport_test_active_write
3795 };
3796
3797 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3798 {
3799         struct drm_device *dev = m->private;
3800         struct drm_connector *connector;
3801         struct drm_connector_list_iter conn_iter;
3802         struct intel_dp *intel_dp;
3803
3804         drm_connector_list_iter_begin(dev, &conn_iter);
3805         drm_for_each_connector_iter(connector, &conn_iter) {
3806                 if (connector->connector_type !=
3807                     DRM_MODE_CONNECTOR_DisplayPort)
3808                         continue;
3809
3810                 if (connector->status == connector_status_connected &&
3811                     connector->encoder != NULL) {
3812                         intel_dp = enc_to_intel_dp(connector->encoder);
3813                         if (intel_dp->compliance.test_type ==
3814                             DP_TEST_LINK_EDID_READ)
3815                                 seq_printf(m, "%lx",
3816                                            intel_dp->compliance.test_data.edid);
3817                         else if (intel_dp->compliance.test_type ==
3818                                  DP_TEST_LINK_VIDEO_PATTERN) {
3819                                 seq_printf(m, "hdisplay: %d\n",
3820                                            intel_dp->compliance.test_data.hdisplay);
3821                                 seq_printf(m, "vdisplay: %d\n",
3822                                            intel_dp->compliance.test_data.vdisplay);
3823                                 seq_printf(m, "bpc: %u\n",
3824                                            intel_dp->compliance.test_data.bpc);
3825                         }
3826                 } else
3827                         seq_puts(m, "0");
3828         }
3829         drm_connector_list_iter_end(&conn_iter);
3830
3831         return 0;
3832 }
3833 static int i915_displayport_test_data_open(struct inode *inode,
3834                                            struct file *file)
3835 {
3836         struct drm_i915_private *dev_priv = inode->i_private;
3837
3838         return single_open(file, i915_displayport_test_data_show,
3839                            &dev_priv->drm);
3840 }
3841
3842 static const struct file_operations i915_displayport_test_data_fops = {
3843         .owner = THIS_MODULE,
3844         .open = i915_displayport_test_data_open,
3845         .read = seq_read,
3846         .llseek = seq_lseek,
3847         .release = single_release
3848 };
3849
3850 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3851 {
3852         struct drm_device *dev = m->private;
3853         struct drm_connector *connector;
3854         struct drm_connector_list_iter conn_iter;
3855         struct intel_dp *intel_dp;
3856
3857         drm_connector_list_iter_begin(dev, &conn_iter);
3858         drm_for_each_connector_iter(connector, &conn_iter) {
3859                 if (connector->connector_type !=
3860                     DRM_MODE_CONNECTOR_DisplayPort)
3861                         continue;
3862
3863                 if (connector->status == connector_status_connected &&
3864                     connector->encoder != NULL) {
3865                         intel_dp = enc_to_intel_dp(connector->encoder);
3866                         seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3867                 } else
3868                         seq_puts(m, "0");
3869         }
3870         drm_connector_list_iter_end(&conn_iter);
3871
3872         return 0;
3873 }
3874
3875 static int i915_displayport_test_type_open(struct inode *inode,
3876                                        struct file *file)
3877 {
3878         struct drm_i915_private *dev_priv = inode->i_private;
3879
3880         return single_open(file, i915_displayport_test_type_show,
3881                            &dev_priv->drm);
3882 }
3883
3884 static const struct file_operations i915_displayport_test_type_fops = {
3885         .owner = THIS_MODULE,
3886         .open = i915_displayport_test_type_open,
3887         .read = seq_read,
3888         .llseek = seq_lseek,
3889         .release = single_release
3890 };
3891
3892 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3893 {
3894         struct drm_i915_private *dev_priv = m->private;
3895         struct drm_device *dev = &dev_priv->drm;
3896         int level;
3897         int num_levels;
3898
3899         if (IS_CHERRYVIEW(dev_priv))
3900                 num_levels = 3;
3901         else if (IS_VALLEYVIEW(dev_priv))
3902                 num_levels = 1;
3903         else
3904                 num_levels = ilk_wm_max_level(dev_priv) + 1;
3905
3906         drm_modeset_lock_all(dev);
3907
3908         for (level = 0; level < num_levels; level++) {
3909                 unsigned int latency = wm[level];
3910
3911                 /*
3912                  * - WM1+ latency values in 0.5us units
3913                  * - latencies are in us on gen9/vlv/chv
3914                  */
3915                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
3916                     IS_CHERRYVIEW(dev_priv))
3917                         latency *= 10;
3918                 else if (level > 0)
3919                         latency *= 5;
3920
3921                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3922                            level, wm[level], latency / 10, latency % 10);
3923         }
3924
3925         drm_modeset_unlock_all(dev);
3926 }
3927
3928 static int pri_wm_latency_show(struct seq_file *m, void *data)
3929 {
3930         struct drm_i915_private *dev_priv = m->private;
3931         const uint16_t *latencies;
3932
3933         if (INTEL_GEN(dev_priv) >= 9)
3934                 latencies = dev_priv->wm.skl_latency;
3935         else
3936                 latencies = dev_priv->wm.pri_latency;
3937
3938         wm_latency_show(m, latencies);
3939
3940         return 0;
3941 }
3942
3943 static int spr_wm_latency_show(struct seq_file *m, void *data)
3944 {
3945         struct drm_i915_private *dev_priv = m->private;
3946         const uint16_t *latencies;
3947
3948         if (INTEL_GEN(dev_priv) >= 9)
3949                 latencies = dev_priv->wm.skl_latency;
3950         else
3951                 latencies = dev_priv->wm.spr_latency;
3952
3953         wm_latency_show(m, latencies);
3954
3955         return 0;
3956 }
3957
3958 static int cur_wm_latency_show(struct seq_file *m, void *data)
3959 {
3960         struct drm_i915_private *dev_priv = m->private;
3961         const uint16_t *latencies;
3962
3963         if (INTEL_GEN(dev_priv) >= 9)
3964                 latencies = dev_priv->wm.skl_latency;
3965         else
3966                 latencies = dev_priv->wm.cur_latency;
3967
3968         wm_latency_show(m, latencies);
3969
3970         return 0;
3971 }
3972
3973 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3974 {
3975         struct drm_i915_private *dev_priv = inode->i_private;
3976
3977         if (INTEL_GEN(dev_priv) < 5)
3978                 return -ENODEV;
3979
3980         return single_open(file, pri_wm_latency_show, dev_priv);
3981 }
3982
3983 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3984 {
3985         struct drm_i915_private *dev_priv = inode->i_private;
3986
3987         if (HAS_GMCH_DISPLAY(dev_priv))
3988                 return -ENODEV;
3989
3990         return single_open(file, spr_wm_latency_show, dev_priv);
3991 }
3992
3993 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3994 {
3995         struct drm_i915_private *dev_priv = inode->i_private;
3996
3997         if (HAS_GMCH_DISPLAY(dev_priv))
3998                 return -ENODEV;
3999
4000         return single_open(file, cur_wm_latency_show, dev_priv);
4001 }
4002
4003 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4004                                 size_t len, loff_t *offp, uint16_t wm[8])
4005 {
4006         struct seq_file *m = file->private_data;
4007         struct drm_i915_private *dev_priv = m->private;
4008         struct drm_device *dev = &dev_priv->drm;
4009         uint16_t new[8] = { 0 };
4010         int num_levels;
4011         int level;
4012         int ret;
4013         char tmp[32];
4014
4015         if (IS_CHERRYVIEW(dev_priv))
4016                 num_levels = 3;
4017         else if (IS_VALLEYVIEW(dev_priv))
4018                 num_levels = 1;
4019         else
4020                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4021
4022         if (len >= sizeof(tmp))
4023                 return -EINVAL;
4024
4025         if (copy_from_user(tmp, ubuf, len))
4026                 return -EFAULT;
4027
4028         tmp[len] = '\0';
4029
4030         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4031                      &new[0], &new[1], &new[2], &new[3],
4032                      &new[4], &new[5], &new[6], &new[7]);
4033         if (ret != num_levels)
4034                 return -EINVAL;
4035
4036         drm_modeset_lock_all(dev);
4037
4038         for (level = 0; level < num_levels; level++)
4039                 wm[level] = new[level];
4040
4041         drm_modeset_unlock_all(dev);
4042
4043         return len;
4044 }
4045
4046
4047 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4048                                     size_t len, loff_t *offp)
4049 {
4050         struct seq_file *m = file->private_data;
4051         struct drm_i915_private *dev_priv = m->private;
4052         uint16_t *latencies;
4053
4054         if (INTEL_GEN(dev_priv) >= 9)
4055                 latencies = dev_priv->wm.skl_latency;
4056         else
4057                 latencies = dev_priv->wm.pri_latency;
4058
4059         return wm_latency_write(file, ubuf, len, offp, latencies);
4060 }
4061
4062 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4063                                     size_t len, loff_t *offp)
4064 {
4065         struct seq_file *m = file->private_data;
4066         struct drm_i915_private *dev_priv = m->private;
4067         uint16_t *latencies;
4068
4069         if (INTEL_GEN(dev_priv) >= 9)
4070                 latencies = dev_priv->wm.skl_latency;
4071         else
4072                 latencies = dev_priv->wm.spr_latency;
4073
4074         return wm_latency_write(file, ubuf, len, offp, latencies);
4075 }
4076
4077 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4078                                     size_t len, loff_t *offp)
4079 {
4080         struct seq_file *m = file->private_data;
4081         struct drm_i915_private *dev_priv = m->private;
4082         uint16_t *latencies;
4083
4084         if (INTEL_GEN(dev_priv) >= 9)
4085                 latencies = dev_priv->wm.skl_latency;
4086         else
4087                 latencies = dev_priv->wm.cur_latency;
4088
4089         return wm_latency_write(file, ubuf, len, offp, latencies);
4090 }
4091
4092 static const struct file_operations i915_pri_wm_latency_fops = {
4093         .owner = THIS_MODULE,
4094         .open = pri_wm_latency_open,
4095         .read = seq_read,
4096         .llseek = seq_lseek,
4097         .release = single_release,
4098         .write = pri_wm_latency_write
4099 };
4100
4101 static const struct file_operations i915_spr_wm_latency_fops = {
4102         .owner = THIS_MODULE,
4103         .open = spr_wm_latency_open,
4104         .read = seq_read,
4105         .llseek = seq_lseek,
4106         .release = single_release,
4107         .write = spr_wm_latency_write
4108 };
4109
4110 static const struct file_operations i915_cur_wm_latency_fops = {
4111         .owner = THIS_MODULE,
4112         .open = cur_wm_latency_open,
4113         .read = seq_read,
4114         .llseek = seq_lseek,
4115         .release = single_release,
4116         .write = cur_wm_latency_write
4117 };
4118
4119 static int
4120 i915_wedged_get(void *data, u64 *val)
4121 {
4122         struct drm_i915_private *dev_priv = data;
4123
4124         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4125
4126         return 0;
4127 }
4128
4129 static int
4130 i915_wedged_set(void *data, u64 val)
4131 {
4132         struct drm_i915_private *i915 = data;
4133         struct intel_engine_cs *engine;
4134         unsigned int tmp;
4135
4136         /*
4137          * There is no safeguard against this debugfs entry colliding
4138          * with the hangcheck calling same i915_handle_error() in
4139          * parallel, causing an explosion. For now we assume that the
4140          * test harness is responsible enough not to inject gpu hangs
4141          * while it is writing to 'i915_wedged'
4142          */
4143
4144         if (i915_reset_backoff(&i915->gpu_error))
4145                 return -EAGAIN;
4146
4147         for_each_engine_masked(engine, i915, val, tmp) {
4148                 engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4149                 engine->hangcheck.stalled = true;
4150         }
4151
4152         i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4153
4154         wait_on_bit(&i915->gpu_error.flags,
4155                     I915_RESET_HANDOFF,
4156                     TASK_UNINTERRUPTIBLE);
4157
4158         return 0;
4159 }
4160
4161 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4162                         i915_wedged_get, i915_wedged_set,
4163                         "%llu\n");
4164
4165 static int
4166 fault_irq_set(struct drm_i915_private *i915,
4167               unsigned long *irq,
4168               unsigned long val)
4169 {
4170         int err;
4171
4172         err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4173         if (err)
4174                 return err;
4175
4176         err = i915_gem_wait_for_idle(i915,
4177                                      I915_WAIT_LOCKED |
4178                                      I915_WAIT_INTERRUPTIBLE);
4179         if (err)
4180                 goto err_unlock;
4181
4182         *irq = val;
4183         mutex_unlock(&i915->drm.struct_mutex);
4184
4185         /* Flush idle worker to disarm irq */
4186         while (flush_delayed_work(&i915->gt.idle_work))
4187                 ;
4188
4189         return 0;
4190
4191 err_unlock:
4192         mutex_unlock(&i915->drm.struct_mutex);
4193         return err;
4194 }
4195
4196 static int
4197 i915_ring_missed_irq_get(void *data, u64 *val)
4198 {
4199         struct drm_i915_private *dev_priv = data;
4200
4201         *val = dev_priv->gpu_error.missed_irq_rings;
4202         return 0;
4203 }
4204
4205 static int
4206 i915_ring_missed_irq_set(void *data, u64 val)
4207 {
4208         struct drm_i915_private *i915 = data;
4209
4210         return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4211 }
4212
4213 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4214                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4215                         "0x%08llx\n");
4216
4217 static int
4218 i915_ring_test_irq_get(void *data, u64 *val)
4219 {
4220         struct drm_i915_private *dev_priv = data;
4221
4222         *val = dev_priv->gpu_error.test_irq_rings;
4223
4224         return 0;
4225 }
4226
4227 static int
4228 i915_ring_test_irq_set(void *data, u64 val)
4229 {
4230         struct drm_i915_private *i915 = data;
4231
4232         val &= INTEL_INFO(i915)->ring_mask;
4233         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4234
4235         return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4236 }
4237
4238 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4239                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4240                         "0x%08llx\n");
4241
4242 #define DROP_UNBOUND 0x1
4243 #define DROP_BOUND 0x2
4244 #define DROP_RETIRE 0x4
4245 #define DROP_ACTIVE 0x8
4246 #define DROP_FREED 0x10
4247 #define DROP_SHRINK_ALL 0x20
4248 #define DROP_ALL (DROP_UNBOUND  | \
4249                   DROP_BOUND    | \
4250                   DROP_RETIRE   | \
4251                   DROP_ACTIVE   | \
4252                   DROP_FREED    | \
4253                   DROP_SHRINK_ALL)
4254 static int
4255 i915_drop_caches_get(void *data, u64 *val)
4256 {
4257         *val = DROP_ALL;
4258
4259         return 0;
4260 }
4261
4262 static int
4263 i915_drop_caches_set(void *data, u64 val)
4264 {
4265         struct drm_i915_private *dev_priv = data;
4266         struct drm_device *dev = &dev_priv->drm;
4267         int ret;
4268
4269         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4270
4271         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4272          * on ioctls on -EAGAIN. */
4273         ret = mutex_lock_interruptible(&dev->struct_mutex);
4274         if (ret)
4275                 return ret;
4276
4277         if (val & DROP_ACTIVE) {
4278                 ret = i915_gem_wait_for_idle(dev_priv,
4279                                              I915_WAIT_INTERRUPTIBLE |
4280                                              I915_WAIT_LOCKED);
4281                 if (ret)
4282                         goto unlock;
4283         }
4284
4285         if (val & DROP_RETIRE)
4286                 i915_gem_retire_requests(dev_priv);
4287
4288         lockdep_set_current_reclaim_state(GFP_KERNEL);
4289         if (val & DROP_BOUND)
4290                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4291
4292         if (val & DROP_UNBOUND)
4293                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4294
4295         if (val & DROP_SHRINK_ALL)
4296                 i915_gem_shrink_all(dev_priv);
4297         lockdep_clear_current_reclaim_state();
4298
4299 unlock:
4300         mutex_unlock(&dev->struct_mutex);
4301
4302         if (val & DROP_FREED) {
4303                 synchronize_rcu();
4304                 i915_gem_drain_freed_objects(dev_priv);
4305         }
4306
4307         return ret;
4308 }
4309
4310 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4311                         i915_drop_caches_get, i915_drop_caches_set,
4312                         "0x%08llx\n");
4313
4314 static int
4315 i915_max_freq_get(void *data, u64 *val)
4316 {
4317         struct drm_i915_private *dev_priv = data;
4318
4319         if (INTEL_GEN(dev_priv) < 6)
4320                 return -ENODEV;
4321
4322         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4323         return 0;
4324 }
4325
4326 static int
4327 i915_max_freq_set(void *data, u64 val)
4328 {
4329         struct drm_i915_private *dev_priv = data;
4330         u32 hw_max, hw_min;
4331         int ret;
4332
4333         if (INTEL_GEN(dev_priv) < 6)
4334                 return -ENODEV;
4335
4336         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4337
4338         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4339         if (ret)
4340                 return ret;
4341
4342         /*
4343          * Turbo will still be enabled, but won't go above the set value.
4344          */
4345         val = intel_freq_opcode(dev_priv, val);
4346
4347         hw_max = dev_priv->rps.max_freq;
4348         hw_min = dev_priv->rps.min_freq;
4349
4350         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4351                 mutex_unlock(&dev_priv->rps.hw_lock);
4352                 return -EINVAL;
4353         }
4354
4355         dev_priv->rps.max_freq_softlimit = val;
4356
4357         if (intel_set_rps(dev_priv, val))
4358                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4359
4360         mutex_unlock(&dev_priv->rps.hw_lock);
4361
4362         return 0;
4363 }
4364
4365 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4366                         i915_max_freq_get, i915_max_freq_set,
4367                         "%llu\n");
4368
4369 static int
4370 i915_min_freq_get(void *data, u64 *val)
4371 {
4372         struct drm_i915_private *dev_priv = data;
4373
4374         if (INTEL_GEN(dev_priv) < 6)
4375                 return -ENODEV;
4376
4377         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4378         return 0;
4379 }
4380
4381 static int
4382 i915_min_freq_set(void *data, u64 val)
4383 {
4384         struct drm_i915_private *dev_priv = data;
4385         u32 hw_max, hw_min;
4386         int ret;
4387
4388         if (INTEL_GEN(dev_priv) < 6)
4389                 return -ENODEV;
4390
4391         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4392
4393         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4394         if (ret)
4395                 return ret;
4396
4397         /*
4398          * Turbo will still be enabled, but won't go below the set value.
4399          */
4400         val = intel_freq_opcode(dev_priv, val);
4401
4402         hw_max = dev_priv->rps.max_freq;
4403         hw_min = dev_priv->rps.min_freq;
4404
4405         if (val < hw_min ||
4406             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4407                 mutex_unlock(&dev_priv->rps.hw_lock);
4408                 return -EINVAL;
4409         }
4410
4411         dev_priv->rps.min_freq_softlimit = val;
4412
4413         if (intel_set_rps(dev_priv, val))
4414                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4415
4416         mutex_unlock(&dev_priv->rps.hw_lock);
4417
4418         return 0;
4419 }
4420
4421 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4422                         i915_min_freq_get, i915_min_freq_set,
4423                         "%llu\n");
4424
4425 static int
4426 i915_cache_sharing_get(void *data, u64 *val)
4427 {
4428         struct drm_i915_private *dev_priv = data;
4429         u32 snpcr;
4430
4431         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4432                 return -ENODEV;
4433
4434         intel_runtime_pm_get(dev_priv);
4435
4436         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4437
4438         intel_runtime_pm_put(dev_priv);
4439
4440         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4441
4442         return 0;
4443 }
4444
4445 static int
4446 i915_cache_sharing_set(void *data, u64 val)
4447 {
4448         struct drm_i915_private *dev_priv = data;
4449         u32 snpcr;
4450
4451         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4452                 return -ENODEV;
4453
4454         if (val > 3)
4455                 return -EINVAL;
4456
4457         intel_runtime_pm_get(dev_priv);
4458         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4459
4460         /* Update the cache sharing policy here as well */
4461         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4462         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4463         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4464         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4465
4466         intel_runtime_pm_put(dev_priv);
4467         return 0;
4468 }
4469
4470 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4471                         i915_cache_sharing_get, i915_cache_sharing_set,
4472                         "%llu\n");
4473
4474 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4475                                           struct sseu_dev_info *sseu)
4476 {
4477         int ss_max = 2;
4478         int ss;
4479         u32 sig1[ss_max], sig2[ss_max];
4480
4481         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4482         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4483         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4484         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4485
4486         for (ss = 0; ss < ss_max; ss++) {
4487                 unsigned int eu_cnt;
4488
4489                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4490                         /* skip disabled subslice */
4491                         continue;
4492
4493                 sseu->slice_mask = BIT(0);
4494                 sseu->subslice_mask |= BIT(ss);
4495                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4496                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4497                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4498                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4499                 sseu->eu_total += eu_cnt;
4500                 sseu->eu_per_subslice = max_t(unsigned int,
4501                                               sseu->eu_per_subslice, eu_cnt);
4502         }
4503 }
4504
4505 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4506                                     struct sseu_dev_info *sseu)
4507 {
4508         int s_max = 3, ss_max = 4;
4509         int s, ss;
4510         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4511
4512         /* BXT has a single slice and at most 3 subslices. */
4513         if (IS_GEN9_LP(dev_priv)) {
4514                 s_max = 1;
4515                 ss_max = 3;
4516         }
4517
4518         for (s = 0; s < s_max; s++) {
4519                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4520                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4521                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4522         }
4523
4524         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4525                      GEN9_PGCTL_SSA_EU19_ACK |
4526                      GEN9_PGCTL_SSA_EU210_ACK |
4527                      GEN9_PGCTL_SSA_EU311_ACK;
4528         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4529                      GEN9_PGCTL_SSB_EU19_ACK |
4530                      GEN9_PGCTL_SSB_EU210_ACK |
4531                      GEN9_PGCTL_SSB_EU311_ACK;
4532
4533         for (s = 0; s < s_max; s++) {
4534                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4535                         /* skip disabled slice */
4536                         continue;
4537
4538                 sseu->slice_mask |= BIT(s);
4539
4540                 if (IS_GEN9_BC(dev_priv))
4541                         sseu->subslice_mask =
4542                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
4543
4544                 for (ss = 0; ss < ss_max; ss++) {
4545                         unsigned int eu_cnt;
4546
4547                         if (IS_GEN9_LP(dev_priv)) {
4548                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4549                                         /* skip disabled subslice */
4550                                         continue;
4551
4552                                 sseu->subslice_mask |= BIT(ss);
4553                         }
4554
4555                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4556                                                eu_mask[ss%2]);
4557                         sseu->eu_total += eu_cnt;
4558                         sseu->eu_per_subslice = max_t(unsigned int,
4559                                                       sseu->eu_per_subslice,
4560                                                       eu_cnt);
4561                 }
4562         }
4563 }
4564
4565 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4566                                          struct sseu_dev_info *sseu)
4567 {
4568         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4569         int s;
4570
4571         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4572
4573         if (sseu->slice_mask) {
4574                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4575                 sseu->eu_per_subslice =
4576                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4577                 sseu->eu_total = sseu->eu_per_subslice *
4578                                  sseu_subslice_total(sseu);
4579
4580                 /* subtract fused off EU(s) from enabled slice(s) */
4581                 for (s = 0; s < fls(sseu->slice_mask); s++) {
4582                         u8 subslice_7eu =
4583                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4584
4585                         sseu->eu_total -= hweight8(subslice_7eu);
4586                 }
4587         }
4588 }
4589
4590 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4591                                  const struct sseu_dev_info *sseu)
4592 {
4593         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4594         const char *type = is_available_info ? "Available" : "Enabled";
4595
4596         seq_printf(m, "  %s Slice Mask: %04x\n", type,
4597                    sseu->slice_mask);
4598         seq_printf(m, "  %s Slice Total: %u\n", type,
4599                    hweight8(sseu->slice_mask));
4600         seq_printf(m, "  %s Subslice Total: %u\n", type,
4601                    sseu_subslice_total(sseu));
4602         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
4603                    sseu->subslice_mask);
4604         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
4605                    hweight8(sseu->subslice_mask));
4606         seq_printf(m, "  %s EU Total: %u\n", type,
4607                    sseu->eu_total);
4608         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4609                    sseu->eu_per_subslice);
4610
4611         if (!is_available_info)
4612                 return;
4613
4614         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4615         if (HAS_POOLED_EU(dev_priv))
4616                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4617
4618         seq_printf(m, "  Has Slice Power Gating: %s\n",
4619                    yesno(sseu->has_slice_pg));
4620         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4621                    yesno(sseu->has_subslice_pg));
4622         seq_printf(m, "  Has EU Power Gating: %s\n",
4623                    yesno(sseu->has_eu_pg));
4624 }
4625
4626 static int i915_sseu_status(struct seq_file *m, void *unused)
4627 {
4628         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4629         struct sseu_dev_info sseu;
4630
4631         if (INTEL_GEN(dev_priv) < 8)
4632                 return -ENODEV;
4633
4634         seq_puts(m, "SSEU Device Info\n");
4635         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4636
4637         seq_puts(m, "SSEU Device Status\n");
4638         memset(&sseu, 0, sizeof(sseu));
4639
4640         intel_runtime_pm_get(dev_priv);
4641
4642         if (IS_CHERRYVIEW(dev_priv)) {
4643                 cherryview_sseu_device_status(dev_priv, &sseu);
4644         } else if (IS_BROADWELL(dev_priv)) {
4645                 broadwell_sseu_device_status(dev_priv, &sseu);
4646         } else if (INTEL_GEN(dev_priv) >= 9) {
4647                 gen9_sseu_device_status(dev_priv, &sseu);
4648         }
4649
4650         intel_runtime_pm_put(dev_priv);
4651
4652         i915_print_sseu_info(m, false, &sseu);
4653
4654         return 0;
4655 }
4656
4657 static int i915_forcewake_open(struct inode *inode, struct file *file)
4658 {
4659         struct drm_i915_private *dev_priv = inode->i_private;
4660
4661         if (INTEL_GEN(dev_priv) < 6)
4662                 return 0;
4663
4664         intel_runtime_pm_get(dev_priv);
4665         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4666
4667         return 0;
4668 }
4669
4670 static int i915_forcewake_release(struct inode *inode, struct file *file)
4671 {
4672         struct drm_i915_private *dev_priv = inode->i_private;
4673
4674         if (INTEL_GEN(dev_priv) < 6)
4675                 return 0;
4676
4677         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4678         intel_runtime_pm_put(dev_priv);
4679
4680         return 0;
4681 }
4682
4683 static const struct file_operations i915_forcewake_fops = {
4684         .owner = THIS_MODULE,
4685         .open = i915_forcewake_open,
4686         .release = i915_forcewake_release,
4687 };
4688
4689 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4690 {
4691         struct drm_i915_private *dev_priv = m->private;
4692         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4693
4694         seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4695         seq_printf(m, "Detected: %s\n",
4696                    yesno(delayed_work_pending(&hotplug->reenable_work)));
4697
4698         return 0;
4699 }
4700
4701 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4702                                         const char __user *ubuf, size_t len,
4703                                         loff_t *offp)
4704 {
4705         struct seq_file *m = file->private_data;
4706         struct drm_i915_private *dev_priv = m->private;
4707         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4708         unsigned int new_threshold;
4709         int i;
4710         char *newline;
4711         char tmp[16];
4712
4713         if (len >= sizeof(tmp))
4714                 return -EINVAL;
4715
4716         if (copy_from_user(tmp, ubuf, len))
4717                 return -EFAULT;
4718
4719         tmp[len] = '\0';
4720
4721         /* Strip newline, if any */
4722         newline = strchr(tmp, '\n');
4723         if (newline)
4724                 *newline = '\0';
4725
4726         if (strcmp(tmp, "reset") == 0)
4727                 new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4728         else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4729                 return -EINVAL;
4730
4731         if (new_threshold > 0)
4732                 DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4733                               new_threshold);
4734         else
4735                 DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4736
4737         spin_lock_irq(&dev_priv->irq_lock);
4738         hotplug->hpd_storm_threshold = new_threshold;
4739         /* Reset the HPD storm stats so we don't accidentally trigger a storm */
4740         for_each_hpd_pin(i)
4741                 hotplug->stats[i].count = 0;
4742         spin_unlock_irq(&dev_priv->irq_lock);
4743
4744         /* Re-enable hpd immediately if we were in an irq storm */
4745         flush_delayed_work(&dev_priv->hotplug.reenable_work);
4746
4747         return len;
4748 }
4749
4750 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4751 {
4752         return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4753 }
4754
4755 static const struct file_operations i915_hpd_storm_ctl_fops = {
4756         .owner = THIS_MODULE,
4757         .open = i915_hpd_storm_ctl_open,
4758         .read = seq_read,
4759         .llseek = seq_lseek,
4760         .release = single_release,
4761         .write = i915_hpd_storm_ctl_write
4762 };
4763
4764 static const struct drm_info_list i915_debugfs_list[] = {
4765         {"i915_capabilities", i915_capabilities, 0},
4766         {"i915_gem_objects", i915_gem_object_info, 0},
4767         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4768         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4769         {"i915_gem_stolen", i915_gem_stolen_list_info },
4770         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4771         {"i915_gem_request", i915_gem_request_info, 0},
4772         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4773         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4774         {"i915_gem_interrupt", i915_interrupt_info, 0},
4775         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4776         {"i915_guc_info", i915_guc_info, 0},
4777         {"i915_guc_load_status", i915_guc_load_status_info, 0},
4778         {"i915_guc_log_dump", i915_guc_log_dump, 0},
4779         {"i915_huc_load_status", i915_huc_load_status_info, 0},
4780         {"i915_frequency_info", i915_frequency_info, 0},
4781         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4782         {"i915_drpc_info", i915_drpc_info, 0},
4783         {"i915_emon_status", i915_emon_status, 0},
4784         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4785         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4786         {"i915_fbc_status", i915_fbc_status, 0},
4787         {"i915_ips_status", i915_ips_status, 0},
4788         {"i915_sr_status", i915_sr_status, 0},
4789         {"i915_opregion", i915_opregion, 0},
4790         {"i915_vbt", i915_vbt, 0},
4791         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4792         {"i915_context_status", i915_context_status, 0},
4793         {"i915_dump_lrc", i915_dump_lrc, 0},
4794         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4795         {"i915_swizzle_info", i915_swizzle_info, 0},
4796         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4797         {"i915_llc", i915_llc, 0},
4798         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4799         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4800         {"i915_energy_uJ", i915_energy_uJ, 0},
4801         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4802         {"i915_power_domain_info", i915_power_domain_info, 0},
4803         {"i915_dmc_info", i915_dmc_info, 0},
4804         {"i915_display_info", i915_display_info, 0},
4805         {"i915_engine_info", i915_engine_info, 0},
4806         {"i915_semaphore_status", i915_semaphore_status, 0},
4807         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4808         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4809         {"i915_wa_registers", i915_wa_registers, 0},
4810         {"i915_ddb_info", i915_ddb_info, 0},
4811         {"i915_sseu_status", i915_sseu_status, 0},
4812         {"i915_drrs_status", i915_drrs_status, 0},
4813         {"i915_rps_boost_info", i915_rps_boost_info, 0},
4814 };
4815 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4816
4817 static const struct i915_debugfs_files {
4818         const char *name;
4819         const struct file_operations *fops;
4820 } i915_debugfs_files[] = {
4821         {"i915_wedged", &i915_wedged_fops},
4822         {"i915_max_freq", &i915_max_freq_fops},
4823         {"i915_min_freq", &i915_min_freq_fops},
4824         {"i915_cache_sharing", &i915_cache_sharing_fops},
4825         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4826         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4827         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4828 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4829         {"i915_error_state", &i915_error_state_fops},
4830         {"i915_gpu_info", &i915_gpu_info_fops},
4831 #endif
4832         {"i915_next_seqno", &i915_next_seqno_fops},
4833         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4834         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4835         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4836         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4837         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4838         {"i915_dp_test_data", &i915_displayport_test_data_fops},
4839         {"i915_dp_test_type", &i915_displayport_test_type_fops},
4840         {"i915_dp_test_active", &i915_displayport_test_active_fops},
4841         {"i915_guc_log_control", &i915_guc_log_control_fops},
4842         {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4843 };
4844
4845 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4846 {
4847         struct drm_minor *minor = dev_priv->drm.primary;
4848         struct dentry *ent;
4849         int ret, i;
4850
4851         ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4852                                   minor->debugfs_root, to_i915(minor->dev),
4853                                   &i915_forcewake_fops);
4854         if (!ent)
4855                 return -ENOMEM;
4856
4857         ret = intel_pipe_crc_create(minor);
4858         if (ret)
4859                 return ret;
4860
4861         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4862                 ent = debugfs_create_file(i915_debugfs_files[i].name,
4863                                           S_IRUGO | S_IWUSR,
4864                                           minor->debugfs_root,
4865                                           to_i915(minor->dev),
4866                                           i915_debugfs_files[i].fops);
4867                 if (!ent)
4868                         return -ENOMEM;
4869         }
4870
4871         return drm_debugfs_create_files(i915_debugfs_list,
4872                                         I915_DEBUGFS_ENTRIES,
4873                                         minor->debugfs_root, minor);
4874 }
4875
4876 struct dpcd_block {
4877         /* DPCD dump start address. */
4878         unsigned int offset;
4879         /* DPCD dump end address, inclusive. If unset, .size will be used. */
4880         unsigned int end;
4881         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4882         size_t size;
4883         /* Only valid for eDP. */
4884         bool edp;
4885 };
4886
4887 static const struct dpcd_block i915_dpcd_debug[] = {
4888         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4889         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4890         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4891         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4892         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4893         { .offset = DP_SET_POWER },
4894         { .offset = DP_EDP_DPCD_REV },
4895         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4896         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4897         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4898 };
4899
4900 static int i915_dpcd_show(struct seq_file *m, void *data)
4901 {
4902         struct drm_connector *connector = m->private;
4903         struct intel_dp *intel_dp =
4904                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4905         uint8_t buf[16];
4906         ssize_t err;
4907         int i;
4908
4909         if (connector->status != connector_status_connected)
4910                 return -ENODEV;
4911
4912         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4913                 const struct dpcd_block *b = &i915_dpcd_debug[i];
4914                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4915
4916                 if (b->edp &&
4917                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4918                         continue;
4919
4920                 /* low tech for now */
4921                 if (WARN_ON(size > sizeof(buf)))
4922                         continue;
4923
4924                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4925                 if (err <= 0) {
4926                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4927                                   size, b->offset, err);
4928                         continue;
4929                 }
4930
4931                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4932         }
4933
4934         return 0;
4935 }
4936
4937 static int i915_dpcd_open(struct inode *inode, struct file *file)
4938 {
4939         return single_open(file, i915_dpcd_show, inode->i_private);
4940 }
4941
4942 static const struct file_operations i915_dpcd_fops = {
4943         .owner = THIS_MODULE,
4944         .open = i915_dpcd_open,
4945         .read = seq_read,
4946         .llseek = seq_lseek,
4947         .release = single_release,
4948 };
4949
4950 static int i915_panel_show(struct seq_file *m, void *data)
4951 {
4952         struct drm_connector *connector = m->private;
4953         struct intel_dp *intel_dp =
4954                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4955
4956         if (connector->status != connector_status_connected)
4957                 return -ENODEV;
4958
4959         seq_printf(m, "Panel power up delay: %d\n",
4960                    intel_dp->panel_power_up_delay);
4961         seq_printf(m, "Panel power down delay: %d\n",
4962                    intel_dp->panel_power_down_delay);
4963         seq_printf(m, "Backlight on delay: %d\n",
4964                    intel_dp->backlight_on_delay);
4965         seq_printf(m, "Backlight off delay: %d\n",
4966                    intel_dp->backlight_off_delay);
4967
4968         return 0;
4969 }
4970
4971 static int i915_panel_open(struct inode *inode, struct file *file)
4972 {
4973         return single_open(file, i915_panel_show, inode->i_private);
4974 }
4975
4976 static const struct file_operations i915_panel_fops = {
4977         .owner = THIS_MODULE,
4978         .open = i915_panel_open,
4979         .read = seq_read,
4980         .llseek = seq_lseek,
4981         .release = single_release,
4982 };
4983
4984 /**
4985  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4986  * @connector: pointer to a registered drm_connector
4987  *
4988  * Cleanup will be done by drm_connector_unregister() through a call to
4989  * drm_debugfs_connector_remove().
4990  *
4991  * Returns 0 on success, negative error codes on error.
4992  */
4993 int i915_debugfs_connector_add(struct drm_connector *connector)
4994 {
4995         struct dentry *root = connector->debugfs_entry;
4996
4997         /* The connector must have been registered beforehands. */
4998         if (!root)
4999                 return -ENODEV;
5000
5001         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5002             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5003                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5004                                     connector, &i915_dpcd_fops);
5005
5006         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5007                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5008                                     connector, &i915_panel_fops);
5009
5010         return 0;
5011 }